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Abstract—The security of certain post-quantum isogeny-based
cryptographic schemes relies on the ability to provably and ef-
ficiently compute isogenies between supersingular elliptic curves
without leaking information about the isogeny other than its
domain and codomain. Earlier work in this direction give
mathematical proofs of knowledge for the isogeny, and as a result
when computing a chain of n isogenies each proceeding node
must verify the correctness of the proof of each preceding node,
which is computationally linear in n.

In this work, we empirically build a system to prove the
execution of the circuit computing the isogeny rather than
produce a proof of knowledge. This proof can then be used as
part of the verifiable folding scheme Nova, which reduces the
complexity of an isogeny proof of computation for a chain of n
isogenies from O(n) to O(1) by providing at each step a single
proof that proves the whole preceding chain. To our knowledge,
this is the first application of this type of solution to this problem.

Index Terms—post-quantum cryptography, isogenies, zero-
knowledge

I. INTRODUCTION

Isogeny-based cryptographic protocols rely on computa-
tions over a series of nodes, which are supersingular elliptic
curves, connected by arrows which are isogenies between
these curves. The security of these protocols is based on
variations of the hardness of computing a path between two
given nodes, which amounts to an isogeny between two
given supersingular elliptic curves, since the composition of
isogenies is an isogeny. In its strongest form, this is a problem
for which at present there is no polynomial-time solution either
on classical or quantum computers, which makes it ideal for
post-quantum cryptographic applications.

The first such protocol to be proposed was the Charles-
Goren-Lauter hash function [CGL09]. The idea is to use the
string to be hashed to create a path navigating the nodes,
and releasing the (j-invariant of the) endpoint as the hash of
the string. Unfortunately, it was found [KLPT14], [EHL+18]
that this hash function could only be made secure if in-
stantiated with a supersingular elliptic curve with unknown

endomorphism ring. Since then, more protocols requiring such
a curve as a starting point have been proposed [DFMPS19],
[ADFMP20], [BDF21], [LGDdSG21], [Ste22], [Bas24].

The current state of knowledge about supersingular elliptic
curves allows one to, given any prime p, give a supersingular
elliptic curve defined over Fp, either using the curve given
in [Brö09] or the CM (short for complex multiplication)
method. In both cases, the resulting supersingular elliptic curve
either has known or efficiently computable endomorphism
ring. Starting with such a supersingular elliptic curve, say E0,
one can then take a random walk in the supersingular isogeny
graph to reach a new, random supersingular elliptic curve, say
E1. However, knowledge of the endomorphism ring of E0 as
well as of the path joining E0 to E1, which is the data of an
isogeny from E0 to E1, allows the efficient computation of
the endomorphism ring of E1. At this time there is no known
algorithm to generate a random supersingular elliptic curve
with unknown endomorphism ring [BBD+24], [MMP22].

One solution to this problem is to employ a sequential
multiparty computation [BDF21] starting at some known su-
persingular curve E0, and where the ith party to the compu-
tation generates a random walk from the elliptic curve Ei−1

to another Ei, and reveals only the endpoint Ei to the next
party to the computation. If every party behaves honestly and
the parties do not collude, there is no known isogeny from
E0 to the final curve En, whose endomorphism ring is then
unknown.

Because of the possibility for the parties to the computation
to collude, this technique does not fully solve the problem
of generating a random supersingular elliptic curve with un-
known endomorphism ring. However, if each party can prove
knowledge of an isogeny from Ei−1 to Ei without revealing
that isogeny, the final curve En can at least be trusted by
the parties to the computation, who would know that they did
not themselves collude. For this reason, efficiently generating
proofs of knowledge for supersingular isogenies is one key
to solving the problem of generating supersingular elliptic



curves with unknown endomorphism ring, and techniques
allowing the efficient verification of sequential computations
of isogenies are especially interesting for this application.

In this article we propose to use a folding scheme to
combine the proofs of computation provided by each party
into a single proof that can be verified in (asymptotically) the
same time as it takes to verify each of the proofs individually.
This is done via the Nova [KST22] recursive Succinct Non-
Interactive Argument of Knowledge (SNARK) setup. Nova is
a recursive zero-knowledge SNARK that uses incrementally
verifiable computation (IVC) via a folding scheme. For com-
patibility with existing toolchains and future folding schemes,
our implementation encodes the isogeny computation as an
arithmetic circuit; see below for details. We also empirically
build and perform an evaluation of our recursive proof. As far
as we are aware, this is a novel application of folding schemes
to isogeny-based protocols.

II. PREVIOUS WORK ON PROOFS OF ISOGENY
KNOWLEDGE

The first proof of isogeny knowledge for supersingular
elliptic curves was based on the Supersingular Isogeny Diffie-
Hellman (SIDH) protocol [FJP14], which was subsequently
found to be insecure and then fixed [GKPV21], [DFDGZ23].
While the recent polynomial-time attacks on the SIDH prob-
lem [CD23], [Rob23], [MMP+23] have made some versions of
the resulting protocols insecure, in some cases they can still be
made secure using ternary challenges [BKW20], [DFDGZ23].
A different proof of isogeny knowledge, relying on pairing
assumptions, was given in [BDF21], but unfortunately the
security is only proved heuristically.

At present the state of the art in this area is [BCC+23],
in which the authors give a method to compute a statistically
zero-knowledge proof of isogeny knowledge that is compatible
with any base field. To prove knowledge of an isogeny
ϕ : E0 → E1, the method relies on constructing a random
isogeny ψ : E0 → E2, and then completing the SIDH square to
obtain ϕ′ : E2 → E3 and ψ′ : E1 → E3. The authors show that
when ψ is of large-enough degree, ϕ′ does not leak information
about ϕ. As a result, the prover can commit to the tuples
(ψ,E2), (ψ′, E3), and (ϕ′, E2, E3) (roughly speaking) and
reveal any of the three upon a challenge to prove knowlegdge
of ϕ. The protocol can be made non-interactive using the Fiat-
Shamir heuristic [FS87].

By the very nature of the proof of knowledge provided, to
trust in the security of the resulting final supersingular elliptic
curve, every party to the computation must verify every other
party’s computation. This cannot be avoided, and therefore
the cost of the computation of the final, secure supersingular
elliptic curve increases linearly with the number of parties who
wish to participate in constructing this curve.

III. ISOGENY WALK COMPUTATION AND PROOF

As previously stated, our proposed proof of isogeny knowl-
edge is in fact a proof of isogeny computation. For this
reason, contrary to previous work presented above, the prover

only needs to compute the isogeny walk that needs to be
verified. We begin by describing this walk.

A. Preliminaries

Throughout, let p ̸= ℓ be primes. The supersingular ℓ-
isogeny graph over Fp2 is the graph whose nodes correspond
to the set of isomorphism classes of supersingular elliptic
curves over Fp and whose arrows correspond to ℓ-isogenies
defined over Fp2 . For every pair p ̸= ℓ, this graph is an
expander graph and in fact a Ramanujan graph [Piz90].

B. Parameters for the walks

Though a priori the techniques presented in this article
should be applicable to any pair of distinct primes p ̸= ℓ,
in practice our implementation requires p ≡ 3 (mod 4) and
ℓ = 2. We defer discussion of further restrictions on p to the
Current Challenges and Limitations of Our Implementation
section below.

Our choice of parameters is driven by the necessity to
subsequently compile the isogeny walk into an arithmetic
circuit: we chose the parameters that allowed for the simplest
computation. Indeed, because p ≡ 3 (mod 4), we can use
simple algorithms to compute square roots both in Fp and
Fp2 ∼= Fp[x]/(x

2 + 1).
In addition, we choose ℓ = 2 for the simplicity of executing

the walk in this case. For every walk, we use the curve of j-
invariant 287496 with equation

E0 : y2 = x3 − 3−2 · 7−2 · 113 · x− 2 · 3−3 · 7−2 · 113 (1)

as our starting point. This curve has full rational 2-torsion
(over Fp2 ), and therefore every curve in its Fp2 -isogeny class
does as well. This means that a step in this 2-isogeny graph
starting at a curve E : y2 = x3+Ax+B corresponds to a root
of x3 + Ax + B, and each of these roots belong to Fp2 . We
note that for the purposes of generating a random supersingular
elliptic curve with unknown endomorphism ring, any prime ℓ
will do, so this restriction does not reduce the functionality of
the code.

C. One step of the walk

Each party to the protocol must compute a random walk
of length κ for some pre-determined value κ that ensures that
the endpoint of this walk in the supersingular ℓ-isogeny graph
will be sufficiently close to equidistributed in the graph. This
walk is done inductively by taking κ non-backtracking steps
in the graph, in the following manner: To begin, the party has
a curve E : y2 = x3 + Ax + B and the x-coordinate of a 2-
torsion point of this curve xback. As noted above, xback ∈ Fp2

and is a root of x3 + Ax + B. The point Pback = (xback, 0)
is assumed to generate the kernel of the dual of the isogeny
ϕ : Eback → E from the previous curve in the walk to this
curve.

To take a step forward determined by the random bit
b ∈ {0, 1}, we then compute a root xroot of the quadratic
polynomial (x3 + Ax + B)/(x − xback), corresponding to
the 2-torsion point Proot = (xroot, 0), and output xb, the



x-coordinate of the point Pb = Proot + [b]Pback (which is
equal to xroot if b = 0 or to −xroot − xback (mod p) if
b = 1). Using Vélu’s formula [Vél71], we can compute the
codomain Eb of the isogeny ϕb from E with kernel generated
by Pb, and the x-coordinate xdual of the point ϕb(Pback),
which generates the kernel of the dual isogeny ϕ̂b : Eb → E.
The data (Eb, xdual) can then be used as the input to the
next step of the walk. In this manner, a random bit string
corresponds to a deterministic (as the computation of xroot is
determined by the input (x3 +Ax+B)/(x− xback)) random
walk in the supersingular 2-isogeny graph.

To begin the walk, we provide the x-coordinate

x0 = −2 · 3−1 · 7−1 · 11 (2)

on the curve E0 given by equation (1). The corresponding
point P0 in this case is the kernel of the isogeny from E0 to
the curve of j-invariant 1728.

D. Random curve generation

We now turn our attention to describing the overall protocol
to generate a random supersingular elliptic curve with un-
known endomorphism ring over Fp2 for p ≡ 3 (mod 4). The
input to the protocol are the length κ of the random walk to be
taken by each party to the computation as well as the prime p.
With starting point E0 from equation (1) in the supersingular
isogeny graph and backtracking direction x0 from equation
(2), each party performs the following algorithm:

Algorithm 1 Proof of Isogeny Computation
Require: p ≡ 3 (mod 4), κ, E0, x0

1: Starting proof: P0 = None
2: for i ∈ 1...n do:
3: Party i receives proof Pi−1, elliptic curve Ei−1, back-

tracking direction xi−1

4: Party i generates a secret random string si ∈ {0, 1}κ
5: Party i performs the walk determined by the string si

starting at Ei−1 with backtracking direction xi−1; records
endpoint Ei and final backtracking direction xi

6: Party i generates a witness wi =
gen-witness(walk-circuit, si)

7: Party i generates proof Pi = nova-proof(walk-circuit,
wi, Pi−1)

8: Party i sends Pi to party i+ 1
9: end for

10: return: proof of walk Pn

Here for clarity we note that the proof Pi proves that party
i has a witness proving the computation of an isogeny from
Ei−1 and Ei, and that party i has verified that the proof Pi−1

is valid. In our proof setup, the witness for each step of the
recursive proof is the party’s string of random bits si; this
string fully determines the party’s walk and final isogeny Ei.
All other components of the proof are public, including the
starting and ending curves Ei−1 and Ei and the starting and
ending backtracking directions xi−1 and xi.

IV. IMPLEMENTATION AND EVALUATION

Our implementation translates the isogeny walk computa-
tion into a circuit, then uses the Nova system to produce and
verify proofs. We first wrote the code to compute one party’s
random walk in about 200 lines of Python. We then used
PICOZK [BNM], a high-level Python library, to produce an
arithmetic circuit in CIRCOM format [BMIMT+22], a lower-
level circuit representation for zero-knowledge proof state-
ments. The CIRCOM compiler then translated the circuit into a
rank-one constraint system (R1CS) format, a standard inter-
mediate representation for zero-knowledge proof statements.
Finally, we leveraged the Nova Scotia [NoS] middleware to
connect the output of the CIRCOM compiler to the Nova proof
system.

We evaluated our approach for several different lengths of
the isogeny walk, and the results appear in Table I. The size
of the circuit grows linearly with the length of the isogeny
walk being computed in each folding step; the proof and
verification times grow with the circuit size. Even without any
optimization, our prototype implementation produces a proof
for a walk of length κ = 200 in fewer than two minutes on a
standard laptop, and verification of the entire walk takes only
a few seconds.

Walk Length Constraints Prove Time (s) Verify Time (ms)
50 16,401 76 s 3,101 ms
100 20,601 97 s 3,441 ms
200 29,201 110 s 3,950 ms

TABLE I
RESULTS OF OUR EMPIRICAL EVALUATION FOR SEVERAL DIFFERENT

WALK LENGTHS AND A 256-BIT PRIME p. WE RAN OUR EXPERIMENTS ON
A LAPTOP WITH AN INTEL CORE I5-1240P AND 16GB OF RAM RUNNING

LINUX.

V. CURRENT CHALLENGES AND LIMITATIONS OF OUR
IMPLEMENTATION

As discussed in the Parameters for the walks section, our
Python implementation relies essentially on the condition
p ≡ 3 (mod 4), not only in the computation of the square
roots, but also in its assumption that the elliptic curves with
j-invariant 1728 and the curve E0 are supersingular. While it
would be interesting to develop a more general implementa-
tion, this case does cover every SIDH prime, and therefore the
vast majority of primes p used in practice.

A more serious restriction comes from our use of the Nova
proof system, which requires a commitment scheme based on
the hardness of the discrete log problem on cycles of elliptic
curves. A consequence of this is that the characteristic p of
the base field must be the scalar field of some elliptic curve
belonging to a cycle of curves which is currently supported
both by the Nova and the CIRCOM implementations. We were
able to find exactly one supported elliptic curve belonging
to a cycle of curves and whose scalar field has cardinality



p ≡ 3 (mod 4): the secq256k1 curve [Ark]. This means that
currently our implementation is only available for

p = 115792089237316195423570985 . . .

0086879078532699846656405640 . . .

39457584007908834671663.

We stress that this is entirely an implementation issue, and
that added support for more cycles of elliptic curves, some
of whose scalar fields have cardinality p ≡ 3 (mod 4) would
allow the generation of a random supersingular curve over Fp

for any such p.
Secondly, our approach is not specific to a particular folding

scheme; it only requires compatibility with generic arithmetic
circuits. Our current implementation uses the Nova recursive
zero-knowledge SNARK, which relies on the difficulty of the
discrete log problem and is not quantum-safe. Presently, no
suitable quantum-safe folding scheme exists of which we are
aware, but our approach can be easily extended to any future
quantum-safe folding scheme. Such an extension would also
remove the restriction on the prime p arising from the limited
availability of curves with scalar field of size 3 (mod 4).

VI. SUMMARY AND FUTURE CONTRIBUTIONS

We have shown a proof of execution of the circuit for
isogeny-based proofs of knowledge using folding schemes.
This is a novel, recursive solution that reduces existing compu-
tation for a chain of n isogenies from O(n) to O(1). Our future
work involves computation using recursive zero-knowledge
SNARKs that are provably safe from potential quantum attacks
such as quantum rewinding [Wat09], [LMS22]. Our future
work will involve an implementation that is both scalable and
has these provable quantum-safe guarantees.
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resistant cryptosystems from supersingular elliptic curve iso-
genies. Journal of Mathematical Cryptology, 8(3):209–247,
2014.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Prac-
tical solutions to identification and signature problems. In
Andrew M. Odlyzko, editor, Advances in Cryptology —
CRYPTO’ 86, pages 186–194, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

[GKPV21] Wissam Ghantous, Shuichi Katsumata, Federico Pintore, and
Mattia Veroni. Collisions in supersingular isogeny graphs
and the SIDH-based identification protocol. Cryptology ePrint



Archive, Paper 2021/1051, 2021. https://eprint.iacr.org/2021/
1051.

[KLPT14] David Kohel, Kristin Lauter, Christophe Petit, and Jean-Pierre
Tignol. On the quaternion ℓ-isogeny path problem. LMS J.
Comput. Math., 17:418–432, 2014.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova:
Recursive zero-knowledge arguments from folding schemes.
In Advances in Cryptology – CRYPTO 2022, pages 359–388,
Cham, 2022. Springer Nature Switzerland.

[LGDdSG21] Yi-Fu Lai, Steven D. Galbraith, and Cyprien Delpech de
Saint Guilhem. Compact, efficient and uc-secure isogeny-
based oblivious transfer. In Advances in Cryptology – EU-
ROCRYPT 2021: 40th Annual International Conference on
the Theory and Applications of Cryptographic Techniques,
Zagreb, Croatia, October 17–21, 2021, Proceedings, Part I,
page 213–241, Berlin, Heidelberg, 2021. Springer-Verlag.

[LMS22] A. Lombardi, F. Ma, and N. Spooner. Post-quantum zero
knowledge, revisited or: How to do quantum rewinding
undetectably. In 2022 IEEE 63rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 851–859.
IEEE Computer Society, 2022.

[MMP22] Marzio Mula, Nadir Murru, and Federico Pintore. On random
sampling of supersingular elliptic curves. Cryptology ePrint
Archive, Paper 2022/528, 2022. https://eprint.iacr.org/2022/
528.

[MMP+23] Luciano Maino, Chloe Martindale, Lorenz Panny, Giacomo
Pope, and Benjamin Wesolowski. A direct key recovery attack
on sidh. In Carmit Hazay and Martijn Stam, editors, Advances
in Cryptology – EUROCRYPT 2023, pages 448–471, Cham,
2023. Springer Nature Switzerland.

[NoS] Nova Scotia repository. https://github.com/nalinbhardwaj/
Nova-Scotia.

[Piz90] Arnold K. Pizer. Ramanujan graphs and Hecke operators.
Bull. Amer. Math. Soc. (N.S.), 23(1):127–137, 1990.

[Rob23] Damien Robert. Breaking SIDH in polynomial time. In
Advances in Cryptology – EUROCRYPT 2023: 42nd Annual
International Conference on the Theory and Applications of
Cryptographic Techniques, Lyon, France, April 23-27, 2023,
Proceedings, Part V, page 472–503, Berlin, Heidelberg, 2023.
Springer-Verlag.

[Ste22] Bruno Sterner. Commitment schemes from supersingular
elliptic curve isogeny graphs. Mathematical Cryptology,
1(2):40–51, Mar. 2022.
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