
Optimizing Big Integer Multiplication on Bitcoin:
Introducing w-windowed Approach

Dmytro Zakharov1, Oleksandr Kurbatov1, Manish Bista2 and Belove Bist2

1 Distributed Lab dmytro.zakharov@distributedlab.com, ok@distributedlab.com
2 Alpen Labs manish@alpenlabs.io, belove@alpenlabs.io

Abstract. A crucial component of any zero-knowledge system is operations with
finite fields. This, in turn, leads to the implementation of the fundamental operation:
multiplying two big integers. In the realm of Bitcoin, this problem gets revisited,
as Bitcoin utilizes its own stack-based and not Turing-complete scripting system
called Bitcoin Script. Inspired by Elliptic Curve scalar multiplication, this paper
introduces the w-windowed method for multiplying two numbers. We outperform
state-of-the-art approaches, including BitVM’s implementation. Finally, we also show
how the windowed method can lead to optimizations not only in big integer arithmetic
solely but in more general arithmetic problems.
Keywords: Bitcoin, Bitcoin Script, Fast Multiplication, Elliptic Curve Scalar Multi-
plication, BitVM

Contents
1 Introduction 1

1.1 Our Contribution . 2

2 Preliminaries 3
2.1 Bitcoin Script . 3
2.2 Multiplication Methods . 4

3 Implementation 7
3.1 Binary and Window Decomposition . 7
3.2 Addition and Doubling . 7
3.3 Binary Multiplication . 11
3.4 Windowed Multiplication . 11
3.5 Gradual Bitsize Increase . 13

4 Discussion 14
4.1 Window Width Choice . 14
4.2 Performance Comparison . 16
4.3 Future Directions . 18

5 Conclusion 19

1 Introduction
Introduced in 2009, Bitcoin has drastically changed the world of digital finance and led
to the broad adoption of blockchain technology [Nak09]. Being the first cryptocurrency,

mailto:dmytro.zakharov@distributedlab.com
mailto:ok@distributedlab.com
mailto:manish@alpenlabs.io
mailto:belove@alpenlabs.io

2 Optimizing Big Integer Multiplication on Bitcoin

it put into action numerous novel concepts such as decentralization, digital security, and
programmable conditions for operating with digital currency [Mun23, BCEM15]. However,
by design, Bitcoin Smart Contract functionality is very limited. Essentially, one can only
perform verifications on basic primitives such as ECDSA/Schnorr signatures, hashlocks, or
timelocks. Despite such a limited set of tools, the Bitcoin community managed to come up
with a multitude of exciting and complex protocols such as Atomic Swaps [TMMS21, Her18],
Anonymized Taprootized Swaps [KZL+24], Lightning Network [PD16, SGNB20], RGB
protocol [OTZ+23], LRC-20 [Mia24] etc.

Despite all the community’s efforts, one of the most anticipated technologies yet to
be fully developed is the L2 zero-knowledge (zk) rollup on top of Bitcoin. Currently, the
adoption of L2 zk-rollups allows achieving much better scalability on Ethereum [W+14],
resulting in lower fees and a higher number of transactions per second while maintaining
the same security as in the L1 layer (that is, Ethereum blockchain itself). This is achieved
through zero-knowledge technology, which allows for the formation of succinct validity
proof for verification. One of the most widely used L2 zk-rollups are Aztec, Scroll, Polygon
zkEVM, zkSync, Starknet, etc [CRTA+24]. The majority of them (besides Starknet), one
way or another, rely on the Succinct Non-Interactive Argument of Knowledge (SNARK),
allowing building proofs of certain statements with the size logarithmic in respect to the
statement size1 [CLKL23].

While there are many endeavors to achieve a similar SNARK-based zk-rollup on Bitcoin,
currently, to the best of our knowledge, there is yet to be a production-ready system on
top of Bitcoin Mainnet. For the most part, as we mentioned, the primary reason is the
limitation of Bitcoin Script. In spite of all the limitations, there is significant progress
in writing the full zero-knowledge SNARK verifier in Bitcoin Script. One of notable
examples include BitVM [Lin23] and Alpen Labs with SNARKnado [GKSC23], but current
implementations still require more optimizations of the underlying primitives.

1.1 Our Contribution
A crucial component of any SNARK system is performing finite field arithmetic, which
inherently involves the fundamental task of multiplying two large integers. Performing
such arithmetic on Bitcoin is particularly challenging. Bitcoin Script is intentionally non-
Turing complete and stack-based, designed with simplicity and security in mind. Hence, it
lacks built-in support for complex arithmetic operations and has constraints on the size
and number of stack elements. Implementing efficient big integer multiplication requires
innovative techniques to work within these constraints.

Inspired by Elliptic Curve optimization tricks, this paper introduces the w-windowed
method for multiplying two 254-bit prime (BN254 curve [DSD07]) integers, along with
additional optimization techniques. Our approach improves upon the work done by the
BitVM team, reducing script size for multiplication by roughly 3.2k opcodes. More notably,
our approach can lead to even more optimizations for more general tasks such as multiple
integer multiplication or fixed integer multiplication, so we expect that the methods
considered are not limited to the multiplication of two integers solely.

All the code with implementation is available through the following link:

https://github.com/distributed-lab/bitcoin-window-mul

The paper is structured as follows: in Section 2 we will give a basic overview of Bitcoin
Script and fast multiplication methods. In Section 3 we will list scripts to conduct
the windowed multiplication (our primary proposed method). Finally, in Section 4 and
Section 5, we will compare our performance with state-of-the-art and draw a conclusion.

1More specifically, the proof’s size is O(log |C|) where |C| is the number of gates in the arithmetic
circuit C, describing arbitrary logic that we want to prove and verify.

https://github.com/distributed-lab/bitcoin-window-mul

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 3

2 Preliminaries
2.1 Bitcoin Script
2.1.1 Basic Structure

Bitcoin Script is a stack-based, not Turing-complete language used for specifying condi-
tions on how UTXO can be spent [Ant14]. Informally, this condition is called scriptPubKey,
while the data that must be provided to meet this condition is called scriptSig2. To
verify that the condition is met based on scriptSig provided, one should first concatenate
scriptSig ∥ scriptPubKey, execute the script and verify that the resultant stack contains
a non-false value (meaning, anything except for 0).

The stack consists of the values placed in the script and the so-called opcodes —
keywords that operate with the elements in the stack. Let us consider some examples to
introduce notation and describe how the script gets executed.

Example 1. The script
{
⟨a⟩ ⟨b⟩ OP_ADD ⟨c⟩ OP_EQUAL

}
verifies whether given a, b, c

satisfy a + b = c. We first push two integers a and b to the stack, then OP_ADD will
consume a and b (meaning, they get removed) and output s← a + b, so the stack becomes{
⟨s⟩ ⟨c⟩ OP_EQUAL

}
. Finally, OP_EQUAL takes s and c and outputs OP_TRUE if a + b = c,

and OP_FALSE, otherwise. Note that such notation is commonly called the Reverse Polish
Notation in the literature [KS04].

Example 2. Suppose our condition on spending the coins is providing the pre-image
of the given hash value h (that is, providing a message m such that h = H(m)), which is
called the Hashlock Script. In this case, our scriptPubKey looks as follows3:

Stack: OP_HASH160 ⟨h⟩ OP_EQUAL

Suppose we brought a message m, our scriptSig. Concatenating scriptSig and
scriptPubKey would result in the following script:

Stack: ⟨m⟩ OP_HASH160 ⟨h⟩ OP_EQUAL

Execution in this case would proceed as follows:

1. First, m is added to the stack.

2. Next, OP_HASH160 will hash the provided value h′ ← H(m), so the stack would
become

{
⟨h′⟩ ⟨h⟩ OP_EQUAL

}
.

3. Finally, after executing OP_EQUAL, we will either get OP_TRUE on the top of the stack
if h = h′, or OP_FALSE otherwise.

Note that we get OP_TRUE (meaning, we can spend the coins) only if h′ = h or,
equivalently, H(m) = h, what was needed from the start.

2.1.2 Arithmetic in Bitcoin

To implement the SNARK verifier on Bitcoin, one must implement the finite field arithmetic
over the elliptic curve scalar field Fq. The bitsize of such scalar field is typically from 254
bits (as for BN254 [DSD07]) to 381 bits and more (as for BLS12-381 [KC22]). Currently,
the common choice is the BN254 based on 254-bit prime order q, which, for example,
is currently used for elliptic curve precompiles in Ethereum [W+14]. Although further
discussion is valid for any fairly large q, our implementation was focused on 254-bit q.

2Formally, scriptSig might contain the logic as well, but we intentionally omit the details here.
3It should be noted, though, that in the placeholder ⟨h⟩ we should push 0x20 followed by 20 bytes of h.

4 Optimizing Big Integer Multiplication on Bitcoin

Finite field arithmetic over N -bit q (where N = 254 for BN254, for example) includes
implementing the widening multiplication of two N -bit numbers, resulting in a 2N -bit
integer. Why is this a problem in Bitcoin at all? The main issue is that Bitcoin does not
have a multiplication opcode4. To make matters worse, integers on the stack are 32-bit,
meaning that representing large integers requires some additional workload. Therefore, we
will use the base β representation of an integer.

Definition 1. Given positive integer x ∈ Z≥0, base β representation is an expression

x =
ℓ−1∑
k=0

xk × βk, (1)

where each limb xk is between 0 and β − 1, and ℓ is the length of such representation. We
further denote such representation by (x0, x1, . . . , xℓ−1)β .

Empirically, it seems that using larger bases results in smaller scripts. The main reason
is that larger bases result in the shorter representation of integers. However, this does not
mean better methods with shorter integers will not produce shorter scripts in the future.
Therefore, we pick β = 230: it is the power of two, which would come in handy later, and
we will not run out of 32 bits when performing arithmetic (doublings, additions, etc.).
Also, assume the limb size in bits is n = 30.

Moreover, Bitcoin does not have loops (recall that Bitcoin Script is not Turing com-
plete!), meaning that the length of our representation must be fixed. It means that
ℓ = ⌈N/n⌉, or, ℓ = 9 in our particular case.

All things combined, Algorithm 1 shows how to preprocess the given integer x and
push the representation to the stack.

Algorithm 1: Pushing given integer to the stack
Input : Integer x of bit size up to N
Output : Representation (X0, X1, . . . , Xℓ−1)β for β = 2n which can be inserted to

the stack (meaning n ≤ 32).
1 Decompose x to the binary form: (x0, x1, . . . , xN−1)2
2 Split the form into chunks of size n (the last chunk would be of size N mod n)
3 For kth chunk with bits (c0, . . . , cm−1) (where m is either n or N mod n) set

Xk ←
∑m−1

j=0 cj2j

Return : (X0, X1, . . . , Xℓ−1)

2.2 Multiplication Methods
2.2.1 Karatsuba Algorithm

The Karatsuba Algorithm is a fast multiplication algorithm to multiply two integers
using divide and conquer approach [WP06]. In contrast to naive O(N2) complexity, the
Karatsuba method allows to reduce the asymptotic complexity to O(N log2 3).

Assume that we have integers x and y, represented in base β with ℓ limbs. We divide
each number into two halves: high bits xH , yH and low bits xL, yL as follows:

x = xHβ⌈ℓ/2⌉ + yL, y = yHβ⌈ℓ/2⌉ + yL (2)

Then, a simple multiplication formula gives us:

xy = xHyHβℓ + (xHyL + xLyH)β⌈ℓ/2⌉ + xLyL (3)
4At some point, Bitcoin did have OP_MUL, but it was later disabled.

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 5

Which requires multiplying four times: xHyH , xHyL, xLyH , xLyL. Now, the Karatsuba
algorithm consists in calculating these four expressions using only three multiplications.
Indeed, calculate: c0 = xHyH , c1 = xLyL, then c2 = (xH + xL)(yH + yL)− c1 − c0, and
then

xy = c0βℓ + c2β⌈ℓ/2⌉ + c1 (4)

The Karatsuba Algorithm is used in the current BitVM approach, where to represent
the 254-bit number, one uses 29× 9 representation (that is, n = 29, ℓ = 9), resulting in
roughly 74.9k opcodes [Lin23].

2.2.2 Elliptic Curve Scalar Multiplication

Ideas from methods used for Elliptic curve scalar multiplication will be helpful in further
optimizations. Subsequent methods will be primarily based on explanations from [HMV10].

Assume that (E(Fq),⊕) is the group of points on an elliptic curve under operation ⊕
over some prime field Fq of a prime order r. Suppose P ∈ E(Fq) and k ∈ Zr and denote
by [k]P adding P to itself k times (for k = 0 assume [0]P = O where O is the point at
infinity). Also, assume that k is, again, N -bit sized for notation simplicity.

The basic classical approach of multiplying point P by k is specified in Algorithm 2.

Algorithm 2: Double-and-add method for scalar multiplication
Input : P ∈ E(Fq) and k ∈ Zr

Output : Result of scalar multiplication [k]P ∈ E(Fq)
1 Decompose k to the binary form: (k0, k1, . . . , kN−1)
2 R← O
3 T ← P
4 for i ∈ {0, . . . , N − 1} do
5 if ki = 1 then
6 R← R⊕ T
7 end
8 T ← [2]T
9 end

Return : Point R

As can be seen, the complexity of such an approach is O(log2 k). Specifically, suppose
A is the cost of addition while D is the cost of doubling5. In this case, the maximal total
cost is roughly NA + ND. However, we can do better by using the w-width approach. The
main idea is to decompose the scalar k into the w-width format.

Definition 2. The w-width form of a scalar k ∈ Z≥0 is a base 2w representation, that is

k =
L−1∑
i=0

ki × 2wi, 0 ≤ ki < 2w (5)

Let the length of such decomposition be L := ⌈N/w⌉. We denote such decomposition
by (k0, k1, . . . , kL−1)w.

Now, what does this form give us? Let us consider Algorithm 3. At first glance, the
overall complexity is still O(log2 k), but a closer inspection reveals that the number of
additions is significantly lower for a suitable choice of w. Indeed, the number of doublings
is still roughly N , but the number of additions is now approximately N/w. Of course, this
comes at a cost of initializing the lookup table: to initialize 2w values we need roughly

5Of course, D is slightly easier to perform than A since doubling is a special case of addition.

6 Optimizing Big Integer Multiplication on Bitcoin

2w−1 additions and 2w−1 doublings (to calculate [2m]P we can always double [m]P , while
for calculating [2m + 1]P , add P to already precomputed [2m]P). So the overall cost is:

[
2w−1A + 2w−1D

]
+

[
N

w
A + ND

]
(6)

Note that the cost of initializing the lookup table grows exponentially with respect to
w, so typically, the best choice is w = 4. This way, instead of having roughly 254 additions
maximum, we get 64 instead.

Algorithm 3: w-width windowed method for scalar multiplication
Input : P ∈ E(Fq) and k ∈ Zr

Output : Result of scalar multiplication [k]P ∈ E(Fq)
1 Decompose k to the w-width form: (k0, k1, . . . , kL−1)w

2 Precompute values {[0]P, [1]P, [2]P, . . . , [2w − 1]P} (in other words, implement the
lookup table). Denote by T [j] = [j]P – referencing the lookup table at index j.

3 Q← O
4 for i ∈ {L− 1, . . . , 0} do
5 for _ ∈ {1, . . . , w} do
6 Q← [2]Q
7 end
8 Q← Q⊕ T [ki]
9 end

Return : Q

Yet another effective approach is w-width non-adjacent form (NAF). Let us introduce
it first.

Definition 3. Again, assume w ≥ 2. A width-w NAF of k ∈ Z≥0 is an expression
k =

∑L−1
i=0 ki2i where each non-zero coefficient ki is odd, |ki| < 2w−1, and at most one of

any w consecutive digits is non-zero.

The main properties of width-w NAF are listed in the next theorem.

Theorem 1. Let k ∈ Z≥0. Then,

1. k has a unique width-w NAF, denoted by (k0, . . . , kL−1)w,NAF.

2. The length of width-w NAF is at most one more than the binary representation of k.

3. The average density of non-zero digits in width-w NAF is approximately 1/(w + 1).

Among the three listed properties, probably the most important is the third one.
Indeed, if we take a random L-sized width-w NAF of some integer, most likely it would
have only L/(w +1) non-zero digits, so the average number of additions would be L/(w +1)
– this is slightly lower than L/w which we had before. The resultant algorithm is identical
to Algorithm 3 except for the fact that it suffices to precompute only odd products
{[1]P, [3]P, . . . , [2w−1− 1]P} and their negatives (where negative is easily computed in case
of E(Fq) using relation ⊖P = ⊖(xP , yP) = (xP ,−yP)).

However, this method has not provided us with fewer opcodes for the reasons provided
in subsequent sections.

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 7

3 Implementation

3.1 Binary and Window Decomposition
First things first, we need to decompose our integer to the binary form using Bitcoin Script.
Since we have chosen our base to be the power of two, it suffices to decompose the limbs
to the binary form and then concatenate the result (this is the primary reason for using
β = 2n and not any other limb base). The implementation is specified in Algorithm 4.

Algorithm 4: Decomposing a limb to the binary form
Input : A single n-bit integer x (n ≤ 32)
Output : Bits (x0, x1, . . . , xn−1) in altstack

1
{

OP_TOALTSTACK
}

; /* Moving limb to altstack */
2 for i ∈ {0, . . . , n− 1} do
3

{
⟨2≪ i⟩

}
; /* Pushing powers of two */

4 end
5

{
OP_FROMALTSTACK

}
; /* Getting element back */

6 for _ ∈ {0, . . . , n− 1} do
7

{
OP_2DUP OP_LESSTHANOREQUAL

}
8

{
OP_IF

}
9

{
OP_SWAP OP_SUB ⟨1⟩

}
10

{
OP_ELSE

}
11

{
OP_NIP ⟨0⟩

}
12

{
OP_ENDIF

}
13

{
OP_TOALTSTACK

}
14 end

The idea here is quite straightforward: we first make the stack in a form

Stack: ⟨21⟩ ⟨22⟩ ⟨23⟩ . . . ⟨2n⟩ ⟨x⟩

Then, we duplicate top-stack elements to get
{

. . . ⟨2n⟩ ⟨x⟩ ⟨2n⟩ ⟨x⟩
}

, then checking
whether 2n ≤ x. If not, we remove 2n and push ⟨0⟩ to the altstack, otherwise we modify
x to be x− 2n, push ⟨1⟩ to the altstack and proceed.

We then repeat this process for each limb (x0, x1, . . . , xℓ−1)β . This way, we have a
script OP_TOBEBITS_TOALTSTACK which takes an N -bit integer in the main stack and
pushes all bits to the altstack in the big-endian format.

Having this expansion, we can easily convert it to the w-width form using Algorithm 5.
The idea is similar to one used in Algorithm 1 from Section 2.1.2: we split the binary
expansion to the chunks of size w (except for, maybe, the last chunk, which might have
a size less than w), suppose that the chunk is {cj}m−1

j=0 , then the corresponding limb in
w-width representation is

∑m−1
j=0 cj2j . Then, having all limbs in the main stack, we can

easily, if needed (which is the case), push it to the altstack.
All things considered, to get the w-width format, we simply call OP_TOBEBITS_TOALTSTACK

and Algorithm 5 sequentially, and push resultant limbs to the altstack.

3.2 Addition and Doubling
To implement multiplication, we need to implement two additional “opcodes”: OP_ADD,
which takes two N -bit integers and adds them up, and OP_2MUL, which takes N -bit integer

8 Optimizing Big Integer Multiplication on Bitcoin

Algorithm 5: Decomposing a limb to the w-width form
Input : Binary decomposition of a given limb x in the altstack
Output : w-width decomposition (x0, x1, . . . , xL−1)w in the main stack

1 Prepare chunk sizes {cj}L−1
j=0 where the last chunk is of size cL−1 := n− (L− 1)w,

while others are of size w.
2 for i ∈ {0, . . . , L− 1} do
3 for j ∈ {0, . . . , ci − 1} do
4

{
OP_FROMALTSTACK

}
5

{
OP_IF ⟨1≪ j⟩ OP_ELSE ⟨0⟩ OP_ENDIF

}
6 end
7 for _ ∈ {0, . . . , ci − 2} do
8

{
OP_ADD

}
9 end

10 end

and doubles it. In both cases, we assume no overflow occurs (which will be the case for
our multiplication algorithm), meaning that the result is still an N -bit integer.

Addition. Let us start with addition. We will do addition limb-wise with handling the
carry bit. For that reason, we need an intermediate opcode OP_LIMB_ADD_CARRY, which
takes

{
⟨a⟩ ⟨b⟩ ⟨β⟩

}
– two limbs a, b and base β, and outputs

{
⟨β⟩ ⟨c⟩ ⟨s⟩

}
, where c is

the carry bit, while s is the sum (a + b if c = 0 and (a + b)− β if c = 1). We specify the
algorithm in Algorithm 6.

Algorithm 6: Adding two limbs with carry bit
Input :

{
⟨a⟩ ⟨b⟩ ⟨β⟩

}
– two limbs a, b and base β

Output :
{
⟨β⟩ ⟨c⟩ ⟨s⟩

}
, where c is the carry bit, while s is the sum (a + b if

c = 0 and (a + b)− β if c = 1)
1

{
OP_ROT OP_ROT

}
2

{
OP_ADD OP_2DUP

}
3

{
OP_LESSTHANOREQUAL

}
4

{
OP_TUCK

}
5

{
OP_IF

}
6

{
⟨2⟩ OP_PICK OP_SUB

}
7

{
OP_ENDIF

}
Now we are ready to add two integers: see Algorithm 7. Note that we use the helper

opcode OP_ZIP, which converts the stack

Stack: ⟨xℓ−1⟩ ⟨xℓ−2⟩ . . . ⟨x1⟩ ⟨x0⟩ ⟨yℓ−1⟩ ⟨yℓ−2⟩ . . . ⟨y1⟩ ⟨y0⟩

to the following stack:

Stack: ⟨xℓ−1⟩ ⟨yℓ−1⟩ ⟨xℓ−2⟩ ⟨yℓ−2⟩ . . . ⟨x1⟩ ⟨y1⟩ ⟨x0⟩ ⟨y0⟩

which makes it easy to perform subsequent element-wise operations. We do not
concretize its implementation, but it is quite straightforward. Also, since we rely on the
fact that x + y is still an N -bit integer (which, of course, is not always the case) when
processing the last two limbs

{
⟨xℓ−1⟩ ⟨yℓ−1⟩ ⟨c⟩

}
with a carry bit c, we do not need to

handle the case when xℓ−1 + yℓ−1 + c ≥ β.

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 9

Algorithm 7: Adding two integers assuming with no overflow
Input : Two integers on the stack:

{
⟨xℓ−1⟩ . . . ⟨x0⟩ ⟨yℓ−1⟩ . . . ⟨y0⟩

}
Output : Result of addition z = x + y in a form

{
⟨zℓ−1⟩ . . . ⟨z0⟩

}
1

{
OP_ZIP

}
; /* Convert current stack

{
⟨xℓ−1⟩ . . . ⟨x0⟩ ⟨yℓ−1⟩ . . . ⟨y0⟩

}
to the form{

⟨xℓ−1⟩ ⟨yℓ−1⟩ . . . ⟨x0⟩ ⟨y0⟩
}

*/

2
{
⟨β⟩

}
; /* Push base to the stack */

3
{

OP_LIMB_ADD_CARRY OP_TOALTSTACK
}

4 for _ ∈ {0, . . . , ℓ− 3} do
/* At this point, stack looks as

{
⟨xn⟩ ⟨yn⟩ ⟨β⟩ ⟨c⟩

}
. We need to add carry c

and call OP_LIMB_ADD_CARRY */
5

{
OP_ROT

}
6

{
OP_ADD

}
7

{
OP_SWAP

}
8

{
OP_LIMB_ADD_CARRY OP_TOALTSTACK

}
9 end

/* At this point, again, stack looks as
{

⟨xn⟩ ⟨yn⟩ ⟨β⟩ ⟨c⟩
}

. We need to drop the
base, add carry, and conduct addition, assuming overflowing does not occur */

10
{

OP_NIP OP_ADD , OP_ADD
}

/* Return all limbs to the main stack */
11 for _ ∈ {0, . . . , ℓ− 2} do
12

{
OP_FROMALTSTACK

}
13 end

Doubling. The doubling is performed similarly to addition, but we can avoid making
the OP_ZIP operation and simply duplicate the last limb in the stack at each step. In
this particular case, we need an additional opcode OP_LIMB_DOUBLING_STEP, which takes{
⟨x⟩ ⟨β⟩ ⟨c⟩

}
– limb, base, and carry bit, and outputs

{
⟨β⟩ ⟨c′⟩ ⟨d⟩

}
– base, new carry

bit c′, and d = 2x + c. The implementation is specified in Algorithm 8. Additionally, we
need the same version, but without c, which is executed at the beginning of the doubling,
which we call OP_LIMB_DOUBLING_INITIAL. The corresponding implementation is specified
in Algorithm 9.

Algorithm 8: Doubling the limb with carry bit
Input :

{
⟨x⟩ ⟨β⟩ ⟨c⟩

}
– limb, base, and carry bit

Output :
{
⟨β⟩ ⟨c′⟩ ⟨d⟩

}
– base, new carry bit c′, and d = 2x + c

1
{

OP_ROT
}

2
{

OP_DUP OP_ADD
}

; /* Multiplying a 32-bit integer by 2 */

3
{

OP_ADD
}

4
{

OP_2DUP
}

5
{

OP_LESSTHANOREQUAL
}

6
{

OP_TUCK
}

7
{

OP_IF
}

8
{
⟨2⟩ OP_PICK OP_SUB

}
9

{
OP_ENDIF

}
Now, all we are left to do is perform the algorithm similar to Algorithm 7, but with small

optimizations, accounting for the fact that we do not need OP_ZIP. The implementation is
specified in Algorithm 10.

10 Optimizing Big Integer Multiplication on Bitcoin

Algorithm 9: Doubling the limb without the carry bit
Input :

{
⟨x⟩ ⟨β⟩

}
– limb and base

Output :
{
⟨β⟩ ⟨c⟩ ⟨d⟩

}
– base, new carry bit c, and limb doubled

1
{

OP_SWAP
}

2
{

OP_DUP OP_ADD
}

; /* Multiplying a 32-bit integer by 2 */

3
{

OP_2DUP
}

4
{

OP_LESSTHANOREQUAL
}

5
{

OP_TUCK
}

6
{

OP_IF
}

7
{
⟨2⟩ OP_PICK OP_SUB

}
8

{
OP_ENDIF

}

Algorithm 10: Doubling the integer without overflowing
Input :

{
⟨xℓ−1⟩ ⟨xℓ−2⟩ . . . ⟨x1⟩ ⟨x0⟩

}
– N -bit integer to be doubled

Output :
{
⟨zℓ−1⟩ ⟨zℓ−2⟩ . . . ⟨z1⟩ ⟨z0⟩

}
– integer doubled z = 2x

1
{
⟨β⟩

}
; /* Base β = 2n */

/* Double the limb, take the result to the altstack, and add initial carry */
2

{
OP_LIMB_DOUBLING_INITIAL OP_TOALTSTACK

}
3 for _ ∈ {0, . . . , ℓ− 3} do

/* Since we have
{

⟨x⟩ ⟨β⟩ ⟨c⟩
}

in the stack, we need to double the limb x and
add an old carry c to it. */

4
{

OP_LIMB_DOUBLING_STEP OP_TOALTSTACK
}

5 end
/* At the end, we again get

{
⟨x⟩ ⟨β⟩ ⟨c⟩

}
where x is a limb in the stack. We drop

the base and add the carry to the limb and double it without caring about
overflowing. */

6
{

OP_NIP OP_SWAP
}

7
{

OP_DUP OP_ADD
}

; /* Multiplying a 32-bit integer by 2 */

8
{

OP_ADD
}

/* Take all limbs from the altstack to the main stack */
9 for _ ∈ {0, . . . , ℓ− 2} do

10
{

OP_FROMALTSTACK
}

11 end

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 11

3.3 Binary Multiplication
Now comes the most interesting part: we will use methods from elliptic curve scalar
multiplication to implement the product of two integers. Indeed: in Algorithm 2 and
Algorithm 3 we might easily change E(Fq) to any other set, equipped with the addition
operation (for example, any abelian group). In our particular case, when implementing
x× y, we will interpret the y as a scalar, while x as an element to be added/doubled. So
let us implement the Algorithm 2 in Bitcoin Script first. Note the following: although our
initial number is N -bit, we expect the product x× y to be 2N -bit, so in the intermediate
steps, when performing additions and doublings, we should account for the fact that
they can easily overflow N bits. The straightforward workaround is simply performing
operations over the extended big integer of size 2N . This is, of course, not the best
approach, and we will revisit it in Section 3.5 later on.

Since currently we have multiple various integers to work with, we will use notation
BigInt<N>::{OPCODE} to denote calling the OPCODE of an N -bit big integer. So, calling
BigInt<2N>::{OPCODE} would call the OPCODE of a 2N -bit integer. Additionally, assume
OP_PICK, OP_ROLL and OP_DROP are implemented for integers of arbitrary bitlength. These
methods are relatively trivial compared to OP_ADD and OP_2MUL, considered before: all one
needs to do is to operate with integers “limbwise”.

So the implementation of Algorithm 2 in Bitcoin Script is specified in Algorithm 11.
As can be seen, the cost (in opcodes) of conducting the double-and-add algorithm is
NA+(N−1)D. Note that when analyzing the cost in Section 2.2, we specified the maximal
number of additions that get performed, but here the situation is different: the number of
additions is exactly N , despite the fact that the OP_IF branch might be executed only a
few times.

This is the primary reason why NAF methods did not significantly boost our perfor-
mance: although additions might be called fewer times, we still need to include the logic
in the script for each loop iteration. Therefore, we are interested in reducing the number
of places where we need to place addition operations, not the number of times they get
executed.

3.4 Windowed Multiplication
Now, let us implement the windowed method from Algorithm 3. Again, similarly to how
it was done in Section 3.3, we conduct the following steps:

1. Decompose y to the width-w form using opcode from Algorithm 5.

2. Push the resultant decomposition to the altstack. Call first and second steps as
T::OP_TOBEWINDOWEDFORM_TOALTSTACK.

3. Extend x to be 2N -bit by appending zero limbs.

4. Precompute lookup table {0, x, 2x, 3x, . . . , (2w − 1)x}.

5. Conduct the rest as described in Algorithm 3, assuming that additions and doublings
never overflow (all intermediate are less than xy, which is a 2N -bit number at worst).

Steps 1-3 were already covered in our discussion, so let us discuss our strategy for
implementing the lookup table. It looks as follows:

1. Push 0 and x to the stack.

2. On each step if we need to calculate 2n × x, simply BigInt<2N>::OP_PICK the
element n×x and double it using

{
BigInt<2N>::OP_DUP BigInt<2N>::OP_ADD

}
.

12 Optimizing Big Integer Multiplication on Bitcoin

Algorithm 11: Double-and-add integer multiplication
Input : Two N -bit integers on the stack:

{
⟨xℓ−1⟩ . . . ⟨x0⟩ ⟨yℓ−1⟩ . . . ⟨y0⟩

}
Output : 2N -bit integer z = x× y on the stack:

{
⟨zℓ′−1⟩ . . . ⟨z1⟩ ⟨z0⟩

}
1

{
BigInt<N>::OP_TOBEBITS_TOALTSTACK

}
2

{
BigInt<N>::OP_EXTEND::<BigInt<2N> >

}
; /* Extend N-bit integer to

2N-bit integer by appending ℓ′ − ℓ zero limbs */
3

{
BigInt<2N>::OP_0

}
; /* Pushing 2N-bit zero to the stack */

4
{

OP_FROMALTSTACK
}

5
{

OP_IF
}

6
{
⟨1⟩ BigInt<2N>::OP_PICK

}
7

{
BigInt<2N>::OP_ADD

}
8

{
OP_ENDIF

}
9 for _ ∈ {1, . . . , N − 2} do

10
{
⟨1⟩ BigInt<2N>::OP_ROLL

}
11

{
BigInt<2N>::OP_2MUL

}
12

{
⟨1⟩ BigInt<2N>::OP_ROLL

}
13

{
OP_FROMALTSTACK

}
14

{
OP_IF

}
15

{
⟨1⟩ BigInt<2N>::OP_PICK

}
16

{
BigInt<2N>::OP_ADD

}
17

{
OP_ENDIF

}
18 end
19

{
⟨1⟩ BigInt<2N>::OP_ROLL

}
20

{
BigInt<2N>::OP_2MUL

}
21

{
OP_FROMALTSTACK

}
22

{
OP_IF

}
23

{
BigInt<2N>::OP_ADD

}
24

{
OP_ELSE

}
25

{
BigInt<2N>::OP_DROP

}
26

{
OP_ENDIF

}

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 13

3. If, instead, we need to calculate (2n + 1)× x, copy the last element in the stack via
BigInt<2N>::OP_DUP (which is 2n × x), then copy x and add them together via
OP_ADD.

The aforementioned strategy, as discussed before, costs (2w−1 − 1)A and (2w−1 − 1)D,
which reduces to 7A and 7D for w = 4. Let us further encapsulate the logic of pushing
{0x, 1x, . . . , (2w − 1)x} to the stack as BigInt<2N>::OP_INITWINDOWEDTABLE(w).

Now we are ready to define the algorithm itself: see Algorithm 12.

Algorithm 12: Windowed integer multiplication
Input : Parameter w; two N -bit integers on the stack:{

⟨xℓ−1⟩ . . . ⟨x0⟩ ⟨yℓ−1⟩ . . . ⟨y0⟩
}

Output : 2N -bit integer z = x× y on the stack:
{
⟨zℓ′−1⟩ . . . ⟨z1⟩ ⟨z0⟩

}
1

{
BigInt<N>::OP_TOBEWINDOWEDFORM_TOALTSTACK

}
2

{
BigInt<N>::OP_EXTEND::<BigInt<2N> >

}
; /* Extend N-bit integer to

2N-bit integer by appending ℓ′ − ℓ zero limbs */
3

{
BigInt<2N>::OP_INITWINDOWEDTABLE(w)

}
; /* Precomputing

{0, x, . . . , ((1 ≪ w) − 1)x} */
4

{
OP_FROMALTSTACK ⟨1⟩ OP_ADD

}
; /* Picking first limb from the altstack +1 */

5
{
⟨1≪ w⟩ OP_SWAP OP_SUB BigInt<2N>::OP_PICKSTACK

}
; /* Picking the

corresponding value from the precomputed table */
6 for _ ∈ {1, . . . , L− 1} do

/* Double the result w times */
7 for _ ∈ {0, . . . , w − 1} do
8

{
BigInt<2N>::OP_2MUL

}
9 end

/* Picking limb from the altstack and picking the corresponding element from the
lookup table. After picking an element, the stack would look like{

⟨0⟩ ⟨x⟩ . . . ⟨((1 ≪ w) − 1)x⟩ ⟨r⟩ ⟨yi⟩
}

, where r is the temporary variable, being
the final result, and yi is the limb at step i */

10
{
⟨1≪ w⟩ OP_SWAP OP_SUB

}
11

{
BigInt<2N>::OP_PICKSTACK BigInt<2N>::OP_ADD

}
12 end

/* Clearing the precomputed values from the stack. */
13

{
BigInt<2N>::OP_TOALTSTACK

}
14 for _ ∈ {0, . . . , ((1≪ w)− 1)} do
15

{
BigInt<2N>::OP_DROP

}
16 end
17

{
BigInt<2N>::OP_FROMALTSTACK

}

3.5 Gradual Bitsize Increase
Finally, notice that extending an integer from N bits to 2N bits from the very beginning
is not optimal. For example, consider the first iteration of a loop in the windowed integer
multiplication, where we multiply by 2w and then add the precomputed value. Notice that
if we begin from the 256-bit number, for instance, multiplying by 16 and adding the 256-bit
number would result in the 261-bit number maximum (in fact, 260-bit number, as we will
see later). Similarly, when conducting the next iteration, we would not exceed 264 bits
and so on. This motivates us to handle the size dynamically: when ℓ limbs are insufficient
to conduct the operations without overflowing, we push the zero limb (to extend an integer

14 Optimizing Big Integer Multiplication on Bitcoin

to ℓ + 1 limbs) and conduct the rest as usual. This would save tons of opcodes, as the
number of useless additions of zero limbs is considerable.

Now, let us consider the following theorem.

Theorem 2. Suppose that Algorithm 12 is conducted using two N -bit integers, the window
size of w with L = ⌈N/w⌉ limbs. For each kth step, it suffices to extend the temporary
variable q to λ + kw bits, resulting in ⌈(λ + kw)/n⌉ limbs for λ = 2N − w(L− 1).

Proof. Let us examine the first step. We decompose y to the width-w form, resulting
in y =

∑L−1
i=0 yi2wi, where each 0 ≤ yi < 2w. Next, we initialize the lookup table, which

involves calculating {0, x, 2x, . . . , (2w − 1)x}. Finally, we initialize the temporary variable
q ← 0 and set it to the value yL−1x (since multiplication by 2w would leave q = 0
unchanged).

Now, x is N bits in size. An interesting question is the size of yL−1 in bits. Recall that
y = yL−12w(L−1)+yL−22w(L−2)+· · ·+y0 is an N -bit number which means that yL−12w(L−1)

should also be N bits. If the size of yL−1 in bits is λ, then the size of yL−12w(L−1) is
λ + w(L− 1) which is N maximum. Meaning, λ ≤ N − w(L− 1) = (N + w)− wL.

All in all, we conclude that the size of q in the beginning (call it λ) is 2N − w(L− 1).
Then, suppose that we are at step k with a value qk. In this case,

qk+1 = 2wqk + yL−kx, q0 = yL−1x (7)

This is a recurrence relation which is quite tough to solve generically as yL−k term is
different for each step. For that reason, assume the worst case: suppose yL−k = 2w − 1 for
each k > 1 and consider the recurrence relation

Qk+1 = 2wQk + (2w − 1)x, Q0 = q0 = yL−1x (8)

In this case, qk < Qk for each k > 1, so Qk is our upper bound. Now, Equation (8) is
an equation of form zk+1 = αzk + β, which has a closed solution zn = αnz0 + αn−1

α−1 β, so
we get

Qk = 2wkQ0 + (2wk − 1)x (9)
Notice that 2wkQ0 has a bitsize of wk + λ, while (2w− 1)x is N + w bits in size. Notice

this addition always results in the integer of bitsize wk + λ. Indeed:

Qk < 2wk(2λ − 1) + (2wk − 1)(2N − 1) < 2wk+λ + 2wk+N < 2wk+λ+1, (10)

so Qk fits in λ + wk bits. Thus, as qk < Qk, qk also fits in λ + wk bits, concluding the
proof.

With Theorem 2 in hand, we are ready to optimize the Algorithm 12 by introducing
Algorithm 13.

4 Discussion
4.1 Window Width Choice
One of our key claims is that the width parameter w = 4 gives the best performance. In
this section, we justify this claim. For that reason, we provide the following theorem.

Theorem 3. Suppose that Algorithm 12 is performed over two N-bit integers, and the
cost of the addition of 2N -bit integers is CA ∈ N and the cost of doubling is CD ∈ N. Then,
the optimal width parameter w is approximately ŵ ∈ R, where ŵ satisfies:

ŵ22ŵ = 2N

log 2 ·
CA

CA + CD
(11)

In particular, if CA ≈ CD, then this reduces to ŵ22ŵ = N/ log 2.

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 15

Algorithm 13: Windowed integer multiplication with gradual bitsize increase
Input : Parameter w; two N -bit integers on the stack:{

⟨xℓ−1⟩ . . . ⟨x0⟩ ⟨yℓ−1⟩ . . . ⟨y0⟩
}

Output : 2N -bit integer z = x× y on the stack:
{
⟨zℓ′−1⟩ . . . ⟨z1⟩ ⟨z0⟩

}
1

{
BigInt<N>::OP_TOBEWINDOWEDFORM_TOALTSTACK

}
/* Important note: here, we assume that all precomputed values still fit in ℓ limbs,

so there is no need to extend an integer from N to λ bits. Yet, this can be
easily accounted for if needed. */

2
{

BigInt<N>::OP_INITWINDOWEDTABLE (w)
}

; /* Precomputing
{0, x, . . . , ((1 ≪ w) − 1)x} */

3
{

OP_FROMALTSTACK ⟨1⟩ OP_ADD
}

; /* Picking first limb from the altstack +1 */

4
{
⟨1≪ w⟩ OP_SWAP OP_SUB BigInt<N>::OP_PICKSTACK

}
; /* Picking the

corresponding value from the precomputed table */
5 for i ∈ {1, . . . , L− 1} do

/* Extend the result from λ + (i − 1)w bits to λ + iw */
6

{
BigInt<λ + (i− 1)w>::OP_EXTEND::<BigInt<λ + iw> >

}
/* Double the result w times */

7 for _ ∈ {0, . . . , w − 1} do
8

{
BigInt<λ + iw>::OP_2MUL

}
9 end

/* Picking limb from the altstack and picking the corresponding element from the
lookup table. After picking an element, the stack would look like{

⟨0⟩ ⟨x⟩ . . . ⟨((1 ≪ w) − 1)x⟩ ⟨r⟩ ⟨yi⟩
}

, where r is the temporary variable, being
the final result, and yi is the limb at step i */

10
{
⟨1≪ w⟩ OP_SWAP OP_SUB

}
11

{
BigInt<λ + iw>::OP_PICKSTACK

}
12

{
BigInt<λ>::OP_ADD

}
; /* Since we need to only care about the last limbs,

we do not extend the result */

13 end
/* Clearing the precomputed values from the stack. */

14
{

BigInt<2N>::OP_TOALTSTACK
}

15 for _ ∈ {0, . . . , ((1≪ w)− 1)} do
16

{
BigInt<λ>::OP_DROP

}
17 end
18

{
BigInt<2N>::OP_FROMALTSTACK

}

16 Optimizing Big Integer Multiplication on Bitcoin

Remark 1. To simplify the analysis, we consider the Algorithm 12, which operates over
extended integers. The analysis for optimized version Algorithm 13 would be ideologically
similar but quite cumbersome, so let us stick to the simpler version.

Proof. The total cost C of width-w multiplication is, as mentioned in Section 2.2 is
approximately (without accounting for operations not depending on the chosen w) given
by the following formula:

C(w) = 2w−1(CA + CD) + NCA
w

+ NCD (12)

Therefore, it suffices to apply a simple calculus to find the optimal value of w. If ŵ ∈ R
is the optimal width, it should satisfy C ′(ŵ) = 0 which gives us:

C ′(w) = (CA + CD)2w−1 log 2− NCA
w2 =⇒ ŵ22ŵ = 2N

log 2 ·
CA

CA + CD
(13)

To see why this gives a minimum, compute the second derivative:

C ′′(w) = (CA + CD)2w−1 log2 2 + 2NCA
w3 , (14)

which is positive for any w > 0 (which is the case). The relation ŵ22ŵ = N/ log 2
follows immediately after substituting CA = CD.

So, now, let us substitute values corresponding to our implementation. We use N = 254,
and the cost of the addition is 363 bytes (so we set CA := 363), while doubling takes 245
bytes (thus we set CD := 245)6. Thus, approximately, ŵ22ŵ ≈ 437.5, yielding ŵ ≈ 4.45.
After checking both w = 4 and w = 5, we conclude that w = 4 is the optimal choice.

Out of curiosity, we plot the dependence C(w) for different N ’s and w’s. The result
is depicted in Figure 1. Interestingly, for larger integers (in particular, for N = 512 or
N = 1024), w = 4 most likely would no longer be the optimal choice.

4.2 Performance Comparison
Now, we compare our multiplication implementation with the state-of-the-art approaches
currently used.

1. BitVM “Overflow” Multiplication7: BitVM provides the default library to operate
with big integers (therefore, called bigint) that implements the mul operation. The
catch is that, based on two N -bit integers, this function also returns a N -bit integer,
reduced modulo 2N (essentially, the lower limb in 2N -bit integer representation
c0 + c1× 2N) — we call this “overflow multiplication”. Therefore, for comparison, we
adapted algorithm Algorithm 12 to have the same functionality, and also tweaked
the BitVM ’s implementation to give the 2N -bit integer as the result.

2. Cmpeq’s Implementation8: Quite recently, on Bitcoin Forum, cmpeq claimed to have
roughly 100k opcodes in his multiplication of two 255-bit integers. The result is a
510-bit integer, compared to bigint multiplication from BitVM. Although it was
claimed to have roughly 100k opcodes, after uploading the script, it appears that
the real number of opcodes is, in fact, 200k. This probably happens because pushing
a single integer to the stack does not always cost one opcode. For example, pushing
103 costs 3 opcodes while 105 costs 4.

6In fact, it does not matter which units to use to represent CA and CD since at the end of the day, all
that matters is the fraction CA

CA+CD
, which depends solely on ratio CD/CA.

7https://github.com/BitVM/BitVM, Accessed: 25 July 2024
8https://bitcointalk.org/index.php?topic=5477449.0, Accessed: 25 July 2024

https://github.com/BitVM/BitVM
https://bitcointalk.org/index.php?topic=5477449.0

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 17

128 bits

256 bits

512 bits

1024 bits

1 2 3 4 5 6 7 8

0

100

200

300

400

Window size,w

C
os
t
of
M
u
lt
ip
li
ca
ti
on
C
N
(w

)

Cost Dependence on the Window Size

Figure 1: Dependence of multiplication cost CN (w) on the window size w for various
integer bit-sizes (N). We plotted the dependence for four integers: 128 bits, 256 bits,
512 bits, 1024 bits. The dashed line in blue is most closely related to our case (N = 254).
Here, we assumed that CD/CA ≈ 0.675, corresponding to our multiplication.

3. BitVM 29× 9 Karatsuba Multiplication: This is the most recent version that BitVM
mostly relies on that uses the Karatsuba multiplication (see Section 2.2.1) with
(n = 29, ℓ = 9) to represent a 254-bit integer.

The comparison results are depicted in Table 1.

Table 1: Comparison of our multiplication implementation with the current state-of-the-art.
N/A means “non-applicable”: that is, the algorithm is not adapted to the corresponding
type of task.

Approach Overflowing Multiplication Widening Multiplication
Cmpeq N/A 201,879

BitVM bigint 106,026 200,334
BitVM Karatsuba N/A 74,907

Our w-width method 55,710 71,757

Most likely, our current version is not best-optimized. In particular, we list what can
help to possibly reduce the number of opcodes even further:

1. Small polishes in gadgets used underneath (extending big integers to handle larger
limbs, more effective addition or doubling, etc.).

2. We have not achieved any boost using NAF methods, but that does not mean these
methods are not applicable: it is curious whether something can be achieved with
them. In particular, w-NAF form might possibly decrease the number of additions
from N

w to N
w+1 and the cost of precomputing values. On the other hand, this would

require implementing subtraction and sign handling, which might be troublesome.

3. Using different bases: we achieved the best results using 30-bit limbs to represent an
integer, but maybe smaller limbs might result in something more effective.

18 Optimizing Big Integer Multiplication on Bitcoin

4.3 Future Directions
Although this paper focuses on big integer arithmetic on Bitcoin, our proposed methods
and tricks are not limited solely to that. In this section, we will present two more problems
in which w-width decomposition might optimize Bitcoin scripts.

4.3.1 Multiple Integer Multiplication

In the context of elliptic curves, quite frequently, one needs to calculate expressions in a
form R← [α]P ⊕ [β]Q for P, Q ∈ E(Fq) and α, β ∈ Zr

9. At first glance, it seems that such
a problem is quite straightforward: simply calculate Pα ← [α]P first, then Qβ ← [β]Q,
and finally R← Pα ⊕Qβ is the result.

However, as it turns out, this is not the case. In fact, we can decompose both α and
β into w-width form and, using the single loop iteration, compute R. We specify the
implementation in Algorithm 14.

The specified algorithm shares similarities with Algorithm 3 for multiplication, particu-
larly in the number of addition operations required. However, it offers savings on doubling
costs. Instead of performing 2N doubling for two separate multiplications, this approach
allows us to compute modular multiplication with just N doublings. The trade-off is an
increased precomputation cost, as we need to maintain two lookup tables. That being said,
the overall cost is:

2×
[
2w−1A + 2w−1D

]
+

[
2N

w
A + ND

]
(15)

Algorithm 14: w-width windowed method for multiple point multiplication
Input : Points P, Q ∈ E(Fq) and scalars α, β ∈ Zr

Output : Result of [α]P ⊕ [β]Q ∈ E(Fq)
1 Decompose α to the w-width form: (α0, α1, . . . , αL−1)w

2 Decompose β to the w-width form: (β0, β1, . . . , βL−1)w

3 Precompute values for two lookup tables:

TP : {[0]P, [1]P, [2]P, . . . , [2w − 1]P},
TQ : {[0]Q, [1]Q, [2]Q, . . . , [2w − 1]Q}.

4 Denote by TP [j] = [j]P – referencing the lookup table for P at index j.
5 Denote by TQ[j] = [j]Q – referencing the lookup table for Q at index j.
6 R← O
7 for i ∈ {L− 1, . . . , 0} do
8 R← [2w]R
9 R← R⊕ (TP [αi]⊕ TQ[βi])

10 end
Return : Point R ∈ E(Fq)

Remark 2. Note that in Algorithm 14 we can alternatively store the single lookup table, say
TP,Q[i, j], which has all possible precomputed values [i]P ⊕ [j]Q for i, j ∈ {0, . . . , 2w − 1}.
However, that would make the lookup table of size 22w (which, again, must be stored in
the stack) compared to 2× 2w, making it impractical for Bitcoin Script.

9For example, when calculating the scalar multiplication using efficiently computable endomorphisms
and GLV decomposition, see [HMV10] for more details.

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 19

So, where might this be useful? Suppose you have the finite field Fp with x, y ∈ Fp,
and you want to compute z ← xy ∈ Fp. By definition, that means calculating xy (mod p).
Modulo operation is quite costly, so we can use a hint: notice that when we divide xy by p,
we have: xy = pq + r where q is the quotient and 0 ≤ r < p is the remainder. Essentially,
r equals xy in Fp, so it suffices to provide q to calculate the result as xy − pq.

That being said, Algorithm 14 can be used to optimize calculating xy − pq. Indeed,
change α and β to x and p, while P and Q to y and q, respectively, as we did in the
previous sections. Moreover, since p is fixed, it can be decomposed beforehand, without
needing to do that in run-time.

Most likely, there might be many other cases where multiple integer multiplication
might come in handy.

4.3.2 Fixed Integer Multiplication

Consider another problem typical for elliptic curve arithmetic: suppose P ∈ E(Fq) is
fixed, and we know it in compile-time. Then, we are given the scalar α ∈ Zr and asked to
compute [α]P . Since P is fixed, we can precompute some data that depends solely on P
beforehand. For example, in Algorithm 3, we can precompute expressions of a form [2wi]P
for i ∈ {0, . . . , L− 1} and apply the Algorithm 15.

Algorithm 15: w-width windowing method for fixed point multiplication
Input : Point P ∈ E(Fq) known in compile-time and scalar α ∈ Zr

Output : Result of [α]P
1 Decompose α to the w-width form: (α0, α1, . . . , αL−1)w

2 Initialize the lookup table:

TP : {P, [2w]P, [22w]P, . . . , [2(L−1)w]P} (16)

3 Denote by TP [j] = [2wj]P – referencing the lookup table at index j.
4 A← O, B ← O
5 for j ∈ {2w − 1, . . . , 2, 1} do
6 for i : αi = j do
7 B ← B ⊕ TP [i]
8 end
9 A← A⊕B

10 end
Return : Point A ∈ E(Fq)

The expected cost of performing such an algorithm is (2w + L− 3)A, so we do not need
to perform ND doublings anymore! Again, to use it for integer arithmetic (say, finding
cx for c = const), simply change point P to the constant integer c, and α to x. Needless
to say, finding cx for constant c arises very frequently when implementing a complicated
logic.

5 Conclusion
This paper introduced an innovative approach to performing big integer arithmetic within
Bitcoin Script using the w-windowed method for multiplying 254-bit integers. Inspired by
Elliptic Curve optimization techniques, our method reduces the BitVM ’s script size needed
for multiplication, reducing approximately 3.2k opcodes. Moreover, we believe the applied
approach opens the door to other optimizations involving multiple integer multiplication

20 Optimizing Big Integer Multiplication on Bitcoin

or fixed integer multiplication, which are frequently used in the realm of Elliptic Curves
arithmetic.

Our findings enable more efficient complex arithmetic operations. This advancement
opens new possibilities for integrating advanced cryptographic protocols (and, in particular,
L2 zk-rollup) within the Bitcoin ecosystem. For those interested in the technical details, our
implementation code is available on GitHub through the provided link (see Section 1.1).

References
[Ant14] Andreas M. Antonopoulos. Mastering Bitcoin: Unlocking Digital Crypto-

Currencies. O’Reilly Media, Inc., 1st edition, 2014.

[BCEM15] Rainer Böhme, Nicolas Christin, Benjamin Edelman, and Tyler Moore. Bitcoin:
Economics, technology, and governance. Journal of economic Perspectives,
29(2):213–238, 2015.

[CLKL23] Thomas Chen, Hui Lu, Teeramet Kunpittaya, and Alan Luo. A review of
zk-snarks, 2023.

[CRTA+24] Stefanos Chaliasos, Itamar Reif, Adrià Torralba-Agell, Jens Ernstberger,
Assimakis Kattis, and Benjamin Livshits. Analyzing and benchmarking ZK-
rollups. Cryptology ePrint Archive, Paper 2024/889, 2024. https://eprint.
iacr.org/2024/889.

[DSD07] Augusto Devegili, Michael Scott, and Ricardo Dahab. Implementing crypto-
graphic pairings over barreto-naehrig curves. volume 4575, pages 197–207, 07
2007.

[GKSC23] Simanta Gautam, Pramod Kandel, Chandan Sharma Subedi, and Abishkar
Chhetri. Zk rollup on bitcoin: Technical whitepaper. https://github.com/
alpenlabs/Technical-Whitepaper, 2023.

[Her18] Maurice Herlihy. Atomic cross-chain swaps. https://arxiv.org/abs/1801.
09515, 2018.

[HMV10] Darrel Hankerson, Alfred J. Menezes, and Scott Vanstone. Guide to Elliptic
Curve Cryptography. Springer Publishing Company, Incorporated, 1st edition,
2010.

[KC22] Mahender Kumar and Satish Chand. Pairing-friendly elliptic curves: Revisited
taxonomy, attacks and security concern. https://arxiv.org/abs/2212.
01855, 2022.

[KS04] Predrag V. Krtolica and Predrag S. Stanimirović. Reverse polish notation
method. International Journal of Computer Mathematics, 81(3):273–284,
2004.

[KZL+24] Oleksandr Kurbatov, Dmytro Zakharov, Anton Levochko, Kyrylo Riabov,
and Bohdan Skriabin. Multichain taprootized atomic swaps: Introducing
untraceability through zero-knowledge proofs. arXiv preprint, 2024.

[Lin23] Robin Linus. Bitvm: Compute anything on bitcoin. 2023.

[Mia24] Akita Mia. Lrc-20: Scalable and fast tokenization on lightning. https:
//github.com/akitamiabtc/LRC-20, 2024.

https://eprint.iacr.org/2024/889
https://eprint.iacr.org/2024/889
https://github.com/alpenlabs/Technical-Whitepaper
https://github.com/alpenlabs/Technical-Whitepaper
https://arxiv.org/abs/1801.09515
https://arxiv.org/abs/1801.09515
https://arxiv.org/abs/2212.01855
https://arxiv.org/abs/2212.01855
https://github.com/akitamiabtc/LRC-20
https://github.com/akitamiabtc/LRC-20

Dmytro Zakharov, Oleksandr Kurbatov, Manish Bista and Belove Bist 21

[Mun23] Neelesh Mungoli. Deciphering the blockchain: A comprehensive analysis of
bitcoin’s evolution, adoption, and future implications. https://arxiv.org/
abs/2304.02655, 2023.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. May 2009.

[OTZ+23] Maxim Orlovsky, Peter Todd, Giacomo Zucco, Federico Tenga, and Olga
Ukolova. Rgb blackpaper. https://blackpaper.rgb.tech/, 2023. Accessed:
2024-08-02.

[PD16] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable
off-chain instant payments, 2016.

[SGNB20] István András Seres, László Gulyás, Dániel A Nagy, and Péter Burcsi. Topo-
logical analysis of bitcoin’s lightning network. In Mathematical Research for
Blockchain Economy: 1st International Conference MARBLE 2019, Santorini,
Greece, pages 1–12. Springer, 2020.

[TMMS21] Sri AravindaKrishnan Thyagarajan, Giulio Malavolta, and Pedro Moreno-
Sánchez. Universal atomic swaps: Secure exchange of coins across all
blockchains. Cryptology ePrint Archive, Paper 2021/1612, 2021. https:
//eprint.iacr.org/2021/1612.

[W+14] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction
ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[WP06] Andre Weimerskirch and Christof Paar. Generalizations of the karatsuba
algorithm for efficient implementations. IACR Cryptology ePrint Archive,
2006:224, 01 2006.

https://arxiv.org/abs/2304.02655
https://arxiv.org/abs/2304.02655
https://blackpaper.rgb.tech/
https://eprint.iacr.org/2021/1612
https://eprint.iacr.org/2021/1612

	Introduction
	Our Contribution

	Preliminaries
	Bitcoin Script
	Multiplication Methods

	Implementation
	Binary and Window Decomposition
	Addition and Doubling
	Binary Multiplication
	Windowed Multiplication
	Gradual Bitsize Increase

	Discussion
	Window Width Choice
	Performance Comparison
	Future Directions

	Conclusion

