
Binding Security of Implicitly-Rejecting KEMs
and Application to BIKE and HQC

Juliane Krämer1, Patrick Struck2, and Maximiliane Weishäupl1

1 Universität Regensburg, Germany
{juliane.kraemer,maximiliane.weishaeupl}@ur.de

2 Universität Konstanz, Germany
patrick.struck@uni-konstanz.de

Abstract. In this work, we continue the analysis of the binding prop-
erties of implicitly-rejecting key-encapsulation mechanisms (KEMs) ob-
tained via the Fujisaki-Okamoto (FO) transform. These binding proper-
ties, in earlier literature known under the term robustness, thwart attacks
that can arise when using KEMs in larger protocols. Recently, Cremers
et al. (ePrint’24) introduced a framework for binding notions, encom-
passing previously existing but also new ones. While implicitly-rejecting
KEMs have been analyzed with respect to multiple of these notions,
there are still several gaps. We complete the picture by providing posi-
tive and negative results for the remaining notions. Further, we show how
to apply our results to the code-based KEMs Bike and Hqc, which are
among the round-4 candidates in NISTs PQC standardization process.
Through this, we close a second gap as our results finish the analysis of
the binding notions for the NIST round-4 KEMs.

1 Introduction

Encryption is unequivocally the most fundamental concept of cryptography.
Nowadays, encryption can be divided into symmetric encryption and asymmetric
(public-key) encryption. For efficiency reasons, public-key encryption is typically
used to encrypt only a symmetric key (of some fixed length), while the actual
payload will be encrypted using that symmetric key. That is, public-key encryp-
tion (PKE) is essentially used to encrypt uniformly random messages that are
used as symmetric keys. Key-encapsulation mechanisms (KEMs) are a primitive
dedicated to this use-case: here, the encapsulation algorithm only takes a public
key pk as input and outputs a uniform symmetric key k alongside a ciphertext
c that encapsulates the symmetric key.

The standard security notion that KEMs should achieve is IND-CCA security,
which is also the requirement of the NIST standardization process [NIST17].

⋆ Work of Juliane Krämer was funded by the Deutsche Forschungsgemeinschaft (DFG
– German Research Foundation) – 505500359. Patrick Struck was supported by
the Hector Foundation II. Maximiliane Weishäupl was funded by the German Fed-
eral Ministry of Education and Research (BMBF) under the project Quant-ID
(16KISQ111).

The common method to obtain IND-CCA secure KEMs is to design IND-CPA
secure public-key encryption schemes and then apply the Fujisaki-Okamoto (FO)
transform [FO99] to it—a method that is used for virtually all KEMs in the NIST
standardization process for post-quantum schemes [NIST17]. The FO transform
comes in different variants. In this work, we are mainly concerned with the
variant FO ̸⊥, which computes the shared key as H(m, c) while ciphertexts are
rejected by outputting H(σ, c), where σ is the implicit rejection value contained
in the secret key. Another variant (also covered in this work) is FO ̸⊥

m, which works
similar except that the shared key is computed as H(m) as opposed to H(m, c).
The explicitly-rejecting variants FO⊥ and FO⊥

m, which are not in the scope of this
work, are defined analogously to their implicitly-rejecting counterparts except
that invalid ciphertext are rejected by outputting ⊥ rather than H(σ, c).

Using cryptographic primitives in larger protocols opens up room for mis-
use which is not prevented by the standard security notions. Several attacks
show that this is a problem for digital signatures [JCCS19, Aye15] as well as
authenticated encryption [DGRW18,ADG+22,LGR21]. Very recently, this was
also shown to be a problem for KEMs: Cremers et al. [CDM23] showed that the
authentication protocol presented in [BDK+18] is vulnerable to what is called
a “re-encapsulation attack”. Here, an adversary can decapsulate a ciphertext c
to obtain a shared key k and then “re-encapsulate” that shared key under a
different public key. This attack allows an adversary Eve to convince Alice that
she shares a key with Eve although the key is actually shared between Alice and
Bob—and unknown to Eve.

To deal with this threat of misuse, more advanced security properties for
core cryptographic primitives have emerged and enjoyed a lot of research in re-
cent years. For authenticated encryption schemes, committing security prevents
adversaries of finding ciphertexts that decrypt under more than one key, for
which there is already a long line of research [DGRW18,BH22,MLGR23,CR22,
BH24,BCC+24,SW24,KSW23,NSS23,CFGI+23,DFG23,DMVA23]. For digital
signatures, BUFF security [CDF+21] prevents against various attacks that go
beyond the unforgeability features of digital signatures and received a lot of
attention lately [ADM+24, DFHS24, DFF24, DFH+24]. Both committing secu-
rity and BUFF security are considered in the new standardization processes by
NIST [NIST24,NIST22]. Very recently, Cremers et al. [CDM23]—motivated by
the re-encapsulation attack—developed a framework for so-called “binding prop-
erties” of KEMs which prevent against various attacks. Note that this framework
encompasses also the already existing robustness notions, but renames them to
match the new notation.

All notions are built following the pattern X-BIND-P-Q, where P and Q de-
scribe which elements (P) are binding which other elements (Q). An example
(and one notion that we are considering in this work) is that P equals the shared
key k of a KEM and Q equals the public key pk. The corresponding binding no-
tion X-BIND-K-PK then formalizes that k binds pk or, simply speaking, an ad-
versary cannot find ciphertexts that decapsulate to the same shared key k under
distinct public keys. The other variable, X, describes the attack model and differs

2

in how the keys are selected. Cremers et al. [CDM23] distinguish three cases: the
malicious (MAL) setting where the adversary can generate the keys arbitrarily,
the leaked (LEAK) setting where the keys are honestly generated and the adver-
sary receives all keys, and the honest (HON) setting where the keys are honestly
generated but the adversary only receives the public key along with access to
decryption oracles for the secret keys. In total, Cremers et al. [CDM23] give 18
different security notions. These 18 notions can be expressed by the 6 general no-
tions X-BIND-K-PK, X-BIND-K,CT-PK, X-BIND-K-CT, X-BIND-K,PK-CT,
X-BIND-CT-PK, and X-BIND-CT-K for X ∈ {MAL,LEAK,HON}.

There is a number of results regarding the security of implicitly-rejecting
KEMs with respect to the binding notions. Firstly, Cremers et al. [CDM23]
show that the ciphertext cannot bind any other value, i.e., the six notions
X-BIND-CT-PK and X-BIND-CT-K with X ∈ {MAL,LEAK,HON} are un-
achievable. The reason is that implicitly-rejecting KEMs always output some
key k ̸= ⊥. We will generally exclude these six notions in this work which
leaves us with 12 notions. Further, it is a direct implication of [CDM23, Theo-
rem D.1] that schemes which use the FO-variant FO ̸⊥ do achieve X-BIND-K-CT
(and hence also X-BIND-K,PK-CT) security for X ∈ {MAL,LEAK,HON}.
Lastly, Grubbs et al. [GMP22, Theorem 6] prove that FO ̸⊥-KEMs do fulfill
HON-BIND-K,CT-PK security provided that a certain collision-freeness prop-
erty holds for the underlying PKE scheme. With respect to FO ̸⊥

m, Cremers
et al. [CDM23] show that it achieves LEAK-BIND-K,PK-CT security (hence
HON-BIND-K,PK-CT) while it is neither X-BIND-K-PK nor X-BIND-K-CT
secure (for any X ∈ {HON,LEAK,MAL}).3 This leaves several notions open
for FO ̸⊥ and FO ̸⊥

m. Fig. 1 provides an overview of the notions considered in this
work, as well as the existing and our new results for FO ̸⊥ and FO ̸⊥

m.
Next to these general results, the binding notions have been (partially) ana-

lyzed for several of the KEMs included in NISTs standardization process: Grubbs
et al. [GMP22] analyzed the security of Classic-McEliece [ABC+22], (the
round-3 version of) Hqc [AAB+20], Saber [DKR+20], FrodoKem [NAB+20],
and Kyber [BDK+18] with respect to some of the binding notions. The anal-
ysis of those four schemes and Ml-Kem [NIST23] was extended by Cremers et
al. [CDM23] and more results for Ml-Kem were given by Schmieg [Sch24].

The remaining two round-4 KEMs Bike [ABB+22] and (the current version
of) Hqc [AAB+24]4, however, are yet to be analyzed with respect to any of the
binding properties.5

1.1 Contribution

In this work, we close both of the aforementioned gaps. We complete the analysis
of the binding notions for implicitly-rejecting KEMs, i.e., those resulting from

3 We excluded the results that are based on a conjecture.
4 The relevant change for our work is that round-4Hqc uses implicit rejection, whereas
round-3 Hqc uses explicit rejection.

5 Also a few notions for Classic-McEliece and Ml-Kem remain without analysis.

3

either FO ̸⊥ or FO ̸⊥
m. An overview of the results is provided in Table 1 and further

illustration is given in Fig. 1. Further, we complete the binding analysis of the
NIST round-4 KEMs6 with the results being depicted in Table 2.

Regarding FO ̸⊥-KEMs, we show the following. Firstly, for FO ̸⊥-KEMs, we
prove equivalence between HON-BIND-K-PK and the (generally weaker) notion
HON-BIND-K,CT-PK.7 This allows us to then leverage [GMP22, Theorem 6],
which provides requirements for FO ̸⊥-KEMs to achieve HON-BIND-K,CT-PK.
The core requirement is that the underlying PKE scheme needs to satisfy a weak
form of collision-freeness, called SCFR-CPA. Secondly, we formalize a prop-
erty of the underlying PKE scheme, called restricted non-regidity, such that
the KEM (resulting from applying the FO ̸⊥ transform) is vulnerable with re-
spect to any of the four notions LEAK-BIND-K-PK, LEAK-BIND-K,CT-PK,
MAL-BIND-K-PK, and MAL-BIND-K,CT-PK. For the latter two we also give
another attack that does not impose any requirement on the underlying en-
cryption. Thirdly, we show that FO ̸⊥-KEMs do achieve MAL-BIND-K-CT and
MAL-BIND-K,PK-CT security—again not relying on any requirements for the
underlying encryption.

We further show that these results can be applied to the code-based KEM
Bike [ABB+22], as it applies the FO ̸⊥ transform. For the code-based scheme
Hqc [AAB+22] some of the binding notions require a dedicated analysis due
to Hqc using a modified variant of the FO ̸⊥ transform. Resulting from this,
we observe that Hqc achieves only the HON variants of the notions under
consideration, but none of the LEAK or MAL ones, i.e., only 4 out of 12 no-
tions. Next to this, we also describe a slight modification to Hqc, resulting in
a scheme we call Hqc∗, which provides more binding security than Hqc. More
precisely, we observe that the general FO ̸⊥ results can be applied not only for
Bike but also for Hqc∗, i.e., it follows from the existing and our new results
that both schemes fulfill 8 out of 12 notions. On the positive side, we show
that the PKE schemes underlying Bike and Hqc∗ achieve SCFR-CPA secu-
rity which—by [GMP22, Theorem 6]—yields that the resulting KEMs achieve
HON-BIND-K,CT-PK. As we prove equivalence between HON-BIND-K-PK and
HON-BIND-K,CT-PK for FO ̸⊥-KEMs, this entails that Bike and Hqc∗ achieve
both HON notions. On the negative side, we show that they do not achieve
any of the remaining four notions (MAL-BIND-K-PK, MAL-BIND-K,CT-PK,
LEAK-BIND-K-PK, and LEAK-BIND-K,CT-PK). This is the case as the un-
derlying PKEs fulfill restricted non-rigidity, hence our generic attack for schemes
with that property is applicable.

Regarding FO ̸⊥
m-KEMs, we have the following results. We show that FO ̸⊥

m-
KEMs do achieve MAL-BIND-K,PK-CT security while they do not achieve
MAL-BIND-K,CT-PK security. However, we have a positive result with respect
to LEAK-BIND-K,CT-PK (and hence HON-BIND-K,CT-PK) based on an ad-
ditional requirement of the underlying encryption scheme which is achieved by
the encryption schemes underlying Bike and Hqc. Furthermore, we prove that

6 Additionally, we provide results forMl-Kem regarding the two open binding notions.
7 In fact, we also prove this for the corresponding LEAK notions.

4

Table 1: Overview of our results for the binding notions of implicitly-rejecting
KEMs obtained via either of the two FO ransforms. Positive results are marked
with ✓ while negative ones are marked with ✗; an asterix, i.e., ✓∗/✗∗, indicates
that an result (either positive or negative) relies on some mild assumptions.
Results from this work are marked blue while results from prior works, i.e.,
Theorem 6, Theorem 7, Theorem 8, and Theorem 9, are marked gray.

General Notion Notion FO ̸⊥ FO ̸⊥
m

X-BIND-K-PK
MAL-BIND-K-PK ✗ Cor. 19 ✗ Thm. 9

LEAK-BIND-K-PK ✗∗ Cor. 13 ✗ Thm. 9
HON-BIND-K-PK ✓∗ Cor. 15 ✗ Thm. 9

X-BIND-K,CT-PK
MAL-BIND-K,CT-PK ✗ Thm. 18 ✗ Thm. 18

LEAK-BIND-K,CT-PK ✗∗ Thm. 12 ✓∗ Thm. 20
HON-BIND-K,CT-PK ✓∗ Thm. 6 ✓∗ Cor. 21

X-BIND-K-CT
MAL-BIND-K-CT ✓ Thm. 16 ✗ Thm. 9

LEAK-BIND-K-CT ✓ Thm. 7 ✗ Thm. 9
HON-BIND-K-CT ✓ Thm. 7 ✗ Thm. 9

X-BIND-K,PK-CT
MAL-BIND-K,PK-CT ✓ Cor. 17 ✓ Thm. 24

LEAK-BIND-K,PK-CT ✓ Thm. 7 ✓ Thm. 9
HON-BIND-K,PK-CT ✓ Thm. 7 ✓ Thm. 9

HON-BIND-K-PK and HON-BIND-K,CT-PK (and their corresponding LEAK-
variants LEAK-BIND-K-PK and LEAK-BIND-K,CT-PK) are not equivalent
which is in contrast to FO ̸⊥-KEMs, where we show this to be the case.

1.2 Related Work

The binding properties generalize the concept of robust encryption, which can be
traced back to [ABN10] and ensures that it is hard for an adversary to produce
a ciphertext that is valid under more than one key. Robust encryption plays
a key role for achieving anonymity of public-key encryption. Anonymity was
introduced in [BBDP01] and captures the idea that an adversary, who obtains
a ciphertext, cannot distinguish which key was used to generate said ciphertext.

Grubbs et al. [GMP22] and Xagawa [Xag22] studied the anonymity and ro-
bustness of post-quantum secure KEMs: the former analyzed robustness for
three NIST finalists (Classic-McEliece [ABC+20], Saber [DKR+20], and
Kyber [SAB+20], and) and one alternate candidate (FrodoKem [NAB+20]);
the latter analyzed the anonymity for all round-3 KEMs.

Cremers et al. [CDM23] provide a framework covering various binding no-
tions for KEMs which subsumes existing robustness properties. Similar prop-
erties were introduced in [BCDD+24] and [AHK+22] which are covered by the

5

MAL-BIND-K-PK
FO ̸⊥: ✗ Corollary 19

FO ̸⊥
m: ✗ Theorem 9

MAL-BIND-K,CT-PK
FO̸⊥: ✗ Theorem 18

FO ̸⊥
m: ✗ Theorem 18

LEAK-BIND-K-PK
FO ̸⊥: ✗∗

Corollary 13

FO ̸⊥
m: ✗ Theorem 9

LEAK-BIND-K,CT-PK
FO ̸⊥: ✗∗

Theorem 12

FO̸⊥
m: ✓∗

Theorem 20

HON-BIND-K-PK
FO ̸⊥: ✓∗

Corollary 15

FO ̸⊥
m: ✗ Theorem 9

HON-BIND-K,CT-PK
FO ̸⊥: ✓∗

Theorem 6

FO ̸⊥
m: ✓∗

Corollary 21

MAL-BIND-K-CT
FO ̸⊥: ✓ Theorem 16

FO ̸⊥
m: ✗ Theorem 9

MAL-BIND-K,PK-CT
FO ̸⊥: ✓ Corollary 17

FO ̸⊥
m: ✓ Theorem 24

LEAK-BIND-K-CT
FO ̸⊥: ✓ Theorem 7

FO ̸⊥
m: ✗ Theorem 9

LEAK-BIND-K,PK-CT
FO ̸⊥: ✓ Theorem 7

FO ̸⊥
m: ✓ Theorem 9

HON-BIND-K-CT
FO ̸⊥: ✓ Theorem 7

FO ̸⊥
m: ✗ Theorem 9

HON-BIND-K,PK-CT
FO ̸⊥: ✓ Theorem 7

FO ̸⊥
m: ✓ Theorem 9

FO̸⊥

Thm. 14

FO ̸⊥

Thm. 14

FO
̸⊥
m

Cor. 23

FO̸
⊥
m

Cor. 23

Fig. 1: Overview of the 12 binding notions for key-encapsulation mechanisms
with their implications. For each notion, we state whether it is achieved (✓) or
not achieved (✗) by FO ̸⊥ or FO ̸⊥

m. If the result relies on an extra consition, it
is indicated by an asterix (✓∗/✗∗). Results from this work are marked in blue
while results from prior works, i.e., Theorem 6, Theorem 7, Theorem 8, and
Theorem 9 are marked in gray. Arrows indicate implications while crossed arrow
denote separations.

general framework from [CDM23]. Besides the introduction of the framework,
Cremers et al. [CDM23] also cover a (partial) analysis of Kyber, FrodoKem,
Classic-McEliece, and Ml-Kem. For the latter, Ml-Kem, Schmieg [Sch24]
analyzed some of the strongest binding notions.

2 Background

This section provides the necessary background for this work. Section 2.1 de-
scribes the notation used throughout. The definitions for public-key encryption
(PKE) schemes and key-encapsulation mechanisms (KEM) are given in Sec-
tion 2.2 while the Fujisaki-Okamoto transform to turn a PKE into a KEM is
described in Section 2.3. The various binding notions covered in this work appear
in Section 2.4.

2.1 Notation

For a set S, s ← $ S denotes that a uniform random element from S is chosen
and assigned to s. For a distribution D, we write x ← D to indicate that x ist

6

Table 2: Binding security of the round-4 KEMs Bike, Hqc, and
Classic-McEliece, as well as Ml-Kem.

Notion Bike Hqc / Hqc∗ Cl-McEliece Ml-Kem

MAL-BIND-K-PK ✗ ✗ / ✗ ✗ ✗

LEAK-BIND-K-PK ✗ ✗ / ✗ ✗ ✓

HON-BIND-K-PK ✓ ✓ / ✓ ✗ ✓

MAL-BIND-K,CT-PK ✗ ✗ / ✗ ✗ ✗

LEAK-BIND-K,CT-PK ✗ ✗ / ✗ ✗ ✓

HON-BIND-K,CT-PK ✓ ✓ / ✓ ✗ ✓

MAL-BIND-K-CT ✓ ✗ / ✓ ✓ ✗

LEAK-BIND-K-CT ✓ ✗ / ✓ ✓ ✓

HON-BIND-K-CT ✓ ✓ / ✓ ✓ ✓

MAL-BIND-K,PK-CT ✓ ✗ / ✓ ✓ ✓

LEAK-BIND-K,PK-CT ✓ ✗ / ✓ ✓ ✓

HON-BIND-K,PK-CT ✓ ✓ / ✓ ✓ ✓

drawn according to D. For a randomized algorithm Alg, we write y ←$Alg(x)
to denote that y is the output of Alg on input x. Often we will be explicit
about the random coins of Alg in which case we write y ← Alg(x; r) (this
means that y ← $ Alg(x) picks uniformly random coins r and computes y ←
Alg(x; r)). Throughtout this work, we consider the security parameter λ implicit
and will hence not write it as an explicit input for algorithms. Whenever we write
adversary A, it means an algorithm that runs in polynomial-time in the security
parameter and security wrt to any notion means that an adversary succeeds at
most with negligible probability in the security parameter. For some security
notions (those of the form MAL-BIND-P-Q), the security game is a two-stage
game for which we assume that the adversaries share an implicit state.

2.2 Public-Key Encryption and Key-Encapsulation Mechanisms

Below we give the definitions for public-key encryption and key-encapsulation
mechanisms.

Definition 1. A public-key encryption scheme Pke consists of three algorithms
KeyGen, Enc, and Dec, where

KeyGen() is the key generation algorithm that outputs a key pair consisting of
a public key pk and a secret key sk.

Enc(pk,m) is the encryption algorithm which takes as input a public key pk
and a message m, and outputs a ciphertext c.

7

Dec(sk, c) is the decryption algorithm which takes as input a secret key sk and
a ciphertext c, and outputs a message m (or a special failure symbol ⊥).

Definition 2. A key-encapsulation mechanism (KEM) Kem is a triple of three
algorithms (KeyGen,Encaps,Decaps) where

KeyGen() is the key generation algorithm that outputs a key pair consisting of
a public key pk and a secret key sk.

Encaps(pk) is the encapsulation algorithm which takes as input a public key
pk, and outputs a ciphertext c and an encapsulated key k.

Decaps(sk, c) is the decapsulation algorithm which takes as input a secret key
sk and a ciphertext c, and outputs a key k (or a special failure symbol ⊥).

We writeM for the message space of a public-key encryption scheme, which—for
FO-KEMs that we consider in this work—coincides with the randomenss space
of a key-encapsulation mechanism. As mentioned above, we will typically be
explicit about the random coins. This entails that we write c ← Enc(pk,m; r)
to indicate that c is deterministically computed via the encryption algorithm
using r as random coins. Likewise, we write (c, k) ← Encaps(pk; r) to indicate
that (c, k) is deterministically computed via the encapsulation algorithm using
random coins r.

We assume that the public-key space is superpolynomial and that the PKE
schemes and KEMs are correct with overwhelming probability, i.e., for honestly
generated ciphertexts, Dec and Decaps return the correct message m and key
k with overwhelming probability, respectively. We further assume, for both PKE
schemes and KEMs, that the public key pk can be derived from the correspond-
ing secret key sk—for honestly generated key-pairs. This is in line with the
requirement by NIST. We note that the theoretical analysis then allows the at-
tacker to maliciously choose the actual public key different from the public key
contained in the secret key; in practice, however, (part of) the public key is often
computed from a shorter seed and the secret key will only contain this seed but
not the whole public key.

2.3 The Fujisaki-Okamoto Transform

The Fujisaki-Okamoto transform [FO99] turns a weakly secure public-key en-
cryption scheme into a strongly secure public-key encryption scheme. A variant
which transform a PKE scheme into a KEM was first given by Dent [Den03]. In
this work, we consider the modular versions of it given in [HHK17]. Here, the
transform is composed of two transforms: T and U. The former (transform T)
derandomizes a public-key encryption scheme by deriving the random coins used
for encryption from the message. To validate ciphertexts, the decryption addi-
tionally checks if re-encrypting a decrypted ciphertext results in the same cipher-
text. The latter (transform U) transforms a derandomized public-key encryption
scheme into a KEM. Here, a random message is chosen and encrypted using the
derandomized PKE scheme resulting in a ciphertext. The shared key is obtained

8

Table 3: Overview about the computation of the shared key for the different
variants of the FO transform.

Implicit Explicit

FO̸⊥ FO ̸⊥
m FO⊥ FO⊥

m

m ̸= ⊥ HU(m, c) HU(m) HU(m, c) HU(m)
m = ⊥ HU(σ, c) HU(σ, c) ⊥ ⊥

by hashing the random message (and this ciphertext). For an FO-KEM, the ran-
domness is a message for the underlying PKE scheme, hence we will typically
write Kem.Encaps(pk;m) instead of Kem.Encaps(pk; r). Transform U comes
in four different variants U̸⊥,U ̸⊥

m, U⊥, and U⊥
m, where the first two are using im-

plicit rejection while the latter two use explicit rejection. The differences between
these variants, i.e., how the shared key k is computed conditioned on decryption
succeeding or failing, can be seen in Table 3. Composing the T transform with
the four variants of the U transform, yields the four FO variants FO ̸⊥, FO̸⊥

m,
FO⊥, and FO⊥

m.
The FO ̸⊥ transform is currently the most commonly used variant, being de-

ployed by all of the round-4 NIST KEMs—in particular by Bike and Hqc8,
which we will consider in Section 4. This variant (decomposed into the two un-
derlying transforms T and U ̸⊥) is shown in Fig. 2 along with the FO ̸⊥

m transform
(decomposed into the two underlying transforms T and U ̸⊥

m).
However, during the course of the NIST standardization process, also other

FO-variants were used in the submitted KEMs. LedaCrypt [BBC+19] and
Nts-Kem [ACP+19] both relied on FO ̸⊥

m, while Hqc in round-3 used FO⊥. In
view of the trend towards implicit rejection, we mainly focus on FO ̸⊥

m and FO ̸⊥

in this paper.
The security of the FO transform relies on HT and HU to be random oracles.

Our results rely on the same assumption and throughout this work, we model
HT and HU as random oracles without explicitly stating it each time.

2.4 Binding Properties of Key-Encapsulation Mechanisms

Cremers et al. [CDM23] developed a framework for binding properties of KEMs.
Binding notions in this framework are of the form X-BIND-P-Q. Here, P and
Q describe which elements (P) are binding which other elements (Q) and X ∈
{MAL,LEAK,HON} determines the adversary model, more precisely, how the
keys are selected.9 The generic binding security game X-BIND-P-Q is shown

8 Note, however, that Hqc deploys a modified FO̸⊥ version.
9 A fourth case was introduced by Fiedler and Günther [FG24]. In this case, dubbed
LEAK+, the adversary is not provided with the key-pairs but the randomness used
to generate those; this puts it between LEAK and MAL.

9

Pke̸ $.KeyGen()

(pk, sk)← KeyGen()

return (pk, sk)

Pke̸ $.Enc(pk,m)

c← Enc(pk,m;HT(m))

return c

Pke̸ $.Dec(sk, c)

m← Dec(sk, c)

c← Enc(pk,m;HT(m))

if c ̸= c

return ⊥
return m

KeyGen ̸⊥()

(pk, sk)← KeyGen()

σ ←$M

sk ̸⊥ ← (sk, σ)

return (pk, sk ̸⊥)

Encaps(pk)

m←$M
c← Pke̸ $.Enc(pk,m)

k ← HU(m, c) // U̸⊥

k ← HU(m) // U̸⊥
m

return (c, k)

Decaps(sk ̸⊥, c)

(sk, σ)← sk ̸⊥

m← Pke̸ $.Dec(sk, c)

if m ̸= ⊥
return HU(m, c) // U̸⊥

return HU(m) // U̸⊥
m

return HU(σ, c)

Fig. 2: Top: The derandomized PKE scheme Pke̸ $ = T[Pke,HT] constructed
from a PKE scheme Pke and a random oracle HT. Bottom: The implicitly-
rejecting KEMs U̸⊥[Pke̸ $,HU] and U ̸⊥

m[Pke̸ $,HU].

in Fig. 3.10 For implicitly-rejecting KEMs, there are twelve binding notions:
X-BIND-K-PK, and X-BIND-K,CT-PK (cf. Fig. 4) as well as X-BIND-K-CT
and X-BIND-K,PK-CT (cf. Fig. 5) for X ∈ {HON, LEAK, MAL}. The relations
between the notions are described in Fig. 1. Below we define security wrt the
various binding notions.

Definition 3. Let Kem be a key-encapsulation mechanism. Further consider
X ∈ {HON, LEAK, MAL}, P ∈ {{K}, {K,CT}}, and the game X-BIND-P-PK
defined in Fig. 3. We say that Kem achieves X-BIND-P-PK if for any adversary
A, its probability in winning X-BIND-P-PK is negligible.

Remark 4. In the formalization of the MAL notions by Cremers et al. [CDM23],
the adversary has to output two key pairs (pk, sk) and (pk, sk) and either (I)
two ciphertexts c and c or (II) a randomness r and a ciphertext c or (III) two
randomnesses r and r. Depending on the outputs, either Encaps or Decaps
is used by the game. Schmieg [Sch24] has shown a generic attack against this
formalization which exploited the fact that the public keys output by A were
not actually used by the game when the adversary outputs two ciphertext. More
precisely, the game made use of the public key that is contained in the secret
key whereas the actual public key is essentially obsolete. In an updated version,
Cremers et al. [CDM23] formulated an explicit assumption stating that the de-
capsulation algorithm does not ignore the public key and use the provided public

10 SCFR-CCA and SROB-CCA from [GMP22] correspond to HON-BIND-K,CT-PK
and HON-BIND-CT-PK, respectively, in the framework from [CDM23].

10

key if needed, e.g., for re-encryption as done for FO-KEMs. We opt for a differ-
ent, yet equivalent formalization: The adversary outputs either the secret key or
the public key of a key pair, but never both at the same time. More precisely,
for the different variants in the MAL games (see Fig. 3), the outputs are (I) sk,
sk; (II) pk, sk; and (III) pk, pk. Since we assume that the secret key contains
the public key, the re-encryption step during decapsulation is still possible. At
the same time Schmieg’s attack cannot be applied anymore as the adversary is
not able to provide a secret key (containing a public key) and a contradicting
second public key.

For some of our results, we need certain requirements for the underlying PKE
scheme. More precisely, we require a form of collision-freeness which we establish
in three different variants: SCFR-CPA, SCFR-CCA, and SCFR-LEAK as defined
below. Note that SCFR-CPA and SCFR-CCA were introduced in [GMP22],
while SCFR-LEAK is a new notion introduced in this work.11

Definition 5. Consider the games SCFR-CPA, SCFR-CCA, and SCFR-LEAK
as defined in Fig. 6. We call a public-key encryption scheme Pke SCFR-CPA,
SCFR-CCA, and SCFR-LEAK secure, if for any adversary its probability of
winning the corresponding game is negligible.

In the following we recall some existing results. The first one by Grubbs et
al. [GMP22] establishes HON-BIND-K,CT-PK security for KEMs via the FO ̸⊥

transform assuming SCFR-CPA security of the underlying (derandomized) PKE
scheme. The other two are general results about implicitly-rejecting FO trans-
forms given by Cremers et al. [CDM23].

Theorem 6 (Adapted from [GMP22, Theorem 6]). Let Pke be a PKE
scheme that has negligible decryption errors and HT and HU be random oracles.
If Pke̸ $ = T[Pke,HT] is SCFR-CPA secure, then Kem ̸⊥ = FO ̸⊥[Pke,HT,HU]
is HON-BIND-K,CT-PK secure.

Theorem 7 (Adapted from [CDM23, Theorem D.1]). Let Pke be a PKE
scheme and HT and HU be random oracles. Then Kem ̸⊥ = FO ̸⊥[Pke,HT,HU] is
LEAK-BIND-K-CT secure.

Theorem 8 ([CDM23, Theorem 4.11]). An implicitly-rejecting KEM Kem
cannot be HON-BIND-CT-PK or HON-BIND-CT-K secure.

Theorem 9 (Adapted from [CDM23, Section B.4]). Let Pke be a PKE
scheme and HT and HU be random oracles. Then Kem ̸⊥

m = FO ̸⊥
m[Pke,HT,HU] is

LEAK-BIND-K,PK-CT secure, but insecure with respect to HON-BIND-K-CT
and HON-BIND-K-PK.

Remark 10. Note that [CDM23, Section B.4] also contains a positive result for
the LEAK-BIND-K,CT-PK security of FO ̸⊥

m-KEMs. However, a part of the proof

11 Note that the PKE schemes underlying Bike and Hqc fulfill the new notion
SCFR-LEAK (see Remark 32).

11

Game X-BIND-P-Q

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

if PK ∈ P :

(pk, sk)← (pk, sk)

if X = HON :

(c, c)← A
Dec,Dec(pk, pk)

if X = LEAK :

(c, c)← A(pk, sk, pk, sk)

k ← Decaps(sk, c)

k ← Decaps(sk, c)

if k = ⊥ ∨ k = ⊥ :

return 0

vp ← (∀p ∈ P : xp = xp)

vq ← (∃q ∈ Q : xq ̸= xq)

return vp ∧ vq

Game MAL-BIND-P-Q

g ← A()

if g = 1 : // Variant (I): Decaps-Decaps

(sk, sk, c, c)← A()

k ← Decaps(sk, c)

k ← Decaps(sk, c)

if g = 2 : // Variant (II): Encaps-Decaps

(pk, sk, r, c)← A()

(k, c)← Encaps(pk; r)

k ← Decaps(sk, c)

if g /∈ {1, 2} : // Variant (III): Encaps-Encaps

(pk, pk, r, r)← A()

(k, c)← Encaps(pk; r)

(k, c)← Encaps(pk; r)

vp ← (∀p ∈ P : xp = xp)

vq ← (∃q ∈ Q : xq ̸= xq)

return vp ∧ vq

Fig. 3: Generic security games for the notions X-BIND-P-Q and MAL-BIND-P-Q
for P = {K,CT, (K,CT), (K,PK)}, Q = {PK,K,CT}, and X ∈ {HON,LEAK}.
Note that for p ∈ P (and q ∈ Q), we denote the corresponding instances by xp,
xp (and xq, xq, respectively). For example, if p = CT, we have xp = c and xp = c.
For variant (I) and (II) of the MAL notions, it is understood that any check of
the form pk ▷◁ pk, for ▷◁ ∈ {=, ̸=} is performed on the public keys contained in
the respective secret keys sk and sk. We refer to Remark 4 for more details. The
decryption oracles Dec and Dec in case of X = HON are omitted and work in
the obvious way (without any restrictions) using sk and sk, respectively.

is based on a conjecture and left open for future work—this is why we do not
include the result in Theorem 9. Further details on this are provided in Sec-
tion 3.5.

3 General Analysis of Implicitly-Rejecting FO

In this section, we give general results about the binding security of implicitly-
rejecting FO-KEMs, i.e., FO ̸⊥ and FO ̸⊥

m. Section 3.1 and Section 3.2 cover the no-
tions of the form X-BIND-K,CT-PK and X-BIND-K-PK. Section 3.3 completes
the picture by showing MAL-BIND-K-CT and MAL-BIND-K,PK-CT security
for FO ̸⊥. Section 3.4 presents several MAL-BIND-P-Q attacks for both FO ̸⊥ and
FO ̸⊥

m. Section 3.5 covers notions of the form X-BIND-K,CT-PK for FO ̸⊥
m and

Section 3.6 notions of the form X-BIND-K,PK-CT.

12

Game HON-BIND-K,CT-PK

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

(c, c)← A
Dec,Dec(pk, pk)

k ← Decaps(sk, c)

k ← Decaps(sk, c)

return k = k ∧ pk ̸= pk ∧ c = c

Game LEAK-BIND-K,CT-PK

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

(c, c)← A(pk, sk, pk, sk)

k ← Decaps(sk, c)

k ← Decaps(sk, c)

return k = k ∧ pk ̸= pk ∧ c = c

Game MAL-BIND-K,CT-PK

g ← A()

if g = 1 : // Variant (I): Decaps-Decaps

(sk, sk, c, c)← A()

k ← Decaps(sk, c)

k ← Decaps(sk, c)

if g = 2 : // Variant (II): Encaps-Decaps

(pk, sk, r, c)← A()

(k, c)← Encaps(pk; r)

k ← Decaps(sk, c)

if g /∈ {1, 2} : // Variant (III): Encaps-Encaps

(pk, pk, r, r)← A()

(k, c)← Encaps(pk; r)

(k, c)← Encaps(pk; r)

return k = k ∧ pk ̸= pk ∧ c = c

Fig. 4: Security games HON-BIND-K-PK, HON-BIND-K,CT-PK,
LEAK-BIND-K-PK, LEAK-BIND-K,CT-PK, MAL-BIND-K-PK, and
MAL-BIND-K,CT-PK. The variants involving the ciphertext include the
highlighted statements (in which case we slightly abuse the syntax by letting A

only output a single ciphertext c), the others do not.

3.1 LEAK-BIND-K,CT-PK Attack for FO ̸⊥

Below we define a property of public-key encryption schemes needed for our
results. It bears similarities with the rigidity property [BP18], where it is checked
whether decrypting a ciphertext and then re-encrypting the resulting message
will return the same ciphertext. However, in the definition below, we consider
the negated version (non-rigidity) and add a further restriction: we consider
only ciphertexts obtained from an honest encryption with a public key that is
different from the one used for the actual non-rigidity check. This is why we call
the property restricted non-rigidity.

Rigidity was initially introduced for the T transform underlying the FO trans-
form. This transformation derandomized a PKE scheme by deriving the random
coins as the hash of the message. Looking ahead, we will need this property not
only for the T transform but also a modified version used by Hqc. Hence, in
the following we define the property for an abstract transformation but one can
simply think of the T transform for now.

Definition 11. Let Pke be a PKE scheme and X be a transformation. We say
that Pke fulfills X-restricted non-rigidity (or Pke is X-restricted non-rigid) if
for two honestly generated key pairs (pk, sk), (pk, sk), a randomly chosen mes-

13

Game HON-BIND-K,PK-CT

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

(pk, sk)← (pk, sk)

(c, c)← A
Dec,Dec(pk, pk)

k ← Decaps(sk, c)

k ← Decaps(sk, c)

return k = k ∧ c ̸= c ∧ pk = pk

Game LEAK-BIND-K,PK-CT

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

(pk, sk)← (pk, sk)

(c, c)← A(pk, sk, pk, sk)

k ← Decaps(sk, c)

k ← Decaps(sk, c)

return k = k ∧ c ̸= c ∧ pk = pk

Game MAL-BIND-K,PK-CT

g ← A()

if g = 1 : // Variant (I): Decaps-Decaps

(sk, sk, c, c)← A()

k ← Decaps(sk, c)

k ← Decaps(sk, c)

if g = 2 : // Variant (II): Encaps-Decaps

(pk, sk, r, c)← A()

(k, c)← Encaps(pk; r)

k ← Decaps(sk, c)

if g /∈ {1, 2} : // Variant (III): Encaps-Encaps

(pk, pk, r, r)← A()

(k, c)← Encaps(pk; r)

(k, c)← Encaps(pk; r)

return k = k ∧ c ̸= c ∧ pk = pk

Fig. 5: Security games HON-BIND-K-CT, HON-BIND-K,PK-CT,
LEAK-BIND-K-CT, LEAK-BIND-K,PK-CT, MAL-BIND-K-CT, and
MAL-BIND-K,PK-CT. The variants involving the public key include the
highlighted statements, the other do not.

sage m, and c←$ X[Pke].Enc(pk,m), we have

X[Pke].Dec(sk, c) = ⊥

with overwhelming probability.

The theorem below shows that applying FO̸⊥ to a PKE scheme that is X-
restricted non-rigid results in a KEM that is not LEAK-BIND-K,CT-PK. The
attack is conceptually very simple: the adversary takes the implicit-rejection-
value σ from one of the key pairs and honestly encapsulates it under the other
key pair, yielding a ciphertext c. By correctness c gets decapsulates to HU(σ, c)
(under the key pair which was used to honestly generate c). By non-rigidness
of the underlying PKE scheme, c gets rejected with overwhelming probability
under the other key pair, which, however, will result in the same output HU(σ, c).

Theorem 12. Let Pke be a public-key encryption scheme that is T-restricted
non-rigid and Kem ̸⊥ be the key-encapsulation mechanism obtained from applying
FO ̸⊥ to Pke. Then, Kem̸⊥ is not LEAK-BIND-K,CT-PK secure.

Proof. We construct a LEAK-BIND-K,CT-PK adversary A against Kem ̸⊥ as
follows. As input, A obtains honestly generated (pk, sk ̸⊥ = (sk, σ)), (pk, sk ̸⊥ =

14

Game SCFR-LEAK

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

c← A(pk, pk, sk, sk)

m← Dec(sk, c)

m← Dec(sk, c)

return m = m ̸= ⊥

Game SCFR-CCA

(pk, sk)←$ KeyGen()

(pk, sk)←$ KeyGen()

c← A
Dec,Dec(pk, pk)

m← Dec(sk, c)

m← Dec(sk, c)

return m = m ̸= ⊥

Oracle Dec(c)

k ← Decaps(sk, c)

return k

Oracle Dec(c)

k ← Decaps(sk, c)

return k

Fig. 6: Security games SCFR-LEAK and SCFR-CCA for PKEs. By removing
the decryption oracles in game SCFR-CCA, we obtain the game SCFR-CPA as
defined in [GMP22] and required for Theorem 6.

(sk, σ))←$ Kem̸⊥.KeyGen() and has to output c such that

Kem ̸⊥.Decaps(sk ̸⊥, c) = k = k = Kem ̸⊥.Decaps(sk ̸⊥, c) .

Note that we have pk ̸= pk with overwhelming probability. As a first step, A
sets m = σ where σ is the implicit rejection value from sk ̸⊥ and computes
an honest encapsulation of pk, using not a random message but m instead:
(c, k)← Kem ̸⊥.Encaps(pk;m). Then, A outputs c.

Below we argue that A wins the game LEAK-BIND-K,CT-PK with over-
whelming probability. Note first that k = HU(m, c) which follows by definition
of Pke.Encaps. Note further that Kem ̸⊥.Decaps(sk ̸⊥, c) = k holds with over-
whelming probability by correctness of Kem ̸⊥. For the remaining part of the
proof, we assume that the decryption of the base-PKE scheme does not return
⊥.12 Next, we show that c decapsulates to k under sk ̸⊥ as well: As the underlying
PKE scheme is T-restricted non-rigid, we have that

Pke.Enc(pk,m;HT(m)) ̸= c,

with overwhelming probability, for m = Pke.Dec(sk, c). Therefore, we get
T[Pke,HT].Dec(sk, c) = ⊥ and hence Kem̸⊥.Decaps(sk ̸⊥, c) = HU(σ, c). This
leads to

Kem̸⊥.Decaps(sk ̸⊥, c) = k = HU(m, c) = HU(σ, c) = Kem ̸⊥.Decaps(sk ̸⊥, c)

which shows that A wins the game LEAK-BIND-K,CT-PK. ⊓⊔

Corollary 13. Let Pke be a public-key encryption scheme that is T-restricted
non-rigid and Kem̸⊥ the key-encapsulation mechanism obtained from applying
FO ̸⊥ to Pke. Then Kem ̸⊥ is neither MAL-BIND-K-PK nor LEAK-BIND-K-PK
nor MAL-BIND-K,CT-PK secure.

12 Note that the decryption for Kyber.Pke never returns ⊥, while for Bike.Pke and
Hqc.Pke this is possible due to decoding failures.

15

3.2 HON-BIND-K-PK Security for FO ̸⊥

We establish a positive result for HON-BIND-K-PK security of FO ̸⊥. More pre-
cisely, we show that—for FO ̸⊥—HON-BIND-K-PK is in fact equivalent to the
generally weaker notion of HON-BIND-K,CT-PK. This effectively implies that
Theorem 6 also yields HON-BIND-K-PK security.

The following theorem establishes equivalence between HON-BIND-K-PK
and HON-BIND-K,CT-PK for FO ̸⊥-KEMs.

Theorem 14. Let Pke be a public-key encryption scheme and Kem̸⊥ the key-
encapsulation mechanism obtained from applying FO ̸⊥ to Pke. If Kem ̸⊥ is
X-BIND-K,CT-PK secure, then Kem̸⊥ is also X-BIND-K-PK secure for X ∈
{HON,LEAK}.

Proof. We give the proof in terms of X = HON and argue at the relevant parts
what changes for X = LEAK. We prove the claim by showing that if Kem ̸⊥

is not HON-BIND-K-PK secure, then it is also not HON-BIND-K,CT-PK se-
cure. More precisely, given a HON-BIND-K-PK adversary A, we construct a
HON-BIND-K,CT-PK adversary B as follows: B obtains (pk, pk), each of which
is part of an honestly generated key pair (pk, sk ̸⊥ = (sk, σ)), (pk, sk ̸⊥ = (sk, σ)).
B then calls the HON-BIND-K-PK adversary A against Kem ̸⊥ on input (pk, pk)
and simulates the decryption oracles for A using its own ones. When A outputs
(c, c), B in turn outputs c. For X = LEAK, B also gets the secret keys which B

sends to A; in this variant, there are no oracles that need to be simulated.
We assume that A wins the game HON-BIND-K-PK and show that then

the adversary B as constructed above wins the game HON-BIND-K,CT-PK,
except with negligible probability. As the keys are honestly generated, we can
assume that pk ̸= pk and sk ̸= sk, with overwhelming probability. Likewise,
we can assume that σ ̸= σ with overwhelming probability. A winning the game
HON-BIND-K-PK implies that

k = Kem ̸⊥.Decaps(sk ̸⊥, c) = Kem̸⊥.Decaps(sk ̸⊥, c) = k ,

for c and c (not necessarily equal) output by A. Let m = Pke̸ $.Dec(sk, c) and

m = Pke̸ $.Dec(sk, c). There are three cases to consider, depending on whether
the ciphertexts are valid or not. In all cases, the shared keys are computed as
k ← HU(·, c) and k ← HU(·, c); the mere difference is whether the first input is
the decrypted message (m or m) or the implicit rejection value (σ or σ). But
regardless of the first input—even in the LEAK case, when A knows both σ and
σ—we can deduce c = c as otherwise A has found a collision for HU. This yields
that also B is successful in winning HON-BIND-K,CT-PK which concludes the
proof. ⊓⊔

Note that the equivalence is limited to KEMs obtained via the FO ̸⊥ transform.
In general, the two notions are not equivalent. Cremers et al. [CDM23] showed a
separation between the notions for FO⊥

m. Looking ahead, our results for FO ̸⊥
m (cf.

Corollary 23) also yield the separation between the notions HON-BIND-K-PK

16

and HON-BIND-K,CT-PK as well as between the notions LEAK-BIND-K-PK
and LEAK-BIND-K,CT-PK.

As we show that the notions HON-BIND-K-PK and HON-BIND-K,CT-PK
are equivalent for FO ̸⊥-KEMs in the above theorem, we can leverage Theorem 6
to show HON-BIND-K-PK security: if the underlying PKE scheme is SCFR-CPA
secure, we get HON-BIND-K,CT-PK and thus HON-BIND-K-PK security for
the FO̸⊥ KEM. This is formalized in the following corollary.

Corollary 15. Let Pke be a public-key encryption scheme that has negligible
decryption failures and Kem ̸⊥ the key-encapsulation mechanism obtained from
applying FO ̸⊥ to Pke. If Pke̸ $ = T[Pke,HT] is SCFR-CPA secure, then Kem ̸⊥

is HON-BIND-K,CT-PK secure.

3.3 MAL-BIND-K-CT Security for FO ̸⊥

We show that KEMs obtained via the FO ̸⊥ transform are MAL-BIND-K-CT and
MAL-BIND-K,PK-CT secure.

Theorem 16. Let Pke be a public-key encryption scheme and Kem ̸⊥ the key-
encapsulation mechanism obtained from applying FO ̸⊥ to Pke. Then Kem ̸⊥ is
MAL-BIND-K-CT secure.

Proof. Let A be an adversary againg MAL-BIND-K-CT. Let c and c denote the
ciphertexts related to A’s output—which can either be direct outputs of A (in
case of the Decaps variant) or obtain from an honest encapsulation using the
public key and randomness output by A (in case of the Encaps variant). In order
to win, these ciphertexts must be distinct, i.e., c ̸= c while the encapsulated keys
must agree, i.e., k = k. However, by definition of FO ̸⊥ this yields HU(·, c) = k =
k = HU(·, c) which means that A would have found a collision for HU. ⊓⊔

The following corollary follows from the above theorem via the trivial implica-
tions.

Corollary 17. Let Pke be a public-key encryption scheme and Kem ̸⊥ the key-
encapsulation mechanism obtained from applying FO ̸⊥ to Pke. Then Kem̸⊥ is
MAL-BIND-K,PK-CT secure.

While these two results were claimed in an earlier version of [CDM23]13, the
current version claims that result only for LEAK-BIND-K,PK-CT. Our proof
agrees with the one in the earlier version; we give it for sake of completeness but
do not claim any novelty here.

13 The earlier version we are referring to is Version 1.0.6 which is available at
https://eprint.iacr.org/archive/2023/1933/20240403:091024.

17

https://eprint.iacr.org/archive/2023/1933/20240403:091024

3.4 MAL-BIND-K,CT-PK Attacks

We establish several negative results regarding MAL-BIND-K,CT-PK security
of FO ̸⊥ as well as FO ̸⊥

m. Given the hierarchy of the notions, this also establishes
negative results with respect to MAL-BIND-K-PK and MAL-BIND-CT-PK for
both FO ̸⊥ and FO ̸⊥

m. Schmieg [Sch24] shows that Ml-Kem does not achieve
MAL-BIND-K-PK security which leaves the possibility that it might achieve
MAL-BIND-K,CT-PK security (which is the generally weaker notion of the two).
We show, that their attack also applies to MAL-BIND-K,CT-PK and for any
KEM constructed via either FO ̸⊥ or FO ̸⊥

m. In the attack, the adversary generates
malicious secret keys that agree in their implicit rejection value. Then any in-
valid ciphertext (trivially obtained by randomly picking a ciphertext) results in
the same shared key for both secret keys an thus breaks MAL-BIND-K,CT-PK
security. This is formally stated in the theorem below.

Theorem 18. Let Pke be a public-key encryption scheme and Kem be the
key-encapsulation mechanism resulting from applying the implicitly-rejecting FO
transform (regardless of which of the two variants) to Pke. Then, Kem is not
MAL-BIND-K,CT-PK secure.

Proof. We give an adversary A for variant (I) Decaps-Decaps. Adversary A

first generates two key pairs for the underlying public-key encryption scheme,
i.e., (pk, sk), (pk, sk) ← $ KeyGen(). Furthermore, A samples σ ← $ M and
sets sk ̸⊥ ← (sk, σ) as well as sk ̸⊥ ← (sk, σ). Finally, A generates an arbi-
trary ciphertext c, sets c ← c and outputs (sk ̸⊥, sk ̸⊥, c, c). The ciphertexts
will be invalid (wrt both secret keys) with overwhelming probability, hence
Kem.Decaps(sk ̸⊥, c) = HU(σ, c) and Kem.Decaps(sk ̸⊥, c) = HU(σ, c). This
yields that A wins the game MAL-BIND-K,CT-PK. ⊓⊔

The following corollary follows directly from the above theorem. For Ml-Kem
the corollary is exactly what is shown in [Sch24].

Corollary 19. Let Pke be a public-key encryption scheme and Kem be the
KEM resulting from applying the implicitly-rejecting FO transform (regardless of
which of the two variants) to Pke. Then Kem is not MAL-BIND-K-PK secure.

3.5 LEAK-BIND-K,CT-PK Security for FO ̸⊥
m

In the following section, we show that FO ̸⊥
m achieves LEAK-BIND-K,CT-PK se-

curity if and only if the underlying derandomized PKE scheme achieves our new
notion SCFR-LEAK. In particular, this completes a claim made in [CDM23]: In
[CDM23, Appendix B.4] LEAK-BIND-K,CT-PK security of FO ̸⊥

m is reduced to
LEAK-BIND-K,CT-PK security of the explicitly-rejecting variant FO⊥

m. The lat-
ter is handled in [CDM23, Appendix B.2], which traces LEAK-BIND-K,CT-PK
security back to LEAK-BIND-CT-PK security of FO⊥

m. However, so far it is
only conjectured that FO⊥

m fulfills LEAK-BIND-CT-PK if the underlying PKE
fulfills some robustness property. Thus, the LEAK-BIND-K,CT-PK proof for

18

FO ̸⊥
m is not complete and we fill this gap resulting in Theorem 20. Further, we

make the robustness assumption on the PKE more precise (SCFR-LEAK) and
show that it is not only a sufficient but also a necessary condition for achieving
LEAK-BIND-K,CT-PK security (Theorem 22).

Theorem 20. Let Pke be a public-key encryption scheme, Pke̸ $ its derandom-
ized variante, and Kem ̸⊥

m the key-encapsulation mechanism obtained from apply-

ing FO ̸⊥
m. If Pke̸ $ is SCFR-LEAK secure, then Kem ̸⊥

m is LEAK-BIND-K,CT-PK
secure.

Proof. Assume for a contradiction that there is a successful adversary A against
LEAK-BIND-K,CT-PK: given two honestly generated key pairs (pk, sk ̸⊥ =
(sk, σ)), (pk, sk ̸⊥ = (sk, σ)) ← Kem̸⊥

m.KeyGen(), A outputs a ciphertext c
such that k = Kem ̸⊥

m.Decaps(sk ̸⊥, c) = Kem ̸⊥
m.Decaps(sk ̸⊥, c) = k. For m =

Pke̸ $.Dec(sk, c) and m = Pke̸ $.Dec(sk, c), we distinguish the following cases:

Case 1: m = ⊥ ∧m = ⊥ (both ciphertexts are invalid)
In this case, we have HU(σ, c) = k = k = HU(σ, c). Since the keys are honestly
generated, we have σ ̸= σ with overwhelming probability which entails that
A has found a collision for HU.

Case 2: m ̸= ⊥ ∧m = ⊥ (one ciphertext is invalid)14

In this case, we have HU(m) = k = k = HU(σ, c). Clearly, this yields a
collision as m ̸= (σ, c).

Case 3: m ̸= ⊥ ∧m ̸= ⊥ (both ciphertexts are valid)
In this case, we have HU(m) = k = k = HU(m). Assuming that A does
not find a collision, we can deduce m = m, however, this yields that the
ciphertext c also allows to win SCFR-LEAK against Pke̸ $ as it validly
decrypts to the same message under two different secret keys.

This concludes the proof. ⊓⊔

The following corollary follows directly from Theorem 20. Note, however, that
for the weaker notion HON-BIND-K,CT-PK, also the assumption SCFR-LEAK
can be relaxed to SCFR-CCA. The reason is that game HON-BIND-K,CT-PK
no longer grants the secret key but a decryption oracle to the adversary. Hence
the reduction merely needs access to a decryption oracle to simulate the view of
the adversary.

Corollary 21. Let Pke be a public-key encryption scheme, Pke̸ $ its derandom-
ized variante, and Kem ̸⊥

m the key-encapsulation mechanism obtained from apply-

ing FO ̸⊥
m. If Pke̸ $ is SCFR-CCA secure, then Kem ̸⊥

m is HON-BIND-K,CT-PK
secure.

Theorem 22. Let Pke be a public-key encryption scheme, Pke̸ $ its derandom-
ized variante, and Kem ̸⊥

m the key-encapsulation mechanism obtained from apply-

ing FO ̸⊥
m. If Kem ̸⊥

m is LEAK-BIND-K,CT-PK secure, then Pke̸ $ is SCFR-LEAK
secure.
14 Here we assume wlog that c is invalid.

19

Proof. Assume for a contradiction that Pke̸ $ is not SCFR-LEAK secure, i.e.,
there is an adversary A that obtains honestly generated key pairs (pk, sk),

(pk, sk) and outputs c s.t. Pke̸ $.Dec(sk, c) = m = m = Pke̸ $.Dec(sk, c) ̸= ⊥.
As m = m ̸= ⊥, we obtain that k = HU(m) = HU(m) = k. Then we can
construct an adversary B against Kem ̸⊥

m that simply outputs the ciphertext
c that A outputs (after providing A with the same key-pair it got from the
LEAK-BIND-K,CT-PK game minus the implicit rejection values σ and σ). Ad-
versary B is clearly also successful in winning LEAK-BIND-K,CT-PK which
contradicts the assumption that Kem ̸⊥

m is LEAK-BIND-K,CT-PK secure and
thus finishes the proof. ⊓⊔

The corollary below shows that—unlike for FO ̸⊥—the notions X-BIND-K-PK
and X-BIND-K,CT-PK are not equivalent (for X = HON and X = LEAK). This
follows from our positive result for X-BIND-K,CT-PK (Theorem 20) and the
the negative result for X-BIND-K,CT-PK (Theorem 9).

Corollary 23. There is a KEM Kem that is X-BIND-K,CT-PK secure but not
X-BIND-K-PK secure, for X ∈ {HON,LEAK}.

3.6 MAL-BIND-K,PK-CT Security for FO ̸⊥
m

We show that the FO ̸⊥
m transform achieves X-BIND-K,PK-CT security for X ∈

{HON,LEAK,MAL} which, together with Theorem 7, shows that these notions
are achieved for any implicitly-rejecting FO-KEM.

The theorem below shows that key-encapsulation mechanisms obtained via
the FO ̸⊥

m transform achieve MAL-BIND-K,PK-CT security. By hierarchy, this
implies security wrt LEAK-BIND-K,PK-CT and HON-BIND-K,PK-CT.

Theorem 24. Let Pke be a public-key encryption scheme and Kem ̸⊥
m the key-

encapsulation mechanism obtained from applying FO ̸⊥
m to Pke. Then Kem̸⊥

m is
MAL-BIND-K,PK-CT secure.

Proof. Note that for MAL-BIND-K,PK-CT, there are three different variants
to consider: (I) Decaps-Decaps, (II) Encaps-Decaps, and (III) Encaps-
Encaps. We give the proof for the first variant and subsequently argue why
it also covers the other two variants.

Adversary A needs to output two secret keys sk ̸⊥ = (sk, σ) and sk ̸⊥ = (sk, σ)
(it must hold that the implicitly contained public keys are distinct, i.e., pk =
pk) two distinct ciphertexts c ̸= c that result in the same shared key k when
decrypting under the respective secret keys. We can distinguish between the
following cases for the ciphertexts output by A, where m ← Pke̸ $.Dec(sk, c)

and m← Pke̸ $.Dec(sk, c):

Case 1: m = ⊥ ∧m = ⊥ (both ciphertexts are invalid)
In this case, we have HU(σ, c) = k = k = HU(σ, c). Even thought A has full
control over σ and σ, the fact that c ̸= c holds, implies that A has to find a
collision for HU;

20

Case 2: m ̸= ⊥ ∧m = ⊥ (one ciphertext is invalid)15

In this case, we obtain HU(m) = k = k = HU(σ, c). Clearly, this would also
entail a collision for HU;

Case 3: m ̸= ⊥ ∧m ̸= ⊥ (both ciphertexts are valid)
In this case, it holds that HU(m) = k = k = HU(m). We can deduce m = m
as otherwise, we would again have a collision for HT. However, in this case,
validity of both ciphertexts yield

c = Enc(pk,m;HT(m)) = Enc(pk,m;HT(m)) = c ,

where the second equality follows since both pk = pk and m = m, hence
yielding a contradicting to c ̸= c.

In the following, we argue that the above three cases also cover the other variants,
i.e., (II) Encaps-Decaps, and (III) Encaps-Encaps. In a nutshell, ifA provides
the randomness for Encaps instead of a ciphertext (and a public key instead of
a secret key), correctness of the KEM yield that the resulting ciphertext will be
valid, meaning that some of the above cases simply cannot occur.

For the Encaps-Decaps variant, A will output a message m from which the
ciphertext c← Kem̸⊥

m.Encaps(pk;m) is derived. By correctness of Kem ̸⊥
m, this

yields that c will be a valid ciphertext, hence excluding the first case above. For
the other two scenarios, the above argumentation can be applied.

For the Encaps-Encaps variant, A will output two messages m and m
from which the ciphertext will be derived as c ← Kem̸⊥

m.Encaps(pk;m) and
c← Kem ̸⊥

m.Encaps(pk;m), respectively. We thus get that both ciphertexts will
be valid by correctness, which means we merely need the final case from the
three above. This concludes the proof. ⊓⊔

The corollary below states that FO ̸⊥
m-KEMs achieve LEAK-BIND-K,PK-CT and

HON-BIND-K,PK-CT.

Corollary 25. Let Pke be a public-key encryption scheme and Kem̸⊥
m the key-

encapsulation mechanism obtained from applying FO ̸⊥
m to Pke. Then Kem ̸⊥

m is
LEAK-BIND-K,PK-CT and HON-BIND-K,PK-CT secure.

4 Application to BIKE and HQC

In this section, we analyze the binding properties of the round-4 KEMs Bike and
Hqc which are both based on codes. We first provide a description of the schemes
and the necessary background in Section 4.1. Subsequently, in Section 4.2, we
analyze the binding properties of Hqc and in Section 4.3, we do the same for
Bike and Hqc∗, where the latter is a modified version of Hqc introduced by
us in Section 4.1. While the modification is quite small, it results in improved
binding security compared to the original Hqc. Lastly, in Section 4.4 we give an
overview of the completed results for the round-4 KEMs and Ml-Kem.

15 Here we assume wlog that c is invalid.

21

4.1 Description of Bike and Hqc

Bike [ABB+22] is a round-4 KEM based on Quasi-Cyclic Moderate Density
Parity Check (QC-MDPC) codes. More precisely, Bike is obtained by instanti-
ating the Niederreiter scheme with QC-MDPC codes. Hence, the security can be
traced back to the quasi-cyclic variants of certain distinguishing problems from
coding theory. It results from applying the FO ̸⊥ transform to the public-key en-
cryption scheme Bike.Pke that is described in Fig. 7; the resulting KEM Bike
is depicted in Fig. 8.

Hqc [AAB+22] is a round-4 KEM based on quasi-cyclic codes and the hard-
ness of the syndrome decoding problem. The public-key encryption underlying
Hqc, Hqc.Pke, is displayed in Fig. 9; the key-encapsulation mechanism Hqc
that results from applying a variant of the FO ̸⊥ transform to Hqc.Pke is shown
in Fig. 10. This variant introduces a random salt salt to protect against multi-
ciphertext attacks. The salt is appended to the ciphertext, however, it is not part
of the key derivation. Another change involving the salt is that the randomness
for encryption is derived as HT(m ∥ pk ∥ salt) instead of HT(m). We describe
the modified transformation in Fig. 11.

Note that this deviation has significant impact, as several results for the FO ̸⊥

transform no longer hold due to this change. This is why we will give a separate
analysis forHqc in Section 4.2, covering a few positive but more negative results.
We also consider a slightly different version of Hqc, called Hqc∗, which achieves
more binding properties. It differs from Hqc in the fact that the salt is included
in the final computation of the shared key (see Fig. 10)—note that this is not
simply the result of applying FO ̸⊥ to the base PKE scheme underlying Hqc
due to the salt. Nevertheless, this small modification allows us to apply the
general results for the FO ̸⊥ transform, i.e., it suffices to check if the necessary
prerequisites are fulfilled. As same is the case for Bike, we analyze Bike and
Hqc∗ together in Section 4.3.

Lastly note that both Bike and Hqc sample certain key components using
a distribution that is not completely uniform, but close to it. For Bike this
affects the secret key components h0 and h1 and analogously for Hqc the secret
key components x and y. However, this does not have a relevant impact on
security for the proposed parameter sets for Bike [ABB+22, Section C.4] and
for Hqc [AAB+24, Section 5.3]—using techniques from Sendrier [Sen11,Sen21].
For sake of simplicity, we make the assumption that h0, h1,x, and y are uniformly
sampled for the following section.

4.2 Binding Security of Hqc

In this section, we analyze the binding security of Hqc. Since it is an implicitly-
rejecting KEM, there are 12 notions to be considered, which are depicted in
Fig. 1. As described in the previous section, Hqc does not apply the stan-
dard FO ̸⊥ transform. More precisely, for Hqc a ciphertext contains a salt value,
which (together with the message and public key) is used to derive the ran-
domness for the re-encryption approach. While the general attacks we give

22

Bike.KeyGen()

(h0, h1)←$Hw

h← h0h
−1
1

pk ← h

sk ← (h0, h1)

return (pk, sk)

Bike.Enc(pk,m)

(e0, e1)←$ Et
c0 ← e0 + e1h

c1 ← m⊕ HL(e0, e1)

c← (c0, c1)

return c

Bike.Dec(sk, c)

e← Decoder(c0h0, h0, h1)

if e = ⊥
m← ⊥

else

m← c1 ⊕ HL(e)

return m

Fig. 7: Public-key encryption scheme Bike.Pke. Here, Hw = {(h0, h1) ∈ R2 |
|h0| = |h1| = w/2} and Et = {(e0, e1) ∈ R2 | |e0|+|e1| = t} forR = F2[X]/(Xr−
1) and the Bike parameters w, r and t.

Bike.KeyGen()

(h0, h1)←$Hw

h← h0h
−1
1

σ ←$M
pk ← h

sk ← (h0, h1, σ)

return (pk, sk)

Bike.Encaps(pk)

m←$M
(e0, e1)← HH(m)

c0 ← e0 + e1h

c1 ← m⊕ HL(e0, e1)

c← (c0, c1)

k ← HU(m, c)

return (c, k)

Bike.Decaps(sk, c)

e← Decoder(c0h0, h0, h1)

m← c1 ⊕ HL(e)

if e = HH(m)

k ← HU(m, c)

else

k ← HU(σ, c)

return k

Fig. 8: Key-encapsulation mechanism Bike.

for FO ̸⊥-KEMs are still applicable16, the general proofs from Section 2 and
Section 3 cannot be transferred this easily. In fact, Hqc fulfills the notions
only in the HON setting, while it is insecure with respect to any of the no-
tions in the LEAK/MAL setting. Note that the notions X-BIND-K-CT and
X-BIND-K,PK-CT (for X ∈ {LEAK,MAL}) are achieved by any FO ̸⊥-KEM,
thus the modification of the FO ̸⊥ transform made by Hqc negatively affects the
results for the binding properties.

Attacking MAL/LEAK Binding Notions for Hqc. Firstly, all attacks
against X-BIND-K-PK and X-BIND-K,CT-PK for X ∈ {LEAK,MAL} still ap-
ply to Hqc. This is formulated in the following proposition.

Proposition 26. The key-encapsulation mechanism Hqc as shown in Fig. 10 is
insecure with respect to the following binding notions: LEAK-BIND-K,CT-PK,
LEAK-BIND-K-PK, MAL-BIND-K,CT-PK, and MAL-BIND-K-PK.

16 These results cover the general notions X-BIND-K-PK and X-BIND-K,CT-PK for
X ∈ {LEAK,MAL}. The attacks described for the FO ̸⊥ transform are still applicable
by choosing the salts contained in the ciphertexts output by the adversary to be
equal.

23

Hqc.KeyGen()

h←$R

G←$ Fk×n
2

x,y←$Rw ×Rw

s← x+ hy

pk ← (h, s)

sk ← (x,y)

return (pk, sk)

Hqc.Enc(pk,m)

(e, r1, r2)←$Rwe ×Rwr ×Rwr

u← r1 + hr2

v← Trunc(mG+ sr2 + e, ℓ)

c← (u,v)

return c

Hqc.Dec(sk, c)

m← Decoder(v − uy)

return m

Fig. 9: Public-key encryption scheme Hqc.Pke. Here, R = F2[X]/(Xn − 1) and
Rx = {v ∈ R with hamming weight x} for x ∈ {w,we, wr}; the latter are Hqc
parameters.

Hqc.KeyGen()

h←$R

G←$ Fk×n
2

x,y←$Rw ×Rw

σ ←$M
s← x+ hy

pk ← (h, s)

sk ← (x,y, σ)

return (pk, sk)

Hqc.Encaps(pk)

m←$ Fk
2

salt←$ F128
2

(e, r1, r2)← HT(m, pk, salt)

u← r1 + hr2

v← Trunc(mG+ sr2 + e, ℓ)

k ← HU(m, (u,v, salt))

c← (u,v, salt)

return (c, k)

Hqc.Decaps(sk, c)

m← Decoder(v − uy)

(e, r1, r2)← HT(m, pk, salt)

u← r1 + hr2

v← Trunc(mG+ sr2 + e, ℓ)

if (u,v) = (u,v)

k ← HU(m, (u,v, salt))

else

k ← HU(σ, (u,v, salt))

return k

Fig. 10: Key-encapsulation mechanismHqc. The modified versionHqc∗ includes
the highlighted parts, i.e., the entire ciphertext is hashed to compute the key k.

Proof. Insecurity with respect to LEAK-BIND-K,CT-PK follows easily from
Theorem 12 using the fact that Hqc.Pke fulfills THqc-restricted non-rigidity.
The latter is proven in Proposition 33, which covers Bike, Hqc, and the mod-
ified variant Hqc∗. While Theorem 12 is formulated for T, it directly trans-
fers to THqc. Then Hqc is also insecure wrt the notions LEAK-BIND-K-PK,
MAL-BIND-K,CT-PK, and MAL-BIND-K-PK by the established hierarchy.

The following theorem proves Hqc to be insecure with respect to the notion
LEAK-BIND-K,PK-CT, which is contrary to the results for FO ̸⊥. From this,
a number of other LEAK/MAL attacks follow, which is described in the ensu-
ing corollary. The overall attack idea follows the strategy of our attack against
LEAK-BIND-K,CT-PK for FO ̸⊥-KEMs (cf. Theorem 12): We construct an hon-
est ciphertext—using the implicit rejection value as the random message—and
create a second, invalid ciphertext by changing the salt value of the ciphertext.

24

Pke̸ $.KeyGen()

(pk, sk)← KeyGen()

return (pk, sk)

Pke̸ $.Enc(pk,m)

salt←$ S
r ← HT(m, pk, salt)

c← Enc(pk,m; r)

return (c, salt)

Pke̸ $.Dec(sk, (c, salt))

m← Dec(sk, c)

r ← HT(m, pk, salt)

c← Enc(pk,m;HT(r))

if c ̸= c

return ⊥
return m

KeyGen ̸⊥()

(pk, sk)← KeyGen()

σ ←$M

sk ̸⊥ ← (sk, σ)

return (pk, sk ̸⊥)

Encaps(pk)

m←$M

(c, salt)← Pke̸ $.Enc(pk,m)

k ← HU(m, c)

return ((c, salt), k)

Decaps(sk ̸⊥, (c, salt))

(sk, σ)← sk ̸⊥

m← Pke̸ $.Dec(sk, (c, salt))

if m ̸= ⊥
return HU(m, c)

return HU(σ, c)

Fig. 11: Top: The PKE scheme THqc[Pke]. Bottom: The implicitly-rejecting
KEM UHqc[THqc[Pke]].

Since the salt is not used to derive the key k, the valid and invalid ciphertexts
result in the same key.

Theorem 27. The key-encapsulation mechanism Hqc as shown in Fig. 10 is
not LEAK-BIND-K,PK-CT secure.

Proof. We construct the following LEAK-BIND-K,PK-CT adversary A against
Hqc. Its input is a key-pair (pk, sk ̸⊥ = (sk, σ)), where pk = (h, s) and sk =
(x,y), and it is supposed to output distinct ciphertexts c and c such that

Hqc.Decaps(sk ̸⊥, c) = k = k = Hqc.Decaps(sk ̸⊥, c) .

Adversary A first picks salt←$S, sets m← σ, and computes the ciphertext c =
(u,v, salt)← Hqc.Encaps(pk;m, salt). By construction, we have u = r1 +hr2
for (e, r1, r2) = HT(m, pk, salt). Next, A picks salt ← $ S\{salt}, and outputs
the two ciphertexts c← (u,v, salt) and c← (u,v, salt).

The two ciphertexts are distinct as we have salt ̸= salt. It remains to argue
that they result in the same key. By correctness, with overwhelming probability,
we have

k = Hqc.Decaps(sk ̸⊥, (u,v, salt)) = HU(m, (u,v)) .

Next, we consider the ouput of the decapsulation algorithm for the second cipher-
text (u,v, salt), i.e., Hqc.Decaps(sk ̸⊥, (u,v, salt)). We argue that the recom-
putation of the ciphertext-part (u,v) will fail with overwhelming probability. By

25

correctness, we get m = Decoder(v−uy) as the ciphertext was honestly gener-
ated and is decrypted (using the underlying base PKE Hqc.Pke) using the same
secret key. For the recomputation, the randomness (e, r1, r2) = HT(m, pk, salt)
is used which will be different from (e, r1, r2) = HT(m, pk, salt) as otherwise, A
would have found a collision for HT. In the following, we assume that (r1, r2) ̸=
(r1, r2), which can be easily achieved by letting A sample salt until that is the
case. Let (u,v) denote the recomputed ciphertext (using randomness (e, r1, r2))
This leads to

(u,v) = ((r1 + hr2),v) ̸= ((r1 + hr2),v) = (u,v) .

Thus the ciphertexts gets rejected by outputting k ← HU(σ, (u,v)). Using the
choice of m, we get k = HU(σ, (u,v)) = HU(m, (u,v)) = k which shows that
adversary A wins the game LEAK-BIND-K,PK-CT. ⊓⊔

The following corollary follows directly from the above theorem.

Corollary 28. The key-encapsulation mechanism Hqc as shown in Fig. 10 is
neither MAL-BIND-K-CT nor MAL-BIND-K,PK-CT nor LEAK-BIND-K-CT
secure.

Proving HON Binding Notions for Hqc. The theorem below shows that
Hqc achieves both HON-BIND-K-CT and HON-BIND-K-PK.

Theorem 29. Consider the key-encapsulation mechanism Hqc as shown in
Fig. 10. Then Hqc is both HON-BIND-K-CT and HON-BIND-K-PK secure.

Proof. We will start with HON-BIND-K-CT and subsequently explain how the
proof can be extended to also cover HON-BIND-K-PK.

Assume, for sake of contradiction, that there is an adversary A that wins the
game HON-BIND-K-CT, i.e., given two honestly generated key pairs (pk, sk ̸⊥)
and (pk, sk ̸⊥), with sk ̸⊥ = (sk, σ) and sk ̸⊥ = (sk, σ), it outputs c ̸= c such that
Hqc.Decaps(sk ̸⊥, c) = k = k = Hqc.Decaps(sk ̸⊥, c).

Firstly note that c ̸= c can be divided in the following cases:

(u,v) ̸= (u,v) ∧ salt ̸= salt

(u,v) ̸= (u,v) ∧ salt = salt

(u,v) = (u,v) ∧ salt ̸= salt

Independent of the fact whether the ciphertexts are rejected or not, the com-
putation of the keys includes (u,v) and (u,v), more precisely k = HU(·, (u,v))
and k = HU(·, (u,v)). As k = k, this implies that the first two cases written
above cannot occur, as otherwise the adversary would have found a collision for
HU.

17 This leaves us with the case that (u,v) = (u,v) and salt ̸= salt. Then,
we can distinguish between the following cases for the ciphertexts output by A

and m← Pke̸ $.Dec(sk, c), m← Pke̸ $.Dec(sk, c):

17 Note that this argument is essentially the proof of Theorem 7.

26

Case 1: m = ⊥ ∧m = ⊥ (both ciphertexts are invalid)

Then k = HU(σ, (u,v)) = HU(σ, (u,v)) = k, which implies σ = σ as other-
wise A would have found a collision for HU. However, the keys are honestly
generated, thus the randomly chosen rejection values will differ with over-
whelming probability.

Case 2: m ̸= ⊥ ∧m = ⊥ (one ciphertext is invalid)18

Then k = HU(m, (u,v)) = HU(σ, (u,v)) = k, which implies m = σ as
otherwise A would have found a collision for HU. However, m = σ can be
excluded with overwhelming probability, as A does not get σ and its only
access is via querying invalid ciphertexts to the decryption oracle in which
case the response will be the output of a random oracle on σ and the queried
ciphertext which also does not reveal σ.

Case 3: m ̸= ⊥ ∧m ̸= ⊥ (both ciphertexts are valid)

Then k = HU(m, (u,v)) = HU(m, (u,v)) = k, which implies m = m as oth-
erwise A would have found a collision for HU. In total A found c, c such that
Pke̸ $.Dec(sk, (u,v)) = Pke̸ $.Dec(sk, (u,v)) ̸= ⊥, however, this contra-
dicts the fact that Hqc is SCFR-CCA secure, which is proven in Proposi-
tion 31.19

As we have derived a contradiction in each case, HON-BIND-K-CT security for
Hqc is proven.

Next, consider B an adversary that wins the game HON-BIND-K-PK, i.e.,
given two honestly generated key pairs (pk, sk ̸⊥) and (pk, sk ̸⊥), with sk ̸⊥ =
(sk, σ) and sk ̸⊥ = (sk, σ), it outputs c and c such that Hqc.Decaps(sk ̸⊥, c) =
k = k = Hqc.Decaps(sk ̸⊥, c). Firstly, note that pk ̸= pk holds with overwhelm-
ing probability. We can distinguish two cases based on the ciphertexts output by
the adversary: Firstly, if c ̸= c, we are in the situation of the HON-BIND-K-CT
proof given above. Secondly, for c = c (this case is excluded in the notion
HON-BIND-K-CT considered above) we obtain (u,v) = (u,v) and salt = salt.
In the proof given above for HON-BIND-K-CT, we reduce to the case that
(u,v) = (u,v) and salt ̸= salt holds. This part of the proof, however, relies only
on the fact that (u,v) = (u,v)—at no point it is used that salt ̸= salt. This
allows to apply the same three cases as above here. This finishes the proof for
HON-BIND-K-PK. ⊓⊔

The corollary below follows directly using the hierarchy between the binding
notions.

Corollary 30. Consider the key-encapsulation mechanism Hqc as shown in
Fig. 10. Then Hqc is both HON-BIND-K,CT-PK and HON-BIND-K,PK-CT
secure.

18 Here we assume wlog that c is invalid.
19 More precisely, this proposition proves SCFR-CPA security, however, as is described

in Remark 32, this can easily be extended to SCFR-CCA.

27

4.3 Binding Security of Bike and Hqc∗

The fact that BIKE uses FO ̸⊥ already provides several results for different bind-
ing notions. While HQC* does not use FO, its variant is close enough that the
same results apply. However, for LEAK-BIND-K,CT-PK, LEAK-BIND-K-PK,
HON-BIND-K,CT-PK, and HON-BIND-K,CT-PK our results rely on additional
assumptions. To show an attack against the former two notions, we rely on
the T-restricted non-rigidity property while security with respect to the latter
two, requires the underlying T-transformed PKE scheme to achieve SCFR-CPA.
The two propositions below establish these properties for Bike and Hqc∗. Note
that the THqc-transformed PKEs underlying Hqc and Hqc∗ agree (we will use
Hqc.Pke as notation for both), i.e., the below results apply for both schemes.

Proposition 31. Consider the public-key encryption schemes Bike.Pke and
Hqc.Pke as shown in Fig. 7 and Fig. 9, respectively. The following statements
hold:

1. The PKE scheme T[Bike.Pke,HT] is SCFR-CPA secure.
2. The PKE scheme THqc[Hqc.Pke,HT] is SCFR-CPA secure.

Proof. We start with a general observation regarding the SCFR-CPA security
of a transformed PKE scheme. Subsequently, we cover the concrete cases for
Bike.Pke and Hqc.Pke. Consider an adversary A against X[Pke] that wins the
game SCFR-CPA. That means, given pk, pk, which stem from honestly generated
key pairs (pk, sk) and (pk, sk), A outputs c such that

m := X[Pke].Dec(sk, c) = X[Pke].Dec(sk, c) ̸= ⊥ . (1)

1. Since Bike deploys the T transform (cf. Fig. 2), Eq. (1) implies

Pke.Enc(pk,m;HT(m)) = c = Pke.Enc(pk,m;HT(m)) .

This translates to

(e0 + e1h,m⊕ HL(e0, e1)) = (e0 + e1h,m⊕ HL(e0, e1))

where pk = h, pk = h, and (e0, e1) is derived from HT(m). However, e0+e1h and
e0 + e1h differ with overwhelming probability as h and h are randomly sampled
during an honest key generation20, i.e., h ̸= h and thus e0 + e1h ̸= e0 + e1h
holds with overwhelming probability. This yields a contradiction and thus there
cannot be a successful SCFR-CPA adversary against Bike.
2. Since Hqc deploys the THqc transform (cf. Fig. 11) and c = (u,v, salt),
Eq. (1) implies

Pke.Enc(pk,m;HT(m, pk, salt)) = (u,v) = Pke.Enc(pk,m;HT(m, pk, salt)) .

This translates to:

(r1 + hr2,Trunc(mG+ sr2 + e, ℓ)) = (r1 + hr2,Trunc(mG+ sr2 + e, ℓ))

20 This holds by our assumption regarding the distribution D described in Section 4.1.

28

where pk = (h, s), pk = (h, s), and (e, r1, r2) is derived from HT(m, pk, salt).
We can distinguish between whether (r1, r2) = (r1, r2) or (r1, r2) ̸= (r1, r2). In
the first case, r1 + hr2 ̸= r1 + hr2 holds with overwhelming probability. Same
is true for the second case, as (r1, r2) ̸= (r1, r2) are generated using the random
oracle HT and hence the two random values r1 + hr2 and r1 + hr2 differ with
overwhelming probability. Note that in both cases we use that h and h are chosen
randomly in honest Hqc key generations. ⊓⊔

Remark 32. The above theorem shows SCFR-CPA security of the base PKEs un-
derlying Bike and Hqc/Hqc∗, however, the proof easily extends to the stronger
notion SCFR-LEAK (hence also to SCFR-CCA). The notion SCFR-LEAK dif-
fers from SCFR-CPA only in the fact that the adversary is given additionally
the secret keys. Note that this does not influence the above proof, as the crucial
steps e0 + e1h ̸= e0 + e1h (for Bike) and r1 + hr2 ̸= r1 + hr2 (for Hqc/Hqc∗)
only depend on the fact that the public keys are honestly generated and not
the choice of ciphertext by the adversary. In particular, the adversary having
knowledge of the secret key does not influence the proof.

Proposition 33. Consider the public-key encryption schemes Bike.Pke and
Hqc.Pke as shown in Fig. 7 and Fig. 9, respectively. The following statements
hold:

1. Bike.Pke fulfills T-restricted non-rigidity.
2. Hqc.Pke fulfills THqc-restricted non-rigidity.

Proof. Consider two honestly generated key pairs (pk, sk) and (pk, sk) and a
randomly chosen messagem. To proveX-restricted non-rigidity we have to check
that for c←$ X[Pke].Enc(pk,m), we have

X[Pke].Dec(sk, c) = ⊥

with overwhelming probability.

1. ForBike we have (pk, sk) = (h, (h0, h1)), (pk, sk) = (h, (h0, h1)) and compute

c = (c0, c1) := Bike.Pke.Enc(pk,m;HT(m)) = (e0 + e1h,m⊕ HL(e0, e1))

for (e0, e1) derived from HT(m). To check T-restricted non-rigidity we decrypt c
using sk, i.e., compute the message

m = Bike.Pke.Dec(sk, c) = c1 ⊕ HL(e0, e1) ,

for (e0, e1) = Decoder(c0h0, h0, h1), re-encrypt m under pk, and compare the
result to c. Hence consider

Bike.Pke.Enc(pk,m;HT(m)) = (e0 + e1h,m⊕ HL(e0, e1))

for (e0, e1) derived from HT(m). Note that (e0+e1h,m⊕HL(e0, e1)) differs from
c with overwhelming probability as e0 + e1h ̸= e0 + e1h: If m = m, the values

29

of (e0, e1) and (e0, e1) agree, however, h and h are randomly sampled during
an honest key generation, i.e., h ̸= h and thus e0 + e1h ̸= e0 + e1h holds with
overwhelming probability. Same is true if m ̸= m, as (e0, e1) and (e0, e1) are
then derived from the distinct random values HT(m) ̸= HT(m), i.e., e0+e1h and
e0+ e1h are two random values that hence differ with overwhelming probability.
2. For Hqc we have (pk, sk) = ((h, s), (x,y)), (pk, sk) = ((h, s), (x,y)) and
compute c = (u,v, salt) for a random salt salt and

(u,v) := Hqc.Pke.Enc(pk,m;HT(m, pk, salt))

= (r1 + hr2,Trunc(mG+ sr2 + e, ℓ))

for (e, r1, r2) derived from HT(m, pk, salt). To check THqc-restricted non-rigidity
we decrypt c using sk, i.e., compute the message

m = Hqc.Pke.Dec(sk, c) = Decoder(v − uy) ,

re-encrypt m under pk (using the salt contained in c), and compare the result
to c. Hence consider

Hqc.Pke.Enc(pk,m;HT(m, pk, salt)) = (r1 + hr2,Trunc(mG+ sr2 + e, ℓ))

for (r1, r2) derived from HT(m, pk, salt). Just as we did for Bike, we can deduce
that (r1+hr2,Trunc(mG+sr2+e, ℓ)) differs from c as r1+hr2 ̸= r1+hr2. ⊓⊔

Having established Proposition 31 and Proposition 33, we get the following theo-
rem regarding the binding properties of Bike and Hqc∗—the results are exactly
those that are presented for FO ̸⊥ in Table 1. Note that, Hqc∗ deviates from the
standard FO ̸⊥ transform only in the way the randomness is derived. However,
one can easily check that this change is irrelevant for our FO ̸⊥ results. Due to
this and the fact that all requirements are fulfilled, we can apply our FO ̸⊥ results
for Hqc∗.

Theorem 34. The key-encapsulation mechanisms Bike and Hqc∗ as shown
in Fig. 8 and Fig. 10 are HON-BIND-K,CT-PK and HON-BIND-K-PK as well
as X-BIND-K-CT and X-BIND-K,PK-CT secure for X ∈ {HON,LEAK,MAL}.
They are insecure wrt the notions LEAK-BIND-K,CT-PK, LEAK-BIND-K-PK,
MAL-BIND-K,CT-PK, and MAL-BIND-K-PK.

4.4 Binding Security of Round-4 KEMs and ML-KEM

In the previous sections, we completed the analysis of the binding properties of
the key-encapsulation mechanisms Bike, Hqc, and Hqc∗. Furthermore, our re-
sults cover the last gaps left in the analysis ofClassic-McEliece andMl-Kem:
Theorem 16 proves Classic-McEliece to be MAL-BIND-K-CT secure. Fur-
ther, Ml-Kem is not MAL-BIND-K,CT-PK secure by Theorem 18 (the attack
relies exclusively on invalid ciphertexts for which Ml-Kem behaves like FO ̸⊥)
and MAL-BIND-K,PK-CT secure by Theorem 24 with the following changes to

30

the proof. Case 1 (both ciphertexts are invalid) works exactly the same way.
Case 2 (one ciphertext is invalid) is different in two aspects: (1) for the valid ci-
phertext, the shared key is computed as the hash of both message and public key;
(2) different hash functions are used to compute k and k. Nevertheless, one can
see that a A needs to find a collision to be successful. Case 3 (both ciphertexts
are valid) works essentially the same: the difference is that the shared keys are
computed as the hash of message and public key (compared to just the message),
however, this does not matter for the conclusion that the messages are equal.

The completed results regarding the binding properties of the round-4 KEMs
(and ML-KEM) can be found in Table 2.

References

AAB+20. Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux,
Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo
Persichetti, Gilles Zémor, and Jurjen Bos. HQC. Technical report,
National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

AAB+22. Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux,
Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Per-
sichetti, Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc
Robert, and Pascal Veron. HQC. Technical report, National Institute of
Standards and Technology, 2022. available at https://csrc.nist.gov/

Projects/post-quantum-cryptography/round-4-submissions.

AAB+24. Carlos Aguilar-Melchor, Nicolas Aragon, Slim Bettaieb, Löıc Bidoux,
Olivier Blazy, Jean-Christophe Deneuville, Philippe Gaborit, Edoardo Per-
sichetti, Gilles Zémor, Jurjen Bos, Arnaud Dion, Jerome Lacan, Jean-Marc
Robert, and Pascal Veron. HQC. Technical report, National Institute of
Standards and Technology, 2024. available at https://pqc-hqc.org/doc/
hqc-specification_2024-02-23.pdf.

ABB+22. Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron,
Tim Guneysu, Carlos Aguilar-Melchor, Rafael Misoczki, Edoardo Per-
sichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor, Valentin
Vasseur, Santosh Ghosh, and Jan Richter-Brokmann. BIKE. Technical
report, National Institute of Standards and Technology, 2022. available
at https://csrc.nist.gov/Projects/post-quantum-cryptography/

round-4-submissions.

ABC+20. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid, Jan
Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael Misoczki,
Ruben Niederhagen, Kenneth G. Paterson, Edoardo Persichetti, Chris-
tiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub Szefer, Cen Jung
Tjhai, Martin Tomlinson, and Wen Wang. Classic McEliece. Technical
report, National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

31

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://pqc-hqc.org/doc/hqc-specification_2024-02-23.pdf
https://pqc-hqc.org/doc/hqc-specification_2024-02-23.pdf
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions

ABC+22. Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid,
Jan Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Per-
sichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub
Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Clas-
sic McEliece. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-4-submissions.
ABN10. Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption.

In Daniele Micciancio, editor, TCC 2010, volume 5978 of LNCS, pages
480–497. Springer, Heidelberg, February 2010.

ACP+19. Martin Albrecht, Carlos Cid, Kenneth G. Paterson, Cen Jung
Tjhai, and Martin Tomlinson. NTS-KEM. Technical report, Na-
tional Institute of Standards and Technology, 2019. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-2-submissions.
ADG+22. Ange Albertini, Thai Duong, Shay Gueron, Stefan Kölbl, Atul Luykx,

and Sophie Schmieg. How to abuse and fix authenticated encryption with-
out key commitment. In Kevin R. B. Butler and Kurt Thomas, editors,
USENIX Security 2022, pages 3291–3308. USENIX Association, August
2022.

ADM+24. Thomas Aulbach, Samed Düzlü, Michael Meyer, Patrick Struck, and Max-
imiliane Weishäupl. Hash your keys before signing: BUFF security of the
additional NIST PQC signatures. In PQCrypto 2024, 2024.

AHK+22. Joël Alwen, Dominik Hartmann, Eike Kiltz, Marta Mularczyk, and Peter
Schwabe. Post-quantum multi-recipient public key encryption. Cryptol-
ogy ePrint Archive, Report 2022/1046, 2022. https://eprint.iacr.org/
2022/1046.

Aye15. Andrew Ayer. Duplicate signature key selection attack in let’s en-
crypt. https://www.agwa.name/blog/post/duplicate_signature_key_

selection_attack_in_lets_encrypt, 2015.
BBC+19. Marco Baldi, Alessandro Barenghi, Franco Chiaraluce, Gerardo

Pelosi, and Paolo Santini. LEDAcrypt. Technical report, Na-
tional Institute of Standards and Technology, 2019. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-2-submissions.
BBDP01. Mihir Bellare, Alexandra Boldyreva, Anand Desai, and David Pointcheval.

Key-privacy in public-key encryption. In Colin Boyd, editor, ASI-
ACRYPT 2001, volume 2248 of LNCS, pages 566–582. Springer, Heidel-
berg, December 2001.

BCC+24. Ritam Bhaumik, Bishwajit Chakraborty, Wonseok Choi, Avijit Dutta,
Jérôme Govinden, and Yaobin Shen. The committing security of MACs
with applications to generic composition. In CRYPTO 2024, 2024.

BCDD+24. Manuel Barbosa, Deirdre Connolly, João Diogo Duarte, Aaron Kaiser, Pe-
ter Schwabe, Karoline Varner, and Bas Westerbaan. X-Wing: The hybrid
KEM you’ve been looking for. IACR Communications in Cryptology, 1(1),
2024.

BDK+18. Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyuba-
shevsky, John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. CRYSTALS - kyber: A cca-secure module-lattice-based KEM. In

32

https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://eprint.iacr.org/2022/1046
https://eprint.iacr.org/2022/1046
https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt
https://www.agwa.name/blog/post/duplicate_signature_key_selection_attack_in_lets_encrypt
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-2-submissions

2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018, pages 353–367. IEEE, 2018.

BH22. Mihir Bellare and Viet Tung Hoang. Efficient schemes for committing
authenticated encryption. In Orr Dunkelman and Stefan Dziembowski,
editors, EUROCRYPT 2022, Part II, volume 13276 of LNCS, pages 845–
875. Springer, Heidelberg, May / June 2022.

BH24. Mihir Bellare and Viet Tung Hoang. Succinctly-committing authenticated
encryption. In CRYPTO 2024, 2024.

BP18. Daniel J. Bernstein and Edoardo Persichetti. Towards KEM unification.
Cryptology ePrint Archive, Report 2018/526, 2018. https://eprint.

iacr.org/2018/526.
CDF+21. Cas Cremers, Samed Düzlü, Rune Fiedler, Marc Fischlin, and Christian

Janson. BUFFing signature schemes beyond unforgeability and the case
of post-quantum signatures. In 2021 IEEE Symposium on Security and
Privacy, pages 1696–1714. IEEE Computer Society Press, May 2021.

CDM23. Cas Cremers, Alexander Dax, and Niklas Medinger. Keeping up with
the KEMs: Stronger security notions for KEMs and automated analysis
of KEM-based protocols. IACR Cryptol. ePrint Arch., 2023:1933, 2023.
v1.1.0.

CFGI+23. Yu Long Chen, Antonio Flórez-Gutiérrez, Akiko Inoue, Ryoma Ito, Tetsu
Iwata, Kazuhiko Minematsu, Nicky Mouha, Yusuke Naito, Ferdinand Sib-
leyras, and Yosuke Todo. Key committing security of AEZ and more. In
ToSC 2023, 2023.

CR22. John Chan and Phillip Rogaway. On committing authenticated-
encryption. In Vijayalakshmi Atluri, Roberto Di Pietro, Christian Dams-
gaard Jensen, and Weizhi Meng, editors, ESORICS 2022, Part II, volume
13555 of LNCS, pages 275–294. Springer, Heidelberg, September 2022.

Den03. Alexander W. Dent. A designer’s guide to KEMs. In Kenneth G. Paterson,
editor, 9th IMA International Conference on Cryptography and Coding,
volume 2898 of LNCS, pages 133–151. Springer, Heidelberg, December
2003.

DFF24. Samed Düzlü, Rune Fiedler, and Marc Fischlin. BUFFing FALCON with-
out increasing the signature size. IACR Cryptol. ePrint Arch., 2024:710,
2024.

DFG23. Jean Paul Degabriele, Marc Fischlin, and Jérôme Govinden. The indif-
ferentiability of the duplex and its practical applications. In Jian Guo
and Ron Steinfeld, editors, ASIACRYPT 2023, Part VIII, volume 14445
of LNCS, pages 237–269. Springer, Heidelberg, December 2023.

DFH+24. Jelle Don, Serge Fehr, Yu-Hsuan Huang, Jyun-Jie Liao, and Patrick Struck.
Hide-and-seek and the non-resignability of the BUFF transform. IACR
Cryptol. ePrint Arch., 2024:793, 2024.

DFHS24. Jelle Don, Serge Fehr, Yu-Hsuan Huang, and Patrick Struck. On the
(in)security of the BUFF transform. In CRYPTO 2024, 2024.

DGRW18. Yevgeniy Dodis, Paul Grubbs, Thomas Ristenpart, and Joanne Woodage.
Fast message franking: From invisible salamanders to encryptment. In
Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I,
volume 10991 of LNCS, pages 155–186. Springer, Heidelberg, August 2018.

DKR+20. Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy,
Frederik Vercauteren, Jose Maria Bermudo Mera, Michiel Van
Beirendonck, and Andrea Basso. SABER. Technical report, Na-
tional Institute of Standards and Technology, 2020. available at

33

https://eprint.iacr.org/2018/526
https://eprint.iacr.org/2018/526

https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

DMVA23. Joan Daemen, Silvia Mella, and Gilles Van Assche. Committing au-
thenticated encryption based on SHAKE. IACR Cryptol. ePrint Arch.,
2023:1494, 2023.

FG24. Rune Fiedler and Felix Günther. Security analysis of Signal’s PQXDH
handshake. IACR Cryptol. ePrint Arch., 2024:702, 2024.

FO99. Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmet-
ric and symmetric encryption schemes. In Michael J. Wiener, editor,
CRYPTO’99, volume 1666 of LNCS, pages 537–554. Springer, Heidelberg,
August 1999.

GMP22. Paul Grubbs, Varun Maram, and Kenneth G. Paterson. Anonymous, ro-
bust post-quantum public key encryption. In Orr Dunkelman and Ste-
fan Dziembowski, editors, EUROCRYPT 2022, Part III, volume 13277 of
LNCS, pages 402–432. Springer, Heidelberg, May / June 2022.

HHK17. Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. A modular anal-
ysis of the Fujisaki-Okamoto transformation. In Yael Kalai and Leonid
Reyzin, editors, TCC 2017, Part I, volume 10677 of LNCS, pages 341–
371. Springer, Heidelberg, November 2017.

JCCS19. Dennis Jackson, Cas Cremers, Katriel Cohn-Gordon, and Ralf Sasse.
Seems legit: Automated analysis of subtle attacks on protocols that use
signatures. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and
Jonathan Katz, editors, ACM CCS 2019, pages 2165–2180. ACM Press,
November 2019.

KSW23. Juliane Krämer, Patrick Struck, and Maximiliane Weishäupl. Committing
AE from sponges - security analysis of the NIST LWC finalists. IACR
Cryptol. ePrint Arch., 2023:1525, 2023.

LGR21. Julia Len, Paul Grubbs, and Thomas Ristenpart. Partitioning oracle at-
tacks. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 195–212. USENIX Association, August 2021.

MLGR23. Sanketh Menda, Julia Len, Paul Grubbs, and Thomas Ristenpart. Context
discovery and commitment attacks - how to break CCM, EAX, SIV, and
more. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023,
Part IV, volume 14007 of LNCS, pages 379–407. Springer, Heidelberg,
April 2023.

NAB+20. Michael Naehrig, Erdem Alkim, Joppe Bos, Léo Ducas, Karen
Easterbrook, Brian LaMacchia, Patrick Longa, Ilya Mironov,
Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan,
and Douglas Stebila. FrodoKEM. Technical report, National
Institute of Standards and Technology, 2020. available at
https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.

NIST17. National Institute of Standards and Technology. Post-quantum cryp-
tography standardization process. https://csrc.nist.gov/projects/

post-quantum-cryptography, 2017.

NIST22. National Institute of Standards and Technology. Call for additional digi-
tal signature schemes for the post-quantum cryptography standardization
process. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/

documents/call-for-proposals-dig-sig-sept-2022.pdf, 2022.

34

https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf

NIST23. National Institute of Standards and Technology. Module-Lattice-based
Key-Encapsulation Mechanism Standard. https://doi.org/10.6028/

NIST.FIPS.203.ipd, 2023. Draft.
NIST24. National Institute of Standards and Technology. Accor-

dion mode. https://csrc.nist.gov/pubs/other/2024/04/10/

proposal-of-requirements-for-an-accordion-mode-dis/iprd, 2024.
NSS23. Yusuke Naito, Yu Sasaki, and Takeshi Sugawara. Commiting security of

Ascon: Cryptanalysis on primitive and proof on mode. In ToSC 2023 (4),
2023.

SAB+20. Peter Schwabe, Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz,
Tancrède Lepoint, Vadim Lyubashevsky, John M. Schanck, Gregor
Seiler, and Damien Stehlé. CRYSTALS-KYBER. Technical report,
National Institute of Standards and Technology, 2020. available
at https://csrc.nist.gov/projects/post-quantum-cryptography/

post-quantum-cryptography-standardization/round-3-submissions.
Sch24. Sophie Schmieg. Unbindable kemmy schmidt: ML-KEM is neither

MAL-BIND-K-CT nor MAL-BIND-K-PK. IACR Cryptol. ePrint Arch.,
2024:523, 2024.

Sen11. Nicolas Sendrier. Decoding one out of many. In Bo-Yin Yang, editor, Post-
Quantum Cryptography - 4th International Workshop, PQCrypto 2011,
pages 51–67. Springer, Heidelberg, November / December 2011.

Sen21. Nicolas Sendrier. Secure sampling of constant-weight words – application
to BIKE. Cryptology ePrint Archive, Report 2021/1631, 2021. https:

//eprint.iacr.org/2021/1631.
SW24. Patrick Struck and Maximiliane Weishäupl. Constructing committing and

leakage-resilient authenticated encryption. In ToSC 2024 (1), 2024.
Xag22. Keita Xagawa. Anonymity of NIST PQC round 3 KEMs. In Orr Dunkel-

man and Stefan Dziembowski, editors, EUROCRYPT 2022, Part III, vol-
ume 13277 of LNCS, pages 551–581. Springer, Heidelberg, May / June
2022.

35

https://doi.org/10.6028/NIST.FIPS.203.ipd
https://doi.org/10.6028/NIST.FIPS.203.ipd
https://csrc.nist.gov/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd
https://csrc.nist.gov/pubs/other/2024/04/10/proposal-of-requirements-for-an-accordion-mode-dis/iprd
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization/round-3-submissions
https://eprint.iacr.org/2021/1631
https://eprint.iacr.org/2021/1631

	Binding Security of Implicitly-Rejecting KEMs and Application to BIKE and HQC
	Introduction
	Contribution
	Related Work

	Background
	Notation
	Public-Key Encryption and Key-Encapsulation Mechanisms
	The Fujisaki-Okamoto Transform
	Binding Properties of Key-Encapsulation Mechanisms

	General Analysis of Implicitly-Rejecting FO
	LEAKBINDK,CTPK Attack for FO
	HONBINDKPK Security for FO
	MALBINDKCT Security for FO
	MALBINDK,CTPK Attacks
	LEAKBINDK,CTPK Security for FO
	MALBINDK,PKCT Security for FOm

	Application to BIKE and HQC
	Description of Bike and Hqc
	Binding Security of Hqc
	Attacking MAL/LEAK Binding Notions for Hqc.
	Proving HON Binding Notions for Hqc.

	Binding Security of Bike and Hqc*
	Binding Security of Round-4 KEMs and ML-KEM

	References

