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Abstract. For more than two decades, pairings have been a fundamental tool for
designing elegant cryptosystems, varying from digital signature schemes to more
complex privacy-preserving constructions. However, the advancement of quantum
computing threatens to undermine public-key cryptography. Concretely, it is widely
accepted that a future large-scale quantum computer would be capable to break
any public-key cryptosystem used today, rendering today’s public-key cryptogra-
phy obsolete and mandating the transition to quantum-safe cryptographic solutions.
This necessity is enforced by numerous recognized government bodies around the
world, including NIST which initiated the first open competition in standardizing
post-quantum (PQ) cryptographic schemes, focusing primarily on digital signatures
and key encapsulation/public-key encryption schemes. Despite the current efforts
in standardizing PQ primitives, the landscape of complex, privacy-preserving cryp-
tographic protocols, e.g., zkSNARKs/zkSTARKs, is at an early stage. Existing
solutions suffer from various disadvantages in terms of efficiency and compactness
and in addition, they need to undergo the required scrutiny to gain the necessary
trust in the academic and industrial domains. Therefore, it is believed that the
migration to purely quantum-safe cryptography would require an intermediate step
where current classically secure protocols and quantum-safe solutions will co-exist.
This is enforced by the report of the Commercial National Security Algorithm Suite
version 2.0, mandating transition to quantum-safe cryptographic algorithms by 2033
and suggesting to incorporate ECC at 192-bit security in the meantime. To this end,
the present paper aims at providing a comprehensive study on pairings at 192-bit
security level. We start with an exhaustive review in the literature to search for all
possible recommendations of such pairing constructions, from which we extract the
most promising candidates in terms of efficiency and security, with respect to the
advanced Special TNFS attacks. Our analysis is focused, not only on the pairing
computation itself, but on additional operations that are relevant in pairing-based
applications, such as hashing to pairing groups, cofactor clearing and subgroup mem-
bership testing. We implement all functionalities of the most promising candidates
within the RELIC cryptographic toolkit in order to identify the most efficient pairing
implementation at 192-bit security and provide extensive experimental results.
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1 Introduction
Pairings have been used as a black-box tool in the cryptographic landscape since the
first constructive applications have been proposed in 2000 and 2001. Some of the early
applications were identity-based encryption [BF01], short signatures [BLS01], and tri-
partite Diffie-Hellman key exchange [Jou04]. In the following decades, pairings increased
in popularity following the explosion in research within the broad area of cryptographic
computing, consisting in essential building blocks to modern digital signatures [PS16, TZ23],
commitment schemes [KZG10], anonymous credentials [CL04], and zero-knowledge proof
systems such as zkSNARKs [Gro16].

Since the practical constructions of cryptographic pairings over elliptic curves are
not secure against quantum-computers, an active research area is developing quantum-
safe alternatives for pairing-based cryptography. However, migrating to quantum-safe
cryptography has disadvantages in terms of efficiency and compactness, and potentially loss
of some functionality. Taking for example zkSNARKs, there are promising quantum-safe
constructions, such as zkSTARKs [BBHR18] and LaBRADOR [BS23], but they may offer
larger proof sizes and/or prover/verification times that are still linear in the size of the
witness or statement. Despite the exciting work in progress to develop alternatives, such
performance penalties can be prohibitive for many applications.

In this paper, we follow a nuanced approach and argue that practical applications of
pairing-based cryptography will need more conservative parameter choices while quantum-
safe alternatives are further developed. In order to offer security in the next decade, we
envision that parameters at the 192- and 256-bit security level will be needed. For reference,
the Commercial National Security Algorithm Suite version 2.0 mandates transition to
quantum-safe algorithms by 2033, and establishes that elliptic curve cryptography (ECC)
at the 192-bit security level should be used before transition, effectively deprecating ECC at
128-bit security. The rationale behind the latter decision is rather unclear and unlikely to
be ever properly substantiated, but there are speculations around computing elliptic curve
discrete logs in cube-root time [KM16], without as much storage cost as publicly-known
algorithms [BL13].

1.1 Motivation
Concretely, pairings are bilinear maps that are instantiated on algebraic curves. Contrary
to other domains of cryptography where the choice of parameters is limited, straightforward,
and standardized, the picture is more elaborated with pairings. Genus two pairings do not
offer any advantage compared to elliptic curve (genus one) pairings in terms of security,
while at the same time the Jacobian arithmetic is by far more costly compared to elliptic
curve point addition. Instances of efficient and secure pairings on genus two curves have
been recently reported in [AFK24], however they are still less efficient than the well-
known elliptic curve pairings. For genus one, Barreto-Naehrig (BN) curves over large
characteristic fields [BN06] became the dominant choice at 128-bit security for many years,
followed by Barreto-Lynn-Scott (BLS) curves with embedding degree 12 at the 192-bit
level [AFK+13]. Supersingular curves over small-characteristic fields were also considered
for smaller devices, but efficient algorithms and record computations for discrete logarithms
over extension fields completely eliminated their viability.1 These attacks do not apply
in large characteristic, but the Kim-Barbulescu variant of the TNFS attack [KB16] still
forced larger parameters, and the widely deployed BN-254/256 curves became outdated.
Current deployments of pairing-based schemes are tailored to the updated 128-bit security
level, and practical deployments have employed the BLS12-381 elliptic curve designed by
the ZCash project [Bow17].

1In 2012 happened the first large record computation of discrete logarithm computation https://dldb.
loria.fr in GF(36·97) (923 bits), and a final milestone in 2019 with GF(230750) [HSST12, GKL+21].

https://dldb.loria.fr
https://dldb.loria.fr
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Scaling the security of pairing-friendly curves under the new constraints is challenging.
Some previously obvious choices became undefined: alternative curves are not of prime
order, contrary to BN curves, or might not have j-invariant 0 like BN curves. While the
choice of parameters at the 256-bit security level seems to be clearer [KIK+17, BMDFAF19],
the story is more complicated for the 192-bit security level due to a broader range of
candidate parameters. Hence, we focus our efforts exactly on finding and benchmarking
parameter choices at 192-bit security, providing a detailed overview in terms of security and
efficiency. We discuss which curves to choose, together with precise security estimates; and
performance in terms of the cost of pairing computation and group operations including
hashing, membership testing, scalar multiplication and exponentiation. There has been a
long and dense bibliography on pairing implementation, from designing new curves (see
the survey article [FST10]) to dedicated hardware optimizations, which we extend with a
study dedicated to the 192-bit security level.

1.2 Our Contributions
We review pairing-friendly curves at the 192-bit security level and provide TNFS-secure
short-listed curves according to popular criteria. Some pre-selected curves were sketched
in [Gui20, §5]. We also consider Scott–Guillevic (SG), Fotiadis–Martindale (FM), and
Gasnier–Guillevic (GG) curves [SG18, FM19, GG23]. Because the search space of pairing-
friendly curve families is too large for a complete survey, we restrict the evaluated curves
w.r.t. the following a-priori criteria:

• Embedding degrees from 15 to 28. We justify this choice in Section 2.5.

• curves with high degree twists: quartic twist: 4 | k and j(E) = 1728 (k = 16, 20, 28),
sextic twist: 6 | k and j(E) = 0 (k = 18, 24), and also cubic twist: 3 | k odd and
j(E) = 0 (k = 15, 21, 27).

• variable ρ-value from the lowest possible according to [FST10], to ρ = 2 thanks to
[FK19, FM19]. We observe that at fixed k, a larger ρ can provide better performance.

We provide a full comparison of curves in terms of pairing efficiency, and G1, G2, and GT
group operations:

• Formulas for optimal ate pairing, fast G1, G2, GT cofactor clearing and subgroup
membership testing.

• Formulas for hashing into G1, G2 with SwiftEC [CSRT22] and Koshelev’s general-
ization [Kos24]. A side-contribution is an implementation-friendly description of
hashing, potentially impacting other parameters for 128-bit security (e.g. embedding
degree 8 curves [GMT20]).

• SageMath and Magma prototype code. Automated estimated cost in terms of
multiplications in the base field GF(p).

• An optimized implementation within the RELIC library, and benchmarks of pairings
and group operations for the most promising curves according to the SageMath
estimates.

2 Preliminaries
Notations. Denote E an ordinary elliptic curve defined over a prime field Fp. Denote k
the embedding degree such that the pairing embeds a pair of points of E(Fp) and E(Fpk )
onto F∗

pk . The three pairing groups of prime order r are denoted as usual G1,G2,GT .
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2.1 Pairings
The state-of-the-art implementations of pairings at 128-bit security are for the optimal
ate pairing on different types of curves. Below we recall the definition of the optimal ate
pairing and the formula to compute the Miller loop. For more information on this pairing
type we refer to Vercauteren’s paper [Ver10]. Furthermore, we give a brief description
of the final exponentiation. For a complete introduction on pairings we refer to Craig
Costello’s guide Pairings for beginners [Cos12].

Optimal ate pairing Miller loop. This is defined as the bilinear, non-degenerate
and efficiently computable map e : G2 × G1 → GT, with G1 = E[r] ∩ ker(πp − [1]) and
G2 = E[r] ∩ ker(πp − [p]), where πp : E → E is the pth-power Frobenius endomorphism.

Let L be the φ(k)-dimensional lattice defined as:

L =


r 0 0 . . . 0
−p 1 0 . . . 0
−p2 0 1 . . . 0

...
...

...
. . .

...
−pφ(k)−1 0 0 . . . 1


and let v = (c0, c1, . . . , cφ(k)−1) be the shortest vector of the lattice L. Then the coordinates
of the shortest vector v satisfy the following relation:

φ(k)−1∑
i=0

cip
i ≡ 0 mod r, (1)

where the coordinates ci are functions of the seed u, used to instantiate the polynomials
(p(x), t(x), r(x)). Based on this setup, the formula for computing the optimal ate pairing
is [Ver10]:

(Q,P )→

φ(k)−1∏
i=0

fp
i

ci,Q
(P ) ·

φ(k)−2∏
i=0

ℓRi,Si(P )
vRi+Si

(P )

 ,
where Ri = [si+1]Q, Si = [cipi]Q and the scalars si are defined as:

si =
φ(k)−1∑
j=i

cjp
j ,

for every i = 0, . . . , φ(k)− 2. In addition, ℓRi,Si
(P ) denotes the line passing through the

points Ri and Si, which is evaluated at P , and vRi+Si(P ) is the vertical line through the
point Ri + Si, evaluated at P .

The optimal ate pairing formula can be simplified using certain properties of the Miller
loop. In particular:

• For every ci < 0, we have:

fci,Q(P ) = 1
f−ci,Q(P ) · v[ci]Q(P ) .

• By [BKLS02, Theorem 2] the following holds:

fa+b,Q(P ) = fa,Q(P ) · fb,Q(P ) ·
ℓ[a]Q,[b]Q(P )
v[a+b]Q(P ) .



Diego F. Aranha, Georgios Fotiadis, Aurore Guillevic 5

• By [ALH10, Lemma 1] the following relation holds:

fab,Q(P ) = fb,Q(P )a · fa,[b]Q(P ) = fa,Q(P )b · fb,[a]Q(P ).

• We have: f0,Q(P ) = f1,Q(P ) = f−1,Q(P ) = 1.

• Every scalar multiplication [pi]Q can be efficiently computed by applying the pi-
power Frobenius endomorphism πi : E → E. Therefore we write [pi]Q = πi(Q), for
every i = 1, . . . , φ(k)− 1.

Final exponentiation. The final exponentiation is the process of raising an element in
F∗
pk to the exponent e = (pk−1)/r. When working with pairing groups, this is accomplished

by factorizing e as follows:

e = pk − 1
Φk(p) ·

Φk(p)
r

,

where we refer to eeasy = (pk − 1)/Φk(p) as the easy part and ehard = Φk(p)/r as the hard
part. Both parts can be significantly simplified, depending on weather the embedding
degree k is even, composite odd, or prime. The formula for computing the easy part of
the final exponentiation is the same for all pairing-friendly elliptic curves with the same
embedding degree. On the contrary, the formula for computing the hard part of the final
exponentiation is different for each family of curves. There are different methods for
simplifying the hard part, which we explore in Section 3.

2.2 Constructing pairing-friendly curves and families
Plain ordinary elliptic curves are not pairing-friendly, in particular, their embedding degree
k has the magnitude of r so the pairing is impracticable. Pairing-friendly curves should be
designed specifically and there have been a long series of papers revealing new curves. The
first ordinary curves were MNT (k = 3, 4, 6), followed by BLS, Brezing–Weng, the popular
BN curves, and the KSS curves [MNT01, BLS03, BW05, BN06, KSS08]. Freeman, Scott
and Teske delivered a useful taxonomy [FST10]. The recent works are a generalization of
the BN construction [SG18] and the KSS construction [GG23] though without finding new
prime-order curves. With the deployment of SNARK and the need of cycles of prime-order
pairing-friendly curves, impossibility results are also investigated [BMUS23, CCW19]. We
also mention a very recent work on higher genus cycle constructions for SNARK [CRSCN24].
In this work we concentrate on complete families, parameterized by polynomials and of
fixed small discriminant.

2.3 Pairings at 128-bit security
2.3.1 Assessing the TNFS-security level of pairing-friendly curves.

In 2016 the Kim–Barbulescu attack downgraded the security level of many pairing-friendly
curves [KB16, KJ17], in particular the curves with composite embedding degree such
as 12, 16, 18, 24. Because choosing k = 2i3j allows an implementation-friendly tow-
ering and efficient field arithmetic, such choices are very common. Menezes, Sarkar,
and Singh [MSS16] were the first to generate TNFS-secure parameters, recommending
BLS12 curves of about 384 bits. Since then, the curve BLS12-381 is replacing BN-254
curves almost everywhere. We can mention the standardization effort about pairing-
friendly curves [SKSW22], [BGW+22] on BLS signatures, [TL23] on BLS-curve-based
key representation. Apart from BLS12, there are other specific proposals in other con-
texts [GMT20, FK19, FM19, Fot21, CDS20].
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Analyzing TNFS is a challenging task. Barbulescu and Duquesne made recommenda-
tions in a worst-case scenario with a powerful attacker [BD19] (with conjectured hypotheses
in the polynomial selection step of the TNFS algorithm). Guillevic and Singh [GS21]
refined the TNFS analysis with the computation of the estimator alpha, and released an
implementation of the simulator. There are very few record computations with TNFS. To
the best of our knowledge, we are aware of Oisín Robinson’s work in GF(p4) [Rob22] and
Gabriele De Micheli in GF(p6) [DGP21].

In parallel of a better understanding of the TNFS algorithm, new parameter sets are
proposed [Gui20, CDS20]. A short-list at the 128-bit security level [Gui20] was published
in 2020, it gave hints on possible curves at the 192-bit security level but missed the shortest
G1 constraint [CDS20] and lacked BLS24 at the 128-bit security level. More recently there
is Guillevic’s blog post [Gui21].

Better pairing implementations continue to be an active area of research, with the
long-term software development in C++ RELIC [AGM+] (see for example [APR21] for
recent benchmarks) but also newer projects in Golang or Rust for SNARK (see the
survey [AHG23]). Latest improvements about pairing computations include a faster
final exponentiation for all BLS curves [HHT20] thanks to a decomposition pattern, and
for KSS18 curves[CHZ22]; implementation of pairings and group operations on prime-
embedding-degree pairing-friendly curves BW13-310 and BW19-286 (with endomorphisms
but without twists) [DZZ23a, DZZ23b, FAGA23, DZZZ21] (Yu Dai’s github at [Dai23]);
Cofactor clearing and subgroup membership testing on pairing-friendly curves [HGP22,
DLZZ23]; pairings in arithmetic circuits in the context of SNARK [Hou23].

The recommendations at the 128-bit security level are the following [Gui21]. For a
prime-order curve e.g. for a hybrid cycle in the context of SNARK, pick a BN curve
of 384–448 bits (Freeman and MNT curves are also possible but less efficient). For the
fastest pairing, choose a BLS12 curve of 384–448 bits. For smallest G1, set a BLS24
curve of ≈320 bits, for even smaller G1, BW13-P310, BW19-P286 or BLS48-286, SG54-283.
Finally for small embedding degree k, there are curves with k = 1, supersingular curves
with k = 2, and modified Cocks–Pinch curves with 5 ≤ k ≤ 8.

The papers [KIK+17, BMDFAF19] consider the 256-bit security level with embedding
degrees up to 48 (BLS48-581) and 54 (SG54-569). While [BD19] recommends a KSS18-
1484 or a BLS24-1032 curve, [BEG19] expects a BLS27-559 curve (however this looks
undersized). We collected the data in Appendix C Table 22.

2.4 Previous work on 192-bit security
The situation at the 192-bit security level is unclear, for at least two reasons. First there
are more parameters to tune in TNFS for higher extension degrees. Second, there are more
curve families to investigate (the embedding degree range to consider is larger for example).
A nice short-list of best curves at the 192-bit security level is missing. Not only pairing
computation but G1, G2, GT operations are important and need to be assessed. The size of
G1 and G2 is an important criterion in certain usecases. Barbulescu and Duquesne focused
on KSS18 and BLS24 (see Table 1). In 2019, Barbulescu, El Mrabet and Ghammam
posted a preliminary report on many curves [BEG19]. Guillevic and Singh [GS21] and
Guillevic [Gui20] proposed seeds and keysizes at the 192-bit security level for some families
of curves (Tables 2 and 3). We aim at consolidating the knowledge for pairing-friendly
curves at the 192-bit security level.

2.5 Justification of our a priori criteria
We listed in Section 1.2 our a priori criteria to restrict the considered curves. First we set
boundaries on the embedding degree: 15 ≤ k ≤ 28. The earlier work stated large bounds
[Gui20, Eq. (8)]: 7168 ≤ 384ρk ≤ 14336. Because we target high degree twist curves, the
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Table 1: Curves at the 192-bit security level from [BD19, Tab. 9, §7.6].

k Curve NFS variant seed p, bits pk, bits Fpk sec, bits
18 KSS STNFS 85 bits 678 12200 192
24 BLS STNFS 56 bits 555 13300 192
18 KSS STNFS κ = 1 u = −285 − 231 − 226 + 26 676 12168 204
24 BLS STNFS κ = 1 u = −256 − 243 + 29 − 26 559 13416 204

Table 2: Curves at the 192-bit security level from [Gui20, Tab. 10, §5].

k Curve seed, bits r, bits p, bits pk, bits Fpk sec, bits
14 FST 6.3 52 620 928 12979-12992 194
15 BLS 78 620 928 13906-13920 193
20 FST 6.4 56 448 670 13371-13400 192
21 BLS 32 384 511 10691-10719 195
27 BLS 22 384 427 11496-11524 212
28 FST 6.4 32 384 510 14243-14280 208

embedding degree k is always composite. Kim–Barbulescu extended TNFS applies well
and we rather set

10000 ≤ 384ρk ≤ 14336 .

we scan the curve families of the taxonomy paper plus the newer ones listed in 1.2 (Fotiadis–
Martindale, Scott–Guillevic) and obtain these bounds. We provide a Sagemath script to
reproduce this result. For RSA keysizes at the 192-bit security level, a modulus of 7680
bits is required according to NIST, while Lenstra Updated corresponds to 12548 bits2. For
k = 15, the work [Gui20] already considered BLS15 and stated that p of 928 bits offers
192 bits of security. Such p is very large and we do not include it in our analysis. However
we can take k = 15 and ρ = 2 as in [FK19]. The parameters are p of 768 bits, r of 384
bits and the security level is about 192 bits, for pk of about 11520 bits. the paper [Gui20]
already established that there is no curve family whose embedding degree is larger than 28
but whose ρ-value is small enough to satisfy 384ρk ≤ 14336, hence k ≤ 28.

2.6 Security Analysis: TNFS and its variants

In [BD19], Barbulescu and Duquesne further investigated the consequences of the extended
Tower NFS algorithm of Kim et al. [KB16], after a first analysis in [MSS16]. In particular,
they simulated worst-case scenarii from a cryptographer perspective to obtain key-size

2https://www.keylength.com/en/compare/

Table 3: Seeds at the 192-bit security level from [GS21, Tables 3, 4, 7].

k curve r, bits p, bits pk, bits seed u Fpk sec
12 BN 1022 1022 12255 −2254 + 233 + 26 191
12 BLS12 768 1150 13799 −2192 + 2188 − 2115 − 2110 − 244 − 1 193
16 KSS16 605 766 12255 278 − 276 − 228 + 214 + 27 + 1 194
18 KSS18 474 638 11477 280 + 277 + 276 − 261 − 253 − 214 193
24 BLS24 409 509 12202 −251 − 228 + 211 − 1 [CLN11] 193

https://www.keylength.com/en/compare/
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Table 4: Choices of parameters in [BD19, GS21].

parameter Barbulescu–Duquesne [BD19] Guillevic–Singh [GS21]
csieve cost of sieving, per relation 1 log logB
clinalg factor of lin. algebra 1/4 ⌈log2 ℓ/64⌉
cfilter filtering factor log2 B 20
cdensity matrix’ weight per row 128 200
A automorphisms k/ gcd(deg h, k/ deg h) aut(h) aut(f, g)

recommendations. We recall their formula [BD19, Eq. (2)]:

cost = csieve
1
A

# required relations
smoothness probability + clin. algebracdensity

# required relations
A · filtering ratio

= 2B
A logBρD

(
avrg log2 Nf

log2 B

)−1
ρD

(
avrg log2 Ng

log2 B

)−1
+ 1

427
(

2B
A logB log2 B

)2

where ρD is Dickman’s ρ function. Inside the relation collection model of cost, [BD19]
assumes that the duplicates due to the roots of unity can be avoided for free in the relation
collection, hence a number of obtained relations in a sieving space of dimension 2 deg h
and samples whose coefficients are bounded by A of

(2A+ 1)2 degh

2w ρD

(
avrg log2 Nf

log2 B

)
ρD

(
avrg log2 Ng

log2 B

)
≥ 2B

logB .

Guillevic and Singh propose a slightly different model of cost in [GS21] where they evaluate
the smoothness bias of the norms in TNFS. For that they need practical curve parameters
and polynomials. Their experiments are given as a Sagemath implementation. One requires

(2A+ 1)2 degh

2w
1

ζKh
(2)avrgρD

(
logNf + α(f, h)

logB

)
ρD

(
logNg + α(g, h)

logB

)
≥ 2LogIntegral(B)

and

cost = (2A+ 1)2 degh

2A csieve + clinalgcdensity

(
2LogIntegral(B)

cfilter

)2

We summarize in Table 2.6 the different choices. In [GS21], the cost of linear algebra is
modeled as the number of 64-bit machine word limbs of ℓ: ⌈log2 ℓ/64⌉ times the weight
per row, times the matrix size squared.

We incorporated the assumptions of [BD19] in the Sagemath simulator of [GS21] so
that we can give the two estimates with the same simulation tool.

3 Pairings at 192-bit security
3.1 Selection of pairing-friendly curves
Our selection of pairing-friendly curves for 192-bit security follows the same strategy as the
case of 128-bit security (e.g., see the recent study in [Gui20]). More concretely, the choice
of elliptic curves that will be included in our analysis is based on the following criteria:

C1. Use elliptic curves that admit high degree twists d ∈ {3, 4, 6}.
C2. Focus on pairing-friendly elliptic curves with embedding degree 15 ≤ k ≤ 28.
C3. The selected curves should be TNFS-resistant.
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C4. Consider pairing-friendly curves with ρ = log p/ log r up to 2.
C5. Apply and implement the optimal ate pairing.
C6. Identify efficient candidate curves, based on additional pairing-related operations,

beyond the pairing computation itself.

We choose to implement the optimal ate pairing for our selected curves, since the
state-of-the-art for 128-bit security suggests that this is the most efficient pairing type.
The curves that we consider admit high degree twists i.e., they have j-invariant 1728
(4 | k) or j-invariant 0 (3 or 6 | k). The use of high-degree twists is crucial for ensuring
fast optimal ate pairing instances [CLN10]. We note that extending the fastest curve
options in 128-bit security (e.g., BLS12 and BN curves) to the 192-bit setting is not the
optimal choice, since this would require the size of the base field prime p to be larger than
1000 bits [Gui21]. The security of the selected curves should be evaluated taking into
consideration the progress on the TNFS attacks targeting the DLP in extension fields of
composite degree [KB16]. In particular, the security of our selected curves is evaluated
using the STNFS software simulator3 of Guillevic and Singh [GS21].

Furthermore, although the initial requirement for pairing-friendly curves was to look
for ρ ≈ 1 [FST10], sometimes curves with larger ρ can be beneficial. In particular, given a
pairing-friendly family of curves with fixed and composite embedding degree k, increasing
the size of the base field prime p to counter the TNFS attacks results in the increase of the
size of the prime r defining the prime order subgroup of E(Fp) and hence an increase of the
length of the Miller loop. Alternatively, one can choose a pairing-friendly family of curves
for the same k with larger ρ, so that the size of p is increased without affecting the size of
r. Therefore, in our study we include curves with ρ-value up to 2. Such curve instances
at 192-bit security with ρ = 2 are studied in [FK19]. In addition, we point out that our
results on optimal pairing-friendly curves for 192-bit security depend not only on the fast
pairing implementation, but also on efficient exponentiation in the three pairing-groups
G1,G2,GT , hashing to G1,G2, cofactor clearing and subgroup membership testing in
G1,G2,GT . Hence, in our quest for the most efficient pairing candidates at 192-bit security,
we include an analysis on the efficiency of these additional pairing functionalities.

Based on these criteria we identified the most promising candidate families of pairing-
friendly elliptic curves in the literature which can result in efficient pairing-related operations
at 192-bit security. In particular, we have concluded to the following families:

• Kachisa–Schaefer–Scott (KSS) [KSS08]. Families KSS16 and KSS18 for embedding
degrees 16 and 18 respectively.

• Freeman–Scott–Teske (FST) [FST10]. We follow Construction 6.4 in [FST10] for
families with k = 20 and k = 28 and we refer to these families as FST20 and FST28.

• Barreto–Lynn–Scott [BLS03]. Families BLS12, BLS15, BLS21, BLS24, BLS27, for
embedding degrees 12, 15, 21, 24 and 27. Family BLS12 does not comply with the
embedding degree selection criteria (C2). However, we include this family to justify
our earlier claim that although BLS12 is the most efficient choice for 128-bit security,
increasing the size of p to reach 192-bit security is not the optimal strategy to follow.
In addition, we include BLS15 to compare to FM15.

• Fotiadis–Martindale [FM19]. Families FM15, FM16, FM18 and FM20, for embedding
degrees 15, 16, 18 and 20. These correspond to the families with number #21, #23,
#25 and #27 in [FM19, Table 2]. We note that family FM20 coincides with FST20.

• Scott–Guillevic [SG18]. Families SG18 and SG20 for embedding degrees 18 and 20.
These types of families are also known as Aurifeuillean and they are constructed
following the method of Scott and Guillevic [SG18].

• Gasnier–Guillevic [GG23]. Families GG20b and GG28 for k = 20 and k = 28. As
mentioned in [GG23], although they don’t improve the ρ-value compared to FST10

3Simulation tool in SageMath under MIT license: https://gitlab.inria.fr/tnfs-alpha/alpha

https://gitlab.inria.fr/tnfs-alpha/alpha
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Table 5: Curves of embedding degree 15 to 28 with a high degree twist d ∈ {3, 4, 6} and
such that the curve E(Fp) offers at least 192 bits of security.

k curve seed (a, b) p mod k log p log r ρ log pk secu/ref
12 BLS12 −(2192 − 2188 + 2115 + 2110 + 244 + 1) (0, 1) 7 1150 768 1.50 13800 193 [Gui20]

15 BLS15 274 + 273 + 262 + 259 + 26 (0, −2) 1 894 597 1.50 13410 190
FM15 247 + 246 + 234 + 214 + 213 + 211 (0, 1) 1 762 381 2.00 11430 191

16
KSS16 278 − 276 − 228 + 214 + 27 + 1 (1, 0) 13 766 605 1.25 12255 194 [GS21]
FM16 248 − 244 − 238 + 231 (1, 0) 1 765 384 2.00 12232 196
AFG16 248 − 228 − 225 + 22 (1, 0) 1 766 384 2.00 12256 196

18

KSS18 280 + 277 + 276 − 261 − 253 − 214 (0, 6) 7 638 474 1.33 11477 193 [GS21]
SG18 −(263 + 254 + 216) (0, 15) 7 638 383 1.66 11484 187
SG18 266 + 260 + 243 + 23 (0, 17) 1 669 401 1.66 12027 191
SG18 270 − 268 − 254 + 228 (0, 23) 1 704 423 1.66 12668 194
FM18 −264 + 233 + 230 + 220 + 1 (0, 5) 7 768 384 2.00 13824 197

20

FM20/FST20 −248 + 222 − 215 − 1 (29, 0) 1 574 384 1.50 11480 182
FM20/FST20 −253 − 249 + 210 + 1 (1, 0) 1 636 425 1.50 12701 189
FM20/FST20 −256 + 244 + 1 (1, 0) 1 670 448 1.50 13400 193
SG20 −247 − 245 + 215 + 213 (1, 0) 1 670 383 1.75 13391 203
GG20b 249 + 246 − 241 + 235 + 230 − 1 (2, 0) 1 575 379 1.52 11499 196

24
BLS24 −251 − 228 + 211 − 1 (0, 1) 19 509 409 1.25 12202 193 [GS21]
BLS24 −251 + 249 + 244 + 235 + 1 (0, 1) 1 505 405 1.25 12099 193
BLS24 251 + 244 + 241 − 237 + 1 (0, 1) 1 509 409 1.25 12205 193

21 BLS21 −232 + 225 + 26 + 2 (0, 16) 1 511 384 1.33 10715 199

27 BLS27 −221 − 219 − 215 + 210 + 24 + 22 + 1 (0, 1) 19 426 383 1.11 11481 212
BLS27 221 + 219 + 217 − 211 + 25 − 23 (0, −2) 7 427 384 1.11 11509 212

28 FST28 232 − 225 + 222 + 215 + 1 (1, 0) 1 510 384 1.33 14276 208
GG28 −232 − 228 + 219 + 29 − 23 − 1 (9, 0) 1 500 381 1.31 13983 223

and FST28, they are more resistant to the TNFS attack.

FM15, FM16 and FM18 families have ρ = 2. In Section 3.4 we compare these families
with others which have smaller ρ for the same embedding degree. Furthermore, for
completeness we also considered the case k = 22 and specifically the families of Freeman–
Scott–Teske obtained by Constructions 6.3 and 6.4 (FST22 (6.3), FST22 (6.6)) and the
family of Gasnier–Guillevic (GG22). Such examples of pairings do not follow the selection
criterion (C1), since such elliptic curves have only quadratic twists, and they don’t seem
to be competitive to pairings on elliptic curves that admit high degree twists. However,
because we already have SageMath implementations of these curves and in order to justify
that indeed they are not competitive, we include these examples in Appendix A (see
Table 18). As we were finalizing our paper, Lin, Zhao and Zheng posted [LZZ24] on ePrint,
on implementing k = 22 D = 7 GG curves, investigating the strategy of super-optimal
pairings [FAGA23]. In addition to the aforementioned families of pairing-friendly elliptic
curves, we also include the following family for embedding degree 16 and ρ = 2 in our
analysis.

Family 1 (Aranha-Fotiadis-Guillevic (AFG16)). The following polynomials p(x), t(x), r(x) ∈
Q[x], where:

p(x) = (x16 + 2x13 + x10 + 5x8 + 6x5 + x2 + 4)/4
t(x) = r(x) + x5 + 1 = x8 + x5 + 2
r(x) = Φ16(x) = x8 + 1

define a polynomial family of pairing-friendly elliptic curves with embedding degree k = 16,
CM discriminant D = 1 and ρ = 2. The order of the curve in parametric form is
#E(Fp) = h(x)r(x), where h(x) = (x(x3 + 1)/2)2. The family is integer-valued for all
u ∈ Z. The polynomial r evaluated at integers of the form 2u is odd, and is even at integers
of the form 2u+ 1, for u ∈ Z.

The above family of elliptic curves is similar to the one proposed in [FK19, Table 5]
for k = 16. The difference is that the cofactor h(x) is a perfect square and

√
h(x) divides
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Table 6: Optimal ate Miller loop formulas. The Miller functions fu,Q and lines ℓQ,R are
evaluated at the point P ∈ G1.

k curve Equation (1) Optimal ate formula
12 BLS12 u− p ≡ 0 mod r fu,Q(P )

15 BLS15 u− p ≡ 0 mod r fu,Q(P )
FM15 u− p4 ≡ 0 mod r fu,Q(P )

16
KSS16 2 + up3 + p4 ≡ 0 mod r

[
fu,Q(P ) · ℓ[u]Q,π(Q)(P )

]p3

· ℓQ,Q(P )
FM16 u− p ≡ 0 mod r fu,Q(P )
AFG16 u+ p5 ≡ 0 mod r fu,Q(P )

18
KSS18 1 + up2 + 2p3 ≡ 0 mod r fu,Q(P ) · f2,Q(P )p · ℓ[u]Q,π([2]Q)(P )
SG18 u+ p2 + up3 ≡ 0 mod r [fu,Q(P )]1+p3

· ℓ[u]Q,π2(Q)(P )
FM18 1 + up2 ≡ 0 mod r fu,Q(P )

20
FM20/FST20 u− p ≡ 0 mod r fu,Q(P )
SG20 2u+ p2 + p7 ≡ 0 mod r f2u,Q(P ) · ℓ[2u]Q,π2(Q)(P )
GG20b u− p− 2p6 ≡ 0 mod r fu,Q(P ) · f2,π6(−Q)(P ) · ℓ[u]Q,−π(Q)(P )

21 BLS21 u− p ≡ 0 mod r fu,Q(P )
24 BLS24 u− p ≡ 0 mod r fu,Q(P )
27 BLS27 u− p ≡ 0 mod r fu,Q(P )

28 FST28 u− p ≡ 0 mod r fu,Q(P )
GG28 u− p− 2p8 ≡ 0 mod r fu,Q(P )f2,−π8(Q)(P )ℓ−2π8(Q),−π(Q)(P )

p(x)− 1, hence the trick of Wahby and Boneh [WB19] for fast cofactor clearing applies.
That is, in order to fix a point P on the curve to have order r, one needs to multiply with
the scalar u(u3 + 1) instead of h(u), which can potentially be more efficient compared to
other candidates of the same embedding degree. We refer to the new family as AFG16.

The seeds that we have chosen for instantiating these families are given in Table 5.
We searched for seed with minimal Hamming weight, which would give curves with either
a = 0 or a = 1 and p ≡ 1 (mod 3) for fast hashing, and a nice towering of extensions with
only small non-residues. For some families multiple seeds are reported, however we choose
the ones highlighted in grey for our theoretical comparison, as well as for our benchmarking
in Section 5. The resulting curves offer security level of at least 192-bit with respect to
the TNFS attacks, except for the ones highlighted in red which offer slightly less. The
seed 248 + 228 + 226 for FM16 [FM19] does not give machine-word aligned parameters: p
is 767-bit long but r is 385-bit long, this overflows the 384-bit standard size. We replace it
with 248 − 244 − 238 + 231 which has heavier Hamming weight but whose r fits in 384 bits.
The seed −(264 + 235 − 211 + 1) for FM18 does not give machine-word aligned parameters,
we replace it with −264 + 233 + 230 + 220 + 1. The seed for KSS16 from [GS21] (see Table 3)
does not fulfill all criteria for fast hashing (see 4.2) and we replace it with a new one. For
BLS24, we consider the seed given in [GS21] which dates back to [CLN11] and we give
two new ones well-suited for SNARK, with a high 2-valuation of p− 1 and r − 1.

3.2 Pairing Computation: Miller Loop
As stated earlier, for all curves given in Table 5 we apply the optimal ate pairing, introduced
by Vercauteren [Ver10], following our selection criterion (C5). In Table 6 we give the form
of Equation (1), as well as the corresponding optimal ate pairing formulas, for all families
of pairing-friendly elliptic curves considered in Table 5. These formulas are simplified
using the properties described in Section 2. We note that for some curves, there exist
alternative choices for the short vectors, which however do not offer any advantage in
terms of efficiency compared to the ones that we have chosen.
Remark 1 (Concerning BLS curves with odd embedding degrees k = 3 mod 6, examples
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Table 7: Miller loop cost in Weierstrass model from [CSB05, CLN10].

k curve Dbl step, tangent line
Add step, chord line

sparse-sparse-mk

full-sparse-mk
reference

2 | k y2 = x3 + ax+ b
quadratic twist

5mk/2 + 6sk/2 + km
10mk/2 + 3sk/2

mk

mk
[CSB05]

2 | k y2 = x3 − 3x+ b
quadratic twist

6mk/2 + 4sk/2 + km
10mk/2 + 3sk/2

mk

mk
[CSB05]

2 | k y2 = x3 + b
quadratic twist

2mk/2 + 7sk/2 + km
10mk/2 + 2sk/2 + km

mk

mk
[CLN10, §5,Tab.3]

2 | k y2 = x3 + ax
quadratic twist

2mk/2 + 8sk/2 + km
9mk/2 + 5sk/2 + km

mk

mk
[CLN10, §4,Tab.3]

3 | k y2 = x3 + b
cubic twist

6mk/3 + 7sk/3 + km + mb

13mk/3 + 5sk/3 + km
mk

mk
[CLN10, §6]

6 | k y2 = x3 + b
sextic twist

2mk/6 + 7sk/6 + (k/3)m
10mk/6 + 2sk/6 + (k/3)m

6mk/6
13mk/6

[CLN10, §5]

6 | k y2 = x3 + b
sextic twist

3mk/6 + 6sk/6 + (k/3)m
11mk/6 + 2sk/6 + (k/3)m

6mk/6
13mk/6

[AKL+11, §4,6]

4 | k y2 = x3 + ax
quartic twist

2mk/4 + 8sk/4 + (k/2)m
9mk/4 + 5sk/4 + (k/2)m

6mk/4
8mk/4

[CLN10, §4]

are BLS15, BLS21, and BLS27 in Table 6). For these curves, the verticals are not in a
subfield and there is no easy denominator elimination as for even embedding degrees.
Nevertheless the optimal ate Miller loop simplifies to fu,Q(P ). One starts expanding the
Miller loop of length u− p: fu−p,Q(P ) = fu,Q(P )f−p,Q(P )ℓuQ,−[p]Q(P ). Now observe that
f−p,Q(P ) = f−1

p,Q(P )/v[p]Q(P ) with a vertical at [p]Q evaluated at P . Also the line through
[u]Q and −[p]Q is a vertical since [u − p]Q = O. Finally 1/v[p]Q(P ) and ℓ[u]Q,−[p]Q(P )
cancel themselves, and fp,Q(P ) is a pairing and can be taken out. The final formula is
indeed fu,Q(P ) like for BLS curves of even embedding degrees.

In Table 7 we report the cost for the different elliptic curve operations that are relevant
to the pairing computation and especially the Miller loop. Specifically, we include the cost
for computing the point addition and point doubling (column 3), as well as the cost of
the line computation (column 3) and result accumulation (column 4) that occur in the
Miller loop. The elliptic curve model that we have considered is the Weierstrass model,
where points are represented in the projective coordinate system, following the works of
Chatterjee, Sarkar, Barua [CSB05] and Costello, Lange, Naehrig [CLN10]. In addition,
these costs refer to elliptic curves admitting degree 2, 3, 4 and 6 twists. In Table 10 we
denote by mi and si the multiplication and squaring, respectively, in the finite field Fpi ,
for i > 1 and by m we denote multiplication over the base field Fp.

In column 4 of Table 7 we report the cost in terms of Fp multiplications for computing
a product of two elements in Fqd , where q = pk/d and d ∈ {2, 3, 4, 6} is the degree of the
twist. More concretely, we write a, b ∈ Fqd , such that:

a =
d−1∑
i=0

aiw
i and b =

d−1∑
i=0

biw
i,

where ai, bi ∈ Fq and w is the generator of the degree d extension Fqd of Fq. The term
sparse-sparse-mk refers to the case where in the representations of a and b, some
of the coefficients ai and bi are zero (sparse representation), while on the other hand,
full-sparse-mk is the case where one of the two representations is sparse. Such types
of Fqd-multiplications appear when updating the Miller function after the doubling and
addition steps in the Miller loop when sextic or quartic twists are applied. Note that when
quadratic or cubic twists are employed, the sparse-sparse-mk and full-sparse-mk

multiplications are equivalent to an mk multiplication, as reported in Table 7.
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Table 8: Exponents for the final exponentiation, easy and hard parts.

k final exp. easy part final exp. hard part
12 (p6 − 1)(p2 + 1) (p4 − p2 + 1)/r
15 (p5 − 1)(p2 + p+ 1) (p8 − p7 + p5 − p4 + p3 − p+ 1)/r
16 p8 − 1 (p8 + 1)/r
18 (p9 − 1)(p3 + 1) (p6 − p3 + 1)/r
20 (p10 − 1)(p2 + 1) (p8 − p6 + p4 − p2 + 1)/r
21 (p7 − 1)(p2 + p+ 1) (p12 − p11 + p9 − p8 + p6 − p4 + p3 − p+ 1)/r
24 (p12 − 1)(p4 + 1) (p8 − p4 + 1)/r
27 p9 − 1 (p18 + p9 + 1)/r
28 (p14 − 1)(p2 + 1) (p12 − p10 + p8 − p6 + p4 − p2 + 1)/r

3.3 Pairing Computation: Final Exponentiation
Table 8 shows the formulas for the easy and hard parts of the final exponentiation for
each embedding degree we consider in this paper. The computation of the easy part
is straightforward, while for the hard part we follow the state of the art approaches to
obtain an optimized formula for the final exponentiation in the examples that we present
here. That is, according to [HHT20], there are three distinct techniques for the efficient
computation of the hard part: 1. a base-p expansion to exploit cheap Frobenius powers,
2. a lattice-reduction technique on the exponent in base p to reduce further the size of the
coefficients of the base-p expansion, and 3. a cyclotomic decomposition of the exponent.
The latter technique is better suited when the trace of Frobenius of the curve is represented
as a polynomial of degree one, which is the case for all BLS curves.

In the following we give the formulas for the optimized hard part of the final exponenti-
ation for all families of Table 5. In each case we present the theoretical cost in terms of the
number of required operations. Section 3.3.1 decomposes the hard part exponent Φk(p)/r
with the techniques in [HHT20] while Section 3.3.2 considers lattice reduction [FKR12]
before a fine tuning, resulting in a final exponentiation by a multiple of the hard part
exponent Φk(p)/r.

3.3.1 With Cyclotomic Decomposition

BLS12. The optimal formula [HHT20, §5 p.14] is:

3Φ12(p)
r

= (u− 1)2(p+ u)(p2 + u2 − 1) + 3

with cost: 2 exp(|u− 1|) + 3 exp(|u|) + 5m12 + 1s12 + 2f12 + 1f6.

BLS15. The formula in [HHT20, §5 p.14] is:

3Φ15(p)
r

= (u− 1)2(u2 + u+ 1)
( 7∑
i=0

λip
i

)
+ 3,

where λ7 = 1 and the rest of the λi are defined as follows:

λ6 = uλ7− 1, λ5 = uλ6, λ4 = uλ5 + 1, λ3 = uλ4− 1, λ2 = uλ3 + 1, λ1 = uλ2, λ0 = uλ1− 1.

The cost is: 1 exp(|u−1|)+1 exp(|u3−1|)+7 exp(|u|)+14m15 +1s15 +7f15 +1inv-cyclo15,
where inv-cyclo15 corresponds to cyclotomic inversion in Fp15 and is equivalent to f−1 =
fp

10
fp

5 with cost inv-cyclo15 = f10 + f5 + m15.
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FM16. We obtain the formula:

Φ16(p)
r

=
[
u2

4 (u6 + 1) + 1
]

(p+ u)(p2 + u2)(p4 + u4) + 1

with cost: 13 exp(|u|) + 2 exp(|u|/2) + 6m16 + 3f16(+cj16). We note that the seed u for
this family is always even, in order to produce primes p and r [FM19]. In addition, our
implementation works for negative seeds as well, in which case one conjugation is needed
in the operation count (cj16).

AFG16. We compute this formula for Family 1 for k = 16:

Φ16(p)
r

=
[(

u2

4 (u3 + 1)2 + 1
)(

p5 + u(u3p(1 + up3)− 1)
)

+ up(1 + up3)
]

+ 1

with cost: 2 exp(u/2) + 13 exp(u) + 9m16 + 4f16.

SG18. For the hard part of SG18 we apply the formula of Scott–Guillevic [SG18], namely:

Φ18(p)
r

= (3u2 − 1)2
[
(p2 + 3pu2 + 9u4 + 3u)(1− 3up+ p3)− 3p2

]
+ (1− 3up+ p3)

with total cost: 9 exp(|u|)+14m18 +5s18 +5f18 +3cj18(+cj18). The additional conjugation
is added to include the case of negative seeds.

FM18. Our formula for the hard part of the final exponentiation is the following:

Φ18(p)
r

= (p− u)
[(
u6 + (u− 1)2

3 + 1
)(

p4 + p3u− p− u3(p3u− p− u)
)

+ u(p3u− p− u)
]

+ 1

with cost: 7 exp(|u|)+exp(|u−1|)+exp(|u−1|/3)+2 exp(|u+1|)+13m18+2s18+4f18+4cj18.
We note also that (u− 1)2 ≡ 0 mod 3. Alternatively, one can multiply by 3 the exponent
to avoid a possibly non-sparse (u− 1)/3:

3Φ18(p)
r

= (p− u)
[(

2(2(u6 + 1)− u) + u2 − u6
)(

p4 + p3u− p− u3(p3u− p− u)
)

+ 3u(p3u− p− u)
]

+ 3

with cost: 11 exp(|u|) + 12m18 + 3s18 + 4f18 + 6cj18.

FM20/FST20. The hard part of the final exponentiation for FM20 [FM19, Family #27,
Table 2] is equivalent to FST6.4 [FST10, Construction 6.4] for k = 20. The formula we
considered is:

Φ20(p)
r

= (u− 1)2

4 (u2 + 1)(p+ u)
[
(p2 + u2 − 1)(p4 + u4 + 1)− u2p2

]
+ 1,

with total cost: 2 exp(|u − 1|/2) + 9 exp(|u|) + 8m20 + 1f20 + 2f2 + 1f4 + 2cj20(+1cj20),
where the one additional conjugation is required when the seed is negative.
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BLS21. For this type of curves, we apply [HHT20, Theorem 1] to obtain the following
formula for the hard part of the final exponentiation:

3Φ21(p)
r

= (u− 1)(u3 − 1)
( 11∑
i=0

λip
i

)
+ 3,

where λ11 = 1, λi = uλi+1 + ci and ci is defined as:

ci =

 1, for i = 2, 5, 8
0, for i = 1, 4, 6, 9
−1, for i = 0, 3, 7, 10

with cost: 15 exp(|u|) + 15m21 + s21 + 11f21 + 2inv-cyclo21.

BLS24. The hard part of the final exponentiation is written as [HHT20, §5 p.16]:

3Φ24(p)
r

= (u− 1)2(u+ p)(u2 + p2)(u4 + p4 − 1) + 3

with cost: 2 exp(|u− 1|) + 7 exp(|u|) + 6m24 + s24 + 3f24 + cj24.

BLS27. We apply the formula of Hayashida et al. [HHT20, §5 p.16] for computing the
hard part of the final exponentiation for BLS27. We have:

Φ27(p)
r

= (u− 1)2(p2 + pu+ u2)(p6 + p3u3 + u6)(p9 + u9 + 1) + 3

The total cost is: 2 exp(|u − 1|) + 17 exp(|u|) + 8m27 + s27 +f27 + f2
27 + f3

27 + f6
27 + f9

27
(+3(m + 2f) if u < 0).

FST28. Our optimal formula for the hard part of the final exponentiation is:

Φ28(p)
r

= (u− 1)2

4 (u2 + 1)(p+ u)e+ 1,

where the value e is determined as follows:

e =
(
u2(u2 + p2) + p4

)(
u2
(
u2(u2 − 1) + 1

)
+ p6 − 1

)
+
(

1− p6
)(

(u2 − 1) + p2
)
.

The total cost is: 2 exp(|u−1|/2)+13 exp(|u|)+12m28+1f28+2f2+1f4+2f6+2cj28(+1cj28),
where the extra conjugation appears in the case where the seed is negative.

3.3.2 With Lattice Reduction

FM15. We use the following formula for the hard part in the case of FM15:

3u(u3 − u2 + 1)Φ15(p)
r

=
7∑
i=0

λip
i,

where the λi are defined by the following relations:

λ6 = −3− 3u2 + 2u4 + u5 + 2u6 − 3u8, λ0 = −(u6 − u4 + u3)λ6 + 3u2 + 3u
λ1 = u7λ6 − (3u3 + 3u3 + 3u), λ2 = u3λ6

λ3 = −(u7 + u2 − 1)λ6 + 3u3 + 3u2 + 3u, λ4 = (u7 − u5 − 1)λ6 − (3u3 + 3u2 − 3)
λ5 = u4λ6 − 3, λ7 = −(u4 − u3 + u)λ6 + 3

Then the total cost is: 15 exp(|u|) + 37m15 + 6s15 + 11f15 + 2f5 + 2inv-cyclo15 when u > 0,
while one less multiplication in Fp15 is required for negative seeds.
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KSS18. For the computation of the hard part of the final exponentiation, the most
efficient method is presented in [CHZ22]. We write

3u2

49 ·
Φ18(p)
r

=
5∑
i=0

λip
i

where the λi are defined in terms of the cofactor c = 3h(u)/49 = u2 + 5u+ 7:

λ5 = u2c+ 3, λ4 = −3uλ5 − 49c, λ3 = 2u2λ5 + 35uc,
λ1 = 2λ4 + uλ5, λ0 = 2λ3 + uλ4, λ2 = −uλ0 + 2λ5

The cost for the hard part in this case is: 7 exp(u) + 24m18 + 11s18 + 7f9 + 5f18.

SG20. For the hard part of the final exponentiation for the SG20 family we apply the
lattice reduction to obtain the formula Φ20(p)/r =

∑7
i=0 λip

i. The λi in this representation
are defined as λ6 = uh + 1, λ7 = uy, with y = 2uλ6 − 1, λ0 = −uy′, with y′ = 2uλ7,
λ1 = −uy′′, with y′′ = −2uλ0 and for the rest of the λi we have:

λ4 = λ1 − λ6 − y, λ3 = −λ1 − λ6 + y′′, λ2 = −λ3 + y′ + λ7 − h, λ5 = −λ3 + λ0 − h

The total cost is: 13 exp(|u|) + 19m20 + 6s20 + 7f20 + 7cj20(+cj20), where the additional
conjugation is to account for the case of negative seeds.

3.3.3 Base-p Expansion

KSS16. For the hard part of the KSS16 family we obtained the following formula:

2u7 + 48u3

125 · Φ16(p)
r

= (u3c+ 56)e1 + ce2 − 1540p7,

where c = 2h(u)/125 = u2 + 2u+ 5 and the values e1, e2 are defined as:

e1 = u4p7 + u3(1− 2p4) + u2p(3 + 4p4) + up2(−11 + 2p4) + p3(7 + 24p4)
e2 = 125p2(p4 − 2) + 25up(3p4 + 4) + 5u2(−11p4 + 2)

The total cost for computing the hard part for KSS16 is: 2 exp(u− 1) + 7 exp(u) + 29s16 +
30m16 +10f4 +4f16, improving on the previous best count from [Gha16, §4.3 p.107, Eq.(4.9)
p.114] (also at [GF16]) of 2 exp(u+ 1) + 7 exp(u) + 37s16 + 35m16 + 4f16 + 2f2 + f4.

GG20a and GG20b. For the hard part of the final exponentiation we use the fact that
p8 ≡ (p6−p4 +p2−1) mod r and we set the following values: c = u2−2u+ 5, α± = 2±p5,
β± = 4± 3p5, γ± = 7± 24p5 and δ± = 11± 2p5. Then we obtain the following formula for
the hard part of the GG20a family, where s is a scaling factor coprime to r:

s
Φ20(p)
r

= (u4c+ 328)(−41p2 + upγ− + u2δ− + u3p4β− + u4p3α+ + u5p7)

+ c(625pα− + 125uβ+ + 25u2p4δ+ + 5u3p3γ+ + 38u4p7) + 6724p7

with a total cost: 2 exp(u− 1) + 9 exp(u) + 51s20 + 42m20 + 4f5 + 9f20.
Using the same logic as for GG20a and changing only α± = ±2+p5 and β± = ±4+3p5,

the GG20b final exponent is written as follows, with exactly the same cost as GG20a:

s′ Φ20(p)
r

= (u4c− 328)(−41p2 + upγ+ + u2δ+ + u3p4β+ + u4p3α− + u5p7)

+ c(−625pα+ + 125uβ− + 25u2p4δ− + 5u3p3γ− − 38u4p7) + 6724p7 .
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Table 9: Relative cost of multiplication mk, squaring sk, Frobenius fk, and inversion ik in
finite field extensions assuming p ≡ 1 mod k for fast fk.

k mk sk fk scyclo
k ik − i1

ik, with
i1 = 25m, s = m

1 m s 0 - 0 25m
2 3m 2m 0 2s 2m + 2s 29m
3 6m 2m + 3s [CH07] 2m - 9m + 3s 37m
4 9m 2m2 = 6m 2m 2s2 = 4m 12m + 2s 39m
5 13m 13s [Mon05] 4m - 48m 73m
6 18m 2m2 + 3s2 = 12m 4m 6m [GS10] 34m 59m
7 22m 22s 6m - 104m 129m
8 27m 2m4 = 18m 6m 2s4 = 12m 44m 69m
9 36m 2m3 + 3s3 = 18m + 9s 8m - 69m + 12s 106m

10 39m 2m5 = 26m 8m 2s5 = 26s 74m + 26s 125m
12 54m 2m6 = 36m 10m 6m2 = 18m 97m 119m
15 78m 2m5 + 3s5 = 26m + 39s 14m - 165m + 39s 229m
16 81m 2m8 = 54m 14m 2s8 = 36m 134m 159m
18 108m 2m9 = 72m 16m 6m3 = 36m 232m 257m
20 117m 2m10 = 78m 18m 2s10 = 52m 255m 280m
21 132m 110m 20m - 393m 418m
24 162m 2m12 = 108m 22m 6m4 = 54m 318m 343m
27 216m 153m 26m - 511m 536m
28 198m 132m 26m 88m 437m 462m

GG28. With a strategy similar to GG20, we use the fact that p12 ≡ (p10 − p8 + p6 −
p4 + p2 − 1) mod r and we set the following values: c = u2 − 2u + 5, α± = −2 ± p7,
β± = −4± 3p7, γ = 11p7 + 2, γ = 11 + 2p7, δ = 24 + 7p7, δ = 24p7 + 7, ϵ± = −41± 38p7,
and ζ± = −117± 44p7. Then we obtain the following formula for the hard part, where s
is a scaling factor coprime to r:

s
Φ28(p)
r

= (u6c− 232)e1 + ce2 + 3364p11

where the values e1, e2 are defined as follows:

e1 = −29p4 + up3ζ− + u2p2ϵ+ + u3pδ + u4γ + u5p6β− + u6p5α+ + u7p11

e2 = 56p3α− + 55up2β+ + 54u2pγ + 53u3δ + 52u4p6ϵ− + 5u5p5ζ+ + 278u6p11

The total cost is: 2 exp(u− 1) + 13 exp(u) + 68s28 + 83m28 + 12f7 + 14f28.

3.4 Pairing Computation: Theoretical Comparison
We present a theoretical analysis of the total cost for computing the different pairing
instances of Table 5. More concretely, the usual practice in estimating the cost of a pairing
is to express the Miller loop and the final exponentiation in terms of Fp-multiplications.
Then we aim at presenting a theoretical comparison of the different pairings Table 5,
based on the total number of Fp-multiplications required. This theoretical comparison is
outlined in Table 10 and will serve as the baseline for selecting the most promising pairing
candidates to be included in our benchmark experiments in Section 5.

Such a theoretical comparison necessitates that all operations needed in the Miller loop
and in the final exponentiation are translated to Fp-multiplications. This conversion is
described in Table 9, following the usual estimates, e.g. [GMT20, Table 4] for a recent
presentation. We denote mi, resp. si a multiplication, resp. squaring in Fpi . Furthermore,
we denote fi, scyclo

k and ii the Frobenius p-power, the cyclotomic squaring and inversion
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in Fpi . When it is clear from the context, fj denotes a pj-th power in Fpi . Based on
the theoretical comparison in Table 10, we can extract the most promising curves to be
benchmarked. We discuss the results of Table 10 and justify our selections of pairing-friendly
curves to be benchmarked.
Remark 2 (Inversions in extension fields). For inversions in Fpk , we use the classical
formula:

x−1 = xp+p2+...+pk−1

x1+p+...+pk−1 ,

where the denominator is the norm NormF
pk/Fp

(x) in Fp. It costs the computation of the
numerator with Frobenius powers and multiplications in Fpk , the denominator computation
knowing that it is in Fp, one inversion in Fp, and a coefficient-wise multiplication. One can
factor the exponent to minimize the multiplications. For Fp5 : p+p2+p3+p4 = p(p+1)(p2+1)
and the numerator costs 3f5 + 2m5 = 38m. The denominator costs 5m. The total cost is
48m+i. For Fp7 see [Mas20, page ix]: 104m+i. p+p2+p3+p4+p5+p6 = p(p3+1)(1+p+p2)
and the numerator costs 4f7 + 3m7 = 90m. The denominator costs 7m + i. The result
costs 7 more m. Finally i7 = 104m + i.

In Table 10 we observe that of all curve instances, BLS12-1150 requires the smallest
number of Fp-multiplications, however the base field prime p is 1150-bit long. At this
point it is not clear how BLS12-1150 compares to the other candidate curves, however
this will become apparent in Section 5 where we discuss the benchmarking results. We
now compare the curves of same embedding degree. For k = 15, FM15-762 clearly offers a
more efficient pairing computation than its competitor BLS15-894 as it requires much less
Fp-multiplications and operates over a much smaller prime field. Recall also that FM15-762
has ρ = 2, while BLS15-894 has ρ = 1.5 showing that in this case, a larger ρ offers better
performances. However, we exclude both curves from our benchmark comparison, since
both curves are not competitive to other embedding degrees.

For k = 16, all three curves KSS16-766, FM16-765 and AFG16-766 are defined over a
prime field of almost the same size. The difference in the three families is that FM16-765
and AFG16-766 have ρ = 2, while on the contrary, KSS16-766 has ρ ≈ 1.25. Both
FM16-765 and AFG16-766 require almost the same number of Fp-multiplications, which is
approximately 20% less than the case of KSS16-766. This justifies our earlier claim that
for some embedding degrees, having a larger ρ is beneficial, improving the total pairing
computation. We include all three curves for k = 16 to verify that the 20% improvement of
FM16-765 and AFG16-766 over KSS16-766 is also captured in the benchmarking results.

In the case of k = 18, the curves KSS18-638 and SG18-638 operate on a smaller prime
field compared to FM18-768. In this case, the theoretical analysis shows that SG18-638
requires less Fp-multiplications for the pairing computation than the two competitors
KSS18-638 and FM18-768 and in particular, it requires 15% less Fp-multiplications than
KSS18-638. In Section 5 we benchmark all three curves to have more conclusive evidence
on their actual performance.

In the case of k = 20 the theoretical analysis is less inconclusive as to which curve is the
best option for this embedding degree. Note that FM20/FST20-670 and SG20-670 operate
on a prime field of the same size and require comparable number of Fp-multiplications, with
FM20/FST20-670 having a slight advantage (approximately 3% less Fp-multiplications).
On the other hand, although GG20b-575 requires 5879m more compared to FM20/FST20-
670, the prime field size is significantly smaller in the case of GG20b-575. Nevertheless, we
do not provide benchmarks for these curves, since they are certainly not competitive to
other candidates for different embedding degrees. Note that these curves admit degree 4
twists, forcing elliptic curve point operations in the Miller loop to be executed over Fp5 .

The curves BLS21-511, BLS24-509, BLS27-426, FST28-510 and GG28-500 offer the
smallest primes p, compared to the previous candidate curves. Of these five curves,
BLS24-509 is the most promising since it admits degree 6 twists and hence point additions
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Table 10: Optimal ate pairing and final exponentiation cost estimates in terms of finite
field multiplications. The name of each curve is derived from the name of the corresponding
family in Table 5, plus the size of the prime p.

Curve name r Miller loop final exp (m) pairing
bits opt. ate (m) easy hard total total (m)

BLS12-1150 768 19288 245 14176 14421 33709
BLS15-894 597 25259 501 58014 58515 83774
FM15-762 381 16731 501 55321 55822 72553
KSS16-766 605 16784 240 32826 33066 49850
FM16-765 384 10020 255 30024 30279 40299
AFG16-766 384 10020 255 30282 30537 40557
KSS18-638 474 17433 480 27008 27488 44921
SG18-638 383 13351 480 24308 24788 38139
FM18-768 384 13410 464 33184 33648 47058
FM/FST20-670 448 18416 507 35276 35783 54199
SG20-670 383 16427 507 39152 39659 56086
GG20b-575 379 17554 507 42017 42524 60078
BLS24-509 409 15345 658 24310 24968 40313
BLS21-511 384 19321 717 62426 63143 82464
BLS27-426 383 22.212 1185 88.438 89.907 112.119
FST28-510 384 18940 859 56080 56939 75879
GG28-500 381 20326 859 78474 79333 99659

and doublings in the Miller loop are executed over Fp3 . In BLS21-511, FST28-510 and
GG28-500 additions and doublings are executed over Fp7 , while in the case of BLS27-426
over Fp9 . Furthermore, Table 10 shows that BLS21-511, FST28-510 and GG28-500 require
almost 2× more Fp-multiplications than BLS24-509 and BLS27-426 requires almost 3×
more Fp-multiplications than BLS24-509. Therefore, of these five curves we only benchmark
BLS24-509.

To summarize, the curves that we have chosen to include in our optimized implemen-
tation step are, BLS12-1150, KSS16-766, FM16-765, AFG16-766, KSS18-638, SG18-638,
FM18-768 and BLS24-509.

Normalized arithmetic cost. We compared the estimated cost of the Miller loop
and final exponentiation in Table 10. However when the base field size is different, the
comparison is not always obvious. For example, how do the j = 1728 curve families
compare to each other in terms of Miller loop? Assuming an architecture with limbs of 64
bits, the fields need 12, 11, 9, and 8 machine-words for 768, 672, 576, and 512 bits resp. We
apply the methodology from Aranha et al. [AFK+13, Sect. 8]. Elements of Fp are assumed
to be represented with ℓ = 1 + ⌊log2 p⌋ bits, packed in w = ⌈ℓ/64⌉ 64-bit machine-words.
If the Montgomery representation is implemented, a multiplication with reduction in
Fp has complexity O(2w2 + w). The authors deduce that one can estimate the ratio
m640 = 210/136 = 1.544m512 (for 10w). In the same way, we estimate m576 = 171/136 =
1.257m512 (for 9w), m704 = 253/136 = 1.860m512 (for 11w), m768 = 300/136 = 2.205m512
(for 12w). We finally obtain Table 11 and Figure 1.

4 Other pairing operations
In this section, we collect notes about how to implement other operations in pairing groups.
We start by briefly surveying scalar multiplications and exponentiation algorithms, with
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Table 11: Optimal ate pairing and final exponentiation cost estimates in terms of finite field
multiplications, normalized w.r.t. a multiplication in Fp of 512 bits (m = m512), with the
ratios m448 = 0.772m, m576 = 1.257m, m640 = 1.544m, m704 = 1.860m, m768 = 2.205m,
m896 = 2.986m, m1152 = 4.897m.

Curve name r Miller loop final exp (m512) pairing
bits opt. ate (m512) easy hard total total (m512)

BLS12-1150 768 94455 1200 69421 70621 165075
BLS15-894 597 75406 1496 173189 174685 250091
FM15-762 381 36907 1106 122032 123137 160044
KSS16-766 605 37024 530 72411 72940 109964
FM16-765 384 22103 563 66230 66792 88895
AFG16-766 384 22103 563 66799 67362 89464

KSS18-638 474 26919 742 41704 42445 69364
SG18-638 383 20616 742 37535 38276 58892
FM18-768 384 29581 1024 73200 74224 103805

FST20-670 448 34260 944 65624 66567 100827
SG20-670 383 30560 944 72835 73778 104337
GG20b-575 379 22072 638 52831 53468 75540
BLS21-511 384 19321 717 62426 63143 82464
BLS24-509 409 15345 658 24310 24968 40313
BLS27-426 383 17149 915 68280 69414 86563
FST28-510 384 18940 859 56080 56939 75879
GG28-500 381 20326 859 78474 79333 99659
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Figure 1: Estimates of Miller loop in terms of normalized multiplications in Fp of 512 bits.
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their constant-time counterparts. We then continue by giving closed formulas for hashing
and cofactor-clearing according to the latest state-of-the-art, and finish by enumerating
techniques for subgroup membership testing.

4.1 Scalar multiplication and exponentiation in pairing groups
Pairing-friendly curves are typically equipped with additional efficient endomorphisms, such
that the widely known Gallant-Lambert-Vanstone (GLV) [GLV01] and Galbraith-Lin-Scott
(GLS) [GLS11] scalar multiplication and exponentiation algorithms are the most efficient.

Endomorphisms on G1 and GLV. All the curves we consider have either D = 1 and
j-invariant 1728, or D = 3 and j-invariant 0. The curves of j-invariant 1728 (e.g. KSS16)
have an endomorphism ϕ of the form (x, y) 7→ (−x, iy) where i2 = −1 ∈ Fp as p ≡ 1 mod 4,
of characteristic polynomial χϕ(X) = X2 + 1. The curves of j-invariant 0 (e.g. KSS18,
BLS) have an endomorphism ϕ of the form (x, y) 7→ (ωx, y) where ω is a primitive third
root of unity in Fp, ω2 + ω + 1 = 0 mod p, as p ≡ 1 mod 3, of characteristic polynomial
χϕ(X) = X2 + X + 1. In the case of G1, it is well-known that the GLV technique can
be used together with the endomorphism ϕ to decompose a scalar ℓ ∈ Zr into half-sized
subscalars (ℓ0, ℓ1) such that ℓ ≡ ℓ0 +ℓ1λϕ mod r, with λϕ ∈ Zr the eigenvalue of the ϕ map.
The scalar multiplication can then proceed through the formula [ℓ]P = ℓ0P + ℓ1ϕ(P ), for
P ∈ G1. A widely used algorithm to compute scalar multiplication combines the w-NAF
scalar recoding algorithm and interleaving of the two smaller scalar multiplications to save
point doublings. Because applying ϕ is very efficient in our pairing-friendly curves, we
can compute a single precomputation table with 2w−2 points for P and apply ϕ to points
obtained from the table. Constant-time versions of the algorithm typically replace the
recoding process with a regular w-NAF expansion [JT09], which increases the density of
non-zero digits from 1

w+1 to 1
w−1 and force secure table lookups to prevent leaking what

points from the table are being used in the main loop [OLAR13]. From the point of view
of efficiency, this approach compares favorably to alternatives [FLS15], by computing fewer
point additions at the same cost in precomputed storage.

Endomorphisms on G2 and GT , and GLS. In the case of G2 and GT , the GLS
technique is used instead, assuming again that an efficient endomorphism is available.
For G2, the map ψ is constructed as (τ−1 ◦ π ◦ τ), where τ is the twisting isomorphism
τ : E′(Fpk/d) → E(Fpk ) and π is the Frobenius map over E(Fpk ). This endomorphism
ψ has characteristic polynomial X2 − tX + p. It is well-known that ψ has eigenvalue
p ≡ t− 1 mod r on G2, by definition of G2 = ker(π − [p]) [HSV06, GS08, DLZZ23]. For
GT , we choose ϕ as a small multiple or power of the Frobenius πp in Fpk . In both
cases (G2 and GT ), we can represent the scalar or exponent in base p (the eigenvalue)
by decomposing it in φ(k) subscalars, where φ is Euler’s totient function, such that
ℓ ≡

∑
0≤i<φ(k) ℓip

i mod r. We can then use the Frobenius map to evaluate a scalar
multiplication in G2 as [ℓ]Q =

∑
0≤i<φ(k) [ℓi]ψi(Q) in interleaved w-NAF fashion, or the

analogue in GT after translating to multiplicative notation. The endomorphisms ψ in
G2 and πp GT are quite efficient to evaluate, but it is typical to precompute the various
tables over ψi(Q) to avoid the cost of applying ψi dynamically in succession. The same
notes about constant-time implementation apply, noting that the endomorphisms are more
expensive to evaluate than in the case of G1 and now there are φ(k) subscalars involved.

One simple implementation trick is useful when supporting multiple pairing-friendly
curves simultaneously. Decomposing the scalar into base p can be performed by finding a
suitable relationship between the prime subgroup order r, the curve generation seed u and
the prime modulus p, such that we can exploit the fact that p and u are related modulo
r to decompose in base u instead. After writing the seed u as an expression involving
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a few powers of p for all curves, then we can decompose scalar ℓ in base u instead, and
perform the scalar recoding with successive (constant-time) integer divisions. Many suitable
relationships come directly from the Optimal ate formulas in Table 6, but some require
further algebraic manipulation. For AFG16 curves, we exploit u ≡ −p5 mod r, to define
ψ as the inverse p5-power Frobenius. For KSS16 curves, we exploit u ≡ (2p5 − p) mod r
instead. For KSS18 curves, we exploit u = (p3 − 3)p mod r, and for FM18 curves we
exploit u ≡ (p4− p) mod r. For SG18 curves, we exploit −3u = (2p2− p5) mod r to recode
in base 3u and define ψ as the (p5 − 2p2)-power Frobenius, while noting that inversion in
both G2 and GT can be efficiently computed.

4.2 Hashing to pairing source groups
Many cryptographic protocols involve hashing arbitrary bit strings to a group of points in
an elliptic curve. The security requirements are generally the same for an ideal collision-
resistant hash function, such that protocols can rely on the hash function to behave
as closely as possible to a conventional random oracle. This notion is formalized as
indifferentiability to a random oracle, or the infeasibility of differentiating the hash function
from a random oracle [BCI+10] with non-trivial probability, given a polynomially-bounded
number of queries. Given an indifferentiable hash function h bit strings as inputs/outputs,
we can hash to curves by initially constructing a function to hash to a field Fq and
then an encoding function to map field elements to points in the curve, followed by a
scalar multiplication by a cofactor to map the output to the right subgroup. From an
implementation security standpoint, the full process should also be efficient when evaluated
in constant time [WB19, AHST23].

The state-of-the-art approach for indifferentiable hashing to pairing-friendly elliptic
curves is the SwiftEC algorithm [CSRT22] and its generalization [Kos24] to broader classes
of elliptic curves. The former is restricted to curves with q ≡ 1 mod 3, with either odd
order or order divisible by 4, having a = 0 (or j-invariant 0) as a special simpler case.
Koshelev’s generalization expands the constructions to all curves with q ≡ 1 mod 3 with
non-zero j-invariant, which covers our remaining curves with b = 0 (or j-invariant 1728).

Let ℓ = ⌈log2 q⌉ be the bit length required to encode an element from Fq. Function
H : {0, 1}∗ → E(Fq) can be constructed by the composition of functions H = [c] ◦ f ◦
η ◦ h, where h : {0, 1}∗ → {0, 1}2ℓ+1 is a deterministic indifferentiable hash function,
η : {0, 1}2ℓ+1 → F2

q × {0, 1} is an encoding to the field (with an additional sign bit),
f : F2

q×{0, 1} → E(Fq) is an admissible encoding to the group of points (the additional bit
is to choose the y-coordinate), and [c] corresponds to scalar multiplication by the cofactor.
We select h as the message expansion function XMD [FHSS+23] instantiated with SHA256
as the underlying hash function, and elaborate on the other choices below.

Given (t1, t2) ∈ F2
q and a sign bit s, define the constants τ =

√
−3 ∈ Fq and ω = τ−1

2 ,
and respectively the denominators dj and numerators nj for fractions Xi = nj

dj
with

j ∈ {1, 2, 3}:

d1 =− 2τω(t61 + 233τbt31 + 26a3 + 233τt31t22)t1
d2 = d1 · ω
d3 =− 2433(t21 − 22a)2t41t

2
2

n1 = t81 + 22ω2at61 + 233τbt51 + 253τω2abt31 + 26a3t21 + 28ω2a4 + 233τ(ω2t21 + 22a)t31t22
n2 = t81 + 22ωat61 + 233τbt51 + 253τωabt31 + 26a3t21 + 28ωa4 + 233τ(ωt21 + 22a)t31t22
n3 = t12

1 + 243τbt91 + 26(2a3 − 33b2)t61 + 2103τa3bt31 + 212a6

− 233τ(t61 − 223at41 − 243τbt31 − 243a2t21 + 26a3 − 233τt31t22)t31t22.
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When all of the Xj fractions are defined (dj ≠ 0), we select Xj with highest j as
the x-coordinate, such that g(Xj) = X2

j + aXj + b is a quadratic residue, to compute
Y =

√
g(Xj). We then take the additional output bit of η to select one of the square roots,

and the output is (Xj , y). Otherwise, we output the point at infinity O, which happens
only with negligible probability under the assumption that h is indifferentiable from a
random oracle. More formally,

f(t1, t2, s) =

O, if any dj = 0, with j ∈ {1, 2, 3}.

(Xi, (1− 2s)Y ), with i = max
{
j

∣∣∣∣ (g(Xj)
q

)
= 1
}

otherwise.

The baseline cost for computing Xj is one square-root extraction to compute Y ,
two tests for squaredness, one squaring and one multiplication in Fq to compute each
g(Xj) for pairing-friendly curves. Testing for squaredness in Fpk costs 1 Legendre symbol
computation, (k − 1) Frobenius pk-powers and (k − 1) multiplications in Fpk [AR14].
Multiplications by ω or τ consist in k multiplications in Fp, since the constants lie in the
base field. Under the guarantee that at least one of the g(Xj) is a square, we can initially
assume that g(X1) is a square and update the choice of Xj after testing the other two
values with one symbol computation each. For curves with either a = 0 or b = 0, we can
evaluate the curve equation with one squaring and one multiplication in Fq. Below we
discuss the various cases in more details and compute the total operation counts.

The case b = 0. We have two subcases in our curve selection. For G2, we have that
multiplicative twists with coefficient a′ = ξ, for some small non-residue ξ in a subfield,
allowing for multiplications by a′ to be cheap and evaluated with additions only. By
substituting b = 0 in the expressions above, after optimizing for common subexpressions
and using Montgomery’s simultaneous inversion technique, we can evaluate the composition
(f ◦η ◦h) at the cost of 1 square-root, 2 Legendre symbols and 5sk/d+19mk/d+5(k/d)m +
ik/d + ((k/d)− 1)(fk/d + mk/d) while adding the baseline costs to evaluating the formulas:

h0 = t21, h1 = h2
0, h2 = 4a′, h3 = 64a′3, h4 = h0h1 + h3, h5 = t22, h6 = τt1

h7 = 24h0h5h6, h8 = h0h3, h9 = h2
1, h10 = ω(4a′h4 + h0h7)

d1 =− 2h6ω(h4 + h7), d2 = d1ω, d3 = −432(h0 − h2)2h1h5

n1 = h9 + h8 + 4a′h7 + h10ω, n2 = h9 + h8 + 4a′h7 + h10

n3 = h1(h9 + 2h8) + 4096a′6 − h7(h4 − 12a′(h1 + 4a′h0)− h7).

By further specializing to the case a = 1 for G1, the formulas cost 1 square-root, 2
Legendre symbols and 5s + 23m + i:

h0 = t21, h1 = h2
0, h4 = h1h0 + 64, h5 = t22, h6 = τt1

h7 = 24h0h5h6, h9 = h2
1, h10 = ω(4h4 + h0h7)

d1 =− 2h6ω(h4 + h7), d2 = d1ω, d3 = −432(h0 − 4)2h1h5

n1 = h9 + 4(16h0 + h7) + h10ω, n2 = h9 + 4(16h0 + h7) + h10

n3 = h1(h9 + 8(16h0)) + 4096− h7(h4 − 3(4h1 + 16h0)− h7).

The case a = 0. For this case, we turn instead to the SwiftEC algorithm, which can
be evaluated through 1 square-root extraction, 2 Legendre symbol computations and the
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additional costs of 7sk/d + 11mk/d + (k/d)m + ik/d + ((k/d)− 1)(fk/d + mk/d) in G2, and
7s + 12m + i in G1:

h0 = t31, h1 = t22, h2 = h0 + b− h1, h3 = 2h1 + h2, h6 = τt1, h7 = h0h6, h8 = 2h6t2

d1 = 2h3h8, n1 = h8(h7 − t1h3), n2 = (2h3)2

X1 = n1/d1, X2 = −t1 − n1/d1, X3 = t1 + (n2/d1)2.

4.2.1 Cofactor clearing for G1.

As in Section 2, we denote c1 the cofactor of the curve, that is, #E(Fp) = c1 · r, and define
the cofactor clearing operation as

E(Fp) → G1

P 7→ [c1]P

In Appendix B Table 21 we give the parameterized formulas for the cofactor c1 of G1.
Because c1 might be quite large, there are two strategies to speed-up the multiplication-by-
c1 map [c1]. First, the curves admit an endomorphism for fast GLV scalar multiplication.
Second, when the cofactor c1 has some square factor n2

1 satisfying the properties of Schoof’s
[Sch87, Proposition 3.7] (also in [EHG22, Theorem 1]), the strategy of Wahby–Boneh
applies [WB19] (multiplying by n1 instead of n2

1).
It is important to note that the two techniques (GLV and Wahby–Boneh) are orthogonal

w.r.t. the Fp-rational curve endomorphism ϕ. In other words, we cannot combine the two
techniques, we apply them respectively on disjoint subgroups. Following [HGP22], we aim
at obtaining the structure of E(Fp) so as to identify the respective subgroups where to
apply each technique:

E(Fp) ≃ Z/n1Z⊕ Z/n2Z, n1 | n2 (2)

so that E[n1] ⊂ E(Fp), n2
1 | E(Fp). In our context, we know that r is prime, and r2 does

not divide the curve order over Fp, so that r divides n2 in Eq. (2) that we rewrite as

E(Fp) ≃ Z/n1Z⊕ Z/n1c
′
1rZ, n2

1c
′
1 = c1 . (3)

We apply the Wahby–Boneh technique to clear the square factor n2
1, followed by the GLV

technique to clear the factor c′
1 = #E(Fp)/(n2

1r).

Faster co-factor clearing with the GLV method. To improve the cofactor clearing
step, one would like to use the endomorphism ϕ. For that one needs to identify the cyclic
subgroup of E(Fp) stable under ϕ, so that ϕ acts as a multiplication by an eigenvalue λϕ.
With the notations above, this subgroup has order c′

1 = #E(Fp)/(n2
1r). We compute in

SageMath the parameters: eigenvalue λϕ modulo c′
1, short scalars (a0, a1) so that a0 +a1λϕ

is a multiple of c′
1. The multiplication-by-c′

1 map becomes

E(Fp) → E(Fp)
P 7→ [a0]P + [a1]ϕ(P ) .

Faster co-factor clearing with the Wahby–Boneh technique and Schroof’s
theorem. We apply the Wahby–Boneh technique to the appropriate subgroup of order
n1 (Eq. (2)), which satisfies the conditions of Theorem 1. We compute in SageMath the
parameter n1 for each curve.
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Theorem 1 ([Sch87, Proposition 3.7]). Let E be an elliptic curve over Fp and n1 ∈ Z≥1
with p ∤ n1. Let πp denote the Frobenius endomorphism of E and t its trace. Then,

E[n1] ⊂ E(Fp) ⇐⇒


n2

1 | #E(Fp),
n1 | p− 1 and
πp ∈ Z or O

(
t2−4p
n2

1

)
⊂ EndFp(E).

To conlude, we are looking for a decomposition of the curve order so that the Wahby–
Boneh technique applies to n1 and the GLV technique applies to c′

1:

#E(Fp) = n2
1 · c′

1︸ ︷︷ ︸
=c1

·r . (4)

4.2.2 Cofactor clearing for G2

Recently Yu Dai et al. [DLZZ23] extended on finding efficient formulas and provided
a Magma script [Dai23]. We rely on their work to obtain the formulas for our curves.
As the formulas are quite long for G2, we implemented them in SageMath to validate
the equations. The general strategy is the same as for G1, but with ψ instead. Note
that [FAG20] investigated SG curves.

4.3 Subgroup membership testing
Yu Dai et al. [DLZZ23] consider subgroup membership testing on pairing-friendly curves
and generalize Scott’s technique [Sco21]. The strategy dates back to GLV idea and for G1
it consists in finding a short vector (a0, a1) such that a0 + a1λϕ ≡ 0 mod r, then testing if
[a0]P + [a1]ϕ(P ) = O. Dai et al. solve the problem for KSS16 and KSS18 curves where the
textbook formula of short vector (a0, a1) = (1, λϕ mod r), resp. (1, λϕ + 1 mod r) induces
a multiplication by a multiple of r but which is not coprime to the cofactor c1. Moreover
they obtain a generic technique that can be applied to all curves for G1 and G2. We apply
their criterion [DLZZ23, Theorem 1] to our curves in Table 12 and solve the problem of
cofactors for G1 in Table 15.

4.3.1 Subgroup membership testing in G1

Theorem 2 ([DLZZ23, Theorem 3] G1 for j = 0 or j = 1728 curves). Let E be an ordinary
elliptic curve defined over a finite field Fq with j-invariant 0 or 1728, and r a large prime
such that r∥#E(Fq). Let ϕ be a GLV endomorphism on E, and act as multiplication by
an integer λϕ in G1. Let (a0, a1) ∈ Z2 with a0 + a1 · λϕ ≡ 0 mod r. Assume

• gcd(a2
0 − a0a1 + a2

1,#E(Fq)) = r, if j(E) = 0,

• gcd(a2
0 + a2

1,#E(Fq)) = r, if j(E) = 1728.

Given a non-zero point P ∈ E(Fq), then

P ∈ G1 if and only if [a0]P + [a1]ϕ(P ) = O .

For G1 membership testing there is a problem for KSS-like curves (KSS16, KSS18,
GG20, GG28). The naive vector is (a0, a1) = (1, λϕ mod r) (D = 1), resp. (a0, a1) =
(1, λϕ + 1 mod r) (D = 3) or the half-gcd of (r, λϕ). To apply the criteron of Theorem 2,
one computes a2

0 + a2
1 = 1 + λ2

ϕ, resp. a2
0 − a0a1 + a2

1 = 1 + λϕ + λ2
ϕ but this value is not

coprime to the cofactor c1 (see Table 12). In other words if there is a common divisor
ci of Res(χϕ(X), a0 + a1X) and c1, the test returns true for points of order a divisor cir
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Table 12: Naive G1 subgroup membership testing. The eigenvalue of the endomorphism ϕ
is denoted λϕ. It assumes testing if [a0]P + [a1]ϕ(P ) is the point at infinity. The (a0, a1)
are obtained with a half-gcd on (r(x), λϕ(x)) if 2 deg(λϕ(x)) > deg(r(x)).

Curve λϕ mod r(x) (a0, a1) DLZZ criterion [DLZZ23]
BLS12 x2 − 1 (1, x2) gcd(a2

0 − a0a1 + a2
1, r · h) = r

BLS15 x5 (x3 − x2 + 1, x4 − x2 + x) gcd(a2
0 − a0a1 + a2

1, r · h) = r
FM15 x5 (x3 − x2 + 1, x4 − x2 + x) gcd(a2

0 − a0a1 + a2
1, r · h) = r

KSS16 (x4 + 24)/7 (1, (x4 + 24)/7) gcd(a2
0 + a2

1, r · h) = 1250r
FM16 x4 (1, x4) gcd(a2

0 + a2
1, r · h) = r

AFG16 x4 (1, x4) gcd(a2
0 + a2

1, r · h) = r

KSS18 x3 + 18 (1, x3 + 19) gcd(a2
0 − a0a1 + a2

1, r · h) = 343r
SG18 9x3 + 1 (1, 9x3 + 2) gcd(a2

0 − a0a1 + a2
1, r · h) = 3r

FM18 x3 − 1 (1, x3) gcd(a2
0 − a0a1 + a2

1, r · h) = r

FST20 x5 (x4 − x2 + 1, x3 − x) gcd(a2
0 + a2

1, r · h) = r
SG20 8x5 + 1 (2x3 + 2x2 + x, 4x4 + 2x3 − x− 1) gcd(a2

0 + a2
1, r · h) = r

GG20b (x5 − 38)/41 (x4 − 2x3 + 3x2 − 2x− 7,
x3 − 4x2 + 11x− 24) gcd(a2

0 + a2
1, r · h) = 41 · 54r

BLS21 x7 (x6 − x4 + x3 − x+ 1, x5 − x4 + x2 − x) gcd(a2
0 − a0a1 + a2

1, r · h) = r

BLS24 x4 − 1 (1, x4) gcd(a2
0 − a0a1 + a2

1, r · h) = r

BLS27 x9 (1, x9 + 1) gcd(a2
0 − a0a1 + a2

1, r · h) = 3r
FST28 x7 (x5 − x3 + x, x6 − x4 + x2 − 1) gcd(a2

0 + a2
1, r · h) = r

GG28 (x7 + 278)/29 (x5 + 4x4 + 11x3 + 24x2 + 41x+ 44,
x6 + 2x5 + 3x4 + 2x3 − 7x2 − 38x− 117) gcd(a2

0 + a2
1, r · h) = 29r

(e.g. 1250r, resp. 343r for KSS16 and KSS18), but it should returns true only for points of
order exactly r. For KSS16 curves, testing for P + [λϕ mod r]ϕ(P ) being O only answers if
P has order a divisor of 1250r, and for KSS18 curves, testing for P + [λϕ + 1 mod r]ϕ(P )
being O only answers if P has order a divisor of 343r. The problem is similar with GG20
and GG28 curves. It means that the naive vector (a0, a1) is not as short as possible. There
are two strategies to reduce the basis, one experimental involving LLL in [DLZZ23] and
one theoretical involving shrinking a basis of a vector space in [Smi15]. We summarise our
results in Table 15.

4.3.2 Subgroup membership testing for G2

Theorem 3 ([DLZZ23, Theorem 1] G2 for curves with a twist). Let E be an ordinary
elliptic curve over Fp and t the trace of the Frobenius endomorphism π. Let ϕ : E′ → E
be the twisting isomorphism, where E′ is defined over Fpe . Let r be a large prime such
that r∥#E(Fp) and r∥#E′(Fpe). Define ψ = ϕ−1 ◦ π ◦ϕ with the characteristic polynomial
g(ψ) = ψ2 − t · ψ + p. Let η =

∑s
i=0 ci · pi be a multiple of r and f(ψ) =

∑s
i=0 ciψ

i a
polynomial with respect to ψ. Denote by b0 + b1ψ the remainder for f(ψ) divided by g(ψ),
i.e.,

b0 + b1ψ = f(ψ) mod g(ψ) . (5)
Assume

gcd(b2
0 + b0b1t+ b2

1p,#E′(Fpe)) = r . (6)
Given a non-identity point Q ∈ E′(Fpe), then Q ∈ G2 = E′(Fpe)[r] if and only if f(ψ)(Q) =
OE′ .

As noted by Yu Dai et al. [DLZZ23], the formulas for optimal ate pairing computation
and fast G2 membership testing are very similar. For the optimal ate pairing, the formula
parameters should satisfy

ℓ∑
i=0

ciq
i = m · r and mkqk−1 ̸≡ qk − 1

r

ℓ∑
i=0

iciq
i−1 mod r (7)
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Table 13: G1 cofactor clearing, where λϕ is the eigenvalue of the endomorphism ϕ,
λϕ mod c′

1 is given such that λϕ mod r matches the data in Table 12, the short vector
(a0, a1) means evaluating R← [a0]P + [a1]ϕ(P ).

Curve λϕ mod c′
1(x) short vector (a0, a1) criterion cofactor clearing

BLS12 – – – R← (x− 1)P
BLS15 −x− 1 (1,−x) a2

0 − a0a1 + a2
1 = c′

1 Q← (x− 1)P ; R← Q− [x]ϕ(Q)

FM15 (6x4+3x3+2x2−4x−8)/7 ((3x3 + 2x2 − 4x)/3,
(4x2 − 2x− 3)/3) a2

0 − a0a1 + a2
1 = c′

1 Q← [x]P ; R← [a0]Q+ [a1]ϕ(Q)

KSS16 ±(x+ 1)/2 (1, λϕ mod c1) a2
0 + a2

1 = c1/250 Q← P + [λϕ mod c1]ϕ(P ); R← 1250Q
FM16 x3 (1, λϕ mod c′

1) a2
0 + a2

1 = c′
1 Q← [x/2]P ; R← Q+ [x3]ϕ(Q)

AFG16 – – – R← [x(x3 + 1)/2]P
KSS18 x+ 2,−x− 3 (1, λϕ + 1 mod c1) a2

0 − a0a1 + a2
1 = 3c1/49 Q← P + [λϕ + 1 mod c1]ϕ(P ); R← 343Q

SG18 – – – R← [3x2 − 1]P

FM18 −(3x5 + 3x4 + 3x3 + x)/2 (2(x− 1)/3,
x3 + (x− 1)/3) a2

0 − a0a1 + a2
1 = c1

Q← [(x− 1)/3]P ;
R← [3(x2 + x+ 1)]Q+Q+ P + [2]ϕ(Q)

FST20 x (1, x) a2
0 + a2

1 = c′
1 Q← [(x− 1)/2]P ; R← Q+ [x]ϕ(Q)

SG20 −4x3 + x (2x2 − 1, x) a2
0 + a2

1 = c′
1 Q← [2x]P ; R← [2x2 − 1]Q+ ϕ([x]Q)

GG20b x+ 2 mod x2 + 4x+ 5
(1−x)/2 mod (x2−2x+5)/4

(1, x+ 2)
(1, (1− x)/2) a2

i0 + a2
i1 = c′

i1
Q1 ← [20]P ;Q2 ← [8]([2]Q1+Q1+ϕ(Q1))−ϕ(Q1);
Q3 ← Q2+[x+2]ϕ(Q2);R← Q3+[(1−x)/2]ϕ(Q3)

BLS21 x (1, x+ 1) a2
0 − a0a1 + a2

1 = 3c′
1 Q← [x− 1]P ; R← Q+ [x+ 1]ϕ(Q)

BLS24 – – – R← (x− 1)P
BLS27 – – – R← (x− 1)P
FST28 −x (1,−x) a2

0 + a2
1 = c′

1 Q← [(x− 1)/2]P ; R← Q− [x]ϕ(Q)

GG28 2− x mod x2 − 4x+ 5
(1−x)/2 mod (x2−2x+5)/4

(1, 2− x)
(1, (1− x)/2) a2

i0 + a2
i1 = c′

i1
Q← P + [2− x]ϕ(P );
R← Q+ [(1− x)/2]ϕ(Q)

Table 14: From [DLZZ23, Table 2]. Note that for KSS18 G2, we translate the short vector
(2x/7, 1, 0, x/7, 0, 0) to (0, 0, 2x/7, 1, 0, x/7) otherwise

∑
i aiµ

i
r produces 0, not a multiple

of r(x). For KSS16, we use the data from [DLZZ23, §5.2.2].

Curve Gi short vector (ai) criteria
BN G2 (x+ 1, x, x,−2x)
BLS12 G2 (x,−1, 0, 0)
KSS16 G1 ((31x4 + 625)/8750,−(17x4 + 625)/8750) a2

0 + a2
1 = r, a0 + a1(λϕ mod r) = −17r

= ((31(x/5)4 + 1)/14,−(17(x/5)4 + 1)/14 −31a1 − 1 + 17a1(λϕ mod r) = −172r

G2
1/70(−11x+ 5, 9x+ 15,−3x− 5,−3x− 5,

13x− 25,−7x+ 35,−x− 25,−11x+ 5)
∑
i aiµ

i = 127r

KSS18 G1 ((x/7)3,−18(x/7)3 − 1) a2
0 − a0a1 + a2

1 = r, a0 + a1(λϕ mod r) = −18r
G2 (0, 0, 2x/7, 1, 0, x/7) a2µ

2 + a3µ
3 + a5µ

5 = −18r

Table 15: G1 membership testing, solving the issues in Table 12. the endomorphism ϕ has
eigenvalue λϕ, the short vector (a0, a1) satisfies a2

0+a2
1 = r (j = 1728), resp. a2

0−a0a1+a2
1 =

r (j = 0), where a0, a1 are integers. Note that for KSS16, x ≡ 25, 45 mod 70 hence 5 | x;
for KSS18, x ≡ 14 mod 21 hence 7 | x; for GG20b, x ≡ 1465, 1565 mod 2050 hence 5 | x.

Curve λϕ mod r (a0, a1) s.t. a2
0 + a2

1 = r, resp. a2
0 − a0a1 + a2

1 = r observation
KSS16 (x4 + 24)/7 ((−443(x/5)4 − 17)/14, ((x/5)4 + 5)/14) a0 = −443a1 + 157
KSS18 x3 + 18 (19(x/7)3 + 1, (x/7)3) a0 = 19a1 + 1
SG18 9x3 + 1 (−3x3, 3x3 + 1) a1 = −a0 + 1

GG20b (x5 − 38)/41 ((61(x/5)4 − 54(x/5)3 + 31(x/5)2 − 14(x/5) + 5)/41,
(148(x/5)4 − 47(x/5)3 + 8(x/5)2 + 3(x/5)− 4)/41) u = 30 mod 41

((92(x/5)4 − 63(x/5)3 + 32(x/5)2 − 13(x/5) + 4)/41),
(131(x/5)4 − 34(x/5)3 + (x/5)2 + 6(x/5)− 5)/41 u = 7 mod 41

BLS27 x9 ((−x9 + 1)/3, (x9 + 2)/3) a1 = −a0 + 1

GG28 (x7 + 278)/29 ((2x6 + 9x5 + 26x4 + 59x3 + 106x2 + 129x− 14)/29,
(5x6 + 8x5 + 7x4 − 12x3 − 83x2 − 272x− 673)/29) u = 14 mod 29

((5x6 + 12x5 + 23x4 + 32x3 + 13x2 − 108x− 497)/29,
(2x6 − x5 − 14x4 − 51x3 − 134x2 − 281x− 454)/29) u = 19 mod 29
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for some non-zero integer m and short integers ci [Ver10, Theorem 1].
As explained in [Smi15, HGP22, DLZZ23], the points on the d-th twist E′(Fpk/d)

containing G2 have eigenvalue λψ under Galbraith–Scott endomorphism ψ = τ−1 ◦ π ◦ τ ,
where λψ is a root of the characteristic polynomial χψ(X) = X2 − tX + p, with the trace
t of E(Fp). A point in G2 has eigenvalue λψ mod r = p mod r = t − 1 mod r under ψ.
But for subgroup membership testing, one cannot assume that the point being tested has
eigenvalue t−1, one relies on the generic formula of λψ the root of χψ(X) modulo the curve
order which maps to t− 1 when reduced modulo r. One checks that the resultant of χψ(X)
and the polynomial formula f(X) = c0 + c1X + . . .+ cℓX

ℓ (see eq. (7)) has no common
factor with the cofactor c2 of G2, that is, Resx(ResX(χψ(X), f(X)), c2(x)) ̸= 0 [DLZZ23,
Theorem 1]. The result is a rational number. The final step is to check that c2(x) has no
root modulo each prime divisor of the numerator of that result.

We start from the data in Table 6 and check if Yu Dai et al. Theorem 3 is satisfied. Yu
Dai et al. already solved the case for KSS16 with x = 45 mod 70, and KSS18, see Table 14.

BLS curves. All BLS curves have a trace t = u + 1, so that the curve order is
p + 1 − t = p − u, and this number is a multiple of the prime order r of G1. The
optimal ate pairing formula is based on the equation u − p = 0 mod r. For BLS12 and
BLS24 curves, this equation directly gives a G2 membership test: as soon as r = Φk(u)
is prime (it corresponds to gcd(c1, c2) = 1), Q ∈ G2 ⇐⇒ [u]Q − ψ(Q) = O that is,
Q ∈ G2 ⇐⇒ [u]Q = ψ(Q). This is not the case for BLS15, BLS21 nor BLS27 curves.

BLS12, BLS24 curves. Solutions appear already in previous works [Sco21, HGP22,
DLZZ23]. Assuming that the order r of G1,G2 is prime and gcd(c1, c2) = 1 (the cofactors
of G1 and G2 respectively are coprime), the test is [u]Q = ψ(Q).

BLS15, BLS21 curves. This case is different as the gcd of c1 and c2 is x2 + x+ 1. For
BLS15, note that Φ15(p) = p8 − p7 + p5 − p4 + p3 − p+ 1. Then p7(x− p) = xp7 − p8 =
1− p+ p3 − p4 + p5 + (x− 1)p7 mod Φ15(p) and this formula satisfies Theorem 3. That
is, the G2 membership test is Q − ψ(Q) + ψ3(Q) − ψ4(Q) + ψ5 + [u − 1]ψ7(Q) = O.
When 7 | h2, this test still does not distinguish points of order 7r. For BLS21, note that
Φ21(p) = p12 − p11 + p9 − p8 + p6 − p4 + p3 − p + 1. Then p11(x − p) = xp11 − p12 =
1−p+p3−p4 +p6−p8 +p9 +(x−1)p11 mod Φ21(p) and this formula succeeds in Theorem 3
when c2 is odd. The G2 membership test is Q− ψ(Q) + ψ3(Q)− ψ4(Q) + ψ6 − ψ8(Q) +
ψ9(Q) + [u− 1]ψ11(Q) = O.

BLS27 curves. The gcd of the resultant and c2 is 3 with the formula (u,−1). The
formula p17(u− p) = 1 + p9 + up17 mod Φ27(p) does not solve the problem of the cofactor
3. With Smith technique we obtain that (1 + p+ p2 + . . .+ p8)(1− p9)(1− u)/3 + p9 is a
multiple of r and avoids the cofactor 3 issue. The G2 membership test is [(1− u)/3](S −
ψ9(S)) + ψ9(Q) = O where S ← Q+ ψ(Q) + ψ2(Q) + . . .+ ψ8(Q).

FM15 curves. The formula for optimal ate pairing is u− p4 (Table 6). The gcd in Q[u]
of ResX(X2−t(u)X+p(u), u−X4) and #E′(Fp5) = h2(u)r(u) is r(u). Following [HGP22],
we then compute

Resu(ResX(X2 − t(u)X + p(u), u−X4)/r(u), h2(u))

and obtain a very large number whose small factors are 24 · 1372471. We observe that
ResX(u) and h2(u) share the irreducible factor (u2 + u+ 1) modulo 2 but do not share
a common root. Actually, the resultant ResX(u) cannot be even. This ensures that the
test based on the optimal ate pairing formula: whether [u]Q− ψ4(Q) = O is a valid G2
subgroup membership test.
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KSS16 curves. An optimal pairing formula can be x/5p(x) + p2(x) + 2x/5p5(x) but
the derived subgroup membership testing formula does not distinguish points of order 2r.
With the same technique as [DLZZ23], we obtain the following formula for G2 membership
testing when x = 25 mod 70 ([DLZZ23] addresses x = 45 mod 70).

1/70(11x+ 5, 11x+ 5,−19x− 15, 3x− 5,−3x+ 5,−13x− 25, 7x− 35, x+ 45) (8)

We suggest this formula with larger scalars that works for any x = 25, 45 mod 70:

(u5 + 1, u5, u5, u5,−3u5 − 2,−3u5 − 2,−3u5 − 2,−3u5 − 2), u5 = (u− 5)/10 (9)

FM16 curves. The formula u − p gives the equation [u]Q − ψ(Q) = O and satisfies
Theorem 3.

AFG16 curves. The formulas −1+up3 and u+p5 give the equations −Q+[u]ψ3(Q) = O
and [u]Q+ ψ5(Q) = O that both satisfy Theorem 3.

KSS18 curves. For KSS18 curves, the usual formulas of optimal ate pairing are [Ver10,
Section 4]

2x/7 + p(x) + x/7p3(x) or 1 + xp2(x) + 2p3(x) . (10)

One notes that 2x/7+(p mod r)+x/7(p3 mod r) = 0 and 1+x(p2 mod r)+2(p3 mod r) =
−5 · 7 · r(x).

SG18 curves. The optimal pairing formula u + p2 + up3 gives the equation [u]Q +
ψ2(Q) + [u]ψ3(Q) = O and satisfies Theorem 3.

FM18 curves. The formulas 1+up2 and u+p−p4 give the equations Q+[u]ψ2(Q) = O
and [u]Q+ ψ(Q)− ψ4(Q) = O and satisfy Theorem 3.

FST20, FST28 curves. The optimal pairing formula u−p does not give a valid equation,
the resultant of u−X and X2 − t(u)X + p(u) is (u2 + 1)r(u). We apply the same trick as
for BLS: pφ(k)−1(u−p) mod Φk(p) gives 1−p2 +p4−p6 +up7 for k = 20 and 1−p2 +p4−
p6 +p8−p10 +up11 for k = 28. The equations Q−ψ2(Q)+ψ4(Q)−ψ6(Q)+ [u]ψ7(Q) = O
for k = 20 and Q− ψ2(Q) + ψ4(Q)− ψ6(Q) + ψ8(Q)− ψ10(Q) + [u]ψ11(Q) = O satisfy
Theorem 3.

SG20 curves. The optimal pairing formulas u − up5 − p7 and u + p2 + up5 give the
equations [u]Q − [u]ψ5(Q) − ψ7(Q) = O and [u]Q + ψ2(Q) + [u]ψ5(Q) = O and satisfy
Theorem 3.

GG20b curves. The optimal pairing formulas u−p−2p6 and 2+up4−p5 do not satisfy
Theorem 3 as the gcd is (u2 + 4u+ 5)r(u). We set pφ(k)−5(2 + up4 − p5) mod Φ20(p) =
1 − p2 + p4 − p6 + 2p3 + up7 and obtain a formula that satisfies Theorem 3: (Id−ψ2 +
ψ4 − ψ6 + [2]ψ3 + [u]ψ7)(Q) = O.

GG28 curves. The optimal pairing formulas u− p− 2p8 and 2 + up6− p7 do not satisfy
Theorem 3 as the gcd is (u2 − 4u+ 5)r(u). We set pφ(k)−7(2 + up6 − p7) mod Φ28(p) =
1− p2 + p4 − p6 + p8 − p10 + 2p5 + up11 and obtain a formula that satisfies Theorem 3:
(Id−ψ2 + ψ4 − ψ6 + ψ8 − ψ10 + [2]ψ5 + [u]ψ11)(Q) = O.
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5 Experimental results

We implemented the most promising curves from Section 3.4 within the RELIC crypto-
graphic toolkit [AGM+] due to its strong support to pairing-based cryptography. RELIC
already implemented several pairing-friendly curves (such as BLS) with state-of-the-art
performance, so extending the library to include new curve families is natural and favors a
fair comparison between candidates. The library is implemented in the C programming
language, with handwritten ASM acceleration for finite field arithmetic in multiple sizes of
the prime moduli. For each of the new or previously supported curve families, we included
group operations and pairing computation, by either speeding-up existing routines or
including entirely new ones. The resulting source code can be found at our anonymized
repository 4, with prebuilt binaries to facilitate reproduction of the timings. Our SageMath
and MAGMA scripts can also be found at the same repository.

Benchmarking measurements were taken by computing the average latency of running
the operation for 104 consecutive executions on an Intel Kaby Lake Core i7-7700 CPU
running at 3.60GHz. The main compiler used was GCC version 13.2.1, with optimization
flags -O3 -funroll-loops -march=native -mtune=native; but we also verified that
clang would exhibit similar performance. Following best practices5, the TurboBoost and
HyperThreading features were disabled in the benchmarking machine for higher stability.

Table 16 shows the cycle counts observed for executing scalar multiplications or expo-
nentiaton in pairing groups using a w-NAF algorithm with w = 4 and Jacobian coordinates
in the Weierstrass model. The constant-time version for the source groups was implemented
with almost-complete exception-free homogeneous projective coordinates [RCB16] using
a regular w-NAF algorithm with w = 5 to compensate the performance loss. The table
also shows timings for hashing to source groups, testing group elements for subgroup
membership and pairing computation, split in the Miller loop and Final Exponentiation.
From the table, it is clear that BLS24-509 has superior performance for all benchmarked
operations, with speedups ranging from to 3.2% to 56.1%. We also highlight the fastest
operations in curves with embedding degree 16 or 18, and show that AFG16 is a competitive
candidate in comparison to other curves with the same embedding degree.

When checking for consistency between the timings for pairing computation and the
normalized operation counts from Table 11, we can conclude that most figures are consistent,
showing strong alignment between the implementation effort and the performance estimates.
There are two exceptions, curve BLS12-1150 and FM16-765. The former deviates from the
other implementations in the sense that it ends up more efficient than estimated, because
it uses the low-level interface of the GMP library with Karatsuba splitting, leading to a
slightly different cost model than the Schoolbook method assumed during normalization.
For FM16-765, the observed performance is worse than AFG16 due to a less efficient choice
of towering, that particular affects the timings for the final exponentiation. This is why the
pairing latency looks closer to KSS16 than AFG16. Furthermore, we do not claim that all
of our timings are the best possible for all parameters. Our emphasis was to fairly optimize
all parameters with similar effort, such that meaningful comparisons could be made. For
this reason, we decided to not implement techniques that could favor one parameter over
the others [Lon23, BCN14] due to availability of more efficient code, although we leave to
implement them as future work, as long as we feel confident that the same optimization
level can be achieved across all parameters.

4https://github.com/cic-pairing192/suppl-material
5https://bench.cr.yp.to/supercop.html

https://github.com/cic-pairing192/suppl-material
https://bench.cr.yp.to/supercop.html
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Table 16: Latency in 103 clock cycles for performing scalar multiplication or exponentiation
in G1,G2 and GT , possibly with constant-time (CT) countermeasures.

Curve BLS12 FM16 KSS16 AFG16 FM18 SG18 KSS18 BLS24
Size of p 1150 765 766 766 768 638 638 509
[ℓ]P in G1 6803 2216 3282 2157 2079 1368 1718 1066 (22.1%)
[ℓ]Q in G2 15776 12193 18433 11227 8196 6101 7450 5199 (14.8%)
gℓ in GT 23639 8867 13375 8451 12372 9437 11748 7129 (15.6%)
CT [ℓ]P in G1 9168 2805 4288 2802 2764 1956 2394 1275 (34.8%)
CT [ℓ]Q in G2 20332 19068 25795 17952 13524 9622 11416 7548 (21.6%)
CT gℓ in GT 27754 12359 16485 11426 15760 12938 15085 11058 (03.2%)
Hash to G1 6280 2845 1759 2495 3970 1490 1115 489 (56.1%)
Hash to G2 18662 27573 22907 22052 27350 15130 8894 5788 (34.9%)
Testing in G1 4547 1652 3060 1639 1494 1018 1808 797 (21.7%)
Testing in G2 4935 3029 6547 2536 2057 1634 1927 1061 (35.0%)
Testing in GT 5351 2579 5895 2125 4225 9878 2359 1294 (39.1%)
Miller Loop 28484 8188 11871 6950 9749 7135 9327 5429 (21.9%)
Final Exp. 29317 31694 28533 25666 27176 13628 15607 9670 (29.0%)
Pairing 57802 39882 40404 32617 36925 20763 24971 15100 (27.3%)

6 Conclusion
We performed an extensive comparison of several candidate families of pairing-friendly
curves at the 192-bit level, both from theoretical and practical perspectives. Our recom-
mended choices of pairing-friendly curves are the following. For a prime-order curve,
choose a BN curve of ≈1152 bits. For the fastest pairing, take a BLS24 curve of ≈512
bits. For smallest G1, a BLS27 curve can have p of ≈427 bits. While we focus exclusively
on the asymmetric pairings that offer the best performance, curves with embedding degree
k = 1 and supersingular curves with k = 2 can be used to instantiate a symmetric pairing,
at high performance penalty due to the very large base fields.
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A Discarded curves

In Table 18 we give the seeds for evaluating the families of pairing-friendly elliptic curves
with embedding degree k = 22. We focus on Freeman–Scott–Teske (FST) families obtained
by construction 6.3 (FST6.3) and construction 6.6 (FST6.6) in [FST10]. In addition we
consider the family of curves of Gasnier–Guillevic [GG23], GG22 with CM-discriminant
D = 7. Further, in Table 19 we present the formula of the optimal ate pairing for the
three families of pairing-friendly curves with embedding degree 22. The formula of the
easy part of the final exponentiation is given in Table 17.

Table 17: Exponents for the final exponentiation, easy and hard parts.

k final exp. easy part final exp. hard part
22 (p11 − 1)(p+ 1) (p10 − p9 + p8 − p7 + p6 − p5 + p4 − p3 + p2 − p+ 1)/r

Table 18: Additional families of pairing-friendly elliptic curves and seeds at 192-bit security.

k curve seed (a, b) p mod k log p log r ρ log pk secu/ref

22
FST6.3 221 − 213 + 26 + 23 + 1 (1, 0) 1 544 420 1.30 11965 194
FST6.6 219 + 215 + 213 + 211 + 23 (0, −2) 1 534 383 1.40 11740 221
GG22, D = 7 −220 + 218 + 213 − 210 − 28 − 22 + 1 ( −5

7 , −2
7 ) 3 457 383 1.2 10052 220

Table 19: Optimal ate Miller loop formulas. The Miller functions fu,Q and lines ℓQ,R are
evaluated at the point P ∈ G1.

k curve Equation (1) Optimal ate formula

22
FST6.3 u2 − p ≡ 0 mod r fu2,Q(P )
FST6.6 u2 − up4 + p8 ≡ 0 mod r fu2,Q(P ) · fu,Q(P )−p4 · ℓ[u2]Q,−[u]π4(Q)(P )
GG22 u2 − up+ 2p2 ≡ 0 mod r fu2,Q(P ) · fu,Q(P )−p · ℓ[u2]Q,−[u]π(Q) · ℓQ,Q(P )2p2

Table 20: Optimal ate pairing and final exponentiation cost estimates in terms of finite
field multiplications. The name of each curve is derived from the name of the corresponding
family in Table 5, plus the size of the prime p.

curve p r Miller loop final exp pairing
bits bits optimal ate easy hard total total

FST6.3-544, k = 22 544 420 39.707m 789m 65.604m 66.393m 106.100m
FST6.6-534, k = 22 534 383 33.955m 789m 64.200m 64.989m 98.944m
GG22-457, D = 7 457 383 41.154m 789m 72.352m 73.141m 114.295m

Table A shows the number of Fp-multiplications required for the Miller loop and the
final exponentiation for the three types of curves with k = 22, FST6.3, FST6.6 and GG22.
We discarded these curves from our study because they do not seem to be competitive
candidates compared to the ones presented in Section 3. We note that such curves admit
quadratic twists and hence the point addition and doubling operations in the Miller loop
are executed over Fp11 .

For group operations using GLV, the curve of j-invariant -3375 (discriminant D = 7)
has an endomorphism ϕ of the form (x, y) 7→ (ϕx(x), yϕy(x)) with some s =

√
−7 ∈ Fp, of

characteristic polynomial χϕ(X) = X2 +X + 2.
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FST 6.3 k = 22. Here is a formula for the hard part of the final exponentiation on input
m:

m̄← mp11
;

a← mu2
· m̄; f ← fp · a; a← au

2
·m; f ← fp · a;

a← mu2
· m̄; f ← fp · a; a← au

2
·m; f ← fp · a;

a← mu2
· m̄; f ← fp · a; a← au

2
·m; f ← fp · a;

a← mu2
· m̄; f ← fp · a; a← au

2
·m; f ← fp · a;

a← mu2
· m̄; f ← fp · a;

f ← fu
2
· fp

11
; f ← fu

4
· fp

11
; f ← f ·m4

which costs 24 exp(u) + 2s22 + 21m22 + 9f22.

FST 6.6 k = 22. Here is a formula for the hard part of the final exponentiation:

(u3 − 1)2((u10(u+ q4) + uq7 − 1)(u3 + q)(u6 + q2)− u10q7) + 3(u+ q4)

which costs 26 exp(u) + 11m22 + s22 + 6f22.

GG22D7. We obtained a final exp hard formula which costs 22 exp(u) + 20f22 + 41m22 +
50s22.

B Formulas and parameters for group operations
In Table 21 we give polynomial description for families of curves considered in this paper.
Specifically, this table lists the CM-discriminant for each type of curves, the polynomial
r(x) dividing the order of the curve, the polynomial representation of the cofactor c1(x),
such that E(Fp(x)) = c1(x)r(x), as well as the congruences that the seeds much satisfy in
order for the polynomial family to produce integer values.

C Curves at the 256-bit security level
In Table 22 we give known instantiations in the literature for existing families of pairing-
friendly elliptic curves aiming at 256-bit security level.
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Table 21: Curve parameters, k is the embedding degree, r is the prime order of G1, c1 is
the cofactor so that the curve over Fp has order r · c1, and x is the seed.

k D Curve r(x) c1(x) x s.t. r, c1
are integers

12 3 BLS12 x4 − x2 + 1 (x− 1)2/3 1 mod 3

15 3 BLS15 x8 − x7 + x5 − x4 + x3 − x+ 1 (x− 1)2/3(x2 + x+ 1) 1, 7 mod 15
FM15 x8 − x7 + x5 − x4 + x3 − x+ 1 x2(3x6 − 2x4 − x3 − 2x2 + 3)/3 0, 3 mod 15
KSS16 (x8 + 48x4 + 625)/61250 125/2(x2 + 2x+ 5), 1250 | c1 25, 45 mod 70

16 1 FM16 Φ16 = x8 + 1 x2/4(x6 + 1) 0 mod 2
AFG16 Φ16 = x8 + 1 x2(x3 + 1)2/4 any
KSS18 (x6 + 37x3 + 343)/343 49/3(x2 + 5x+ 7), 343 | c1 14 mod 21

18 3 SG18 27x6 + 9x3 + 1 (3x2 − 1)2 any
FM18 Φ18 = x6 − x3 + 1 (3x6 + x2 − 2x+ 1)/3 1 mod 3
FM20 Φ20 = x8 − x6 + x4 − x2 + 1 (x− 1)2(x2 + 1)/4 1 mod 2

SG20 16x8 + 16x7 + 8x6

−4x4 + 2x2 + 2x+ 1 2x2(4x4 − 3x2 + 1) any

20 1 GG20a
(x8 + 4x7 + 11x6 + 24x5

+41x4 + 120x3 + 275x2

+500x+ 625)/(54 · 41)

125(x2 − 4x+ 5)·
(x2 − 2x+ 5)/164

1715, 1815
mod 2050

GG20b
(x8 − 4x7 + 11x6 − 24x5

+41x4 − 120x3 + 275x2

−500x+ 625)/(54 · 41)

125(x2 + 4x+ 5)·
(x2 − 2x+ 5)/164

1465, 1565
mod 2050

21 3 BLS21 Φ21 = x12 − x11 + x9 − x8

+x6 − x4 + x3 − x+ 1
(x− 1)2/3

(x2 + x+ 1), 9 | c1 1 mod 3

24 3 BLS24 Φ24 = x8 − x4 + 1 (x− 1)2/3, 3 | c1 1 mod 3
27 3 BLS27 Φ27/3 = (x18 + x9 + 1)/3 (x− 1)2, 3 | c1 1 mod 3

28 1

FST28 Φ28 = x12 − x10 + x8

−x6 + x4 − x2 + 1 (x− 1)2/4(x2 + 1), 2 | c1 1 mod 2

GG28

(x12 + 4x11 + 11x10 + 24x9

+41x8 + 44x7 − 29x6 + 220x5

+1025x4 + 3000x3 + 6875x2

+12500x+ 15625)/29

(x2 − 4x+ 5)·
(x2 − 2x+ 5)/580

309, 449,
1759, 1899
mod 2030

Table 22: Curves at 256-bit security level from [BD19], [KIK+17, Table 6], and
[BMDFAF19]

curve seed r (bits) p (bits) pk (bits)
[BD19]

KSS18 2186 − 275 − 222 + 24 1108 1484 26712
BLS24 −2103 − 2101 + 268 + 250 827 1032 24768

[KIK+17]
BLS24 2109 − 275 + 265 − 1 872 1089 26122
KSS32 249 − 230 + 218 + 214 − 212 − 22 − 1 738 861 27536
KSS36 −258 + 245 + 240 + 234 + 25 669 798 28699
BLS42 243 − 28 + 22 − 1 516 687 28830
BLS48 −232 − 230 − 210 + 27 − 1 518 581 27851

[BMDFAF19]
BLS48 232 − 218 − 210 − 24 512 575 27600
SG54 227 + 226 + 222 + 214 + 26 + 2 512 569 30726
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