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Abstract. In conventional deep-learning-based side-channel attacks (DL-SCAs), an
attacker trains a model by updating parameters to minimize the negative log-likelihood
(NLL) loss function. Although a decrease in NLL improves DL-SCA performance,
the reasons for this improvement remain unclear because of the lack of a formal anal-
ysis. To address this open problem, this paper explores the relationship between NLL
and the attack success rate (SR) and conducts an information-theoretical analysis
of DL-SCAs with an NLL loss function to solve open problems in DL-SCA. To this
end, we introduce a communication channel for DL-SCAs and derive an inequality
that links model outputs to the SR. Our inequality states that mutual information
between the model output and intermediate value, which is named the latent per-
ceived information (LPI), provides an upper bound of the SR of a DL-SCA with a
trained neural network. Subsequently, we examine the conjecture by Ito et al. on the
relationship between the effective perceived information (EPI) and SR and clarify
its valid conditions from the perspective of LPI. Our analysis results reveal that a
decrease in NLL correlated with an increase in LPI, which indicates that the model
capability to extract intermediate value information from traces is enhanced. In addi-
tion, the results indicate that the LPI bounds the SR from above, and a higher upper
bound of the SR could directly improve the SR if the selection function satisfies cer-
tain conditions, such as bijectivity. Finally, these theoretical insights are validated
through attack experiments on neural network models applied to AES software and
hardware implementations with masking countermeasures.
Keywords: Profiled side-channel attacks · Perceived information · Success Rate ·
Deep learning · Information theory

1 Introduction
1.1 Background
Deep-learning-based side-channel attack. Deep-learning-based side-channel attacks (DL-
SCAs) have been an active research topic in the field of cryptographic implementation [MHM14,
MPP16, CDP17, PHJ+19a, HHGG20, RWPP21, UXT+22, PPM+23, TUX+23, SM23] be-
cause of their effectiveness. Profiled DL-SCA can achieve high performance in a key-
recovery SCA on AES as well as in side-channel assisted chosen-ciphertext attacks on
post-quantum key encapsulation mechanisms, even if the implementation is protected us-
ing masking and random delay [ZBHV19,WAGP20,ZBHV21,LZC+21,UXT+22,TUX+23].
An attacker using a DL-SCA requires less assumption/prior knowledge about the target
implementation compared to who uses other SCAs. For example, conventional SCAs, such
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as correlation power analysis and template attacks [CRR02], require modifications to the
attack algorithm and preprocessing of traces based on countermeasures employed in the
target implementation. Conversely, in DL-SCA, a neural network (NN) model effectively
counteracts these measures by utilizing a sufficient number of traces during the NN train-
ing. A thorough investigation of the theory and practice of DL-SCAs is imperative to
comprehend potential threats posed by SCAs to cryptographic implementations.

Performance metrics of DL and SCA. In a DL-SCA, selecting an objective function,
referred to as a loss function, is essential because it directly affects the training efficacy
of the model (i.e., its attack performance). Performance metrics considered for SCAs,
such as success rate (SR), are not always consistent with those used in machine learning,
such as accuracy, recall, and F1 score. Picek et al. demonstrated that SCAs can succeed
even when models exhibit 0% accuracy [PHJ+19b]. In multi-class classification problems
in machine learning, negative log-likelihood (NLL), often referred to as categorical cross-
entropy in deep learning contexts, is frequently utilized as a loss function because it is
considered as a surrogate loss for enhancing accuracy [MMZ23]. However, conventional
machine learning measures such as accuracy do not consistently evaluate performance in
SCAs; therefore, it remains unclear if NLL is adequate as a loss function in SCAs.

Loss functions for DL-SCAs. To address this discrepancy, specialized loss functions for
DL-SCAs were developed in several studies. These include a cross-entropy ratio (CER)
loss function, which makes the NLL of the correct key smaller than the average NLL
of other key candidates [ZZN+20], and a ranking loss function, which employs ranking
learning to train the model and increase the rank of the correct key [ZBD+20]. Previous
studies reported that these functions perform better than NLL, particularly in attack sce-
narios where imbalanced data labeled with Hamming weight (HW) or Hamming distance
(HD) are used, and/or where the number of traces available for training is very limited.
However, as reported in [ISUH21,ZBD+20], models trained with NLL also achieve compa-
rable or superior performance compared to those trained with specialized loss functions
when a correction term related to a binomial distribution is incorporated in the model
output or when sufficient training traces can be acquired. While the NLL was not origi-
nally designed for SCAs, there is no clarity regarding why they are effective in DL-SCA
contexts. Numerous studies that focus on DL-SCAs employ NLL for model training; yet,
a theoretical analysis of the relationship between a decrease in NLL and SCA performance
remains an important open research question.

Mutual information (MI), perceived information (PI), and success rate (SR). Masure
et al. presented the pioneering theoretical analysis of model training using NLL in DL-
SCA [MDP20]. They proved that the NLL asymptotically converges to a cross-entropy
(CE) function as the number of traces utilized approaches infinity. Furthermore, they
demonstrated that perceived information (PI) can be derived from CE. Given a model,
the PI is a lower bound on the mutual information (MI) I(Z; X) between a side channel
trace X and an intermediate value Z. MI can be estimated using PI by identifying
model parameters that minimize CE. Besides, de Chérisey et al. [dCGRP19] presented an
inequality that upper-bounds the SR by MI, thereby making MI crucial for evaluating the
achievable SR. Further, when the PI equals the MI, the distribution modeled by the NN
is equal to the true distribution, thereby yielding an optimal distinguisher for the most
potent attack [HRG14]. Note also that the computation and precise estimation of MI is
usually quite difficult; this is a reason why, in practice, we require an alternative metric,
which is computable and is theoretically valid for the evaluation of SCA.
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Conjecture on PI–SR inequality. In [MDP20], Masure et al. revealed the significance
of identifying parameters that minimized NLL, which is approximately equivalent to CE
in SCAs. However, the NLL loss function cannot attain its minimum value during model
training. In fact, parameters that minimize the NLL may not exist depending on the
model architecture, which makes it crucial to understand the relationship between the
SR and non-minimized NLLs from both theoretical and practical perspectives. Given this
context, Masure et al. [MDP20] conjectured that an inequality similar to the one proposed
by de Chérisey et al. may exist between the PI and SR; that is, the PI is an upper bound
of the SR for a given model. If this inequality holds, the upper bound of the SR for the
model can be evaluated from the PI (or equivalently, NLL), thereby allowing the rapid
prediction of model performance during training without resorting to computationally
intensive SR estimation through key recovery. Therefore, validating this inequality has
significant practical implications.

Effective CE/PI (ECE/EPI) and conjecture on EPI–SR inequality. Ito et al. [IUH22b]
constructed a counterexample that disproved the conjecture by Masure et al. [MDP20].
They demonstrated that the SR remained invariant to variations in the inverse temper-
ature β of the softmax function in the model output, whereas CE/NLL changed. Their
findings indicated that an increase in β results in an unbounded increase in the CE without
changing the SR; therefore, a high NLL, which is approximately equal to the CE, does not
inherently signify an unsuccessful attack. Further, they introduced effective CE (ECE) as
the CE minimized with respect to β and defined effective PI (EPI) using ECE. ECE and
EPI were defined to solve the uncertainty of SR. Accordingly, Ito et al. conjectured a sim-
ilar inequality that upper-bounds SR by EPI and demonstrated its experimental validity.
However, this conjecture is yet to be theoretically substantiated. Proving this inequality
would not only explain how NLL loss reduction enhances DL-SCA performance but also
theoretically validate the estimation of SR from NLL loss. Further, the theoretical foun-
dations would aid the study on DL-SCA in practical aspects to improve its performance
and develop countermeasures. Therefore, clarifying the relationship among PI, EPI, and
SR is non-trivial in this research domain.

1.2 Our contributions
In this paper, we establish a new theoretical foundation for DL-SCA by exploring the
relationship between the SR and NLL in DL-SCA. To this end, we introduce a new
communication channel model for DL-SCA and derive an inequality that relates the model
outputs to the SR. Subsequently, we proposed a new metric, named latent perceived
information (LPI), according to this inequality. Further, we identified conditions under
which the EPI–SR inequality conjecture holds from an LPI perspective. In addition, we
formally analyzed how training a model with NLL helps improve the SR. This study
makes three contributions, as presented below.

Information-theoretical analysis of DL-SCA. Although previous studies examined DL-
SCA from an information-theoretic perspective, DL-SCA was not modeled as a commu-
nication channel. In this study, we establish a new communication channel model for
DL-SCA. Based on this communication channel, we introduce LPI as a new metric theo-
retically connected to SR, which plays an essential role in our analysis. Further, we derive
an information-theoretic inequality that links the model outputs to the SR. Namely, we
formally prove that LPI is an upper bound of SR, as represented by the LPI–SR inequality.

Revealing conditions when EPI–SR inequality holds. As the LPI–SR inequality is for-
mally proven, the EPI–SR inequality is also valid if the LPI and EPI are equivalent. We
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identify conditions under which the EPI–SR inequality holds using the relationship be-
tween the LPI and EPI. In addition, we demonstrate that the conjecture of the EPI–SR
inequality holds when the distribution modeled by an NN is well-calibrated with the in-
verse temperature and matches the true distribution of the intermediate value given the
model output. We further demonstrate that this condition is satisfied in practice through
experimental attacks on AES software and hardware implementations with masking coun-
termeasures. Our theorems and experiments would also validate the use of EPI for SR
evaluation through the inequality.

Revealing why the NLL loss function enhances the performance of DL-SCA. Finally,
we theoretically explain why training a model with NLL positively affects the SR of SCAs.
To this end, we show that a decrease in NLL yields an approximate increase in both
the EPI and LPI. Our inequality suggests that the upper bound on SR increases if LPI
increases. If the selection function satisfies certain conditions such as bijectivity, then this
increase in the upper bound of the SR will boost the actual SR directly, thereby enhancing
the effectiveness of the attack.
Remark 1. Some of our findings (e.g., an NLL decrease improves the DL-SCA perfor-
mance) may have been experimentally confirmed so far. Our contribution includes estab-
lishing a theoretical foundation of DL-SCA, which has rarely been discussed formally.
Remark 2. The paper mainly focuses on profiled DL-SCA, while our arguments would be
applicable to non-profiled collision DL-SCAs [SM23, IUTH23].

1.3 Paper organization
Section 2 introduces the mathematical notations used in this paper and the DL-SCA.
Section 3 presents the information-theoretical analyses on DL-SCA. Section 4 presents
the relationship among PI, EPI, and LPI and shows the condition when the EPI–SR
inequality holds. Section 5 formally demonstrates why the NLL loss is adequate for DL-
SCA. Section 6 demonstrates the experimental DL-SCAs on masked AES implementations
to verify the validity of our theoretical analysis. Finally, Section 7 concludes the paper.

2 Preliminaries
2.1 Notations
A calligraphic letter (e.g., X ) represents a set, a lowercase variable (e.g., x) represents
an element of the corresponding set (i.e., x ∈ X ), and an uppercase variable (e.g., X)
represents a random variable over the corresponding set (i.e., X for X ), unless otherwise
defined. Let Pr(A), p, and q represent the probability of an event A, true density or mass
function, and probability density or mass function represented by an NN, respectively. For
example, the true probability mass function of discrete random variables X and Y is given
by pX,Y (x, y) = Pr(X = x, Y = y). We may omit the subscripted random variables if the
random variables of the probability distribution are obvious. For example, we may write
p(x, y) for pX,Y (x, y). The conditional probability distribution is denoted by pX|Y (x |
y) = p(x | y) = p(x, y)/p(y) if p(y) 6= 0; otherwise, pX|Y (x | y) = 0. Let E represent
the expectation. For example, EXf(X) represents the expectation of f(X) in terms of
X, where f : X → R represents a (measurable) function. Let H(X) = −EX log pX(X)
represent an entropy function, where log is the binary logarithm. The MI between X and
Y is defined as I(X; Y ) = H(X) − H(X | Y ) = EX,Y log pX,Y (X, Y )/(pX(X)pY (Y )). A
sequence of m random variables/vectors independently sampled from a distribution of X
is represented by independent copies as Xm = (X1, X2, . . . , Xm).
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2.2 Overview of profiled DL-SCA
This study focuses on SCAs on block ciphers, particularly AES. The DL-SCA consists
of profiling and attack phases. During the profiling phase, an NN is trained to model
the conditional distribution corresponding to the device leakage characteristics. Let
Sp = { (Xi, Zi) | 1 ≤ i ≤ mpro } be a training dataset used in the profiling phase, where
Xi, Zi, and mpro ∈ N represent the i-th side-channel trace of the i-th observation, cor-
responding intermediate value (e.g., first-round Sbox output in typical SCAs on software
AES implementation), and the number of traces used in the profiling phase, respectively.
We assume that X1, X2, . . . , Xmpro and Z1, Z2, . . . , Zmpro are independent and identically
distributed (i.i.d.) random variables over X = Rnℓ and T = {0, 1}n, respectively. Here,
nℓ ∈ N is the number of sample points in a trace, and n ∈ N is the bit length of the
intermediate value (in the case of AES, n = 8). Let θ ∈ Rnθ represent the NN parameters,
where nθ denotes the dimension of the parameters. The profiling phase estimates adequate
model parameters θ̂ using the training dataset Sp. Optimal parameters are obtained by
solving the minimization problem of the CE loss function, which is defined as

CE(qθ) = −EZ,X log qθ(Z | X) = −
∫ ∑

z

pZ,X(z, x) log qθ(z | x) dx, (1)

where Z and X are the random variables of label z and trace x, respectively, and qθ

represents the conditional probability distribution modeled by the NN with parameters θ.
In Equation (1), CE(qθ) takes the minimum value if and only if pZ|X = qθ [Bis06,

GBC16]. We can model the true distribution p if we can determine the optimal param-
eters θ̂ that make CE(qθ̂) sufficiently small; however, we cannot calculate Equation (1)
because it contains the integral and summation of the unknown probability distribution
p. Therefore, we approximate CE(qθ) using the training data Sp via the Monte Carlo
method as

CE(qθ) ≈ L(qθ) = − 1
mpro

mpro∑
i=1

log qθ(Zi | Xi). (2)

The approximation of CE in Equation (2) is called the NLL. According to the law of large
numbers, the NLL converges almost surely to CE(qθ) as m → ∞ for fixed qθ.

In the attack phase, we estimate the secret key k∗ of the target device by using the
trained model. Let Sa = { (Xi, Ti) | 1 ≤ i ≤ matk } be the dataset used in the attack
phase, where Xi, Ti, and matk ∈ N represent the side-channel trace at the i-th observation,
and corresponding plaintext or ciphertext, and the number of attack traces, respectively.
During the attack phase, we calculate the NLL for each hypothetical key candidate k ∈ K
using the intermediate value Z

(k)
i calculated from Ti as

L(k)(qθ̂) = − 1
matk

matk∑
i=1

log qθ̂(Z(k)
i | Xi).

Here, Z
(k)
i is given as the output of selection function (e.g., Z

(k)
i = Sbox(Ti ⊕k)). The cor-

rect key is estimated as the key candidate with the lowest NLL value, which is equivalent
to approximating and comparing the results.

CE(k)(qθ̂) = −E log qθ̂(Z(k) | X),

for each key candidate k. It has been proven that such a DL-SCA is optimal (i.e., it
maximizes the SR) if we have qθ̂ = pZ|X [IUH21, IUH22b].

Hereafter, we simply denote the number of traces by m instead of matk and mpro.
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function Side channel Adversary

Figure 1: Communication channel model of SCA by de Chérisey et al. [dCGRP19].

2.3 Conventional communication channel model and MI–SR inequality
Figure 1 shows a communication channel model developed by de Chérisey et al. [dC-
GRP19] that represents an SCA, where K, T m = (T1, T2, . . . , Tm), Zm = (Z1, Z2, . . . , Zm),
Xm = (X1, X2, . . . , Xm), and K̂m represent the secret key byte, tuple of m plain-
text/ciphertext bytes, secret intermediate values targeted by SCA, side-channel traces,
and secret key byte estimated using m traces, respectively. In the “Adversary,” the at-
tacker uses an arbitrary distinguisher including the optimal one (e.g., DL-SCA using
qθ̂ = pZ|X). Let SRm = Pr(K = K̂m) denote the SR of the optimal SCA with m traces.
Based on this model, de Chérisey et al. proved the following theorem, which states that
the optimal SR is bounded from above by the MI between the side-channel trace and
intermediate value.

Theorem 1 (MI–SR inequality [dCGRP19]). In the communication channel shown in
Figure 1, the SR of an optimal SCA with m traces, defined as SRm = Pr(K̂m = K), is
bounded from above as

ξ(SRm) ≤ mI(Z; X), (3)

where ξ : [0, 1] → R≥0 is defined as

ξ(r) = H(K) − H2(r) − (1 − r) log(2n − 1). (4)

Here, H2 : [0, 1] 3 r 7→ −r log r − (1 − r) log(1 − r) ∈ [0, 1] is a binary entropy function
with a definition of 0 log 0 = 0.

In [dCGRP19], de Chérisey et al. demonstrated experimentally that this theorem can
be used for a precise estimation of the achievable SR for an optimal SCA. However, this
inequality is used only to evaluate the optimal SCA, and it cannot be used to evaluate a
DL-SCA with the model parameters θ̂. In fact, an adversary in a communication channel
is supposed to use an optimal distinguisher. In addition, neither the communication
channel nor Equation (3) includes the model parameter θ̂. Thus, it is impossible to
discuss the SR of DL-SCA with the model parameters θ̂. This motivated us to develop a
new communication channel model for discussing the SR of DL-SCAs.

3 Information-theoretical analyses on DL-SCA
3.1 Overview
We model the DL-SCA as a communication channel. Based on this communication chan-
nel, we then derive an inequality, in which the SR of the DL-SCA is bounded from above
by the MI between the output of the NNs and the intermediate value Z. Finally, we
discuss the relationship between our inequality and the MI–SR inequality reported by de
Chérisey et al. and show that our inequality is more useful for evaluating the performance
of DL-SCAs. Our major technical contribution here includes the establishment of the
communication channel model of DL-SCA and the discovery of the LPI–SR inequality as
a new upper bound of SR, rather than the development of new proof techniques.
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Figure 2: Communication channel of DL-SCA.

3.2 Communication channel model of DL-SCA
Figure 2 shows the proposed communication channel model of DL-SCA for a given NN
model. This study focuses on attacks against a block cipher such as AES. We describe
the definition of random variables and the meanings of this model.

• m ∈ N represents the number of traces used in the attack phase.

• θ ∈ Rnθ represents the model parameters of the neural network, where nθ represents
the number of dimensions of the parameters.

• K and K̂m(θ) represent the correct and estimated partial secret keys, respectively.
They belong to the key space K = {0, 1}n, where n represents the bit length of the
secret key (i.e., n = 8 for AES). Here, the estimated key is expressed as K̂m(θ) to
explicit that it depends on the NN parameters θ and the number of traces m.

• T m = (T1, T2, . . . , Tm) represents the tuple of m plaintexts/ciphertexts correspond-
ing to the attack traces, where T1, T2, . . . , Tm denote n-bit plaintext/ciphertext ran-
dom variables. In this study, they are assumed to be sampled from the uniform
distribution and i.i.d.

• Zm = (Z1, Z2, . . . , Zm) represents the tuple of m intermediate values correspond-
ing to the attack traces. Each intermediate value is given by Zi = ϕ(K, Ti), i ∈
{1, 2, . . . , m} with a selection function ϕ : K × T → Z. Here, the selection function
can be any function. For example, we frequently have ϕ(K, Tj) = Sbox(K ⊕ Tj) in
attacking software AES implementations.

• Xm = (X1, X2, . . . , Xm) represent the tuple of m side-channel traces. Each trace
Xi represents a random variable over an nℓ-dimensional Euclidean space Rnℓ . These
random variables are assumed to be i.i.d.

• Qm = (Q1, Q2, . . . , Qm) represents a tuple of the outputs of the NN for the attack
traces. For each i, Qi represents a vector and is given by Qi = fθ(Xi), where fθ :
X → Q = Rnq represents the NN with the model parameters θ, and nq represents
the number of output classes. For example, if the NN predicts the probability of
intermediate values (i.e., nq = 2n), the output Qi represents a 256-dimensional
vector consisting of the outputs of the softmax function as Qi = (qθ(0 | Xi), qθ(1 |
Xi), . . . , qθ(2n−1 | Xi)) for each i, where n = 8 for AES. Further, if the NN predicts
the probability of the HW of the intermediate value, it is an (n + 1)-dimensional
vector given by Qi = (qθ(0 | Xi), qθ(1 | Xi), . . . , qθ(n | Xi)) for each i.

In Figure 2, “Adversary” estimates the secret key by using all outputs Qm of the
NN and the plaintexts/ciphertexts T m. In [dCGRP19], de Chérisey et al. implied that
a Markov chain (K, T m) → (Zm, T m) → (Xm, T m) → (Qm, T m) → (K̂m(θ), T m) holds.
This communication channel model does not depend on how the NN is trained or used
during an attack. This means that, for example, the model is valid even if any loss
function, such as the CER or ranking loss, is used as the loss function during training.
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Based on the communication channel illustrated in Figure 2, we define a new information-
theoretical metric named the LPI, which plays an essential role in our analysis and has
desirable properties for evaluating DL-SCA.

Definition 1 (Latent Perceived Information (LPI)). Let θ represent the model parameters
of a neural network and qθ(Z | X) represent the conditional probability distribution
modeled by the NN. In the communication channel in Figure 2, the LPI of the model is
defined as

LPI(qθ) := I(Z; Q) = H(Z) − H(Z | Q).

3.3 Relationship between the SR and model outputs
We prove the following theorem, which states that an inequality between Q and SR holds
on the communication channel in Figure 2, which we call the LPI–SR inequality.

Theorem 2 (LPI–SR inequality). In the communication channel shown in Figure 2, the
SR with m traces using the NN with model parameters θ, defined as SRm(θ) = Pr(K̂m(θ) =
K), is bounded above as

ξ(SRm(θ)) ≤ mI(Z; Q) = mLPI(qθ), (5)

where ξ denotes the function defined in Equation (4).

Proof. The proof is based on Fano’s inequality [CT06, Theorem 2.10.1] similarly to the MI–
SR inequality [dCGRP19, Lemma 2]. In their proof, they used the data processing inequal-
ity [CT06, Theorem 2.8.1] on the Markov chain of (K, T m) → (Zm, T m) → (Xm, T m)
represented in Figure 1, given as

I(K, T m; Xm, T m) ≤ I(Zm, T m; Xm, T m).

In this proof, we alternatively focus on the Markov chain of (K, T m) → (Zm, T m) →
(Xm, T m) → (Qm, T m) in Figure 2, implying that the corresponding data processing
inequality is

I(K, T m; Qm, T m) ≤ I(Zm, T m; Qm, T m). (6)

According to the relationship between MI and entropy, the left-hand side of Equation (6)
can be written as

I(K, T m; Qm, T m) = H(K, T m) − H(K, T m | Qm, T m)
= H(K) + mH(T ) − H(K | Qm, T m)
= H(K) + mH(T ) − H(K | Qm, T m, K̂m(θ))
≥ H(K) + mH(T ) − H(K | K̂m(θ)).

The equation H(K | T m, Qm) = H(K | T m, Qm, K̂m(θ)) holds because K̂m(θ) is a
deterministic function of T m and Qm. Using Fano’s inequality, we obtain

H(K | K̂m(θ)) ≤ H2(SRm(θ)) + (1 − SRm(θ)) log(2n − 1).

Thus, it holds

I(K, T m; Qm, T m) ≥ H(K) + mH(T ) − H2(SRm(θ)) − (1 − SRm(θ)) log(2n − 1). (7)
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The right-hand side of Equation (6) can be written as

I(Zm, T m; Qm, T m) = H(Zm, T m) − H(Zm, T m | Qm, T m)
= H(T m) + H(Zm | T m) − H(Zm | Qm, T m)
= mH(T ) + I(Zm; Qm | T m). (8)

By combining Equations (6) to (8) with [IUH22a, Lemma 4.2], we conclude that

H(K) − H2(SRm(θ)) − (1 − SRm(θ)) log(2n − 1) ≤ I(Zm; Qm | T m) ≤ mI(Z; Q),

as required.

Theorem 2 states that an inequality similar to the one proved by Cherisey et al. is
applicable to DL-SCAs. On the left-hand side of Equation (5), ξ(SRm(θ)) represents
the entropy required to achieve a given SRm(θ) in the DL-SCA using an NN model
parameterized by θ with m traces. For example, if the bit length of the secret key is
eight bits, an SR of 100% in the DL-SCA requires eight bits of key entropy. Consequently,
we deduce ξ(SRm(θ)) = ξ(1) = 8, as anticipated. Meanwhile, mI(Z; Q) quantifies the
information concerning the intermediate value that the NN model can potentially extract
from the m traces. Therefore, this inequality indicates that, to achieve a certain SR,
information about intermediate values potentially extracted by the NN (i.e., mI(Z; Q))
must surpass the information required to achieve it (i.e., ξ(SRm(θ))).

In Equation (5), the MI I(Z; Q) measures the extent of information regarding the
intermediate value that can potentially be retrieved from the model output. This concept
is intrinsically linked to PI and EPI, as described in Section 4.

The LPI–SR inequality is not constrained by the specifics of the NN models used. This
is agnostic to the loss function, model architecture during training, and the distinguisher
applied in the attack. Although this study primarily addresses scenarios in which the acti-
vation function of the output layer in the NN model is a softmax function, the inequality
remains valid even with different activation functions. Consequently, the modeled target
should not be strictly a probability distribution; it may also be a regression model (e.g.,
in SCAs, a regression model predicting labels, such as HW and HD, from traces can be
employed). This distinction markedly separates it from the LPI–SR inequality for the
ranking loss in DL-SCA, which depends directly on the distinguisher. In addition, this
inequality provides an upper bound for the SR, which delineates the limit of DL-SCA
performance. This characteristic is useful for security evaluation.

3.4 Difference from MI–SR inequality
We discuss the differences between the MI–SR inequality and our LPI–SR inequality to
demonstrate that Equation (5) is more effective in evaluating DL-SCA performance.

In [dCGRP19], de Chérisey et al. established the inequality ξ(SRm) ≤ mI(Z; X)
for the SR of side-channel attacks, not limited to DL-SCA. Here, SRm represents the
probability of successful attacks by any SCA using m traces. The function ξ : [0, 1] → R≥0
converts the SR to entropy. Thus, ξ(SRm) on the left-hand side represents the entropy
of the key required for a certain SR by any SCA. Conversely, mI(Z; X) quantifies the
amount of information regarding intermediate values retrieved from m side-channel traces,
where any extraction method is acceptable. This implies that, to achieve a given SR, the
information about the intermediate values extractable from m traces mI(Z; X) must
exceed the necessary information of the secret key ξ(SRm).

Further, this inequality must hold for DL-SCA. Let SRm(θ) denote the SR with model
parameter θ, and ξ(SRm(θ)) ≤ mI(Z; X) must hold. However, this inequality may be
too loose to evaluate the attack performance (i.e., SR) of a specific model because the
right-hand side does not depend on the model parameters. For example, if θ represents
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random values in the initial learning phase, the SR is assumed to be SRm(θ) ≈ 2−n, which
is as high as a random guess, regardless of the number of traces m. However, the right-
hand side increases monotonically with m when I(Z; X) > 0 because the MI I(Z; X) is a
constant independent of the model parameters. Therefore, the MI–SR inequality suggests
that the attack can succeed with high probability (e.g., SRm(θ) = 1) given a sufficient
number of traces, even for ineffective model parameters. Hence, the MI–SR inequality is
unsuitable for evaluating DL-SCA models.

In contrast, LPI(qθ) = I(Z; Q) on the right-hand side of Equation (5) depends on the
model parameters. For example, if the model parameters are unsuitable for the attack,
the NN output is likely to be a random number with little relevance to the intermediate
values. In such cases, the MI between Z and Q is approximately zero. Thus, ξ(SRm(θ)) ≤
mI(Z; Q) ≈ 0, followed by SRm(θ) ≈ 2−n.1 This suggests that the LPI–SR inequality is
more suitable for evaluating DL-SCA than the MI–SR inequality.

In addition, the difficulty in MI estimation may differ significantly between I(Z; X)
and LPI(qθ) = I(Z; Q). The NN output Q has a lower dimensionality than X, and there-
fore, the LPI estimation is dimensionally reduced to extract information on intermediate
values compared with the MI estimation. Therefore, estimating LPI(qθ) is simpler than
estimating I(Z; X). The methodology for estimating LPI is detailed in Section 4.5.

4 Relationship with other perceived information metrics

4.1 Overview

In this section, we first review the PI and its related information quantity, EPI. Next,
we explain the relationship among PI, EPI, and LPI and demonstrate that SR can be
estimated when PI and EPI are equal to LPI. Further, we examine when PI and EPI are
equal to LPI in terms of the conditional probability distributions. Finally, we propose an
LPI estimation method based on the adjustment of NN outputs. We introduce our method
by explaining its basic concept from the perspectives of EPI and confidence calibration.

4.2 Review of PI

Definition of PI. In EUROCRYPT 2011 [RSVC+11], Renauld et al. defined PI as follows:

Definition 2 (Perceived Information (PI)). Let θ represent the model parameters of an
NN and qθ(Z | X) represent the conditional probability distribution modeled by this
model. The PI of the model is defined as

PI(qθ) := H(Z) + E log qθ(Z | X) = H(Z) − CE(qθ).

PI has two important properties.

(i) PI can be approximated by NLL. We obtain PI(qθ) = H(Z) − CE(qθ) using the CE
CE(qθ) = −E log qθ(Z | X). Further, the CE can be approximated using NLL L(qθ) when
the number of traces m is sufficiently large, implying that PI(qθ) ≈ H(Z) − L(qθ). In
other words, a decrease in the value of the NLL loss function during training is equivalent
to an increase in PI.

1Note that ξ takes a global minimum value of 0 at 2−n [IUH22a, Lemma 5.1]. This is deduced from
the fact that the entropy required for a random guess of an n-bit key is zero.
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(ii) PI is a lower bound of MI. Using the conditional entropy H(Z | X) = −E log p(Z |
X), the MI between the trace and intermediate value is given by I(Z; X) = H(Z)−H(Z |
X), where p(Z | X) represents the true conditional distribution of the intermediate value
Z given trace X. According to the non-negativity of the Kullback–Leibler (KL) divergence
DKL(pZ|X ‖ qθ) = E log p(Z|X)

qθ(Z|X) ≥ 0 [CT06, Theorem 2.6.3], we have

H(Z | X) = −E log p(Z | X) ≤ −E log qθ(Z | X) = CE(qθ).

Therefore, MI is bounded from below as I(Z; X) ≥ H(Z) − CE(qθ) = PI(qθ).

Conjecture on the PI–SR inequality. These properties suggest an intuitive interpreta-
tion: the PI represents the amount of information of the intermediate value that the NN
can extract from the trace [RSVC+11]. To explain this, we consider the following proper-
ties. A decrease in the value of the NLL loss function increases the amount of information
that an NN can extract (i.e., the PI). Then, the PI becomes equal to the MI when the
NN can retrieve the information most successfully (i.e., when the PI is at its maximum).
Meanwhile, when the model training completely fails (i.e., when NLL loss is large), the PI
is approximately equal to or less than zero, and the inequality I(Z; X) ≥ PI(qθ) becomes
meaningless. This can be considered as the model that does not extract any information
about intermediate values from the traces. Based on these observations, we hypothesize
that the PI represents the amount of information that the model can extract. Thus,
Masure et al. [MDP20] conjectured that SRm(θ) is bound above by PI(qθ) as

ξ(SRm(θ)) ≤ mPI(qθ),

which we call the PI–SR inequality in this study. Yet, this is not proven formally. Indeed,
this is not always true, as described in Section 4.3.

4.3 Review of EPI
Transformation by inverse temperature. Ito et al. [IUH22b] showed that the conjecture
on the PI–SR inequality is not always true by constructing a counterexample. They used
the fact that a transformation of the softmax function using the inverse temperature β > 0
does not change the SR, whereas the PI varies depending on β. For the conditional proba-
bility distribution qθ(Z | X) modeled by the NN, the transformed conditional probability
distribution q

(β)
θ (Z | X) with an inverse temperature β > 0 is given by

q
(β)
θ (z | x) = (qθ(z | x))β∑

z′ (qθ(z′ | x))β
. (9)

Ito et al. showed that CE(q(β)
θ ) → ∞ and PI(q(β)

θ ) → −∞ hold as β → ∞ [IUH22b,
Prpoposition 3]; which indicates that PI can take a negative value and be arbitrarily
small by changing β. Hence, we can create a counterexample for the PI–SR inequality
conjecture using a sufficient large β because the SR is invariant to this transformation for
β > 0. Further, this suggests that the idea of PI expressing the amount of information
that a model can retrieve is incorrect.

Definition of ECE and EPI. Ito et al. defined ECE and EPI to rectify the problem of
the inverse temperature of PI. Their basic idea was calibrating the CE and PI to β for
solving their uncertainty for an identical SR.

Definition 3 (Effective CE (ECE) and Effective PI (EPI) [IUH22b]). Let q
(β)
θ represent

the probability distribution transformed with the inverse temperature β ≥ 0 defined in
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Equation (9). Using the same notation as Definition 2, ECE and EPI of qθ are defined as

ECE(qθ) := min
β≥0

CE(q(β)
θ ) = min

β≥0
−E log q

(β)
θ (Z | X),

EPI(qθ) := max
β≥0

PI(q(β)
θ ) = max

β≥0

(
H(Z) + E log q

(β)
θ (Z | X)

)
= H(Z) − ECE(qθ),

respectively.2

Conjecture on EPI–SR inequality. Similar to Masure et al., Ito et al. also conjectured
that the SR is bounded above by the EPI as

ξ(SRm(θ)) ≤ mEPI(qθ),

which we refer to as EPI–SR inequality in this paper. Ito et al. [IUH22b] experimentally
confirmed its validity and precision; that is, EPI enables precise SR evaluation through
the inequality reported by de Chérisey et al. However, this is yet to be proven formally.

4.4 Relationship among PI, EPI, LPI, and MI
The LPI–SR inequality was formally proven; therefore, if LPI and EPI/PI are equivalent,
the EPI/PI–SR inequality is valid. We discuss the relationship among PI, EPI, LPI, and
MI, and describe them when the above two conjectures hold.

First, we have the following inequality among the PI, EPI, LPI, and MI. LPI is a
lower bound of MI, tighter than PI and EPI.

Theorem 3 (Order of PI, EPI, LPI, and MI).

PI(qθ) ≤ EPI(qθ) ≤ LPI(qθ) ≤ I(Z; X). (10)

Proof. From this definition, PI(qθ) ≤ EPI(qθ) holds. We have LPI(qθ) = I(Z; Q) ≤
I(Z; X) according to the data processing inequality on the Markov chain of Zm → Xm →
Qm in Figure 2. We then demonstrate that EPI(qθ) ≤ I(Z; Q) holds. As EPI(qθ) =
H(Z) − minβ≥0 CE(q(β)) and LPI(qθ) = I(Z; Q) = H(Z) − H(Z | Q) hold, it suffices to
show that

min
β≥0

CE(q(β)) ≥ H(Z | Q).

We have H(Z | X) ≥ H(Z | Q) from I(Z; Q) ≤ I(Z; X). This indicates that CE(q(β)) ≥
H(Z | X) holds, regardless of the value of β, which is followed by

CE(q(β)
θ ) ≥ H(Z | X) ≥ H(Z | Q),

for any β. This completes the proof.

From Theorem 3, we have the following corollary.

Corollary 1.

CE(qθ) ≥ ECE(qθ) ≥ H(Z | Q) ≥ H(Z | X).

From Theorem 3, the conjectures of the PI–SR and EPI–SR inequalities hold if the
equality in Equation (10) holds. We first prove Theorem 4, which states that the condition
for the EPI–SR inequality holds.

2In the original paper, these are defined using inf and sup; however, in this paper, they are defined
using min and max for simplicity, as CE(q(β)

θ
) always has a global minimum in terms of β ≥ 0.
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Theorem 4 (Equality condition between EPI and LPI). EPI(qθ) = LPI(qθ) holds if and
only if

DKL

(
p(Z | X)

∥∥∥ q
(β′)
θ (Z | X)

)
= DKL

(
p(Z | X)

∥∥∥ p(Z | fθ(X))
)

,

where DKL represents the KL divergence and β′ = arg minβ≥0 CE(q(β)
θ ); that is, q

(β′)
θ

represents the probability distribution used to calculate EPI(qθ).

Proof. Recall that LPI(qθ) = H(Z) − H(Z | Q) and EPI(qθ) = H(Z) − minβ>0 CE(q(β)
θ ).

The condition LPI(qθ) = EPI(qθ) is equivalent to

H(Z | Q) = min
β≥0

CE(q(β)
θ ) = CE(q(β′)

θ ). (11)

H(Z | Q) = −E log p(Z | Q) = −E log p(Z | fθ(X)) holds because of the definition of
conditional entropy, and therefore, Equation (11) is equivalent to

E log p(Z | fθ(X)) = E log q
(β′)
θ (Z | X)

⇔ E log p(Z | X)
p(Z | fθ(X))

= E log p(Z | X)
q

(β′)
θ (Z | X)

⇔ DKL

(
p(Z | X)

∥∥∥ p(Z | fθ(X))
)

= DKL

(
p(Z | X)

∥∥∥ q
(β′)
θ (Z | X)

)
, (12)

as required for the sufficiency proof. Equation (12) can be inversely transformed to Equa-
tion (11) as required for the necessity proof. This completes the proof.

Theorem 4 states that EPI is equal to LPI if the distance between the true distribution
p(Z | X) and the distribution p(Z | fθ(X)) is the same as the distance between the
true distribution and the modeled probability q

(β′)
θ (Z | X). An important case is that

p(Z | fθ(X)) = q
(β′)
θ (Z | X) holds. An intuitive explanation of this is provided below.

As stated in [IUH22b, Lemma 1], the calibration using β′ reduces the CE without
changing the ranks of the key candidates. The distribution q

(β′)
θ (Z | X) represents the

closest distribution to the true distribution when considering the degree of freedom (in
the sense that the rank of the correct key does not change) with respect to the inverse
temperature. However, in addition to the inverse temperature, other transformations that
reduce the CE without changing the SCA performance (i.e., SR) may exist3. It is unclear
whether the distribution q

(β′)
θ (Z | X), which is optimized only with respect to the inverse

temperature β, is the best distribution, in the sense that the SCA performance is invariant.
In contrast, p(Z | fθ(X)) represents the probability distribution of the best prediction of
the intermediate value Z from the NN output fθ(X) using all possible methods (trans-
formations). All transformations here include transformation by inverse temperature. In
other words, distribution p(Z | fθ(X)) represents a distribution closer to the true distri-
bution than distribution q

(β′)
θ (Z | X). The equality of these distributions implies that the

transformation to obtain the best predictive distribution of the intermediate value Z from
the output Q of the NN model is limited to that obtained using the inverse temperatures.

3Ito et al. [IUH22b] mentioned this open problem as follows. Theorem 2 states that the proposed metrics
are the most appropriate for SR and GE evaluations for any conversions of probability distribution that
preserve the order of key ranks. However, ECE and EPI are not guaranteed to be unique to an SR and
are appropriate for SR evaluation if there is a conversion such that the SR is preserved but the order
of key ranks is not preserved. ECE and EPI are truly unique in terms of the SR evaluation if there
is no such conversion. An analysis of the existence of such a conversion is important for future work.
(Theorem 2 is theirs, the proposed metrics are ECE and EPI, and GE refer to guessing entropy.) LPI is
considered a more appropriate metric that covers this problem than EPI.
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In Section 6, we experimentally confirm whether such a transformation is limited to the
inverse temperature (i.e., the equivalence between LPI and EPI) and show that this holds
approximately, which proves the conjecture on the EPI–SR inequality in the experiment.

Finally, the equality condition between the PI and LPI is that qθ(Z | X) = q
(β′)
θ (Z |

X) = p(Z | Q). This represents a situation where the trained model qθ(Z | X) is equal to
the distribution q

(β′)
θ (Z | X) obtained by minimizing the CE on the inverse temperature,

and it is also equal to the distribution p(Z | Q) simultaneously. In [IUH22b], it was shown
experimentally that qθ(Z | X) = q

(β′)
θ (Z | X) rarely holds, which implies that the PI–SR

inequality may not be valid. We will also demonstrate this experimentally in Section 6.

4.5 Estimation of LPI
The objective of training NNs in the DL-SCA is to predict the intermediate value Z
from the input trace X. Like conventional multi-class classification by DL, the NN in
the DL-SCA comprises a feature extractor that extracts information from the trace and
a classifier that performs classification from the information extracted by the feature
extractor. Thus far, in the architectures proposed for the DL-SCA, the dimensions of the
feature extractor are often smaller than those of the output. For example, the architectures
proposed by Zaid et al. [ZBHV19] and Wouters et al. [WAGP20] have CNN outputs of only
about a dozen dimensions. However, the output of the NN had at least 256 dimensions
(for AES) when ID leakage models were used. Therefore, in such models, the feature
extractor extracts and compresses information from a trace, whereas the classifier uses the
compressed information to make predictions in a high-dimensional space. If the classifier
is perfectly trained, the distribution qθ̂(Z | X) matches the distribution p(Z | Q), which
provides the best predictions of the intermediate values using information extracted by
the NN. However, Ito et al. [IUH22b] proved that the conjecture on the PI–SR inequality
does not always hold, thereby indicating that a difference exists between PI and LPI.
Further, this means that the distributions qθ̂(Z | X) and p(Z | Q) do not coincide, and
that the distribution of the classifier is not perfect.

One reason the distributions that compose the classifier are not perfect is the over-
confidence of the model, wherein the model assigns an unreasonably high confidence level
to a label that it judges as correct. In the machine-learning community, the overconfidence
of the model has led to the point that the output of a model cannot be used as it is as
a probability. To solve this problem, a method called temperature scaling has been pro-
posed [GPSW17]; this method is similar to the conversion in ECE/EPI by Ito et al. (i.e.,
Equation (9)). Temperature scaling uses inverse temperature calibration for preventing
the model output from reaching extreme values and ensuring that the prediction confi-
dence matches the accuracy value. The confidence of the model matches very well with
the probability that the model guesses the correct label using temperature scaling. The
value of this distribution p(Z | Q) is expected to be close to the accuracy of each class of
models because the distribution p(Z | Q) represents how well the intermediate value Z can
be estimated by the output Q of the model. Therefore, temperature scaling is expected
to calibrate the model output such that qθ̂(Z | Q) ≈ p(Z | Q). Calibrating the model
output qθ̂(Z | X) like the temperature scaling is necessary to estimate the distribution
p(Z | Q) because temperature scaling has been shown to work well experimentally.

In this study, we propose a method to estimate the LPI by performing adjustments
using a different NN. First, let γθ̂(x) denote the logits of a trained NN when the input
trace x is provided. This trained model is acquired during the profiling phase of the stan-
dard DL-SCA. In our approach, we train another NN gω to estimate Z from γθ̂(x), where
ω denotes model parameters. We use the NN gω to model the distribution of z from x as
softmax(γθ̂(x) � gω(γθ̂(x))), where the operator � indicates the Hadamard product (i.e.,
element-wise multiplication). This indicates that, similar to the temperature scaling and
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conversion in ECE/EPI, the proposed method involves calibrating the inverse temperature
β through the Hadamard product with the trained gω(x). Meanwhile, the inverse temper-
ature is determined based on the logits of the classifier using an NN, and it can be set to
different values for each dimension of the logit. Consequently, softmax(γθ̂(x)�gω(γθ̂(x)))
will yield the true distribution p(Z | Q) with regard to over-confidence if model parame-
ters ω are learned successfully. Therefore, we can estimate the LPI value empirically using
softmax(γθ̂(x) � gω(γθ̂(x))) as p(z | Q).

5 Validity of the NLL loss for DL-SCA
5.1 overview
In this section, we discuss why training NNs with NLL loss functions can be beneficial
for DL-SCA from the LPI perspective. To this end, we first explain that training NNs to
decrease the NLL loss approximately increases the LPI. Then, we explain that increasing
LPI raises the upper bound of the SR, thereby resulting in an improvement in the SR.
The explanation in this section is experimentally validated in Section 6.

5.2 DL-SCA performance and loss functions
In conventional DL-SCAs, models are trained for minimizing the NLL between the com-
puted intermediate value from the correct key and trace. During the key estimation
process, the NLL for each key candidate is calculated across multiple traces, and we iden-
tify the candidate with the smallest NLL as the correct key. This practice lends credence
to using an NLL corresponding to the correct key as a loss function; however, the primary
objective of training in DL-SCA should not only decrease the NLL associated with the
correct key but also improve (i.e., move up) the rank of the correct key. Simply decreasing
the NLL of the correct key is insufficient, and its NLL must be smaller than those of all
wrong key candidates. Thus far, employing NLL as a loss function during training does
not indicate that the NLL of the correct key is smaller than NLLs of wrong key candidates,
raising doubts on the inherent superiority of the NLL loss function in DL-SCAs.

Several studies proposed alternative loss functions, including CER loss [ZZN+20] and
ranking loss [ZBD+21], which were designed to directly increase the SR to address this
issue. These functions incorporate the attack process (i.e., computing and comparing the
NLL for each key candidate) during model training, thereby directly improving the rank
of the correct key. This approach seems reasonable because an SCA succeeds if the rank
of the correct key is lower than that of the other keys.

However, in contrast to this intuition, [ISUH21,ZBD+20] show that, by introducing a
complemental term to the model output or using a sufficiently large number of traces, the
performance of training using the NLL loss function is comparable to or better than that
using these specialized loss functions for DL-SCA. This section explains the counterintu-
itive phenomena in terms of LPI. Our conclusions can be summarized as follows:

1. A decrease in the NLL is approximately equal to an increase in the LPI.

2. An increase in the upper bound of SR in Theorem 2 is expected to increase the SR
value if the selection function has some good properties.

5.3 NLL decrease and LPI increase
NLL is an approximation of the CE function because it almost surely converges to CE as
the number of traces approaches infinity. Therefore, the decrease in NLL is approximately
equal to the decrease in CE. The definition of ECE indicates that ECE(qθ) ≤ CE(qθ).
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Therefore, training the model to decrease the NLL loss implies a decrease in ECE. We
prove Theorem 5 to clarify the relationship between NLL/CE and ECE.

Theorem 5 (CE minimization implies ECE minimization for an NN). Let Ω = Rnθ

represent the set of all possible parameters of the NN. Let qθ represent the probability
distribution modeled by the NN with the parameters θ, where we assume that the last layer
of the NN is a fully-connected layer with the softmax function as its activation function.
That is, qθ is represented by qθ(z | x) = softmax(Wθh(x) + bθ)z, where h(x) denotes the
input to the last layer if a trace x is input to the model; Wθ and bθ represent the weight
and bias of the last layer of the model, respectively; and the subscript z of the softmax
function represents the z-th dimension of the output. It holds that

arg min
θ

CE(qθ) ⊂ arg min
θ

ECE(qθ).

Proof. It is trivial that arg minθ CE(qθ) ⊂ arg minθ ECE(qθ) holds if arg minθ CE(qθ) = ∅.
We assume that arg minθ CE(qθ) 6= ∅ holds. Let Q = { qθ | θ ∈ Ω } represent a set of all
possible distributions modeled by the NN. Let Q′ = { q

(β)
θ | θ ∈ Ω, β ∈ R≥0 } represent

the set of all possible distributions obtained using the inverse temperature β ≥ 0 for the
distribution in Q. First, we prove that Q = Q′. From this definition, we obtain Q ⊂ Q′.
Let q

(β′)
θ′ ∈ Q′ be any distribution in Q′, which is defined as

q
(β′)
θ′ (z | x) = (qθ′(z | x))β′∑

z′ (qθ′(z′ | x))β′ .

Here, qθ′ is given by qθ′(z | x) = exp(−(Wθ′ h(x)+bθ′ )z)∑
z′′ exp(−(Wθ′ h(x)+bθ′ )z′′ )

because of the assumption that
the NN employs the softmax function in the output layer. Thus, it holds that

q
(β′)
θ′ (z | x) = exp(−(β′Wθ′h(x) + β′bθ′)z)∑

z′ exp(−(β′Wθ′h(x) + β′bθ′)z′)
= Softmax(β′Wθh(x) + β′bθ)z.

Therefore, the distribution qθ′′ corresponding to the parameter θ′′ with the weight and
bias of the last layer of the parameter θ′ replaced by β′Wθ′ and β′bθ′ , respectively, is equal
to q

(β′)
θ′ . Therefore, we have q

(β′)
θ′ ∈ Q for any θ′ and β′; thus, Q = Q′ holds.

According to Q = Q′, it holds that

min
θ

CE(qθ) = min
qθ∈Q

CE(qθ) = min
q

(β)
θ′ ∈Q′

CE(q(β)
θ′ ) = min

θ′
min
β≥0

CE(q(β)
θ′ ).

Therefore, the minimum ECE value must exist if the minimum CE value exists, and these
values must be equal.

Let θ′ ∈ arg minθ CE(qθ′) represent the minimum value of CE. The minimum values
of CE and ECE must be equal, because

CE(qθ′) = CE(q(1)
θ′ ) = min

θ′′
min
β≥0

CE(q(β)
θ′′ ),

which is followed by θ′ ∈ arg minθ′′ ECE(qθ′′). Therefore, we conclude that arg minθ CE(qθ) ⊂
arg minθ ECE(qθ), as required.

Theorem 5 indicates that the parameters minimizing CE value also minimize ECE
value. Therefore, CE can be considered as a surrogate loss for ECE. Moreover, ECE
bounds the entropy H(Z | Q) from above, thereby enlarging the LPI by minimizing CE.
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5.4 Relationship between increases in the SR upper bound and SR
itself

Thus far, we observed that a decrease in the NLL approximately increases the LPI, thereby
yielding an increase in the upper bound of the SR; however, it is not the SR itself. An
increase in LPI does not necessarily lead to a direct increase in the SR itself, thereby
implying that an increase in LPI may not improve the attack performance (i.e., SR). We
discuss why, when, and how an increase in LPI is (in)consistent with SR improvement.
Consequently, we clarify that such discrepancy between LPI and SR does not occur in
attacks on typical block ciphers, including AES.

We cannot derive an inequality for the lower bound of SR from the NLL, instead of an
upper bound, because the NLL does not utilize information about other key candidates. A
decrease in NLL is approximately equivalent to a decrease in CE, which, in turn, indicates
an increase in the LPI of the model (i.e., I(Z; Q)). The LPI measures the amount of
information regarding intermediate values that can be extracted from the trace using
the model. This signifies that, for example, one bit of information about the intermediate
value can be extracted per trace if the LPI is one bit. Consequently, secret key information
can be extracted at one bit per trace if the selection function is bijective. Intuitively, one
can assume that eight traces would sufficiently estimate the partial key. However, we can
create counterexamples in which such an assumption does not hold. For example, let us
consider the case that I(Z; Q) = 1 and the one-bit leakage is always the MSB of the
partial key. In such a case, DL-SCA will only reveal the MSB of the secret key but cannot
recover the other remaining secret key bits even when many traces are used. Thus, in this
case, the attack will not be successful; that is, SR must be not more than 2n−1 despite
the value of mI(Z; Q).

Another potential issue arises when the intermediate values of multiple key candidates
are similar, namely, when the dummy peaks are attributed to the correlation between
correct and incorrect keys. Let us consider an extreme case in which a selection function
is given by a bitwise AND operation (i.e., k & t), where k represents the eight-bit partial
key candidate and t represents the plaintext. The key candidates k1 = (11111110)2
and k2 = (11111111)2 have similar intermediate values. These candidates yield identical
intermediate values when the LSB of the plaintext is zero. In such a scenario, achieving
SR = 1 with a single trace is inherently difficult even if the model perfectly extracts
intermediate value information from the trace (i.e., LPI is eight bits). More importantly,
if there were an incorrect key that behaved the same as the correct key, it would be
considerably difficult to achieve an SR of more than 1/2.

Therefore, despite the ability of the model to retrieve substantial information from
intermediate values, the difficulty in key recovery depends on the form of leakage and
selection functions. In other words, Theorem 2 evaluates the SR only in terms of the
amount of information extracted by an NN per trace (i.e., LPI); however, it does not
consider the form of leakage and selection function, whereas they have a nontrivial impact
on the success of key recovery. This is one of the reasons Theorem 2 states an inequality
rather than an equality. In some settings, the inequality would be loose depending on
the leakage form and selection function. Note here that we just gave some theoretical
counterexamples for the explanation, which may be impractical or pathological.

Contrarily, if the inequality is guaranteed to be meaningfully tight, it suffices for the
SR estimation to evaluate the LPI as its upper bound, thereby validating the decrease in
NLL (i.e., increase in LPI increase) to improve the SR. Most issues causing the looseness
are related to the leakage form and selection function. If the selection function is bijective
with respect to both plaintext and key and if the plaintexts are uniformly distributed,
the aforementioned problems are mitigated. An example of such a selection function is
observed in attacks on AES software implementations; namely, Z(k) = Sbox(T ⊕ k) repre-
sents a bijection for any fixed k. Actually, in [dCGRP19], de Chérisey et al. experimentally
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confirmed the tightness of the SR upper bound based on Fano’s inequality for the case of
AES. Thus, in practice, the LPI–SR inequality would be meaningfully tight, which con-
cludes that a decrease in NLL improves the DL-SCA performance. We will experimentally
confirm the validity of the above discussion in Section 6.

6 Experimental validation
6.1 Dataset and experimental setup
This section validates our theoretical analyses through experimental DL-SCAs on masked
AES software and hardware implementations. We evaluate the empirical values of PI,
EPI, and LPI and examine whether the relationship among them mentioned in Section 4
and each SR inequality hold experimentally.

Target software. We used a first-order Boolean masked AES software provided by AS-
CAD [BPS+20]. We implemented it on Atmel Xmega128D4-AU eight-bit microcontroller
and acquired the side-channel traces because we required more traces than the ASCAD
dataset for improving the accuracy of estimating PI, LPI, and EPI. We acquired the
side-channel traces for two different keys, which correspond to profiling (i.e., NN training)
and attack phases. The target microcontroller is mounted on a ChipWhisperer CW308
UFO baseboard. The ChipWhisperer CW1200 capture box generated the base clock, and
the clock frequency was set to 50 MHz. The microcontroller was connected to a Keysight
DSOX6004A oscilloscope at a sampling rate of 20 GSamples/s for acquiring side-channel
traces. The number of traces acquired was 100,000 each for training and attack phases.
We used a selection function of Z(k) = Sbox(T ⊕ k), as in many previous studies on
(DL-)SCA on ASCAD and AES software implementations; it is bijective for T and k.

Target hardware. We used a public dataset released by Ito et al.4, which was also used
in the evaluation in [IUH22b]. The AES hardware implementation, presented in [UHA17],
employs threshold implementation (TI) as a masking scheme [NRS11, RBN+15] with a
byte-serial architecture. The implementation was conducted on a Xilinx Kintex-7 FPGA
on a SAKURA-X board, and its power traces were acquired at a sampling rate of 455
MSa/s. The number of traces was 10,000,000 for training and 10,000,000 for the attacks.
Similar to [IUH22a], we used a selection function targeting the register transition between
the first and fifth bytes of the inversion output, denoted by

Z(k[1],k[5]) = Inv(∆f (T [1]) ⊕ ∆f (k[1])) ⊕ Inv(∆f (T [5]) ⊕ ∆f (k[5])),

where T [1] and T [5] represent the first and fifth byte of plaintext, respectively; k[1]
and k[5] represent the first and fifth byte of the secret key, respectively; ∆f represents
the isomorphic mapping from AES field (i.e., GF(28)) to Canright’s tower field (i.e.,
GF(((22)2)2)) [Can05]; and Inv represents the GF(((22)2)2) inversion in Canright’s Sbox
(See [UHA17] for the details). We must guess two consecutive key bytes to employ an
XOR-based selection function. Hence, the partial key length in the attack is n = 16 for the
AES hardware implementation in our experiment. Although this function is not bijective,
it satisfies a good property for DL-SCA called the key independence condition [IUH21].

Neural networks for qθ̂(Z | X) and γθ̂(X) and its training. For evaluating the software
implementation, we employ an NN architecture presented in [WAGP20] for implementing

4The dataset of side-channel traces is publicly available at https://github.com/ECSIS-lab/perceived_
information_revisited/tree/main. The AES hardware is publicly available at https://github.com/
ECSIS-lab/curse_of_re-encryption/tree/main/Masked_AES_hardware.

https://github.com/ECSIS-lab/perceived_information_revisited/tree/main
https://github.com/ECSIS-lab/perceived_information_revisited/tree/main
https://github.com/ECSIS-lab/curse_of_re-encryption/tree/main/Masked_AES_hardware
https://github.com/ECSIS-lab/curse_of_re-encryption/tree/main/Masked_AES_hardware
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Figure 3: DL-SCA on the AES software implementation.

it with a random delay measure of 50 sample points. We set the learning rate, batch
size, and maximum number of epochs to 1e−2, 512, and 100, respectively. We normal-
ize the side-channel traces using feature standardization presented by Wouters et al.
in [WAGP20]. For the hardware implementation, we used another neural network archi-
tecture proposed in [IUH22b], and set the learning rate, batch size, and maximum number
of epochs to 1e−2, 1000, and 500, respectively. We normalize the side-channel traces using
feature scaling between -1 and 1 proposed in [WAGP20].

Neural network for gω and its training. We use the method described in Section 4.5
to estimate LPI. The architecture of the NN gω is a multilayer perceptron consisting of
two layers with 16 and 256 units. We used batch normalization for the first layer and
SELU as the activation function. The activation function of the last layer was set as a
sigmoid function. We set the learning rate, batch size, and maximum number of epochs
as 1e−3, 512, and 100, respectively. For training, we split the test data in half and used
them as the training and validation sets for model gω. From the trained model γθ̂ and
gω, we calculated softmax(γθ̂(x) � gω(γθ̂(x))) and its NLL loss value, and it was used
to update the model parameter ω and estimate the LPI value. The training of gω was
repeated ten times, and the LPI was estimated using the model at the epoch with the
smallest validation loss for each training. The mean and variance of the LPI estimates
were evaluated in all trials.

6.2 Evaluation result
Figures 3 and 4 report (a) the estimated PI, EPI, and LPI values during training on the
AES software and hardware implementations and (b) the empirical and estimated numbers
of traces to achieve an SR of 90% using the model and inequalities, respectively. Precisely,
Figures 3(a) and 4(a) show the estimated PI, EPI, and LPI values during training, where
the horizontal axis represents the number of epochs and the vertical axis represents the
amount of information. Figures 3(b) and 4(b) show the empirical and estimated numbers
of traces to achieve an SR of 90% by the model at each epoch. The blue, red, and purple
curves correspond to the number of traces required to achieve the SR estimated from the
PI, EPI, and LPI values, respectively, using the corresponding inequality. The grey line
denotes the empirical number of traces in an actual attack using the model.

We focus on the results of AES software implementation. From Figure 3(a), we observe
that the PI value increases over the first 20 epochs and decreases subsequently. The values
of EPI and LPI do not (relatively) decrease after 20 epochs. Therefore, after 20 epochs,
the PI indicates a degradation in the attack performance of the model, whereas the EPI
and LPI indicate a slight change in attack efficacy. In fact, Figure 3(b) indicates that the
number of traces estimated from PI exceeds the number of traces in the actual attack at
the final epoch, thereby disproving the conjecture on the PI–SR inequality in experiment,
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Figure 4: DL-SCA on the AES hardware implementation.

in addition to the theoretical argument. In contrast, the number of traces estimated from
the EPI and LPI are smaller compared to those for the actual attack, and they correlate
proportionally. The attack performance can be estimated from the LPI and EPI values
through SR inequalities. The results show that PI < EPI < LPI holds, and the difference
between LPI and EPI is negligibly small. Therefore, the EPI is appropriate for predicting
attack performance, and the EPI–SR inequality is valid.

Next, we focus on the results of the AES hardware implementation, which was consis-
tent with the results of the AES software implementation. The major difference was that
the PI was smaller than zero in almost all epochs (the graph shows negative values of PI
as zero). We expect an attack failure from the PI perspective (even with an unbounded
number of traces); however, EPI and LPI indicate a successful attack because these values
are greater than zero, even in early epochs. In fact, Figure 4(b) shows that the attack per-
formance is predicted correctly from EPI and LPI using their corresponding inequalities.
Therefore, we confirmed the validity of the EPI–SR inequality.

Finally, we confirm the relationship between the NLL loss function and SR. Fig-
ures 3(a) and 4(a) show that EPI and LPI increase as the learning progresses, even with
NLL used as the loss function. This is because the NLL function is a surrogate loss of EPI
and LPI, which leads to an increase in their values. The increase in LPI raises the upper
bound of SR from Theorem 2, thereby contributing to the performance improvement.

7 Concluding remarks
This study analyzed the relationship between NLL and model attack performance in a DL-
SCA. We developed a communication channel model for DL-SCA by defining LPI. Based
on this model, we derived and proved the LPI–SR inequality. Then, we discussed the
relationship among LPI, PI, and EPI to validate the conjecture on the EPI–SR inequality
through the LPI–SR inequality, and we commented on the similarity between LPI and
EPI. For the practical computation of LPI, we proposed a method to estimate LPI using
an NN. We proved that an increase in the PI contributes to an increase in EPI and LPI,
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as in Theorem 5, which suggests that learning to decrease NLL increases the LPI and
the upper bound of SR. Finally, we conducted an experimental DL-SCA on masked AES
software and hardware implementations to validate the correctness of our analyses. In
consequence, the LPI and EPI would be appropriate and valid metrics to evaluate the
SCA performance (i.e., SR) for a given device in practice.

The experiments in this study were conducted for cases in which the selection func-
tion has good properties, such as bijection. Major practical ciphers, including AES, are
included in this scope. However, the generality of our analysis for other cases is unclear,
and the improvement in attack performance caused by an increase in the upper bound
of the SR attributed to the decrease in NLL might be proven for limited cases. In the
future, the appropriateness of using NLL as a loss function, even when the selection func-
tion does not have such good properties, should be investigated. Further, clarifications
regarding the accuracy of the proposed LPI estimation method and the development of
better alternatives should be pursued in the future.
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