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Abstract—The progression of quantum computing is considered
a potential threat to traditional cryptography system, highlighting
the significance of post-quantum security in cryptographic systems.
Regarding symmetric key encryption, the Grover algorithm can
approximately halve the search complexity. Despite the absence
of fully operational quantum computers at present, the necessity
of assessing the security of symmetric key encryption against
quantum computing continues to grow.

In this paper, we implement the ARIA block cipher in a
quantum circuit and compare it with previous research. Our
implementation of the ARIA quantum circuit achieves over 92.5%
improvement in full depth and over 98.7% improvement in Toffoli
depth compared to the implementation proposed in Chauhan et al.
Compared to Yang et al.’s implementation, our implementation is
improved the full depth by 36.7% and the number of qubits by
8%. Additionally, we analyze the complexity of Grover’s search
attack and compare it with NIST criteria. We confirm that ARIA
achieves quantum security level 1, 3, and 5 (ARIA-128, 192, and
256, respectively).

Index Terms—quantum circuit, Grover algorithm, Post-
Quantum security, ARIA

I. INTRODUCTION

The computational power of quantum computers poses a
potential threat to existing cryptographic systems, emphasizing
the importance of developing quantum-resistant cryptographic
systems. Several quantum algorithms are being used to ad-
dress cryptographic problems on quantum computers, with
Shor’s algorithm [1], in particular, known for its ability to
break classical cryptographic systems like RSA. Additionally,
Grover’s algorithm [2] can reduce the search complexity of
symmetric key cryptography by approximately the square root.
Consequently, recent cryptographic research has been actively
conducted in the field of quantum computing.

The National Institute of Standards and Technology (NIST)
in the United States is actively organizing a competition in the
field of Post-Quantum Cryptography (PQC) with the aim of
standardizing algorithms resilient to potential quantum attacks.
Additionally, NIST defines the quantum security strength based
on the cost of Grover’s attack against AES-128, AES-192,
and AES-256. Based on this, there is a significant amount of
research underway to implement quantum circuits and estimate
the search complexity of Grover attacks to ascertain whether
they achieve the criteria provided by NIST.

Our research implements quantum circuits for ARIA (ARIA-
128, 192 and 256), one of the KCMVP ciphers. Furthermore,
we analyzes the complexity of Grover’s search attack and

ensure conformity with the criteria established by NIST. During
this process, we incorporate various relevant technologies and
compare them with previously reported studies.

A. Our Contribution

Contributions of this paper are:

1) Depth optimized quantum implementation
We focus on optimizing the ARIA quantum circuit in
terms of depth. As a result, it exhibits the lowest depth
compared to previous studies.

2) Applying various techniques for each part
We apply various techniques in each part. Additionally,
we compare the estimated resources to highlight the most
efficient techniques for each part.

3) Post-Quantum Security Analysis of ARIA
Our examination of the quantum security of ARIA
involves estimating the cost of Grover’s key search using
the quantum circuit we implemented for ARIA. In this
evaluation, we compare the estimated cost of Grover’s
key search for ARIA with the security levels established
by NIST.

II. RELATED WORK

A. ARIA

ARIA is a Korean symmetric key cipher included in the
validation subjects of the KCMVP(Korean Cryptographic Mod-
ule Validation Program). ARIA adopts an SPN (Substitution-
Permutation Network) structure and shares similarities with the
AES (Advanced Encryption Standard) due to the consideration
of AES design principles during its development. The input
and output size of ARIA is 128 bits, and it supports key sizes
of 128, 192, and 256 bits (the number of rounds 12, 14, 16,
respectively). The encryption process of ARIA is shown in Fig
1. The main components of ARIA are the substitution layer,
diffusion layer, and key schedule.

1) Substitution layer: ARIA has two types of substitu-
tion layers, (LS,LS,LS, LS), (LS−1, LS−1, LS−1, LS−1).
And each LS has two S-boxes and their inversion
(S1, S2, S

−1
1 , S−1

2 ). These S-boxes in ARIA are constructed
by applying an affine transformation to the function x−1, and
x247 over the Galois Field GF(28). The equation defining the
S-box transformation is as follows:



Fig. 1: encryption process of ARIA

S1(x) = A · x−1 ⊕ a,

where A =



1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1


and a =



1
1
0
0
0
1
1
0


(1)

S2(x) = B · x247 ⊕ b = B ·C · (x−1)8 ⊕ b = D · x−1 ⊕ b

where D =



0 1 0 1 0 1 1 1
0 0 1 1 1 1 1 1
1 1 1 0 1 1 0 1
1 1 0 0 0 0 1 1
0 1 0 0 0 0 1 1
1 1 0 0 1 1 1 0
0 1 1 0 0 0 1 1
1 1 1 1 0 1 1 0


and b =



0
1
0
0
0
1
1
1


(2)

2) Diffusion Layer: The diffusion layer is defined by an
invertible map A : GF(28)16 → GF(28)16 which is given by
(x0, x1, ..., x15) → (y0, y1, ..., y15). It can be represented as a
series of operations executed through a 16 × 16 binary matrix
multiplication as follows.



y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15



=



0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 1 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1



·



x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15



(3)

3) KeySchedule: The key scheduling of ARIA comprises
two parts: initialization and round key generation. During the
initialization part, four 128-bit values W0,W1,W2,W3 are
derived from the master key MK.

Fig. 2: Key Initialization of ARIA

During the round key generation part, the four values
W0,W1,W2,W3 are used to derive the encryption round keys
eki (each of 128 bits). ARIA employs 12, 14, and 16 rounds,
corresponding to master key sizes of 128, 192, and 256 bits,
respectively. As an additional key is required for the final round
key addition, the total number of round keys needed is 13, 15,
or 17, respectively. The equation of generate the round key is
as follow:

ek1 = (W0)⊕ (W1 ≫ 19), ek2 = (W1)⊕ (W2 ≫ 19)
ek3 = (W2)⊕ (W3 ≫ 19), ek4 = (W0 ≫ 19)⊕ (W3)
ek5 = (W0)⊕ (W1 ≫ 31), ek6 = (W1)⊕ (W2 ≫ 31)
ek7 = (W2)⊕ (W3 ≫ 31), ek8 = (W0 ≫ 31)⊕ (W3)
ek9 = (W0)⊕ (W1 ≪ 61), ek10 = (W1)⊕ (W2 ≪ 61)
ek11 = (W2)⊕ (W3 ≪ 61), ek12 = (W0 ≪ 61)⊕ (W3)
ek13 = (W0)⊕ (W1 ≪ 31), ek14 = (W1)⊕ (W2 ≪ 31)
ek15 = (W2)⊕ (W3 ≪ 31), ek16 = (W0 ≪ 31)⊕ (W3)
ek17 = (W0)⊕ (W1 ≪ 19)

(4)

B. Quantum gates
Figure 3 shows some representative quantum gates. First,

Figure 3a depicts the X gate. The X gate flips the state of



a qubit and is equivalent to the NOT operation in classical
computing. Figure 3b represents the CNOT gate. The CNOT
gate uses two qubits (1 control qubit, 1 target qubit), and when
the control qubit is 1, it flips the value of the target qubit.
Figure 3c represents the Toffoli gate. The Toffoli gate requires
two control qubits and one target qubit. When both control
qubits are set to 1, the target qubit is flipped, similar to an
AND operation. The Toffoli gate is composed of a combination
of various other gates. There have been numerous studies on
decomposing the Toffoli gate [3]–[6]. In this study, we utilize a
method outlined in [3] to decompose the Toffoli gate, requiring
7 T gates, 8 Clifford gates, with a total depth of 8 (where the
T-depth is 4). Optimization of Toffoli gates and depth is crucial
due to the significant quantum resources it demands compared
to other gates.

x0 X ∼ x0

(a) X (NOT) gate

x0 • x0

x1 (x0 ⊕ x1)
(b) CNOT gate

x0 • x0

x1 • x1

x2 (x2 ⊕ (x0x1)
(c) Toffoli (CCNOT) gate

Fig. 3: Quantum gates.

C. Grover’s key search

The Grover’s key search consists of three main steps, as
follows.

1) Input Setting: By applying Hadamard gates, we prepare
a k-qubit key into a superposition state |ψ⟩, where all
2k possible states are equally probable.

H⊗k |0⟩⊗k
= |ψ⟩ =

( |0⟩+ |1⟩√
2

)
=

1

2k/2

2k−1∑
x=0

|x⟩

2) The Oracle is constructed as a quantum circuit that
encrypts the known plaintext(p) using the key in the
prepared superposition state in the input setting. In
this process, ciphertexts for all possible key values are
generated. These ciphertexts, effectively comprising a
single ciphertext in a superposition state, undergoes
comparison with the known ciphertext(f(x)). When a
match is found (i.e., if f(x) = 1 in Expression (5), the
sign of the key state to be recovered is flipped (i.e., if
(−1)f(x) = −1 according to Expression (6). Finally, to
prepare for the next iteration, the quantum circuit that
has been implemented is reversed thereby converting
the generated ciphertext back into the known plaintext.

Ultimately, a single oracle encompasses two quantum
circuits.

f(x) =

{
1 if Enckey(p) = c

0 if Enckey(p) ̸= c
(5)

Uf (|ψ⟩ |−⟩) = 1

2n/2

2n−1∑
x=0

(−1)f(x) |x⟩ |−⟩ (6)

3) The Diffusion Operator amplifies the amplitude of states
with a negative sign that have been inverted by the oracle.
It can be easily implemented using H, X, and k-qubit
controlled Z gates. The overhead of the diffusion operator
is so insignificant compared to that of the oracle that it
is often overlooked in the cost analysis of the Grover
search algorithm [7]–[9].

III. QUANTUM CIRCUIT IMPLEMENTATION..

In this section, we describe depth-optimized quantum circuits
for ARIA components and compare them with previous works.

Our purpose for implementing the quantum circuit prioritizes
minimizing the depth of the quantum circuit over reducing
the number of qubits. Nevertheless, it is crucial to emphasize
that the number of qubits remains a fundamental resource in
quantum circuit. In this regard, we implement ARIA quantum
circuit with a focus on decreasing circuit depth while balancing
the trade-off between the number of qubits and the depth.

A. Implementation of S-box

x−1 = x254 = ((x · x2) · (x · x2)4 · (x · x2)16 · x64)2 (7)

In SPN (Substitution-Permutation Network) structures such
as ARIA, the S-box performs a nonlinear transformation and is
primarily implemented based on lookup tables. On the contrary,
in quantum computing, the inherent properties of superposition
and entanglement poses difficulties for the direct utilization
of lookup tables. Therefore, S-boxes should be implemented
using Boolean expressions through quantum gates.

The expressions of S-boxes for ARIA are provided in
Equations (1) and (2). To implement S-boxes, we first need
to compute the inversion, x−1. To calculate the inversion in
a Galois field GF(28), the Itoh-Tsujii algorithm [10] can be
employed. This algorithm efficiently computes the inversion
using multiplication and squarings.

Chauhan et al. [11] used schoolbook multiplications and
employed PLU decomposition [12] for squarings. In order
to save on the number of qubits, they employed for inverse
squarings and inverse multiplications. This resulted in a total
of 7 multiplications, 33 squarings and utilized only 40 qubits.
However, this strategy led to an increase in the depth while
keeping qubit count low.

In the previous work [13], they used a optimized multiplica-
tion [14] to reduce the depth. This multiplication utilizes the
Karatsuba algorithm recursively and allocates ancilla qubits.
Through this, all Toffoli gates can operate in parallel, leading



to a Toffoli depth of 1. Additionally, the reuse of ancilla qubits
allows for efficiency in the implementation of inversion, which
involves multiple multiplications.

In our implementation, we apply different methods to each
S-box (S1 and S2). S1 in ARIA is identical to the AES S-box.
Recently, there has been considerable research on AES. In
particular, based on Boyar-Peralta algorithm [15], [16], there
are numerous studies focused on optimizing AES quantum
circuits [8], [9], [17]–[19]. We apply the implementation by
Jang et al. [9], which achieved the best depth reduction (while
using a reasonable number of qubits), to the ARIA S-box.
By applying this method, we can significantly reduce both the
depth and the number of qubits and gates compared to previous
research. This reduction is particularly impactful due to the
significant decrease in Toffoli gate operations. This For S−1

1 ,
we combine the implementation of Jang et al. [9] and Huang
et al. [19]. According to [19], implementing the inverse of S1

(S−1
1 ) requires the S1 circuit. Therefore, we implement the

inverse circuit of S1 (S−1
1 ) by replacing only the S1 circuit

part with the circuit in [9], which features the most depth
optimization, in inverse circuit from [19].

However, S2 can not be implemented by Boyar-Peralta
algorithm, so we also use Itoh-Tsujii algorithm same as
previous works. Similar to [13], we use the optimized Karatsuba
algorithm, which is Toffoli depth one. In Squaring, we use
XZLBZ [20] method. This is an in-place operation, similar
to PLU decomposition, but it can reduce the number of
CNOT gates and depth compared to PLU decomposition.
Figure 4 shows the quantum circuit for the squaring operation
using XZLBZ. Additionally, we implement the matrix-vector
multiplication by allocating 8 ancilla qubits for each S-box
(i.e., out-of-place).

x0 x0
x1 x4
x2 x1
x3 x5
x4 • • • x2
x5 • • • x6
x6 • • x3
x7 • • x7

Fig. 4: Squaring in F28/(x
8 + x4 + x3 + x+1) using XZLBZ

Table I illustrates the quantum resources required for S-box
implementation. Our approach using Itoh-Tsujii algorithm is
applied only to S2. However, for comparison, note that quantum
resources applied to S1 are presented.

In result, we can reduce the qubits and gate counts but can
not affect the full depth for the overall circuit. It describes in
Section III-B.

B. Implementation of Substitution Layer

ARIA employs two types of S-boxes, namely S1 and
S2 , along with two distinct substitution layers denoted
as (LS,LS,LS, LS) and (LS−1, LS−1, LS−1, LS−1), where

TABLE I: Quantum resources required for implementations of
a S-box(S1).

Method Source #CNOT #X #Toffoli Toffoli depth #Qubit depth

Itoh-Tsujii

[11] 569 4 448 196 40 -

[13] 1114 4 108 4 162 151

Ours 1106 4 108 4 170 137

Boyar-Peralta Ours 162 4 34 4 84 33

LS = (S1, S2, S
−1
1 , S−1

2 ). Thus, each substitution layer utilizes
16 S-boxes. Similar to previous papers, we reduce the depth
by parallelizing the processing of all S-boxes in each substi-
tution layer. In [13], 608 (38 × 16) reusable ancilla qubits
were initially allocated to process all S-boxes in parallel. In
our implementation, as described in section III-A, different
techniques are applied to S1 and S2, requiring ancilla qubits
only for S2. Therefore, we initially allocate a total of 304 (38
×8) ancilla qubits to process them in parallel.

Parallel processing allows for a significant reduction in depth
compared to sequential operations, but it comes with one
drawback in our implementation. Due to parallel processing,
the technique applied to S1 has been beneficial in reducing
the number of qubits, but there is no corresponding gain in
terms of depth. This is because the depth cost of S2 is higher
than that of S1, resulting in the depth of a substitution layer
being measured by S2.

C. Implementation of Diffusion Layer

The diffusion layer can be expressed as a set of operations
performed through a 16 × 16 binary matrix multiplication. To
implement linear operations like matrix multiplication, various
methods can be adopted. Firstly, there is the option of in-
place operations, where no additional qubits are allocated.
In [11], [13], the PLU decomposition technique was chosen.
Additionally, for in-place operations, the XZLBZ technique
can also be utilized. While these implementations lead to a
reduction in the number of qubits required for the quantum
circuit, the limited computational space resulting from the
small number of qubits necessitates the sequential operations of
CNOT gates, leading to an increase in circuit depth. Therefore,
we adopt an out-of-place approach of allocating ancilla qubits
to store the results, reducing the depth.

In our approach, 128 ancilla qubits are allocated for each
round (i.e., out-of-place) to store the output of the diffusion
layer. Algorithm 1 demonstrates the implementation of the
out-of-place method on the diffusion layer. During this process,
we aim to minimize the depth by reordering CNOT gates to
maximize parallel processing wherever possible.

As shown in Table II, we observe that XZLBZ achieves a
smaller depth. Furthermore, the out-of-place method allocates
more qubits but demonstrates superior depth efficiency.

IV. PERFORMANCE

In this section, we provide an estimated quantum resources
of our ARIA-128, 192, 256 quantum circuit implementationm
comparing the previous works. We utilize the ProjectQ quantum



Algorithm 1: Quantum circuit implementation of ARIA
Diffusion Layer using out-of-place.

Input: x, M
Output: result

0: Allocate result qubit → result[16][8]
0: for 0 ≤ i ≤ 16 do
0: for 0 ≤ j ≤ 16 do
0: if M [16 + j]==1 then
0: CNOT8bit(x, j, result, i)
0: return result =0

TABLE II: Quantum resources required for implementations
of a Diffusion layer.

Method #CNOT #Qubit depth

PLU 768 128 31

XZLBZ 376 128 17

Out-of-place 896 256 7

programming tool for both implementation and simulation of
the quantum circuits. The correctness of the implementation is
validated using the ClassicalSimulator library within ProjectQ,
and we scrutinize the quantum resources utilized with the
assistance of the ResourceCounter.

Table III and IV present resource estimates for the ARIA
quantum circuits, providing estimations for the NCT level and
Clifford+T level, respectively. As mentioned in Section II-B,
since the Toffoli gate can be decomposed into Clifford and T
gates, we also provide resource estimates for this decomposition
in Table IV.

Additionally, we compare the resource costs of our imple-
mentation with previous works in both Table III and IV to
assess the efficiency of our implementation. However, since
[11] did not provide the decomposed quantum resource costs,
we rely on the estimation provided by [13], which used the
information from [11] to estimate the quantum resource costs.
As shown in Table III and IV, our implementation achieves
the most optimized depth and the number of gates.

V. EVAUATION

In this section, we estimate the cost of Grover’s key search
for ARIA. According to various studies ( [7], [8], [21] and
others), the optimal number of iterations for Grover’s key
search in a cipher using a k-bit key is approximately ⌊π

4

√
2k⌋.

Additionally, the quantum circuit for Grover’s key search
on block ciphers consists of repeated oracle and diffusion
operators. The cost estimation for Grover’s key search only
calculates the quantum resources for the oracle, as the overhead
of the diffusion operator is negligible. In the oracle, two
quantum circuits are executed sequentially. Therefore, the cost
of Grover’s attack is calculated as ⌊π

4

√
2k⌋ × 2 × quantum

resources (Table IV).
However, there is an additional point to note. We should

focus on the number of plaintext-ciphertext pairs (r) required

to discover the unique key. In [8], [17], it was proposed that
obtaining r = ⌈key size/block size⌉ pairs of plaintext-ciphertext
is adequate to identify a unique key. As a result, the conclusive
cost of Grover’s search is 2 × r × ⌊π

4

√
2k⌋ × Table IV.

NIST has defined criteria (Level 1, 3, and 5) for quantum
security based on the complexity of Grover’s attack on AES
(AES-128, 192, 256) to estimate the quantum resistance
strength for symmetric-key cryptography [22], [23]. The metric
used for attack complexity cost is Total depth × Total gates.
This metric considers gate count and depth more than the
number of qubits since gates and depth continue to increase
while the qubit count remains fixed during the operation of the
Grover algorithm. Thus, gates and depth were prioritized over
qubit count in this metric

NIST initially established Level 1, 3, and 5 based on
AES Grover attack costs by Grassl et al. (2170, 2233, 2298,
respectively) [22]. In this case, it can be noted that ARIA
can not achieve those Levels. However, these estimates were
considered too high. With recent advancements in AES research
leading to reduced attack costs, NIST has introduced new post-
quantum security standards [23]. Based on the work by Jaques
et al. [8], the attack costs for Level 1, 3, and 5 have been
revised to 2157, 2221, and 2285, respectively.

In Table V, our work demonstrates the lowest cost in terms
of total depth, total gates, and complexity (total depth ×
total gates) considered by NIST, compared to previous studies.
Additionally, we can confirm that ARIA-128, 192, and 256
achieve levels 1, 3, and 5 respectively.

VI. CONCLUSION

In this paper, we emphasized optimizing the quantum circuit
depth for ARIA block cipher. We provided a detailed of
the implementation of ARIA quantum circuit focusing on
fundamental components, such as the S-box and diffusion layer.
We endeavored to minimize the depth of the quantum circuit
by employing various novel techniques aimed at achieving the
lowest quantum circuit depth. Subsequently, we estimated the
required quantum resources and the cost of Grover’s search
attack on ARIA.

Based on this, we can conclude that ARIA-128, 192, and
256 achieve quantum security level 1, 3 and 5, respectively.
Our implementation of the ARIA quantum circuit achieves over
92.5% improvement in full depth and over 98.7% improvement
in Toffoli depth compared to the implementation proposed in
[11]. Compared to [13], our implementation is improved the
full depth by 36.7% and the number of qubits by 8%.

Lastly, our implementation has significantly optimized the
depth for the S-boxes. As mentioned in Section III-B, this
optimization cannot impact the reduction of the overall circuit
depth. In future work, we plan to explore the Boyar-Peralta
technique for all S-boxes and integrate it. We anticipate
achieving more innovative optimization in terms of depth and
reducing the number of qubits through this approach.
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TABLE III: Required quantum resources for ARIA quantum circuit implementation

Cipher Source #X #CNOT #Toffoli Toffoli depth #Qubit Depth

ARIA-128

[11] 1,595 231,124 157,696 4,312 1,560 9,260

[13] 1,408 285,784 25,920 60 29,216 3,500

This work 1,408 173,652 17,040 60 26,864 2,187

ARIA-192

[11] 1,851 273,264 183,368 5,096 1,560 10,948

[13] 1,624 324,136 29,376 68 32,928 3,978

This work 1,624 197,036 19,312 68 30,320 2,480

ARIA-256

[11] 2,171 325,352 222,208 6,076 1,688 13,054

[13] 1,856 362,488 32,832 76 36,640 4,455

This work 1,856 220,420 21,584 76 33,776 2,772

TABLE IV: Required decomposed quantum resources for ARIA quantum circuit implementation

Cipher Source #Clifford #T T -depth #Qubit Full depth

ARIA-128

[11] 1,494,287 1,103,872 17,248 1,560 37,882

[13] 494,552 181,440 240 29,216 4,650

This work 311,380 119,280 240 26,864 2,952

ARIA-192

[11] 1,742,059 1,283,576 20,376 1,560 44,774

[13] 560,768 205,632 272 32,928 5,285

This work 353,156 135,184 272 30,320 3,347

ARIA-256

[11] 2,105,187 1,555,456 24,304 1,688 51,666

[13] 627,000 229,824 304 36,640 5,919

This work 394,948 151,088 304 33,776 3,741

TABLE V: Cost of the Grover’s key search for ARIA

Cipher Source Total gates Total depth
Cost

#Qubit NIST security
(complexity)

ARIA-128

[11] 1.998 · 285 1.816 · 279 1.814 · 2165 1,561

Level 1[13] 1.117 · 284 1.783 · 276 1.991 · 2160 29,217

This work 1.296 · 283 1.132 · 276 1.468 · 2159 26,865

ARIA-192

[11] 1.146 · 2119 1.073 · 2112 1.23 · 2231 3,121

Level 3[13] 1.2 · 2117 1.013 · 2109 1.216 · 2226 65,857

This work 1.469 · 2116 1.284 · 2108 1.886 · 2224 60,449

ARIA-256

[11] 1.384 · 2151 1.238 · 2144 1.714 · 2295 3,377

Level 5[13] 1.336 · 2149 1.135 · 2141 1.516 · 2290 72,081

This work 1.642 · 2148 1.435 · 2140 1.178 · 2289 67,553

ment(MSIT).(No. RS-2023-00277994, Quantum Circuit Depth
Optimization for ARIA, SEED, LEA, HIGHT, and LSH of
KCMVP Domestic Cryptographic Algorithms, 80%) and this
work was partly supported by Institute for Information &
communications Technology Planning & Evaluation (IITP)
grant funded by the Korea government(MSIT) (<Q|Crypton>,
No.2019-0-00033, Study on Quantum Security Evaluation of
Cryptography based on Computational Quantum Complexity,
20%).
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