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Abstract. The virtualization of network functions is a promising technology, which can
enable mobile network operators to provide more flexibility and better resilience for their
infrastructure and services. Yet, virtualization comes with challenges, as 5G operators will
require a means of verifying the state of the virtualized network components (e.g., Virtu-
alized Network Functions (VNFs) or managing hypervisors) in order to fulfill security and
privacy commitments. One such means is the use of attestation protocols. In this paper, we
focus on Collective Remote Attestation (cRA), which is used to attest the state of a group
of devices. Although cRA has been extensively studied in the context of IoT, it has not been
used yet in virtualized mobile networks – a different use-case, with constraints of its own.
In this paper, we propose the first protocol to efficiently and securely attest a group of
Virtualized Network Functions which make up a VNF Forwarding Graph. Our protocol
comes with strong and provable guarantees of: unforgeability of attestation, the linkability of
attestations for related components, and the privacy of sensitive configuration details for the
infrastructure provider. In particular, we are the first to formally define and analyze such
properties for VNF-FG attestation. Finally, through our Proof-of-Concept implementation,
we show that our construction is not only strongly secure, but also efficient.
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1 Introduction

Network Function Virtualization (NFV) is an approach in which network functions run within
virtual appliances (such as virtual machines) rather than on a dedicated hardware. To provide
fully-fledged network services, NFV relies on the concept of VNF-FG: a set of Virtualized Network
Functions (VNFs) connected together and modelled as a graph, with an entry and an exit point
(left graph in Figure 3).

The European Telecommunications Standards Institute (ETSI) defined the notion of VNF
Forwarding Graph (VNF-FG) as “a graph of logical links connecting Network Function (NF) nodes
– where at least one node is a Virtualized NF (VNF) – for the purpose of describing traffic flow
between these network functions" [16]. In common terms, if a single network functionality (e.g., user
authentication) can be run through one VNF, complex functionalities (like on-demand banking)
require the composition of various VNF in a structure called a forwarding-graph. The VNF-FG’s
virtual components, be they VNFs or hypervisors, could belong to several separate entities. In this
context, the operator needs a means of efficiently and securely verifying the state of all the nodes of
a VNF-FG in order to guarantee its business commitments – whilst at the same time, the owners of
those components are entitled to the privacy of their devices’ particular setup and configurations.

A means of remote verification of virtual components is remote attestation, which allows a target
to prove to a verifier that it satisfies some properties, such as code integrity or the execution of some
code in a given (secure) environment. At a minimum, remote attestation must be able to detect
tampering on the code of a virtual machine; however, when complex infrastructure constraints are
present (such as multi-tenancy or hybrid infrastructures including virtual components belonging to
several operators), additional strong properties such as layer linking, or privacy become paramount.

Attesting a group of nodes is known as Collective Remote Attestation (cRA). Although promi-
nent in the context of IoT [5,1,7,2,18,25,19,10,21,24], collective remote attestation has never been
investigated for VNF-FGs – which is unfortunate, as the two use-cases are only superficially similar
and solutions for IoT swarm-attestation will be suboptimal at best, and unusable at worst, in the
context of NFV.
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One of the main differences between the two scenarios lies in the complex infrastrcture un-
derlying VNF-FG, which is absent in the IoT case. Indeed, attesting any VNF typically implies
attesting underlying components such as the hosting hypervisor and layer-linking the two types
of attestations (thus proving that the VNF is managed by that hypervisor). Layer-linking is a
fundamental property of Deep Attestation (DA), but irrelevant in the context of IoT.

Another specificity of VNF-FGs is that VNFs and their managing hypervisors may belong to
different owners. Yet, classical remote attestation typically leaks potentially-sensitive state infor-
mation (such as kernel version, the presence of a particular type of IDS, the brand name of some
software or hardware components etc.), which the infrastructure owner might want to hide from
the competition. By contrast, in IoT Collective Remote Attestation, neighbours share their exact
states.

1.1 Our contributions

In this paper we address the complex, but critical challenge of designing remote attestation for
NFV technology, and in particular, for VNF-FGs.

Our protocol D-cRA is efficient, provably-secure, and achieves all the critical properties stated
above:

– The verifier can ascertain the valid state of all virtual components (VNFs and hypervisors) in
the VNF-FG;

– The verifier can ascertain the layer-linking between VNFs and hypervisors;
– The scheme guarantees configuration-hiding : exact state details (i.e., the configuration) of

VNFs and hypervisors will be kept hidden.

By its nature a VNF-FG can be modelled as a graph. Our protocol additionally relies on the use
of spanning trees, along which nodes broadcast attestation requests and collect attestations from a
VNF-FG. Each node represents a component (a VNF or a hypervisor) and must attest to its parent
nodes. The latter verify the attestations and forward binary aggregates of the verification results
for all the child-nodes 3. This use of intermediate unforgeable verification aggregates renders large
group attestation efficient.

A crucial novelty of our scheme, which sets it apart from IoT cRA, is guaranteeing configuration-
hiding which is a business must in multi-tenant environments, enforcing Internet openness as
recently pointed out by the IETF: “ Allowing clients to use a variety of software as long as it
is protocol-compliant is an essential part of the IETF development process and the openness of
the Internet." [14]. Our protocol achieves this property through the use of zero-knowledge set-
membership proofs, through which components attest that their state belongs to a public set of
valid states, without revealing their exact configuration.

Finally, our paper is first to formalize the privacy and linking properties required in collective
remote attestation. We build on prior recent work by Arfaoui et al. [3,4]; however, our definitions
are novel and important contributions in an area of cybersecurity in which protocols abound, but
proofs are lacking. Crucially, our protocol D-cRA provably guarantees our proposed notions.

We also empirically evaluate the performance of D-cRA by means of an implementation using
OMNeT++ [23]. The results show that a VNF-FG attestation time is logarithmic in the number of
involved nodes and the attestation of thousands of nodes does not exceed 200ms. Concretely, this
demonstrates that even a complex infrastructure, made up of thousands of different VNFs mounted
on tens or even hundreds of hypervisors, can be remotely attested in a linkable, privacy-preserving
way. In this, security and privacy need not be sacrificed for the sake of efficiency.

1.2 Background and Related work

In this section we examine related work about collective attestation, as well as deep attestation
and privacy-preserving attestation.

3 If all child-node attestations are valid, then the parent’s aggregate is set to 1; else, it will be set to 0
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Network Function Virtualization (NFV) NFV is an approach in which network functions
run within virtual appliances (such as virtual machines) rather than on a dedicated hardware. This
results in a flexible and programmable network, in which Virtualized Network Functions (VNFs)
can be easily added, removed, or migrated across servers to scale up or out on demand. To provide
fully fledged network services, NFV rely on the concept of VNF-FG: a set of VNFs connected
together and modelled as a graph, with an entry and an exit point. The NFV Management and
Orchestration (MANO) interface contains a description of a graph associated with a network
service. Hence it is possible to automatically deploy network services on demand. In this work we
examine how to verify such a network service by deep attesting every component of the graph
without disclosing any detail about its state.

Collective Remote Attestation (cRA) Collective remote attestation was introduced in 2015
by Asokan et al.[5] by means of SEDA. This scheme, like most of the work on cRA, focused on
the attestation of IoT swarms. The basic idea of SEDA (which later will be adopted by several
solutions) is to compute a spanning tree over the IoT network and flood the attestation request
into the tree (through its root) as shown on Figure 1. Upon receiving the request, a device retrieves
the measurements of its configuration, signs it and sends the result to its parent node device, which
can verify the attestation (i.e., the signature), aggregate the results of its children nodes, compute
its own attestation and send the overall (i.e., its attestation and the aggregation of its children
nodes attestations) to its corresponding parent node.

Since each device computes its own attestation individually and the verification is done by
multiple devices, the burden is “parallelizable" and shared over the network; hence, this approach
is much more efficient than a simple sequential attestation. In addition, aggregating the results
reduces the amount of required bandwidth.

More precisely SEDA works in two phases : an offline and an online phase. During the offline
phase devices are initialized in a trusted way by the swarm owner. Each device generates its cryp-
tographic credentials and then establishes a symmetric keypair with every one of their neighbours.
Finally neighbours nodes exchange their expected configuration. Hence at the end of the offline
phase each nodes has a symmetric keypair for secure communication with every neighbour and
knows their expected configuration. The online phase can be triggered on demand by the verifier.
To do so, the verifier can chose any node in the swarm. Then a spanning tree rooted at the chosen
node is computed over the swarm. The verifier can now broadcast a request starting from the root
and forwarded by each node to its children nodes. Once a node receives the request, it can attest
to its parent node in a traditional manner using the keypair established during the offline phase
for secure communication. Parents nodes, when they receive their children attestations, verify it
using the expected configuration and produce an aggregate indicating whether the subtree rooted
at this point has a correct configuration or not. Thus an attestation report in SEDA is made of
the attestation of the device itself as well as an aggregate. This process is repeated up to the root
which sends the final attestation to the verifier. If both the aggregate and the root attestation are
valid then the swarm is in a correct state.

SEDA might have been a promising option for attesting a VNF-FG however it does not ensure
“Layer linking” and “Configuration hiding” properties which are essential in an NFV use case.

An alternative solution called SANA [1] no longer requires the verification of the attestation and
aggregate at each parent node; instead, nodes will only aggregate attestations as they are received
using a custom aggregate signature scheme. With SANA, anyone in possession of the public keys
and expected configurations of the swarm can check the results. This is not a strong assumption
in an IoT case, where the configurations are often made public, but it can be in the use-case we
are considering, that of network function virtualization.

Another attestation scheme based on spanning trees is LISA[7]. It also introduces a metric called
Quality of Swarm Attestation (QoSA) which measure the information given by the attestation
report (i.e., SEDA is Binary-QoSA as it only give a binary result). LISA comes in two flavour
which reach different level of QoSA: a synchronous one where report are aggregated similarly to
SEDA and an asynchronous one in which devices directly forward the result upward.

Interestingly, while solutions using spanning trees are effective, they are not very realistic in
the use-case they consider: that of IoT swarm attestation. This is because spanning trees require
a topology of the network that is static and constant throughout the attestation process, which is
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Fig. 1. SEDA overview

not a typical scenario for dynamic IoT swarms. Alternative means of IoT-based swarm attestation
exist in the literature and can handle dynamic networks, albeit at the price of a high complex-
ity [2,18,19,10,24].

In the case we consider, that of network function virtualization and VNF-FG, the assumption
of a static network is much more realistic as a VNF-FG is entirely specified by a graph descriptor.
Hence, we can avoid the more complex and less efficient protocol which are not based on trees.

Deep Attestation (DA) DA consists of verifying the states of all the layers in a virtualized
environment. In the context of NFV attestation, ETSI [15] describes two approaches of deep at-
testation: single-channel and multiple-channel DA.

In single-channel DA, for each VM, the verifier opens an attestation channel with the VM as
shown on the left side of Figure 2. The attestation will include the VM attestation itself, as well
as an attestation from the hypervisor. This method provides an instant linking between the VM
and the hypervisor attestations, but does not scale with the number of VMs due to the need to
perform a hypervisor attestation for each VM.

Fig. 2. Single-channel DA (left) and Multiple-channel DA (right) of two VMs

Multiple-channel DA uses a different channel to attest independently the VM and the hyper-
visor, as shown on the right side of Figure 2. The hypervisor will be attested only a single time;
in parallel, each VM can also be attested in an independent fashion, which is impossible in single-
channel DA. The single hypervisor attestation and parallelism provide much more scalability than
single-channel DA, but at the cost of being able to link hypervisor and VM attestations. Yet, such
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linking might prove crucial whenever the owner of the VM wants to correlate the VM with the
hardware it runs on.

A layer-linking mechanism used to verify that VM and hypervisor attestations were issued by
the same infrastructure, while guaranteeing the scalability of multiple-channel DA, was presented
by Arfaoui et al. at ACNS 2022 [3]. In this approach, hypervisors provide the public key of the
VMs they manage within their multiple-channel attestation. Later when the VM itself attests, the
issued quote can be linked to that of the hypervisor attestation. The public keys included into the
attestation are called linking information.

Property-based attestation (PBA) Configuration privacy should be considered when using
remote attestation with a potentially untrusted verifier, as knowing details of the configuration
can lead to attacks. For instance, knowing the version of the software installed on the target may
allow attacker to exploit vulnerabilities specific to that version.

Property-based attestation (PBA) was hence introduced as a privacy-preserving alternative for
traditional attestation [26]. In property-based attestation, instead of providing binary measure-
ments in order to confirm their validity, targets will only prove that they guarantee some high-level
properties. Therefore, instead of revealing its full configuration, the prover only proves that its
configuration has specific properties. Several technical methods exist to construct such proofs.
The first is to use a Trusted Third Party (TTP) [26,8], used for the verification of a traditional
attestation from the provers, and the latter certification of that prover’s validity. While this ap-
proach is efficient and requires little modification to existing attestation methods, it does require
the presence of an online TTP. An alternative approach to TTP-based PBA features the use of
Zero-Knowledge Proofs of knowledge (ZKP) [9,11,4]. In this case, the prover will be able to prove
that its configuration complies with certain properties without revealing its precise configuration.
This is an interesting approach, though it can be tricky to implement efficiently, that we consider
it in our work.

1.3 Cryptographic building blocks

In this section, we recall formal definitions and properties of cryptographic tools that we leverage
in our work. We indicate the security properties we required for these schemes and we recall their
formal definitions.

Signature A signature scheme SIG is a tuple of four algorithms (SIG.Setup, SIG.KeyGen, SIG.Sign,
SIG.Verify). After a setup phase (SIG.Setup(1λ) → ppar) and the generation of a signature
key pair (SIG.KeyGen(ppar) → (sk, pk)), one can sign a message m using the private key sk
(SIG.Sign(sk,m) → σ). Given a message m, a signature σ and a public key pk, one can ver-
ify the signature validity (SIG.Verify(pk,m, σ) → {0, 1}). In this paper, we require a signature
scheme that is Existentially Unforgeable against Chosen Message Attacks (EUF-CMA).

Definition 1 (EUF-CMA). Let GEUF−CMA(λ) be a game in which an adversary must try to forge
a signature over a fresh message, while having unlimited and adaptive access to a signing oracle.
Next, we define AdvEUF−CMA

SIG (A) as the probability that the adversary A wins the game. A signature
scheme is (qSIG.Sign, ϵ)-EUF-CMA if any adversary making at most qSIG.Sign queries to the signing
oracle has an advantage of at most ϵ to win the GEUF−CMA(λ) game. Asymptotically, a signature
scheme is EUF-CMA if this probability is negligible for all PPT A.

Commitment A commitment scheme COM is a triplet of algorithms (COM.Setup, COM.Commit,
COM.Verify). After a setup phase (COM.Setup(1λ) → pparCOM), one can produce a commitment c
based on a message m and a random string r (COM.Commit(m, r)→ c) . Given a message m, a ran-
dom string r, and a commitment c, one can verify if c is a commitment of m (COM.Verify(m, c, r)→
{0, 1}). In this paper, we require a commitment scheme that is computationally binding and hiding.

Definition 2 (Binding). We say that a commitment scheme is binding if for every PPT adver-
sary that outputs a tuple (c,m1, r1,m2, r2) the advantage AdvBindCOM (A) = Pr[m1 ̸= m2∧COM.Verify(
m1, c, r1) = 1 ∧ COM.Verify(m2, c, r2) = 1] is negligible.
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Definition 3 (Hiding). Let GComHide(λ) be a game in which the adversary submits two messages
m0 and m1. Depending on a bit b the challenger computes the commitment of one of them. Given
adaptive access to a commitment oracle and to c, the adversary must find the value of the bit b. We
define AdvHideCOM (A) as the probability that the adversary A wins the game. A commitment scheme is
hiding if there exists a negligible function negl(.) such that AdvHideCOM (A) = |Pr[A wins GComHide(λ)]−
1
2 | ≤ negl(λ).

Non-Interactive Zero-Knowledge Proof of Knowledge (NIZK) A NIZK scheme allows
to prove knowledge of a witness w such that (x,w) ∈ R (R is a public binary relation) with-
out revealing w. A NIZK is composed of three algorithms (NIZK.Setup, NIZK.Pr, NIZK.Ver). After
a setup phase (NIZK.Setup(1λ) → pparNIZK) and given a public statement x, and a private wit-
ness w, NIZK.Pr produces a ZK-proof π. Given a proof π and a statement x, one can verify the
proof π (NIZK.Ver(pparNIZK, x, π)→ {0, 1}). NIZKs must guarantee soundness and zero-knowledge
properties.

Definition 4 (Knowledge Soundness). For all PPT adversaries A there exists an extractor
ExtA and a negligible function negl() with (pparNIZK)← NIZK.Setup(1λ) and ((x, π∗);w)← A||ExtA
such that AdvKSNIZK(A) = Pr[(x,w) /∈ R ∧ NIZK.Ver(pparNIZK, x, π) = 1] = negl(λ).

Definition 5 (CRS indistinguishability). We say that that a NIZK scheme has CRS indistin-
guishability if for all PPT adversary A there exist a simulator Sim such that :

Pr[crs ← NIZK.Setup(1λ) : A(crs) = 1] ≈ Pr[(crs, τ) ← Sim(1λ) : A(crs) = 1]

Definition 6 (Simulation indistinguishability). We say that that a NIZK scheme has simula-
tion indistinguishability if for all PPT adversary A there exist a simulator Sim such that :

Pr[(crs, τ) ← Sim(1λ); (x,w) ← A(crs, τ);π ← NIZK.Pr(crs, w, x) : A(π) = 1 and (x,w) ∈ R]

≈

Pr[(crs, τ) ← Sim(1λ); (x,w) ← A(crs, τ);π ← Sim(crs, w, x) : A(π) = 1 and (x,w) ∈ R]

Definition 7 (Composable zero-knowledge). A NIZK scheme is composable zero-knowledge if
it has both CRS indistinguishability and simulation indistinguishability.

Set Membership Proof A set membership proof allows one to prove knowledge of some value
contained into a commitment, and moreover, that this value belongs to a specific set of possible
values. More formally it is a proof of knowledge of the following statement: NIZK.Pr({(conf, r) :
c ← COM.Commit(conf, r) ∧ conf ∈ confset}). Such proofs can additionally be zero-knowledge and
thus reveal no information about the witness conf and r.

2 Technical Overview

Our protocol takes in input a forwarding-graph in which the nodes are virtualized components
(VNFs and hypervisors) which may or may not be linked4. Note that the variety in node types sets
our use-case apart from traditional IoT swarms, which are more homogeneous; however like the
first IoT cRA protocols [5,1], our protocol D-cRA makes use of a spanning tree over the VNF-FG,
over which requests will be broadcast and attestations will be aggregated. At the origin of the
VNF-FG is a point of entry (also called a root node).

Including hypervisors in the VNF-FG model is crucial when the goal is to guarantee layer-
linking: a strong property, which allows a verifier to not only check the integrity of the virtual
4 In the ETSI definition of a VNF-FG, the term node corresponds to a VNF; however, in the rest of

the paper we use that term to refer to either a VNF or a hypervisor. We assume that both VNFs and
hypervisors are equipped with a Root of Trust (RoT), either physical or virtual.
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components, but also to map VNFs to the hypervisors managing them. Unfortunately, including
hypervisors is a non trivial task and can lead to much larger and complex forwarding-graphs.
Indeed, in NFV structures, hypervisors may manage several VNFs – and this relationship needs
translating into the graph’s structure. This results in a strong structural guarantee of the VNF-FG,
guaranteeing deep attestation for the entire infrastructure.
Keys, configurations, linking. Like in spanning tree based IoT collective attestations, we

assume that, before attestation can take place, each node of the VNF-FG is initialized in a trusted
way by the operator during an offline phase. Attestation can then be run online, potentially many
times. While a trusted one-time setup might be deemed expensive for IoT swarms, which can
change rapidly, the same is not true for NFV, in which infrastructures are more perennial and a
single setup-phase will be useful for several attestation runs.

During setup, each node generates its cryptographic attestation credentials (sk, pk) (the secret
key is kept into the RoT). We also explicitly consider the notion of node configuration, detailing the
exact setup of the VNF or hypervisor, which the owner of the node might want to keep private from
potentially semi-trusted neighbour nodes. Each node shares both the public attestation key and
a set confset of potential configurations (rather than its exact configuration) with its neighbours.
As opposed to traditional collective remote attestation (like [5,1]), we require VNF-FG cRA to
guarantee configuration-hiding, a privacy property recently introduced in [4].

Finally, our scheme will require attestations to be linkable in the sense of [3]. As a result,
during setup, each node generates and transmits its linking information link, which will enable
verifiers to link two or more related attestations. A VNF’s linking information is a single public
key. A hypervisor’s linking information is the set of public keys of the VNFs it manages. While
layer-linking is irrelevant in an IoT context, it is crucial in network function virtualization.

Fig. 3. A multi-tenant VNF-FG featuring hypervisors. Tenants owning various parts of the infrastructure
are colour-coded. The bold links show an example of a spanning tree used to flood the request and aggregate
the results. On the right a view of the resulting tree abstracting the underlying infrastructure.

VNF-FG attestation. The online phase of our approach is the actual collective remote at-
testation protocol, which can be triggered on demand by the operator that uses the VNF-FG as
underlying support for its services. The operator triggers the computation of the spanning tree
rooted at the entry point of the VNF-FG over all the forwarding-graph nodes. Then, the operator
can broadcast an attestation request starting from the roots, which is forwarded by each node to
its children nodes. The response will be forwarded in the reverse order, from children to parent
nodes and all the way back to the root. This is illustrated in Figure 3.

A basic approach towards remote attestation would enable nodes receiving an attestation
request from a parent node to compute an attestation of the node’s current configuration. If,
moreover, layer-linking is required, then that can be achieved by including linking information
by the method of Arfaoui et al. [3]. However, in our paper we also consider the privacy of node-
configurations. Thus, in our protocol, when a node receives the request req (including an attestation
nonce), the node’s Root of Trust retrieves the node’s configuration, then computes and sends an
attestation (to the parent node), consisting of: (1) a hiding commitment c of the retrieved config-
uration; (2) a zero-knowledge proof π that c is the commitment of a configuration among the set
of valid configuration confset; (3) a signature σ over the commitment, the nonce (received in the
request), and the node-linking information.
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When a node receives an attestation, it first retrieves the nonce it has received in the latest
request, and the set of configurations and linking information associated with the node which sent
the attestation. Then it checks the proof π and signature σ under that linking information and
nonce. Once a node has received and verified the attestations of all its children, it aggregates the
verifications in a SEDA-like way [5]: if all the attestations were valid, the aggregated bit is 1, and
it is 0 otherwise. Finally, the verifier node computes and sends a signature over the aggregate, the
nonce, and its own attestation (computed as described earlier) to the parent node. This process is
repeated up the to the root node (the entry point of the VNF-FG).

To summarize, our scheme D-cRA enables (i) to efficiently compute a collective attestation by
using spanning tree and binary aggregation approaches, (ii) to verify the layer linking properties
for VNFs and hypervisors due to sharing linking information at the offline phase and embedding it
within attestations and (iii) to prove the validity of a node configuration without sharing it thanks
to using set membership proofs.

3 Model

In this section, we formalize our scheme D-cRA and define the security and privacy properties
that we want to achieve. Table 1 provides a summary of the used notations.

3.1 Syntax

We define a formal syntax for our privacy preserving collective remote attestation scheme D-cRA
consisting of 10 probabilistic polynomial-time (PPT) algorithms. We first describe the algorithms
of the offline phase, which are used to essentially set up the VNF-FG nodes. We subsequently focus
on the algorithms making up the actual attestation protocol, which are run in an online phase.

Both in the syntax of our primitive and for the security model, we restrict the choice of for-
warding graph to a set Γ , which essentially rules out disconnected graphs, graphs containing loops,
as well as those containing parallel links between nodes.

Offline Phase This phase consists of four algorithms :

cRA.Setup(1λ,G)→ (ppar,G, TG) : The setup algorithm takes as input the security parameter λ
(in unary), as well as a graph G ∈ Γ . It outputs public parameters ppar, as well as the graph
that was given in input and a spanning tree TG for that graph. The graph taken in input
succinctly abbreviates the structure of the VNF-FG.

cRA.InitVerifier(ppar)→ (skver, pkver) : This algorithm initializes the verifier (the operator in
our case) with a keypair consisting of the private key skver and corresponding public key pkver.

cRA.InitNode(ppar)→ (pk, sk, confset, link) : This initialization algorithm can be used to initialize
any of the nodes of the graph G (by setting it up as a VNF or hypervisor). The algorithm creates
a keypair for the node and sets its configurations’ set and linking information.

cRA.InitStg(ppar, (node ∪ ver), (pkneib, confsetneib, linkneib)neib∈N [node,G], pkver)→ stg : The init algo-
rithm is a potentially interactive algorithm which allows a node node in the graph G to be
initialized with public parameters associated with their neighbours. We denote by N [node,G]
the set of neighbours of the node node ∈ G. These public values are used for the verification of
future attestations. The verifier also initializes its storage by getting information of the entry
point node in the spanning tree.

Online Phase The attestation process is run through the online interaction of the following 6 al-
gorithms:

cRA.ReqGen(skver, TG)→ req : This algorithm is used by the verifier (i.e., the operator) to create
an attestation request. It also takes in input the tree description TG published as part of the
public parameters, and outputs a request req, must imperatively include an attestation nonce
randreq.
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Table 1. Notation.

Generic Parameters
λ Security parameter
ppar Public parameters
G Graph forming the VNF-FG
Γ Set of possible graphs admitted by scheme
TG Set of all the possible spanning for the graph G
n Number of nodes in a graph G

Verifier Parameters
ver Verifier handle
skver Verifier secret key
pkver Verifier public key
stgver Verifier storage

Node Parameters
node Node handle
sk Node secret key
pk Node public key
conf Node current configuration
confset Node list of possible valid configuration
link Node current linking information
stg Storage of the node stored in the RoT
pkneib A neighbour public key
confsetneib A neighbour set of configurations
linkneib A neighbour expected linking information

Attestation Parameters
req Attestation request
randreq Request nonce
σreq Request signature
a Attestation report
c Attestation commitment
σa Attestation signature
πa Attestation ZKP
agg Aggregate report
resagg Binary result of aggregation
σagg Aggregate signature

Root Node Parameters
pkroot Root node public key
confsetroot Root node set of valid configurations
linkroot Root node linking information
aroot Root node attestation
aggroot Root node aggregate

cRA.Attest(stg, sk, conf, confset, link, req)→ a ∪ ⊥ : This is the attestation algorithm, which will
either abort, producing an error (if the attestation request req does not internally verify) or
will eventually produce, for a nonce randreq included in an attestation request req, an attes-
tation report a for a specific node (associated with the signature key sk). More precisely, if
the verification of the validity of the request verifies, the request req is propagated further to
the next nodes. In addition, the algorithm takes in input a private key sk, the node’s current
configuration conf, a set of valid configurations confset (it holds that conf ∈ confset), and
some linking information link, as well as the nonce randreq. The output is an attestation report
a. In anticipation of our construction, notice that this attestation report will provide strong
authentication and layer-linking properties.

cRA.Verify(stg, a, req)→ {0, 1} ∪ ⊥ : The attestation verification allows a node to verify an at-
testation for a request req which includes the nonce randreq. The verification algorithm is stateful
and the verifying node uses its internal storage stg5 during verification to recover all the in-
formation needed for the verification process. If this algorithm outputs a result equal to 1, the
verifying node will conclude that the node acting as the prover (and providing a) is in a valid

5 In the construction we give a concrete example of stg
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state (i.e., the node has a valid configuration and correct linking information). By contrast,
when the result is 0, the prover node is assumed to have been tampered with (i.e., the node
has an invalid configuration or improper linking information). The algorithm can also output
⊥ if a node doesn’t answer to its parent before a certain timeout.

cRA.Aggregate(stg, sk, (a1, ..., ai), (agg1, ..., aggj), req)→ agg′ : This algorithm is used to aggre-
gate a number of attestation reports ai and/or a number of intermediate aggregates aggj for a
common request req including a nonce randreq. It can aggregate both attestation and already
aggregated results.

cRA.AggVerify(stg, agg, req)→ {0, 1} ∪ ⊥ : This algorithm is used to verify if an aggregate is
valid for a nonce request req and a node’s storage stg. If the aggregate is valid (the result of the
verification is 1), then every node that has attested so far is assumed to have been in a valid
state. Otherwise, it is assumed that at least one of the nodes contributing to the aggregate has
failed to attest. Similarly to the attestation verification algorithm, the aggregate verification
can output ⊥ if a node which is expected to send an aggregate fails to do so before a given
timeout.

cRA.Link(stgver, aroot, aggroot, req)→ {0, 1} : The linking algorithm is the final algorithm of the
online phase, ran by the verifier. It takes in input an aggregate aggroot and an attestation aroot
sent from the root node, along with the attestation request req (containing the nonce randreq)
and the storage of the verifier stgver. If the linking algorithm outputs 1, every node in the tree
is assumed to be in a valid state and correctly linked to the expected hypervisor/VNFs.

Remark 1. Notice that in practice the description of the VNF-FG comes from the NFV MANO
(NFV MANagement and Orchestration), and thus the spanning tree of the graph will be computed
honestly, outside the direct control of the verifier (and of potential adversaries). This will be
reflected in our subsequent security games.

3.2 Properties

In this section we define the properties that collective remote attestation should guarantee. We use
the seminal work of Arfaoui et al. [3], which first captured the basic provable-security properties of
deep attestation, and employ a game-based provable-security approach, in which the adversary A
plays a security game against a challenger C. The attacker is given access to oracles which capture
special capabilities such as the corruption of a VNF, or the choice of a convenient configurations
for a particular node. The adversary can also effectively use any algorithms for which it knows the
correct input values.

Configuration Hiding The core idea behind this property is to guarantee that even if all the
nodes (VNFs and hypervisors) of a VNF-FG are compromised except for one honest node, that
honest node’s configuration is indistinguishable to an adversary from all the other configuration
in that node’s (publicly known) configuration set. We give A access to the oracle oChooseConfb,
presented below.
– oChooseConfb(nodei, conf0, conf1, confset)→ (pki, linki) ∪ ⊥ : This oracle can only be called

once. On input two configurations conf0 and conf1 as well as a configuration set confset and a
bit b, this oracle checks that both configurations are in the set of valid configuration confset
(conf0 ∈ confset and conf1 ∈ confset). If the verification fails, the oracle outputs ⊥. Otherwise
it initializes the configuration of the component nodei as confb, sets the configuration set of
that node to confset and then simulates all the other steps of the cRA.InitNode algorithm to
obtain a public and private key for that node, as well as any linking information. The adversary
is given the public key pk and the linking information link.

Definition 8 (Configuration Hiding). We say that D-cRA is ϵ-configuration-hiding if for any
PPT A playing the configuration-hiding game, it holds that:

AdvCHidecRA (A) := |P[A wins GCHide(λ)]−
1

2
| ≤ ϵ
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Game GCHide(λ)

G ← A
(ppar,G, TG)← cRA.Setup(1λ,G)
b

$← {0, 1}
pkver ∪ {nodei, pki, confseti, linki}i∈[n],i ̸=i∗ ← AoChooseConfb(.)(1λ,G, ppar, TG)
d← AoAttest(.),oAggreg(.)(1λ, ppar,G, pkver ∪ {nodei, pki, confseti, linki}i∈[n],i ̸=i∗)

A wins iff. b = d

Fig. 4. The configuration-hiding game

The value AdvCHidecRA (A) is called the advantage of the adversary in winning the configuration-hiding
game.

Unforgeability Unforgeability is the basic property expected for an attestation scheme, namely
that no adversary should be able to forge a valid attestation for a node which is in an invalid state.
We extend this idea for a VNF-FG. For an unforgeable collective attestation scheme no adversary
should be able to provide a valid collective attestation that was not legitimately generated by an
honest node. In that case we assume that every node in the VNF-FG is equipped with a RoT
assumed to be incorruptible.

– oCorrupt(nodei)→ OK : This oracle allows the adversary to corrupt node nodei. Corrupt nodes
allow the adversary software access to that node, but no access to the secret key or the state
stored in the RoT.

– oReqGen(G)→ req : This oracle takes in input a graph description G, it retrieves the span-
ning tree TG generated upon setting up the graph G, then runs as a black-box the algorithm
cRA.ReqGen(skver, TG). The resulting request req is forwarded to the adversary.

– oAttest(nodei, req)→ a : The adversary can use this oracle to obtain an attestation generated
legitimately for node nodei, using the nonce randreq from the request req. This oracle runs, as a
black box, the algorithm cRA.Attest(ski, confi, confseti, linki, randreq) in order to produce the
attestation.

– oAggreg(nodei, (a1, ..., an), (agg1, ..., aggm), req)→ agg ∪ ⊥: The aggregation oracle can be que-
ried to get an aggregation of attestations (a1, ..., an) and/or potential aggregates (agg1, ..., aggm)
under nonce randreq from request req. The aggregation is performed by node nodei, by running,
as a black box, the algorithm cRA.Aggregate(ski, stgi, (a1, ..., an), (agg1, ..., aggm), rand). Note
that, in our scheme, only certain nodes can verify, and thus aggregate attestations. If the input
node is not one of those nodes, the result provided by this oracle is ⊥.

Definition 9 (Unforgeability). We say that D-cRA is (n, ϵ)-unforgeable if for any graph G ∈ Γ
on at most n nodes chosen at setup, and for all PPT A playing the unforgeability game, it holds
that:

AdvUFcRA(A) := P[A wins GUF(λ)] ≤ ϵ

The value AdvUFcRA(A) is called the advantage of the adversary in winning the unforgeability game.

Linking The pioneering effort by [3] defines linking as a game, in which an adversary must succeed
in convincing a verifier that a VM is managed by a given hypervisor, even though this is not the
case. In this paper we are aiming for a similar property, adapted to the context of collective
attestation.

In the context of tree-based collective attestation, components such as hypervisors and VMs can
be distant nodes within the tree. We could enforce local verification of linking, enabling each node
to verify the validity of linking of other components. Yet, this would expose linking information
beyond the span of components that are directly related, and require the transmission of verification
elements from each node to all other nodes. Instead, we prefer to make an implicit local partial
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Game GUF(λ)

(ppar,G, TG)← cRA.Setup(1λ,G)
(skver, pkver)← cRA.InitVerifier(ppar)
stgver ← cRA.InitStg(ppar, ver, (pkroot, confsetroot, linkroot),∅)
∀i ∈ [n] : (pki, ski, confseti, linki)← cRA.InitNode(ppar)

stgi ← cRA.InitStg(ppar, nodei, (pkneibi , confsetneibi , linkneibi)nbneib , pkver)

(agg, a, nodei, req)← AoCorrupt(.),oReqGen(.),oAttest(.),oAggreg(.)(1λ, {pki, confseti, linki}i∈[n])

A wins iff.
- cRA.AggVerify(stgi, agg, req) = 1 or cRA.Verify(stgi, a, req) = 1.
- AND the oAttest and oAggreg oracles have not been queried using the pair
(nodei, randreq) (with (randreq, σ)← req).

Fig. 5. The unforgeability game

verification of linking information through the attestation verification algorithm and provide an
explicit result only at the end of the attestation process for the all VNF-FG.

As before, the adversary’s goal will be to persuade the verifier at the root of the spanning tree in
the VNF of the linking of one specific VNF and hypervisor, which are not in reality associated with
each other. Formally, like the unforgeability property, we let the challenger set up the VNF-FG;
thus, every node is initialized with the expected linking information, outside of the adversary’s con-
trol. We then give the adversary access to an oracle which allows it to modify the configuration of
the VNF-FG. In addition the adversary is given active access to the oAttest, oReqGen, and oAggreg
oracles defined in Section 3.2. In addition, the adversary gains access to the following oracle :

– oModG(G, (sk, pk, stg, confset, link)n) : This oracle takes as input a graph description G ∈ Γ .
It can be used to modify the VNF-FG topology according to this graph description. Those
modification includes moving a VNF to a different location within the graph or removing a
VNF but also adding a VNF. The adversary have full control over added VNFs and specifies
their information as it wants as input of the oracle. The oracle run the cRA.InitStg for those
new VNF and only for them, all other VNF storage remain unchanged.

The adversary wins if it is able to provide an attestation and an aggregate which verify as
linkable by the cRA.Link algorithm, in spite of the modification of at least one linking information
(translated into a change in the structure of the original VNF-FG).

In order to distinguish calls to the oAttest and oAggreg oracles for one graph topology or
another, the challenger keeps track of a database of legitimately generated requests, obtained by
calls to oReqGen. This database, which we denote as DoReqGen consists of entries of the type (G, req),
which essentially lists the graph G given in input to oReqGen and the resulting request req, which
includes a nonce randreq.

Game GLK(λ)

(ppar,G, TG)← cRA.Setup(1λ,G)
(skver, pkver)← cRA.InitVerifier(ppar)
stgver ← cRA.InitStg(ppar, ver, (pkroot, confsetroot, linkroot),∅)
∀i ∈ [n] : (pki, ski, confseti, linki)← cRA.InitNode(ppar)

stgi ← cRA.InitStg(ppar, nodei, (pkneibi , confsetneibi , linkneibi)nbneib , pkver)

(aggroot, aroot, req)← AoModG(.),oReqGen(.),oAttest(.),oAggreg(.)(1λ, {pki, confseti, linki}i∈[n])

A wins iff.
- cRA.Link(stgver, aroot, aggroot, req) = 1.
- AND there exists no nonce randreq and no request req such that: randreq ∈ req
- AND (G, req) ∈ DoReqGen with G being the graph input at the start of the game,
- AND aroot and aggroot issued by oAttest and oAggreg on input randreq.

Fig. 6. The linking game
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We define AdvLKcRA(A) to be the probability of adversary A to win the game the GLK(λ).

Definition 10 (Linkability). We say that D-cRA is (n, ϵ)-linkable if for all original graphs
G ∈ Γ employed at setup, and any PPT A playing the linking game for a modified graph G on at
most n nodes, it holds that:

AdvLKcRA(A) := P[A wins GLK(λ)] ≤ ϵ

The value AdvLKcRA(A) is called the advantage of the adversary in winning the linking game.

4 Construction

In this section we instantiate our scheme D-cRA using a signature scheme SIG = (SIG.Setup,
SIG.KeyGen, SIG.Sign, SIG.Verify), a commitment scheme COM = (COM.Commit, COM.Verify) and
a non-interactive zero-knowledge proof of knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver).

As in Section 3.1, we structure the presentation of our instantiation in two phases: the online
and the offline phase.

Offline Phase The offline phase corresponds to the initialization of the VNF-FG with all the
parameters needed for the attestation process itself. The verifier and each node (VNFs as well as
the hypervisors) are initialized with a signature key-pair, their expected set of configurations and
linking information. Then they share those public information with their neighbours. This is done
by running the cRA.InitNode and cRA.InitStg algorithms for each node (the description of each
algorithm is provided below in detail).

After this setup, every node (VNFs and hypervisors) has its storage initialized with all the
information they need to be able to verify their neighbours attestation. We start by describing the
content of this storage and give more information about what linking information is:

stg = (pkver, (pkneib, confsetneib, linkneib)nbneib) : The storage of every node in the VNF-FG includes:
the verifier public key pkver (which is used when attestation requests are forwarded, in order to
ensure that nodes only respond to requests legitimately produced by the verifier), and a table
of triples (pkneib, confsetneib, linkneib) (each entry corresponding to a neighbour and featuring
the latter’s public key pkneib, its set of possible configurations confsetneib, and expected linking
information linkneib). In addition to such values, the verifier also contains an entry detailing
information related to the root node (entry node of the VNF-FG).

link : The linking information of each node differs depending on whether that node is a VNF or
a hypervisor. In the case of a VNF, the linking information will be the public attestation (sig-
nature) key of that VNF (the same as the key generated by the cRA.InitNode algorithm). For
a hypervisor, the linking information is the set of public attestation keys of all the VNFs the
hypervisor is currently managing. For a compact storage of linking information, the (collision-
resistant) hash of the public keys could be used. This technique is especially useful in the case
of the hypervisor, in order to ensure that the size of the linking information remain constant
in the number of managed VNFs.

Remark 2. In our security analysis, we will assume this setup to be done in a trusted way, both
in terms of generating the setup values and communicating them to the neighbouring nodes. The
latter of these assumptions would count as strong in the case of forwarding graphs consisting of
IoT devices, since the latter are highly mobile, and therefore new forwarding graphs will form in
ad-hoc manners at short intervals. By contrast, in our use case (Virtual Network Functions owned
by various infrastructure providers), VNF-FGs are inherently stable and less likely to change over
time. As a result, an assumption of a trusted setup is less strong and can be achieved in practice
by the use of mutually-authenticated secure channels.

Remark 3. We furthermore stress that the storage stg is stored into the RoT and cannot be tam-
pered with in practice.

We proceed to detail the offline-phase algorithms:
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cRA.Setup(1λ,G)→ (ppar,G, TG) : The setup algorithm runs the individual setup algorithms of
the signature pparSIG ← SIG.Setup(1λ) and the commitment schemes pparCOM ← COM.Setup(1λ).
Given the graph description G of the VNF-FG it computes a spanning tree TG6. Finally the
algorithm sets ppar← (1λ, pparSIG, pparCOM) and outputs (ppar,G,
TG). All subsequent algorithms take ppar in input, even if the latter is not specifically included
in the algorithm parameters.

cRA.InitVerifier(ppar)→ (skver, pkver) : This algorithm initializes the verifier by creating a sig-
nature keypair : (skver, pkver)← SIG.KeyGen(pparSIG).

cRA.InitNode(ppar)→ (pk, sk, confset, link): This algorithm is ran for every node in the VNF-
FG (both VNFs and the hypervisors). It then sets the linking information according to the
description we gave above, as well as the set of possible valid configurations confset. Then
it generates a signature key-pair (sk, pk) ← SIG.KeyGen(pparSIG) (these keys will be stored
within the RoT of the device) and run the setup algorithm of the NIZK proof of knowledge,
pparNIZK ← NIZK.Setup(1λ).

cRA.InitStg(ppar, (node ∪ ver), (pkneib, confsetneib, linkneib)neib∈N [node,G], pkver)→ stg: Once every
node (including the verifier) is initialized, important public and linking information has to be
propagated to pertinent other nodes. This information makes up the storage of the node. For
that every node receives triplets (pkneib, confsetneib, linkneib) from each of its neighbours, and
stores them into a storage stg as a table. Also included in the storage is the public key of the
verifier. In its own turn, the verifier initializes its storage with the information of the root node
(namely pkroot, confsetroot and linkroot).

Fig. 7. The offline phase after setup.

Online Phase The setup phase of the scheme takes place offline and – in our use case – will be
relatively infrequent. Once the VNF-FG and each of its composing nodes are set up, one can
proceed to performing attestation, in an online phase.

6 We reiterate that the spanning tree is computed, in practice, in a distributed and trusted way outside
of the control of the adversary.
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Each attestation is produced in response to an attestation request, produced by the verifier (i.e.,
the operator) through the use of the cRA.ReqGen algorithm. The request contains an attestation
nonce randreq, and is authenticated. Subsequently, nodes can verify the authentication.

Once the verifier generates the attestation request, the latter is propagated through the com-
puted spanning tree TG . When the request reaches the leaf nodes of the spanning tree, the latter
retrieve their current configuration conf, run the cRA.Attest algorithm, and send that result to the
parent-nodes. Upon receiving authenticated attestations from their children, parents verify them
by using the cRA.Verify algorithm, then aggregate those values by using cRA.Aggregate, sending
the aggregate further up the tree. Note that even a valid attestation or aggregate will be deemed
invalid if it is computed for the wrong nonce (i.e., not the nonce recovered from the attestation
request by the verifying node).

Formally, we define attestations and aggregates as follows.

a = (πa, σa, c): An attestation consists of: (1) A commitment c of the true configuration of the
attested node7; (2) a proof πa that the commitment is made with respect to a configuration
value included in a set of valid configuration confset (the attestation itself does not contains the
value of confset, which is in fact contained in the storage value included in the Root of Trust of
neighbouring nodes); (3) a signature σa over the commitment value c, the linking information
link, and a nonce randreq – retrieved from the attestation request. The random character of
randreq is crucial in preventing replays of old attestations.

agg = (resagg, σagg) : An aggregate contains: (1) A binary value resagg which indicates if all the
prior attestations/aggregates verify as valid (as soon as one aggregate or attestation verifica-
tion fails, the binary result returned by the verifier node will be 0); (2) A signature σagg over
the result resagg with the nonce randreq retrieved by that node from the propagated attestation
request.

The successive verification, attestation, aggregation, and forwarding of the attestations is done
in increments, with parents that receive aggregate values additionally verifying the aggregates by
using the cRA.AggVerify algorithm.

Apart from the attestation and/or aggregate verification, the verifier will moreover check the
correct linking between the nodes of the graph. This is done through the cRA.Link algorithm, which
states whether the entire VNF-FG is in the expected state with VNF running on the expected
hypervisor or if at least one node is in an invalid state/has invalid linking.

An overview of how the online-phase algorithms are used is provided in Figure 8.

Remark 4. Note that some online steps are parallelizable, while others are not. For instance, nodes
can generate attestations as soon as they receive the verifier’s authenticated attestation request
(from which they can extract and use the attestation nonce). However, parent nodes must first wait
for the children nodes to produce their attestations (and potential aggregates) before aggregating
their own attestations to the chain and sending them on. This dependency between the nodes
implies the practical requirement of a timeout8. If a node does not send its attestation within the
time limit, the node responsible for verifying that node’s attestation/aggregate must assume that
the node is in an invalid state.

Remark 5. We note that the attestation-computation, aggregation, and verification steps of all of
the algorithms deployed during the online phase by a node of the VNF-FG are executed from the
Root of Trust (RoT). The only operation that is not assumed to be trusted is the transmission of
that information, allowing an adversary to potentially delay, jam, or modify communication.

We now describe the cRA.ReqGen, cRA.Attest, cRA.Verify, cRA.Aggregate, cRA.AggVerify and
cRA.Link algorithms :

7 Note that the commitment is hiding and thus no information can be learned about the configuration
8 Timeouts can be exploited by adversaries in several ways, including in order to deny service to honest

entities. While in our current work DoS attacks are out of scope, understanding such limitations for
VNF-FG schemes is viewed as essential future work.
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cRA.ReqGen(skver, TG)→ req: On input the verifier secret-key skver this algorithm chooses a ran-

dom number randreq
$← {0, 1}λ. It computes a signature over that random value σreq ←

SIG.Sign(skver, randreq), then sends an attestation request req consisting of the concatenation
(randreq, σreq) to the root node (entry point of the VNF-FG).

cRA.Attest(stg, sk, conf, confset, link, req)→ a ∪ ⊥: attestation takes in input a node’s storage
value stg, the node’s private key sk, the node’s current configuration conf, configuration set
confset, and linking information link, as well as an attestation request req. Parsing req as
(randreq, σreq), the node uses the verifier’s public key value pkver (included in each node’s storage)
to verify the signature SIG.Verify( pkver, randreq, σreq). If the signature is invalid, the algorithm
outputs ⊥ otherwise the node can produce an attestation. First, the node computes a com-
mitment of its current configuration c ← COM.Commit(conf, r) with some randomness r. Then
it computes the proof πa ← NIZK.Pr({(conf, r) : c ← COM.Commit(conf, r) ∧ conf ∈ confset})
which shows that c is a valid commitment for a value conf contained in confset without reveal-
ing the committed value. The node also signs c σa ← SIG.Sign(sk, c|link|randreq), by using the
node’s private key sk, stored in the RoT. The signature ensures that the committed value was
generated within the Root of Trust with a fresh commitment-nonce. Note that the signature
is computed over the node’s own linking information (which is the VNF’s public key for a
VNF, and a set of public keys of each of its linked VNFs for a hypervisor). Finally it sets
a = (πa, σa, c) and outputs a.

cRA.Verify(stg, a, req)→ {0, 1} ∪ ⊥: given in input a securely-stored node storage stg, an attes-
tation a, and the current attestation request req, the verification algorithm proceeds to verify
that both the proof and the signature included in the attestation are valid. To do so, the node
parses the attestation a as (πa, σa, c) and the request req as (randreq, σreq). There are two cases:
either the attestation stems from a node that is an actual neighbour of the verifying node, or
not. In the second case, the node will not have the public key pkneib allowing it to verify the
attestation – and will eventually return ⊥. In the former case, the verifying node retrieves from
its storage stg the public key pkneib of the attested node, the expected configuration confsetneib,
and the expected linking-information linkneib, and checks that NIZK.Ver(πa) = 1 (i.e., the node
checks that the commitment c contains a configuration which is into the set confsetneib). It
also verifies that SIG.Verify(pkneib, c |linkneib|randreq, σa) = 1. If every check passes, then the
algorithm outputs 1, otherwise it outputs 0.

cRA.Aggregate(stg, sk, (a1, ..., ai), (agg1, ..., aggj), req)→ agg′: The aggregation algorithm takes in
input a variable number of attestations a and/or a variable number of aggregate values agg
under an attestation request req, as well as the node’s storage stg and private key sk. The
algorithm parses req as (randreq, σreq), then verifies every attestation cRA.Verify( stg, a, req)
and every aggregate cRA.AggVerify(stg, agg, req). If all the verifications return 1 (valid), the
algorithm sets res′agg = 1, otherwise it sets res′agg = 0. Finally the algorithm computes a
signature over the result σ′

agg = SIG.Sign(sk, res′agg|randreq) and outputs agg′ = (res′agg, σ
′
agg).

cRA.AggVerify(stg, agg, req)→ {0, 1} ∪ ⊥ : This algorithm parses the aggregate attestation agg
as (resagg, σagg) and the request req as (randreq, σreq). There are two cases: either the aggre-
gate is received from a neighbouring node, or it is not. In the latter case, the verifying node
will not have the information required to verify the aggregate, and it will output ⊥. Else,
if the aggregate is received from a neighbour, the verifying node retrieves the public key
pkneib associated with the aggregate from its storage and verifies the signature over the re-
sult SIG.Verify(pkneib, resagg|randreq, σagg). If the signature is valid it outputs 1 otherwise it
outputs 0.

cRA.Link(stgver, aroot, aggroot, req)→ {0, 1}: The linking algorithm is run by the verifier using its
storage stgver given the attestation aroot and aggregate aggroot of the root node. It checks both
under the root node public key : cRA.Verify(stgver, aroot, req) and cRA.AggVerify(stgver, aggroot,
req). If both checks succeed, it outputs 1 (and concludes that the attestation confirms the
expected linking of VNFs and hypervisors) otherwise 0.

Remark 6. In our construction we assume nodes know the location of their neighbours and thus
know which public key should be used to verify an attestation or an aggregate. If the verification
requires for a node to iterate through all the public keys of all of its neighbours to check if any
correctly verify, this could be used by an adversary for a DoS attack. In practice, one can require
nodes to communicate over a mutually-authenticated (secure) channel.
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Fig. 8. The online phase.

5 Security Analysis

In this section we prove that the construction presented in Section 4 guarantees the properties
defined in Section 3.

5.1 Configuration Hiding

We prove the following statement.

Theorem 1. Let cRA be the privacy-preserving collective remote attestation scheme described in
Section 4, using a signature scheme SIG = (SIG.Setup, SIG.KeyGen, SIG.Sign, SIG.Verify), a com-
mitment scheme COM = (COM.Commit, COM.Verify) and a non-inter-active zero-knowledge proof of
knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver). If the commitment scheme is computation-
ally hiding and the NIZK proof is composable zero-knowledge in the sense of [13], then D-cRA
is configuration hiding. More specifically, assume that there exists an adversary A winning the
configuration-hiding game (GCHide(λ)) against a graph on n nodes with advantage AdvCHidecRA (A).
Then there exist adversaries (reductions) R1 against the computational hiding property of COM

and R2 against the zero-knowledge property of NIZK winning with advantages AdvHideCOM (R1) and
respectively AdvCompZK

NIZK (R2), such that:

AdvCHidecRA (A) ≤ n · (AdvHideCOM (R1) + AdvCompZK
NIZK (R2)).

Proof. Recall that in the configuration-hiding game, the adversary’s goal is to learn which of two
chosen configurations is used to initialize a particular, target node. The adversary in this case
controls both the topology of the VNF-FG and most of the nodes (with the exception of the target
node), from which it can request attestations and aggregates.

The proof proceeds with only 3 intermediate game hops.

G0: The original configuration-hiding game.
G1: In this intermediate game, the challenger chooses randomly an integer i∗ ∈ {1, . . . , n} and out-

puts it privately at the beginning of the game. If the adversary queries nodei to the oChooseConf
oracle, with i ̸= i∗, then the challenger outputs ⊥ (the game fails). Else, the game is run nor-
mally. Clearly, since the challenger has a probability of 1

n to guess the adversary’s target node,
it holds that:

AdvCHideG0
(A) ≤ n · AdvCHideG1

(A) .
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G2: We modify G1 In G2, the challenger changes the way it answers oAttest queries to the target
node nodei∗ . Specifically, instead of generating the challenger consistently replaces the configu-
ration value confb with that of conf0 regardless of the bit b.This game is indistinguishable from
the previous game from the point of view of the attacker, since we assumed the commitment
scheme to be computationally hiding. Indeed, using a distinguisher between G1 and G2 we
can construct a reduction R1 which aims to break the hiding property of the commitment
scheme. Clearly, the only difference between the two schemes appears for b = 1, when the
adversary is provided a commitment over conf0 rather than a commitment over conf1. If the
distinguisher between G1 and G2 guesses which game it is playing, then the reduction is also
able to distinguish whether the commitment is made over conf0 or conf1. Hence,

|AdvCHideG1
(A)− AdvCHideG2

(A)| ≤ AdvHideCOM (R1).

G3: In this game hop, the challenger modifies once more its response to oAttest queries. It employs
the simulator of the NIZK proof of knowledge in order to produce the proofs required in the
attestation a produced by the challenge node nodei∗ . This is indeed possible for composable
zero-knowledge, since the simulator requires in input only the statement and the public pa-
rameters required for verification – which our scheme provides. If an adversary can distinguish
between G2 and G3, then it can distinguish between a real proof (in G2) and a simulated proof
(in G3), and therefore:

|AdvCHideG2
(A)− AdvCHideG3

(A)| ≤ AdvCompZK
NIZK (R2).

In G3, all the values that were computed for the challenge configuration confb are either identical
in both cases (for the commitment), or are simulated without using the exact configuration in input
(NIZK proof of knowledge). Therefore the adversary’s winning advantage in G3 is 0. This provides
the required bound.

5.2 Unforgeability

We claim the following theorem.

Theorem 2. Let cRA be the privacy-preserving collective remote attestation scheme described in
Section 4, using a signature scheme SIG = (SIG.Setup, SIG.KeyGen, SIG.Sign, SIG.Verify), a
commitment scheme COM = (COM.Commit, COM.Verify) and a non-inter-active zero-knowledge proof
of knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver). If the signature scheme is EUF-CMA,
then D-cRA is unforgeable. More specifically, assume that there exists an adversary A winning the
unforgeability game (GUF(λ)) against a graph on n nodes with advantage AdvUFcRA(A). Then there
exists an adversary (reduction) R against the EUF-CMA of the signature scheme SIG winning with
advantage AdvEUF−CMA

SIG (R), such that:

AdvUFcRA(A) ≤ n · AdvEUF−CMA
SIG (R).

Proof. To understand why this statement is true, recall that, in the unforgeability game, the
adversary will be required to forge a valid attestation or aggregate on behalf of a node nodei in the
graph, without obtaining the aggregate or attestation from a direct oracle query. Recall moreover
that an attestation is a triple a = (πa, σa, c), in which the second element, σa is a signature over 3
values: the commitment c, the linking information link, and the random value randreq in the request
req. An aggregate is a tuple consisting of an aggregated verification bit resagg and a signature σagg

over that result and the request nonce randreq.
While the adversary is able to corrupt any node in software, it has no access to the node’s Root

of Trust (and therefore its private keys). Thus, an adversary can only win the GUF(λ) game if it
produces a forgery on one of those two signatures.

The proof is relatively straight-forward, with a single intermediary game-hop.

G0: The original unforgeability game GUF(λ).
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G1: In this game, the challenger chooses randomly an integer i∗ ∈ {1, . . . , n} and outputs it
privately at the beginning of the game. If the adversary’s final output out is of the type
(nodei, ·, ·) with i ̸= i∗, then the challenger outputs ⊥ (the game fails). Else, the game is run
normally. Clearly, since the challenger has a probability of 1

n to guess the adversary’s target
node, it holds that:

AdvUFG0
(A) ≤ n · AdvUFG1

(A) .

We now compute the adversary’s success probability in game G1. Specifically, we construct a
reductionR against the EUF-CMA security of the signature scheme which wins whenever adversary
A wins G1.

The simulation is straight-forward. The reduction R receives from its EUF-CMA challenger the
target public key pk. The reduction has access to a signing oracle, which takes in input messages m
and outputs signatures of the type σ ← SIG.Sign(sk,m). The goal of R is to eventually output a
tuple (m∗, σ∗) such that SIG.Verify(pk,m, σ) = 1 and m∗ was never queried to the signing oracle.

Once it receives the target public key pk, the reduction R, playing the part of the challenger
in G1, generates all the private and public parameters of all the parties in the modified GUF(λ) of
G1. The sole exception is during the setup of node nodei∗ , in which the challenger instantiates all
the node’s private, public, configuration, and linking parameters, except for that node’s attestation
key. Instead, for node nodei∗ , the reduction injects the public key pk received from its challenger.

For the remainder of the game, the reduction simulates G1 straightforwardly, except for oAttest
and oAggreg queries. In the case of oAttest(nodei∗ , req) queries, the reduction computes the com-
mitment value c and NIZK proofs of knowledge faithfully, but then has to produce a valid signature
for the concatenations of the concatenation of c, linki∗ , and the nonce rand extracted from req. In
order to do so , it sends the concatenation of those messages as a message M to its signature oracle
and forwards that response as a signature, together with c and the proof π to A. The procedure is
the same for oAggreg.

Finally A outputs a value out which can be parsed as (agg, a, nodei, req). The reduction verifies
the signatures σa in a and σagg in the aggregate agg. If at least one of these signatures verify, and
they were not produced by the oAttest or oAggreg oracles, then R outputs that verifying, fresh
signature to its challenger. Else, it outputs a random value as a forgery.

For the analysis, note that the reduction simulates the game perfectly for A. If the latter wins,
then it is able to output either a verifying and fresh σa or σagg. In that case, however, R also wins.

As a result AdvUFG1
(A) ≤ AdvEUF-CMA

SIG (R), giving the required bound.

5.3 Linking

We prove the following statement.

Theorem 3. Let cRA be the privacy-preserving collective remote attestation scheme described in
Section 4, using a signature scheme SIG = (SIG.Setup, SIG.KeyGen, SIG.Sign, SIG.Verify), a
commitment scheme COM = (COM.Commit, COM.Verify) and a non-inter-active zero-knowledge proof
of knowledge NIZK = (NIZK.Setup, NIZK.Pr, NIZK.Ver). If the signature scheme is EUF-CMA, then
D-cRA is linking. More specifically, assume that there exists an adversary A winning the linking
game (GLK(λ)) against a graph on n nodes with advantage AdvLKcRA(A). Then there exist adversaries
(reductions) R1,R2,R3 against the EUF-CMA of the signature scheme SIG winning with advantage
AdvEUF−CMA

SIG (R1), and respectively AdvEUF−CMA
SIG (R2) and AdvEUF−CMA

SIG (R3), such that:

AdvLKcRA(A) ≤ AdvEUF−CMA
SIG (R1) + n · AdvEUF−CMA

SIG (R2) + AdvEUF−CMA
SIG (R3).

Proof. To understand why this theorem holds, recall that linking is meant to ensure that graph
nodes (representing VNFs and hypervisors) are linked in specific ways in order to ensure specific
functionalities of the VNF-FG. This often-contractual obligation is violated if, following adversarial
intervention, some VNFs are no longer managed by the expected hypervisor, or a node (VNF
or hypervisor) is suppressed. Thus, in the linking game, the adversary is allowed to modify the
original, honestly-chosen graph to a different, convenient configuration. The adversary’s goal is
to ensure that the VNF-FG still seems must produce a root attestation and aggregate that seem
to be correctly linked with respect to the original, unmodified graph (which models the expected
configuration).
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Intuitively, the proof of this statement relies on several constructional decisions of our schemes.
One of the most important role is played here by the apparently-simplistic structure of propagated
attestation requests (which are sent across the spanning tree of the graph by the verifier). Two
crucial elements play a part here: the fresh randomness selected by the verifier at each attestation,
and the signature of the request. This ensures that on the one hand, the adversary cannot replay
old attestations, obtained for the original graph, and pass them off as being attestations obtained
for the new graph; and on the other hand, that an adversary cannot forge attestation requests at
will for convenient nonces. Note moreover that in the security game, we rule out an adversarial
victory for a nonce that was already used for the old graph, as long as the root attestation and
aggregates are yielded by oAttest or oAggreg. This saves us the trouble of an additional game hop
in which we assume that honestly-generated randomness is always unique. In reality, we would,
however, have to ensure that nonces are sizeable, in order to guarantee that no collusion occurs.

The next crucial construction element we employ is the linking information obtained and set up
in a trusted way, which is additionally authenticated during the transmission of both attestations
and aggregates. This ensures that graph modifications are identified by nodes along the spanning
tree of the graph.

More formally, we prove the statement through the following sequence of game hops.

G0: The original linking game GLK(λ).
G1: We modify the original game. In G1, if the adversary queries oAttest or oAggreg with an

input req which was not issued by oReqGen, the challenger automatically outputs ⊥ for those
two oracles. We claim that this game is indistinguishable from G0. Indeed, in order for the
adversary to be able to tell the difference between the games, it has to forge a legitimate,
fresh attestation request. If this is the case, then we can construct an EUF-CMA reduction R1

against the signature scheme employed by the verifier. The reduction injects the target public
key pk received from the challenger in its simulation of the verifier. The challenger generates
the rest of the graph/node parameters honestly and therefore can perfectly simulate any graph
modification, attestation, and aggregation requests. For its oReqGen responses, the reduction
chooses fresh randomness and queries it to the signature oracle, outputting the response to the
adversary. Eventually, the adversary must output a forgery, which the reduction forwards to
its challenger. Clearly the simulation is perfect and whenever A distinguishes between the two
games, the reduction also wins. This yields the bound:

|AdvLinkG0
(A)− AdvLinkG1

(A)| ≤ AdvEUF−CMA
SIG (R1).

G2: We modify the game once more. In this intermediate game, the challenger aborts if the adver-
sary uses, in input to oAttest or oAggreg any attestation or aggregate that was not output by
a call to oAttest or oAggreg for the same nonce. This includes the attestation/aggregate used
in the adversary’s ultimate output. Clearly, this is equivalent to the successful forging of an
attestation or aggregate. The equivalence between G1 and G2 can be proved through a 2-step
reduction, akin to the unforgeability game: first the challenger needs to guess on behalf of which
node the forgery is made (yielding a security loss of a factor of 1

n ), and then constructing a
reduction against the unforgeability of that node’s signature scheme. This yields,

|AdvLinkG1
(A)− AdvLinkG2

(A)| ≤ n · AdvEUF−CMA
SIG (R2).

We now analyse the adversary’s winning probability (which is the same as its advantage in the
case of the GLK(λ) security notion). There are two cases.
No new graph In this case, the adversary never modifies a graph via a oModG oracle query.
In this case, the adversary’s only attestations and aggregates stem from attestation requests for
graph G. As per the last hop the adversary’s output must stem from an oAttest or oAggreg query
for the root node, for a valid request (as per our first game hop). Hence, in this game, there are
two options:

– Either the adversary includes a bogus value for the request, not obtained from oReqGen, in
which case the adversary fails, except for a forgery. We can construct in that case the adversary
R3 and simulate the game as in the first game hop.

– Or the adversary includes an honestly-obtained value for req, in which case the adversary’s win
is not counted as legitimate (all three conditions of failure are true).
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At least one new graph In this case, the adversary queries oModG at least once. We divide
our analysis in the following sub-cases:

– None of the subsequently-modified graphs G′ input to oModG differ from the original graph G.
This case is equivalent to the no-new-graph case.

– At least one graph modification is true (the input graph G′ ̸= G). In this case, the adversary
now owns attestations and aggregates for the new graph as well as for the old graph. As per
the winning conditions, and game G2, the adversary can only win for a request req such that
(G, req) ̸∈ DoReqGen. But, in this case, since no attestation or aggregate can be forged, the
linking information included in the signatures has to be faithful to whichever graph G∗ for
which (G∗, req) ∈ DoReqGen. In that case, the adversary fails as the new linking will be different
from the current one.

This concludes the proof with the bound provided above.

6 Implementation

We implemented the total of 10 offline and online algorithms of D-cRA in C++ (Our implemen-
tation will be publicly available.) and simulated D-cRA over a group of nodes (up to 2.5 × 105

nodes) using OMNet++ [23]. OMNet++ is a network simulator that can take in input a tree
configuration (i.e., the number of nodes and the arity) then runs a specific protocol, in our case
D-cRA, on that infrastructure. This setup for an easy performance-evaluation for D-cRA over
various tree configurations (as illustrated in Figure 9).

PoC platform details Our tests and benchmarks were carried out on a standard laptop running
Ubuntu 20.04.5 with an Intel i7-10875H CPU (16 cores) and 32GB RAM. The benchmarks were
run using the Cmdenv environment of OMNeT++ 6.0.1.

Cryptographic details We implemented the zero-knowledge set membership proof using a simple,
efficient protocol due to Camenisch et al.[6] (rendered non-interactive via the Fiat-Shamir heuris-
tic). The protocol is pairing based, and we used the BLS 12-381 curve implementation of mcl [22].
For the signature scheme, we used Libsodium [20] ed25519.

Memory cost We denote |confset| the number of element of a configuration set. After the offline
phase of D-cRA, each node stores at least its signing key pair (sk,pk) (32 and 32 bytes), the public
parameter for the proof pparNIZK (864+48∗|confset|), the verifier public key pkver (32 bytes) and for
every child node the following tuple: its public key, its linking information link9 and its associated
confset (32+32+48 · |confset|i bytes for neighbour i). Thus the size in bytes of a configuration set
then a node must store at least 960 + 48 · |confset|+

∑n−1
i=1 64 + 48 · |confset|i bytes of information

for n neighbours.

Online communication cost A considerable advantage of collective attestation is that it greatly
reduces the bandwidth which is critical in an NFV use case. In our scheme D-cRA, attestation
messages are of constant size. Indeed every node sends at maximum its own attestation and an
aggregate. An attestation is made up of a proof (816 bytes), a commitment (64 bytes) and a
signature (64 bytes) whereas an aggregate is simply one single bit and a signature (64 bytes). Thus
we have a total constant size of 8065 bits so around 1 kilo bytes.

Computational Load per Node In Table 2, we detail the time (in ms) for one attestation com-
putation and verification, and an ed25519 signature computation and verification (This will be
later considered for the aggregate computation and verification). In these benchmarks, we used the
google benchmark library [12] and set |confset| (the size of the set of configuration) to 100.

9 The linking information is a set of public keys of the linked components. In order to have a constant
size, this can be implemented by the Hash of the public keys set.
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Table 2. Time in ms to perform one attestation and one ed25519 signature.

Mean Median
Attestation 1.56 1.55

Attestation Verification 2.38 2.37
Signature 0.023 0.023

Signature Verification 0.057 0.057

We compare our result with SEDA [5] implemented on the TrustLite [17] TEE.

Table 3. Time in ms for a single node to compute an attestation report depending on the number of
children c.

D-cRA SEDA
Node 1.64 + 2.437 · (n− 1) 0.6 + 4.4 · (n− 1)

Leaf 1.617 + 2.38 · (n− 1) -

VNF-FG Attestation Performance In order to evaluate the performance of our scheme D-cRA,
we set |confset| = 100, the communication time between two neighbour nodes to 1ms, and varied
the number of children (for trees that range from 2-ary to 8-ary) and the tree height. Only for test
purposes, we considered complete trees which enables to variate the number of involved nodes up
to 2.5× 105. For each combination, we ran multiple trials and plotted the mean value in Figure 9.
These results show that (i) attesting a VNF-FG consisting of thousands of VNFs does not exceed
200ms and (ii) a VNF-FG attestation time is logarithmic in the number of nodes, making our
scheme D-cRA very efficient and scalable.
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Fig. 9. VNF-FG attestation time

7 Conclusion

In this paper we proposed a method to attest a large group of VNFs forming a VNF-FG, while
also guaranteeing layer-linking: ensuring that every VNF is linked to the correct hypervisor. More
importantly, our protocol preserves the privacy of each node’s actual configuration through the use
of set membership proofs. This renders our protocol suitable for multi-tenant VNF-FGs in which
multiple operators collaborate in order to provide a full network service.

Our scheme leverages deep-attestation, property-based attestation, and collective remote at-
testation, and achieves provable, formal privacy and security : unforgeability, layer-linking, and
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configuration-hiding. Our proof-of-concept implementation demonstrates the efficiency of our scheme
and demonstrates that privacy can be achieved without a loss of scalability.

Our protocol currently provides a yes/no verification and linking output: yes, the entire VNF-
FG is in a valid state, no, it is not. A possible extension could identify which devices failed their
attestation. This would involve including, in the aggregates, the identifiers corresponding to failed
attestations/aggregates. However, this would increase bandwidth costs if attestation fails and could
be used by adversaries to cause congestion.
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