
ARADI and LLAMA: Low-Latency Cryptography for
Memory Encryption

Patricia Greene

Mark Motley

Bryan Weeks

National Security Agency

9800 Savage Road, Fort Meade, MD 20755, USA

{ppgreen, mjmotle}@nsa.gov, beweeks@uwe.nsa.gov

Abstract

In this paper, we describe a low-latency block cipher (Aradi) and authen-

ticated encryption mode (Llama) intended to support memory encryption

applications.

1. Introduction

For modern processor architectures, it is often the case that the CPU can

be protected within a secure enclave to ensure its security. However, it is

infeasible to provide the same kind of protection for the processor’s RAM.

Because of this, it is desirable to encrypt data written to RAM using a key

held within the tamper boundary. In addition to confidentiality, we want to

ensure integrity of this data. In other words, we want to provide authenticated

encryption.

This application presents some unique challenges. In particular, in order to

avoid delaying memory accesses, we must achieve authenticated encryption

with very low latency [9]. In this paper, we introduce a low-latency block

cipher Aradi and an authenticated encryption mode Llama tailored to the

memory encryption application.

1



2. An Overview of Memory Encryption

Traditionally, cryptography for computer security has focused on providing

confidentiality and integrity for communication links, or data at rest on the

hard drive.

However, more recent physical attacks have made it clear that protection must

also be provided for the RAM. Cold boot attacks (see [7] for example) can

potentially provide access to sensitive information such as unwrapped keys.

Ideally, a memory encryption scheme is sufficiently flexible that it can operate

efficiently in a variety of scenarios. For example, an efficient FPGA implemen-

tation is needed when we need to make use of commercial CPUs and memory

“as-is”, whereas an efficient implementation in dedicated hardware is needed

if memory encryption is to be embedded in a CPU design.

Satisfying these constraints is a challenging problem as bandwidth between

memory and the CPU has become highly optimized. Required response times

have reduced dramatically, and the latency options between memory and CPU

are limited. For example, an AM1810 ARM processor only has options for 2,

3, 4 or 5 clock cycles.

These constraints strongly influence our design decisions. Achieving sufficient

throughput to handle burst data will require pipelining, so we can vary the

round function of our block cipher without any additional performance cost.

The stringent latency requirements also suggest that we favor block cipher

designs that increase the work per round in order to reduce the round count. If

we want to provide authenticated encryption, a mode that is fully parallelizable

(particularly in the decrypt direction) is preferable.

On the other hand, in this application we can reasonably enforce frequent

re-keying (say once per day), and so we have a relatively small upper bound

on the amount of data available to the attacker on a given key. In addition,

related-key security is not a significant concern for memory encryption as keys

are generated and stored locally.

In this paper, rather than propose a full memory encryption scheme, we de-

scribe a block cipher and accompanying mode with performance characteristics

suitable for use in memory encryption.

2



3. The ARADI Low-Latency Block Cipher

In this section we describe Aradi, a 128-bit block cipher with a 256-bit key,

designed for low-latency applications (e.g. memory encryption). Several low-

latency block ciphers have already been proposed (see for example [3, 10]),

but we believe Aradi is particularly well suited to our current use case while

delivering good overall performance.

Focusing on latency requires that some other design constraints be relaxed.

For example, since we’re now primarily interested in an unrolled hardware

implementation, we needn’t make all the rounds of the cipher identical. This

increases the area of a round-based implementation, but allows for faster mix-

ing.

Although we have designed Aradi to have sufficiently low latency for the

memory encryption application, we have not endeavored to produce the lowest

latency block cipher possible. Instead, subject to the given latency constraints,

we have attempted to produce a design with reasonably good characteristics

across a wide variety of performance criteria.

3.1. The ARADI Round Function

Aradi is a substitution-permutation network (SPN) with round function act-

ing on a state consisting of four 32-bit words (w, x, y, z)∗. In this representa-

tion, the s-box layer consists of 32 identical 4-bit s-boxes, with the i-th s-box

acting on the i-th bit level of the words of state. The s-box is a composition

of four Toffoli gates, i.e. 3-bit to 3-bit gates of the form (a, b, c) 7→ (a, b, c⊕ab)
(see Figure 3.1 for a diagram).

This s-box has optimal statistical properties for its size. Namely, the largest

entry in the Difference Distribution Table is 1/4 and the largest magnitude of

any entry in the Linear Approximation Table is 1/2. It is easy to see that any

4-bit s-box that is a composition of Toffoli gates requires at least four such

gates if we want acceptable linear/differential properties.

∗Here w is the most significant 32-bit word of the 128-bit state, and z is the least
significant.

3



w x y z

w x y z

&

&

&

&

Figure 3.1: Aradi s-box layer

The linear maps for Aradi vary on a cycle of four, which makes it possible

to improve resistance to linear and differential cryptanalysis. By acting in-

dependently on the words w, x, y, and z, the linear maps operate in a way

complementary to the s-box layer, which operates independently on the dif-

ferent bit levels. So, we can write the Aradi linear maps in the form

(w, x, y, z) 7→ (Li(w), Li(x), Li(y), Li(z)),

where Li is a linear map on 32-bit words.

The Li are involutions constructed from 16-bit circular shifts and XORs. If the

32-bit input is composed of two 16-bit halves u, l, then Li has the form

(u, l) 7→ (u⊕ Sai
16(u)⊕ Sci

16(l), l ⊕ S
ai
16(l)⊕ S

bi
16(u))

(see Figure 3.2 for a diagram). As a matrix each Li has row density three, so

that each output bit requires two XORs (or one 3-input XOR). This, along with

the fact that Li is an involution, allows for an efficient implementation of both

the encrypt and decrypt cipher.

4



u l

u l

Sbi
16

Sci
16

Sai
16 Sai

16

Figure 3.2: Aradi linear map applied to a 32-bit word w =
u || l (u and l represent the upper and lower 16 bits of w. S16 is
a left circular shift on a 16-bit word).

The sequence of shift amounts for the Aradi linear maps is

i mod 4 ai bi ci

0 11 8 14

1 10 9 11

2 9 4 14

3 8 9 7

These parameters were chosen by a limited search over the possible values. No

attempt was made to select shift values close to multiples of eight, so we antic-

ipate Aradi is more well suited to 16-bit rather than 8-bit microprocessors.

Let π be the Aradi s-box layer and Λi the i-th linear map. If we denote

translation by the 128-bit value v by τv, then the Aradi encryption function

has the form (reading from right to left)

τk16 ◦ (Λ15πτk15) ◦ · · · ◦ (Λ2πτk2) ◦ (Λ1πτk1) ◦ (Λ0πτk0),

where the indices of the Λi are reduced modulo four, and the ki are the ex-

panded keys (16 round keys plus a post add). The method for generating the

ki from the 256-bit base key is described in the next subsection.

5



3.2. The ARADI Key Schedule

The Aradi key schedule operates on an array of eight 32-bit words Kj. It

makes use of two invertible linear maps M0,M1 operating on pairs of 32-bit

words. These maps have the form

M0(x, y) = (S1
32(x)⊕ y, S3

32(y)⊕ S1
32(x)⊕ y)

M1(x, y) = (S9
32(x)⊕ y, S28

32(y)⊕ S9
32(x)⊕ y)

where S32 is a left circular shift on a 32-bit word. The key schedule update

varies on a period of two. Two steps (starting on an even index round) are

illustrated in Figure 3.3.

Ki
0 Ki

1 Ki
2 Ki

3 Ki
4 Ki

5 Ki
6 Ki

7

M0 M1 M0 M1

Ki+1
0 Ki+1

1 Ki+1
2 Ki+1

3 Ki+1
4 Ki+1

5 Ki+1
6 Ki+1

7

i

M0 M1 M0 M1

Ki+2
0 Ki+2

1 Ki+2
2 Ki+2

3 Ki+2
4 Ki+2

5 Ki+2
6 Ki+2

7

i+ 1

Figure 3.3: Aradi key schedule. Two consecutive rounds
shown. Round keys are drawn from the boxed regions.

6



If we denote the register values at step i by (Ki
0, K

i
1, K

i
2, K

i
3, K

i
4, K

i
5, K

i
6, K

i
7),

then the i-th round key is the concatenation Ki
0||Ki

1||Ki
2||Ki

3 for even index

rounds and Ki
4||Ki

5||Ki
6||Ki

7 otherwise. At each step, the four pairs of consecu-

tive words are mixed by applying either M0 or M1. Then a word permutation

Pj is applied, where P0 = (12)(56) and P1 = (14)(36) (j is the round modulo

2). The register is initially loaded with the eight 32-bit words of key K0, . . . K7,

and a counter is XORed into K7 at each step in order to block slide/rotational

attacks [1].

3.3. ARADI Test Vector

Aradi Test Vector 1

Key: K[7] K[6] K[5] K[4] K[3] K[2] K[1] K[0]

1f1e1d1c 1b1a1918 17161514 13121110 0f0e0d0c 0b0a0908 07060504 03020100

-------------------------------------------------------------------------------------------

w x y z Round key

-------------------------------------------------------------------------------------------

Plain: 00000000 00000000 00000000 00000000

Round 0 subcipher 367f232b 25252020 4a4a4040 7c35636b 03020100 07060504 0b0a0908 0f0e0d0c

Round 1 subcipher ee64f20f f9bce360 418d0976 1042f571 31323734 2b2c2d2a 89829f94 eaddccfb

Round 2 subcipher e65da996 564e30aa 8ebffad6 2cfea43d 19181312 49484342 bfb2b5b8 efe2e5e8

Round 3 subcipher 19fb2d3e 2ea0ff0a 5f80e087 eab056a4 93d8dd96 49bbf102 12918d0e 2caf0292

Round 4 subcipher 48ff5cca 5747215c 587a96c3 5c895983 7c795e5b 6e0a4a2f 708952ab 0fb51eb7

Round 5 subcipher 99f5db6e b376d237 35c04785 11c1fbe7 73be37f3 b12de15c 6d10261a 63fa1fb1

Round 6 subcipher 05dd6b05 ba589c3f 9705656e c46926d9 30e1a565 56518eba 38a4dc70 43b62b6b

Round 7 subcipher a4a55ef4 9a71c3e1 239f293b c7ab0eba 6ff94bf4 a1525d49 960d690a f40ac5e6

Round 8 subcipher f2ca9329 ac68354a cba990dc efec06a6 652b43fa 7ea0caa1 8356eca6 eed8d0ca

Round 9 subcipher 2b4f661f 1f94aecd 8572fae6 79ccb74a 1e8816b8 eaf40402 bf1911db d2ed83c3

Round 10 subcipher ec3a6302 9ca4753c 91c92f12 a0ff38f9 2aed0767 d7e42972 0ddcac43 e0ce34bd

Round 11 subcipher 4205949d 0e2828c7 bba29cde 7bf46c7f e587db6f d93a728e e7a79043 54e47c4c

Round 12 subcipher 7ea3e1a5 4f7fafe6 6673f583 e469266b 5deafddf 1235c451 b9420597 1bc4fb83

Round 13 subcipher 27e6107f 1a3e9f60 e6f1261c ad5374a4 f95881fc a9cbae8e 266a00c2 64230546

Round 14 subcipher c621be33 d8aa33dc cf025fb6 93c87cda cc0fab2e 5b7aad77 32495539 b022810a

Round 15 subcipher 9b4aaecf 69d197fa eb8df6a0 f60a35ba 71c5c046 8ab9aa02 d8fb0856 b7dfa119

After post-add 3f09abf4 00e3bd74 03260def b7c53912 a443053b 69322a8e e8abfb4f 41cf0ca8

Cipher: 3f09abf4 00e3bd74 03260def b7c53912

Figure 3.4: Aradi test vector

7



3.4. ARADI Pseudocode

In this section we provide pseudocode implementing the Aradi block cipher.

Here, as elsewhere, the notation || indicates concatenation of bitstrings.

-------------------------- definitions --------------------------

w,x,y,z = plaintext words

K[7]..K[0] = key words

M(i,j,X,Y) = (Si
32 Y ⊕ Sj

32 X ⊕ X, Si
32 Y ⊕ X)

L(a,b,c,x||y) = (x ⊕ Sa
16 x ⊕ Sc

16 y)||(y ⊕ Sa
16 y ⊕ Sb

16 x)

a = [11,10,9,8], b = [8,9,4,9], c = [14,11,14,7]

------------------------- key expansion -------------------------

for i = 0..15

j ← i mod 2

k[i][3] ← K[4j+3], k[i][2] ← K[4j+2], k[i][1] ← K[4j+1], k[i][0] ← K[4j+0]

(K[1], K[0]) ← M(1, 3,K[1],K[0])

(K[3], K[2]) ← M(9,28,K[3],K[2])

(K[5], K[4]) ← M(1, 3,K[5],K[4])

(K[7], K[6]) ← M(9,28,K[7],K[6]), K[7] ← K[7] ⊕ i

if (j = 0)

T ← K[1], K[1] ← K[2], K[2] ← T

T ← K[5], K[5] ← K[6], K[6] ← T

else

T ← K[1], K[1] ← K[4], K[4] ← T

T ← K[3], K[3] ← K[6], K[6] ← T

end if

end for

k[16][3] ← K[3], k[16][2] ← K[2], k[16][1] ← K[1], k[16][0] ← K[0]

-------------------------- encryption ---------------------------

for i = 0..15

z ← z ⊕ k[i][3], y ← y ⊕ k[i][2], x ← x ⊕ k[i][1], w ← w ⊕ k[i][0]

x ← x ⊕ (w & y), z ← z ⊕ (x & y), y ← y ⊕ (w & z), w ← w ⊕ (x & z)

j ← i mod 4

z ← L(a[j],b[j],c[j],z), y ← L(a[j],b[j],c[j],y)

x ← L(a[j],b[j],c[j],x), w ← L(a[j],b[j],c[j],w)

end for

z ← z ⊕ k[16][3], y ← y ⊕ k[16][2], x ← x ⊕ k[16][1], w ← w ⊕ k[16][0]

Figure 3.5: Aradi encrypt pseudocode.

8



3.5. ARADI Performance

In this section, we discuss the performance of Aradi. Given the way we

envision the algorithm being used, our main focus is on hardware/FPGA per-

formance. Figure 3.6 below provides performance numbers for various Aradi

implementations on a Xilinx Virtex7-3 FPGA, (part no. Xc7v585tffg1157-3)

alongside reference numbers for an implementation of AES (Helion data from [8]

is an estimate based on AES-CTR implementation).

Algorithm LUTs Freq T’put Latency Latency

(MHz) (Gbps) (Cycles) (ns)

Helion AES(Giga) [8] 9400 312.00 40.0 14 44.9

Aradi 16d1u 8453 516.00 66.0 16 31.0

Aradi 8d2u 6434 355.49 45.5 8 22.5

Aradi 4d4u 6750 194.17 24.9 4 20.6

Figure 3.6: Aradi FPGA performance (Xilinx Virtex7-3)

Here and elsewhere, the notation xdyu indicates an x-deep pipeline with y

unrolled rounds between pipeline stages. In Figure 3.7, we provide a similar

comparison for an Ultrascale+ FPGA (part no. xcvu9p-flga2104-2L-e).

Algorithm LUTs Freq T’put Latency Latency

(MHz) (Gbps) (Cycles) (ns)

Xiphera [11] 14662 777.00 99.46 14 18.02

Design Gateway [4] 1462 525.00 4.48 15 28.57

Aradi 16d1u 8599 793.65 101.59 16 20.16

Aradi 8d2u 8015 463.61 59.34 8 17.26

Aradi 4d4u 6630 239.69 30.68 4 16.69

Aradi 2d8u 5924 154.63 19.79 2 12.93

Figure 3.7: Aradi FPGA performance (Xilinx Ultrascale+)

9



In Figure 3.8, we provide performance data for Aradi in a hardware imple-

mentation, along with an AES implementation for purposes of comparison.

Algorithm Gates Freq T’put Latency Latency

(MHz) (Gbps) (Cycles) (ns)

Helion AES(Giga) 125k 237.5 16.0 14 59.0

Aradi 16d1u 110k 892.9 114.3 16 17.9

Aradi 4d4u 133k 333.0 42.6 4 12.0

Aradi 2d8u 218k 188.3 24.1 2 10.6

Figure 3.8: Aradi Hardware performance (65nm CMOS)

Although Aradi was not specifically designed as a software-oriented block

cipher, we briefly discuss software implementations.

If the Aradi state is stored in four 32-bit words w, x, y, z, then the s-box layer

requires a total of 12 operations (4 XORs, 4 ANDs, and 4 copies).

The Aradi linear map is not quite as software friendly given this represen-

tation, but an efficient implementation can be done if vector operations on

16-bit registers are available. Say we use five 128-bit registers W,X, Y, Z, T

(here T is a scratch register) to process four plaintexts at once. For example,

W = (w1L, w1U , w2L, w2U , w3L, w3U , w4L, w4U)

with wiU and wiL the upper and lower 16 bits of the 32-bit word wi. We want

to apply the same linear map L to each of the wi, and similarly for the xi, yi

and zi. If we can perform vectorized circular shifts

(Sr1
16(w1L), Sr2

16(w1U), Sr3
16(w2L), Sr4

16(w2U), Sr5
16(w3L), Sr6

16(w3U), Sr7
16(w4L), Sr8

16(w4U))

and word permutations in a single operation, then L can be applied to each

of the four words of W using 6 operations (1 copy, 1 word permutation, 2

circular shifts and 2 XORs). This has to be repeated for X, Y , and Z so one

encryption round for the four plaintexts requires a total of 12 + 24 + 4 = 40

vector operations in this example (assuming precomputed round keys).

10



4. The LLAMA Authenticated Encryption Mode

Llama is a low-latency, parallelizable, authenticated encryption mode employ-

ing a variant of the “encrypt then MAC” construction. It provides confiden-

tiality by counter mode encryption (CTR) and integrity using an authenticator

LMAC (similar to PMAC [2]), described below.

Since Llama is intended for memory encryption, a padding scheme is unneces-

sary, as the data to be encrypted can be arranged in fixed-size full-block units.

Llama is not designed to process additional authenticated data (AAD), fur-

ther simplifying the mode. To minimize latency, Llama uses fully paralleliz-

able operations for both encryption and the generation of a 128-bit integrity

tag.

Llama makes use of a 128-bit block cipher E. Block cipher encryption with

input x and key K is denoted EK(x). Llama uses the same block cipher

and key for CTR and LMAC, for both encryption and decryption. It does not

require the use of the inverse block cipher.

Llama operates on plaintexts P consisting of a sequence of 128-bit blocks

P = P1, P2, . . . , PL, where L is a constant fixed for the lifetime of the key.

Allowable values for L are 2 ≤ L ≤ 232 − 2, which correspond to plaintext

lengths of 32 ≤ |P | ≤ 236 − 32 bytes.

In addition to a secret key K, the security of Llama relies on the choice of

a non-zero IV. Plaintexts encrypted with a given key must have distinct IV

values. The size of IV is application-dependent (i.e. it is determined by the

application; at a minimum, like L it must be fixed for the lifetime of a key), but

IV must fit into a 128-bit block with enough space left over for the counter.

Allowable lengths ` for IV are 96 ≤ ` ≤ 128 − dlog2(L + 1)e. For the test

vectors provided in this paper we use a 96-bit IV, which can be used with any

permissible value of L.

The authenticator LMAC is fully parallelizable. It uses the encrypt block

cipher and XOR alone, in contrast to modes like GCM [6] that require finite field

multiplications. Further, it avoids a tag finalization step that could increase

latency. LMAC requires the generation of a set of LMAC keys, but this is

done only once per key period so that the work can be amortized.

11



We now describe Llama encryption and decryption in detail (see Figure 4.1

for a diagram of the encryption process).

IV||0

IV||1 IV||2 IV||3 IV||4

CT1 CT2 CT3 CT4

EK EK EK EK

EK EK EK EK

EK

PT1 PT2 PT3 PT4

H0

H1 H2 H3 H4

Tag

Figure 4.1: Llama encryption (L = 4, Hi precomputed)

The plaintext is encrypted using Counter Mode (CTR) with the given IV and

key K. In other words, the plaintext blocks are encrypted as

Ci = EK(IV || i)⊕ Pi,

for 1 ≤ i ≤ L. The ciphertext is C = C1, C2, . . . , CL.

Llama uses LMAC as the integrity mechanism. The input to LMAC is the

key, IV, and the ciphertext C = C1, C2, . . . CL. LMAC processes this input to

produce a 128-bit integrity tag.

LMAC uses a sequence of 128-bit key-dependent keys, denoted H0, H1, . . . HL.

These are computed and (securely) stored when the base key is generated.

12



Each LMAC key is formed by concatenating two sections of counter mode

keystream with IV set to zero. If X[0 : 7] denotes the leftmost (most signifi-

cant)∗ 8 bytes of a 16-byte input X, then the LMAC keys are

Hi = EK((2i) || 064)[0 : 7] ||EK((2i+ 1) || 064)[0 : 7],

for 0 ≤ i ≤ L, where 2i, 2i+ 1 are encoded as 64-bit integers.

The first step in the LMAC computation is encrypting the XOR sum of IV

and the first LMAC key to form S0, where IV is padded with zeros to fill the

128-bit block: S0 = EK((IV || 0128−`)⊕H0). Then each block of C is XORed to

an LMAC key and encrypted using the block cipher to get

Si = EK(Ci ⊕Hi),

for 1 ≤ i ≤ L. The tag is T =
⊕L

i=0 Si, the XOR of the Si.

Decryption and tag verification is accomplished without using the inverse block

cipher. The plaintext is recovered by using counter mode decryption on the

ciphertext C initialized with IV so that

Pi = EK(IV || i)⊕ Ci,

and the integrity tag is re-computed on the ciphertext and compared with the

received tag. If they differ, then the ciphertext fails the integrity check and

the plaintext must be rejected.

Note that decryption and verification can be implemented in parallel for Llama.

This allows for especially low latency memory reads. Since Aradi decryption

is efficient, an analogous mode using CTR paired with PMAC as an authentica-

tor would perform decryption and verification with similar latency. However,

this mode would require that both the encrypt and decrypt block ciphers be

implemented, and has the disadvantage of increasing the latency for encryp-

tion.

∗When used with Aradi, this corresponds to words w and x of the state.

13



4.1. LLAMA Pseudocode

------------------------------- inputs --------------------------------

K = 256-bit key, P = plaintext, IV = initial value (nonce)

---------------------------- LMAC key setup --------------------------

for i = 0 to L

Hi ← EK(2i||0..0)[0:7] ||EK((2i+1)||0..0)[0:7]

end for

------------------------------- LLAMA functions -----------------------

LLAMA_ENC(P,IV):

C ← CTR(P,IV), T ← LMAC(C,IV)

return C,T

LLAMA_DEC(C,T,IV):

T’ ← LMAC(C,IV)

if T != T’

return ERROR

end if

P ← CTR(C,IV)

return P

CTR(P,IV):

P = p1,p2...pL, CTR_Block = IV || 0...1

for i = 1 to L

ci ← pi⊕EK(CTR_Block)

CTR_Block ← CTR_Block + 1

end for

return C = c1,c2...cL

LMAC(C,IV):

C = c1,c2...cL, S0 = EK((IV || 0..0)⊕H0)

for i = 1 to L

Si ← EK(ci⊕Hi)

end for

T = 0

for i = 0 to L

T ← T⊕ Si
end for

return T

Figure 4.2: Llama pseudocode.

14



4.2. LLAMA Test Vectors

IV is 96 bits

ff112233 44556677 8899aabb

Plaintext is 64 bytes

ffeeddcc bbaa9988 77665544 33221100 00000001 00000002 00000003 00000004

20212223 24252627 28292a2b 2c2d2e2f 30313233 34353637 38393a3b 3c3d3e3f

CV[7..0] = 1f1e1d1c 1b1a1918 17161514 13121110 0f0e0d0c 0b0a0908 07060504 03020100

LMAC Key computation (L=4)

w x y z

Aradi Input 00000000 00000000 00000000 00000000 Aradi Input 00000000 00000001 00000000 00000000

Aradi Output 3f09abf4 00e3bd74 03260def b7c53912 Aradi Output 27bfa00d 83349615 3b7095fd e633efb8

H[0] 3f09abf4 00e3bd74 27bfa00d 83349615

Aradi Input 00000000 00000002 00000000 00000000 Aradi Input 00000000 00000003 00000000 00000000

Aradi Output 4cc1c23c 04a204a4 c514133e 329286f8 Aradi Output 5c858e64 45d745af dac0923e 7b2d3272

H[1] 4cc1c23c 04a204a4 5c858e64 45d745af

Aradi Input 00000000 00000004 00000000 00000000 Aradi Input 00000000 00000005 00000000 00000000

Aradi Output 66e19501 b781a2be 44c06864 1bfccbe0 Aradi Output d7000bb1 b3690d84 cb846c76 b4a1d8b3

H[2] 66e19501 b781a2be d7000bb1 b3690d84

Aradi Input 00000000 00000006 00000000 00000000 Aradi Input 00000000 00000007 00000000 00000000

Aradi Output 8b633523 d66cc10a a6f166cd e45d4704 Aradi Output 92d7052d a5e13d30 26db3c87 0f53b391

H[3] 8b633523 d66cc10a 92d7052d a5e13d30

Aradi Input 00000000 00000008 00000000 00000000 Aradi Input 00000000 00000009 00000000 00000000

Aradi Output febd86a9 60e03ce7 5199e241 84747297 Aradi Output ad670931 a473a30e 9d272faa 37959e5d

H[4] febd86a9 60e03ce7 ad670931 a473a30e

Data Block 0 ffeeddcc bbaa9988 77665544 33221100

CTR Input ff112233 44556677 8899aabb 00000001

CT[1] a3af1b2b 9d36b762 633f4655 63409c45

Data Block 1 00000001 00000002 00000003 00000004

CTR Input ff112233 44556677 8899aabb 00000002

CT[2] 7b53af19 e5414dff ed372602 4926ecb3

Data Block 2 20212223 24252627 28292a2b 2c2d2e2f

CTR Input ff112233 44556677 8899aabb 00000003

CT[3] 7a0eee4b f6be9517 eaf367fb ed6adfe7

Data Block 3 30313233 34353637 38393a3b 3c3d3e3f

CTR Input ff112233 44556677 8899aabb 00000004

CT[4] 49eab116 9059051a 22929cc3 61251a70

LMAC computation

E_k Input[0] c01889c7 44b6db03 af260ab6 83349615

S[0] 5f738171 9d076e37 be083b74 c278b45b

E_k Input[1] ef6ed917 9994b3c6 3fbac831 2697d9ea

S[1] b0a447f1 3d22df38 3ccc8bf7 b0c4d01b

E_k Input[2] 1db23a18 52c0ef41 3a372db3 fa4fe137

S[2] 1d818f0d daa97bf5 2bd48cfb ab21af2e

E_k Input[3] f16ddb68 20d2541d 782462d6 488be2d7

S[3] f71cb2d2 af42d9eb cab6fe32 9a7a29cf

E_k Input[4] b75737bf f0b939fd 8ff595f2 c556b97e

S[4] c91596a7 66de65fd 35759a39 e680cf7e

Llama ciphertext, tag is

a3af1b2b 9d36b762 633f4655 63409c45 7b53af19 e5414dff ed372602 4926ecb3

7a0eee4b f6be9517 eaf367fb ed6adfe7 49eab116 9059051a 22929cc3 61251a70

cc5f6df8 b31076ec 56d35873 a5672ddf

Figure 4.3: Llama test vector 1

15



IV is 96 bits

55000000 00000000 00000022

Plaintext is 64 bytes

88898a8b 8c8d8e8f 90919293 94959697 98999a9b 9c9d9e9f a0a1a2a3 a4a5a6a7

a8a9aaab acadaeaf b0b1b2b3 b4b5b6b7 b8b9babb bcbdbebf c0c1c2c3 c4c5c6c7

CV[7..0] = 10111213 14151617 18191a1b 1c1d1e1f 20212223 24252627 28292a2b 2c2d2e2f

LMAC Key computation (L=4)

w x y z

Aradi Input 00000000 00000000 00000000 00000000 Aradi Input 00000000 00000001 00000000 00000000

Aradi Output c974550c 11722bde 40e7d38a c2a94e16 Aradi Output f3e34230 647ea2af 6d3640ac ce145aa9

H[0] c974550c 11722bde f3e34230 647ea2af

Aradi Input 00000000 00000002 00000000 00000000 Aradi Input 00000000 00000003 00000000 00000000

Aradi Output 3b72e799 d991f1fd 07b15cd9 bc5ac5b6 Aradi Output 286cc3b6 4c814dc0 741e9ceb 20517185

H[1] 3b72e799 d991f1fd 286cc3b6 4c814dc0

Aradi Input 00000000 00000004 00000000 00000000 Aradi Input 00000000 00000005 00000000 00000000

Aradi Output 14331840 913663c2 c2ad0ef1 c017f4b0 Aradi Output f5cc3c8b 9861cfdd 16903048 a37bb4e3

H[2] 14331840 913663c2 f5cc3c8b 9861cfdd

Aradi Input 00000000 00000006 00000000 00000000 Aradi Input 00000000 00000007 00000000 00000000

Aradi Output e0e21c2e 4559f34c 8097c345 21547d6b Aradi Output 5f3109aa dfa8febd a10fe784 f9f41e73

H[3] e0e21c2e 4559f34c 5f3109aa dfa8febd

Aradi Input 00000000 00000008 00000000 00000000 Aradi Input 00000000 00000009 00000000 00000000

Aradi Output 0a695d1e 4a8bfdf4 89f7f326 7cb82365 Aradi Output ba163957 14959f3e a6550b33 c910158a

H[4] 0a695d1e 4a8bfdf4 ba163957 14959f3e

Data Block 0 88898a8b 8c8d8e8f 90919293 94959697

CTR Input 55000000 00000000 00000022 00000001

CT[1] e773398d 759a3153 8e8700b5 ee7b3943

Data Block 1 98999a9b 9c9d9e9f a0a1a2a3 a4a5a6a7

CTR Input 55000000 00000000 00000022 00000002

CT[2] f1aa7219 0c511297 3838b6d7 e468b02b

Data Block 2 a8a9aaab acadaeaf b0b1b2b3 b4b5b6b7

CTR Input 55000000 00000000 00000022 00000003

CT[3] d456eaf7 72ef2dca 3393026b ac607d8b

Data Block 3 b8b9babb bcbdbebf c0c1c2c3 c4c5c6c7

CTR Input 55000000 00000000 00000022 00000004

CT[4] 5106365d 4792b3dc 233f1a25 6d60b675

LMAC computation

E_k Input[0] 9c74550c 11722bde f3e34212 647ea2af

S[0] 6301ed8f fc7b87cd 46b3f755 60457a5d

E_k Input[1] dc01de14 ac0bc0ae a6ebc303 a2fa7483

S[1] 1fc71734 6de983f2 ac2ffc80 c86fb701

E_k Input[2] e5996a59 9d677155 cdf48a5c 7c097ff6

S[2] d3546b6d 24ebc200 2f3cc5db 52c16475

E_k Input[3] 34b4f6d9 37b6de86 6ca20bc1 73c88336

S[3] 50145f20 6d5a049c 170564d8 684a7f09

E_k Input[4] 5b6f6b43 0d194e28 99292372 79f5294b

S[4] 5255d9cd 508a3e2d dea9f17d 729479d8

Llama ciphertext, tag is

e773398d 759a3153 8e8700b5 ee7b3943 f1aa7219 0c511297 3838b6d7 e468b02b

d456eaf7 72ef2dca 3393026b ac607d8b 5106365d 4792b3dc 233f1a25 6d60b675

add3173b 88a9fc8e 0c0c5bab e035aff8

Figure 4.4: Llama test vector 2

16



IV is 96 bits

55000000 00000000 00000022

Received ciphertext, tag is

e773398d 759a3153 8e8700b5 ee7b3943 f1aa7219 0c511297 3838b6d7 e468b02b

d456eaf7 72ef2dca 3393026b ac607d8b 5106365d 4792b3dc 233f1a25 6d60b675

add3173b 88a9fc8e 0c0c5bab e035aff8

CV[7..0] = 10111213 14151617 18191a1b 1c1d1e1f 20212223 24252627 28292a2b 2c2d2e2f

----------- Decrypt & Verify --------------

Data Block 0 e773398d 759a3153 8e8700b5 ee7b3943

CTR Input 55000000 00000000 00000022 00000001

PT[1] 88898a8b 8c8d8e8f 90919293 94959697

Data Block 1 f1aa7219 0c511297 3838b6d7 e468b02b

CTR Input 55000000 00000000 00000022 00000002

PT[2] 98999a9b 9c9d9e9f a0a1a2a3 a4a5a6a7

Data Block 2 d456eaf7 72ef2dca 3393026b ac607d8b

CTR Input 55000000 00000000 00000022 00000003

PT[3] a8a9aaab acadaeaf b0b1b2b3 b4b5b6b7

Data Block 3 5106365d 4792b3dc 233f1a25 6d60b675

CTR Input 55000000 00000000 00000022 00000004

PT[4] b8b9babb bcbdbebf c0c1c2c3 c4c5c6c7

LMAC computation

E_k Input[0] 9c74550c 11722bde f3e34212 647ea2af

S[0] 6301ed8f fc7b87cd 46b3f755 60457a5d

E_k Input[1] dc01de14 ac0bc0ae a6ebc303 a2fa7483

S[1] 1fc71734 6de983f2 ac2ffc80 c86fb701

E_k Input[2] e5996a59 9d677155 cdf48a5c 7c097ff6

S[2] d3546b6d 24ebc200 2f3cc5db 52c16475

E_k Input[3] 34b4f6d9 37b6de86 6ca20bc1 73c88336

S[3] 50145f20 6d5a049c 170564d8 684a7f09

E_k Input[4] 5b6f6b43 0d194e28 99292372 79f5294b

S[4] 5255d9cd 508a3e2d dea9f17d 729479d8

Recovered plaintext is

88898a8b 8c8d8e8f 90919293 94959697 98999a9b 9c9d9e9f a0a1a2a3 a4a5a6a7

a8a9aaab acadaeaf b0b1b2b3 b4b5b6b7 b8b9babb bcbdbebf c0c1c2c3 c4c5c6c7

Computed tag is:

add3173b 88a9fc8e 0c0c5bab e035aff8

Received tag is:

add3173b 88a9fc8e 0c0c5bab e035aff8

Return code is 1 (1=success,0=failure)

Figure 4.5: Llama test vector 3

17



4.3. LLAMA Performance

In this section, we provide performance data for Llama mode, instantiated

with Aradi as the underlying block cipher. Figure 4.6 provides performance

numbers for Aradi-Llama on a Xilinx Virtex7-3 FPGA, alongside an AES-

GCM implementation.

Algorithm LUTs Freq T’put Latency Latency

(MHz) (Gbps) (Cycles) (ns)

Helion AES-GCM [8] 12400 200.0 12.0 19 95.0

Helion AES-GCM [8] 21200 200.0 25.0 19 95.0

Llama 4d4u 6750 194.2 12.4 8 41.2

Llama 4d4u-x2 13500 194.2 24.9 4/8 20.6

Figure 4.6: Aradi-Llama performance (Xilinx Virtex7-3)

Figure 4.7 provides performance numbers for Aradi-Llama on a Xilinx Ul-

trascale+ FPGA.

Algorithm LUTs Freq T’put Latency Latency

(MHz) (Gbps) (Cycles) (ns)

Xiphera [12] 26564 633.7 81.1 19 30.0

Design Gateway [5] 62864 270.0 138.2 19 70.3

Llama 4d4u 6663 299.4 19.2 8 26.7

Llama 4d4u-x2 13326 299.4 38.3 4/8 13.4

Figure 4.7: Aradi-Llama performance (Xilinx Ultrascale+)

In a software implementation of Aradi-Llama, there is very little overhead

from the mode. Given an efficient software implementation of Aradi, it is

straightforward to produce an efficient Aradi-Llama implementation.

18



References

[1] A. Biryukov and D. Wagner. Slide attacks. In Fast Software Encryption
– FSE’99, number 1636 in Lecture Notes in Computer Science, pages
245–259. Springer-Verlag, 1999.

[2] J. Black and P. Rogaway. A Block Cipher Mode of Operation for Par-
allelizable Message Authentication (PMAC). In Advances in Cryptology
– EUROCRYPT’02, volume 2332 of Lecture Notes in Computer Science,
pages 384–397. Springer-Verlag, 2002.

[3] J. Borghoff, A. Canteaut, T. Güneysu, E. Kavun, M. Knezević, L. Knud-
sen, and G. Leander. PRINCE – A Low-Latency Block Cipher for Per-
vasive Computing Applications. In Wang X., Sako K. (eds) Advances in
Cryptology – ASIACRYPT 2012, volume 7658 of Lecture Notes in Com-
puter Science. Springer, Berlin, Heidelberg, 2012.

[4] Design Gateway AES. https://dgway.com/products/IP/AES-IP/

AES256IP-datasheet-xilinx-en/.

[5] Design Gateway AES-GCM. https://dgway.com/products/IP/AES-IP/
AES256GCM100GIP-datasheet-xilinx-en.

[6] M. Dworkin. NIST Special Publication 800-38-D Recommendation for
Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and
GMAC. Natl. Inst. Stand. Technol., 2007.

[7] A. Halderman and S. Schoen. Lest we remember: Cold boot attacks on
encryption keys. In USENIX Security Symposium, 2008.

[8] Helion Giga AES Cores. www.heliontech.com/aes_giga.htm.

[9] M. Knezević, V. Nikov, and P. Rombouts. Low-Latency Encryption – Is
“Lightweight = Light + Wait?”. In Cryptographic Hardware and Embed-
ded Systems – CHES 2012, number 7418 in Lecture Notes in Computer
Science. Springer-Verlag, 2012.

[10] G. Leander, T. Moos, A. Moradi, and S. Rasoolzadeh. The SPEEDY
Family of Block Ciphers: Engineering an Ultra Low-Latency Cipher from
Gate-Level for Secure Processor Architectures. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 4:510–545, 2021.

[11] Xiphera AES. https://xiphera.com/symmetric-encryption/aes-ctr/.

[12] Xiphera AES-GCM. https://xiphera.com/wp-content/uploads/.

19


	FRONT MATTER
	BODY OF PAPER
	1.  Introduction
	2.  An Overview of Memory Encryption
	3.  The ARADI Low-Latency Block Cipher
	3.1.  The ARADI Round Function
	3.2.  The ARADI Key Schedule
	3.3.  ARADI Test Vector
	3.4.  ARADI Pseudocode
	3.5.  ARADI Performance

	4.  The LLAMA Authenticated Encryption Mode
	4.1.  LLAMA Pseudocode
	4.2.  LLAMA Test Vectors
	4.3.  LLAMA Performance


	END MATTER

