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Abstract. At EUROCRYPT’20, Bao et al. have shown that three-round
cascading of LRW1 construction, which they dubbed as TNT, is a strong
tweakable pseudorandom permutation that provably achieves 2n/3-bit
security bound. Jha et al. showed a birthday bound distinguishing attack
on TNT and invalidated the proven security bound and proved a tight
birthday bound security on the TNT construction in EUROCRYPT’24.
In a recent work, Datta et al. have shown that four round cascading of the
LRW1 construction, which they dubbed as CLRW14 is a strong tweakable
pseudorandom permutation that provably achieves 3n/4-bit security. In
this paper, we propose a variant of the TNT construction, called b-TNT1,
and proved its security up to 23n/4 queries. However, unlike CLRW14, b-
TNT1 requires three block cipher calls along with a field multiplication.
Besides, we also propose another variant of the TNT construction, called
b-TNT2 and showed a similar security bound. Compared to b-TNT1,
b-TNT2 requires four block cipher calls. Nevertheless, its execution of
block cipher calls can be pipelined which makes it efficient over CLRW14.
We have also experimentally verified that both b-TNT1 and b-TNT2
outperform CLRW14.

Keywords: Tweakable Block Cipher, Tweak-aNd-Tweak, Cascaded LRW1,
Beyond Birthday Bound Security, Mirror Theory, Expectation Method.

1 Introduction

A tweakable block cipher is a rich cryptographic primitive that serves to intro-
duce variability within the cipher’s structure. A tweakable block cipher is defined
as a family of permutations Ẽ : K×T ×{0, 1}n → {0, 1}n indexed by secret key
k ∈ K and public tweak t ∈ T . A prototypical design of a tweakable block cipher
originally appeared in the Hasty Pudding Cipher [43], where an extra input,
known as “spice” served the role of a tweak besides the key and the plaintext, to
a block cipher. The actual intention of spice is to introduce randomization in the
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choice of the permutation family. Later in [32, 33], Liskov, Rivest, and Wagner
formalized the design and referred to the primitive as a tweakable block cipher.

Tweakable block ciphers have received significant acceptance as a fundamen-
tal cryptographic object. Over the years, TBCs have found diverse applications,
in designing of AE schemes, e.g., Deoxys [27], Romulus [36], and several other
candidates of AE schemes [1,4,5,8,15,20,38,41]. TBC has also been extensively
used in designing many AE candidates for NIST and CÆSAR competitions, in-
cluding [16, 22, 25–27, 44]. Besides, TBCs have also been used in designing wide
block encryption modes [6,39], message authentication codes [8,9,11,24,35,37],
hash functions [14,18,21], and pseudorandom functions [10].

LRW1 and LRW2, proposed by Liskov et al. [32], are the first examples of
tweakable block ciphers, which are built from block ciphers assuming their strong
pseudorandom permutation security. Over the years, a few variants of the LRW2
construction have been proposed in [7,34,42] which have been shown to be secure
up to the birthday bound of the query complexity. Landecker et al. [31] showed
that cascading two independent LRW2 constructions, called CLRW2, achieves
security up to 22n/3 queries. Subsequent works [29] have improved the bound
of Landecker et al. [31] from 2n/3 bits to 3n/4 bits. Lampe and Seurin [30]
generalized CLRW2 construction to the cascading of r ≥ 1 LRW2 construction
and proved that it achieves security up to 2rn/(r+2) queries for even r. Although
the bound approaches the optimal security with increasing r, it comes at the cost
of increasing the number of block cipher keys and primitive calls linearly with r.
Bao et al. [2] showed that the three-round cascading of the LRW1 construction,
called TNT (an abbreviation of “The Tweak-aNd-Tweak”) achieves CCA security
up to 22n/3 queries.

TNTK1,K2,K3 [E](T, M) ∆= EK3(T ⊕ EK2(T ⊕ EK1(M))).

Guo et al. [17] showed a tight 3n/4-bit CPA security bound of the construction.
Zhang et al. [45] studied the security analysis of the generalized r-round cascad-
ing of the LRW1 construction, called CLRW1r and showed that it achieves CCA
security up to 2(r−2)n/r queries, with r ≥ 2. Furthermore, when r is odd, the
construction attains enhanced security for up to 2(r−1)n/(r+1) queries.

Jha et al. [28] showed a birthday bound CCA distinguishing attack on TNT,
invalidated the previously asserted security claim of the construction, and proved
a tight birthday bound security of the TNT construction. Recently, Datta et
al. [13] showed that four round cascading of the LRW1 construction, called
CLRW14, achieves CCA security up to 23n/4 queries. In fact, this result is the
first one that provably shows the minimal number of rounds required for cas-
cading LRW1 construction to ensure beyond-birthday-bound security against all
CCA adversaries. We would like to mention that a parallel work of [13] also
established a similar security bound of the construction [28].

1.1 Our Contribution
Birthday bound security of the TNT construction has rendered the designer to
include one extra block cipher call in CLRW14 construction to achieve beyond-
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birthday-bound security. However, this additional invocation of the block cipher
comes at the cost of evaluating it for every query. Moreover, to accommodate the
decryption query, one needs to invoke the decryption circuit of the extra block
cipher for every distinct ciphertext. Besides, we cannot execute the additional
block cipher call in parallel to the execution of the TNT construction, i.e., to
evaluate EK4 , one needs to wait for the output of TNT to become available.

M EK1 EK2 EK3 C

T T K ⊙ T

X Y U V W

Fig. 1: b-TNT1 construction based on three block cipher calls and a field multi-
plication.

To address the above issues, we propose a simple fix to the TNT construc-
tion that does not require any extra block cipher call. In particular, we blind
the output of the TNT construction by multiplying an n-bit secret key with the
tweak and call the resulting construction b-TNT1. A pictorial description of the
construction is shown in Fig. 1. Since the field multiplication is less costly than
evaluating a block cipher, our proposed construction outperforms CLRW14 in
terms of throughput while retaining a similar level of security bound. Although
b-TNT1 is better than CLRW14 in terms of throughput, it incurs a larger hard-
ware area compared to CLRW14 due to the involvement of two different opera-
tions on the cipher. As a result, we propose b-TNT2, an another variant of the
TNT construction, where we blind the output of the TNT construction with an
encryption of the tweak. A pictorial description of the construction is shown in
Fig. 2. Unlike CLRW14, the last block cipher call of TNT can be executed par-
allel to that of the TNT construction. One can also pre-computes the last block
cipher which becomes advantageous while making queries with same tweak.

M EK1 EK2 EK3 EK4

C

T T T

X Y U V W Z

Fig. 2: b-TNT2 construcion based on four block cipher calls.
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In this paper, we have shown that both b-TNT1 and b-TNT2 provide security
up to 23n/4 queries. In particular, we have the following security results, the
proofs of which are deferred to Sect. 3.

Theorem 1. Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher. Then, for
any (q, t) adversary A8 against the strong tweakable pseudorandom permutation
security of b-TNT1 with q ≤ 23n/4, there exists a (q, t′) adversary A′ against the
strong pseudorandom permutation security of E, where t′ = t, such that

AdvSTPRP
b-TNT1(A) ≤ 3AdvSPRP

E (A′) + 3q2

22n
+ 5q4/3

2n
+ 45q4

23n
+ 1

2n
.

Theorem 2. Let E : {0, 1}κ × {0, 1}n → {0, 1}n be a block cipher. Then, for
any (q, t) adversary A against the strong tweakable pseudorandom permutation
security of b-TNT2 with q ≤ 23n/4, there exists a (q, t′) adversary A′ against the
strong pseudorandom permutation security of E and a (µ, t′) adversary B against
the pseudorandom permutation security of E, where µ denotes the number of
distinct tweaks queried and t′ = t, such that

AdvSTPRP
b-TNT2(A) ≤ 3AdvSPRP

E (A′) + AdvPRP
E (B) + 4q2

22n
+ 6q4/3

2n
+ 53q4

23n
.

We have experimentally verified that both b-TNT1 and b-TNT2 perform
better than the CLRW14 in terms of throughput while achieving a similar level
of security bound.

2 Preliminaries

Notation. For q ∈ N, we write [q] to denote the set {1, . . . , q}. For two natural
numbers a and b such that a ≤ b, we write [a, b] to denote the set {a, a+1, . . . , b}.
For a natural number n, {0, 1}n denotes the set of all binary strings of length
n, and {0, 1}∗ denotes the set of all binary strings of arbitrary length. For a
natural number n and q, we write xq to denote a q-tuple (x1, x2, . . . , xq) where
each xi ∈ {0, 1}n. We write x̂q to denote the set {xi : i ∈ [q]}. By an abuse
of notation, we also write xq to denote the multiset {xi : i ∈ [q]} and µ(xq, x)
denotes the multiplicity of x ∈ xq. We also write µx to denote the multiplicity of
x ∈ xq, when the multiset xq is understood from the context. For a set I ⊆ [q]
and a q-tuple xq, we write xI to denote the sub-tuple (xi)i∈I . We write a 2-ary
tuple (xq, yq) to denote the q tuple ((x1, y1), (x2, y2), . . . , (xq, yq)), where each
xi, yi ∈ {0, 1}n. We write x← y to denote the assignment of the variable y to x.

For a random variable X, X←$ {0, 1}n denotes that X is sampled uniformly
at random from {0, 1}n. For a tuple of random variables (X1, . . . , Xq), we write
(X1, . . . , Xq) ←$ {0, 1}n to denote that each Xi is sampled uniformly from
{0, 1}n and independent to all other previously sampled random variables. We
8 A (q, t) adversary A is one that makes a total of q queries to the oracle with running

time of at most t steps.
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write (X1, . . . , Xq) wor←−− {0, 1}n to denote that each Xi is sampled uniformly
from {0, 1}n \ {X1, . . . , Xi−1}. The set of all permutations over {0, 1}n is de-
noted as Perm(n). We say that a 2-ary tuple (xq, yq) is permutation compatible,
denoted as xq ↭ yq, if there exists at least one permutation P ∈ Perm(n) such
that for all i ∈ [q], xi = xj ⇔ yi = yj , i ̸= j ∈ [q]. Moreover, if (xq, yq) is
not permutation compatible, then we denote it as xq ×

↭ yq. For three tuples
xq = (x1, x2, . . . , xq), yq = (y1, y2, . . . , yq), and λq = (λ1, λ2, . . . , λq) of q n-bit
elements, we write xq ⊕ yq = λq, if for all i ∈ [q], it holds that xi ⊕ yi = λi. For
integers 1 ≤ b ≤ a, we write (a)b to denote a(a−1) . . . (a−b+1), where (a)0 = 1
by convention.

2.1 (Tweakable) Block Cipher

Let n, κ, t ∈ N be three natural numbers. A block cipher E : {0, 1}κ × {0, 1}n →
{0, 1}n is a function that takes as input a key k ∈ {0, 1}κ and an n-bit string
x ∈ {0, 1}n and outputs an element y ∈ {0, 1}n such that for each k ∈ {0, 1}κ,
E(k, ·) is a bijective function from {0, 1}n to {0, 1}n. A tweakable block cipher
(TBC) is a mapping Ẽ : {0, 1}κ × {0, 1}t × {0, 1}n → {0, 1}n, such that for all
key k ∈ {0, 1}κ and for all tweak T ∈ {0, 1}t, Ẽ(k, T, ·) is a permutation over
{0, 1}n. A tweakable permutation with tweak space {0, 1}t and domain {0, 1}n

is a mapping P̃ : {0, 1}t × {0, 1}n → {0, 1}n such that for all tweak T ∈ {0, 1}t,
P̃(T, ·) is a permutation over {0, 1}n. We write TP({0, 1}t, n) to denote the set of
all tweakable permutations with tweak space {0, 1}t and n-bit messages. We fix
positive even integers n, κ (resp. t) to denote the block size, key size (resp. tweak
size) of the block cipher (resp. tweakable block cipher) respectively in terms of
number of bits.

2.2 Security Definition of (Tweakable) Block Cipher

Let Ẽ be a tweakable block cipher and A be a non-trivial (q, t) adaptive adversary
with oracle access to a tweakable permutation and its inverse with tweak space
{0, 1}t and domain {0, 1}n. The advantage of A in breaking the strong tweakable
pseudorandom permutation (STPRP) security of Ẽ is defined as

AdvSTPRP
Ẽ

(A) ∆= |Pr[AẼK(·,·),̃E−1
K

(·,·) = 1]− Pr[AP̃(·,·),̃P
−1

(·,·) = 1]|, (1)

where the first probability is calculated over the randomness of K ←$ {0, 1}κ and
the second probability is calculated over the randomness of P̃←$ TP({0, 1}t, n).
When the adversary is given access only to the tweakable permutation and not
its inverse, then we say the tweakable pseudorandom permutation (TPRP) ad-
vantage of A against Ẽ. We say that Ẽ is (q, t, ϵ) secure if the maximum strong
tweakable pseudorandom permutation advantage of Ẽ is ϵ where the maximum
is taken over all distinguishers A that makes a total of q queries to its oracle
and runs for time at most t. We assume throughout the paper the tweak size t
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of the tweakable block cipher is equal to its block size n. When the tweak set is
empty, then the notion of STPRP (resp. TPRP) boils down to the SPRP (resp.
PRP) security.

2.3 Mirror Theory For Tweakable Random Permutations

Mirror theory fundamentally works for bounding the pseudorandomness of the
sum-of-permutations [3,12,19,40] based constructions with respect to a random
function. However, its traditional setup is not suited for bounding the pseudo-
randomness of tweakable block ciphers with respect to tweakable random per-
mutation. Jha and Nandi [29] developed a variant of mirror theory result tailored
for tweakable tweakable random permutations. We revisit their result below.

For a given system of linear equations L, we associate an edge-labeled bi-
partite graph L(G) = (X ∪ Y, E) with the labeling function L, an edge (x, y)
with label λ is called an isolated-edge if the degree of both x and y is 1. We say
that a component C is a star if ξC ≥ 3, where ξC denotes the number of vertices
in component C, and there exists an unique vertex, called center vertex, with
degree ξC − 1 and all the other vertices have degree exactly 1. A component C
is called X -type (resp. Y-type) if the center vertex of the component C lies in X
(resp. Y).

For a given system of linear equations L and its corresponding associated
equation graph L(G), we write α (resp. β, γ) to denote the number of isolated
edges (resp. number of components of X -type and number of components of
Y-type). Similarly, q1 denotes the number of equations such that none of its
variables have collided with any other variables. q2 denotes the number of equa-
tions of X -type and q3 denotes the number of equations of Y-type. Note that
α = q1. Following result from [29] has given a lower bound on the number of so-
lutions for a given system of linear equations L such that X ′

i values are pairwise
distinct and Y ′

i values are pairwise distinct.

Theorem 3. Let L be a system of the linear equation as defined above with
q ≤ 2n−2 and any component of L(G) have at most 2n−1 edge. Then the number
of tuple of solution (x1, x2, . . . , xqX

, y1, y2, . . . , yqY
) of L, denoted by h(q), where

xi ̸= xj and yi ̸= yj, for all i ̸= j, satisfies

h(q) ≥
(

1− 13q4

23n
− 2q2

22n
−

(
β+γ∑

i=α+1
ζ2

i

)
4q2

22n

)
× (2n)q1+β+q3 × (2n)q1+q2+γ∏

λ∈λq

(2n)µλ

(2)

where ζi denote the number of edge in i-th component ∀i ∈ [α + β + γ].

3 Proof of Theorem 1 and Theorem 2

This section is devoted to establishing the security bound as demonstrated in
Theorem 1 and Theorem 2. Due to the structural similarity of the proofs of
Theorem 1 and Theorem 2, we present a combined proof of both the results.
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However, we will explicitly highlight the differences between the proofs of the
two constructions.

From now onwards we use the notation b-TNTd, where d = 1 stands for the
construction b-TNT1 and d = 2 denotes the construction b-TNT2. Initially, we
replace the three independently keyed block ciphers, EK1 , EK2 and EK3 , used in
the constructions with three independently sampled n-bit random permutations,
P1, P2 and P3 (for b-TNT2 fourth block cipher EK4 will be replaced by another
independently sampled n-bit random permutation P4). This substitution comes
at the cost of the strong pseudorandom permutation advantage of the underlying
block cipher (replacement of EK4 comes at the cost of pseudorandom permuta-
tion advantage). We denote the resulting construction as b-TNTd⋆. Therefore,
we have

AdvSTPRP
b-TNTd (A) ≤


3AdvSPRP

E (A′) +

δ∗︷ ︸︸ ︷
AdvSTPRP

b-TNTd⋆(A), for d = 1

3AdvSPRP
E (A′) + AdvPRP

E (B) + AdvSTPRP
b-TNTd⋆(A)︸ ︷︷ ︸

δ∗

, for d = 2

where A′ is a (q, t′) adversary such that t′ = t. Our goal is now to upper bound
δ∗. Note that, we have

δ∗ ≤ max
A

∣∣∣Pr[Ab-TNTd⋆,(b-TNTd⋆)−1
= 1]− Pr[AP̃,̃P−1

= 1]
∣∣∣ ,

where P̃ ←$ TP({0, 1}n, n). This formulation of the problem now allows us to
use the Expectation Method [23].

3.1 Description of the Ideal World

The ideal world consists of two stages: in the first stage, which we call the on-
line stage, the ideal world simulates a random tweakable permutation P̃ , i.e.,
for each encryption query (M, T ), it returns P̃(M, T ). Similarly, for each de-
cryption query (C, T ), it returns P̃

−1
(C, T ). Since the real world releases some

additional information, the ideal world must generate these values as well. The
ideal transcript random variable Xid is a 9-ary q-tuple

(Mq, T q, Cq, Xq, Y q, Uq, V q, W q, K(for d = 1)/Zq(for d = 2))

defined below. However, the probability distribution of these additional random
variables would be determined from their definitions. The initial transcript con-
sists of (Mq, T q, Cq), where for all i ∈ [q], Ti is the i-th tweak value, Mi is
the i-th plaintext value, and Ci is the i-th ciphertext value. Once the query-
response phase is over, the next stage of the ideal world begins, which we call
the offline stage. In the offline stage, the ideal world samples the intermediate
random variables as follows: let us define the set

M(Mq) = {x : x = Mi, i ∈ [q]}.
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Let us assume that m := |M(Mq)| be the number of distinct plaintexts. Then,
it samples

Xx1 , Xx2 , . . . , Xxm

wor←−− {0, 1}n,

where (x1, x2, . . . , xm) is an arbitrary ordering of the set M(Mq). For d = 1 the
ideal world samples a key K ←$ {0, 1}n independent over Xxi and for d = 2 it
samples the intermediate random variables Zq,

Zz1 , Zz2 , . . . , Zzt

wor←−− {0, 1}n,

where (z1, z2, . . . , zt) is an arbitrary ordering of the set, T(T q) = {z : z = Ti, i ∈
[q]}. Let us assume that t := |T(T q)| is the distinct number of tweaks. Moreover,
Zzj is independently sampled with Xxi . From these sampled random variables
(Xx1 , Xx2 , . . . , Xxm), we define q-tuple Xq as follows: Xq = (X1, X2, . . . , Xq)
such that Xi = XMi

and Zq = (Z1, Z2, . . . , Zq) such that Zi = ZTi
. Having

defined q-tuple of random variables Xq, we define two q-tuples (Y q, W q) as
follows: for each i ∈ [q],

Yi = Xi ⊕ Ti, Wi =
{

Ci ⊕ (K ⊙ Ti), for d = 1,

Zi ⊕ Ci, for d = 2.

Given this partial transcript, X′
id = (Mq, T q, Cq, Xq, Y q, W q, K or Zq), we wish

to define whether the sampled value Xq and (K or Zq) is good or bad. We say
that a tuple (Xq, K or Zq) is bad if one of the following predicates hold:

1. BadK : K = 0n (This condition is only for d = 1).
2. Bad1 (cycle of length 2): ∃i, j ∈ [q] such that the following holds:

Yi = Yj , Wi = Wj .
3. Bad2: |{(i, j) ∈ [q]2 : i ̸= j, Yi = Yj}| ≥ q2/3.
4. Bad3: |{(i, j) ∈ [q]2 : i ̸= j, Wi = Wj}| ≥ q2/3.
5. Bad4 (Y -W -Y path of length 4): ∃i, j, k, l ∈ [q] such that the following

holds: Yi = Yj , Wj = Wk, Yk = Yl.
6. Bad5 (W -Y -W path of length 4): ∃i, j, k, l ∈ [q] such that the following

holds: Wi = Wj , Yj = Yk, Wk = Wl.

If the sampled tuple (Xq, K or Zq) is bad, then Uq and V q values are sampled
degenerately, i.e., Ui = Vi = 0 for all i ∈ [q]. That is, we sample without main-
taining any specific conditions, which may lead to inconsistencies. However, if
the sampled tuple (Xq, K or Zq) is good, then we study a graph associated with
(Y q, W q). In particular, we consider the random transcript graph G(Y q, W q)
defined as follows: the set of vertices of the graph is Y q ⊔W q. Moreover, we put
a labeled edge between Yi and Wi with label Ti. For two distinct indices i ̸= j,
if Yi = Yj , then we merge the corresponding vertices. Similarly, for two distinct
indices, if Wi = Wj , then we merge the corresponding vertices. Therefore, the
random transcript graph G(Y q, W q) is a labeled bipartite graph. Now, we have
the following lemma which asserts that the random transcript graph G(Y q, W q)
is nice if (Xq, K or Zq) is good.
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Fig. 3: Type-1 is a graph of isolated edges, and the maximum path length of a
Type-1 graph is one. Type-2 is a star graph with Y being the centered vertex,
and Type-3 is also a star graph with W being the centered vertex. The maximum
path length of Type-2 and Type-3 graphs is two. Type-4 is a connected graph
that is not an isolated edge or a star. It can have degree 2 vertices in both Y
and W . The maximum path length of the Type-4 graph is three.

(a) Type-1. (b) Type-2. (c) Type-3. (d) Type-4.

Lemma 1. The transcript graph G := G(Y q, W q) generated by a good tuple
(Xq, K or Zq) is nice, i.e., it satisfies the following properties:
• G is simple, acyclic, and has no isolated vertices with no adjacent edges such

that their labels are equal.
• maximum component size of G is 2q2/3 and every component of G is either

a star graph, isolated edges, or contains a path of length 3.

Proof of this lemma is included in Appendix A. We depict the type of sub-
graphs generated from a good tuple (Xq, K or Zq) in Fig. 3. After describing
the potential structure of random transcript graphs, we define the sampling of
(Uq, V q) when (Xq, K or Zq) is good. Referring to Fig. 3, we observe four types
of possible random transcript graphs for a good tuple (Xq, K or Zq), denoted
as G1,G2,G3, and G4 respectively, where Gi is a Type-i graph, for i ∈ [4].
• G1 is the union of isolated edges.
• G2 is the union of star components containing Y as centered vertex.
• G3 is the union of star components containing W as centered vertex.
• G4 is the union of components containing at least one path of length three.

Therefore, we define for each b ∈ [4],

Ib = {i ∈ [q] : (Yi, Wi) ∈ Gb}.

Since, the collection of sets Ib are disjoint, we have [q] = I1 ⊔ I2 ⊔ I3 ⊔ I4. We
define I = I1 ⊔ I2 ⊔ I3. Now, we consider the following system of equations

E = {Ui ⊕ Vi = Ti : i ∈ I},

where Ui = Uj if and only if Yi = Yj . Similarly, Vi = Vj if and only of Wi = Wj

for all i ̸= j ∈ [q]. Thus, the solution set of E is

S = {(uI , vI) : uI ↭ Y I , vI ↭ W I , uI ⊕ vI = T I}.

Having defined the solution set for E , we now define the sampling of the random
variables (Uq, V q) in the ideal world as follows:
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(i) (UI , V I) ←$ S, i.e., it uniformly samples one valid solution from the set of
all valid solutions;

(ii) For each component C of G4, let (Yi, Wi) ∈ C corresponds to an edge in the
component C such that the degree of both Yi and Wi is at least 2. Then, we
sample Ui ←$ {0, 1}n and set Vi = Ui ⊕ Ti;

(iii) The final possibility is that for each edge (Yi, Wi) ∈ C such that (Yi, Wi) ̸=
(Yj , Wj), where (Yj , Wj) ∈ C. Suppose, Yi = Yj , then Ui = Uj and Vi =
Ui ⊕ Ti. Similarly, if Wi = Wj , then Vi = Vj and Ui = Vi ⊕ Ti.

Therefore, we completely define the random variable represents the ideal world
transcript as follows:

Xid = (Mq, T q, Cq, Xq, Y q, Uq, V q, W q, K(for d = 1)/Zq(for d = 2)).

In this way, we achieve both the consistency of the equations in the form {Ui ⊕
Vi = Ti} and the permutation compatibility within each component of the graph
G when the tuple (Xq, K or Zq) is good. However, we need to anticipate colli-
sions among U values or V values across different components of the random
transcript graph G, which we will discuss in detail in the next section.

3.2 Definition and Probability of Bad Transcripts

Given the description of the transcript random variable in the ideal world, we
define the set of all attainable transcripts Ω as the set of all q tuples

τ = (Mq, T q, Cq, Xq, Y q, Uq, V q, W q, K or Zq),

where Mq, T q, Cq, Xq, Y q, Uq, V q, W q, Zq ∈ ({0, 1}n)q, K ∈ {0, 1}n, Y q = Xq ⊕
T q, W q = Cq⊕ (K⊙T q) (for d = 1) or W q = Zq⊕Cq (for d = 2) and (Mq, T q)
is tweakable permutation compatible with (Cq, T q). Now, we will discuss what
specific events constitute a bad condition.

- Consider the event Y I ×
↭ UI or W I ×

↭ V I that occurs while sampling
(UI , V I), where I encodes the edges that belongs to either Type-1 or Type-2
or Type-3 graphs. However, this condition cannot arise as we sample a valid
solution from the set of all valid solutions S;

- Due to the sampling of (Uq, V q), it may so happen that Y q ×
↭ Uq or

W q ×
↭ V q.

We define transcripts to be bad depending upon the characterization of the pair
of q-tuples (Xq, K or Zq). Following the ideal world description, we say that a
pair of q-tuples (Xq, K or Zq) is bad if and only if the following predicate is
true:

BadK∨ Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4 ∨ Bad5 (BadK is only for d = 1).

We say that a transcript τ is tuple-induced bad transcript if (Xq, K or Zq) is
bad, which we denote as

Bad :=BadK∨ Bad1 ∨ Bad2 ∨ Bad3 ∨ Bad4 ∨ Bad5 (BadK is only for d = 1).
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The other type of event that we need to discard, arises due to the bad sam-
pling of (Uq, V q) which causes permutation incompatibility, i.e., Y q ×

↭ Uq or
W q ×

↭ V q. To bound such bad events, we need to enumerate all the con-
ditions that results to the above inconsistencies. Note that, when the tuple
(Xq, K or Zq) is bad, then the transcript is trivially inconsistent as we sam-
ple (Uq, V q) degenerately. Therefore, for a good tuple (Xq, K or Zq), if Yi = Yj

or Wi = Wj , then we always have Ui = Uj or Vi = Vj respectively and hence
in that case permutation inconsistencies won’t arise. Therefore, we say that a
transcript τ is sampling induced bad transcript if one of the following conditions
hold: for α ∈ [4] and β ∈ [α, 4],

- Ucollαβ : ∃i ∈ Iα, j ∈ Iβ such that Yi ̸= Yj and Ui = Uj ;
- Vcollαβ : ∃i ∈ Iα, j ∈ Iβ such that Wi ̸= Wj and Vi = Vj .

Note that, by varying α and β over all possible choices, we would have ob-
tained 20 conditions, but due to the sampling mechanism of (Uq, V q), some
of them could be immediately thrown out. For example, Ucoll11, Ucoll12,
Ucoll13, Ucoll22, Ucoll23, Ucoll33 does not get satisfied. Similarly, for Vcollαβ ,
where α ∈ [3] and β ∈ [α, 3]. For the sake of completeness, we listed out all the
20 conditions and combine them into a single event as follows:

Bad-samp :=
⋃

α∈[4]
β∈[α,4]

(Ucollα,β ∪ Vcollα,β). (3)

Finally, we consider a transcript τ ∈ Ωbad if τ is either tuple-induced bad or it
is sampling-induced bad. All other transcripts τ ∈ Ωgood := Ω \ Ωbad are good
and it is easy to see that all good transcripts are attainable one.

3.2.1 Bad Transcript Analysis. Now, we analyze the probability of realiz-
ing a bad transcript in the ideal world. Based on the preceding discussion, it is
evident that analyzing the probability of realizing a bad transcript is only possi-
ble if either of the following two conditions, Bad or Bad-samp, occur. Therefore,
we have

ϵbad = Pr[Xid ∈ Ωbad] = Pr[Bad ∨ Bad-samp] ≤ Pr[Bad] + Pr[Bad-samp], (4)

where these two probabilities are calculated using the ideal world distribution of
the random variables. The following two lemmas establish an upper bound on the
probability of the event Bad and Bad-samp under the ideal world distribution.

Lemma 2. Let Xid and the event Bad be defined as above. Then, for any integer
q such that q ≤ 2n−2, one has

Pr[Bad] ≤
{

q2

22n + 5q4/3

2n + 1
2n , for d = 1,

2q2

22n + 6q4/3

2n , for d = 2.
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Lemma 3. Let Xid and the event Bad-samp be defined as above. Then, for any
integer q such that q ≤ 2n−2, one has

Pr[Bad-samp] ≤ 8q4

23n
.

Following Lemma 2, Lemma 3 and Eqn. (4), we obtain the probability of bad
transcripts as

Pr[Xid ∈ Ωbad] ≤
{

q2

22n + 5q4/3

2n + 8q4

23n + 1
2n , for d = 1,

2q2

22n + 6q4/3

2n + 8q4

23n , for d = 2.
(5)

3.2.2 Proof of Lemma 2. Recall that Bad =BadK∪ Bad1 ∪ Bad2 ∪ Bad3 ∪
Bad4 ∪ Bad5 (the condition BadK is only for d = 1). In this section, we bound
the probability of the individual events, and then by virtue of the union bound,
we sum up the individual bounds to obtain the overall bound of the probability
of the event Bad.
2 Bounding BadK . Since K is sampled uniformly at random after the query
response phase is over, the probability that it becomes equal to all zero string is
exactly 2−n. Therefore, we have

Pr[BadK ] = 1
2n

. (6)

2 Bounding Bad1. Here we need to consider only the case when Ti ̸= Tj . Note
that if Ti = Tj then Mi ̸= Mj and Ci ̸= Cj , and hence the probability of
the event is 0. Now, when Ti ̸= Tj , using the randomness of Xi and K(or Zi),
the probability of the above event can be bounded by 1/((2n − m) · 2n) (or
1/(2n −m)(2n − t)). Therefore, by varying over all possible choices of indices,
and by assuming q ≤ 2n−1, we have

Pr[Bad1] ≤
{

q2/22n, for d = 1,

2q2/22n, for d = 2.
(7)

2 Bounding Bad2. We first bound the probability of the event Bad2. For a fixed
choice of indices, we define an indicator random variable Ii,j which takes the value
1 if Yi = Yj , and 0 otherwise. Let I =

∑
i ̸=j

Ii,j . By linearity of expectation,

E[I] =
∑
i ̸=j

E[Ii,j ] =
∑
i ̸=j

Pr[Yi = Yj ] ≤ q2

2n
.

Applying Markov’s inequality, we have

Pr[Bad2] = Pr[|{(i, j) ∈ [q]2 : Yi = Yj}| ≥ q2/3] ≤ q2

2n
× 1

q2/3 = q4/3

2n
. (8)
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2 Bounding Bad3. Using a similar argument as used in bounding Bad2, we have

Pr[Bad3] ≤ q4/3

2n
. (9)

2 Bounding (Bad4 | Bad2). Let us consider the event (Bad4 | Bad2). Due to
Bad2, the number of (i, j), (k, l) pairs such that Yi = Yj and Yk = Yl holds is at
most q4/3. For each such choices of i, j, k, l, the probability of the event Wj = Wk,
i.e., K ⊙ (Tj ⊕ Tk) = Cj ⊕ Ck (for d = 1) or Zj ⊕ Zk = Cj ⊕ Ck (for d = 2)
holds with at most 1/2n (for d = 1) or 1/(2n − t) (for d = 2). This is due to the
randomness of K or Z values. Therefore,

Pr[Bad4 | Bad2] ≤
{

q4/3/2n, for d = 1,

2q4/3/2n, for d = 2.
(10)

2 Bounding (Bad5 | Bad3). Using a similar argument as used above and using
the randomness of X values, we can obtain

Pr[Bad5 | Bad3] ≤ 2q4/3

2n
. (11)

Finally, by combining Eqn. (6), Eqn. (7), Eqn. (8), Eqn. (9), Eqn. (10) and
Eqn. (11), we obtain the result.

3.2.3 Proof of Lemma 3. Recall that from Eqn. (3) we have

Pr[Bad-Samp] ≤ Pr

 ⋃
α∈[4]

β∈[α,4]

(Ucollα,β ∪ Vcollα,β)


≤
∑

α∈[4]

∑
β∈{α,...,4}

Pr[Ucollα,β ∪ Vcollα,β ]. (12)

Now we will bound the probability for different values of (α, β) as follows:
2 Case 1: α ∈ [3], β ∈ [α, 3]: In the ideal world we have done all the sampling of
U and V consistently for all three I1, I2 and I3. Recall that, I = I1 ∪ I2 ∪ I3.
Now for any α ∈ [3], β ∈ [α, 3], we have∑

α∈[3]

∑
β∈[α,3]

Pr[Ucollα,β ∪ Vcollα,β ] = 0. (13)

2 Case 2: α ∈ [3], β = 4: For this case we will analyze the probability for α =
1∧ β = 4 and other five cases will attain the same bound by the same approach
as bounding the probability of Vcollα,β is similar to bounding that of Ucollα,β .
Hence we have to bound only Ucoll1,4. Example 1 in Fig. 4 illustrates the event
Ucoll1,4. Recall that

Ucoll1,4 := ∃i ∈ I1, j ∈ I4, such that Yi ̸= Yj and Ui = Uj .
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Fig. 4: These are two events where Bad-samp occurs. Example 1 indicates the
event Ucoll1,4 i.e. ∃ i ∈ I1, j ∈ I4, such that Yi ̸= Yj and Ui = Uj . Example 2
indicates the event Ucoll4,4 i.e. ∃ o & p ∈ I4, such that Yo ̸= Yp and Uo = Up.

Uj ↭ Yj = Yk YlYi ↭ Ui

Wi Wk = WlWj

=

(a) Example 1.

Ym Yn = Yo ↭ Uo Up ↭ Yp = Yq Ys

WoWm = Wn Wq = WsWp

=

(b) Example 2.

Since j ∈ I4, so Yj −Wj is an edge in some component of I4 say C. This C is a
connected component having a path of length 3. Hence, at least one of these Yj

and Wj have degree ≥ 2. Let us consider following conditions:

(i) deg(Yj) ≥ 2 and deg(Wj) ≥ 2: These two vertices of degree-2 clearly im-
plies that there exist k, l ̸= j such that Wk − (Yk = Yj)− (Wj = Wl)− Yl

forms a path of length 3 in C. To satisfy this case, we need E1 := (Yk =
Yj ∧Wj = Wl).

(ii) deg(Yj) ≥ 2 and deg(Wj) = 1: In this case having a 3-length path implies
that there exists k, l ̸= j such that Yl − (Wl = Wk)− (Yk = Yj)−Wj path
exists in C. Hence, we need E2 := (Yj = Yk ∧Wk = Wl).

(iii) deg(Yj) = 1 and deg(Wj) ≥ 2: In this case having a 3-length path implies
existence of k, l ̸= j such that Wl − (Yl = Yk)− (Wk = Wj)− Yj is path in
C. Hence, we need E3 := (Yl = Yk ∧Wk = Wj).

Clearly from random sampling of X’s and K we have

∀a, b, c ∈ [q], Pr[Ya = Yb ∧Wb = Wc] ≤ 2
22n

.

Now clearly from the definition of Ucoll1,4 we have

Pr[Ucoll1,4] = Pr[∃i ∈ I1,∃j, k, l ∈ I4 : Ui = Uj ∧ (E1 ∨ E2 ∨ E3)]

≤
∑
i∈I1

∑
j ̸=k ̸=l∈I4

Pr[Ui = Uj ]× Pr[E1 ∨ E2 ∨ E3]

≤ q ×
(

q

3

)
× 1

2n
× 6

22n
≤ q4

23n
. (14)

As stated before following a similar approach we can achieve the same bound
for other five cases Ucoll2,4, Ucoll3,4, Vcollα,4, where α ∈ [3]. Hence∑

α∈[3]

∑
β=4

Pr[Ucollα,β ∪ Vcollα,β ] ≤ 6q4

23n
. (15)
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2 Case 3: α = 4, β = 4: For this case we will follow the similar approach as the
previous case. Here we will bound the probability of Ucoll4,4 and other case
will attain the same bound by a similar approach as bounding the probability of
Vcoll4,4 is similar to that of bounding Ucoll4,4. Hence, we have to bound only
Ucoll4,4. Example 2 in Fig. 4 illustrates the event Ucoll4,4. Recall that

Ucoll4,4 := ∃i&j ∈ I4, such that Yi ̸= Yj and Ui = Uj .

Since j ∈ I4, so Yj −Wj is an edge in some component of I4 say C. This C is a
connected component having a path of length three. Hence at least one of these
Yj and Wj have degree ≥ 2. Now, following the same approach as the previous
case, we will have same E1, E2, E3 for some j ̸= k ̸= l ∈ I4. Then we will have
the same final bound

Pr[Ucoll4,4] ≤ q4

23n
.

Moreover, we will have same bound for other case Vcoll4,4. Hence, we have

Pr[Ucoll4,4 ∪ Vcoll4,4] ≤ 2q4

23n
. (16)

The result follows by combining Eqn. (13), Eqn. (15), and Eqn. (16).

3.3 Analysis of Good Transcripts

We fix a good transcript τ = (Mq, T q, Cq, Xq, Y q, Uq, V q, W q, K or Zq) and we
have to lower bound the real interpolation probability and upper bound the ideal
interpolation probability.

Lemma 4. Let Xre (resp. Xid) be the transcript random variable induced by
the interaction of adversary A with the real (resp. ideal) world. For any good
transcript τ and with the notations defined above, we have

Pr[Xre = τ ]
Pr[Xid = τ ] ≥

(
1− 13q4

23n
− 2q2

22n
−

(
ξ2+ξ3∑

i=e1+1
ζ2

i

)
4q2

22n

)
. (17)

Using Eqn. (5), Lemma 4 and the Expectation Method, both theorems follow.
The proof of the above lemma and the subsequent analysis can be found in
Appendix B.

4 Experimental Results

We have implemented CLRW14, b-TNT1, and b-TNT2 using AES-NI instructions
and school book multiplication with instruction PCLMULQDQ. The target pro-
cessor is an Intel Core i9-9960X at 3.10 GHz. The results in cycles per byte
are shown in Table 1. The source code was compiled with GCC 10.2.1 with 03
optimization. In the target processor, one AES round takes four clock cycles as
it has a skylake architecture.
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Table 1: Cycles and cycles per byte for proposed constructions, constructions
labeled with * also include the key schedule cost.

Construction Cycles Cycles per byte
CLRW14 184 11.5
b-TNT1 150 9.37
b-TNT2 164 10.25

CLRW14∗ 1719 107.44
b-TNT1∗ 1240 77.5
b-TNT2∗ 1645 102.81

If the proposed construction would be implemented in hardware, b-TNT1
would be the biggest one because it needs an additional multiplier besides one
AES core. A sequential AES hardware implementation takes eleven clock cy-
cles, while a multiplication can take two or four clock cycles, depending on the
desirable speed. The best option for hardware implementation is to compute
the round keys on the fly; this saves registers. So, for hardware implementation,
b-TNT1 is not the best option as the throughput per area is less than for the
other constructions based only on a block cipher.

Table 1 shows that reducing one permutation key has a notable impact as
the key schedule is very costly; this is achieved for b-TNT1 construction. Both
proposed constructions improve CLRW14 as they need fewer clock cycles. It is
important to note that all the AES calls are executed sequentially in all con-
structions. CLRW14∗ and b-TNT2∗ use four key schedules, but b-TNT2∗ has two
AES calls that can be performed in parallel or pipelined. It requires fewer clock
cycles than CLRW14∗. The best performance is for b-TNT1, as it changes one
block cipher call for one multiplication.

5 Conclusion

In this paper, we have proposed b-TNT1 and b-TNT2 and have shown that
both of them provably achieve 3n/4-bit strong tweakable permutation security.
We have experimentally verified that the throughput of b-TNT1 is better than
CLRW14 in tens order of magnitude. We have also experimentally validated the
fact that the evaluation of the last block cipher call for b-TNT2 can be made
parallel to the execution of the TNT evaluation, whereas CLRW14 enforces the
evaluation of the last block cipher until the output of the TNT is available. This
phenomenon allows b-TNT2 to achieve a better throughput than CLRW14.
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16. Vincent Grosso, Gaëtan Leurent, François-Xavier Standaert, Kerem Varici,
Anthony Journault, François Durvaux, Lubos Gaspar, and Stéphanie Kerck-
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27. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. J. Cryptol., 34(3):31, 2021. (Cited on p. 2.)

28. Ashwin Jha, Mustafa Khairallah, Mridul Nandi, and Abishanka Saha. Tight secu-
rity of TNT and beyond - attacks, proofs and possibilities for the cascaded LRW
paradigm. In Marc Joye and Gregor Leander, editors, Advances in Cryptology -
EUROCRYPT 2024 - 43rd Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Zurich, Switzerland, May 26-30, 2024,
Proceedings, Part I, volume 14651 of Lecture Notes in Computer Science, pages
249–279. Springer, 2024. (Cited on p. 2.)

29. Ashwin Jha and Mridul Nandi. Tight security of cascaded LRW2. J. Cryptol.,
33(3):1272–1317, 2020. (Cited on pp. 2, 6, 18, 19, 28, 29, and 30.)

30. Rodolphe Lampe and Yannick Seurin. Tweakable blockciphers with asymptoti-
cally optimal security. In Shiho Moriai, editor, Fast Software Encryption - 20th
International Workshop, FSE 2013, Singapore, March 11-13, 2013. Revised Se-
lected Papers, volume 8424 of Lecture Notes in Computer Science, pages 133–151.
Springer, 2013. (Cited on p. 2.)

31. Will Landecker, Thomas Shrimpton, and R. Seth Terashima. Tweakable block-
ciphers with beyond birthday-bound security. In Reihaneh Safavi-Naini and Ran
Canetti, editors, Advances in Cryptology - CRYPTO 2012 - 32nd Annual Cryp-
tology Conference, Santa Barbara, CA, USA, August 19-23, 2012. Proceedings,
volume 7417 of Lecture Notes in Computer Science, pages 14–30. Springer, 2012.
(Cited on p. 2.)

32. Moses D. Liskov, Ronald L. Rivest, and David A. Wagner. Tweakable block ci-
phers. In Moti Yung, editor, Advances in Cryptology - CRYPTO 2002, 22nd Annual
International Cryptology Conference, Santa Barbara, California, USA, August 18-

https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round2/joltikv13.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf
https://competitions.cr.yp.to/round1/kiasuv1.pdf


20 R. Bhaumik, W. Choi, A. Dutta, C. M. López, H. Nandi, Y. Shen
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Supplementary Material

A Proof of Lemma 1

It is easy to see that the random transcript graph G(Y q, W q) is constructed in
such a way that it contains no isolated vertices. Here we briefly justify the other
properties of G as follows:

• By virtue of Bad4 ∧ Bad5, the maximum possible length of any path of G is
three.

• Due to Bad1, G contains no multiple edges or a cycle of length two. So, G
being a bipartite graph, the above conditions imply G is simple and acyclic.

• The construction of the transcript graph G implies it has no adjacent edges
with equal labels.

• Owing to Bad2 ∧ Bad3, the maximum component size of G is 2q2/3. The
maximum occurs when any component has a Y vertex and a W vertex linked
by an edge and both of them have the maximum possible degree q2/3. ⊓⊔

B Proof of Lemma 4 and Subsequent Analysis

We fix a good transcript τ = (Mq, T q, Cq, Xq, Y q, Uq, V q, W q, K or Zq) and
we have to lower bound the real interpolation probability and upper bound
the ideal interpolation probability. Since the transcript is good, we know that
the corresponding transcript graph G is a nice graph and it is composed of the
collection of components depicted in Fig. 3. From the definition of bad transcript
in Sect. 3.2, we know that for a good transcript τ , one must have

(Mq, T q) ↭ (Cq, T q), Y q ↭ Uq, W q ↭ V q, Uq ⊕ V q = T q.

For i ∈ [4], ξi(τ) and ei(τ) denotes the number of components and number of
indices (corresponding to the edges), respectively, of Type-i graphs in τ . There-
fore, we have e1(τ) = ξ1(τ) and ei(τ) ≥ 2ξi(τ) for i ∈ {2, 3} and e4(τ) ≥ 3ξ4(τ).
However, we have q = e1(τ) + e2(τ) + e3(τ) + e4(τ). Let ζi denote the number
of edges in the i-th component. In our subsequent discussions, we will omit the
parameter τ whenever it is understood from the context. Recall that m, t denote
the distinct number of plaintexts and tweaks respectively.

B.1 Real Interpolation Probability

In the real world, P1 is called exactly m times. Now, since the Type-1 graph is
only isolated edges, so for each one of the isolated edges, P2, P3 is invoked once.
The type-2 graph is a Y ∗-star graph, which means that P2 is invoked once for
every Type-2 component. However, P3 is invoked for each edge present in each of
the Type-2 components. Similarly, for Type-3 graphs, which are W ∗-star graph,
P3 is invoked once for every Type-3 component. However, P2 is invoked for each
edges present in each of the Type-3 components.
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Suppose, for Type-4 graph P2 is invoked t1 times. Since e4 is the number of
indices (corresponding to the edges) of the Type-4 graph, therefore, P3 is invoked
(e4− t1 +ξ4) times for the Type-4 graph. So, P2 is called exactly e1 +ξ2 +e3 + t1
times and P3 is called exactly e1 +ξ3 +e2 +e4− t1 +ξ4 times. P4 is called exactly
t times (for d = 2 only).
Therefore, the real interpolation probability is

Pr[Xre = τ ] =
{ 1

(2n)m
· 1

(2n)e1+ξ2+e3+t1
· 1

(2n)e1+ξ3+e2+e4−t1+ξ4
, for d = 1

1
(2n)m

· 1
(2n)e1+ξ2+e3+t1

· 1
(2n)e1+ξ3+e2+e4−t1+ξ4

· 1
(2n)t

, for d = 2
(18)

B.2 Ideal Interpolation Probability

In the ideal world, the sampling of the random variables is done in three parts:
in the first part, i.e., in the online stage of the sampling algorithm, it simulates a
tweakable random permutation. Let (T1, T2, . . . , Tt) denotes the tuple of distinct
tweaks in T q and for all i ∈ [t], we have di = µ(T q, Ti), i.e., t ≤ q and we have∑t

i=1 di = q. Then, we have

Pr[P̃(T q, Mq) = Cq] =
t∏

i=1

1
(2n)di

(19)

In the next stage of the sampling process, it samples the intermediate random
variables. First, it samples the value Xq in without replacement manner, i.e.,
Xi = Xj if and only if Mi = Mj . Then it samples K (for d = 1) or Zq (for
d = 2) independently. Since there are m distinct plaintexts and t distinct tweaks.
Therefore, for any pair of q-tuples (xq, k) or (xq, zq), we have

Pr[(Xq, K) = (xq, k)] = 1
(2n)m

· 1
(2n) , (for d = 1)

or
Pr[(Xq, Zq) = (xq, zq)] = 1

(2n)m
· 1

(2n)t
, (for d = 2) (20)

Now, we sample the intermediate random variables (Uq, V q) in the following two
stages:

- Type-1, Type-2, Type-3 Sampling: Recall that, we have defined three
sets I1, I2, and I3 such that i ∈ Ib implies the edge (Yi, Wi) belongs to Type-
b graph, for b ∈ {1, 2, 3}. Recall that, we have defined the set I = I1⊔I2⊔I3
and the following system of equations

E = {Ui ⊕ Vi = λi : i ∈ I}.

Let (λ1, λ2, . . . , λs) denotes the tuple of distinct elements in λI , and for all
i ∈ [s], we denote gi = µ(λI , λi). Note that, as the transcript is good, the
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system of equations E does not contain any cycle and is non-degenerate.
Moreover, the maximum component size ξmax(E) is at most q2/3 due to Bad2
and Bad3. Therefore, we apply Theorem 3 to lower bound on the number of
valid solutions, |S| for E . Since, we sample (UI , V I) ←$ S and by virtue of
Theorem 3, we have

Pr[(UI , V I) = (uI , vI)] ≤

s∏
i=1

(2n)gi

∆ · (2n)e1+ξ2+e3(2n)e1+e2+ξ3

, (21)

where

∆
∆=
(

1− 13q4

23n
− 2q2

22n
−

(
ξ2+ξ3∑

i=e1+1
ζ2

i

)
4q2

22n

)
. (22)

- Type-4 Sampling: For the indices belongs to I4, a single value is sampled
uniformly for each of the components, i.e., we have

Pr[(U [q]\I , V [q]\I) = (u[q]\I , v[q]\I)] = 1
(2n)ξ4

, (23)

By combining Eqn. (27), Eqn. (28), Eqn. (29), and Eqn. (31), we have

Pr[Xid = τ ] ≤


t∏

i=1

1
(2n)di

· 1
(2n)m

· 1
(2n) ·

s∏
i=1

(2n)gi

∆·(2n)e1+ξ2+e3 (2n)e1+e2+ξ3 (2n)ξ4 , for d = 1

t∏
i=1

1
(2n)di

· 1
(2n)m

· 1
(2n)t

·

s∏
i=1

(2n)gi

∆·(2n)e1+ξ2+e3 (2n)e1+e2+ξ3 (2n)ξ4 , for d = 2

(24)
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B.3 Ratio of Real to Ideal Interpolation Probability

By taking the ratio of Eqn. (26) to Eqn. (32), we have the following:

Pr[Xre = τ ]
Pr[Xid = τ ] ≥



t∏
i=1

(2n)di
·∆·(2n)e1+ξ2+e3 ·(2n)e1+e2+ξ3 ·(2n)ξ4+1

s∏
i=1

(2n)gi
·(2n)e1+ξ2+e3+t1 ·(2n)e1+e2+ξ3+e4−t1+ξ4

, for d = 1

t∏
i=1

(2n)di
·∆·(2n)e1+ξ2+e3 ·(2n)e1+e2+ξ3 ·(2n)ξ4

s∏
i=1

(2n)gi
·(2n)e1+ξ2+e3+t1 ·(2n)e1+e2+ξ3+e4−t1+ξ4

, for d = 2

≥

t∏
i=1

(2n)fi
·

t∏
i=1

(2n − fi)di−fi
·∆ · (2n)e1+ξ2+e3(2n)e1+e2+ξ3 · (2n)ξ4

s∏
i=1

(2n)gi
· (2n)e1+ξ2+e3+t1 · (2n)e1+e2+ξ3+e4−t1+ξ4

(1)
≥ ∆ ·

t∏
i=1

(2n − fi)di−fi

(2n − e1 − ξ2 − e3)t1(2n − e1 − e2 − ξ3 − ξ4)e4−t1︸ ︷︷ ︸
ρ

,

where fi = µ(T I , T i), i ∈ [t]. As the number of distinct internal masking values
λi is at most the number of distinct tweaks Ti which implies that t ≥ s and by
the virtue of the Definition 2.1 of [29], T̂ I compresses 9 to λ̂I . Hence, following
Proposition 1 of [29], inequality (1) holds.

Proposition 1 ( [29]). For r ≥ s, let a = (ai)i∈[r] and b = (bi)i∈[s] be two
sequences over N such that a compresses to b. Then, for any n, such that, 2n ≥∑r

i=1 ai holds, we have
r∏

i=1
(2n)ai ≥

s∏
j=1

(2n)bj .

Moreover, from the following claim, we have ρ ≥ 1. Finally, by plugging-in the
value of ∆ from Eqn. (30), we have

Pr[Xre = τ ]
Pr[Xid = τ ] ≥

(
1− 13q4

23n
− 2q2

22n
−

(
ξ2+ξ3∑

i=e1+1
ζ2

i

)
4q2

22n

)
. (25)

Claim 1. With the notations defined above, ρ ≥ 1.
Proof. Note that, fi denotes the multiplicity of the i-th tweak in the tuple
T I . Hence, by definition, the multiplicity cannot be more than the number of
components of the Type-1, Type-2, and Type-3 graphs as each of the components
9 Definition 2.1 of [29] says that a sequence (ai)i∈[r] compresses to an another sequence

(bi)i∈[s], where both the sequences are defined over N if there exists a partition P
of [r] such that it contains exactly s classes P1, . . . , Ps and for all i ∈ [s], we have
bi =

∑
j∈Pi

aj
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of Type-2 and Type-3 graphs have distinct tweak values. Therefore, fi ≤ e1 +
ξ2 + ξ3 ≤ e1 + ξ2 + e3. Similarly, fi ≤ e1 + ξ2 + ξ3 ≤ e1 + e2 + ξ3 + ξ4. Note
that, di denotes the multiplicity of the i-th tweak in the tuple T q. Therefore, di

cannot be more than the number of components of Type-1, Type-2, and Type-3
graph and twice that of the number of components of Type-4 graph. Therefore,

di ≤ ξ1 + ξ2 + ξ3 + 2ξ4 ≤ e1 + ξ2 + e3 + t1,

di ≤ e1 + e2 + ξ3 + e4 − t1 + ξ4.

Moreover, it is easy to verify that
t∑

i=1
(di − fi) = e4 as the total multiplicity

of tweaks T ∈ T [q]\I is exactly the number of edges in components of Type-4
graph. Therefore, we have the condition that

fi ≤ e1 + ξ2 + e3

fi ≤ e1 + e2 + ξ3 + ξ4

di ≤ e1 + ξ2 + e3 + t1

di ≤ e1 + e2 + ξ3 + e4 − t1 + ξ4
t∑

i=1
(di − fi) = t1 + (e4 − t1) = e4.

The above conditions satisfy the conditions given in Proposition 2 of [29] and
hence by virtue of Proposition 2 of [29], the result follows. ⊓⊔

Proposition 2 ( [29]). For r ≥ 2, let c = (ci)i∈[r] and d = (di)i∈[r] be two
sequences over N. Let a1, a2, b1, b2 ∈ N such that ci ≤ aj , ci + di ≤ aj + bj for
all i ∈ [r], j ∈ [2], and

∑r
i=1 di = b1 + b2. Then, for any n ∈ N, such that

aj + bj ≤ 2n for j ∈ [2], we have

r∏
i=1

(2n − ci)di
≥ (2n − a1)b1(2n − a2)b2 .

Let ∼Y be the equivalence relation over [q] defined as i ∼Y j if and only if
Yi = Yj . Similarly, ∼W be the equivalence relation over [q] defined as i ∼W j if
and only if Wi = Wj . Note that, each ζi is the random variable that corresponds
to the cardinality of some non-singleton equivalence classes corresponding to the
equivalence relation ∼Y or ∼W . Let E1, E2, . . . , Ey be the equivalence classes
corresponding to the equivalence relation ∼Y . Similarly, F1, F2, . . . , Fw be the
equivalence classes corresponding to the equivalence relation ∼W . For every i ∈
[y], let νi = |Ei| and for every i ∈ [w], let ν′

i = |Fi|. In other words, νi denotes
the number of occurrences of Yi and ν′

i denotes the number of occurrences of
Wi. We define collY to denote the number of colliding pairs in Y q. Similarly, we
define collW to denote the number of colliding pairs in W q. Then, we have the
following lemma:
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Lemma 5 ( [29]). Since E[collY ] ≤ q2

2n , E[collW ] ≤
(

q
2
)
/2n (for d = 1) or

E[collW ] ≤ q2

2n (for d = 2), it holds

E
[

y∑
i=1

ν2
i

]
= 2.E[collY ] +

y∑
i=1

νi ≤ 4E[collY ] ≤ 4q2/2n

E
[

w∑
i=1

ν′2
i

]
= 2.E[collW ] +

w∑
i=1

ν′
i ≤ 4E[collW ] ≤

{
2q2/2n, for d = 1
4q2/2n, for d = 2

It is easy to see that the expected number of colliding pairs in Y q is 2 ·
(

q
2
)
/2n,

as for a fixed choice of pairs (i, j), the probability that Yi = Yj holds with
probability at most 2/2n due to the randomness of P1. Similarly, the expected
number of colliding pairs in W q is

(
q
2
)
/2n, as for a fixed choice of pairs (i, j), the

probability that Wi = Wj holds with probability at most 2−n (for d = 1) or 2/2n

(for d = 2) due to the randomness of K (for d = 1) or P4 (for d = 2). Therefore,
due to the fact that Xq and K (or Zq) are independently sampled (justifies
inequality (2)) and from Lemma 5 (justifies inequality (3)), the following holds.

E
[

ξ2+ξ3∑
i=e1+1

ζ2
i

]
(2)
≤ E

[
y∑

i=1
ν2

i

]
+ E

[
w∑

i=1
ν′2

i

]
(3)
≤

{
6q2

2n , for d = 1
8q2

2n , for d = 2
(26)

Finally, by combining Eqn. (5), Eqn. (17), Eqn. (34), and by following the Ex-
pectation Method, we have

δ∗ ≤
(

q2

22n
+ 5q4/3

2n
+ 8q4

23n
+ 1

2n

)
+
(

13q4

23n
+ 2q2

22n
+ E

[(
ξ2+ξ3∑

i=e1+1
ζ2

i

)]
4q2

22n

)

≤ 3q2

22n
+ 5q4/3

2n
+ 45q4

23n
+ 1

2n
. (for d = 1, i.e. for b-TNT1) (27)

or

δ∗ ≤
(

2q2

22n
+ 6q4/3

2n
+ 8q4

23n

)
+
(

13q4

23n
+ 2q2

22n
+ E

[(
ξ2+ξ3∑

i=e1+1
ζ2

i

)]
4q2

22n

)

≤ 4q2

22n
+ 6q4/3

2n
+ 53q4

23n
. (for d = 2, i.e. for b-TNT2) (28)
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