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Abstract

Payment channel networks are a promising solution to the scalability challenge of blockchains
and are designed for significantly increased transaction throughput compared to the layer one blockchain.
Since payment channel networks are essentially decentralized peer-to-peer networks, routing trans-
actions is a fundamental challenge. Payment channel networks have some unique security and pri-
vacy requirements that make pathfinding challenging, for instance, network topology is not publicly
known, and sender/receiver privacy should be preserved, in addition to providing atomicity guar-
antees for payments. In this paper, we present an efficient privacy-preserving routing protocol,
SPRITE, for payment channel networks that supports concurrent transactions. By finding paths of-
fline and processing transactions online, SPRITE can process transactions in just two rounds, which
is more efficient compared to prior work. We evaluate SPRITE’s performance using Lightning Net-
work data and prove its security using the Universal Composability framework. In contrast to the
current cutting-edge methods that achieve rapid transactions, our approach significantly reduces the
message complexity of the system by 3 orders of magnitude while maintaining similar latencies.

1 Introduction

Researchers have been devising efficient techniques to make cryptocurrency transactions more scal-
able, e.g., Bitcoin currently processes around seven transactions per second, and Ethereum around thirty
transactions per second [19, 6], compared to centralized payment systems, such as Visa Inc., which,
at a conservative estimate, can support up to 1700 transactions per second [5]. For addressing this,
Layer-2 protocols, such as payment channels have been proposed as a workaround [33, 38, 46, 47],
where several thousands of transactions can be processed with minimal blockchain writes and with no
changes required to the blockchain’s underlying consensus mechanism (unlike other approaches such as
sharding and alternate consensus mechanisms [31, 30, 39, 23, 42]). Payment channels also help enable
microtransactions, which allow users to send small amounts of money, e.g., 10−4 Bitcoin, but without
incurring high blockchain transaction fees [32].

*A short version of this work has been accepted to the 19th ACM ASIA Conference on Computer and Communications
Security (ACM ASIACCS 2024). The authors thank Ryan Gentry and Alex Bosworth from Lightning Labs for their insights
and discussion, which helped us improve the paper. The authors also thank Kartick Kolachala for his help with Table 1,
and the anonymous reviewers for their feedback. This research was partially funded by the US National Science Foundation
under grants #2148358 and #1914635, and the US Department of Energy grant #DE-SC0023392. Any opinions, findings and
conclusions or recommendations expressed in this material are solely those of the authors and do not necessarily reflect the
views of the US federal agencies.
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Overview of payment channels: Two parties, Alice and Bob open a payment channel by depositing
a certain amount of cryptocurrency into an address on a blockchain controlled by both parties’ sign-
ing keys. Say, Alice deposits x coins, and Bob deposits y coins. Alice and Bob can conduct several
transactions by exchanging authenticated messages, thus changing the distribution of the coins in the
channel, but without writing anything to the blockchain. The net worth of the channel remains x + y
coins. At a mutually agreed-upon time, they can close the channel by writing a blockchain transaction
that commits the final, authenticated distribution of the coins to the blockchain. The coins are paid
to Alice and Bob per the final transaction. To facilitate transactions between two parties that may not
have a payment channel currently open between them, decentralized payment channel networks (PCNs)
that enable transitive payments have been proposed [36, 48, 37, 41], where two unconnected users can
send/receive payments if there exists a path comprising of several users with payment channels between
them.
Motivation: Layer-2 protocols such as PCNs are gaining widespread acceptance. Lightning Network,
which is a popular PCN based on the Bitcoin blockchain, had over 6 million users and 28 million pay-
ment channels open between June 2021 to July 2022 [45, 33]. Peer-to-peer (p2p) transactions between
users in PCNs are becoming increasingly common, e.g., in 2021, another popular PCN, Ripple, had 15
million unique p2p transactions annually, with a maximum path length of 43 hops [7, 4]. Routing pro-
tocols which help discover payment paths between sender and receiver are at the core of PCNs. There
could exist several paths between a sender and receiver in a PCN with differing channel balances. Each
hop on a path incurs a routing fee, hence longer paths cost more.

Routing in PCNs is fundamentally different from traditional network routing in both, intent and
security/privacy requirements, hence network routing protocols cannot be trivially ported to PCNs. As-
suming a network graph with nodes and weighted links connecting them, in regular network routing,
the intent is to transmit data, not route payments. Transmitting data does not alter the state of the
nodes, but routing payments do change each node’s available link balances. In network routing, band-
width capacities and router/switch identities are usually not considered private information, whereas,
in PCNs, transaction amounts and node identities need to be kept private from all other nodes in the
network. Transmission range and physical distance between devices are factors in network routing, but
not in PCNs. PCNs reside entirely at the application layer, unlike network protocols in communication
networks. Hence network routing protocols cannot be trivially ported.

Maximum flow algorithms such as Ford-Fulkerson [24] or Goldberg-Tarjan [25] would require either
source routing or an external centralized, trusted entity to compute routes, besides having a high path
computation overhead of O(|V ||E|2) and O(|V |3) respectively, in a graph G(V,E). In a decentralized
network, nodes do not know the topology beyond their neighbors. While distributed versions of shortest
path algorithms such as Dijkstra’s algorithm exist [11, 12], they incur a computational complexity of
O(|V |2) +O(|V |), which makes their scalability to large PCNs challenging.

Robust, scalable, decentralized PCN routing protocols hold the promise of making cryptocurrency
transactions faster, hence, designing secure and efficient PCN routing protocols is a challenging research
problem of practical significance.
Related Work: Several early PCN routing protocols were centralized where routing relied on trusted
entities [36, 51, 40]. Some protocols did not support concurrency [36], while others chose paths without
knowing whether the chosen path can satisfy a minimum asking amount [48]. Some routing protocols do
source routing [37, 50] where a sender constructs the entire path from itself to the receiver, while many
protocols do not consider security and privacy aspects [22, 57, 29, 26, 55, 21]. We provide a comparison
of other relevant PCN routing protocols with SPRITE in Table 1, where our comparison metrics are
informed by our security/privacy goals. The protocol in [41], while satisfying our three comparison
metrics, has a very high communication overhead, where every transaction requires blockchain writes,
which defeats the idea of off-chain PCNs. Real-world PCNs such as Lightning Network (LN) [33, 45,
13] implement a gossiping routing protocol, where each node gossips with its peers to build a local map
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Table 1: Routing Protocols in PCNs

PCN Routing
protocols

Privacy of
nodes

Decen-
tralized

Atomi-
city

FSTR [35] ✗ ✗ ✗

Eckey et al.
[21]

✗ ✓ ✓

Auto tune [27] ✗ ✗ ✗

Kadry et al.
[28]

✗ ✗ ✗

MPCN-RP [18] ✗ ✗ ✓
SilentWhispers
[36]

✓ ✗ ✓

SpeedyMurmurs
[48]

✓ ✓ ✗

BlAnC [41] ✓ ✓ ✓
Coinexpress
[53]

✗ ✓ ✓

Vein [26] ✗ ✗ ✗

Spider [50] ✗ ✗ ✗

Flash [52] ✗ ✗ ✓
Robustpay [55] ✗ ✗ ✓
Robustpay+ [56] ✗ ✗ ✓
Webflow [54] ✓ ✓ ✗

SPRITE ✓ ✓ ✓
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of the network. This has issues such as nodes not being able to validate information given by peers, and
nodes often not finding the shortest path.

RobustPay+ [56] and its preliminary version Robustpay [55] focus on building a routing protocol
for PCNs that constructs multiple paths from a sender to a receiver from which the sender chooses
only one path to route the payment. MPCN-RP [18], builds a source routing protocol that minimizes
the transaction fee, using a modified version of Dijkstra’s algorithm, in which the length of the path is
taken into consideration along with the edge weights. Auto-Tune [27] is a routing protocol that supports
structured payments (transaction amount split into multiple pieces). All of these works [18, 27, 55, 56]
do not take privacy of parties and privacy of network topology into consideration, do source routing, and
do not support concurrent transactions.
Our Contributions: In this paper, we design a decentralized routing protocol for PCNs, SPRITE, which
helps reduce trust assumptions, takes into account network dynamics, and preserves key security/privacy
goals, while supporting concurrent transactions with short paths. We formally prove the security of
SPRITE in the Universal Composability framework. We experimentally evaluate the performance of
SPRITE using Lightning Network datasets and compare its performance with two other state-of-the-art
schemes, on several network topologies. Our analysis shows that SPRITE performs significantly better
over a wide array of quantitative and qualitative metrics while improving security and privacy.
Outline: In Section 2, we define our system and threat models, in Section 3, we give an overview of the
workflow of SPRITE. In Section 4, we describe the protocols that constitute SPRITE. In Section 5, we
give the security analysis of SPRITE. In Section 6, we describe our experiments, and in Section 7 we
conclude the paper.

2 SPRITE System Model

In this section, we discuss the basics of a PCN, the parties involved in SPRITE and system parameters.
A PCN fundamentally can be conceptualized as a graph with users representing vertices and edges

representing the payment channels between users. Figure 1 shows four parties and three two-party
channels. The crossed-out number next to each party’s name denotes that party’s original balance in the
channel, while the number above it denotes the new balance. The directionality of the arrows denotes
the direction in which a payment can be processed.

Figure 1: George sending 25 coins to Ron via two intermediaries Alice and Bob in a PCN.

2.1 Parties

1) Routing nodes: In SPRITE some nodes with high number of connections will serve as publicly
identifiable routing nodes (RN), in exchange for a fee, and denote the set of RNs by RN. RNs are
already in use in real-world PCNs, such as Lightning Network as liquidity providers [34], we leverage
them for routing. In SPRITE, RNs help facilitate transactions: broadly, we segment the path between
the sender and the receiver, with each segment checkpointed by an RN. If RNs and RNr are the RNs
closest to sender and receiver respectively, the payment from sender to receiver will progress as: sender
→ RNs → RN1 → . . . → RNn → RNr → receiver. The sender need only tell RNs the identity of
the destination RNr, RNs will find the shortest path to RNr, who will, in turn, be contacted by the
receiver. Consequently, node disconnections/failures or malicious activities on a segment are addressed
and mitigated locally on each segment, and the rest of the path stays unaffected. Nodes volunteer to
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be RNs, and RNs are financially incentivized to help route transactions. RNs periodically broadcast
messages about the available liquidity on their links to nodes within a radius, hopMaxRN.

SPRITE does not require any special security assumptions on which entities can choose to be RNs,
and accounts for malicious RNs in the system (discussed further in Section 2.4 and Section 5). In a
given transaction, RNs involved do not know the identities of Alice, Bob, or any other nodes on the path
(except intermediate RNs or their immediate neighbors). RNs do not have a privileged position from a
monitoring standpoint, except RNs and RNr will know that somebody in their hopMaxRN radius is the
sender/receiver, respectively. Additionally, intermediate RNs will neither know the identities of, nor the
distances to RNs and RNr for a given transaction. Alice and Bob are free to choose the RNs and RNr

per transaction based on the RNs available in their respective routingTables. If an Alice does not receive
a broadcast message from any RN (indicating that she is outside the hopMaxRN radius of all RNs in
the system), she would need to connect either directly to a RN by forming a new payment channel or
connect to another node in the network which is within hopMaxRN − 1 hops of some RN.

Since RNs are economically incentivized to facilitate transactions, we assume RNs will be online,
but SPRITE’s functioning will not be impacted by any specific RN(s) going offline. If an RN does go
offline, the nodes depending on it for sending transactions will have to select other RNs.

2) Perimeter nodes: Perimeter nodes are nodes that are located closer to the boundary of an RN’s
broadcast area where the area is determined by radius hopMaxRN. The idea of using perimeter nodes is
to enable RNs that are spaced across the network to be able to communicate, without having to establish
direct connections with each other. Two RNs that are far apart and want to route a transaction just need
to find a common perimeter node in their local routing tables, and can route payments using that node.
Since we want to preserve the perimeter nodes’ privacy from RNs, in SPRITE, perimeter nodes are
only identified by nonces they generate. The perimeter nodes will send a unique nonce to any RN that
they receive a broadcast message from. If two RNs receive the same nonce, then they know they can
reach each other through the perimeter node that sent the nonce. RNs with overlapping neighborhoods
may have several common perimeter nodes.

3) Regular nodes: Any node that is not a routing node or a perimeter node is a regular node. We
assume all nodes are rational and will act in their best economic interests. We assume the sender and
receiver in a transaction can exchange messages out-of-band with each other, but payments are routed
through nodes on the PCN. We use the terms users and nodes interchangeably.

4) Blockchain: SPRITE can work with any permission-less blockchain, and does not rely on
blockchain-specific constructs such as hash time lock contracts (HTLCs) used in the Bitcoin blockchain,
or smart contracts which are supported only by Turing complete blockchains, such as Ethereum. The
blockchain is only used for opening/closing payment channels, thus avoiding excessive write/validator
fees.

2.2 Setup

When a node joins the PCN, it establishes payment channels with other nodes who offer to connect with
it or accept its connection offer. A node needs to connect to at least one other node to be part of the
PCN. Nodes only reveal their identities to peers that they share a channel with. In this paper, we refer
to peers sharing a channel as neighbors. Every node’s identity is represented by a keypair denoted by
(VKi,SKi), of which VKi is revealed to its neighbors. RNs will need to make their identities, i.e.,
verification keys, known to all nodes in the PCN, so nodes can use them for routing transactions.
Cryptographic Primitives: A sequential aggregate signature is a cryptographic primitive in which a
series of users sign a message, where the final signature is computed sequentially by each user who adds
her signature on her message. We use sequential aggregate signatures [44] (defined in Appendix 8.1) to
maintain the privacy of non-RN nodes in the network (no need for publicly registered signing keypair)
while still allowing for authentication of broadcast messages during the bootstrap phase. Furthermore,
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this helps from an efficiency perspective, since only one final signature needs to be verified rather than
a series of signatures.

2.3 System Parameters

Transactions in a PCN might on occasion fail, e.g., due to abrupt node disconnections and insufficient
liquidity along a path, thus necessitating retries. We set the number of times a transaction can be retried
after a failure as a system-wide parameter, maxRetries. We also assume that each node i maintains a
local state where it stores the number of times each transaction is retried, specifically, it maintains an
arithmetic counter for each transaction (txid i), retry.txid i ∈ Z+, i ∈ Z+. If retry.txid i == maxRetries,
any new messages about that transaction will be rejected so the transaction can be tried on other paths.
After transaction txid i has been completed, times out, or is revoked, retry.txid i is deleted.
Hops: We define five parameters used in SPRITE: hopMaxRN, hopMax, pathStretch, hopCount,
and hopBand. hopMaxRN is the maximum number of hops an RN’s broadcast message travels, hence
defining the RN’s neighborhood. hopBand is used for determining the distance of perimeter nodes.
For example, if node r is an RN, hopMaxRN is set to 20 hops and hopBand is set to 3, then all nodes
that are at 18, 19, and 20 hops away from node r act as perimeter nodes. hopMaxRN and hopBand
are set individually by RNs. hopMax is a dynamic parameter that denotes the maximum number of
hops a transaction can travel in a given segment. It is set by the sender for a given segment based
on the estimated hopCount in the sender’s routingTable. pathStretch, set by the sender, denotes an
absolute upper bound on hopMax and is intended to be used only in case of routing problems that call
for transaction retries within a segment. hopCount at a given node denotes the number of hops traveled
by a message up until that node.
Timers: Transactions in SPRITE have two phases, hold and pay, and their corresponding segment-
specific timers, te1.txid and te2.txid , are maintained by each node participating in a given transaction
designated by txid . These are internal countdown timers that are maintained by each node locally
and are used by the nodes individually to determine when they should timeout the given transaction
and retry on a different path. Since each segment in the hold phase terminates at an RN, timer te1
is cleared by nodes in a segment after a successful hold phase when the receiving downstream RN
responds with an acknowledgment message for the transaction. Else, nodes will retry the transaction’s
hold phase on another path in the given segment after te1 expires. Timer te2 is cleared by all nodes in a
transaction segment after a successful pay phase when they receive an acknowledgment that the payment
has concluded successfully in their segment. Else, if te2 expires, then the transaction is retried for hold
and pay phases in the given segment. In SPRITE, we consider te1 and te2 to be system parameters set
based on current network statistics and dynamics.
Fees: Similar to prior works, we assume RNs get paid a fixed amount periodically, contributed to by
other nodes, and do not impose routing fees for transactions.1 An economic analysis of routing fee
models and optimal routing fee design is an orthogonal problem.

2.4 Threat Model and Security/Privacy Goals

Adversary actions: An adversary can adaptively corrupt any subset of users, including regular nodes,
perimeter nodes and RNs, upon which the corrupted nodes’ channels will be controlled by the ad-
versary. The adversary can then cause the corrupted users to behave in arbitrarily malicious ways,
including misrouting payments and/or disseminating false information. We do not consider any node
dropping/ignoring routing requests as malicious behavior, since that just means the node does not wish
to participate in the given transaction, and a path that does not involve that node has to be found.

1In real-world PCNs such as LN, routing nodes currently get paid the same as other nodes, although there are proposals to
update the fee structure [9, 8, 10].
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Adversary goals: An adversary wants to know nodes’ identities that are not its immediate neighbors,
including sender/receiver identities, and/or make people lose money, i.e., violate the atomicity of trans-
actions.
Privacy-preservation: No node, not even RNs, know the identities of the sender, receiver, or any non-
RN intermediaries for routing transactions, thus preserving sender and receiver privacy. SPRITE does
not require the topology of the network to be known by any participating node in the system, as is
standard in topology-hiding PCNs.2We assume the adversary cannot corrupt all users in the PCN.
Security/Privacy goals:

1) Privacy of nodes: Nodes should not know the identities of any nodes beyond their neighbors and
RNs, nor garner any information (number of channels or balances) about other nodes.

2) Transaction privacy: No node should know the identities of the sender, receiver or the intermedi-
aries in a transaction, unless it shares a channel with them. It should also not know amounts transferred
in transaction paths it is not a part of.

3) Atomicity: Either a payment goes through in its entirety or not at all, i.e., either all link weights
along a transaction path get updated by the transaction amount or none at all. In other words, no honest
party should lose credits because of the malicious behavior of other parties in the network.

Figure 2: Example of SPRITE protocol

3 Example run through of SPRITE

In this section, we provide an example run-through of the SPRITE protocol using Figure 2 where
Alice is the sender and Bob is the receiver for a transaction. For presentation clarity, we do not pictorially
depict multiple intermediary nodes between each of the parties in Figure 2, but there exist multiple nodes
between each of the depicted parties. The bootstrap phase is used by RNs in the system to broadcast
update messages that help nodes in their vicinity build routing tables. At the end of the broadcast phase,
each node in the network will have a local routing table that indicates which RNs are reachable and
through which of the node’s neighbors. The nodes’ routing tables also have estimates about the hop
count and liquidity available to the corresponding RNs. The bootstrap phase also allows RNs to obtain

2In LN, although edited snippets of the topology are made available for research purposes [20], one cannot extract the full
network topology, as nodes’ channel balances are not made public. Further, each payment channel funding transaction is a
Pay-to-Witness-Script-Hash (P2WSH) address, and the nature of the script (a 2-of-2 multisig) will only be revealed once the
funding transaction output is spent. Even if this were known/guessed, not all 2-of-2 multisig scripts on the Bitcoin blockchain
correspond to payment channels. Finally, signing/verification keys are rotated by nodes for every channel (see [13]).
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information about what RNs are in their adjacent neighborhoods, the perimeter nodes that connect them,
and how to reach RNs that are not in the adjacent neighborhoods.

When a transaction needs to occur, Alice and Bob coordinate out-of-band to confirm their closest
reachable RNs (Charlie for Alice and Denise for Bob). From their routing table estimates, Alice and
Bob decide the transaction amount based on the estimated liquidity available between Alice-Charlie and
Denise-Bob, according to Alice’s and Bob’s corresponding routing tables. Alice sends a holds message
to Charlie via one of her neighbors and this message is passed on by each node along the path including
Mikaela, until it reaches Charlie (Figure 2, Steps 1-2 on Alice-Charlie segment). Simultaneously, Bob
sends a holdr message towards Denise through Hu (Figure 2, Steps 1-2 on Bob-Denise segment). Along
the path, all nodes create pair-wise multisig hold contracts with their neighbors to reserve the transaction
amount and set some local variables including hold phase timer (te1) and pay phase timer (te2).

When the messages reach Charlie and Denise, they reply with holdACK messages so that all nodes
receiving the holdACK message clear their local te1 timers and will no longer timeout and retry another
path (Figure 2, Steps 3-4 in Alice-Charlie segment and Bob-Denise segment). Additionally, Charlie
updates Alice’s message so that it can be routed within the network through any intermediate RNs
(Rajiv in this case) and is finally received by Denise (Figure 2, Steps 3-5 on Charlie-Rajiv and Rajiv-
Denise segments). The message is updated by each perimeter node (Larry) and RN (Rajiv) on the path
to facilitate forwarding the message towards Denise.

All nodes on the Alice to Denise path also set corresponding te1 and te2 timers (Figure 2, Steps 3-4
in Charlie-Rajiv segment and Step 5 in Rajiv-Denise segment) which are cleared when the corresponding
RN in that segment is reached (Figure 2, Steps 5-6 in Charlie-Rajiv segment and Step 6 in Rajiv-Denise
segment). In Figure 2, all nodes between Charlie and intermediate RN Rajiv, including perimeter node
Larry will clear their te1 timers after they receive a holdACK from Rajiv (Figure 2, Steps 6-8 on Charlie-
Rajiv segment) and nodes between Rajiv and Denise will clear their timers when holdACK from Denise
is received (Figure 2, Steps 6 on Rajiv-Denise segment). When Denise receives the two holdr and
holds messages, she sends Bob a proceedPay message (Figure 2, Steps 6-7 on Bob-Denise segment).
On receiving proceedPay, Bob creates a pay message and sends it towards Denise (Steps 8-9 on Bob-
Denise segment), which is then forwarded towards Charlie through intermediate RNs (Steps 10-12 on
Charlie-Rajiv and Rajiv-Denise segment), and finally to Alice (Steps 13-14 on Alice-Charlie segment).

Each RN on the path replies with a payACK message when it receives a pay message and thus
clearing timer te2 for all nodes receiving the payACK message (Denise’s payACK represented by Steps
10-11 on Bob-Denise segment, Rajiv’s payACK represented by Step 11 on Rajiv-Denise segment, and
Charlie’s payACK represented by Steps 13-14 on Charlie-Rajiv segment). Finally, Alice sends out her
own payACK when she receives the pay message (Steps 15-16 on Alice-Charlie segment), clearing the
te2 timers for nodes in the last segment, and effectively concluding the transaction.

4 Construction of SPRITE

In the current Lightning Network, most new nodes connect to highly connected nodes in the network.
This leads to a high concentration of nodes connected directly or with low hopcounts to well-connected
nodes (RNs). This setup does not provide sender/receiver privacy from the highly connected nodes and
there is the danger of highly connected nodes’ link balances getting depleted quickly. Furthermore, if
any RNs get disconnected or go offline, many other nodes would get disconnected from the network. In
a network similar to Lightning, where RN nodes are closely located in terms of hop count, an RN-to-RN
broadcast algorithm, which we refer to as R2RB (Algorithm 9) and define in Appendix 8.2, would work
well.

However, if a PCN is built from the ground up with the security of the transactions and privacy
of the nodes as the focus, it is easy to assert that nodes would not necessarily always set up payment
channels directly with well-known nodes (RNs) in the network since this would make the RN their next-
hop neighbor and thus leak their identity as well as all their transactions’ details. In a truly distributed
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network, new nodes would join other nodes in the periphery that they trust and not just RNs. In a system
where RNs are located further apart, R2RB suffers from high message complexity due to long distances
for RN-Update broadcast messages. We developed Algorithms 1, 2, henceforth referred to as R2NB,
which reduces the distance each RN broadcasts to during the Setup phase, thus reducing the message
complexity and adding to the efficiency of our scheme. The hold and pay phases remain the same for
both approaches.

In practice, the first bootstrap phase in a given PCN will involve tuning of the hopMaxRN parameter
by the RNs to get an optimal overlap of perimeter nodes between neighboring RNs. The hopMaxRN

parameter is only used during the bootstrap phase of SPRITE and helps in limiting the number of
broadcast messages from each RN; it is not used during a transaction. When new nodes join the network,
they will receive their neighbors’ routingTables regardless of their distance from any given RN and thus
will join the neighborhood of the RN(s) that their neighbors occupy.

Algorithm 1: R2NB: Bootstrap broadcast from RN to perimeter nodes

1 Each node i initializes a table, routingTablei containing columns:
(reachableRNs, next hop neighbor j, currMaxs, currMaxr, hopCount, te).

2 for each RN, k ∈ RN do
3 k does AS.Setup(1λ)→ ppk and runs AS.KeyGen(ppk)→ (skk, vkk).
4 Create a tuple mk = (RN-Update, ppk, VKk, currMaxks , currMaxkr , hopCount = 0,

hopBand, hopMaxRN , ts) for each neighbor j, j ∈ [1..l] where l is the total number of
neighbors of k. Create σ′

k ← Sign(SKk,mk) and set m′
k = (mk, σ

′
k) Create signature

σk ← AS.Sign(skk,⊥,⊥,⊥,m′
k).

5 return M = ((m′
k), (vkk), σk) to each neighbor j.

6 for each node i in the network on receiving an RN-Update message from neighbor j do
7 On receiving M = ((m′

k, . . . ,mj), (vkk, . . . , vkj), σj), i parses (mk, σ
′
k)← m′

k and
(RN-Update, ppk, VKk, currMaxks , currMaxkr , hopCount, hopBand, hopMaxRN , ts)
← mk.

8 if (Verify(mk,VKk, σ
′
k)→ 0)∨ (AS.Verify((m′

k, . . . ,mj), (vkk, . . . , vkj), σj)→ 0) then
9 Return ⊥.

10 i checks that hopCount value in all messages (m′
k, . . . ,mj) are incremented by 1 in each

message. If not, return ⊥.
11 i runs AS.KeyGen(ppk)→ (ski, vki).
12 i updates its local routingTable for RN k and neighbor j by updating the expiry time

te = currTime + e, currMaxks , and currMaxkr .
13 if ((hopMaxRN −hopBand < hopCount) ∧ (hopCount ≤ hopMaxRN )) then
14 Create a nonce Noncei ←$ {0, 1}λ.
15 Create return message mr′i by updating contents of mj as mr′i = (RN-UpdateReply, ·, ·,

currMaxks , currMaxkr , hopCount, ·, ·, ·,Noncei) where hopCount = hopCount + 1,
currMaxks = min(currMaxks , lwj,i), and currMaxkr = min(currMaxkr , lwi,j).

16 i creates signature σi ← AS.Sign(ski, σj , (m
′
k, . . . ,mj), (vkk, . . . , vkj),mr′i). i sends

MR = ((m′
k, . . . , mj , mr′i), (vkk, . . . , vkj , vki), σi) back to neighbor j.

4.1 Bootstrap phase

This phase is described in Algorithm 1 and Algorithm 2. In the bootstrap phase the RNs first broadcast
messages in the PCN within hopMaxRN hops, advertising their available liquidity. The goal is to make
nodes within hopMaxRN aware that they can reach the respective RN, and help them construct their
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local routing tables.
RN broadcast to bootstrap neighborhood (Algorithm 1): In Algorithm 1, Lines 2-5, each RN k

sets up the public parameters of an aggregate signature scheme, ppk and creates an aggregate signature
keypair for itself (skk, vkk). This is so all nodes in the RNs neighborhood can set up pseudonymous
keypairs to hide their identity while propagating messages. It then composes an update message mk,
to be sent to all its neighbors. The message mk contains k’s available liquidity in the outgoing direc-
tion, currMaxks , liquidity in the incoming direction currMaxkr , and its real identity, VKk. It also sets
hopCount to be zero and sets the hopBand. Perimeter nodes will be the farthest nodes from k in the
band defined by

Algorithm 1: R2NB: Bootstrap broadcast from RN to perimeter nodes (continued)

17 if hopCount ≥ hopMaxRN then
18 Return ⊥.
19 for each neighbor s do
20 i creates mi by updating contents of mj as hopCount = hopCount + 1,

currMaxks = min(currMaxks , lwi,s), and currMaxkr = min(currMaxkr , lws,i).
21 i creates signature σi← AS.Sign(ski, σj , (m

′
k, . . . , mj), (vkk, . . . , vkj), mi).

22 i sets M = ((m′
k, . . . ,mj ,mi), (vkk, . . . , vkj , vki), σi) and return M to neighbor s.

23 for each node j in the network on receiving an RN-UpdateReply message from neighbor o do
24 On receiving MR = ((m′

k, . . . ,mr′i, . . . ,mr′o), (vkk, · · · , vki, . . . , vko), σo).
25 if (AS.Verify((m′

k, . . . ,mr′o), (vkk, . . . , vko), σo)→ 0) then
26 return ⊥.
27 if j is the RN k then

28 if (hopMaxRN − hopBand)
?
≤ |{m′

k, . . . ,mr′i, . . . ,mr′o}|/2
?
≤ hopMaxRN ) then

29 Add (Noncei, o, ·, ·, ·, ·) to RNroutingTablek.
30 else
31 Add Noncei and neighbor o to routingTable.
32 Update contents of mr′o as mr′j = (RN-UpdateReply, ·, ·, currMaxks , currMaxkr ,

hopCount, ·, ·, ·,Noncei) where hopCount = hopCount− 1,
currMaxks = min(currMaxks , lwj,o), and currMaxkr = min(currMaxkr , lwo,j).

33 j creates signature σj ← AS.Sign(skj , σo, (m
′
k, . . . , mr′o), (vkk, . . . , vko), mr′j).

34 Forward message MR = ((m′
k, . . . , mr′o, mr′j), (vkk, · · · , vko, vkj), σj) to neighbor

from who RN-Update message of k with timestamp ts was received.

nodes lying between hopMaxRN hops and (hopMaxRN − hopBand) hops from k. Each RN k can
set its hopBand independently. RN k timestamps and signs the message mk using the signing key tied
into its real identity, and produces a signature, σ′

k. It then again signs σ′
k and mk using its aggregate

signature signing key and creates an aggregate signature, σk, which is sent to k’s neighbors.
In Line 6, each node i within hopMaxRN receives a set of messages (m′

k, . . . ,mj) and a set of
verification keys (vkk, . . . , vkj) and a single aggregate signature σj which represents the aggregate
signature of all nodes along the path from RN k to node j. Node i will then verify the signature, perform
other checks (Lines 6-10), and update the values of currMaxks and currMaxkr in its local routing table
(Line 12). If node i is a non-perimeter and non-RN node, it then composes a new RN-Update message
to forward to its neighbors. It increments the hopCount by one, computes the new values of currMaxks ,
currMaxkr based on its local channel balances, appends its message to the message list and generates an
aggregate signature on the appended list. It then sends the updated RN-Update message to its neighbors
(Lines 19-22).
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If node i happens to be a perimeter node (Lines 13-16) based on the hopCount of the received
message, it generates a nonce Noncei. It creates an RN-UpdateReply tuple that includes Noncei, updated
values of currMaxks , currMaxkr , and hopCount, and sends it to it’s previous node towards RN. All
perimeter nodes also forward the RN-Update message until it reaches the node at hopMaxRN hops,
who will send a reply but not broadcast the message further.

When nodes receive an RN-UpdateReply tuple, they act differently depending on whether they are
an RN or a regular node. If the receiving node is an RN, then the message has traveled to the perimeter
nodes and back. The receiving RN will store the reply information sent by the perimeter nodes in its
RNroutingTable, indexed by the Nonce value sent by the perimeter node (Line 27-29). On the other hand,
if the node receiving RN-UpdateReply is a non-RN node, then it updates its local routing table again
with the received information (currMaxks , etc.), adds the perimeter node’s nonce to its local routing table,
computes new values of currMaxks , currMaxkr , decrements hopCount, and sends the signed message to
the neighbor from whom it received the corresponding RN-Update (Lines 31-34). Here e is the system-
wide parameter for depicting the time duration after which a record is considered expired/stale in nodes’
routingTable. In case node i had received the same message tuple with a lower hopCount earlier, it
drops the message to avoid loops. A possible optimization is nodes updating currMaxks , currMaxkr only
once, instead of twice, i.e., on receipt of the RN-Update tuple (Line 20) and not again after receipt of the
RN-UpdateReply tuple (Line 32). New nodes joining the PCN get routingTables from their neighbors as

Algorithm 2: RNs exchanging nonces

1 Each RNi ∈ RN creates a table with rows (Noncem, j, ·, ·, ·, ·), where j is the neighbor RNi

received Noncem from. Let Ni be the set of all nonces obtained by RNi.
2 Each RNi then picks α←$ Zp, picks d ∈ Z+, and creates set
Ri = {ri, ∀ i ∈ [1..d]; ri ←$ {0, 1}λ}, d = |Ri|. RNi then sets Ni = Ni ∪Ri.

3 RNi sends Ni to all RNj ∈ RN \ RNi.
4 Each RNi computes Nij ← Ni ∩ Nj for all RNj ∈ RN \ RNi, and builds its RNroutingTable

locally.

soon as they join and will participate in RN-Update broadcasts in the next time epoch. No re-calculation
or broadcasts happen when new nodes join the network. For highly dynamic networks, the epoch value
can be tuned or lowered so that the RN-Update broadcast messages account for significant changes in
the topology. The cost of the RN-Update bootstrap phase is similar across epochs and depends on the
current size of the network during the broadcast.

Algorithm 3: Alice-RNs - · · · - RNr hold segments

1 Alice picks RNs and Bob picks RNr. Bob sets preimage←$ {0, 1}λ and
digest = H(preimage), and shares digest with Alice.

2 Let ν be the amount of credits Alice wishes to send to RNs. Alice picks
token, preimagetxid ←$ {0, 1}λ, txid = H(preimagetxid ), and sends txid to Bob.

3 Alice does CRNr = EPKRNr
(token, ν, txid) and CRNs = EPKRNs

(V KRNr , ν, txid , CRNr).
4 Alice looks up her routingTable and picks a tuple (RNs, nodek, pk), with

pk = (hopCount, currMaxs, currMaxr, te) where currMaxs ≥ ν and sets
hopMax = hopCount + pathStretch. Alice creates a tuple (holds,RNs, V KRNs , ν, txid ,
CRNs , hopMax, digest, te1, te2) and sends it to nodek.

5 for Each node (nodei) in the network do
6 Follow Algorithm 5

RNs exchanging nonces (Algorithm 2): After the PCN is bootstrapped, the RNs need to setup
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their local RNroutingTables which will help them find other RNs. At the end of Algorithm 1, each RN i
would have received RN-UpdateReply tuples of the form (Noncem, ·, ·, ·, ·, ·) from its neighbors, where
m is a perimeter node within i’s hopMaxRN radius. RN i will receive several tuples containing nonces,
we represent the set of unique nonces that i receives by Ni (Line 1). RN i then pads the set Ni with
random strings and generates a larger setRi (Line 2). This is to ensure that other RNs cannot guess the
size of Ni, thus preserving privacy. SPRITE not only hides the identity of the perimeter nodes against all
RNs in the system using the randomly generated nonces by perimeter nodes, but also hides the number
of perimeter nodes each RN has within its hopMaxRN radius. All RNs then exchange their nonce sets
and each RN finds the intersection of its set with other RNs’ sets (Line 4). If one wants to hide even the
nonce values, we can use more involved protocols such as private set intersection [43].

Algorithm 4: Bob− RNr hold segment

1 Bob generates C ′
RNr

= EPKRNr
(token, ν, txid).

2 Bob looks up his routingTable and picks a tuple (RNr, nodek, pk), with
pk = (hopCount, currMaxs, currMaxr, te) where currMaxr ≥ ν and sets
hopMax = hopCount + pathStretch. Bob creates a tuple
(holdr,RNr, V KRNr , ν, txid , C

′
RNr

, hopMax, digest, te1, te2) and sends it to nodek.
3 for Each node (nodei) in the network do
4 Follow Algorithm 5

Determining te1 and te2 values: After Algorithm 2, RNs help senders determine te1 and te2 values
for their transactions. A low value for te1 and te2 could result in premature timeout of a transaction when
waiting a little longer would have resulted in the transaction completing successfully. te1 and te2 also
shouldn’t be so large that the liquidity in the network is locked up despite there being no viable paths via
the involved RNs. The value of te1 can be set by the sender based on a sampling of communication times

Algorithm 5: Subroutine for every node for hold and pay phase
Each node (nodei):
Case 1: on receiving holdx message, x ∈ {s, r}, msg = (holdx, Y, V KRN(·) , ν, txid , CRN(·) ,
hopMax, digest, te1, te2), calls hold(msg) defined in Algorithm 8.
Case 2: on receiving holdRejectx message msg = (holdRejectx, Y , VKRN(·) , ν, txid ) along
with routingTable update, calls holdReject(msg) defined in Algorithm 8.
Case 3: on receiving holdACKx message msg = (holdACKx, t, σRN(·)) along with
routingTable update, calls holdACK(msg) defined in Algorithm 8.
Case 4: that did not receive a holdACKx tuple for a transaction txid , and current time > te1,
calls holdACKTimeout() defined in Algorithm 8.
Case 5: on receiving pay message msg = (pay, preimage, ν, txid), calls pay(msg) defined in
Algorithm 8.
Case 6: on receiving payACK message msg = (payACK, ·, ·), calls payACK(msg) defined in
Algorithm 8.
Case 7: that did not receive a payACK tuple for a transaction txid , and current time > te2,
calls payACKTimeout() defined in Algorithm 8.

with its next-hop neighbors. For setting the value of te2, each RN can estimate the communication time
to its neighboring RNs, based on an estimate of number of hops per neighborhood and its estimated te1;
this can be built into the routing protocol with little overhead. This information can be broadcasted by
RNs in their neighborhood (as part of the routing messages). When a sender sets the transaction’s te2,
they can use the aggregate statistic of te2 values they receive from their RN, e.g., 3 times the aggregate
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te2. We assume a certain amount of trial and error in finding the right multiplier on the part of the sender.

4.2 Hold phase

This is the first phase of transaction processing. In this phase, all nodes along a path from Alice to Bob
will reserve or “hold” the amount Alice wishes to send to Bob. For ease of discussion, we divide the
path into three segments, Alice−RNs, RNs−RNr, and Bob−RNr. Since the Alice-RNs hold segment
(Algorithm 3) and Bob-RNr hold segment (Algorithm 4) are self-explanatory, due to space constraints,
we describe them in Appendix 8.2.

Algorithm 6: RN operations in hold and pay phase.

1 if hold phase then
2 if nodei == RNs then
3 RNs on receiving (holds,RNs, V KRNs , ν, txid , CRNs , hopMax,digest, te1,te2) tuple

from a neighbor, does mRNs ← DSKRNs
(CRNs) where

mRNs = (V KRNr , ν, txid , CRNr).
4 RNs looks up RNroutingTable to find a path (RNk,RNk+1, . . .RNl) to RNr.
5 RNs creates mhold = (V KRNr , ν, txid , CRNr )
6 for RNi in {RNl, . . . ,RNk+1,RNk} do
7 RNs does mhold = (PKRNi , ν, txid , EPKRNi

(mhold))

8 RNs then sends (holds, Y, V KRNl
, ν, txid , mhold, hopMax, digest, te1,te2), to its

neighbor towards Y according to RNroutingTable for selected path to Y with
hopMax = hopCount of the path.

9 RNs does t = (txid , holds, ν), σRNs ← Sign(skRNs , t), sends (holdACKs, t, σRNs)
along with local routingTable to neighbor that sent holds.

10 else if nodei == RNr then
11 if message is holds then
12 When RNr receives the holds message, then the Alice− RNr segment is complete.

RNr does t = (txid , holds, ν), σRNr ← Sign(skRNr , t), sends (holdACKs, t,
σRNr) along with local routingTable to neighbor that sent holds.

13 else
14 When RNr receives the holdr message, then the RNr − Bob segment is complete.

RNr sends t = (txid , holdr, ν), σRNr ← Sign(skRNr , t), sends
(holdACKr, t, σRNr) along with local routingTable to neighbor that sent holdr.

15 else if nodei = RNi, ∀RNi ∈ [RNk,RNk+1, . . .RNl] then
16 RNi on receiving the tuple (holds,RNi, V KRNi , ν, txid , mhold, hopMax,digest,te1,te2)

parses mhold = (PKRNi , CRNi), sets
mhold = (PKRNi+1 , CRNi+1)← DSKRNi

(CRNi).
17 RNi then sends (holds, Y, V KRNi+1 , ν, txid , mhold, hopMax, digest, te1,te2) to its

neighbor towards Y according to RNroutingTable for selected path to Y with
hopMax = hopCount of the path.

18 RNi does t = (txid , holds, ν), σRNi ← Sign(skRNi , t), sends (holdACKs, t, σRNi)
along with local routingTable to neighbor that sent holds.

19 if pay phase then
20 RNi on receiving pay tuple, sets t = (pay, txid , vkRN, ν), does σRN← Sign(skRN, t).
21 RNi then creates payACK tuple as (payACK, t, σRN) to neighbor it had received pay tuple

from.

Hold phase and Pay phase functions for intermediate nodes (Algorithm 5): This algorithm
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depicts the functions called by different nodes, i.e., regular/perimeter nodes and RNs, when they receive
different messages during a SPRITE transaction (full details of the functions are in Appendix 8.2,
Algorithm 8.) Let us now discuss when/why these functions are called by various nodes.

The hold function is called by a node on receiving a holdr or holds message. The node checks its
routing table and decides which neighbor the hold message needs to be forwarded to in order to route it
to the target RN in the message. If no viable paths are available then the current node would forward
a holdReject message to the neighbor from which it received the hold message originally. If a node in
the network receives a holdReject message then it uses the holdReject function to process the message
and make a decision about whether it should retry on other available paths or forward the holdReject
message back in the direction of the sender.

holdACK and payACK functions are called by nodes in the network on receiving holdACK or payACK
messages, respectively. These functions involve the verification of the received acknowledgment mes-
sages and forwarding them toward the sender on the transaction path. If a node in the network does
not receive a holdACK or payACK message during the hold and pay phases, respectively, and the timers
expire (te1 for hold phase and te2 for pay phase), then the respective nodes call the timeout functions,
holdACKTimeout for hold phase and payACKTimeout for pay phase.

Hold phase and Pay phase RNs’ actions (Algorithm 6): We now discuss how the RNs handle
operations in the hold phase, described in Algorithm 6. We recollect that RNs is the first RN in the path,
and RNr is the last one. When RNs receives a holds message from Alice, it retrieves the verification
key of RNr (Line 3). RNs then constructs an onion consisting of successive encryptions for all the RNs,
{RNl, . . . ,RNk} between RNs and RNr, with RNr being the innermost layer of the onion. RNs sends
the onion to its next-hop neighbor along the path to RNl (Line 3-8). Note that the intended recipient
is the perimeter node common to RNs and RNl (since RNs is not within hopMax distance of RNl).
RNs also sends a signed holdACK message to Alice whom it received the holds message from (Line
9). This is done to give the sender assurance that RNs has received her message, but without requiring
any blockchain writes. If malicious nodes drop holdACK messages, Alice will re-send the holds tuple
after a timeout. The honest intermediaries along the path will recognize the holds message with the
same txid as a duplicate and will re-send the old, stored holdACK message along a different path. When
RNr receives the holds tuple, she sends a holdACK tuple to Alice. Similarly, RNr also sends a signed
holdACK message back to Bob (Line 11-14). When an intermediate RN that is part of the onion created

Algorithm 7: Initialization of the pay phase.

1 At the end of hold phase (before te2 expiry time) if RNr has received a holds tuple and a holdr
tuple with matching token , ν, and txid values, creates a message, m = (proceedPay, txid , ν),
creates signature σproceedPay = Sign(SKRNr , m) sends a tuple (proceedPay, txid , ν,
σproceedPay) towards Bob through Bob− RNr segment.

2 On receiving the message Bob and Alice communicate out of band and Bob sends
(proceedPay, txid , ν, σproceedPay) tuple to Alice.

3 Bob creates a tuple (pay, preimage, ν, txid) and forwards it to its neighbor nodeo with txid
towards RNr.

4 for Each node nodei on txid path on receiving pay message msg do
5 nodei calls pay(msg) defined in Algorithm 8.
6 for Each node nodei on txid path on receiving payACK message msg do
7 nodei calls payACK(msg) defined in Algorithm 8.
8 for Each node nodei on txid path that did not receive a payACK tuple and current time > te2

do
9 nodei calls payACKTimeout() defined in Algorithm 8.

by RNs receives holds, it peels off its layer, finds the identity of the next RN it needs to forward the
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message to, and sends the signed tuple to the perimeter node it knows can reach the destination RN (it
finds this information from its RNroutingTable) (Line 15-18). Since PCNs are highly dynamic, there
might be a situation during a transaction that an RNi on the path between RNs and RNr cannot find a
path to the next RNi+1, even after the maxRetries number of retries. Neither the intermediate RNs nor
any other non-RN nodes on the path can deviate from the original RN path defined by the onion created
by RNs. The intermediate nodes on each segment between two RNs do not know the next segment’s
target RN. In this case, the transaction needs to be failed all the way back to RNs and then retried on a
different path (different intermediate RNs) from RNs to RNr.

4.3 Pay phase

Algorithm 7: The pay phase is initialized by RNr after it receives the holds and holdr tuples originat-
ing from Alice and Bob respectively. Specifically, RNr decrypts CRNr contained in holds and C ′

RNr

contained in holdr, and compares the token contained in both of them. If the token is the same, that
signifies to RNr that some nodes Alice and Bob are sender and receiver in the transaction identified
by txid , since only the two of them know token . RNr then sends a signed proceedPay tuple to Bob,
which signals the start of the pay phase. Bob forwards RNr’s proceedPay tuple to Alice to let her know
the pay phase has started (Line 2). If RNr does not receive token in either holds or holdr, it sends a
multisig(Rev, ·,RNr, ·, ·, ·, txid , ·) to its neighbor in the transaction path.

In the pay phase Bob’s preceding neighbor along the path pays Bob first. Following this, each
node pays its successor first, then gets paid back by its predecessor. Since nodes need some form
of acknowledgment that the pay phase has gone through successfully, RN’s that initiated the current
segment send signed payACK tuples to the nodes in their segment (Algorithm 6, Lines 20, 21).

5 Security Analysis

We now discuss some potential attacks on SPRITE, and mitigation strategies, and then briefly discuss
the formal analysis. We also give a phase-wise analysis of malicious activities in each of the bootstrap-
ping, hold, and pay phases of SPRITE in Appendix 8.3.

5.1 Potential Attacks and Mitigation

Transaction malleability attack: A malicious RNs colluding with a receiver Bob and RNr might
change the transaction amount ν to ν ′. In the Alice-RNs segment, the amount will be ν, the change
occurs in the segments after that, all the way up until Bob.

Case 1: Let’s assume ν ′ > ν and δ = (ν ′ − ν). At the end of this attack, Alice has paid Bob ν
coins and RNs has paid Bob δ coins. None of the honest intermediaries will lose money: they get paid
as many coins (by their successor) as they have paid along the path to their predecessor. The only entity
losing money is RNs since it will not get paid the δ amount and only get paid ν coins, tied to the tuple
it received. Case 2: Let ν ′ < ν. If Bob, RNs, and RNr are all malicious, Bob will get paid ν ′ and RNs

will get paid the difference (δ = ν−ν ′) tied to the tuple received from Alice with ν coins, but since they
were both collaborating malicious entities, this does not affect honest intermediaries. If Bob is honest,
then Bob will get paid ν, but RNs will send a lower amount ν ′ to RNr, thus making malicious RNr lose
money. In all the above cases the adversaries end up losing money but none of the honest nodes get less
coins than what they paid, hence we do not consider these to be successful attacks on SPRITE.
Transaction forgery attack: We assume no honest users in the system will share their signing keys
related to SPRITE with other users. This avoids any situations where an adversary can communicate
on a channel created between two neighbors on behalf of one of them (e.g., Alice/Bob→ Craig, where
Alice and Bob share a channel and Bob is malicious), or the adversary can sign contracts on behalf of
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an honest Alice without Alice’s knowledge (e.g., Bob→ Alice→ Craig, where Bob is malicious). If any
user’s keys are leaked then that user will generate a new set of keys and notify all her neighbors about
the new keys. One could use forward-secure signatures [15] for invalidating the old leaked keys.
Sybil/Counting-based attack: An adversary could intercept network communications over time, iso-
lating holdx messages, and associating messages sharing the same txid and digest. The adversary will
try to identify the sender/receiver in a transaction by isolating messages with the highest hopMax or
lowest timer values.

Counting number of hops based on hopMax does not reveal the identity of sender/receiver since
each RN resets the hopMax value for each segment. The hopMax value is decremented by each node
and is an estimate of the expected hopCount to the target routing helper in the current segment, and
tells how far the current message should go before being dropped. This does not leak to a node in the
network information about how far the sender of the current received message was from it (intermediate
nodes do not know which segment they are a part of). Since te1 and te2 are system parameters and are
included in the hold messages, all nodes in the network will receive the same value of te1 and te2. On
receiving the hold message, each node locally computes its timeout values te1.txid and te2.txid , and
does not forward the local values further.
Sender refusing to pay: Whenever there are timeouts in the hold phase for a specific segment, the
sender RN for that segment will retry the hold phase on a different path. If there are timeouts in the
pay phase the nodes that timed out in that specific segment, will publish their hold and pay contracts
on a public repository or blockchain. Since the hold and pay contracts are signed with pseudonymous
identities, this does not leak information about nodes to the public, but neighbors know each others’
identities and if a node does not post a pay contract associated with a hold contract then this identifies
the malicious activity to the whole network. Any honest neighbors will then avoid the malicious node for
subsequent retries and transactions. If the sender is the malicious node, then all nodes on the path need
to discard the hold and pay contracts and roll back the transaction since the sender has been identified
as malicious and the sender-RNs segment will not be retried.

5.2 Formal Security Analysis

We analyze the security of SPRITE in the Universal Composability framework [16]. To this end, we
define an ideal functionality, FSPRITE, consisting of three functionalities, Fsetup, Fhold, and Fpay. We use
two helper functionalities from [16], Fsig and Fsmt, to model ideal functionalities for digital signatures
and secure/authenticated channels, respectively. We assume the ideal functionalities share internal state
and can access data stored internally by each other.
Fsetup models the broadcast phase where nodes register and establish payment channels and RNs

register and make known their verification key to other nodes in the network. It also provides func-
tionality for broadcasting messages such as RN-Update and RN-UpdateReply. Fhold provides interfaces
for creating a holds message from sender and holdr message from receiver, RN-specific hold phase
functionalities, and the pairwise contract multisig functionality. Fpay provides interfaces specific to the
pay phase, creation and verification of a pay message, pairwise contracts creation and signing in pay
phase, etc. We assume that all functionalities in Fsprite have access to a global clock from which they
can obtain the current time. We give the proof of the following theorem along with the functionalities in
Appendix 8.4.

Theorem 5.1. Let Fsprite be an ideal functionality for SPRITE. Let A be a probabilistic polynomial-
time (PPT) adversary for SPRITE, and let S be an ideal-world PPT simulator for Fsprite. SPRITE
UC-realizes Fsprite for any PPT distinguishing environment Z .
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Figure 3: Results for simulations in the Lightning Topology (LT).

6 Experimental Analysis

6.1 Experimental Setup

We compared R2RB and R2NB with BlAnC [41] and Speedy Murmurs [49] (referred to as SM in this
section), across two topology types, ten topologies each. The first topology, referred to as LT, was taken
from the publicly available Lightning gossip dataset [2] from May 31, 2022. The network has 15833
nodes and 156072 channels. We removed any nodes that did not have any outgoing connections along
with 80% of the nodes which had one incoming or outgoing connection (these nodes are not involved
in routing), leaving 8995 nodes and 129724 channels in LT. We designated the top 10 highly connected
nodes as RNs for evaluating R2RB and BlAnC, and to act as landmarks in SM. As channel capacity is
not present in the gossip messages from the Lightning data, we choose the maximum allowed amount
for a single transaction as the link weight as this value should correlate to a realistic channel capacity.
We compare the performance of BlAnC, SM, and R2RB on LT. R2NB is not applicable to LT due to
the closely located RN nodes.

We constructed a second privacy-preserving network topology (PPNT) as described in Section 4, to
evaluate R2RB, R2NB, BlAnC, and SM. We start by taking the RNs in LT and start adding nodes to the
PCN where the initial few nodes set up payment channels with RNs but subsequent nodes joining the
network connect to other regular nodes, thus forming layers around the RNs. We add nodes until each
RN has a diameter of about 7 hops and a neighborhood of roughly 800 nodes. The perimeter nodes of
each neighborhood are randomly connected to perimeter nodes belonging to other RN neighborhoods.
PPNT had 7978 nodes and 25302 channels. The link weights used in this topology are similar to LT.
We categorized the link weights from LT into two groups, the first group contained channels with at
least one highly connected node (RN), and the second group was made up of links between two regular
nodes. The link weights were then randomly sampled from these two groups and assigned to the links
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Figure 4: Results for simulations in the Privacy Preserving Network Topology (PPNT).

in PPNT based on the channel type.
We randomly chose senders and receivers with at least 3 and 8 hops between them for LT & PPNT

respectively. Although publicly available data for the Lightning network claims an average of 22k
transactions per day [1] – significantly lower than 10 transactions/second, we set a transaction rate at 10
transaction/second. This high rate was used to assess the scalability of SPRITE. In SM, each transaction
gets split into 10 uniform sub-transactions, one for each RN (referred to as landmarks in SM).

We implemented R2RB, R2NB, SM and BlAnC, and deployed the generated topologies in the ns-
3 simulator [3] for our experiments.3 The results were averaged over 10 runs with PPNT for a total
of 100k transactions. The simulations were run on a Desktop class machine with Intel(R) Core(TM)
i7-10700 @ 3.8 GHz CPU and 64 GB of RAM. The metrics for comparison are: path stretch (ratio of
the hop-count of a completed transaction to the optimal hop-count), end-to-end transaction processing
time (latency), transaction success rate, set up costs during Bootstrap phase (message complexity and
duration), and the overall message complexity of the entire simulation.

6.2 Experimental Results

LT Topology results: Figure 3a shows the growth of the message complexity within LT over time.
BlAnC inundates the network with broadcasts for each transaction and given the interconnected nature
of LT this results in a dramatic increase in message complexity, growing at a rate roughly 100 times
that of SM. SM, while having only a fraction of the number of messages compared to BlAnC, still
grows at a much faster rate than R2RB. This is attributable to the splitting of each transaction and the
acknowledgments sent back on the payment path in the routing phase.

Figure 3b shows the growth of latency with respect to hop-count. BlAnC has a higher latency
compared to R2RB and SM. This is attributed to BlAnC having three phases as opposed to two in

3Code: https://github.com/nsol-nmsu/sprite
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SM and R2RB. Note that given its sub-optimality, BlAnC never chooses a 3-hop sender-receiver path.
SM and R2RB have similar latencies. We model cryptographic operations for both R2RB and BlAnC,
but not for SM. We also do not model the delay imposed by blockchain operations for BlAnC. The
hop-counts of transactions in LT range between 3-10 hops, with BlAnC, SM, and R2RB having average
hop-counts of 7, 5, and 6, respectively. The hop-counts for SM represent the highest across the hop-
counts of all the split transactions.

Figure 3c shows the cumulative distribution function (CDF) of latencies for all transactions. Both
R2RB and SM outperform BlAnC significantly, which had an average latency of 113.5 ms, while SM
and R2RB had average latencies of 79.6 ms and 95.3 ms, respectively. The additional delay in BlAnC is
on account of the extra broadcast-based Find phase. R2RB is able to perform almost as well as SM in
terms of real-world delays while providing significantly more security and privacy guarantees. It also has
a significantly higher transaction success rate at 97.17% compared to SM’s 81.3%. R2RB outperforms
SM in terms of success rate due to our in-network retry mechanism, as well as routingTable updates
that are propagated within the network for each holdACK and holdReject message. In LT 9.864% of
transactions required a retry attempt for R2RB. Due to the design of BlAnC, the sender can only send
the maximum available credits on the fastest path to the receiver, hence, only 69.06% of transactions
sent the full amount of required credits. For practical applications, these transactions can be repeated by
splitting the larger ones into sub-transactions, similar to SM.

Figure 3d shows the total number of messages required to bootstrap the network with routing infor-
mation while Figure 3e shows the duration of the phase. BlAnC is excluded from this comparison as
it does not have a Bootstrap phase. SM requires more messages for its bootstrapping phase in LT than
R2RB but takes about 10 ms less than R2RB to complete this phase.

The path stretch of transactions is shown in Figure 3f, it should be noted that BlAnC always finds the
most optimal path in terms of hop-count due to its broadcast-based pathfinding mechanism. The path
stretch for SM was calculated by taking the average amount of hops taken by each sub-transaction and
comparing that against the optimal path (obtained from Dijkstra’s algorithm) between the sender and
the receiver. For R2RB and BlAnC, the number of hops taken by a transaction were compared against
the total hops in the corresponding optimal paths between the sender & RNs, RNs & RNr, and RNr &
the receiver. SM incurs the worst path stretch with a median of 1.075, while R2RB has a median path
stretch of 1.0. The variation in path stretch for transactions in R2RB is due to the routingTable of nodes
becoming stale as the simulation progresses with new transactions. The routing tables can remain fresh
by issuing periodic broadcasts from RNs, similar to the Bootstrap phase, to update the routingTable of
nodes. The higher path stretch in SM can be attributed to its embedded prefix routing and splitting of
transactions among different paths.
PPNT Topology results: All four schemes show linear growth in the number of messages as seen in
Figure 4a. With R2RB and R2NB the number of messages is the lowest and continues to grow linearly
at these low values. As with LT, BlAnC’s Find phase results in thousand times more messages than
R2RB and R2NB while SM results in a ten times higher number of messages in comparison.

Figure 4b shows the growth of latency with respect to hop-count. Both R2RB and R2NB have
a slightly larger latency for each transaction of a given hop-count when compared to SM due to the
cryptographic operations between pairs of nodes on the path.

Figure 4c shows a CDF where it can be observed that for the majority of transactions, R2RB and
R2NB have lower latencies than BlAnC and SM while maintaining transaction success rates of 97.01%
and 96.02%. SM on the other hand, has a success rate of 76.08%. Roughly five percent of transactions in
SPRITE (R2RB and R2NB) have higher latencies than those found in BlAnC and SM due to SPRITE’s
in-network retries that would otherwise fail.

The number of messages and the duration of the Bootstrap phase were averaged over ten runs;
results shown in Figure 4d and 4e. In contrast to LT, SM has higher number of messages, with an
average of around 348k messages when compared to R2RB with 190k messages and R2NB with 88k
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messages respectively. The higher complexity of R2RB and SM is due to the more distributed nature of
the PPNT network, where the landmarks have a much lower degree than LT. In the case of SM, this
results in more nodes receiving multiple messages for each landmark advertisement compared to LT.
Transactions in SM take the least amount of time, while R2RB takes the most, but similar to LT the
difference is negligible.

The transaction path stretch in Figure 4f shows that BlAnC is the most efficient in terms transaction
path length. This is because it finds the most optimal path in terms of hop-count due to its broadcast-
based pathfinding mechanism. This optimal path stretch does come at the cost of higher overhead and
much higher latencies.

The median path stretch value for SM is 1.45 and is significantly higher than R2RB and R2NB with
median values of 1.07 and 1.15, respectively. Due to the distributed network topology, the prefix-based
embedding system used by SM does not adequately identify the shortest path when landmarks are far
from either the sender or receiver. R2NB’s inefficiency is due to the unknown distance of the chosen
perimeter node from the next RN.

7 Conclusion

In this paper, we present SPRITE, a secure, privacy-preserving, and efficient routing protocol for pay-
ment channel networks. SPRITE can support concurrent transactions and takes two rounds of communi-
cation for pathfinding and routing transactions, which is optimal. There are several interesting directions
for future work. One is investigating the design of economic models and mechanisms for estimating and
optimizing routing fees for both, regular nodes and routing nodes in a PCN. Another direction of future
work is studying the interplay of PCNs with other Layer-2 solutions. Finally, another interesting direc-
tion for future work is to mechanically verify the proof of security of SPRITE (and potentially other
PCN protocols) using interactive theorem provers such as EasyUC [17, 14]. This would be a valuable
contribution to the PCN literature, since, to the best of our knowledge, UC proofs in PCNs till date have
not used interactive theorem provers.
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8 Appendix

8.1 AS Function Definitions

Definition 8.1. (Sequential Aggregate Signatures [44]). Let G1, G2 be prime-order cyclic groups of size
p, such that g ∈ G1, g̃ ∈ G2, and e : G1 ×G2 → GT .

• AS.Setup(1k): Given a security parameter k, this algorithm selects a random x ∈ Zp and outputs
pp← (p,G1,G2, GT , e, g, X, g̃, X̃), where X = gx and X̃ = g̃x.

• AS.KeyGen(pp): This algorithm selects a random y ←$ Zp, computes Ỹ ← g̃y and sets sk as y
and pk as Y .
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• AS.Sign(sk, σ, (m1, . . . ,mr), (pk1, . . . , pkr),m) proceeds as follows:

– If r = 0, then σ ← (g,X);

– If r > 0 but AS.Verify( (pk1, . . . , pkr), σ, (m1, . . . ,mr)) = 0, then it halts;

– If m = 0, then it halts;

– If for some j ∈ {1, ..., r} pkj = pk, then it halts.

If the algorithm did not halt, then it parses sk as y and σ as (σ1, σ2), selects t←$ Zp and computes
σ′ = (σ′

1, σ
′
2)← (σt

1, (σ2 · σ
y·m
1 )t). It eventually outputs σ′.

• AS.Verify((pk1, . . . , pkr), (m1, . . . ,mr), σ) parses σ as (σ1, σ2) and pkj as Ỹj , for j = 1, . . . , r,
and checks whether σ1 ̸= 1G1 and e(σ1, X̃ ·

∏
Ỹ

mj

j = e(σ2, g̃ are both satisfied. In the positive
case, it outputs 1, and 0 otherwise.

8.2 Algorithms

Alice − RNs segment (Algorithm 3): Alice first picks an RNs that she can find a short path to via her
neighbors in her routingTable, and Bob picks RNr similarly. Bob then picks a preimage whose hash
digest is sent out-of-band to Alice (Line 1). Alice creates two ciphertexts for RNs and RNr, encrypted
using VKRNs and VKRNr that contain a token , a unique txid and amount ν she wants to send (Line 3).
The digest and token will be used later in the pay phase. She includes VKRNr inside RNs’s ciphertext
to ensure RNs knows which RN to route to. Alice refers to her routingTable and finds a neighbor with
the shortest path to RNs that has sufficient liquidity, and sends the holds tuple to that neighbor. Due
to network dynamics, the hopCounts stored in her routingTable could have become stale, which is
where pathStretch helps. When a holds travels from Alice to RNs, every node will try for pathStretch
number of hops more than the hopMax that Alice stipulated in the holds tuple.
Bob−RNr segment (Algorithm 4): This algorithm depicts the hold phase on the Bob−RNr segment.
Bob refers to his routingTable to find the RN that is reachable from any of his neighbors with minimum
hops, RNr. Bob then generates a ciphertext C ′

RNr
containing the unique txid , amount ν, and unique

token transmitted to him out of band by Alice in Algorithm 3. The idea here is that RNr upon receiving
and decrypting two copies of the token independently from Alice and Bob will be able to connect them
as sender and receiver in the transaction identified by txid , which signifies the hold phase has concluded
successfully. The token is known only to Alice and Bob, unlike other transaction parameters such as
txid , which are known by (potentially malicious) intermediaries in plaintext.

Subroutine for intermediate node (Algorithm 8): This algorithm details the functions called by
nodes in the network during hold and pay phases discussed in Algorithm 5. hold function is called by
different nodes when they receive a holds or holdr tuple. If the receiving node happens to be a perimeter
node, it checks if the tuple was addressed to it (line 5). If so, and if it has a path to transmit the asking
amount, it updates the holds tuple with the destination RN as the receiver and forwards the message.
Nodes in the network that have a path to the target RN or perimeter node, set the transaction’s local retry
counter to be zero. They also store the transaction digest and identity of the destination RN, initialize
the timers te1 and te2, forward the message to their neighbor, and sign a multisig hold contract with
their neighbor. Each node also sets its transaction-specific timers, te1.txid and te2.txid . If the node is
the target RN node in the hold message, it follows Algorithm 6 to process the message.

If the node is a non-perimeter, non-RN node, it signs a multisig contract with its neighbor and
forwards the message to its next-hop neighbor after checking if it has a viable path with sufficient
liquidity to the destination RN/perimeter node (lines 11-16). Let us now focus on nodes setting their
timers. Each Node computes two transaction-specific timers txid .te1 and txid .te2 as functions of the
current time currTime and the global te1 and te2 (line 13, 15). We do this since each node that is not
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a destination (either perimeter node or an RN) cannot simply use te1 and te2 for timeouts, since we
need to ensure that timeouts of nodes are staggered, i.e., the node closest to a destination times out first,
whereas the nodes farthest away from the destination time out last. If a node receives multiple copies of
a holdx message (where x ∈ {s, r} corresponding to sender and receiver respectively) associated with
the same txid , it ignores subsequent messages. When a node cannot find any viable path to a destination
(even after retries), it sends a holdReject message back to its predecessor from whom it received the
holdx message. It also sends a copy of its current routingTable so the predecessor can update its own
routingTable. The multisig contract that was signed associated with the current transaction is also deleted
by both nodes (lines 1-4).

The holdReject function is called by a node in the network on receiving a holdReject message.
Nodes in the network could choose to retry on other paths upto maxRetries limit (lines 18-19) or choose
to forward holdReject message back towards the sender if path is unavailable to a target RN (line 23).
If Alice or Bob receive a holdReject, that means that there is no viable path from their neighbor to
RNs (for Alice) or RNr (for Bob), hence they need to retry the transaction with different neighbors and
possibly new RNs (line 21). The way RNs handle holdx, holdReject messages is slightly different; we
discuss RNs’ actions in these phases separately in Algorithm 6. The holdACK function is called by a
node on receiving a holdACKx message. When the target RN in a given segment receives a holdx tuple,
and is willing to process the transaction, it sends back a holdACK tuple containing its signature to the
neighboring node it received the holdx tuple from.

When a node receives a holdACKx tuple, it deletes its timer te1, and forwards the holdACKx to
its predecessor. Ultimately, the sender should receive the holdACKx tuple, which will tell her that the
holdx messages along that segment were successful, and reached the destination RN. If a node does
not receive a holdACK tuple until te1 expires, it calls the holdACKTimeout function, which retries the
transaction if possible, else it drops the transaction and sends a holdRejectx tuple towards the sender
(line 28). If any node including an RN receives a hold tuple on a different path, after it has already
forwarded a holdACK towards Alice on another path, then it should replay the holdACK tuple on the new
path and send a holdReject message on the previous path. This accounts for a malicious node on any
path not forwarding holdACK tuples downstream thus timing out nodes preceding it, and prompting the
formation of another path to the target RN.

The pay function is called by nodes in the network on receiving a pay tuple from the direction of the
receiver. The pay function involves verification of information included in the pay tuple like the digest
to guard against malicious receivers in the network (line 29) before it is forwarded towards the sender
along with updating the link weights with the neighbor towards the sender. The payACK function is
used to confirm that the pay message has reached the RN towards the sender on the current segment.
The payACK tuple helps verify that the acknowledgment has been sent by an authorized RN or by the
sender Alice for the first segment. On successful verification of the acknowledgment, the node clears
the timer te2 associated with the pay phase before forwarding to their predecessor along the path (Lines
35-38). Finally, there is a subtle issue we need to deal with: all RNs can send signed payACK messages
to their segment, since nodes need to know whether to time out and cancel the multisig contracts, or
whether the transaction went through successfully. RNs can sign tuples since their verification keys are
known to all users in the PCN. In the Alice−RNs segment though, since Alice’s identity is not publicly
known, she cannot sign and send a payACK tuple. Yet nodes on the Alice − RNs segment still need to
know whether the transaction has gone through or whether they need to revoke their multisig contracts.
We address this issue by having Alice reveal the preimage of the txid , preimagetxid to all nodes in the
Alice−RNs segment (Line 33-34). Nodes on Alice−RNs segment then either clear timer te2, or revoke
their multisig contracts as appropriate (Lines 39-41). RNs on receipt of preimagetxid does not forward
it any further (Line 40).

R2RB Bootstrap protocol (Algorithm 9) describes the operations during the bootstrap phase of the
R2RB protocol.
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Algorithm 8: Subroutine for every node for hold and pay phase

def hold (holdx, Y, V KRN(·) , ν, txid , CRN(·) , hopMax, digest, te1, te2)
1 if ∄ (Y , nodej , pj) in routingTable with pj = (hopCount, currMaxs, currMaxr, te) where

(hopCount ≤ hopMax) ∧ ((currMaxx ≥ ν)∨ ((lwij ≥ ν) ∧ (currTime ≥ te))) then
2 Create tuple (holdRejectx, Y, V KRN(·) , ν, txid ) and send with routingTable to neighbor

that sent holdx.
3 Call multisig(Rev,⊥, i, j, lwij , ν, txid , ts) and delete retry.txid , digest.txid ,

segTarget.txid = RN(·), te1.txid , and te2.txid .
4 return
5 if Noncei ∈ (holds, Noncei, V KRN(·) , ν, txid , CRN(·) , hopMax,digest, te1, te2) tuple

belongs to nodei then
6 Lookup routingTable for tuple (RN(·), nodej , pj) with pj = (hopCount, currMaxs,

currMaxr, te) where (hopCount ≤ hopMax) ∧ ((currMaxx ≥ ν)∨ ((lwij ≥ ν)
∧(currTime ≥ te))), update holds tuple to (holds, RN(·), V KRN(·) , ν, txid , CRN(·) ,
hopMax, digest, te1, te2) with hopMax = hopCount, and forward to nodej . Set
retry.txid = 0, digest.txid = digest, segTarget.txid = RN(·),
te1.txid = currTime + (te1 ∗ hopCount), and te2.txid = currTime + te2. Call
multisig(⊥,holds, i, j, lwij , ν,txid ,ts).

7 Update te = currTime + e and currMaxs = currMaxs −ν for pj in routingTable.
return

8 else if nodei == RN(·) then
9 Follow Alg. 6.

10 else
11 Update holdx tuple hopMax = hopMax− 1 and forward tuple to nodej .
12 if Y = Nonce(·) then
13 Set retry.txid = 0, digest.txid = digest, segTarget.txid = RN(·),

te1.txid = currTime + (te1 ∗ (hopCount + hopMaxRN )), and
te2.txid = currTime + te2.

14 else
15 Set retry.txid = 0, digest.txid = digest, segTarget.txid = RN(·),

te1.txid = currTime + (te1 ∗ hopCount), and te2.txid = currTime + te2.
16 Call multisig(⊥,holdx, i, j, lwij , ν,txid ,ts). Update te = currTime + e and

currMaxx = currMaxx ± ν for pj in routingTable.

Figure 5: RNs neighborhoods in R2RB.
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def holdReject (holdRejectx, Y , VKRN(·) , ν, txid )
17 Update local routingTable with new info received.
18 if (∃ (Y , nodej , pj) with pj = (hopCount, currMaxs, currMaxr, te) where (hopCount ≤

hopMax) ∧ (retry.txid < maxRetries) ∧ ((currMaxx ≥ ν)∨ ((lwij ≥ ν) ∧
(currTime ≥ te))) then

19 Update holdx tuple hopMax = hopMax− 1 and forward tuple to nodej . Call
multisig(⊥,holdx, i, j, lwij , ν,txid ,ts). Set retry.txid = retry.txid + 1.

20 else if (nodei == Alice ∧ ∄ (RNs,nodej ,pj)) ∨ (nodei == Bob ∧ ∄ (RNr,nodej ,pj))
where pj = (hopCount, currMaxs, currMaxr, te) and currMaxx ≥ ν then

21 Choose new ν ′ and restart Algorithm 3 and 4.
22 else
23 Forward tuple (holdRejectx, Y, V KRN(·) , ν, txid ) along with local routingTable to

neighbor that sent holdx.
24 Call multisig(Rev,⊥, i, j, lwij , ν,txid ,ts) and delete retry.txid , digest.txid , te1.txid ,

and te2.txid .
def holdACK (holdACKx, t, σRN(·))

25 Update local routingTable with new info received.
26 Parse t = (txid , holdx, ν). Verify(vkRN(·) , σRN(·) , t)→ 1, RN(·) == segTarget.txid , and

delete timer te1 for txid .
27 nodei then forwards the holdACKx tuple with routingTable to neighbor that sent holdx.

def holdACKTimeout()
28 nodei calls multisig(Rev,⊥, i, j, lwij , ν,txid ,ts) to nodej that it had sent holdx tuple to,

and retries send holdx to other neighbors for target Y for txid . If no such neighbors exist,
create holdRejectx tuple, call multisig(Rev,⊥, i, o, lwio, ν, txid , ts), and send along with
routingTable to nodeo that sent holdx message. Delete retry.txid , digest.txid ,
segTarget.txid = RN(·), te1.txid , and te2.txid .

def pay(pay, preimage, ν, txid)

29 if H(preimage)
?
̸= digest.txid then

30 return ⊥.
31 if nodei is an RN then
32 Follow Alg. 6.
33 if nodei is Alice then
34 Create t = (pay, txid , preimagetxid , ν), set payACK = (payACK, t, ⊥) and send to

neighbor that sent pay tuple. return
35 Forward pay tuple to next neighbor nodeo on txid path along with multisig(⊥,pay, i, o,

lwio, ν,txid ,ts).
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def payACK(payACK, ·, ·)
36 if Received (payACK, t, σRN(·)) then
37 Parse t = (pay, txid , vkRN(·) , ν), Verify(vkRN(·) , σRN(·) , t)→ 1, verify RN(·) ∈ RN,

delete te2.txid .
38 nodei then forwards the payACK tuple to the neighbor it had received the pay tuple

from.
39 else if Received (payACK, t,⊥) then
40 Parse t = (pay, txid , preimagetxid , ν), verify H(preimagetxid

?
= digest.txid , if true

delete te2.txid .
41 If nodei == RNs, return, else forward the payACK to neighbor that sent pay tuple.

def payACKTimeout()
42 nodei calls multisig(Rev,⊥, i, j, lwij , ν,txid ,ts) to the neighbor nodej that it had originally

sent pay tuple to and to the other neighbor that it had originally received pay tuple from.

We recall that R2RB differs from R2NB in the distance each RN has to broadcast the RN-Update
message which is depicted in Figure 5. This distance is larger in R2RB because of the absence of
perimeter nodes in the network. The broadcasted messages from each RN travel a certain number of
hops away from the RN, allowing nodes in the given area to route transactions to the corresponding RN.
Due to the larger broadcast area, neighboring RNs will receive each other’s broadcast messages and be
able to route transactions between them directly. The key advantage for R2RB is the elimination of
perimeter nodes, with the trade-off of larger message complexity in the system due to larger broadcast
distances for the RN-Update message.

Multisig contracts (Algorithm 10): The hold and pay phases involve neighboring nodes signing
multisig contracts between them. In the hold phase, the contract stipulates that two neighboring nodes
j and k agree to decrease/increase their link weights lwjk and lwkj respectively, by the sender’s asking
amount (ν) in the future when the pay tuple comes through. The multisig contract in the pay phase
actually updates the link weights, and both neighboring nodes need to sign the new balances. Note that
in the RNr-Bob segment, since the payment goes in the RNr → Bob direction, the link weights are
updated in the opposite direction compared to the Alice−RNs and RNs −RNr segments. If a multisig
contract signed in the hold or pay phases needs to be revoked, the contract and signatures on them are
discarded. Algorithm 10 depicts this process in a straightforward way.

8.3 Informal Security Analysis

Bootstrapping phase: For verifying if RNs set up correct AS parameters, pp, all nodes along a path
can individually check if they can produce a valid signature on a test message, else discard the pp (we
have not shown this simple step for presentation clarity). If RNs do not selectively forward to certain
neighbors, we do not consider it as malicious behavior. The regular nodes within a given RN’s hopMax
radius will receive the RN’s broadcasted messages from other neighbors in the neighborhood.

The next issue is nodes underreporting or overreporting currMaxs and currMaxr. We do not con-
sider nodes underreporting currMaxs and currMaxr as malicious behavior since every node can individ-
ually decide the amount of funds to commit on its own links. If nodes overreport currMaxs, currMaxr
to a value greater than that of their own links, that is malicious behavior. Due to privacy concerns,
nodes’ link weights cannot, of course, be verified by anyone, but overreporting will eventually cause
transaction failure (since there was no actual liquidity) and result in revoked hold/pay contracts with
penalties for the misbehaving node. In any case, no node will lose money. The AS scheme helps verify
that the currMax values do not increase in the series of aggregated messages to help identify malicious
nodes in the network as well. A malicious node cannot increase the currMaxs, currMaxr value signed
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Algorithm 9: R2RB: Bootstrap broadcast from RN to RN

1 Each node i initializes a table, routingTablei containing columns:
(reachableRNs, next hop neighbor j, currMaxs,
currMaxr,hopCount, te).

2 for each RN, k ∈ RN do
3 k does AS.Setup(1λ)→ ppk and runs AS.KeyGen(ppk)→ (skk, vkk).
4 Create a tuple mk = (RN-Update, ppk, vkRI k , currMaxks , currMaxkr , hopCount = 0,

hopMax, ts) for each neighbor j, j ∈ [1..l] where l is the total number of neighbors of k.
Create σ′

k ← Sign(skRI k ,mk) and set m′
k = (mk, σ

′
k) Create signature

σk ← AS.Sign(skk,⊥,⊥,⊥,m′
k).

5 k sends M = ((m′
k), (vkk), σk) to each neighbor j.

6 for each node i in the network on receiving an RN-Update message from neighbor j do
7 On receiving M = ((m′

k, . . . ,mj), (vkk, . . . , vkj), σj), i parses (mk, σ
′
k)← m′

k and
(RN-Update, ppk, V Kk, currMaxks , currMaxkr , hopCount, hopMax, ts)← mk.

8 if (Verify(mk, V Kk,σ′
k)→ 0)∨ (AS.Verify((mk, . . . , mj), (vkk, . . . , vkj), σj)→ 0) then

9 Return ⊥.
10 i checks that hopCount value in all messages (m′

k, . . . ,mj) are incremented by 1 in each
message. If not, return ⊥.

11 i runs AS.KeyGen(ppk)→ (ski, vki).
12 i updates its local routingTable for RN k and neighbor j by updating the expiry time

te = ts+ e, currMaxks , and currMaxkr .
13 if hopCount of received message is equal to hopMax in mk then
14 Return ⊥.
15 else
16 for each neighbor s do
17 i creates mi by updating contents of mj as hopCount = hopCount + 1,

currMaxks = min(currMaxks , lwi,s), and currMaxkr = min(currMaxkr , lws,i).
18 i creates signature σi ← AS.Sign(ski, σj , (m

′
k, . . . , mj), (vkk, . . . , vkj),mi).

19 i sets M = ((m′
k, . . . ,mj , mi), (vkk, . . . , vkj , vki), σi) and sends it to neighbor r.
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Algorithm 10: Multisig Exchange
Input : o ∈ {⊥, Rev},t ∈ {holds | holdr | pay}, j, SKj , V Kj , k, SKk, V Kk, lwjk, ν,txid ,ts

1 if o == Rev then
2 j and k discard currently stored contracts for txid and delete fwjk.txid and fwkj .txid .
3 return
4 if t == pay then
5 j and k set lwjk = fwjk.txid and lwkj = fwkj .txid .
6 return
7 if t == holds then
8 Set fwjk = lwjk − ν. Set fwkj = lwkj + ν.
9 if t == holdr then

10 Set fwjk = lwjk + ν. Set fwkj = lwkj − ν.
11 j sends σj ← SignSKj

(contract = (lwjk,lwkj , fwjk, fwkj), txid , digest, ts) to k.
12 k sends σk ← SignSKk

(contract = (lwjk,lwkj , fwjk, fwkj), txid , digest, ts) to j.

13 if VerifyV Kk
(contract, σk)

?← 1 then
14 j stores (σj , σk, contract), fwkj .txid = fwkj and fwjk.txid = fwjk.

15 if VerifyV Kj
(contract, σj)

?← 1 then
16 k stores (σj , σk, contract), fwkj .txid = fwkj and fwjk.txid = fwjk.
17 if t == holds then
18 j updates the currMaxs = min(fwjk, currMaxs) for all paths going through k. k updates

the currMaxr = min(fwkj , currMaxr) for all paths going through j.
19 if t == holdr then
20 j updates the currMaxr = min(fwjk, currMaxr) for all paths going through k. k updates

the currMaxs = min(fwkj , currMaxs) for all paths going through j.

31



by the RN as part of the first aggregated message because the first message is signed by the RN using
its publicly verifiable signing key.

The other potential source of malicious behavior is nodes underreporting or overreporting hopCount
values. First note that the hopCount is contained in every message ((m′

k, . . . ,mj), Line 7 in Algo-
rithm 1) that is aggregated in the signature. Any honest node along a path can verify that the hopCount
contained within every message is incremented by one, starting with m′

k = 0 (thus reducing hopCounts
would be immediately detected, and the RN-Update message discarded). Inflating hopCounts would
not be in the best interest of the malicious node(s) because honest nodes could have alternative shorter
paths to the intended target node.

Concerning perimeter nodes, two situations could arise: Case 0: A regular node pretends to be a
perimeter node by overreporting its hopCount. In this case, that node’s nonce will not figure in the set
intersection of two RNs since the node was not actually a perimeter node. The node cannot do anything
further. Case 1: A perimeter node underreports its hopcount or drops a message. We do not consider this
malicious behavior, since it just means that the node does not wish to participate in transactions. Since
the RN-Update messages are broadcasted, RNs will get replies from other perimeter nodes. Even if an
RN does not pad its nonce list with random nonces (Algorithm 2, Line 2), it will not leak the identity
of its perimeter nodes to other RNs, although it will reveal the number of perimeter nodes that RN has
paths to.

Hold phase: If an honest node along a path does not receive holdACK or holdReject messages for
a given transaction before the expiry of its timer te1, the transaction will time out and will have to be
retried. Malicious nodes can try to change the message type (the first field), but unknown message types
will get dropped by honest nodes along a path. Malicious nodes might also try to change the “Y” param-
eter denoting the identity of the next RN or perimeter node to forward messages to (Algorithm 5, Case
1, 2). The message will be held at the misdirected RN/perimeter node which could also be potentially
malicious. But eventually, the hold phase for that segment will timeout, and the hold contracts will be
rolled back. Other parameters such as hopMax, digest being modified, or CRN(·) being re-encrypted
(Algorithm 5, Case 1) will result in the hold messages being misdirected, but the hold phase times out,
and we will not get to the pay phase.

A malicious RNs cannot misroute a hold message tuple to an RN′
r instead of the sender’s selected

RNr, e.g., by creating an incorrect onion. This is because Bob’s holdr will be sent to RNr, and since
RN′

r never received it, the misrouted transaction will eventually time out, and any signed contracts
will be rolled back. Similarly, no malicious node, including RNs can increase/decrease the transaction
amount ν to an arbitrary value, because: 1) since the receiver knows the correct amount, the hold will
eventually timeout at the last hop and fail. 2) All honest nodes along the path will have to commit to
paying the amount in the hold phase. Any honest nodes which receive a pay message with a transaction
amount different from the original hold message will refuse to proceed with the pay phase, hence timing
out the transaction and causing a rollback of contracts.

The one thing that a malicious RNs could potentially do is increase the path length to RNr by
several more RNs than is required. The transaction will eventually reach RNr via a longer path in the
RNs − RNr segments. Potential solutions include the sender specifying a maximum number of layers
in the onion encryption at RNs, based on periodic network statistics released by the RNs. We leave
incorporating such mechanisms into SPRITE as future work.

Pay phase: If a node intentionally misroutes the pay tuple or does not forward it, resulting in the pay
tuple not reaching the target node on time, te2 timer will expire, causing nodes to time out and rollback
their pay contracts. In case of any other malicious activity, the hold contract signed in the previous phase
can be enforced.
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8.4 UC Analysis and Proof

We now prove Theorem 5.1. We give a series of games, each of which is indistinguishable from its
predecessor by a PPT Z .

Game 0: This is the same as the real-world SPRITE. Z interacts directly with SPRITE and A.
Game 1: S internally runs A and simulates the secure and authenticated channels functionality

Fsmt.

Lemma 8.1. For all PPT adversaries A and PPT environments Z , there exists a simulator S such that

ExecGame0,Z ≈ ExecGame1,Z

The two games are trivially indistinguishable since S just executes the simulator for Fsmt.
Game 2: S communicates with the honest parties andA, and simulates the protocols of SPRITE with

the help of Fsprite. A can corrupt any user in the network, the sender, the receiver, and any or all RNs at
any point in time by sending a message “corrupt” to them (although not all users in the network). Once
an entity is corrupted, all their information is sent to A and all further communication to and from the
corrupted party is routed through A. We note that suid depicted in Figure 8 is in lieu of sid depicted in
[16]. We now state and prove the following lemma:

Lemma 8.2. For all PPT adversaries A and PPT environments Z , there exists a simulator S such that

ExecGame1,Z ≈ ExecGame2,Z

Proof. TheFsetup function SystemParamSetup is called by S to setup the system parameters for SPRITE.
All nodes in the real-world network establish payment channels with each other by writing the payment
channel initiation transaction on the blockchain. S receives this information and for each honest node
pair nodei and nodej , S creates tuples (NeighborSetup, V Ki, lwij , σi) and
(NeighborSetup, V Kj , lwji, σj) and sends them to Fsetup who adds this information to nTable. All
corrupt nodes are handled by A. All RN in RN register publicly as RN nodes in the real world. To
simulate this, S sends (rnRegister, V Ki, σi) to Fsetup for each RN node nodei ∈ RN. Fsetup stores all
V Ki in rnTable. RNs can be corrupted a-priori. This is handled locally by A.

All RN nodes then create an RN-Update message and broadcast it to their neighbors in the real
world. In the ideal world, S sends CreateBroadcastMsg to Fsetup and A on behalf of all nodes in RN.
The resultant messages received from Fsetup are forwarded to the appropriate nodes by S using the
SendMsg interface of Fsetup. S receives the RN-Update messages of corrupt nodes from A.

Each node in the real world verifies the broadcast on receiving it and updates its local routingTable.
In the ideal world S sends (VerifyBroadcast,msg) to Fsetup to verify the msg and updates the rTable
accessible to the ideal functionalities. If the hopMax value has been reached in the message received,
then the real-world node is finished processing the message. Let us now consider the case where an RN k
is controlled byA and its broadcast is received by S. A needs to construct its message in the right format,
((m′

k, . . . ,mj), (vkk, . . . , vkj , σj)). S will pass on this tuple to Fsetup who will verify the signature, and
if VKk has been included in rTable. Fsetup also checks if the hopCount has been incremented by one in
all consecutive messages, and will return⊥ if any checks fail. The nodes in (vkk, . . . , vkj) are simulated
(or are clones created) by A. This captures our real-world adversary model in that nodes can cause path
inflation if they want to, but we do not check for that.

If the real-world node is within the corresponding RN’s hopBand distance from the perimeter, i.e., if
(hopMax−hopBand) < hopCount), then it replies back towards the RN with a RN-UpdateReply mes-
sage containing a Nonce before updating the received RN-Update message and forwarding it to the next
hop in the neighborhood. To simulate this in the ideal world, S calls (CreateNxtBroadcastMsg,msg)
whereFsetup creates the updated messages to be forwarded by the node and also creates the RN-UpdateReply

33



Functionality Fsetup
SystemParamSetup: Upon receiving t = (sid, hopMax, pathStretch, hopBand, ts, te1, te2,
H : {0, 1}∗ → {0, 1}λ), send t to S .
NeighborSetup: Upon receiving request (NeighborSetup, V Ki, lwij , σi, sid) from nodei and
(NeighborSetup, V Kj , lwji, σj) from nodej , Fsetup checks nTable for existence of tuple
(V Ki, V Kj , ·, ·, ·, ·), if so, return ⊥, or continue. Fsetup internally calls Fsig to verify σi and σj .
If Fsig returns 1 for both checks then Fsetup stores (V Ki, V Kj , lwij , lwji, σi, σj) in nTable and
returns (success, V Ki, V Kj) to nodei and nodej .
rhRegister: Upon receiving request (rnRegister, V Ki, σi, sid), Fsetup internally calls Fsig to verify
σi. If Fsig returns 1 then Fsetup stores V Ki in rnTable and returns “success” to nodei.
SendMessage: Upon receiving request (SendMsg,msg, [nodek, . . . ,nodel], sid) from nodei,
Fsetup checks that each recipient [nodek, . . . ,nodel] is a neighbor of nodei according to nTable,
if verification fails then return ⊥ to nodei. Forward msg to each neighbor in list. createBroad-
cast: Upon receiving request (CreateBroadcastMsg, sid) from nodei, Fsetup checks if tuple V Ki

in rnTable. If not, return ⊥, else continue. For each neighbor of nodei according to nTable
create mi = (RN-Update, ppi, V Ki, currMaxis, currMaxir, hopCount = 0, hopBand, hopMax,
ts ∈ R+) where currMaxis and currMaxir are the link weights between nodei and the respective
neighbor. It then calls Fsig to generate signature σ′

i on mi and sets m′
i = (mi, σ

′
i). It generates

string σagg, vki ←$ {0, 1}k, (m′
i, V Ki, σagg) to sTable, and returns (RN-Update,m′

i, vki, σagg) to
S.
verifyBroadcast: Upon receiving request (VerifyBroadcast,msg, sid) from nodei or S, Fsetup
parses ((m′

k, . . . ,mj), (vkk, . . . , vkj), σj) ← msg, (mk, σ
′
k) ← m′

k and (RN-Update, ppk,
V Kk, currMaxks , currMaxkr , hopCount, hopBand, hopMax, ts) ← mk. Fsetup sends
(Verify, uid,m, σ, pk′) to Fsig, who returns (Verified, uid,m, f), f ∈ {0, 1, ϕ}. If verification
fails or tuple VKk∄ rnTable, then return ⊥ to nodei or S, else continue. Fsetup checks if tuple
(m′

k, . . . ,mj , V Kk, . . . , vkj ,σj) exists in sTable and check if the hopCount in each message in
m′

k, . . . ,mj is incremented by 1. If not found return ⊥ to the calling entity and S , else Fsetup adds
tuple (i, V Kk, nodej , currMaxks , currMaxkr , hopCount, ts) in table rTable. and return “accept”
to nodei.
decrypt: Upon receiving request (decrypt, cTxt, sid) from nodei, Fsetup checks if a tuple
(cTxt,pTxt, i) exists in cTable. If so, Fsetup returns pTxt to nodei, else return ⊥.
createNextBcastMsg: Upon receiving request (CreateNxtBroadcastMsg,msg, sid) from nodei,
Fsetup parses ((m′

k, . . . ,mj), (vkk, . . . , vkj), σj) ← msg. (mk, σ
′
k) ← m′

k and (RN-Update,
ppk, vkRI k , currMaxks , currMaxkr , hopCount, hopBand, hopMax, ts) ← mj . Fsetup
calls Fsig with (KeyGen, uid). When Fsig returns (VerificationKey, uid, pki), Fsetup records
the pair (i, pki) in kTable. If (hopCount > hopMax), return ⊥ to S (to S
or nodei). Fsetup initializes list of messages Mi = []. For each neighbor tuple
(V Knodei , V Knodel , lwlk, lwkl, σi, σl) in nTable, Fsetup creates a message mil = (RN-Update, ppk,
vkRI k , currMaxks , currMaxkr , hopCount + 1, hopBand, hopMax, ts), where currMaxks =
min(currMaxks , lwli) and currMaxkr = min(currMaxkr , lwil). Fsetup generates a string
σagg ←$ {0, 1}k, adds tuple (m′

k, . . . ,mj ,mil, vkk, . . . , vkj , vki, σagg) to sTable and adds
(RN-Update,m′

k, . . . ,mj ,mil, vkk, . . . , vkj , vki, σagg) to Mi. If ((hopMax −hopBand) <
hopCount) ∧ (hopCount ≤ hopMax), Fsetup retrieves tuple (V Ki, V Kj , lwij , lwji, σi, σj)
from nTable, creates nonce, Noncei ←$ {0, 1}λ, creates message mr′i = (RN-UpdateReply,
ppk, vkRI k , currMaxks , currMaxkr , hopCount + 1, hopBand, hopMax, ts,Noncei) where
currMaxks = min(currMaxks , lwj,i) and currMaxkr = min(currMaxkr , lwi,j). Fsetup generates
a string σagg ←$ {0, 1}k, adds tuple (m′

k, . . . ,mj ,mr′i, vkk, . . . , vkj , vki, σagg) to sTable and adds
(RN-Update,m′

k, . . . ,mj ,mr′i, vkk, . . . , vkj , vki, σagg) to Mi. Fsetup sends Mi to S.

Figure 6: Ideal functionality for system setup and network bootstrap (continued)
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VerCreateNextRNUpRep: Upon receiving request (VerCreateNextRNUpRep,msg, sid) from
nodei, Fsetup parses (RN-UpdateReply,m′

k, . . . ,mr′o, vkk, . . . , vko, σo) ← msg, checks if a
tuple (m′

k, . . . ,mr′o, vkk, . . . , vko, σo) exists in sTable, if so continue, else return ⊥ to S.

If tuple V Ki ∈ rnTable, Fsetup checks if (hopMax − hopBand)
?
≤ |m′

i, . . . ,mr′o|/2
?
≤

hopMax), if so continue, else return ⊥ to S. Fsetup parse (RN-UpdateReply, ppi,
vkRI i , currMaxis, currMaxir, hopCount, hopBand, hopMax, ts,Noncel) ← mr′o, add tu-
ple (i,Noncel,nodeo, currMaxis, currMaxir,hopCount, ts) to rTable and return “accept” to
nodei. If tuple V Ki /∈ rnTable, then update mr′o as mr′i = (RN-UpdateReply, ppk,
V Kk, currMaxks , currMaxkr , hopCount − 1, hopBand, hopMax, ts,Noncel), Fsetup gen-
erates a string σagg ←$ {0, 1}k, adds tuple (m′

k, . . . ,mr′o,mr′i, vkk, . . . , vko, vki, σagg) to
sTable, add (nodei,Noncel, nodej , currMaxks , currMaxkr , hopCount, ts) in table rTable, and re-
turn (RN-UpdateReply,m′

i, . . . ,mr′o,mr′i, vkk, . . . , vko, vki, σagg) to S.
populateRHRTable: Upon receiving request (populateRHRTable, sid) from nodei, Fsetup checks
if tuple V Ki ∈ rnTable, if so, continue, else return ⊥. It then retrieves each tuple
(j,Noncel, ·, ·, ·, ·, ·) in rTable for each nodej with V Kj ∈ rnTable, and adds Noncel to tuple
(j, ·, [·, ·,Noncel]) in rnrTable. Fsetup then computes the second column of rnrTable by check-
ing common Nonces of nodes in rnrTable, e.g., if j in rnrTable has common nonces with k, l,m
in rnrTable, Fsetup updates j’s tuple as (j, [k, l,m], [[Nonce(·)]k, [Nonce(·)]l, [Nonce(·)]m]). Fsetup
then sends all tuples of rnrTable in the form of (·, ·,⊥) to all nodes o where VKo ∈ rnTable.

Figure 6: Ideal functionality for system setup and network bootstrap

if the current node is within the RN’s hopBand distance from the perimeter. Now corrupt nodes simu-
lated by A can choose not to reply.

The creation of aggregate signatures populates tuples in sTable which the functionalities can check
for verification of the aggregate signatures. In the real world, on reception of RN-UpdateReply message,
nodes update their routingTable and forward the message back towards the RN. In the ideal world, S
sends (VerCreateNextRNUpRep, msg) to Fsetup on receiving the RN-UpdateReply message msg from
a node. Fsetup verifies the contents of the message, updates rTable for the node and replies back with
the updated message to be forwarded by the said node to its neighbors towards RN. Now the next node
could be simulated by A. First off, if the message tuple (m′

k, . . . ,m
′
ro , ·, ·) does not exist in sTable,

that meansA has responded to an RN-Update request that was never sent out, and the simulation aborts.
If the hop conditions are not satisfied, A is returned ⊥. Else A’s reply is accepted and the rTable is
correspondingly updated by Fsetup. If A does not respond the simulation times out and aborts.

In the real world, RNs on receiving replies for all their broadcast messages share the Nonces received
and create RNroutingTable to be able to route transactions through other RNs. In the ideal world, S sends
populateRNRTable to Fsetup which evaluates rTable entries for all RNs and populates rnrTable with
routing information to help RNs route messages between them. If any corrupt RN is simulated by A,
it get its information by querying Fsetup for the appropriate entries in the rTable, which will be given
correctly to A. For a subset of RNs that are simulated by A, the set intersection to find perimeter nodes
is done locally. For honest perimeter nodes between RNs, S would have passed on the information to
Fsetup, who would have computed and updated the rTable correctly. If all RNs are controlled by A, the
simulation is handled locally by A.
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Functionality Fhold
createHoldSend: Fhold on receiving (createholds, ν,RNs,RNr, sid) from nodei checks if
tuple (i,RNs, j, currMaxks , currMaxkr , hopCount, ts) exists in rTable with currMaxks ≥ ν,
if so continue, else return ⊥. Fhold does preimage, preimagetxid , token ←$ {0, 1}λ,
digest = H(preimage), txid = H(preimagetxid ), cTxtRNs , cTxtRNr ←$ {0, 1}λ, adds tuples
(cTxtRNr , (token, ν, txid),RNr) and (cTxtRNs , (V KRNr , ν, txid , cTxtRNr),RNs) to cTable.
Fhold adds (txid, preimagetxid , digest, preimage, token) to txidTable. Fhold then returns
(holds,RNs, V KRNs , ν, txid , cTxtRNs , hopMax, digest, te1, te2) and nodej to nodei.
createHoldRecv: Fhold on receiving (createholdr, token, ν, txid , digest,RNr, sid) from
nodei checks if tuple (i,RNr, j, currMaxks , currMaxkr ,hopCount, ts) exists in rTable
with currMaxkr ≥ ν, if so continue, else return ⊥. Fhold creates cTxt′RNr

←$

{0, 1}λ, adds tuple (cTxt′RNr
, (token, ν, txid),RNr) to cTable, and returns tuple

(holdr,RNr, V KRNr , ν, txid , cTxt
′
RNr

,hopMax, digest, te1, te2) and nodej to nodei.
verifyandCreateNextHold: Fhold on receiving (verifyandcreatenexthold(·),msg, sid) from
nodei, parses msg = (hold(·), Y, V KRN(·) , ν, txid , cTxt(·), hopMax, digest, te1, te2). If Nonce
belongs to nodei, Fhold updates msg = (hold(·),RN(·), V KRN(·) , ν, txid , cTxt(·), hopMax,
digest, te1, te2). Fhold checks if tuple (i,RN(·), j, currMaxks , currMaxkr , hopCount, ts) exists
in rTable and satisfies the requirements of msg (liquidities are satisfied, etc.) and if so updates
hopMax = hopMax − 1 in msg and returns (nodej ,msg) to nodei. If the information in rTable
is expired (currTime ≥ te), check (nodei,RN(·),nodej , ·, ·, hopCount, ts) exists, if so updates
hopMax = hopMax − 1 in msg and return (nodej ,msg) to nodei. Fhold adds tuple (i, txid , 0,
te1.txid = currTime+(te1∗hopCount), te2.txid = currTime+(te2∗hopCount)) to txTeTable.
If (hold(·), Y,RN(·),VKRN(·) , ·, txid , ·, ·, ·, ·, ·) then if any of the checks fail, return ⊥ to nodei.
verifyandCreateNextHoldRH: Fhold on receiving (verifyandcreatenextRNhold(·),msg, sid)
from nodei, parses msg = (hold(·),RN(·), V KRN(·) , ν, txid , cTxt(·), hopMax, digest,
te1, te2), and checks if tuple V Ki ∈ rnTable. If not then return ⊥, else continue.
Fhold calls Fsig function (Sign,RN(·), (txid, hold(·), ν)) and adds the return σ to a message
(holdACKs, (txid, hold(·), ν), σ) and sends it to nodei.

• If RN(·) == RNs, Fhold retrieves (cTxtRNs ,pTxt,RNs) from cTable, parses pTxt =
(vkRNr , ν, txid , cTxtRNr) and generates ciphertexts for onion type encryption for each suc-
cessive RN till RNr according to rnrTable by finding RNs with common Nonces in their tu-
ples. With cTxtRNo being the ciphertext for the neighboring RN of RNs and outermost layer
of the onion encryption, Fhold creates message (hold(·),Nonce, V KRNo , ν, txid , cTxtRNo ,
hopMax, digest, te1, te2) where Nonce is common in tuples for nodei and RNo according
to rTable, and sends to nodei or S. If no such tuples exist, return ⊥.

• Else if RN(·) == RNr and message type is verifyandcreatenextRNholds then
Fhold retrieves (cTxtRNr ,pTxt,RNr) from cTable, parses pTxt = (token, ν, txid)
and stores token, txid , send internally. If RN(·) == RNr and message type is
verifyandcreatenextRNholdr, then Fhold retrieves (cTxt′RNr

, pTxt,RNr), parses pTxt =
(token, ν, txid) and stores token, txid , recv internally. If Fhold has (token, txid , send) and
(token, txid , recv), then it sends (proceedPay, txid, ν, σproceedPay), where σproceedPay is the
signature on tuple (proceedPay, txid , ν), to A or S.

• Else Fhold retrieves (cTxtnodei , pTxt, nodei) from cTable, parses pTxt =
(vkRNo , ν, txid , cTxtRNo), creates next message (hold(·),Nonce, V KRNo , ν, txid , cTxtRNo ,
hopMax, digest, te1, te2) according to the rTable by finding a common Nonce in tuples for
nodei and RNo using rnrTable. If no such tuples exist, return ⊥.

Figure 7: Ideal functionality for hold phase (continued)
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multisig: Fhold on receiving (multisig, σj ,nodej , lwjk, lwkj , fwjk, fwkj , txid , digest, ts, sid)
from nodej and (multisig, σk,nodek, lwjk, lwkj , fwjk, fwkj , txid , digest, ts, sid) from nodek,
callsFsig to verify the σk and σj on (contract = lwjk, lwkj , fwjk, fwkj , txid , digest, ts), and check
if tuple (V Kj , V Kk, ·, ·, ·,·) exists in nTable. If all verifications pass, then Fhold stores contracttxid
and updates the appropriate entries for nodej and nodek in rTable, currMax

(·)
x to currMax

(·)
x ± ν

and returns “success” to nodej and nodek. Else return ⊥ to nodej and nodek.
multisigRev: Fhold on receiving (multisigRev, σj , nodej , lwjk, lwkj , fwjk, fwkj , txid , digest, ts, sid)
from nodej and (multisigRev, σk, nodek, lwjk, lwkj , fwjk, fwkj , txid , digest, ts, sid) from
nodek, Fhold checks if tuple (V Kj , V Kk, ·, ·, ·,·) exists in nTable. If so, it deletes stored
contracttxid and updates the appropriate entries for nodej and nodek in rTable, currMax

(·)
x to

currMax
(·)
x ± ν and returns “success” to nodej and nodek. Else return ⊥.

createHoldReject: Fhold on receiving (createHoldRej,msg, sid) from nodei, parses
msg = (hold(·), ·, V KRN(·) , ν, txid , cTxt(·), hopMax, digest, te1, te2), creates tuple
(holdReject(·), ·,V KRN(·) , ν, txid ), retrieves all tuples (i,V KRN(·) , ·, ·, ·, ·, ·) from rTable, and sends
the holdReject(·) tuple along with rnTable tuples to nodei.
verifyHoldReject: Fhold on receiving (verifyHoldReject, msg, sid) from nodei, update the
currMaxs and currMaxr values from rTable tuples received in msg as appropriate.
verifyHoldAck: Fhold on receiving (verifyHoldAck, msg, sid) from nodei, update the currMaxs
and currMaxr values from rTable tuples received in msg as appropriate.

Figure 7: Ideal functionality for hold phase

Functionality Fsig
Key Generation: Upon receiving a value (KeyGen, suid) from some party S, verify that suid =
(S, suid′) for some suid′. If not, then ignore the request. Else, hand (KeyGen, suid) to the adversary.
Upon receiving (VerificationKey, suid, v) from the adversary, output (VerificationKey, suid, v) to
S, and record the pair (S, v).
Signature Generation: Upon receiving a value (Sign, suid,m) from S, verify that suid =
(S, suid′) for some suid′. If not, then ignore the request. Else, send (Sign, suid,m) to the ad-
versary. Upon receiving (Signature, suid,m, σ) from the adversary, verify that no entry (m,σ, v, 0)
is recorded. If it is, then output an error message to S and halt. Else, output (Signature, suid,m, σ)
to S, and record the entry (m,σ, v, 1).
Signature Verification: Upon receiving a value (Verify, suid,m, σ, v0) from some party P , hand
(Verify, suid,m, σ, v0) to the adversary. Upon receiving (Verified, suid,m, φ) from the adversary
do:
1) If v0 = v and the entry (m,σ, v, 1) is recorded, then set f = 1. (This condition guarantees
completeness: If the verification key v0 is the registered one and σ is a legitimately generated
signature for m, then the verification succeeds.)
2) Else, if v0 = v, the signer is not corrupted, and no entry (m,σ0, v, 1) for any σ0 is recorded, then
set f = 0 and record the entry (m,σ, v, 0). (This condition guarantees unforgeability: If v0 is the
registered one, the signer is not corrupted, and never signed m, then the verification fails.)
3) Else, if there is an entry (m,σ, v0, f0) recorded, then let f = f0. (This condition guarantees
consistency: All verification requests with identical parameters will result in the same answer.)
4) Else, let f = φ and record the entry (m,σ, v0, φ).
Output (Verified, id,m, f) to P .

Figure 8: Ideal functionality for signature generation and verification [16]
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S sends (createholds, ν,RNs,RNr) to Fhold on behalf of a sender (nodei) to Fhold to send ν cred-
its through RNs to RNr. Fhold returns a message (holds,RNs, V KRNs , ν, txid , cTxtRNs , hopMax,
digest, te1, te2) to S which is sent to the node according to rTable tuples for the nodei. S sends
(createholdr, token, ν, txid , digest,RNr) on behalf of a receiver (nodei) to Fhold to receive ν credits
from RNr. Fhold returns a message (holdr,RNr, V KRNr , ν, txid , cTxt

′
RNr

, hopMax, digest, te1, te2)
to S which is sent to the node according to rTable tuples for the nodei. If sender is malicious, A will
handle the simulation of the sender, but since per our threat model, A cannot corrupt all nodes in the
PCN, there will be a point where a node controlled by A has to pass on a (holds,RNs,VKRNs , ν, txid ,
cTxtRNs , hopMax, digest, te1, te2). If any part of this tuple is malformed, it will caught by Fsetup
during the simulation of any (even a single) honest intermediary along the path as we describe below.
The case where the receiver is controlled by A is handled in a similar way. Note that A may choose to
ignore its own rTable or the information returned by Fsetup and deliberately choose a longer path. This
either means that A is increasing its own latency if it is the sender/receiver, or it is inflating the path (by
a small margin). In our threat model we do not consider finding longer paths necessitated due to node
disconnections/failure as malicious behavior. This is reflected in the ideal world too.

Functionality Fpay
createpay: Fpay on receiving (createPay, (proceedPay, txid, ν, σproceedPay, sid)) from nodei,
calls Fsig to verify σproceedPay, if check passes continue, else return ⊥. Fpay retrieves tuple
(txid , ·, ·, preimage, ·) from txidTable and s sends (pay, preimage, ν, txid ) to nodei.

verifyPay: Fpay on receiving (verifyPay, preimage, ν, txid , sid) from nodei, checks if digest ?
=

H(preimage), if check passes, return “success” to nodei, else return ⊥.
verifyPayAck: Fpay on receiving (verifyPayAck, ((pay, txid , vknodei , ν), σRN(·)), sid), from
nodei calls Fsig to verify, σRN(·) if check passes then return “success” to nodei, else return⊥. Fpay

on receiving (verifyPayAck, ((pay, txid , preimagetxid , ν),⊥)), checks if txid ?
= H(preimagetxid ),

if check passes then return “success” to nodei, else return ⊥.
verifyPayRN: Fpay on receiving (verifyPayRN, preimage, ν, txid , sid) from nodei, checks if

V Knodei in rnTable and if digest ?
= H(preimage). If the checks pass, then call Fsig to create

signature σi on (pay, txid , vki, ν) and send (payACK, (pay, txid , vki, ν), σi) to nodei.
verifypaySender: Fpay on receiving (verifyPaySender , preimage, ν, txid , sid),

checks if digest ?
= H(preimage). If the check passes, then Fpay creates tuple,

(payACK, (pay, txid , preimagetxid , ν),⊥) and sends it to nodei, else return ⊥.
multisigPay: Fpay on receiving (multisigPay,σj ,nodej ,lwjk, lwkj , fwjk, fwkj , txid , digest,
ts, sid) from nodej and (multisigPay, σk, nodek,lwjk,lwkj , fwjk,fwkj , txid , digest, ts, sid) from
nodek, Fpay verifies σj and σk by calling Fsig. If the checks pass, then updates values of
lwjk = fwjk, lwkj = fwkj , σj , and σk for tuple (V Kj , V Kk, lwjk, lwkj , σj , σk) in nTable.
Fpay finally returns “success” to nodej and nodek.

Figure 9: Ideal functionality for pay phase

For each non-RN node (nodei) in the network, on receiving hold(·) message, S calls
verifyandCreateNextHold(·) with the received message. Fhold verifies the contents and updates
the message as needed and replies back with the updated message and the neighbor nodej the message
should be forwarded to. S then forwards the hold message to nodej and also calls multisig on behalf of
nodej and nodei to create multisig hold contracts between them. If the non-RN node is controlled by
A, and does not respond, the simulation times out. If it responds, but with an incorrect reply, it will be
caught at the point when the reply passes onto a honest node.
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For each RN node (nodei) in the network, on receiving hold(·) message msg and if nodei is a RN,
S sends
(verifyandcreatenextRNhold(·), msg) to Fhold. For RNs and all RNs between RNs and RNr,
Fhold internally verifies the messages, updates the holds message contents, and returns the message to
be forwarded by each RN along the path. If nodei is RNr, theFhold stores the information from the holds
and holdr tuple internally and when both messages are received, replies to S with a signed proceedPay
tuple on behalf of RNr that the S can forward to receiver of transaction. Fhold also sends a holdACK(·)
message to S after processing a hold message on behalf of an RN. If RNs is controlled by A, it might
try to find a longer path or not send a holdACK message back to the sender. Our threat model does not
consider finding a longer path as malicious behaviour, as long as the amount is reserved and decremented
correctly. If RNs mis-routes or returns wrong/garbage information, e.g., wrong hopCount, ν, etc. Fhold
will return⊥ inside verifyandcreatenextRNHold. The case where RNr or any of the intermediate RNs
are malicious is handled similarly.

If Fhold returns ⊥ for verifyandcreatenexthold(·) or verifyandcreatenextRNhold(·) then S
sends createHoldRej message to Fhold and A if needed. Fhold returns the holdReject(·) tuple to S
which is sent by nodei along with multisigRev function to the neighbor it received hold(·) message
from. Each node in the network calls verifyHoldAck and verifyHoldReject on receiving holdACK(·) or
holdReject(·) message respectively. If verification passes in the real world for holdACK or holdReject, the
node forwards the message towards next neighbor who had sent the hold message. In case of holdReject
message, the node additionally calls multisigRev function with the neighbor it sent holdReject message
to.

On receiving proceedPay tuple, S sends createPay tuple to Fpay on behalf of the receiver. There is
also the possibility that RNr is controlled by A and RNr never responds, in which case the simulation
aborts, or RNr responds with malformed tuples or messages which is handled by the verifyPay interface
as described below. Fpay responds with a pay tuple. S can send the pay tuple to next hop neighbor of the
receiver along the transaction path. Each honest node along the path on receiving the pay tuple would
have S verify the received tuple by calling verifyPay function provided by Fpay and if the verification
passes, then S on behalf of each node pair calls multisigPay function to update the link weights between
the nodes. Whenever, RN controlled by S receives the pay tuple, S calls verifyPayRN on behalf of the
node and Fpay verifies the message and returns a payACK tuple if verification passes. S then sends the
payACK tuple to the node it received pay tuple from before forwarding the pay tuple to the next node
along the transaction path. Each node on receiving the payACK tuple calls Fpay function (verifyPayAck
through S to verify the payACK message and if verification passes then the transaction timers are cleared.
When the sender finally receives pay tuple, S calls verifyPaySender function of Fpay on behalf of the
sender. Fpay verifies the pay message and returns a payACK message to S which is then forwarded and
verified among all nodes between the sender and RNs. When RNs receives and verifies the payACK
message originated at the sender, the transaction is considered complete.
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