
Benchmarking Attacks on Learning with Errors

Emily Wenger∗†, Eshika Saxena∗, Mohamed Malhou∗‡, Ellie Thieu§ and Kristin Lauter∗
∗Meta AI, †Duke University, ‡Sorbonne Université, §University of Wisconsin-Madison

Abstract—Lattice cryptography schemes based on the learning
with errors (LWE) hardness assumption have been standard-
ized by NIST for use as post-quantum cryptosystems, and
by HomomorphicEncryption.org for encrypted compute on
sensitive data. Thus, understanding their concrete security is
critical. Most work on LWE security focuses on theoretical
estimates of attack performance, which is important but may
overlook attack nuances arising in real-world implementations.
The sole existing concrete benchmarking effort, the Darmstadt
Lattice Challenge, does not include benchmarks relevant to the
standardized LWE parameter choices—such as small secret
and small error distributions, and Ring-LWE (RLWE) and
Module-LWE (MLWE) variants. To improve our understanding
of concrete LWE security, we provide the first benchmarks for
LWE secret recovery on standardized parameters, for small
and low-weight (sparse) secrets. We evaluate four LWE attacks
in these settings to serve as a baseline: the Search-LWE attacks
uSVP [9], SALSA [50], and Cool&Cruel [43], and the Decision-
LWE attack: Dual Hybrid Meet-in-the-Middle (MitM) [22]. We
extend the SALSA and Cool&Cruel attacks in significant ways,
and implement and scale up MitM attacks for the first time. For
example, we recover hamming weight 9− 11 binomial secrets
for KYBER (κ = 2) parameters in 28− 36 hours with SALSA
and Cool&Cruel, while we find that MitM can solve Decision-
LWE instances for hamming weights up to 4 in under an
hour for Kyber parameters, while uSVP attacks do not recover
any secrets after running for more than 1100 hours. We also
compare concrete performance against theoretical estimates.
Finally, we open source the code to enable future research.

1. Introduction

A full-scale quantum computer would threaten the secu-
rity of most modern public key cryptosystems. A quantum
computer could easily solve the hard math problems—such
as integer factorization—on which many of these systems
are based. Consequently, the cryptographic community has
sought to develop quantum-resistant cryptosystems, based on
hard problems that quantum computers cannot easily solve.

Cryptosystems based on Learning with Errors (LWE)
have emerged as leading contenders. The LWE problem is:
given many instances of a random vector a of dimension n
along with a noisy inner product of a with a secret vector s
modulo q, recover s. The hardness of LWE depends on the
dimension n, the modulus q, and the distributions that the
secret and the error are drawn from.

Several LWE-based cryptosystems, such as
CRYSTALS-KYBER [11] were standardized by NIST,
the US National Institutes of Standards and Technology [19]
in 2022 for industry use in post-quantum cryptography.
Furthermore, all publicly available fully homomorphic
encryption (HE) libraries rely on the hardness of LWE
for their security. HE was standardized by an industry
consortium in 2018 [2], with recent updated analysis given
in [14]. Since standardization, LWE-based cryptosystems
have been incorporated into applications such as the
encrypted messaging protocol, Signal [33], and LWE-based
HE schemes have been used in production by Microsoft
in a password-breach detection scheme [34], and in the
finance industry for encrypted compute on sensitive market
data [31].

Consequently, vetting the security of deployed LWE-
based cryptosystems is critical. Although LWE is believed to
be secure against attacks by a quantum computer, additional
analysis is needed to ensure it is secure against classical (non-
quantum) attacks. Numerous attacks against LWE have been
proposed in recent years, but the LWE parameters proposed
by NIST and HomomorphicEncryption.org are set to ensure
128-bits of security in theory against all known attacks [44],
[2], [14]. Such conclusions of security are often reached
through use of the LWE Estimator [8], an open-source tool
that estimates the resources needed to successfully attack
given LWE parameters based on theoretical analysis and
heuristic assumptions [42], [2], [14].

Although the Estimator is a powerful tool, best practices
in security analysis call for a multi-pronged approach to
ensuring systems are secure. Given that billions of people
may come to rely on LWE-based cryptosystems, additional
avenues of assessing LWE security should be pursued. One
obvious avenue is measuring concrete attack performance, to
ensure that theoretical estimates line up with experimental
observations. However, standardized methods for evaluating
LWE attack performance are scarce. The sole exisiting
concrete benchmark for LWE security is the Darmstadt
Lattice Challenge [15]. While important for understanding
the hardness of the Shortest Vector Problem (SVP), the
Darmstadt challenges do not include benchmarks relevant
to the standardized LWE parameter choices—such as small
secret and small error distributions, and Ring-LWE (RLWE)
and Module-LWE (MLWE) variants.

Our Proposal: LWE Attack Benchmarking Challenge.
Given the importance of bolstering theory with experiments,
and the current dearth of practical benchmarks for LWE

1

attacks, we propose the first practical LWE benchmarking
challenge. This challenge achieves three key objectives. First,
it complements existing theoretical estimates of LWE attack
performance [8], replacing heuristic estimates with concrete
running times and memory usage for known attacks. Second,
it provides an avenue for measuring new attacks against
existing attacks. Finally, it encourages the community to
implement and optimize existing attacks, accelerating our
understanding of concrete LWE security.
Our Contributions. We provide concrete benchmarks for
LWE attacks with parameter choices from two key real-world
use cases of LWE: CRYSTALS-KYBER and Homomorphic
Encryption. We implement and evaluate four concrete LWE
attacks—uSVP, SALSA, Cool&Cruel, and Dual Hybrid
MiTM—on these parameter settings. These are the first
ever successful secret recovery attacks on standardized LWE
parameters (see Table 9): n = 256, log q = 12, Module-LWE
of ranks 2 and 3 with binomial secret and error distributions
for KYBER; and n = 1024, log q = 26, 29 with ternary
secrets and narrow Gaussian error for HE.

We start with sparse, or low weight, secrets, to benchmark
attacks which succeed on these. The challenge is to success-
fully recover higher Hamming weight secrets. Prior work has
demonstrated secret recovery for non-standard parameters,
such as dimension n = 100− 200 and large log q, with the
goal of decreasing q to make the LWE problem harder. Our
proposed benchmark instead fixes n and q as the choices
standardized for KYBER and HE, and identifies Hamming
weight (or secret sparsity) as the sliding hardness parameter,
to be increased to reach general secrets. For example, Table 9
shows secret recovery of hamming weight 9− 11 binomial
secrets for KYBER (κ = 2) parameters in 28−36 hours with
SALSA and Cool&Cruel, while we find that MitM can solve
Decision-LWE instances for hamming weights up to 4 in
under an hour for KYBER parameters, while uSVP attacks do
not recover secrets after running for more than 1100 hours.

In the process of implementing and evaluating attacks,
we made many new technical contributions, including:
• a new distinguisher to recover general (e.g. binomial,

Gaussian) secrets from ML models in the SALSA attack;
• a new linear regression algorithm to recover general
secrets in the Cool&Cruel [43] attack;

• application of the RLWE cliff rotation approach of [43]
to attacks on RLWE in HE settings;

• application of the RLWE cliff rotation approach of [43]
to the Module-LWE setting for KYBER, introducing a
“cliff-splitting” approach;

• a method to preprocess Ring and Module LWE samples
for use in SALSA and Cool&Cruel attacks;

• corrections to the Dual Hybrid MiTM attack, such as
overestimates of number of short vectors needed and bad
metrics for identifying secret candidates;

• additions to the LWE Estimator.
We also highlight interesting “lessons learned” from our
attack implementations and experiments, including the im-
portance of using a cryptographically sound random number
generator to generate the random vectors a. We show

Symbol Description

q The modulus of the LWE problem considered
s The unknown secret, used to construct b = a · s+ e
χs Distribution from which secret s is chosen.
χe Distribution from which error e is chosen.
n Dimension of vectors a and s or degree of polynomial
Rq Quotient Ring Zq[X]/(Xn + 1)
M Module Rk

q

Skew-Circ(a) Skew-circulant of a vector a

TABLE 1. Notation used in this paper.

recovery of much higher Hamming weight secrets when
using a bad RNG. Finally, we open source our code for the
attacks and evaluation.
Paper organization. §2 discusses the Learning with Errors
problem, including real-world use cases and proposed attacks.
§3 describes prior LWE attack benchmarking work and
introduces our benchmark settings. §4 provides details on the
attacks we evaluate. §5 presents our benchmark results. §6
highlights interesting lessons learned from implementing and
evaluating attacks. §7 describes our open source codebase,
and §8 lays out possible future work.

2. Background on Learning with Errors (LWE)

The Search-LWE problem is: given samples (A,b),
where A ∈ Zm×n

q is a matrix with random entries modulo
q, and b = A · s+ e ∈ Zm

q are noisy inner products with a
secret vector s ∈ Zn

q with error vector e, recover the secret
vector s. The Decision-LWE version of the problem is simply
to decide whether (A,b) are LWE samples or generated
uniformly at random. The secret s and error e are chosen
from distributions χs and χe, respectively, and the hardness
of the problem depends on n, q, and these distributions. We
denote a single row of (A,bt) as (a, b) ∈ Zn

q × Zq.

2.1. LWE Settings

Secret and error distributions. The LWE secret s and error
e distributions affect the hardness of LWE. Often, s and e
are chosen from narrow (small) distribution to improve com-
putational efficiency [2], although prior work demonstrates
that narrow s distributions may be less secure [17], [12].
This work considers secret and error distributions where
entries of the vectors are chosen as follows:
• Binary, B+: uniformly from {0, 1}.
• Ternary, B−: uniformly from {−1, 0, 1}.
• Binomial, Bη: from a centered binomial distribution by

sampling (a1 . . . aη, b1 . . . bη)← {0, 1}2η , then outputting
Ση

i=1(ai − bi) [11].
• Discrete Gaussian, N (σ): from a normal distribution
with mean 0 and standard deviation σ, rounded to the
nearest integer.

• General, U(0, q): uniformly from Zq.
• Fixed h (secrets only): any of the secret distributions

above, but with a fixed number of nonzero coordinates h.
Binary secrets with h nonzero coordinates denoted B+

h .

2

Variants of LWE. Variants of LWE such as Ring Learning
with Errors (RLWE) have been proposed for use in real-
world LWE applications. The HE Standard [2] is based
on RLWE, where a sample is defined by (a(x), b(x) =
a(x)s(x) + e(x)) with a(x), b(x) polynomials in a 2-power
cyclotomic ring Rq = Zq[X]/(Xn + 1), n is a power of
2. In these rings, polynomial multiplication corresponds to
matrix multiplication via the coefficient embedding Emb :
Rq → Zn

q , a(x) → a = (a0, a1, . . . , an−1). For a(x) a
random polynomial, the coefficients of the corresponding
b(x) can be obtained by multiplying a skew-circulant matrix
A = Skew-Circ(a) corresponding to a = Emb(a(x)) by
Emb(s(x)) and adding Emb(e(x)).

Building on RLWE, yet another LWE variant is Module
Learning with Errors (MLWE), which works in a free Rq-
Module M = Rk

q of rank k. An MLWE sample is a
pair (a, b) where a = (a1(x), a2(x), . . . , ak(x)) ∈ M, and
b = a · s + e ∈ Rq for some secret vector of polynomials
s = (s1(x), s2(x), . . . , sk(x)) ∈M, and error polynomial e
chosen according to the specified distribution.

2.2. LWE in the real world

LWE-based cryptosystems are used in two important
real-world contexts: as part of the NIST-standardized set of
post-quantum public-key encryption algorithms [19], [11],
and in homomorphic encryption (HE) applications [2], [14].
Kyber. The 5-year NIST competition to select algorithms
for use in post-quantum cryptography chose an LWE-based
cryptosystem CRYSTALS-KYBER as a Key-Encapsulation
Mechanism (KEM) [19]. KYBER is an MLWE system
with binomial secrets and error distributions, Bη whose
parameters are listed in Table 2.

n k q Xs Xe η NIST Security Level

256 2 3329 Bη Bη 2 1
256 3 3329 Bη Bη 2 3
256 4 3329 Bη Bη 2 5

TABLE 2. Proposed standard KEM parameters for the Kyber MLWE scheme.
NIST security levels 1, 3, and 5 correspond to the expected security of brute-
forcing AES-128, 192, and 256, respectively [44].

Homomorphic Encryption. Most publicly available HE
libraries implement RLWE-based systems and often use
small (binary, ternary, narrow Gaussian), sparse secrets and
small error. Small, sparse secrets enable bootstrapping for
evaluating deep circuits required for deep neural nets, such
as in encrypted AI model inference [29]. In some proposed
schemes, secrets have only h = 64 active bits for dimension
n = 214 [23]. Table 4.2 of [14] gives the highest modulus q
that can be safely used for a given n with ternary or narrow
Gaussian secret distribution χs = N (0, 3.19) and narrow
Gaussian error χe = N (0, 3.19). These are listed in Table 3.

2.3. Attacks on LWE

Lattice reduction. Nearly all attacks on LWE rely in some
way on lattice reduction algorithms, which systematically

log2 q

n χs = B− χs = N (3.19)

1024 26 29
2048 54 56

TABLE 3. Proposed standard parameters for RLWE-based Homomorphic
Encryption schemes with security level λ = 128. Error χe = N (3.19) [14].

project vectors onto linear subspaces to reduce their size
and to find short vectors. LLL [36], is a polynomial time
algorithm which produces short, nearly-orthogonal lattice
bases. LLL is efficient but finds only exponentially bad
approximations to the shortest vector. The Block Korkine-
Zolotarev (BKZ) algorithm [49] produces shorter vectors
than LLL but runs in exponential time. BKZ variants like
BKZ2.0 [21] and Progressive BKZ [53], [10], [51] improve
efficiency. A subroutine of BKZ requires finding the shortest
vector in a sub-lattice of smaller dimension. One option
for this subroutine is sieving, a technique which produces
exponentially many short vectors in a small amount of time.
Although efficient sieving algorithms have been proposed and
implemented [27], [7], sieving requires exponential memory.
Recent work [48] proposed flatter, a fast lattice reduction
algorithm that produces vectors with quality on par with LLL,
using careful precision management techniques.
LWE attacks. We consider 3 attacks on Search-LWE:
uSVP [2], machine learning (ML) [50], “Cool&Cruel” [43],
plus Decision-LWE dual attacks [5], [22].
uSVP attack. The uSVP attack constructs a lattice from the
LWE samples (A,b) in such a way that the secret vector
s can be recovered from the unique shortest vector in that
lattice. The attack relies on lattice reduction to find the
shortest vector, and it only succeeds if the correct shortest
vector is recovered. [2, Section 2.1.2]
Dual attacks. Dual attacks [40] solve the Decision-LWE
problem by finding a short enough vector in the dual lattice
Λ = {x ∈ Zn

q |Ax = 0 mod q} using lattice reduction
and/or lattice sieving [27], [1]. Several variants of the dual
attack work especially well for sparse binary secrets so we
focus on those here: the Dual Hybrid and the Dual Hybrid
Meet-in-the-Middle (MitM).

The Dual Hybrid attack [3] splits the matrix A into two
parts and runs lattice reduction on one part and a guessing
routine on the other. The basic version “guesses” that the
columns in the second part of A correspond to all zero
bits of the secret, so they don’t contribute. This version
is only relevant for sparse secrets. The success probability
of this method is very low, and the formula in [3, p.17]
underestimates the number of times this attack would need to
be run in order to succeed with high likelihood (the formula
is correct but the approximation given is not). To improve the
success rate, one can either exhaustively guess all possible
secrets in the second part, or use a MitM approach [22]. The
exhaustive guess approach takes exponential time, while the
MitM requires exponential memory. The MiTM approach
builds a table of partial secret guesses and queries it with
other guesses to find a candidate for part of the secret.
Machine learning (ML) attacks. The SALSA papers [52],

3

Paper Attack type Parameters Reported
performance

metricsSetting n log2 q Secret distribution Error distribution

[17] Primal uSVP LWE 40 ≤ n ≤ 200 7 ≤ log2 q ≤ 21 B+, B−, N (σ), N (0, 3) Time
[53] Primal uSVP LWE [15] 40 ≤ n ≤ 90 11, 12, 13 Uq N (0, 40 ≤ σ ≤ 64) Time, Mem
[47] Primal uSVP LWE 72 ≤ n ≤ 100 7, 9 B+, B− B+, B− Success
[51] Primal uSVP LWE [15] 60, 75 12, 13 Uq N (0, σ = 28, 36) Time
[24] BDD/uSVP LWE n = 70, 80 12 N (0, 20) N (0, 20) Success
[7] uSVP LWE [15] 40 ≤ n ≤ 75 11 ≤ log2 q ≤ 13 Uq N (0, 28 ≤ σ ≤ 48) Time

[26] MiTM LWE 256 12 B+
h N (0, 3) Time

[16] MiTM I-RLWE 105 ≤ n ≤ 130 21, 22 N (0,
√
n) N (0,

√
n) Success

[52] ML LWE 128 9 B+
h N (0, 3) Time

[38] ML LWE 350 32 B+
h N (0, 3) Time

[37] ML LWE 512 63 B+
h , B−

h N (0, 3) Time
[50] ML LWE 512, 768, 1024 41, 35, 50 B+

h , B−
h N (0, 3) Time

[43] Cool&Cruel LWE/RLWE 256 ≤ n ≤ 768 12, 35, 50 B+
h N (0, 3) Time

TABLE 4. Summary of all concrete evaluation results for attacks on Search and Decision LWE found in literature in last decade. When Setting is
“LWE [15]”, the attack was evaluated specifically on lattices from the Darmstdat challenge. “Reported performance metrics” refers to the attack performance
metrics in the paper, as different evaluations report different metrics: Time = time to attack success, Mem = memory used in attack, and Success = whether an
attack succeeded or not (used for papers where neither time nor memory are reported, but experiment results are included).

[38], [37], [50] solve Search-LWE by training an ML model
to predict b given a for a fixed secret, and then use the
model as an oracle to recover the secret key. The SALSA
attack first preprocesses a large amount of data (roughly 2
million samples, generated from 4n samples through repeated
partial lattice reduction of random subsets). Encoder-only
transformer models are trained on these datasets of reduced
LWE samples (A, b). As soon as the model learns to predict
b from A with some accuracy, the secret can be recovered
using special queries to the model. The attack recovers sparse
binary and ternary secrets in dimension n ≤ 1024 [50].
Cool&Cruel (CC) attack. Recent work [43] leverages an
experimentally observed “cliff” in reduced LWE matrices to
recover sparse secrets. Like the ML attack, this attack first
reduces a large set of LWE samples. It observes that the first
columns of the A matrix remain unreduced (coordinates ∼
U(0, q)) after lattice reduction, while the remaining columns
are reduced and have small norms. The unreduced bits are
“cruel” and reduced ones are “cool”. The cool columns of
A can be initially ignored in guessing secrets, and for some
settings this reduces the search space far enough to make
brute force feasible. After cruel secret bits are recovered, an
efficient greedy algorithm is used to recover the “cool” bits.

2.4. Prior Concrete Evaluations of LWE Attacks

Many other LWE attacks and variants have been proposed,
so one would expect that experimental evaluations of these
attacks would be common. Unfortunately, this is not the
case. Table 4 lists papers (last ∼ 10 years) giving concrete
experimental results (e.g. time, memory requirements) for
attacks on Decision or Search LWE. This paper list may not
be exhaustive, but is complete to the best of our knowledge.
Table 20 in the Appendix lists open-source Github reposito-
ries with implementations of attacks on Decision or Search
LWE. This list is a subset of the first, as not all papers with
experimental results open-source their code.

The Darmstadt LWE Challenges, referred to in some
of the entries in Table 4, aim to benchmark LWE attack

performance. However, the parameters are not relevant to
LWE in practice since the Darmstadt challenge are in small
dimension n ≤ 120, and all secrets are chosen from the
uniform distribution mod q. The website recently announced
that there was a bug in generation, resulting in challenges
which were unsolvable. These challenges primarily explore
SVP hardness as error and modulus change.

Several things stand out from the lists in Table 4 and
20. First, they represent but a fraction of the many papers
published on LWE each year. Most papers on LWE attacks
provide theoretical estimates of attack performance rather
than concrete evaluations. This is understandable, as many
aim to understand the cost of attacking real-world LWE
settings, and attacks for these settings should be computa-
tionally infeasible. Second, there is no discernible trend in
the settings for concrete evaluation. A few use Darmstadt
LWE challenges, but others choose LWE settings ad-hoc.
Finally, few papers systematically compare different attacks’
experimental performance, even for small parameter settings.

3. LWE Attack Benchmarks

3.1. Benchmark Settings

We propose a set of practical benchmark settings to
encourage concrete evaluations of LWE attack performance,
using the following criteria. First, parameters should come
from real-world choices, such as narrow secret and error
distributions and LWE variants like Ring- and Module-LWE,
that are standardized or used in deployed LWE cryptosystems.
Prior work shows that such parameter choices—including
binary secrets, small error, and use of the ring-LWE vari-
ant—may weaken LWE, necessitating further experimental
study [12], [28], [17], [47], [43]. The challenges should
also have tunable hardness settings. The hardness of LWE
problems depends on dimension n, modulus size q, error
distribution χe, and secret distribution χs. Generally, larger
dimension n, smaller modulus q, and secret/error distributions
with higher standard deviation (σe, σs) make LWE more

4

n k log2 q q Xs Xe η

256 2 12 3329 Bη
h Bη 2

256 2 28 179067461 Bη
h Bη 2

256 3 35 34088624597 Bη
h Bη 2

TABLE 5. Proposed Benchmark settings for Kyber. All use Module-LWE.
η = 2 matches η1 for Kyber-768 standard setting.

n log2 q q Xs Xe

1024 26 41223389 B−
h N (σ)

1024 29 274887787 B−
h N (σ)

1024 50 607817174438671 B−
h N (σ)

TABLE 6. Proposed benchmark settings for HE. σ = 3.19 for both Xe and
Xs = N (σ)h (where appropriate). All settings use Ring-LWE.

difficult. A good set of challenges should fix some parameters
and allow others to vary so that concrete attacks can be
bench-marked to provide interesting insights.

Using these criteria, we propose two sets of benchmark
settings for measuring concrete LWE attack performance
based on two important real-world applications of LWE:
KYBER and Homomorphic Encryption. Security guidelines
have been proposed for each of these, outlining the required
LWE distribution, n, q, χs, and χe for real-world implemen-
tations, as discussed in §2.2 and Tables 2 and 3. Since n, q,
χs, and χe are fixed for KYBER and for n = 1024, χs and
χe are fixed for HE, our challenges vary problem difficulty
by changing the number of nonzero secret coordinates, h, and
modulus, q. We divide our proposed benchmark settings into
parameters focused on KYBER, using MLWE, and parameters
focused on HE, using RLWE, and present the proposed
settings in Tables 5 and 6. The challenge is to solve LWE
problems for larger h in these standard parameter settings.

3.2. Choosing Attacks to Evaluate

To choose which attacks to evaluate, we focused on: (1)
attacks which have open-source implementations, (2) attacks
which have already been evaluated in nontrivial settings (e.g.
dimension n > 256), (3) attacks that require less than 750
GB of RAM (our machine capacity). We chose to evaluate the
4 attacks discussed in Section 4: uSVP, ML, and Cool&Cruel
for Search-LWE and Dual Hybrid MitM for Decision-LWE.
Our attack evaluation provides a first set of benchmarks in
the proposed settings, and future work should improve these
and evaluate additional attacks.

For the uSVP approach, we did not consider the DBDD
attack [24], since it uses “hints” that other attacks do not
have. This leaves us with the uSVP attack using Kannan’s
embedding (from the [37] codebase) as the only other open
source option. We considered whether to use sieving or enu-
meration as the BKZ SVP-subroutine. Although fast sieving
implementations are available, sieving memory requirements
are exponential in n. For example, the GPU G6K lattice
sieving implementation of [27] requires petabytes of data for
n > 160 (see Appendix Table 24). We lack such resources, so
we use fplll’s BKZ2.0 with an enumeration SVP oracle.

For the ML attack, we use the open-source codebase
from [37]. We leverage the lattice reduction part of this
codebase to process data for the cliff attack of [43], since
the pre-processing steps in these two attacks are the same.
We base our cliff attack brute force secret guessing and
greedy recovery algorithms on open source code from [43].

Finally, for Decision-LWE, we build on and scale up the
dual hybrid MiTM attack implementation from [22].

3.3. Evaluation Metrics

In Table 9 we present the attack time in hours corre-
sponding to the highest Hamming weight h secret recovered
by each attack, along with the compute resources used to
conduct the attack. Memory requirements are also important,
and a limitation for scaling MitM, but for our comparisons
in Table 9 we run all attacks on the same machines with up
to 750GB of RAM, and present memory requirements for
MitM in Table 8.

Some of the attacks can be parallelized, so for paral-
lelizable parts of the attack, we report “time · #{devices}”,
where {device} is CPU, GPU. For non-paralellizable parts,
we report “Single device time”. We then report the “Total
time (assuming full parallelization)”. For each setting and
attack, we experiment with different Hamming weight h
secrets, 10 experiments per h.
Hardware specifics. All attacks are run on 2.1GHz Intel
Xeon Gold CPUs and/or NVIDIA V100 GPUs. Our machines
have 750 GB of RAM, while the GPUs have 32 GB. All
attacks we run must work within these memory limits.

4. Attack Implementations and Innovations

Here, we present details of the attacks we evaluate, as
well as the innovations we introduce to make these attacks
run on the proposed benchmark settings. Refer to the original
attack papers for details. All attacks are implemented in a
codebase available at https://github.com/facebookresearch/
LWE-benchmarking. Implementations are written in Python
and leverage fplll and flatter [48] libraries for lattice
reduction (with enumeration as the SVP oracle in BKZ).
Since all attacks rely on lattice reduction, benchmarking
them using the same lattice reduction implementation allows
for fair comparison. Any improvement to lattice reduction
would benefit all attacks.

4.1. uSVP

We solve uSVP using Kannan’s embedding [41], as im-
plemented in the [37] open source codebase. The attack setup
is as follows. Given an LWE sample (A,b) ∈ Z(m×n)

q ×Zm
q ,

5

https://github.com/facebookresearch/LWE-benchmarking
https://github.com/facebookresearch/LWE-benchmarking

Kannan’s embedding is constructed using the q-ary format
suggested by [37] to speed up reduction: 0 qIm 0

In AT 0
0 b 1

The space spanned by these rows contains an unusually

short vector
(
s −e −1

)
. Thus lattice reduction recovers

the secret once it finds the shortest vector in the lattice.
Implementation details. Our implementation of uSVP
multiplies the In matrix by a factor ω, which balances s
and −e in the discovered short vector. ω is determined
by formulae given in [17]. We run lattice reduction using
BKZ2.0 [21] and incorporate the improvements suggested
in [37, Appendix A.7, p. 17]. Future improvements to our
implementation of the uSVP attack could incorporate more
advanced BKZ schemes, such as Pump and Jump [51].

4.2. ML Attack

Our implementation of the ML attack is based on the
open-source code of [37], incorporating the improvements
from [50]. The attack starts with 4n eavesdropped LWE
samples (A,b) ∈ Z4n×n

q ,Z4n
q . Then, a subsampling trick is

employed to create many new LWE samples: select m ran-
dom indices from the 4n set to form (Ai,bi) ∈ Zm×n

q ,Zm
q .

To “preprocess” this data and create a model training dataset,
an important step of the ML attack, a q-ary embedding Λi

of Ai is constructed via:

Λi =

[
0 q · In

ω · Im Ai

]
(1)

Lattice reduction on Λi finds a unimodular transformation[
L R

]
which minimizes the norms of

[
L R

]
Λi =[

ω ·R RA+ q · L
]
. ω is a scaling parameter that trades-

off reduction strength and the error introduced by reduction.
This R matrix is then applied to the original (Ai,bi) to
produce reduced samples (RAi,Rbi) with smaller norms.
Repeating this process many times (paralellized across many
CPUs) produces a dataset of reduced LWE samples.

This dataset is used to train a machine learning model
f to predict Rb from input Ra. If f ever learns this task
(even poorly), it has implicitly learned the LWE secret s. At
this point, a distinguishing algorithm is run periodically to
extract s from f . This algorithm feeds special inputs to f
and discerns secret bit values from the model’s response.
Implementation details. The ML attack, as presented in [50],
trains on LWE data and can recover binary and ternary
secrets. Our improvements are: 1) adapting the attack to
tackle the benchmarks proposed in this work, 2) introducing
methods to reduce RLWE/MLWE samples as LWE samples,
3) exploiting the “rotation” trick on RLWE/MLWE data (first
proposed in [43]), and 4) introducing a slope distinguisher to
recover more general secrets (e.g. binomial and Gaussian).
Reducing R/MLWE samples. Assume we start data prepro-
cessing with 4n Module-LWE (RLWE samples are Module-
LWE with k = 1) samples, rather than 4n LWE samples.

Treating these polynomial vectors as kn-long vectors of
concatenated coefficients, we can employ the same sub-
sampling trick as before. We sub-select m vectors from
the 4n sets to create an “LWE-like” matrix that is then
reduced. Then, individual reduced rows can be circulated to
create reduced MLWE samples, creating kn reduced MLWE
samples for the cost of one.
Rotation trick. As observed in [43], LWE samples reduced
using the embedding of Equation (1) have “reduced” and
“unreduced” parts. When we reduce RLWE or MLWE
polynomials, this behavior persists. In the 2-power cyclo-
tomic RLWE case, if a reduced polynomial a(x) from a
sample (a(x), b(x)) has a reduced part and unreduced part
a = (au,ar), then the n − lth row in the skew-circulant
matrix created from a will exhibit a cliff shifted by l positions.
This pattern is replicated in each component in Module-LWE,
see Appendix C. For sparse secrets, this represents a huge
weakness since we can shift the unreduced region au around
so that it corresponds to the sparsest region of the secret s.
In practice, we train models on all n possible shifted datasets
and terminate when one model recovers the secret.

0 2 4 6 8
x q 1e5

0

2

4

6

8

M
od

el
 p

re
di

ct
io

n
b

=
f(a

+
xe

i)

1e5 s4 = 4
Pred. b
True b

Figure 1. Slope distinguisher for recovering general secrets. This
distinguisher computes b = f(a + xei) for varying x ∈ [0, q] and
recovers secret bit values from the slope of this line. This plot is for
s4 = −4. The blue line “pred b” plots model outputs b = f(a + xei)
for x ∈ [0, q] for some fixed in-distribution a. The green line “true b” shows
ftrue(a+ xei) = a · s+ xsi. Model f is trained on BKZ-reduced LWE data
with Gaussian secrets, n = 256, log q = 20.

Recovering general secrets. [52] recovers binary secrets by
observing whether the output of the model f changes when
input values are modified at a particular index i. Since secret
bits are binary, this signal is sufficient. Recovering general
secrets (like binomial), however, requires also finding the
value of the active secret bits. To do this, one might consider
modifying input elements using the vector δei, where δ is
a small value and ei is the standard basis vector which is
1 at the i-th component and 0 everywhere else. When f
encounters this input, one would expect it to output b ≈ δsi
mod q, revealing this secret bit value.

However, we observe experimentally that since δei falls
outside of f ’s training distribution, f does not produce
helpful predictions on this input. Thus, we propose an
alternative secret recovery method that embodies this concept,

6

while remaining within the data distribution. We call it a
“slope distinguisher.” This distinguisher calculates the slopes,
or approximations of the derivatives, of model outputs using
the formula ∂f

∂xi
(a) ≈ f(a+δei)−f(a)

δ =: ŝi for some a
drawn from the data distribution. To account for the noisy
predictions, we compute many samples of ŝi and take the
most frequently appearing value, rounded to the nearest
integer. With this, the ML method can recover general secrets.
This new distinguisher is illustrated with an example in
Figure 1.
Data preprocessing and model training. We follow the
interleaved reduction strategy of [50] and use both flatter
and BKZ2.0 for data preprocessing. We preprocess A
matrices until reduction factor ρ = σ(RA)

σ(A) flatlines, where
σ denotes the mean of the standard deviations of the rows
of RA and A. Table 7 gives ρ for each setting. For most
settings, LWE matrices have m = 0.875n, but for larger
n with smaller q, we find using m > n enables better
reduction. For the (k = 2, log2 q = 12) KYBER setting, we
use m = 712, and for the (log2 q = 26, 29) HE settings,
we use m = 1624. All others use m = 0.875n. We set
ω = 10 for the HE benchmark datasets and ω = 4 for the
KYBER datasets. This is because the Bη error with η = 2
is smaller than N (σ) with σ = 3, and so a smaller ω can
be tolerated. Again following [50], we create datasets of 2
million LWE examples and use an encoder-only transformer
with an angular embedding, which represents integers mod
q as points on the unit circle. We do not pre-train our
transformers, but train each one fresh on a dataset with
unique secret s on one GPU.

Setting KYBER (n = 256) HE (n = 1024)

(k, log2 q) (2, 12) (2, 28) (3, 35) (1, 26) (1, 29) (1, 50)

m 712 448 672 1624 1624 896
ρ 0.88 0.67 0.69 0.86 0.84 0.70

cruel bits 388 228 381 750 715 495
reduction time (hrs) 27.7 10.5 23.3 21.5 31.6 23.8
samples/matrix. 621 664 1084 1725 1717 1558

TABLE 7. Data preprocessing for ML and CC attacks. ρ measures
the overall standard deviation reduction of RA, relative to A. # cruel bits
= number of unreduced bits in CC attack. Reduction time = hours needed
to reduce a matrix to the given ρ and # cruel bits. # samples/matrix = the
average number of reduced LWE samples extracted per matrix when reducing
the embedded matrix of shape (m+n)× (m+n). This number is less than
m+ n because we discard rows of R which are all 0.

4.3. Cool & Cruel Attack
Next, we implement the “cool and cruel” attack of [43].

The first part of this attack is the data preprocessing step
of the ML attack described above: starting with 4n LWE
samples, run lattice reduction on LWE matrices subsampled
from these to produce a large dataset of reduced LWE
samples (see prior section for details). After data preprocess-
ing, the cruel and cool bits are identified by inspecting the
standard deviations of the columns of RA. Columns with
standard deviation σ greater than q

2
√
12

, assuming the original
A ∼ U(0, q), are “cruel” and the rest are “cool.” Cool bits can
be ignored during the first part of secret recovery. Their norm

is so small that their contribution to Rb is minimal. If the
cruel bits are correctly guessed (via brute force), the residuals
r = Rb−RA · scruel have a distribution closer to normal
than uniform random, which can be statistically detected.
After cruel bits are recovered, cool bits are recovered greedily.
Implementation details. We use the RLWE “cliff-shifting”
trick for secret recovery in the HE parameter regime, and
adapt the MLWE “split-cliff-shifting” described in 4.2 for
Kyber. Additionally, the attack must be adapted to recover
ternary, binomial and Gaussian secrets, since the original
paper only considers binary secrets. Brute force recovery of
cruel bits is unaffected by a change in secret distribution
(although the number of guesses increases exponentially),
but we find experimentally that the cool bit recovery of
Algorithm 1 of [43] fails on wider secret distributions.

Linear regression method. We develop a linear regression-
based method to recover cool bits in wider secret distributions.
The underlying rationale is that once cruel bits are recovered,
the remaining elements of a are sufficiently small to prevent
most of the residual dot products from wrapping around
q. Hence, linear regression could be used. This method
works as follows. Consider A′ = RA =

(
A′

u A′
r

)
where A′

u are the un-reduced entries of A′ and A′
r are the

reduced entries. Then Rb ≈
Re

A′s mod q =
(
A′

u A′
r

)
·(

su sr
)⊤

= A′
usu +A′

rsr. If su is known, e.g. through
brute force, then the linear regression applied to the pair
(X, y) = (A′

r,Rb−A′
usu mod q) (where mod q centers

entries to (− q
2 ,

q
2)) yields a least-squares estimator for sr:

ŝr = (A
′⊤
r A′

r)
−1A

′⊤
r (Rb − A′

usu mod q). Using this
approach, we recover ternary, binomial, and Gaussian secrets.

Data preprocessing. We follow the same strategies and
parameters as described in §4.2. Table 7 gives the number
of cruel bits per setting after reduction. Brute force recovery
runs on GPUs and can be parallelized by dividing up the
set of Hamming weights to be guessed. We use 5K reduced
LWE samples for the brute force portion of the attack, and
100K samples for the Linear Regression recovery. For parity
with other attacks, we use one GPU per experiment.

4.4. Dual Hybrid MiTM

Finally, we consider the dual hyrid MiTM, which attacks
decision-LWE, not search-LWE. Although this attack does
not actually recover secrets, it is relevant because of its focus
on low h secrets. We base our implementation of dual hybrid
MiTM on [22] since they provided code.

The attack works as follows. Given LWE samples (A ∈
Zm×n
q ,b ∈ Zm

q), choose a guessing dimension ζ , and split A
along this. This creates A = A1||A2 with A1 ∈ Zm×(n−ζ)

q

and A2 ∈ Zm×ζ
q and implicitly divides the secret into s =

s1||s2, corresponding to A1,A2, and b into b = A1 ·
s1 +A2 · s2 + e. Then, create a scaled normal dual lattice
Λq,c(A1) = {(v1,v2 ∈ Zm× (1cZ

n) : vt
1A1 ≡q c ·v2}[12],

and run lattice reduction on Λq,c(A1) to find short vectors
(y1,y2) ∈ Λq,c(A1). These short vectors can then be applied

7

KYBER Benchmark Setting RLWE Benchmark Setting

Parameters (n, k) (256, 2) (256, 2) (256, 3) (1024, 1) (1024, 1) (1024, 1)
log2 q 12 28 35 26 29 50
τ 50 50 50 50 50 50
ζ 500 325 540 920 828 650

Error bound B/q 0.11 0.04 0.02 0.02 0.04 0.02

MiTM table size
for varying h′

h′ = 4 10 MB 10 MB 10 MB 30 MB 30 MB 30 MB
h′ = 6 2.0 GB 0.5 GB 2.5 GB 12.2 GB 8.9 GB 7.5 GB
h′ = 8 244 GB 43 GB 331 GB 2.8 TB 1.8 TB 1.2 TB
h′ = 10 28 TB 3.3 TB 42 TB 600 TB 354 TB 173 TB

TABLE 8. Experimental parameters and estimated memory requirements for our implementation of the MiTM attack on Decision-LWE. τ = # of
short vectors used for the guessing step, ζ = the guessing dimension. h′ = # of nonzero secret bits in the ζ guessing region.

to b to minimize the contribution of s1:

⟨y1,b⟩ = ⟨y1,A1s1⟩+ ⟨y1,A2s2⟩+ ⟨y1, e⟩
≡q yt

1A2s2 + c · yt
2s1 + yt

1e

If (y1,y2) are sufficiently short, then one can simply consider
c · yt

2s1 + yt
1e as a new error term e′. This creates a new

LWE sample (A′,b′) ∈ Zm×ζ
q ,Zm

q , where A′ = yt
1A2 and

b′ = yt
1A2s2 + e′. This step must be repeated τ times to

generate a sufficient number of reduced LWE samples to
construct the MiTM table and guess s2.

The MiTM approach guesses the components of s2 using
a lookup table. It first constructs a table T holding all possible
secret candidates with h1 ≤ h = |s| (e.g. h is the number
of nonzero coordinates of s). T is indexed by a locality-
sensitive hash function that operates on a secret candidate s∗

as follows. Compute b∗ = A′s∗ ∈ Zτ
q and create zero string

I = 0τ . For each element of b∗, let Ii = 1 if b∗
i < q/2,

else 0, then set T [I] = b∗. Using T , the goal is to guess a
secret s† such that r† = b′ −A′s† = A′s∗ is in T . If this
collision occurs, s′2 = s†||s∗ is a possible secret candidate
and can be quickly checked for correctness.

An important parameter of MiTM is the error bound B.
During MiTM, B calibrates the sensitivity of the locality-
sensitive hash. If an element of r† falls in the range [0, B),
(q − B, q], or (q/2 − B, q/2 + B), the error introduced in
creating the new LWE sample could have “flipped” this
element around the modulus. Thus, one must recursively
flip each hash index associated with a boundary element, to
ensure the true secret candidate is not missed. Search time
increases exponentially in τ , the length of the hash string,
and B: O(24τB/q).
Implementation details. Our implementation builds on
that of [22] but makes several improvements to enable
the first known evaluation of dual hybrid MiTM on LWE
problems with n > 100. We check s† candidates as T is
created—every time we insert a new s† candidate into T ,
we also check if r† = b′ − A′s† is in T . We combine
BKZ2.0 with β = 30 and flatter for the scaled dual
attack to improve efficiency. We expand the attack to include
RLWE and MLWE settings, as well as ternary, binomial,
and Gaussian secrets. Since |T | grows exponentially with
possible secret bit values, we trade off memory and time
by storing indices of possible nonzero secret bits in T
(e.g. [0, 46, 127]), and exhausting over secret bit values for

each guess (e.g. [1, 1, 1], [1, 1,−1], . . . [−1,−1,−1] for B−).
Finally, we assume the attacker has τn initial samples.
Parameters. The definitions of τ , B and c given on [22,
p.21] depend on the root Hermite factor δ0 of the short dual
vectors, and a target value for δ0 is not provided. Hence, we
make the following engineering choice, based on experiments.
We observe that only short vectors with B < Q/8 result
in MiTM searches that run in reasonable time, so we fix
B < q/8 and compute it using the method of the [22]
implementation: B = (2 + 1√

2π
) · αq

√
m

m+n ·
||y1||

c . y1 is a
short vector obtained from the scaled dual attack, and we
use the average norm of all short vectors obtained from
the scaled dual reduction to compute B. The definition of
B in the paper relies on δ0, but formulae for estimating
δ0 are inaccurate for β < 50 [20], [17]. We fix c = 10,
mirroring [22], and use m = n, following [22], [5].

For τ and ζ, we initially use values provided by the
Lattice Estimator but find experimentally that these are
inaccurate. For example, τ = 50 short vectors are sufficient
to recover secrets, compared to the hundreds estimated by
Estimator. We also find that ζ values given by the estimator
make the reduction of these dual lattices unreasonably slow
for the small block sizes we can tractably run. We run
ablation experiments across various ζ and β values for the
other two settings, and use ζ values providing the best trade
off in reduction time and secret recovery. Table 8 lists our
chosen ζ and τ and experimentally chosen error bound B/q.
Search criterion. In the [22] implementation, the correctness
of a table element is assessed by computing the Linf norm
(e.g. largest element) of the putative short vector r′ = b′ −
A′s∗−A′s†, where s∗ is an element stored in the table and
s† is a guess. However, we observe that r′ often contains
outliers, so using the Linf norm may yield false negatives.
We instead check against the median value of r′, which
reduces the effect of large outliers.
Memory Constraints. MiTM memory requirements scale
exponentially with secret Hamming weight. In Table 8 we
provide the memory requirements for implementing the table
look-up for Hamming weight h′ with a guessing region of
length ζ. This shows what secrets are recoverable on our
hardware, with 750 GB RAM. So we can recover secrets with
h′ ≤ 8 for all Kyber settings, and h′ ≤ 6 for log2 q ≤ 34
and h′ ≤ 8 for log2 q = 45, 50 (if search time is < 72
hours, our computer cluster limit). One can then compute

8

Attack Results
Kyber MLWE Setting (n, k, log2 q) HE LWE Setting (n, log2 q)

(256, 2, 12) (256, 2, 28) (256, 3, 35) (1024, 26) (1024, 29) (1024, 50)
binomial binomial binomial ternary ternary ternary

uSVP Best h - - - - - -
Recover hrs (1 CPU) > 1100 > 1100 > 1300 > 1300 > 1300 > 1300

ML

Best h 9 18 16 8 10 17
Preproc. hrs · CPUs 28 · 3216 11 · 3010 33 · 1843 21.5 · 1160 31.6 · 1164 23.8 · 1284
Recover hrs · GPUs 8 · 256 16 · 256 6 · 256 13.4 · 1024 17.8 · 1024 5.3 · 1024
Total hrs 36 27 39 34.9 49.4 29.1

CC

Best h 11 25 19 12 12 20
Preproc. hrs · CPUs 28 · 161 11 · 151 23 · 92 21.5 · 58 31.6 · 58 23.8 · 64
Recover hrs · GPUs 0.1 · 256 42 · 256 0.9 · 256 0.04 · 1024 0.1 · 1024 4.2 · 1024
Total hrs 28.1 53 34 21.5 31.7 28

MiTM
(Decision

LWE)

Best h 4 12 14 9 9 16
Preproc. hrs · CPUs 0.5 · 50 1.6 · 50 4.4 · 50 8 · 50 11.4 · 50 14.4 · 50
Decide hrs (1 CPU) 0.2 0.01 25 57 2 1.1
Total hrs 0.7 1.61 29.4 65 13 15.5

TABLE 9. Performance of all attacks on benchmark settings. Best Hamming weight h for secret recovered per setting/attack, time in hours needed to
recover this secret, and machines used. Highest h per setting is bold. All Kyber secrets are binomial, and HE secrets are ternary. First three attacks (uSVP,
ML, CC) are Search-LWE; MITM* is Decision LWE. The ML, CC, and MiTM attacks have two phases: Preprocessing (Prepoc. in table), when LWE data is
reduced and/or short vectors are obtained; Recovery (Recover in table) for ML/CC, when reduced vectors are used recover secrets; and Decide for MiTM, when
Decision LWE is solved using short vectors. We report time separately for each step. When steps can be parallelized, we report hours/machine and number of
machines. The uSVP attack has only the “recover” phase, which cannot be parallelized. “Total hrs” is total attack time assuming full parallelization.

the probability that a secret with Hamming weight h has
this h′ value, and use this to estimate which h secrets are
recoverable—see Appendix §D for more details.
Dual Hybrid MiTM solves Decision-LWE, not Search-LWE.
Solving search-LWE would require some additional solution
and implementation and add to the total cost. All other
benchmarked attacks solve Search-LWE.

5. Measuring Attack Performance
Having implemented and improved these four attacks,

we now evaluate them on our proposed settings. Table 9
records best results for all attacks across all settings, using
the evaluation metrics of §3.3. All attacks are run on the
same randomly generated secrets. For each setting, we bold
the highest h recovery. Tables 11 and 12 give detailed results
for experiments on the KYBER and HE benchmark settings,
reporting the success rate of attacks for a range of Hamming
weight secrets per setting and the best time (in hours) for
recovering a secret at each h.
Preprocessing/Recover/Decide Time. Table 9 lists “pre-
proc”, “recover”, and “decide” times, along with compute
requirements. These refer to the distinct steps in the ML,
CC, and MiTM attacks: all first run reduction algorithms
on special lattices (“preproc” time), then use the reduced
vectors to either recover secrets (“recover” time for ML/CC)
or solve decision LWE (“decide” time for MiTM). The
“preproc” step is fully parallelizable, so the number of CPUs
listed is the number of reduced lattices needed per attack.
For example, the ML attack reduces m× n LWE matrices
and needs 2 million training samples (§4.2). Each reduced
matrix produces about m + n samples—we ignore all-0
rows—so the ML attack requires roughly 2000000/(m+ n)
matrices and CPUs. The CC attack needs 100K samples (but
only 5K samples to solve Decision-LWE), so it only needs

100000/(m+ n) matrices/CPUs. Table 7 gives the average
number of samples produced per reduced matrix for ML and
CC. The MiTM attack needs τ short vectors, each obtained
from a separate lattice, so it needs τ CPUs.

For the ML and CC attacks, the “recover” step is
parallelizable due to the cliff shifting approach described in
§4.2. For ML, we train separate models on datasets formed
from the n possible cliff shifts, using n GPUs. For CC, we
also run brute force on all n shifted datasets, using n GPUs.
It is difficult to parallelize the table guessing step of MiTM
due to memory constraints, so MiTM “decide” step runs on
a single CPU. uSVP attacks are not parallelizable and do
not have separate preprocess/recovery stages.

5.1. Analysis of Results

For all settings, the CC attack recovers secrets with the
highest Hamming weights, slightly better than the ML attack,
and using less compute. Unfortunately, the CC attack does
not scale well to higher Hamming weights since it relies
on exhaustive search to recover cruel bits. Attack times
(assuming full parallelization) are roughly equivalent for the
ML and CC attacks, since the preprocessing time dominates
for both approaches. Further improvements to the ML attack
may allow it to scale to higher Hamming weights.

The MiTM only solves the Decision-LWE approach, so
it is not comparable without further work to convert to a
Search-LWE algorithm. It also includes an exhaustive search
subroutine which scales exponentially as the hamming weight
grows. For the h’s it can decide, the MitM attack required the
least compute—only 50 CPUs, since τ = 50 short vectors
are sufficient. However, all recovered MiTM secrets have
h′ ≤ 6. Even though h′ ≤ 8 could work with our memory
limits for KYBER settings (see Table 8), the number of secret
coordinate values in binomial secrets (−2,−1, 0, 1, 2) that

9

(n, k) log2 q h
USVP (Search-LWE) Dual Hybrid MITM (Decision-LWE)

ROP time (yrs) BKZ β ROP repeats single time / time w. repeats memory τ ζ h′

(256, 2) 12 4 2260.0 2.8e61 382 233.7 27.2 6 secs / 16 mins 222.3 (0.02 GB) 92 476 3
(256, 2) 28 12 262.8 120 109 240.6 28.3 13 mins / 68.6 hrs 230.6 (6.7 GB) 310 308 6
(256, 3) 35 14 281.7 5.9e7 142 243.2 29.0 1.4 hrs / 29.4 days 232.6 (27 GB) 441 444 6

(1024, 1) 26 9 2203.5 2.55e44 313 242.6 211.4 0.9 hrs / 106 days 229.7 (3.5 GB) 251 887 5
(1024, 1) 29 9 2244.9 8.1e56 363 242.2 29.6 0.7 hrs / 21.6 days 231.7 (14 GB) 297 823 5
(1024, 1) 50 12 283.4 1.9e8 144 244.8 29.0 4 hrs / 85 days 233.6 (103 GB) 620 523 6

TABLE 10. Estimated performance of uSVP and Dual Hybrid MiTM attacks on Kyber and HE benchmark settings using Chen Nguyen
cost model [21] We modify the Estimator to consider blocksize β ≥ 20, instead of default ≥ 40, to better estimate performance. According to Estimator
documentation, “ROP” approximates the number of CPU cycles needed to run the attack, so we convert ROP to time by dividing this by 2.1GHz (2.1e9
cycles/sec), the clock speed of our CPUs. For Dual Hybrid, we present time and time multiplied by estimated repeats (number of times attack should run to
succeed with probability 0.99). We convert predicted memory to bytes by multiplying estimator output (number of integers to be stored) by number of bits
needed to store integer (based on log2 q).

Attack k = 2, log q = 12 k = 2, log q = 28 k = 3, log q = 35

h Rate Time h Rate Time h Rate Time

ML

6 6 / 10 1.2 15 5 / 10 1.2 14 2 / 10 1.2
7 1 / 10 1.6 16 2 / 10 1.7 15 3 / 10 15.8
8 0 / 10 - 17 1 / 10 25.7 16 1 / 10 3.7
9 1 / 10 7.4 18 1 / 10 17 17 0 / 10 -

CC

7 10 / 10 0.03 19 4 / 10 0.1 16 4 / 10 0.03
8 7 / 10 0.06 20 3 / 10 0.2 17 6 / 10 0.1
9 6 / 10 0.04 21 3 / 10 0.6 18 4 / 10 0.03
10 1 / 10 1.4 24 2 / 10 1.0 19 2 / 10 0.9
11 2 / 10 0.1 25 1 / 10 41.8 20 0 / 10 -

MiTM
4 2 / 10 0.2 11 1 / 10 0.14 12 1 / 10 19
5 0 / 10 - 12 1 / 10 0.02 13 2 / 10 15
6 0 / 10 - 13 0 / 10 - 14 1 / 10 25

TABLE 11. Detailed attack results on Kyber benchmark settings for
varying h, n = 256 for all, binomial secrets. Rate = secrets recovered
/ attempted. Time = in hours, best single CPU/GPU time for recovering
secrets via model training/brute force/MiTM table queries. Required compute
resources are given in Table 9. Preprocessing/short vector generation time is
the same for all h at a given setting and is listed as Preproc. hrs in Table 9.

Attack log q = 26 log q = 29 log q = 50

h Rate Time h Rate Time h Rate Time

ML

5 5 / 10 0.4 8 1 / 10 15.9 14 1 / 10 3.9
6 4 / 10 2.1 9 2 / 10 3.1 15 0 / 10 -
7 1 / 10 13.9 10 1 / 10 17.8 16 2 / 10 20.4
8 1 / 10 13.4 11 0 / 10 - 17 1 / 10 5.3

CC

9 8 / 10 0.07 9 10 / 10 0.03 17 6 / 10 0.05
10 5 / 10 0.04 10 0 / 10 - 18 4 / 10 1.9
11 3 / 10 3.3 11 0 / 10 - 19 6 / 10 0.07
12 1 / 10 0.04 12 1 / 10 0.13 20 2 / 10 4.2

MiTM
7 4 / 10 0.2 7 1 / 10 1 14 1 / 10 0.4
8 2 / 10 38 8 0 / 10 - 15 0 / 10 -
9 1 / 10 57 9 2 / 10 2 16 1 / 10 1.1

TABLE 12. Detailed attack results on HE benchmark settings for varying
h, n = 1024 for all settings, ternary secrets. Rate = secrets recovered
/ attempted. Time = in hours, best single CPU/GPU time for recovering
secrets via model training/brute force/MiTM table queries. Required compute
resources are given in Table 9. Preprocessing/short vector generation time is
the same for all h at a given setting and is listed as Preproc. hrs in Table 9.

must be searched makes searches on h′ = 8 secrets take
many days. The memory requirements for the MitM attack
also scale badly as the hamming weight increases.

In summary, Cool&Cruel is currently the best attack on
our benchmark settings.

5.2. Actual vs. Estimated Performance

For the two attacks implemented in the lattice estima-
tor (uSVP and dual hybrid MiTM), we also provide cost
estimates from the estimator (commit f18533a) for each
benchmark setting. We only present estimates for the Chen
Nguyen cost model, which best approximates the fplll
implementation of BKZ SVP and should most closely match
our experimental results. Estimates can be found in Table 10.
The Estimator natively supports sparse ternary B−

h , but we
add a functions in nd.py to estimate attack performance on
fixed h binomial secrets, Bη

h andN (σ)h. See Appendix A for
details. A script to generate these estimates will be included
in our open-source codebase.

The Estimator predicts the uSVP attack should not be
feasible (times are in years). Despite these predictions,
we ran numerous uSVP experiments with much smaller-
than-predicted blocksizes to see if they would work. None
succeeded, despite running for over 2 months on our compute

cluster. However, we observed several interesting discrepan-
cies between estimated and actual BKZ performance in these
experiments, which are discussed in §6.2 and Appendix B.

The Estimator results given for the Dual Hybrid MiTM
attack do not map particularly well to our real-world results.
The Estimator under-predicts the time required to run one
attack (e.g. 0.9 hours predicted vs. 65 actual for n = 1024,
log2 q = 26, assuming full parallelization), but overestimates
the number of repeats needed for high probability of attack
success. Our attacks mostly succeed on the first try. If
one multiplies concrete attack time by number of required
machines, then Estimator time predictions are even more
off—0.9 hours vs. 65 · 50 = 3250 hrs = 135 days for
n = 1024, log2 q = 26. Furthermore, the Estimator-predicted
τ and ζ values did not work well in practice—we only needed
τ = 50 vectors to succeed, but the estimated ζ values were
too small, resulting in very long scaled dual lattice reduction
time. Additional engineering improvements to the MiTM
attack may improve attack time costs, but future work should
consider whether formulae for ζ and τ are accurate.

6. Lessons Learned

Although the benchmark results of the prior section are
valuable on their own, all our experimental work generating

10

them yielded interesting insights about attack behavior. Here,
we highlight a few of these experimental observations that we
believe may be valuable to the research community. Future
efforts to implement and evaluate other LWE attacks will
likely yield fruitful observations to drive future research.

6.1. Q-ary Lattice Reduction

When reducing a lattice basis of the form :

Λ =

(
0 q · In

ω · Im A

)
the short vectors are not always balanced, contrary to the
common assumption in the literature. Figure 2 illustrates the
standard deviations of the coefficients of the reduced vectors
for n = m = 256, q = 3329, and ω = 1. It reveals that
the BKZ algorithm reduces vectors from right to left, and
depending on the block size β, it terminates at a certain point,
leaving a portion of the vector unreduced. However, when β
is large enough, BKZ successfully reduces all components of
the initial basis, producing balanced vectors. This unbalanced
profile, initially demonstrated in the Cool & Cruel attack
of [43], admits a powerful attack on sparse secrets.

0 100 200 300 400 500
 Column Index

0

200

400

600

800

1000

St
an

da
rd

 D
ev

ia
tio

n

Input Basis

5

10

15

20

25

BK
Z2

 B
lo

ck
 S

ize

Figure 2. Entry-wise standard deviation of BKZ2-Reduced vectors of a q-ary
lattice generated by the rows of Λ as in 6.1, with parameters n = m =
256, q = 3329, ω = 1 with BKZ2 β values. The reduced vectors are not
balanced.

If U = (L,R) is the unimodular matrix produced by
BKZ applied to Λ, then the resulting short vectors whose
entries are shown in Figure 2 are the rows of

UΛ = (ωR,RA mod q)

The left half of Figure 2 reveals that the rows of R are not
balanced either. This side of the graph plots ωR, and we
see that the last columns of R have only small values. This
means the BKZ algorithm underutilizes the later rows of
the matrix A. Future work should devote more study to this
phenomenon and potential ways to exploit it.

6.2. Discrepancy in BKZ timings

Next, we highlight an interesting experimentally observed
discrepancy in the predicted and actual BKZ loop time. We

ran BKZ2 with β ranging from 40 to 54 on qary-embedded
(Equation (1)) (m× n) LWE matrices with n = 512, m =
712, q = 3329, and ω = 4 and measured the time it took
for BKZ2 to complete one loop. We then computed the
predicted loop cycle/time for BKZ with these setting with
two enumeration SVP cost models: CheNgu12 [21] and
ABLR21 [6] (see Appendix B for details). Concrete BKZ
loop times and estimated timings are in Table 13.

Our experimental results do not closely match either cost
model. We observe a sharp increase in the BKZ2 loop time
starting around β = 49. For β ≥ 52, BKZ2 takes several
days to run, sometimes failing to terminate within our 72
hour cluster time limit.

This discrepancy may be due to either some implemen-
tation issue or there is some discrepancy in the estimates
themselves. More rigorous experimentation with BKZ in
higher dimensions and β is needed to explore this.

6.3. ML attacks recover secrets with ≤ 3 cruel bits

Although the Cool&Cruel and ML attacks recover sim-
ilar h values, the CC attack’s performance can be readily
explained by a brute force scaling law. The ML attack’s
limitations are more mysterious. Since the ML attack trains
on data reduced in the same manner as the Cool&Cruel
attack, we consider whether some property of the “cruel”
region of reduced data affects secret recovery. Analyzing
secrets through this lens, we find that ML models only ever
recover secrets with ≤ 3 cruel bits. This pattern persists
across secret distributions.

0 2000 4000 6000 8000 10000 12000 14000 16000
Approximate b value, ignoring modulus wrap

0

50

100

150

200

250

Fr
eq

ue
nc

y

Distribution of approximate b values as hu increases
 (n=256, Q=3329, omega=10)

Q
2Q
3Q
hu=1
hu=2
hu=3
hu=4
hu=5

0 2000 4000 6000 8000 10000 12000 14000 16000
Approximate b value, ignoring modulus wrap

0.0

0.2

0.4

0.6

0.8

1.0

Fr
eq

ue
nc

y

Ideal Irwin-Hall Distribution
 (n=256, Q=3329, omega=10)

Q
2Q
3Q
hu=1
hu=2
hu=3
hu=4
hu=5

Figure 3. Visualization of empirical and ideal Irwin-Hall distribution
for n = 256, k = 1, log2 q = 12 setting.

We believe this phenomenon can be explained by dis-
tribution of sums of uniform random elements mod q.
Modular addition of uniform random elements in Zq is

11

BKZ β 30 40 45 46 47 48 49 50 51 52 53 54

predicted cycles [21] 239.73 239.77 239.83 239.85 239.88 239.92 239.96 240.01 240.07 240.14 240.23 240.34

predicted time [21] 0.12 0.12 0.13 0.13 0.13 0.14 0.14 0.15 0.15 0.16 0.17 0.18

predicted cycles [6] 242.95 244.16 245.05 245.24 245.45 245.65 245.87 246.09 246.32 246.55 246.79 247.03

predicted hours [6] 1.05 2.43 4.48 5.13 5.90 6.82 7.92 9.22 10.79 12.67 14.94 17.67

Actual (1st BKZ loop hrs) 0.53 0.78 1.73 1.55 2.6 5.3 9.2 21.8 38.2 67.4 > 72 > 72

TABLE 13. Concrete BKZ2 timings for n = 256, k = 2, log2 q = 12. To achieve practical speedup, three loops of flatter are run before switching to
BKZ2, so reported BKZ2 times are for partially-reduced matrices. For β > 52, BKZ2 ran for 3 days before hitting our computer cluster’s time limit.

well-described by a modified Irwin-Hall distribution, which
describes the distribution of sums of n uniform random
elements U(0, 1): X =

∑n
k=1 Uk. Multiplying by q yields a

distribution describing sums of n uniform random elements
mod q. Figure 3 visualizes this for a n = 256, log2 q = 12
dataset. From this graph, we observe that sums of 3 random
uniform variables usually fall in range [q, 2q]. Since cool
region elements hardly affect this sum, this means that secrets
with 3 cruel bits produce mostly b values that only wrap
once around the modulus. For ML models, this means little
or no modular arithmetic must be learned.

This explains why the ML attack only recovers 3 cruel
bit secrets: models struggle to learn modular arithmetic (as
first observed in [37]), and secrets with > 3 cruel bits
require models to understand that certain b elements “wrap
around” the modulus. Prior work has observed models’ poor
performance on modular arithmetic setups [32], [45], [30],
[35], and this result confirms the difficult persists. Future
improvements to the ML attack could focus on strategies to
help models learn modular arithmetic.

6.4. Effect of bad PRNGs on attack performance

Finally, we note that bad pseudo-random number gener-
ators (PRNGs) can make LWE secrets easier to recover. We
observed experimentally that flatter reduction performed
significantly better on LWE matrices A ∈ Zm×n

q gener-
ated by the C random library than on otherwise-identical
A matrices generated by numpy’s random library (see
Figure 4). Furthermore, ML models trained on flatter-
reduced, C random A matrices recover binomial secrets
with h ≤ 90, see Table 14, a feat not possible for the numpy
randomA matrices. In both cases, A matrices are generated
row-by-row, filling the n slots of row 1 with random integers
mod q, then filling row 2, etc.

h 50 70 90

attack time (hrs) 3 3.75 3
recovery rate 5/5 5/5 5/5

TABLE 14. ML attack recovers binomial secrets with up to h = 90
for n = 256, k = 1, log2 q = 12 data when LWE data is generated
with the C random LCG. h = Hamming weight of recovered secret, Time
= avg hours to secret recovery (excluding preprocessing), Recovery rate =
Secrets recovered / attempted.

After observing this performance discrepancy, we found
that the C random() function is implemented via the
BSD linear-congruential generator (LCG) by many computer

10 12 14 16 18 20 22
log2 q

0.0

0.1

0.2

0.3

0.4

12
 o

f A
 c

ol
um

ns
 /

q

Flatter Reduction Performance
 On Different RNG Schemes (n=128)

C random (LCG)
Numpy random (Mersenne Twister)

Figure 4. The flatter algorithm performs significantly better on
LWE matrices generated with the C random LCG than with the
numpy random Mersenne twister. Y-axis shows reduction in standard
deviation of A elements vs. uniform random standard deviation (lower values
indicate stronger reduction).

distributions, including MacOS Clang used by gcc under
Xcode and GNU gcc under Linux, while numpy random
uses a Mersenne Twister. Prior work showed that LCGs
produce predictable outputs [39], and consequently should
not be used in cryptographic settings. However, no prior work
has observed this specific vulnerability of LCG-generated
LWE matrices to lattice reduction attacks.

An LCG algorithm is defined by the recurrence relation:
xi+1 = xia+c mod m, where the modulus m, the multiplier
a and the increment c are non-negative integer constants. It
can be shown via an induction argument that a matrix A
∈ Zm×n

q generated row by row via an LCG, as described,
has columns also generated by a related LCG, since xi+n =
xia

n + (an−1 + an−2 + · · ·+ 1)c mod m. Furthermore, if
we view LCG generated vectors as points in the cube in the
corresponding dimension, as described in [39], then the points
will lie on equally distanced parallel hyper-planes of the form
c1p1+ c2p2+ · · ·+ clpl = 0,±m,±2m, The number of
these hyper-planes, with the parameters of the LCG used by
C random, and LWE dimensions our benchmarks consider,
is small (two digits).The distance between them can also be
shown to be small compared to norms of (row or column)
vectors from A. Thus, the matrix has many structures that
potentially could be exploited by lattice reduction.

We highlight this issue because even though PRNGs are
well-known to be bad for cryptography, this advice might
not always be followed. Furthermore, the fact that LCGs are
included as the standard RNG in some libraries increases
the likelihood that they may be accidentally used. Using
LCG-generated A matrices in LWE attack development

12

would make the attack appear exceptionally good, while LCG
use in LWE encryption schemes would create significant
vulnerabilities. We observe at least one case of a LCG PRNG
used in real-world LWE crypto: the C++ rand function is
used in the testing functions of the HEEAN library [18]1.
While this use poses no imminent danger, we highlight this
as a cautionary tale for implementers of Kyber and HE.

7. Join our LWE Attack Benchmarking Effort

To accompany the benchmark settings and evaluations
in this paper, we provide an open source codebase imple-
menting the attacks we evaluate. We hope that by making
our code available to the public, others will join us in
establishing experimental benchmarks for LWE attacks. Our
code can be found at https://github.com/facebookresearch/
LWE-benchmarking and an associated website is at https:
//facebookresearch.github.io/LWE-benchmarking/.
Codebase Overview. Our codebase contains (1) code to
preprocess and generate LWE, RLWE, and MLWE data and
(2) implementations of four different attacks: transformer-
based ML attack, dual hybrid MiTM attack, USVP attack,
and Cruel and Cool (CC) attack. To run these attacks, a user
would first prepare the data by running the preprocessing
step and generating LWE (A, b) pairs and associated secrets.
Next, a user can run any of the four attacks on the generated
data by running that attack’s script with the data path and
relevant parameters. More details on how to set up and run
the code are provided in the README.
Contributing. We invite contributors to reproduce our results,
improve on these methods, and/or implement new LWE
attacks. We actively welcome pull requests with new attacks
or code improvements. Please document added code, provide
proof of testing, and follow a style similar to the rest of the
repository. We will also use Github issues to track public bugs.
Please provide a clear description of the bug and instructions
on how to reproduce the problem. See the CONTRIBUTING
file in our codebase for instructions on how to contribute.

We will also maintain a centralized leaderboard of the
best performing attacks on LWE along the axes of time,
space, and compute. We welcome pull requests with new
or improved attacks that outperform our current benchmark.
Please include the code and instructions on how to reproduce
the results in the pull request. We will update the leaderboard
on our associated challenge website accordingly.

8. Conclusion and Future Work

This paper demonstrates the first successful LWE secret
recovery on standardized KYBER and HE parameters–not
yet general secrets but small, sparse secrets. For example,
in the setting n = 256, k = 2, log2 q = 12 we recover
binomial secrets with Hamming weight h ≤ 11 in < 36
hours (parallelized compute); for the HE setting n = 1024,
log2 q = 29, we recover Hamming weight h = 9 secrets in

1. github.com/snucrypto/HEAAN/blob/master/HEAAN/src/EvaluatorUtils.cpp

13 hours. This paper provides the first benchmarks of LWE
attack performance on near-real-world settings.

This paper also makes meaningful contributions through
its efforts implementing and scaling up the attacks evaluated,
yielding valuable lessons learned that can inform future
research. We hope the insights shared from our work imple-
menting these attacks will aid and inspire other researchers
in the lattice community to join us in this benchmarking
endeavour. Topics for future work include:
Optimizing the attack implementations we provide. Al-
though we do our best to fairly compare the four attacks
we evaluate, there are inevitable inefficiencies in our im-
plementations. We expect that additional engineering would
make these attacks more efficient. For example, making the
enumeration SVP in BKZ faster (via a GPU implementation
like [46]) would greatly improve the lattice reduction time
for all attacks.
Revisiting theoretical estimates with experimental insights.
In several instances, theoretical predictions do not match
experimental observations. For example, the Estimator over-
estimates the number of short vectors needed but under-
estimates time needed for successful Dual Hybrid MiTM
attacks. We also observe discrepancies between predicted and
actual BKZ2 times, as shown in §6.2 and Appendix B. These
indicate a need for examination of theoretical assumptions
to ensure they align with real-world behavior.
Implement additional attacks in open source codebase.
This work evaluates a subset of relevant attacks on LWE,
and important future work involves implementing additional
attacks for evaluation. Everyone is welcome to contribute
their own attack implementation to the open source codebase
we release with this paper. Interesting attacks to consider
implementing include, but are not limited to, Bounded
Distance Decoding (BDD) attacks, primal hybrid attacks,
and the dual hybrid approach of [13] that uses matrix
multiplication and pruning instead of MiTM for guessing.
Use benchmark settings to evaluate new attacks. The
benchmark settings that we propose are not merely retrospec-
tive, allowing comparison of already-existent LWE attacks.
Rather, they should enable more robust understanding how
new attacks fit into the research landscape. We encourage
the research community to adopt the benchmark settings
proposed here as part of a standard evaluation set for all
new attacks, alongside theoretical estimates.

Acknowledgements

We thank Francois Charton, Niklas Nolte, and Mark Tygert
for suggestions and contributions.

13

https://github.com/facebookresearch/LWE-benchmarking
https://github.com/facebookresearch/LWE-benchmarking
https://facebookresearch.github.io/LWE-benchmarking/
https://facebookresearch.github.io/LWE-benchmarking/

References

[1] Report on the Security of LWE: Improved Dual Lattice Attack., 2023.
https://zenodo.org/record/6412487.

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, et al. Homo-
morphic encryption standard. In Protecting Privacy through Homo-
morphic Encryption. Springer, 2021. https://eprint.iacr.org/2019/939.

[3] Martin R. Albrecht. . In Jean-Sébastien Coron and Jesper Buus Nielsen,
editors, Proc. of EUROCRYPT, 2017. https://eprint.iacr.org/2017/047.

[4] Martin R. Albrecht. An update on lattice cryptanalysis vol. 1: The
dual attack, 2024. https://github.com/malb/talks/blob/pdf/20240324%
20-%20Dual%20Attack%20-%20RWPQC.pdf.

[5] Martin R. Albrecht, Shi Bai, Pierre-Alain Fouque, Paul Kirchner,
Damien Stehlé, and Weiqiang Wen. Faster enumeration-based lattice
reduction: Root hermite factor k(1/(2k)) in time k(k/8+o(k)). Cryp-
tology ePrint Archive, Paper 2020/707, 2020. https://eprint.iacr.org/
2020/707.

[6] Martin R Albrecht, Shi Bai, Jianwei Li, and Joe Rowell. Lattice
reduction with approximate enumeration oracles: practical algorithms
and concrete performance. In Annual International Cryptology
Conference. Springer, 2021.

[7] Martin R Albrecht, Léo Ducas, Gottfried Herold, Elena Kirshanova,
Eamonn W Postlethwaite, and Marc Stevens. The general sieve kernel
and new records in lattice reduction. In Proc. of EUROCRYPT, 2019.

[8] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
2015. https://eprint.iacr.org/2015/046.

[9] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe. Post-quantum
key exchange - a new hope. In USENIX Security 2016: 25th USENIX
Security Symposium, page 327–343, 2016.

[10] Yoshinori Aono, Yuntao Wang, Takuya Hayashi, and Tsuyoshi Takagi.
Improved progressive bkz algorithms and their precise cost estimation
by sharp simulator. In Proc. of EUROCRYPT, 2016.

[11] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint,
Vadim Lyubashevsky, John M. Schanck, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Kyber (version 3.02) – Submission
to round 3 of the NIST post-quantum project. 2021. Available at
https://pq-crystals.org/.

[12] Shi Bai and Steven D. Galbraith. Lattice Decoding Attacks on Binary
LWE. In Information Security and Privacy, 2014.

[13] Lei Bi, Xianhui Lu, Junjie Luo, Kunpeng Wang, and Zhenfei Zhang.
Hybrid dual attack on lwe with arbitrary secrets. Cryptology ePrint
Archive, Paper 2021/152, 2021. https://eprint.iacr.org/2021/152.

[14] Jean-Philippe Bossuat, Rosario Cammarota, Jung Hee Cheon, Ilaria
Chillotti, et al. Security guidelines for implementing homomorphic
encryption. Cryptology ePrint Archive, 2024.

[15] Johannes Buchmann, Niklas Büscher, Florian Göpfert, et al. Creating
Cryptographic Challenges Using Multi-Party Computation: The LWE
Challenge. In Proc. of APKC, 2016.

[16] Alessandro Budroni, Benjamin Chetioui, and Ermes Franch. Attacks
on integer-RLWE. In Proc. of ICIS, 2020.

[17] Hao Chen, Lynn Chua, Kristin Lauter, and Yongsoo Song. On the
Concrete Security of LWE with Small Secret. Cryptology ePrint
Archive, Paper 2020/539, 2020. https://eprint.iacr.org/2020/539.

[18] Hao Chen and Kyoohyung Han. Homomorphic lower digits removal
and improved fhe bootstrapping. In Jesper Buus Nielsen and Vincent
Rijmen, editors, Proc. of EUROCRYPT, 2018.

[19] Lily Chen, Dustin Moody, Yi-Kai Liu, et al. PQC Standardization
Process: Announcing Four Candidates to be Standardized, Plus Fourth
Round Candidates. NIST, 2022. https://csrc.nist.gov/News/2022/
pqc-candidates-to-be-standardized-and-round-4.

[20] Yuanmi Chen. Réduction de réseau et sécurité concrete du chiffrement
completement homomorphe. PhD thesis, Paris 7, 2013.

[21] Yuanmi Chen and Phong Q. Nguyen. BKZ 2.0: Better Lattice Security
Estimates. In Proc. of ASIACRYPT 2011, 2011.

[22] Jung Hee Cheon, Minki Hhan, Seungwan Hong, and Yongha Son. A
Hybrid of Dual and Meet-in-the-Middle Attack on Sparse and Ternary
Secret LWE. IEEE Access, 2019.

[23] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song.
Homomorphic encryption for arithmetic of approximate numbers.
In Proc. of ASIACRYPT, 2017.

[24] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi.
LWE with side information: attacks and concrete security estimation.
In Proc. of CRYPTO, 2020.

[25] The FPLLL development team. fplll, a lattice reduction library, Version:
5.4.4. Available at https://github.com/fplll/fplll, 2023.

[26] Leo Ducas, Eamonn Postlethwaite, and Jana Sotakova. SALSA Verde
vs. The Actual State of the Art, 2023. https://crypto.iacr.org/2023/
rump/crypto2023rump-paper13.pdf.

[27] Léo Ducas, Marc Stevens, and Wessel van Woerden. Advanced lattice
sieving on gpus, with tensor cores. Cryptology ePrint Archive, Paper
2021/141, 2021. https://eprint.iacr.org/2021/141.

[28] Yara Elias, Kristin E. Lauter, Ekin Ozman, and Katherine E. Stange.
Provably weak instances of ring-lwe. In Proc. of CRYPTO, 2015.

[29] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter,
Michael Naehrig, and John Wernsing. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In
Proc. of ICML, 2016.

[30] Andrey Gromov. Grokking modular arithmetic, 2023. https://arxiv.
org/pdf/2301.02679.pdf.

[31] HintSight. Unlocking Privacy-Enhanced Global Collab-
oration in Finance with Fully-Homomorphic Encryption.
https://www.hintsight.com/unlocking-privacy-enhanced-global-\
collaboration-in-finance-with-fully-homomorphic-encryption.

[32] Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu,
Yuanzhi Li, and François Charton. Length generalization in arithmetic
transformers. arXiv preprint arXiv:2306.15400, 2023.

[33] Ehern Kret. Quantum Resistance and the Signal Protocol. https:
//signal.org/blog/pqxdh/.

[34] Kristin Lauter, Sreekanth Kannepalli, Kim Laine, and Radames
Moreno. Password Monitor: Safeguarding passwords in
Microsoft Edge. https://www.microsoft.com/en-us/research/blog/
password-monitor-safeguarding-passwords-in-microsoft-edge/.

[35] Kristin Lauter, Cathy Yuanchen Li, Krystal Maughan, Rachel Newton,
and Megha Srivastava. Machine learning for modular multiplication.
arXiv preprint arXiv:2402.19254, 2024.

[36] H.W. jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials
with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[37] Cathy Li, Emily Wenger, Zeyuan Allen-Zhu, Francois Charton, and
Kristin Lauter. SALSA VERDE: a machine learning attack on Learning
With Errors with sparse small secrets. In Proc. of NeurIPS, 2023.

[38] Cathy Yuanchen Li, Jana Sotáková, Emily Wenger, Mohamed Malhou,
Evrard Garcelon, François Charton, and Kristin Lauter. Salsa Picante:
A Machine Learning Attack on LWE with Binary Secrets. In Proc.
of ACM CCS, 2023.

[39] George Marsaglia. Random numbers fall mainly in the planes.
Proceedings of the National Academy of sciences, 61(1):25–28, 1968.

[40] Daniele Micciancio and Oded Regev. Lattice-based cryptography.
Post-Quantum Cryptography, pages 147–191, 2009.

[41] Satoshi Nakamura and Masaya Yasuda. An extension of kannan’s
embedding for solving ring-based lwe problems. In Maura B. Paterson,
editor, Cryptography and Coding, 2021.

[42] NIST. FAQ on Kyber512. 2023. https://csrc.nist.gov/csrc/media/
Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.
pdf.

14

https://zenodo.org/record/6412487
https://eprint.iacr.org/2019/939
https://eprint.iacr.org/2017/047
https://github.com/malb/talks/blob/pdf/20240324%20-%20Dual%20Attack%20-%20RWPQC.pdf
https://github.com/malb/talks/blob/pdf/20240324%20-%20Dual%20Attack%20-%20RWPQC.pdf
https://eprint.iacr.org/2020/707
https://eprint.iacr.org/2020/707
https://eprint.iacr.org/2015/046.
https://pq-crystals.org/
https://eprint.iacr.org/2021/152
https://eprint.iacr.org/2020/539
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://csrc.nist.gov/News/2022/pqc-candidates-to-be-standardized-and-round-4
https://github.com/fplll/fplll
https://crypto.iacr.org/2023/rump/crypto2023rump-paper13.pdf
https://crypto.iacr.org/2023/rump/crypto2023rump-paper13.pdf
https://eprint.iacr.org/2021/141
https://arxiv.org/pdf/2301.02679.pdf
https://arxiv.org/pdf/2301.02679.pdf
https://www.hintsight.com/unlocking-privacy-enhanced-global-\collaboration-in-finance-with-fully-homomorphic-encryption
https://www.hintsight.com/unlocking-privacy-enhanced-global-\collaboration-in-finance-with-fully-homomorphic-encryption
https://signal.org/blog/pqxdh/
https://signal.org/blog/pqxdh/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://www.microsoft.com/en-us/research/blog/password-monitor-safeguarding-passwords-in-microsoft-edge/
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf
https://csrc.nist.gov/csrc/media/Projects/post-quantum-cryptography/documents/faq/Kyber-512-FAQ.pdf

[43] Niklas Nolte, Mohamed Malhou, Emily Wenger, Samuel Stevens,
Cathy Li, François Charton, and Kristin Lauter. The cool and the
cruel: separating hard parts of lwe secrets. Proc. of AFRICACRYPT,
2024.

[44] National Institute of Standards and Technology. FIPS 203 (Draft):
Module-Lattice-based Key-Encapsulation Mechanism Standard . US
Department of Commerce, NIST, 2023. https://nvlpubs.nist.gov/
nistpubs/FIPS/NIST.FIPS.203.ipd.pdf.

[45] Theodoros Palamas. Investigating the ability of neural networks to
learn simple modular arithmetic. 2017.

[46] Simon Pohmann, Marc Stevens, and Jens Zumbrägel. Lattice enumer-
ation on gpus for fplll. Cryptology ePrint Archive, Paper 2021/430,
2021. https://eprint.iacr.org/2021/430.

[47] Eamonn W Postlethwaite and Fernando Virdia. On the success
probability of solving unique svp via bkz. In IACR International
Conference on Public-Key Cryptography, pages 68–98. Springer, 2021.

[48] Keegan Ryan and Nadia Heninger. Fast practical lattice reduction
through iterated compression. Cryptology ePrint Archive, 2023.

[49] C.P. Schnorr. A hierarchy of polynomial time lattice basis reduction
algorithms. Theoretical Computer Science, 53(2):201–224, 1987.

[50] Samuel Stevens, Emily Wenger, Cathy Yuanchen Li, Niklas Nolte,
Eshika Saxena, Francois Charton, and Kristin Lauter. Salsa fresca:
Angular embeddings and pre-training for ml attacks on learning with
errors. Cryptology ePrint Archive, Paper 2024/150, 2024. https:
//eprint.iacr.org/2024/150.

[51] Leizhang Wang, Wenwen Xia, Geng Wang, Baocang Wang, and Dawu
Gu. Improved pump and jump bkz by sharp simulator. Cryptology
ePrint Archive, 2022.

[52] Emily Wenger, Mingjie Chen, François Charton, and Kristin E Lauter.
Salsa: Attacking lattice cryptography with transformers. Proc. of
NeurIPS, 2022.

[53] Wenwen Xia, Leizhang Wang, Dawu Gu, Baocang Wang, et al.
Improved progressive bkz with lattice sieving and a two-step mode
for solving usvp. Cryptology ePrint Archive, 2022.

Appendix

A. Modifications to Lattice Estimator

As of commit 00ec72ce, the Lattice Estimator only sup-
ports sparse ternary secrets (through the SparseTernary
function in nd.py). To estimate attack performance
on benchmarks proposed in this attack, we add a
SparseCenteredBinomial function to nd.py, which
enable estimation on sparse binomial and Gaussian secrets.
Code for these is available upon request.

B. Concrete BKZ Timings

Although we found that uSVP attacks, as predicted, did
not succeed in reasonable time for our benchmark settings,
we did make some interesting observations from these
experiments. Primarily, we noticed that the lattice estimator
can underestimate time needed for enumeration-based BKZ
lattice reduction, even when incorporating flatter to
speed up BKZ, for log2 q > 40.

We compare concrete fplll BKZ timings to estimates
times for enumeration-based BKZ. We used two models for
estimation: the Chen-Nguyen (CheNgu) model [21], and the
ALBR21 model [6]. The CheNgu model is based on a curve

fit to concrete results in dimension n ≤ 250 provided in [21],
and is likely the closest estimate of the actual enumeration
model used in fplll BKZ. According to this model,
one loop of BKZ will visit 2(0.18728β·log2(β)−1.019·β+16.10)

enumeration nodes, where β is BKZ block size. To get
a concrete time estimate, we must multiply by the cost
of visiting each node. According to the header comment
in the CheNgu function in reduction.py in the lattice
estimator, this cost is 64. The Estimator multiplies this by
a “repeats” factor of 8n, which is the number of estimated
SVP calls within one loop of BKZ-Beta. According to a
comment in the Estimator, this is loosely based on results
from Yuanmi Chen’s 2013 PhD thesis [20]. To this, we add
the cost of LLL, which is n3(log q)2, where n is lattice
dimension.

For completeness, we also include the ABLR21 cost
model [6], which proposes faster enumeration strategies,
improving upon the asymptotic cost of Chen-Nguyen.
The following cost model is derived from simulations
in this paper. If β ≤ 97 or 1.5β ≥ n, the cost
is 64 ∗ 2(0.1839β·log2(β)−1.077·β+29.12) (this includes the
factor of 64 for node visitation), otherwise it is 64 ∗
2(0.125β·log2(β)−0.654·β+25.84). Since fplll does not use
the enumeration strategy from this paper, we expect this cost
estimate will underestimate concrete fplll performance,
but we include it for completeness, and multiply it by the
cost of LLL and expected repeats as above.

We use these to derive time estimates for each BKZ2.0
loop for all the n, q, and β values for which we ran
concrete uSVP experiments. As previously, we convert ROP
cycles to time by dividing out the cycle speed of our
machines (2.1GHz). Since we reduce lattices with Kannan’s
embedding, the effective lattice dimension is m+n+1, where
m = 0.875n = the number of LWE samples per embedded
lattice. We set BKZ_MAX_TIME = 60, which means that
unless the algorithm takes < 60 seconds, it will return after
each loop. This ensures that we can accurately time each
BKZ2.0 loop, as well as the time to uSVP solution (although
this only occurs for small matrices).

n 64 128 256
q 967 11197 397921
BKZ β 30 30 50

predicted cycles [21] 231.3 233.9 237.6

predicted time [21] 1.2 s 7.5 s 1.6 mins

predicted cycles [6] 239.8 240.8 245.1

predicted time [6] 7 mins 14 mins 4.6 hrs

actual time, first BKZ2.0 loop ∼30 s 1 minute 3.3 hrs
secret found? Yes (1 loop) Yes (1 loop) No

TABLE 15. Estimated vs. actual times for first loop of BKZ2.0 n ≤ 256.
We convert predicted cycles to concrete times by dividing by the cycle speed
of our CPUs (2.1 GHz), following [4]. Since BKZ2.0 runs on uSVP problems,
we also report whether the secret is recovered.

Tables 15 and 16 compare concrete performance times
to predicted times for small n ≤ 256 and large n ≥ 512,
respectively. For both small n and q, estimates are fairly
accurate. However, for log2 q > 45, estimates consistently
underpredict BKZ2.0 time. Finally, in Table 17 we report

15

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
https://eprint.iacr.org/2021/430
https://eprint.iacr.org/2024/150
https://eprint.iacr.org/2024/150

(n, log2 q) (512, 32) (512, 34) (512, 41) (768, 45) (768, 50) (768, 53) (1024, 34) (1024, 50)

blocksize β 70 74 60 64 40 45 70 80 60 68 50 58 70 75

predicted cycles [21] 244.8 246.3 242.4 243.1 241.7 241.7 245.6 249.4 243.7 245.0 243.5 243.7 246.3 248.7

predicted hrs [21] 4.2 11.8 0.74 1.21 0.5 0.5 7.1 101.2 2.0 4.8 1.7 1.9 11.2 34.1

predicted cycles [6] 251.5 252.8 248.6 249.7 244.3 245.2 252.1 255.5 249.2 251.5 246.8.5 248.7 252.5 254.2

predicted hours [6] 404 987 52 114 2.8 4.8 606 6107 79.4 394 15.2 55.1 809 2488

First BKZ loop (hrs) 370 1083 46.2 109 46.6 47.3 1195 > 1512 227 1087 219 236 > 1512 > 1512

TABLE 16. Estimated vs. actual times for first loop of BKZ2.0 (n ≥ 512). Subsequent BKZ2.0 loops often take much less time. For experiments that
have not completed a single BKZ2.0 loop, we write > x, where x is the number of hours elapsed before the day of manuscript submission.

(n, log2 q) (768, 35) (1024, 26) (1024, 29) (1024, 34) (1024, 45) (1024, 50)

predicted cycles [21] 241.7 242.1 242.4 242.9 243.7 244.0

predicted time [21] 0.5 hrs 0.6 hrs 0.7 hrs 1.0 hrs 1.8 hrs 2.2 hrs

predicted cycles [6] 243.5 243.9 244.0 244.2 244.6 244.8

predicted time [6] 1.6 hrs 2.1 hrs 2.2 hrs 2.5 hrs 3.2 hrs 3.7 hrs

First loop flatter 12.4 hrs 29.7 hrs 30.8 hrs 17.5 hrs 17.3 hrs 23.8 hrs
First loop BKZ - 41.6 hrs 34.1 hrs 8.1 hrs 2.9 hrs -

TABLE 17. Estimated vs. actual times for first loop of BKZ2.0 with β = 18 for large n, log2 q parameter settings, including those used in
benchmark evaluation. All experiments are run with BKZ2.0 with β = 18. To achieve practical speedup, three loops of flatter are run before running the
first loop of BKZ2.0, so reported BKZ2.0 times are for partially-reduced matrices. ‘-’ indicates using flatter alone allowed us to reach the target reduction level,
so reduction terminated before BKZ2.0 is run.

predicted vs actual reduction times for the n > 512 parameter
settings, including some used in our benchmarks. For these,
since blocksize β is small (β = 18), the dominant cost is
that of LLL, and the LLL cost in the Estimator is determined
by B = log2 q. Thus, there is a slight increase in estimated
time as log2 q increases, but the estimates still under-predict
the required times observed in practice.

These discrepancies indicate a need for more in-depth
consideration of the role of log2 q in the timing of BKZ2.0.
Theoretical models for BKZ2.0 timing do not consider integer
bitsize, although estimates of LLL time do.

C. Cliff Shifting and Cliff Splitting

The Cool and Cruel distinguishing attack [43] exploits
the algebraic structure of the 2-power cyclotomic Ring-LWE
to strategically “shift” the experimentally observed “cliff” in
preprocessed LWE data to find an optimal window with low
Hamming weight. Each index of a skew-circulant matrix
formed from a reduced LWE sample has the cliff appear in
a different sliding window. By searching through circulant
indices [1, . . . n] and finding one with low Hamming weight
in the cliff region, the brute force part of the attack can be
made faster. In practice, this requires running a brute force
attack on datasets composed of elements at each circulant
index until a low Hamming weight region is found, increasing
attack cost. Here, we provide more details on cliff shifting.

Cliff shifting: free short(ish) vectors. Given a set of
Ring-LWE samples (a(i)(x), b(i)(x))i where a(i)(x) ∈
Rq = Zq[X]/(Xn + 1), and using the embedding a =
(a0, a1, . . . , an−1), a lattice reduction algorithm is ap-
plied to an embedded version of the lattice spanned by
(a(1),a(2), . . . ,a(m)) also noted as A ∈ Zm×n

q where row
i corresponds to a(i). Denote a short vector found by

reducing the embedded matrix Λ as (y′,y) ∈ Zm+n such
that y = y′ · A mod q (y′ is a row of the R matrix
defined in Section 4.2) We can describe the cliff result of
[43] by defining y as having 2 components (yu,yr) where
yr ∈ Znr=n−nu

q is short while yu ∈ Znu
q remains unreduced.

nr and nu = n−nr are the number of reduced and unreduced
components in y, respectively.

For y(x) ∈ Rq, (whose coefficients are y), the n− lth

line in the flipped Skew-circulant matrix can be described by
operation xl, where xly(x) =

∑n−1
k=0(−1)⌊

k+l
n ⌋ykx

k+l[n].
Note that the elements xly(x) have the same L2 norm
||y(x)||2. For this reason, given the short vector y that
represents the polynomial y(x), we have n short vectors
y→l = (−y[nr−l:nr)

r ,yu,y
[0:nr−l)
r) for 0 ≤ l ≤ n−1, where

→ denotes the Skew-circulant shifting operation xl.
We denote by D the pre-processed dataset and D→l the

same dataset shifted by xl. Our modified version of the ML
attack [50] trains a model on each shifted dataset. Since
at least one of the datasets is much easier than the others
(see Sparse secret cruel bits below), one model will likely
recover the secret first, after which we terminate training.

Cliff Splitting. For Module-LWE, the same attack can be
run using a technique we introduce called ‘cliff splitting’.
This applies a permutation P ∈ Zkn×kn to the initial
vectors before reduction, and then applying its inverse after
reduction. The result is a set of short vectors where each
module component exhibits a similar profile. We describe
this technique below.

Let the Rq-module M = Rk
q , and (a, b =

a · s + e) be a Module-LWE sample. For a =
(a1(x), a2(x), . . . , ak(x)) ∈ M, we consider the coeffi-
cient embedding of each component in one large vector
a = (a10,a11, . . . ,a1n−1, . . . ,ak1,ak2, . . . ,akn−1) ∈ Zkn

q

16

and run preprocessing on “LWE-like” matrices in Zm×kn
q

formed by sampling m of these embedded vectors. After
preprocessing, similarly to the Ring case, if a ∈ M is
short, then xla = (xla1(x), x

la2(x), . . . , x
lak(x)) whose

embedding is a→l = (a→l
1 ,a→l

2 , . . . ,a→l
k) is also short.

With these short vectors, we can now perform cliff
splitting. Let ν = Nu

k , where Nu is the cliff size of
reduced lattice in dimension kn. We assume that Nu

mod k = 0 for simplicity in notation. Given a kn-vector
a = (a1,a2, . . . ,ak), we can split each component ai into
two parts: a[0:ν)i and a

[ν,n)
i . This yields:

a = (a
[0:ν)
1 ,a

[ν,n)
1 ,a

[0:ν)
2 ,a

[ν,n)
2 , . . . ,a

[0:ν)
k ,a

[ν,n)
k)

We then apply the permutation P to a, which rearranges the
components of a such that all unreduced regions come first:

aP = (a
[0:ν)
1 ,a

[0:ν)
2 , . . . ,a

[0:ν)
k ,a

[ν,n)
1 ,a

[ν,n)
2 , . . . ,a

[ν,n)
k)

After applying the lattice reduction to the permuted vectors,
we apply P−1 to obtain the final dataset D and the shifted
datasets D→l for the ML [50] or CC [43] attacks.

Sparse secret cruel bits. To assess the advantage of Module-
LWE over LWE, we begin by defining the partial Hamming
weight of the secret s = (s1, s2, . . . , sk) where s is the
embedding of s ∈M∨. This is done by considering the same
window in each module component, defined as: hν,w(s) :=∑k

i=1

∑w+ν−1
j=w 1{sij[n]!=0} for Module-LWE and hν,w(s) =∑w+ν−1

j=w 1{sj[n]!=0} for Ring-LWE. We then define h∗
ν(s)

as the minimum partial Hamming weight over all windows,
and w∗ as the window that minimizes the partial Hamming
weight:

h∗
ν(s) = min

0≤w<n
hν,w(s), w∗ = arg min

0≤w<n
hν,w(s)

Colloquially, the CC attack defines hν,w(s) as the “cruel
bits” of a secret, and seeks the window with the fewest cruel
bits. The attack is then carried out on all datasets, including
D→w∗ whose vectors a have the fewest cruel secret bits in
their un-reduced entries. [43] applies brute force on secret
windows of size Nu = kν starting with Hamming weight
0 and increasing from here. Although the value of h∗

ν(s) is
unknown, the attack can be halted as soon as a secret with
Hamming weight h∗

ν(s) is found. This reduces the search
space and increases attack efficiency.

Experimentally, we find that attacks only conclude in
reasonable time when h∗

ν(s) ≤ 3 for the ML attack and
h∗
ν(s) ≤ 4 for the CC attack. We estimate those probabilities

in Tables 18 and 19.

D. Recoverable Secrets for DH MiTM Attack

Based on the memory use analysis of §4.4 and Table 8,
we can reasonably recover secrets with h′ ≤ 8 for all Kyber
settings, and h′ ≤ 8 for HE settings. One can then easily
compute the probability of “hitting” secrets with this h′ value
for an overall secret Hamming weight of h, and use this
to estimate what Hamming weight secrets are recoverable.
These results are recorded in Tables 21 and 22.

(k = 2, log q = 12) (k = 2, log q = 28) (k = 3, log q = 35)

h = 9 h = 11 h = 18 h = 25 h = 16 h = 19

3 cruel bits 14.3 2.0 19.1 1.2 26.3 8.6
4 cruel bits 51.4 11.3 47.9 4.9 60.2 26.0
5 cruel bits 96.2 40.1 83.5 14.9 93.0 56.4

TABLE 18. Percent chance that secrets with Hamming weight h have
≤ x cruel bits (h∗

ν(s)) for Kyber settings (n = 256 for all). These
represent the success probabilities of the CC/AI attacks given a compute
budget measured in x. For an MLWE instance with k = 2, logQ = 28 and
a secret with h = 25, if we run the brute force attack on all secret candidates
with up x = 5 cruel bits, the attack would succeed with 15% probability.

log q = 26 log q = 29 log q = 50

h = 8 h = 12 h = 10 h = 12 h = 17 h = 20

3 cruel bits 43.4 1.7 16.8 3.6 14.8 4.3
4 cruel bits 93.1 8.9 52.5 16.0 39.9 14.5
5 cruel bits 100.0 30.1 94.7 46.8 75.2 36.8

TABLE 19. Percent chance that secrets with Hamming weight h have
≤ x cruel bits (h∗

ν(s)) for HE settings (n = 1024 for all). These
represent the success probabilities of the CC/AI attacks given a compute
budget measured in x. For an RLWE instance with logQ = 26 and a secret
with h = 12, if we run the brute force attack on all secret candidates with up
to x = 5 cruel bits, the attack would succeed with 30% probability.

E. DH MiTM Performance on Small n

Here we present results for smaller n = 128 LWE setting,
with varying log2 q. For this, we set ζ = 64 and τ = 50, and
run the scaled dual reduction step with β = 40. Table 23
presents a summary of results from these experiments: the
time required per short vector produced, the estimated bound
B for short vectors, and the time required for MiTM attacks
on various h secrets. The larger B is as a fraction of q, the
longer it takes to iterate through all possible secret guesses,
because the number of boundary elements to check grows
exponentially. Given the difficulty of recovering an h = 10
secret for a setting with B/q = 0.08 and ζ = 64, it makes
sense that it is difficult to recover MiTM secrets with high
h for ζ > 500 and B/q ≈ 0.1, memory constraints aside.

F. Miscellaneous Tables

Table 20 lists open source implementations of LWE
attacks available at the time of paper submission. Table 24
estimates memory required for running the GPU implemen-
tation of G6K lattice sieiving on dimension n ≥ 128.

17

Paper Attack Type Code link Language

[22] Dual Hybrid MiTM https://github.com/swanhong/HybridLWEAttack Python and Sage
[27] Sieving https://github.com/WvanWoerden/G6K-GPU-Tensor Python
[37] ML attack https://github.com/facebookresearch/verde Python
[37] uSVP https://github.com/facebookresearch/verde Python
[43] Cool & Cruel https://github.com/facebookresearch/cruel and cool Python
[24] DBDD https://github.com/lducas/leaky-LWE-Estimator Sage/Python
[25] Lattice reduction https://github.com/fplll/fplll C++/Python
[48] Lattice reduction https://github.com/keeganryan/flatter C++
[26] MITM https://github.com/lducas/leaky-LWE-Estimator/blob/human-LWE/human-LWE/ Python

TABLE 20. Available open-source implementations of attacks on Search or Decision LWE as of June 4, 2024.

log q = 26 log q = 29 log q = 50

h = 6 h = 8 h = 7 h = 9 h = 14 h = 16

h′ = 4 11.4 0.5 12.9 1.5 1.0 0.2
h′ = 6 100.0 18.9 77.3 24.3 9.2 3.0
h′ = 8 100.0 100.0 100.0 85.3 39.9 19.0

TABLE 21. Percent chance that secrets with Hamming weight h have
≤ h′ bits in ζ-size MiTM guessing region for HE benchmark settings.
n = 1024 for all, ζ given in Table 8. From 10K simulations of secrets.

(k = 2, log q = 12) (k = 2, log q = 28) (k = 3, log q = 35)

h = 3 h = 4 h = 10 h = 12 h = 12 h = 14

h′ = 4 100.0 100.0 11.4 2.9 0.8 0.1
h′ = 6 100.0 100.0 53.2 23.9 11.0 2.9
h′ = 8 100.0 100.0 91.9 69.2 49.3 21.3

TABLE 22. Percent chance that secrets with Hamming weight h have
≤ h′ bits in ζ-size MiTM guessing region for Kyber benchmark settings.
n = 256 for all settings, ζ given in Table 8. From 10K simulations of secrets.

log2 q 13 14 15 16 17 18 19

B/q 0.24 0.12 0.08 0.05 0.03 0.02 0.01

MITM time, h = 5 - 5.9 hrs 25.1s 5.4s 0.11s 0.04s 0.03s
MiTM time, h = 8 - - 9 hrs 11.8 min 6.0s 1.0s 0.4s
MiTM time, h = 10 - - 51 hrs 36 min 32.3s 6.5s 2.7s

TABLE 23. MiTM binary secret recovery times for n = 128, ζ = 64
with varying log2 q and h. We include bound B/q to demonstrate the
relative bound size. Each short vector took ≈ 3.5 minutes to reduce, using
flatter and BKZ2.0, regardless of log2 q value. ’-’ indicates the secret
guessing did not finish in 72 hours, the time limit on our compute cluster.

n
Max sieving
dimension

Max # of
DB vectors

est. DB memory
(416 bytes/vector)

128 104 223.1 3.6 GB
160 133 229.3 234 GB
256 218 246.7 47.8 PB
512 450 294 1.4e16 PB
768 682 2142 4.6e30 PB
1024 916 2191.6 1.9e45 PB

TABLE 24. Memory estimates for using G6K sieving as the SVP oracle
in BKZ, computed from formulae on pg. 27 of [27]. Max sieving dimension
is less than n because of the “dimensions for free” trick. Database (DB)
memory is computed by multiplying estimated # of database vectors by the
reported 416 bytes/vector storage size on pg. 28 of [27].

18

https://github.com/swanhong/HybridLWEAttack
https://github.com/WvanWoerden/G6K-GPU-Tensor
https://github.com/facebookresearch/verde
https://github.com/facebookresearch/verde
https://github.com/facebookresearch/cruel_and_cool
https://github.com/lducas/leaky-LWE-Estimator
https://github.com/fplll/fplll
https://github.com/keeganryan/flatter
https://github.com/lducas/leaky-LWE-Estimator/blob/human-LWE/human-LWE/

	Introduction
	Background on Learning with Errors (LWE)
	LWE Settings
	LWE in the real world
	Attacks on LWE
	Prior Concrete Evaluations of LWE Attacks

	LWE Attack Benchmarks
	Benchmark Settings
	Choosing Attacks to Evaluate
	Evaluation Metrics

	Attack Implementations and Innovations
	uSVP
	ML Attack
	Cool & Cruel Attack
	Dual Hybrid MiTM

	Measuring Attack Performance
	Analysis of Results
	Actual vs. Estimated Performance

	Lessons Learned
	Q-ary Lattice Reduction
	Discrepancy in BKZ timings
	ML attacks recover secrets with 3 cruel bits
	Effect of bad PRNGs on attack performance

	Join our LWE Attack Benchmarking Effort
	Conclusion and Future Work
	References
	Appendix
	Modifications to Lattice Estimator
	Concrete BKZ Timings
	Cliff Shifting and Cliff Splitting
	Recoverable Secrets for DH MiTM Attack
	DH MiTM Performance on Small n
	Miscellaneous Tables

