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Abstract—Quantum computers can model and solve several
problems that have posed challenges for classical super comput-
ers, leveraging their natural quantum mechanical characteristics.
A large-scale quantum computer is poised to significantly reduce
security strength in cryptography. In this context, extensive
research has been conducted on quantum cryptanalysis.

In this paper, we present optimized quantum circuits for
Korean block ciphers, HIGHT and LEA. Our quantum circuits
for HIGHT and LEA demonstrate the lowest circuit depth
compared to previous results. Specifically, we achieve depth
reductions of 48% and 74% for HIGHT and LEA, respectively.
We employ multiple novel techniques that effectively reduce the
quantum circuit depth with a reasonable increase in qubit count.

Based on our depth-optimized quantum circuits for HIGHT
and LEA block ciphers, we estimate the lowest quantum attack
complexity for Grover’s key search. Our quantum circuit can
be utilized for other quantum algorithms, not only for Grover’s
algorithm. Furthermore, the optimization methods gathered in
this work can be adopted for generic quantum implementations
in cryptography.

Index Terms—Quantum Computers, HIGHT, LEA, Grover’s
Algorithm

I. INTRODUCTION

Large-scale quantum computers, which are expected to
emerge in the near future, pose a threat to the assured
security of cryptography for classical computers. Two quantum
algorithms are considered as major threats: Shor’s algorithm
[1] and Grover’s algorithm [2]. Shor’s algorithm can break
RSA and Elliptic Curve Cryptography (ECC), which are based
on the factorization and discrete logarithm problems. Grover’s
algorithm reduces the search complexity of N to

√
N with a

speedup of square root.
As is well-known, NIST has considered the degradation

of security and is constructing Post-Quantum Cryptography
(PQC) to be ready for potential attacks by quantum computers.
In the NIST PQC document [3], NIST introduced post-
quantum security levels from 1 to 5, corresponding to the
difficulty of breaking AES and the SHA-2/3 family (using
Grover’s key search). In this context, extensive research is
conducted on various ciphers [4]–[12] to evaluate their post-
quantum security strength.

For Grover’s key search, reducing depth is more effective
than reducing qubit count if parallelization of Grover’s algo-

rithm is unavoidable under a depth constraint (referred to as
MAXDEPTH in [3]; related details are given in Section II-C).

In this paper, we present depth-optimized quantum circuits
for HIGHT and LEA. Our quantum circuits for HIGHT and
LEA achieve a depth reduction improvement of 48% and 74%,
respectively, compared to the previous best result [13]. Based
on our quantum circuits, we estimate the quantum complexity
for Grover’s key search for LEA and HIGHT and evaluate the
post-quantum security level.

A. Contributions

Contributions of this paper can be summarized as follows.
– In our understanding, a depth-optimized quantum circuit

is optimal for Grover’s search algorithm (strictly speak-
ing, under the depth constraint known as MAXDEPTH).
We present improved quantum circuits for HIGHT and
LEA in terms of circuit depth. We achieve circuit depth
improvements of 48% and 74% for HIGHT and LEA,
respectively.

– Multiple methods for effectively reducing circuit depth
are gathered in this work. Note that the methods applied
in the implementation can be adopted for generic quan-
tum circuit implementations.

– Based on the implemented quantum circuits, which are
optimal for quantum attack, the required quantum com-
plexities for HIGHT and LEA are redefined in this work.
With estimated quantum complexities, we re-evaluate the
post-quantum security level for HIGHT and LEA.

B. Previous Work

In [14], quantum circuits for HIGHT and LEA were firstly
presented. The aim of the authors was to reduce the number of
qubits without considering circuit depth. In [13], the authors
designed parallel quantum additions in the round function and
key schedule for HIGHT and LEA. As a result, the circuit
depth was significantly reduced compared to [14].

II. PRELIMINARIES

A. Quantum Gates

We summarize common quantum gates used for implemen-
tation of cryptographic algorithms in Figure 1. The X gate of
Figure 1 operates on single qubit and inverts the input qubit;



X(a) = ∼a. The CNOT gate of Figure 1 operates on two
qubits and inverts the target qubit if the control qubit is 1;
CNOT (a, b) = (a, a⊕b. The Toffoli gate of Figure 1 operates
on three qubits and inverts the target qubit if both control
qubits is 1; Toffoli (a, b, c) = (a, b, a⊕ (b · c)).

B. Grover’s Key Search

The process of Grover’s search is divided into three steps:
Input, Oracle, and Diffusion Operator. This section describes
Grover’s key search for ciphers.

1) Input: Hadamard gates are used to prepare a superpo-
sition state on a k-qubit input key, resulting in equal
probabilities for all 2k values of the unknown key.

H⊗k |0⟩⊗k
= |ψ⟩ =

( |0⟩+ |1⟩√
2

)
=

1

2k/2

2k−1∑
x=0

|x⟩

2) In the Oracle stage, the target cipher is implemented
as a quantum circuit that generates the ciphertext using
the key in a superposition state. The resulting ciphertext
(also in a superposition state) is compared with the
known ciphertext (often omitted in resource estimation
[4], [15], [16]). If a match is found (i.e., f(x) = 1), the
sign of the solution key is negated.

f(x) =

{
1 if Enc(x) = ciphertext
0 if Enc(x) ̸= ciphertext

Uf (|ψ⟩ |−⟩) = 1

2k/2

2k−1∑
x=0

(−1)f(x) |x⟩ |−⟩

3) The Diffusion operator enhances the probability of the
solution marked by the oracle (denoted by a negative
sign). Since the complexity of the diffusion operator
is negligible compared to the quantum circuit of the
target cipher, it is commonly omitted in estimations
[15], [16]. In Grover’s key search, an extreme number
of iterations of the oracle and diffusion operator are
executed sequentially to measure a solution with high
probability.

C. Post-Quantum Security Level and MAXDEPTH by NIST

With the beginning of NIST’s standardization of post-
quantum cryptography, post-quantum security levels were de-
fined (see [3]). NIST estimated the quantum attack complex-
ities for AES-128, -192, and -256 by referring to Grassl et
al’s AES quantum circuit implementation, designating them
as post-quantum security levels 1, 3, and 5, respectively.
Recently, AES quantum circuits have been optimized through
extensive research, leading NIST to adjust the quantum attack
complexities of these levels based on Jaques et al’s work [16].
As a result, the quantum attack complexities for these levels
have decreased significantly [17].

Alongside the post-quantum security level, NIST introduced
a parameter called MAXDEPTH. NIST considers the extreme
depth of the quantum circuit for attacking using Grover’s algo-
rithm, as it requires a large number of iterations. Thus, if the

circuit depth for Grover’s key search exceeds MAXDEPTH,
parallelization of Grover’s search becomes unavoidable. Gen-
erally, we evaluate trade-off performance by measuring time-
space complexity (the product of depth and qubit count).
However, for the parallelization of Grover’s algorithm, this
metric changes by multiplying the depth by one more factor.
The reason is the poor parallelization efficiency of Grover’s
algorithm. In [18], the authors analyzed the performance of
parallelization for Grover’s algorithm. In short, if we want to
reduce the circuit depth by a factor of S, we should increase
the number of instances for Grover’s algorithm by a factor
of S2. That is, the metric of time-space complexity changes
to time-squared-space complexity. This is why reducing the
depth is significantly important for Grover’s algorithm.

III. QUANTUM CIRCUIT IMPLEMENTATION OF HIGHT

In this section, we describe our depth-optimized quantum
circuit implementation of HIGHT. Compared to the previous
work [13], we achieve a depth reduction of 54% with only 68
additional qubits.

A. Shallow Architecture for HIGHT

We apply the optimization technique introduced in Jang
et al.’s AES quantum circuit implementation [19], namely
the shallow architecture. The shallow architecture has an
advantage for parallelization, as it can reduce depth with only
a small increase in qubit count. The round function of HIGHT
is defined by (where r is the round number, notation ⊞ means
modular addition, and the functions F0 and F1 correspond to
linear layers, see Equation 3):

X[i] = X[i− 1], i = 1, 3, 5, 7
X[0] = X[7]⊕ (F0(X[6])⊞RK[4r − 3])
X[2] = X[1]⊞ (F1(X[0])⊕RK[4r − 0])
X[4] = X[3]⊕ (F0(X[2])⊞RK[4r − 1])
X[6] = X[5]⊞ (F1(X[4])⊕RK[4r − 2])

(1)

In the previous work [13], the subsequent round function
of HIGHT is delayed until the completion of the reverse
operation of the current round function. However, in the
shallow architecture, the reverse operation of the current round
function is performed simultaneously with the subsequent
round function (i.e., in parallel). Figures 2 and 3 show the
circuit diagrams for the regular and shallow architectures.

For the shallow architecture, we should divide the current
and subsequent round functions in independent. In [13], the
authors perform the reverse operation to reuse ancilla qubits of
the current round function in the subsequent round function.
That is, the current and subsequent round functions share the
ancilla qubits each other (for details, see Figure 3 in [13]).
In contrast, we run two sets of ancilla qubits by allocating
additional ancilla qubits for the subsequent round function.

We use the CDKM adder (the same quantum adder adopted
in [13]), which requires a single ancilla qubit for quantum
addition. In [13], 4 ancilla qubits are allocated for quantum
additions in parallel, as at most 4 additions are performed
simultaneously in the round function. Note that after the



x X ∼ x

(a) X (NOT) gate

x • x

y x⊕ y
(b) CNOT gate

x • x

y • y

z z ⊕ x · y
(c) Toffoli (CCNOT) gate

Fig. 1: Quantum gates used in this work.
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Fig. 2: The regular architecture adopted in [13]

1

1 Qcircuit

Input
Round 1 Round 1† Round 2 Round 2† Round 3 Round 3†

Input

Fig. 1: Regular Source

Input Round 1 Round 2 Round 2† Round 4 Round 4† Round 6

Input Round 1† Round 3 Round 3† Round 5 Round 5†

Fig. 2: Regular Source

Input SB SB†

|0i⌦128 R1 SB SB†

|0i⌦128 R2 SB SB†

|0i⌦128 R3 SB SB†

|0i⌦128 R4 SB SB†

|0i⌦128 R5 SB SB†

|0i⌦128 R6 SB SB†

|0i⌦128 R7 SB SB†

|0i⌦128 R8 SB

|0i⌦128 R9 SB

|0i⌦128 R10 Output

Fig. 3: Shallow Source

References

. . .

Fig. 3: The shallow architecture adopted in this work.

completion of the additions, the 4 ancilla qubits are initialized
to the clean state (i.e., |0⟩) and reused in subsequent quantum
additions. In [13], these 4 ancilla qubits are reused in the
subsequent rounds. However, we allocate an additional 4
ancilla qubits to avoid sharing ancilla qubits between the
current and subsequent rounds.

We should allocate additional qubits to operate key schedule
of the current and subsequent rounds independently. The key
schedule of HIGHT is given by (where r is the round number
and θ is constant):

for r = 0 to 7 :
for i = 0 to 7 :
RK[16 · r + i] = K[i− r mod 8]⊞ δ16·r+i

for i = 0 to 7 :
RK[16 · r + i+ 8] = K[(i− r mod 8) + 8]⊞ δ16·r+i+8

(2)
In [13], qubits for 4 δs are initially allocated to operate

4 round keys simultaneously. After the use of the round
keys, they are initialized to K, and 4 δs are changed for the
subsequent rounds. However, we require 8 round keys, with
4 round keys initialized in reverse order of the subsequent
round and another 4 round keys generated in the subsequent
round. Consequently, we allocate more ancilla qubits for the
additional 4 δs (i.e., 32 qubits).

Thanks to this, during the reverse operations of the current
function, the subsequent round function can be performed in
parallel.

B. Out-of-Place Implementation of linear layer

In HIGHT, linear layer operations which called F0 and F1

are given by:

F0(x) = (x≪ 1)⊕ (x≪ 2)⊕ (x≪ 7)
F1(x) = (x≪ 3)⊕ (x≪ 4)⊕ (x≪ 6)

(3)

The authors in [13] adopted the same implementation
method for F0 and F1 as in [14]. They presented an in-place

TABLE I: Quantum resources required for implementations of
F0 and F1.

Operation Source #CNOT #Qubit (reuse) Depth
F0 [14] and [13] 21 8 15
F0 Ours 24 16 (8) 3
F1 [14] and [13] 24 8 17
F1 [14] and [13] 24 16 (8) 3

implementation without using specific methods such as PLU
decomposition.

We present an out-of-place implementation of the linear
layers. In-place implementation has the advantage of reducing
the number of qubits but increases circuit depth. Additionally,
in the round function of HIGHT, if we use in-place implemen-
tation, the reverse operation of the linear layer (F0 and F1)
must be performed since the input value of x is required in the
subsequent round. This means that the subsequent round can
only run after the completion of the reverse operation, leading
to an increase in circuit depth.

Our out-of-place implementation allocates output qubits for
the result. Thus, the required circuit depth is only 3, and the
input value of the operations is maintained after the operation,
enabling the subsequent round to run.

Additionally, the out-of-place implementation is efficient
since we reuse output qubits using reverse operations. After
using the output qubits as a result, we initialize them by per-
forming the reverse operation of the linear layer. By allocating
only 32 (= 8× 4) output qubits for F0 and F1, we effectively
reduce circuit depth. Note that this reverse operation does not
delay the subsequent round since we already have the input
value.

C. Results

Table II shows the quantum resources required for our
HIGHT quantum circuit compared with the results of [14] and
[13]. Our quantum circuit implementation requires more qubits
but provides the lowest depth. We achieve a 56% improvement
in circuit depth compared to [13], with a reasonable increase
in the number of qubits. As a result, we achieve the highest
trade-off performances in terms of TD-M and FD-M , which
represent time-space complexity. Unsurprisingly, for TD2-M
and FD2-M trade-off performances (major metrics under the
depth constraint), we provide much greater improvement since
our circuit depth is the lowest.



TABLE II: Quantum resources required for implementations of HIGHT.

Source #CNOT #1qCliff #T
Toffoli depth #Qubit Full depth

TD-M FD-M TD2-M FD2-M
(TD) (M ) (FD)

[14] 64,799 13,444 50,176 · 201 68,415 · 1.639 · 223 · 1.711 · 239

[13] 57,558 16,144 40,540 1,664 228 14,058 1.447 · 218 1.528 · 221 1.176 · 229 1.311 · 235

Ours 57,440 16,598 40,422 832 296 7,308 1.879 · 217 1.031 · 221 1.527 · 227 1.84 · 233

TABLE III: Quantum resources required for implementations of LEA.

Cipher Source #CNOT #1qCliff #T
Toffoli depth #Qubit Full depth

TD-M FD-M TD2-M FD2-M
(TD) (M ) (FD)

LEA-128
[14] 94,104 30,592 71,736 · 289 82,825 · 1.427 · 224 · 1.803 · 240

[13] 94,104 31,588 71,736 5856 388 47,401 1.083 · 221 1.096 · 224 1.549 · 233 1.586 · 239

Ours 94,104 31,588 71,736 1,464 2,695 12,326 1.881 · 221 1.98 · 224 1.345 · 232 1.49 · 238

LEA-192
[14] 138,852 45,758 107,604 · 353 124,181 · 1.306 · 225 · 1.238 · 242

[13] 138,852 47,748 107,604 6832 518 55,301 1.688 · 221 1.707 · 224 1.407 · 234 1.441 · 240

Ours 138,852 47,748 107,604 1,708 3,209 14,298 1.307 · 222 1.367 · 225 1.09 · 233 1.193 · 239

LEA-256
[14] 156,672 36,753 129,024 · 417 175,234 · 1.089 · 226 · 1.456 · 243

[13] 158,688 54,630 122,976 7808 582 63,108 1.083 · 222 1.095 · 225 1.033 · 235 1.054 · 241

Ours 158,688 54,630 122,976 1,952 3,657 16,257 1.702 · 222 1.772 · 225 1.622 · 233 1.758 · 239

IV. QUANTUM CIRCUIT IMPLEMENTATION OF LEA
In this section, we describe our depth-optimized quantum

circuit implementation of LEA. Compared to previous work
[13], we achieve a depth reduction of 74% with a reasonable
number of qubits. The round function and key schedule of
LEA-128 are as follows (see [20] for details of LEA-192 and
LEA-256, (0 ≤ i ≤ 23) and notation ≪ means left rotation):

K[0] = (K[0]⊞ (δi mod 4 ≪ i)) ≪ 1
K[1] = (K[1]⊞ (δi mod 4 ≪ (i+ 1))) ≪ 3
K[2] = (K[2]⊞ (δi mod 4 ≪ (i+ 2))) ≪ 6
K[3] = (K[3]⊞ (δi mod 4 ≪ (i+ 3))) ≪ 11
RKi = (K[0],K[1],K[2],K[1],K[3],K[1])

(4)

Xi+1[0] = ((Xi[0]⊕RKi[0])⊞ (Xi[1]⊕RKi[1])) ≪ 9
Xi+1[1] = ((Xi[1]⊕RKi[2])⊞ (Xi[2]⊕RKi[3])) ≪ 5
Xi+1[2] = ((Xi[2]⊕RKi[4])⊞ (Xi[3]⊕RKi[5])) ≪ 3
Xi+1[3] = Xi[0]

(5)

A. Parallel Additions for Round Function

In [13], the authors achieved depth reduction compared to
[14] by parallelizing quantum additions in the key schedule
of LEA. However, for the round function, sequential quantum
additions are performed. In contrast, we present a quantum
implementation of the key schedule where quantum additions
are operated in parallel.

To achieve this, we copy the inputs of the key schedule
before performing the quantum additions (i.e., apply CNOT
(copytarget, copyresult)). Thus, in our implementation, addi-
tional qubits for copyresult are allocated. After the completion
of quantum additions, both inputs and copyresult cannot be
initialized, thus we cannot reuse these as we did in the
quantum implementation of HIGHT.

B. Simultaneous Execution of Round Function and Key Sched-
ule

In [13], the round function is performed after the key
schedule in their LEA quantum circuit implementation, leading
to sequential execution of the round function and key schedule.
In contrast, we present a quantum circuit implementation
where the round function and key schedule are performed
in parallel. To enable parallelization, we allocate additional
ancilla qubits to operate quantum additions of the key schedule
and round function simultaneously. Thanks to this, for LEA-
128, where 4 sequential quantum additions were performed in
[13], our quantum circuit runs 4 quantum additions in parallel,
resulting in a reduction of circuit depth.

C. Results

Table III shows the quantum resources required for our
LEA quantum circuit compared with previous work [13],
[14]. Our quantum circuits for LEA require more qubits but
provide the lowest depth. We achieve a 74% circuit depth
reduction compared to [13], with a reasonable increase in
qubit count. Although we cannot achieve the highest trade-
off performances in terms of TD-M and FD-M , we achieve
optimal performance in terms of TD2-M and FD2-M for
Grover’s search under the depth constraint.

V. EVALUATION

In this section, we estimate the quantum resources required
for Grover’s key search for HIGHT and LEA. Our depth-
optimized quantum circuits for HIGHT and LEA provide the
lowest quantum attack complexity. As we described in Section
II-C, Grover’s algorithm increases the probability of measuring
a solution by iterating a set of oracle and diffusion operator. In
[21], the authors analyzed the optimal number of iterations for
a k-bit search space as ⌊ 4

π

√
2k⌋. The Grover oracle consists of



twice the execution of the quantum circuit of the target cipher.
For the diffusion operator, as we noted earlier, it is omitted
in our resource estimation since the overhead is negligible
(this approach is commonly adopted [16], [19]). In summary,
the quantum resources required for Grover’s key search are
estimated as follows: Table II or III ×2× ⌊π

4

√
2k⌋.

Table IV shows the quantum resources required for Grover’s
key search for HIGHT and LEA. We evaluate the post-
quantum security level suggested by NIST [17]. As described
in Section II-C, NIST defines levels 1, 3, and 5 to correspond
to the attack complexity for AES-128, -192, and -256, respec-
tively. As observed in Table IV, HIGHT and LEA require more
quantum resources than AES for the same key size. This is
because the required quantum resources for HIGHT and LEA
are more than AES. In our opinion, quantum additions used in
HIGHT and LEA consume a lot of quantum resources (such
as gates and depth). However, AES quantum circuits do not
require quantum addition and have been recently optimized
[16], [19]. Thus, HIGHT and LEA achieve the appropriate
post-quantum security level according to the key size.

TABLE IV: Quantum resources required for Grover’s key
search for HIGHT and LEA.

Cipher Total gates Total depth Complexity NIST level
HIGHT 1.372 · 281 1.402 · 277 1.924 · 2158 Level 1 (2157)

LEA-128 1.183 · 282 1.182 · 278 1.398 · 2160 Level 1 (2157)
LEA-192 1.763 · 2114 1.371 · 2110 1.209 · 2225 Level 3 (2221)
LEA-256 1.008 · 2147 1.558 · 2142 1.57 · 2289 Level 5 (2285)

VI. CONCLUSION

We investigated previous quantum circuits of HIGHT and
LEA and improved them in terms of quantum circuit depth.
Multiple novel techniques are gathered in this work to effec-
tively reduce quantum circuit depth, such as shallow archi-
tecture and copying for parallel operation. Depth-optimized
quantum circuits offer optimal performance for Grover’s key
search. Consequently, our quantum circuits provide the lowest
quantum attack complexity and the best trade-off performance
for major metrics under the depth constraint. Since the quan-
tum circuit implementation of the target block cipher is a
fundamental block in quantum cryptanalysis, the presented
quantum circuits in this work can be utilized for other quantum
algorithms, not only for Grover’s search.
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