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Abstract. A security proof for a key exchange protocol requires writing down a security definition.
Authors typically have a clear idea of the level of security they aim to achieve. Defining the model formally
additionally requires making choices on games vs. simulation-based models, partnering, on having one or
more Test queries and on adopting a style of avoiding trivial attacks: exclusion, penalizing or filtering. We
elucidate the consequences, advantages and disadvantages of the different possible model choices.

Concretely, we show that a model with multiple Test queries composes tightly with symmetric-key protocols
while models with a single Test query require a hybrid argument that loses a factor in the number of
sessions. To illustrate the usefulness of models with multiple Test queries, we prove the Naxos protocol
security in said model and obtain a tighter bound than adding a hybrid argument on top of a proof in a
single Test query model.

Our composition model exposes partnering information to the adversary, circumventing a previous result
by Brzuska, Fischlin, Warinschi, and Williams (CCS 2011) showing that the protocol needs to provide
public partnering. Moreover, our baseline theorem of key exchange partnering shows that partnering by key
equality provides a joint baseline for most known partnering mechanisms, countering previous criticism by
Li and Schäge (CCS 2017) that security in models with existential quantification over session identifiers is
non-falsifiable.

1 Introduction

Key exchange protocols are at the heart of most secure real world communication protocols: they establish a
shared secret session key for further use, typically a symmetric-key based secure channel. Additionally they
usually also provide a form of authentication, referred to as authenticated key exchange (AKE).

Given the ubiquity of AKE protocols, one might expect that they meet a well-understood and standard
security notion. Unfortunately, this is not the case: security models for AKE protocols are surprisingly diverse
and complex, mainly caused by a large range of choices for functionalities and adversary capabilities.

Examples of functionality choices are the number of parties that can jointly establish a key; whether
authentication is based on public keys, shared symmetric keys, or passwords; and whether parties know their
intended peer’s identity in advance or if it is learned during the execution of the protocol. Combined with a
given security property, such as unilateral or mutual authentication, this provides the basic constraints for an
AKE protocol.

Ideally, one then shows that a protocol additionally offers strong security guarantees. This involves modeling
the adversary’s capabilities, such as the secret information that the adversary can learn, and at what time;
whether it can reveal internal state, subvert random number generators, register malicious keys, obtain long-term
keys through legal means, and so on. There are inherent trade-offs between achieving protection against these,
and it impacts efficiency, so different contexts require different answers.

In the literature, such aspects have been incorporated in different ways into monolithic security models,
leading to a very wide range of different models, see [17, Ch. 2] for an extensive introduction. Defining security
requires authors to make a multitude of additional technical choices, many of which are valid and can be justified.
As a result, there need not necessarily be a single best key exchange model.

? We provide a changelog in Appendix C.



Contributions. It is not our goal to classify models as either good or bad. Instead, we aim to provide conceptual
discussions and formally substantiated insights into the consequences of different modeling choices, notably the
following four:

1. Game-based vs. simulation-based security: impact on composability.
2. Partnering definitions (i.e., how a model defines what the partner session is that is expected to compute the

same key): impact on composability, falsifiability, comparability and agreement properties.
3. Single vs. multiple test queries: impact on the tightness of composition proofs.
4. Exclusion vs. penalizing vs. filtering of trivial attacks: impact on expressibility, comparability, strength and

(subjective) clarity of the model.

We expand on these aspects in Sections 1.1 to 1.4, and illustrate how existing models for key exchange instantiate
them in Table 1.

Having explored various consequences of these modeling choices, we then proceed to:

– develop a security model for key exchange protocols that deals consistently with each of the above four
choices;

– prove a general composition theorem that shows how to compose a key exchange protocol with symmetric-key
protocols, with weaker preconditions than previous results; and

– prove a lemma on key exchange partnering that partnering by key equality is a joint baseline for most models.

As a case study for some of our model choices, we prove the Naxos protocol secure with a tighter bound than in
the original paper.

1.1 Game-based vs. Simulation-Based security

While it was originally thought that simulation-based security is inherently more composable than game-based
security, the lines between the two notions have become blurred over the years. In the end, a security game can
often be seen as an instantiation of a simulation-based definition. For example, for key exchange security, the
simulation-based definition postulates the existence of a simulator which simulates a protocol run independently
of the key, whereas the game-based security notion can be seen as using a standard protocol run (independently
from the session key) as a simulation. Indeed, Canetti and Krawczyk [26] show that Bellare–Rogaway secure
key exchange protocols imply (a variant of) UC-security and thus compose securely with other UC-protocols.
Brzuska, Fischlin, Warinschi and Williams [22] later showed that Bellare–Rogaway secure key exchange protocols
compose securely also with arbitrary symmetric-key-based games. Nowadays, there is a plethora of variants
of game-based key exchange definitions with varying levels of strength, each of which would require its own
composition theorem. In this paper, we show via a unified composition theorem that our security model composes
securely with symmetric-key protocols; as our security model is parameterizable to capture different variants,
this yields composability for all variants in our model.

1.2 Partnering Mechanisms

Partnering mechanisms are used in AKE security models to identify related sessions. Most AKE security models
give the adversary the power to reveal session keys, but only of sessions unrelated to the target session that
the adversary is supposed to attack (by trying to distinguishing its real session key from random). If we want
any protocol to be secure with respect to a model, the adversary cannot be allowed to reveal the session key
of the target session itself, since this is the real key by design. But there is another session that also ought to
be off-limits: the one residing at the target session’s communication peer in a normal protocol run, because by
correctness, this session should compute the same key as the target session. To model this, we must be able to
identify this partner session within the model. This is one of the main purposes of the partnering mechanism.6

We can divide security models into two main classes based on their partnering mechanism: ones using
universal partnering, and ones using existential partnering. For models based on universal partnering there is a
single fixed partnering mechanism used for all protocols within the model, and a protocol is considered secure in
the model if it can be proven secure with respect to this single mechanism. On the other hand, for models based
on existential partnering, there is not a single fixed partnering mechanism. Instead, a protocol is considered
secure in the model only if there exists a partnering mechanism for which the protocol can be proven secure.

6 The partnering mechanism is also sometimes used to define authentication, e.g., authentication is broken if there exists
a session that accepted without a partner (provided the intended peer’s authentication credential was uncompromised),
or used to determine if the attacker was temporarily passive. For now, we focus on partnering for defining session key
indistinguishability, and deal with authentication separately later.
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Universal partnering. The most common form of universal partnering is matching conversations, where two
sessions are partners if they have the same transcript of messages sent and received (except possibly the last
message which may have been dropped by the adversary); this partnering mechanism originates from the
first AKE security model by Bellare and Rogaway [10]7; a small sample of important models that employ it
include [13, 15, 30, 32, 44, 48, 53, 56]. Other forms of universal partnering include key-partnering [42, 47] and
original-key-partnering [43,55].

Existential partnering. In their second AKE paper, Bellare and Rogaway [11] introduced existential partnering
via partner functions. In this model a protocol is secure if there exists some partnering function for which it can
be proven secure. It is up to the prover to demonstrate such a partner function exists, either by construction or
by proving that it must exist. Other papers working with partnering functions generically include [19,61]. Models
using session identifiers (SIDs) [3, 9, 21–25, 34, 38, 46, 50, 59] can also be seen as using existential partnering.
Specifically, the SID can be viewed as a function that simply computes the SID string based on various inputs
(including, e.g., a partial transcript, secret information, or externally provided information). Of course, matching
conversations, and any of the other universal partnering mechanisms, are also suitable, and thus security models
using partner functions can be seen as a generalization of security models using universal partnering.

Falsifiability. We refer to the process of showing that a protocol is insecure in a model as falsifiability : one
falsifies the security of a protocol (with respect to a model, and the model should support this possibility). To
show that a protocol is insecure in a model with universal partnering, one can demonstrate an attack that breaks
security with respect to the partnering mechanism specified by the model.

On the other hand, to show that a protocol is insecure in a model with existential partnering, one would have
to demonstrate attacks that break security for all possible partnering functions, which could be substantially
harder. How, then, should one interpret the absence of a proof of security with respect to a particular session
identifier or partner function? Is it possible to demonstrate an attack against the same protocol in the same
model with respect to a different session identifier? What constitutes a good session identifier? And how do we
know whether a protocol is insecure or whether we merely failed to find a suitable session identifier?

Thus, models with universal partnering offer a more direct path to falsifiability. However, partnering using,
e.g., matching conversations could be too strong a requirement, since adding an irrelevant bit to a secure protocol
suddenly makes it insecure, defying our intuition. Indeed, Li and Schäge [55] showed a class of “no-match”
attacks that demonstrated flaws in several existing security proofs in models based on matching conversations.

One alternative universal partnering mechanism is key partnering [42, 47], where two sessions are considered
partners if they have computed the same session key. Li and Schäge [55] however argue that original-key
partnering should be used, where two sessions are considered partners if they would have computed the same
session key in the presence of a passive adversary.

Key partnering. We show that key partnering is a universal choice for AKE partnering mechanisms, together with
a partnering oracle that is added to the model and allows the adversary to determine whether two sessions have
the same key. From the perspective of writing proofs, key partnering is relatively easy to work with, especially
compared to original-key partnering.

Importantly, we demonstrate in Section 3 that key partnering comes with strong falsifiability properties: we
show that if an attack is shown against a protocol in a model where key partnering is used, then that attack
would be present in the model with respect to any valid partnering mechanism. We prove this falsifiability result
by establishing the contrapositive. Namely, we show what we call the baseline theorem of partnering in key
exchange: for any fixed freshness condition, if a key exchange protocol provides key indistinguishability in the
model using a partnering mechanism that satisfies certain soundness properties, then that protocol is also secure
in the model using key partnering.

A consequence of our baseline theorem of key exchange partnering is that researchers retain the option of
proving security using session identifiers or other partner functions, but can be assured of falsifiability by also
proving that their partner function satisfies the soundness conditions required by the baseline theorem.

Composability. Our aforementioned composability result for key agreement protocols with symmetric-key
protocols indeed relies on key partnering, sidestepping a seeming no-go result of Brzuska, Fischlin, Warinschi, and
Williams [22], which states that composability requires the protocol to provide public partnering mechanism. We
circumvent their impossibility result by giving the adversary an oracle to learn which two sessions are partnered.
This only makes the model stronger and simplifies composition, as we will show in Section 4.2.

7 Note that the Bellare and Rogaway version also required strict temporal ordering of the individual messages sent and
received, excluding e.g. pre-plays; this requirement was dropped by later works.
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Comparability. The central benchmark around which to compare models is normally the capabilities granted to
the attacker. For example, a model in which the adversary can learn both the parties’ long-term keys and the
sessions’ internal randomness ought to be stronger than a model where it can only do the former. Of course, not
all models are formally comparable. For instance, a model where only long-term keys can be revealed is not
necessarily stronger nor weaker than a model where only internal randomness can be revealed. But even in the
case where two models do provide the same attacker queries, they can still differ in strength due to how the
access to these queries are controlled, i.e., they have different freshness conditions.

Cremers and Feltz [32,37] formalized these observations, defining a security model to be precisely the collection
of adversary capabilities (queries) and a freshness condition. They could then compare the relative strengths of a
large number of models. However, it turns out that there are further factors that can additionally influence the
comparability between models, and which were not covered by Cremers and Feltz [32]. The first is the choice of
partnering mechanism. Indeed, Cremers [31] shows that the extended Canetti–Krawczyk (eCK) model [52] is in
fact formally incomparable with the original CK model [24] – partially due to a mismatch in the partnering
definitions.

Agreement properties. The model we develop, besides key indistinguishability, also covers agreement and
authentication properties. These properties provide guarantees of the following form: if two parties agree on a
session key, then they also agree on various other variables determined during the protocol run. Examples of such
variables include: party identities, communication roles, and negotiated ciphersuites. An easy way to achieve
such a property in practice is by hashing the entire transcript into the key. In the case such a practice is adopted,
the notions key partnering and matching conversations coincide under the assumption that the key derivation
function is collision-resistant. Transcript hashing has been adopted in TLS 1.3 and is generally considered good
practice. In addition, the parties might hash further agreement data into their key. In this case, agreement on
the transcript alone does not imply agreement on further variables, while agreement on the key still implies their
equality.

1.3 Single vs. Multiple Test Queries

From the perspective of building an AKE protocol, we want a security model that facilitates a tight reduction
from the security of the AKE protocol to the security of its underlying primitives. Later works have started to
develop tight reductions of this form [4,5, 29,43].

In addition, from the perspective of using an AKE protocol, we also want a security model that facilitates a
tight reduction from the composition “AKE protocol + symmetric-key protocol” to the security of the underlying
AKE protocol. It is this composition we focus on here. Unfortunately, traditional models tend to lose at least a
factor in the number sessions, sometimes even a square. To see why, recall that key exchange models like the
BR model [10] typically have a single Test query. This means that in the composition proof we cannot replace
the session keys all at once, but instead need to employ a hybrid argument where they are replaced one-by-one
(as illustrated by the proof of the composition result in [22]). Indeed, this incurs a tightness loss [27, 28] in
the number of session keys replaced. If the AKE protocol itself had a non-tight proof with a linear loss in the
number of sessions n, then we are now up to an O(n2) loss of tightness for the whole composition; in real-world
protocols like TLS, the number of sessions could be on the order of billions, so an n2 tightness loss would have a
substantial impact on the selection of parameters.

It seems more useful if an AKE model supports tight composition with the symmetric-key protocol, and the
natural response is to allow multiple Test queries. But how should these Test queries be answered? Should
each query be answered independently as real-or-random (and the adversary wins if it can distinguish at least
one query), or should all answers be either all-real or all-random?

Let’s call the first approach n-FtG (for Find-then-Guess) and the second RoR (for Real-or-Random), where n
is the number of Test queries. Unfortunately, n-FtG is no better than 1-FtG for the purposes of composability:
even if n-FtG has multiple Test queries, during the composition proof they cannot be used to replace the
session keys with random all at once, since each query is independently answered with either real or random.

In contrast, the RoR notion does allow all keys to be replaced all at once during the composition proof,
resulting in no additional security loss for the combined construction (we will make this more precise in Section 5).
The conclusion is that RoR is the most appropriate model to use for composing AKE protocols, justifying its
use in our model in Section 2.

Note that switching from 1-FtG to RoR does not necessarily move the tightness problem elsewhere in the
chain of results: perhaps surprisingly, our case study of NAXOS+ in Appendix A achieves the same advantage
bounds in RoR as the original proof in the 1-FtG notion. In general, we suggest the use of multiple Test queries
with the same secret bit to enable tightness of reductions.
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1.4 Misbehaving adversaries: exclusion, penalizing, and filtering

A key exchange model needs to define which adversaries are considered valid. Specifically, the freshness condition
defines the class of misbehaving adversaries as those that trivially win by violating the predicate. Naturally,
we only want to measure the success probability of non-misbehaving adversaries. In the literature, there are
essentially three ways to do this: (a) the exclusion approach [8], in which one only quantifies over the class of
valid adversaries; (b) the penalizing approach [19], where, posteriori, misbehaving adversaries are penalized for
their actions; and (c) the filtering approach [42,60] where responses to misbehaving adversaries are silenced.

Model strength and comparability. We argue that security with respect to the filtering approach implies security
with respect to the exclusion approach, while the implication in the other direction is false. The reason is that an
adversary which is valid according to the exclusion approach is valid with respect to the filtering approach, but
not vice versa. Additionally, the adversary might learn additional information via the filtering feedback which
it receives from the model. By the principle of choosing the stronger model when in doubt, it seems useful to
deploy the filtering approach. In addition, this means that one’s security statement is at least as strong as those
made by others, all other things being equal (which, admittedly, is rarely the case in key exchange models).

Expressibility. It turns out that the penalizing approach is somewhat incomparable to filtering. Namely, eCK-
security inherently relies on the penalizing approach: The adversary is first permitted to Test as session, even
though the game does not know yet whether this session is fresh or not. The adversary is then penalized in
case it turns out the session does not become fresh. An analogous mechanism cannot be achieved via exclusion
or filtering. If such after-the-fact-freshness properties are needed, one has to adapt a penalizing or exclusion
approach. In all other cases, filtering seems to be the preferred option which is why we adopt it in our model
family.

2 Security model

In this section we specify a parameterized model that defines a family of key exchange models. Our models can
capture a variety of relevant security properties within the same carefully constructed formalism that results in
security definitions that are comparable (at least amongst each other), support falsifiability and tight composition
results. To formalize this family, we employ a two-step approach. First, we abstract the main security goal into a
security predicate, and give predicates representing common key exchange security goals, such as session-key
indistinguishability (in Appendix B we also address authentication security goals). Second, we allow a freshness
condition to refine the security goal to capture security against different attacker models such as forward secrecy,
which also simplifies the comparison of models, in the spirit of works such as [16,36].

Both the issue of partnering and how misbehaving adversaries (cf. Section 1.4) are handled, are in some sense
technicalities. Unlike the attacker capabilities and freshness predicates, they do not correspond to our intuitive
idea of model strength. Thus, an essential step in facilitating comparison between models is fixing as many of
the components of the model as possible, with the only variable being the freshness condition encoding different
attacker capabilities. But what to fix these to? In particular, which partnering mechanism should you choose,
and how should you capture misbehaving adversaries?

Following our earlier observations, we fix the partnering mechanism to key partnering. Our baseline theorem
of key exchange partnering implies that this choice does not sacrifice comparability, as long as the partnering
mechanism satisfies the required conditions.

As for dealing with a misbehaving adversary, we suggest the filtering approach which makes rules of accepted
behavior explicit in the game code (see Figure 2, lines 307–311) and yields monotonic winning conditions. We
showcase the filtering approach in our case study (Appendix A), where we encode game hops by successively
modifying the game’s filter function with each hop, until the adversary can, information-theoretically, not win
anymore.

For maximal comparability, we recommend encoding the filtering rules as publicly checkable predicates, which
makes exclusion-style and filtering-style definitions equivalent (see Section 6). The IsPartnered oracle we use
in our general security experiment is an instance of such a public encoding: it allows publicly checking whether
the adversary may reveal a session key or not.

We begin with the abstract algorithms (“syntax”) that we use as the interface to a key exchange model and
correctness thereof. Next we describe the AKE security experiment, which is parameterized over a freshness
condition and a security predicate. We can then define the security properties of key indistinguishability and key
confinement. Properties related to authentication are given in Appendix B.

Notation. y ← A(x) denotes running a deterministic algorithm A with input x, and storing the output in the
variable y. Similarly, y←$ A(x) denotes running a probabilistic algorithm A with (implicit) uniform random
coins. We often use superscript to indicate function parameters, e.g., AO(x) to denote an algorithm with access
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Table 1: Various AKE security models in terms of our four characteristics

Model Partnering Mechanism
Existential / Public Test’s Parameterizable Adversary

Universal Partnering Hidden Bit Freshness Behaviour

BR family

BR93/BWM [10,15] matching conversations U 1-FtG penalize
BR95 [11] partner function E 1-FtG exclude
BPR [9] session identifiers + key partnering E 1-FtG penalize
AFP [3] session identifiers E RoR filter
KSS [47] key partnering U 1-FtG penalize
Tight (BHJKL) [4] matching conversations U n-FtG penalize
Tight (CCGJJ) [29] matching conversations U RoR exclude

CK family

CK01 [24] session identifiers E 1-FtG exclude
CKHMQV [48] transcript U 1-FtG exclude

eCK family

eCK [52] transcript U 1-FtG penalize
MU08 [56] matching conversations U 1-FtG penalize
eCK-PFS, eCKw [32] transcript + origin sessions U 1-FtG exclude

“Darmstadt family”

Composable BR [22] public session identifiers E 1-FtG penalize
Less is more [21] session identifiers E 1-FtG penalize
State-separating proofs [18] partner functions E via oracle RoR exclude
TLS 1.3 [34] session + contributive identifiers E n-FtG penalize

Others

George–Rackoff [42] key partnering U via oracle 1-FtG filter
ASICS [16] partner function E 1-FtG exclude
Li–Schage [55] original-key partnering U 1-FtG —

This paper key partnering U via oracle RoR filter

Legend: yes; not necessarily; no; — not applicable

to oracle O. We write A(x) 7→ y when presenting the type of A: A takes arguments x and yields y, after which
we describe A’s domain (for x) and range (for y). We denote by L = [x1, . . . , xn] that L is a list of n elements,
where L[i] denotes its i-th element. We write L←←x to denote appending the element x to the list L, or adding
x to the set L. We write L1‖L2 to denote the concatenation of two lists. We also write L[x] to denote the entry
for key x in the dictionary L. Party identities are elements of N. The equality test ≡ treats two values as equal
only if they have previously been defined, i.e., x ≡ y ⇔ (x = y) ∧ (x and y are defined).

2.1 Syntax of key exchange

As noted above, for simplicity we focus on two-party key exchange algorithms authenticated using public keys.

Definition 1 (Key exchange protocol). A key exchange protocol is a tuple of algorithms Π = (KG,New,Run):

– KG() 7→ (sk, pk): a probabilistic long-term key generation algorithm that outputs a private/public key pair
(sk, pk).

– New(U, skU , pkU , role, V,PK) 7→ (π,m): the probabilistic protocol activation algorithm takes as input the
long-term key pair (skU , pkU ) of party U , its role (role) in this protocol run, its intended peer V (or an empty
value ?), and a dictionary PK of all parties’ long-term public keys, indexed by party identity. It outputs a
new instance state π (defined next) at party U and a (possibly empty) outgoing initial message m.

– Run(π,m) 7→ (π′,m′): the deterministic protocol execution algorithm takes as input an instance state π
and an incoming message m, and outputs an updated state π′ and (possibly empty) outgoing message m′.8

We allow each party U to run multiple instances (“sessions”) of the protocol; all data related to a specific
instance is recorded in an instance state π, which contains the following variables set by New:

– π.owner: the party to which the instance π belongs
– π.sk, π.pk: the long-term private/public key pair of party π.owner
– π.role: the role of this party in this run of the protocol, either init or resp
– π.peerID: the party identity of π’s intended peer

8 Run is deterministic; all per-instance randomization is incorporated in the instance variable π.rand generated during
the New algorithm.
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– π.PK: the dictionary of public keys
– π.status: π’s status: running, accepted, or rejected
– π.transcript: list of all messages sent and received by π in chronological9 order
– π.rand: randomness used by π
– π.k: the session key derived by π. If no key has been derived yet, we use the symbol ⊥; when we compare

the session keys of two sessions, if both are ⊥, we will not consider those session keys to be equal

A key exchange protocol is correct if, when messages are relayed faithfully between two honest sessions, both
sessions accept, compute the same session key, and have each recorded the other as its peer. Note that we have
two versions of the correctness definition, one for protocols that allow post-specified peers (i.e., the responder
learns its intended peer’s identity during the execution of the protocol), and one for protocols only allowing
pre-specified peers (the responder must be initialized with its intended peer’s identity at the beginning of the
session).

Definition 2 (AKE correctness, post-specified peer model). A k-message AKE protocol Π allowing
post-specified peers is ε-correct if for all U, V ∈ N, and all u ∈ {U, ?}, we have

Pr[CorrΠ,U,V,u()⇒ 1] ≥ 1− ε ,

where Corr is the experiment defined in Figure 1.

AKE correctness for the pre-specified peer model is as Definition 2 except for requiring that the responder is
initialized with u = U .

CorrΠ,U,V,u()

101 // Set up long-term key pairs
102 (skU , pkU )←$ Π.KG(),PK[U ]← pkU
103 (skV , pkV )←$ Π.KG(),PK[V ]← pkV
104 // Initialize initiator and responder sessions
105 (π,m)←$ Π.New(U, skU , pkU , init, V,PK)
106 (π′,⊥)←$ Π.New(V, skV , pkV , resp, u,PK)
107 // Relay messages back and forth between initiator and responder,
108 // updating their respective states π and π′

109 for i← 1 to bk/2c:
110 (π′,m′)← Π.Run(π′,m)
111 (π,m)← Π.Run(π,m′)

112 if k odd:
113 (π′,⊥)← Π.Run(π′,m) // initiator sends the last message

114 // Check correctness condition
115 return (π.status = accepted) ∧ (π′.status = accepted) ∧
116 (π.k = π′.k) ∧ (π.peerID = V ) ∧ (π′.peerID = U)

Fig. 1: Correctness experiment for a k-message key exchange protocol Π between parties U and V , with
responder’s intended peer being u.

2.2 Security experiment

In experiment ExpSecPred,F
Π,n (A), shown in Figure 2, we specify a common execution model that is parametrized

by a security predicate SecPred which we later use to capture the different security properties a key exchange
protocol might have. In addition, experiment ExpSecPred,F

Π,n (A) is parametrized on the protocol Π, the number of
parties n to run in the experiment, and freshness condition F .

The session-key indistinguishability property is built into the experiment via the Test query; but other
properties can be considered as well. For instance, later in this section we show the less-often-stated property of
session key confinement (Confined), i.e., a session key should be shared among at most two sessions. In subsequent
sections, we provide additional security predicates to prove our falsification theorem (the soundness and inverse
soundness properties in Section 3) and predicates capturing authentication properties in Appendix B.

The freshness condition F models different attacker capabilities (such as forward secrecy); see Section 2.3.
Our approach of encoding each security goal explicitly in its own predicate is different from the modern

approach of encoding all goals implicitly through the key indistinguishability property. Our approach yields a
modular security model, in which different predicates can be used for protocols with different goals.

9 We do not assume a global clock; this denotes the local order within U ’s session.
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ExpSecPred,F
Π,n (A)

201 // Pick hidden challenge bit
202 b←$ {0, 1}
203 // Initialize lists for experiment
204 S ← [] // List of session states
205 Q ← [] // List of queries
206 T ← ∅ // Set of tested sessions
207 cnt← 0 // Session counter
208 // Generate all long-term key pairs
209 for all U ∈ {1, . . . , n}:
210 (skU , pkU )←$ Π.KG
211 PK[U ]← pkU
212 // Global experiment state
213 Φ← {b,S,Q, T , cnt,PK}
214 // Run the adversary
215 b′←$AO(PK)
216 // If key indistinguishability, check guess
217 if SecPred = KI:
218 output (b = b′)
219 else
220 // Experiment ended so winning condition wasn’t triggered
221 output 0

// All adversary queries are “filtered” through O
O(Query, x)

301 // Save the current global experiment state
302 Φ′ ← Φ
303 // Run the adversary’s query
304 y ← Query(x)
305 Q←←〈Query, x, y〉
306 // Check if all tested sessions would remain fresh
307 if ∀i ∈ T . F (Φ, i):
308 return y
309 else
310 Φ← Φ′ // Revert effects of bad query
311 return 3 // Silence response

Init(U, role, V )

401 cnt← cnt + 1
402 (S[cnt],m)←$ Π.New(U, skU , pkU , role, V,PK)
403 if (SecPred 6= KI) ∧ ¬SecPred(Φ, cnt):
404 terminate experiment with output 1

405 return (cnt,m)

Send(i,m)

501 (S[i],m′)← Π.Run(S[i],m)
502 // Continuously evaluate whether adversary has won
503 if (SecPred 6= KI) ∧ ¬SecPred(Φ, i):
504 terminate experiment with output 1

505 return (S[i].status,m′)

RevSK(i)

601 return S[i].k

RevRand(i)

701 return S[i].rand

RevLTK(U)

801 return skU

Test(i)

901 if i ∈ T :
902 return ⊥
903 if ∃j . S[i].k = S[j].k ∧ j ∈ T :
904 return ⊥
905 T ←← i
906 k0 ← S[i].k
907 k1←$K
908 return kb

IsPartnered(i, j)

1001 return (S[i].k ≡ S[j].k)

Fig. 2: Generic key exchange security experiment for protocol Π with n parties against an adversary A, for
security property specified by predicate SecPred with freshness condition F .
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Experiment overview. Lines 201–211 of Figure 2 initialize the experiment, which includes: picking a random
challenge bit b for the session key indistinguishability game; setting up lists to record session states (S), the
adversary’s queries (Q), and the sessions that have been tested (T ); and generating long-term key pairs for all
users. The global experiment state consists of all of those values, and is represented as Φ. Line 215 runs the
adversary, who is given all public keys as input, has access to a single oracle O through which all queries are
made, and finally outputs a guess bit b′. For the session-key indistinguishability security property, the adversary’s
guess of the hidden challenge bit is checked on line 218. For the other security properties, the adversary’s success
in breaking the security property is checked throughout the experiment, specifically on line 503 of the Send
query.

For KI, which is a distinguishing property, we want to bound∣∣∣∣Pr
[
ExpKI,F

Π,n (A)⇒ 1
]
− 1

2

∣∣∣∣ .
For our remaining properties SecPred, which are win/lose, we want to bound Pr

[
ExpSecPred,F

Π,n (A)⇒ 1
]
. For the

latter, we will sometimes write Pr[SecPred], when F , Π, n, and A are clear from the context.

Oracle and queries. Our model provides queries that model an adversary’s ability to control all network
communications, as well as compromise certain secrets.

The following two queries model normal protocol operation. The adversary uses the Init query to direct
a party U to start a new session with a given role and optional intended peer identifier. The adversary uses
the Send query to deliver a message to a session. Due to the genericity of our experiment, we decided that the
Init and Send queries continuously evaluate the winning condition SecPred every time they are called, and the
experiment terminates immediately once the condition is met. This avoids some problems that would develop if
the winning condition is not monotonic, i.e., if it was possible for a session to enter the winning state, then leave
the winning state by the end of the game. (Session-key indistinguishability is still evaluated at the end, since we
must wait for the adversary’s guess.)

The RevSK, RevRand, and RevLTK queries model the adversary’s ability to learn the session key or
randomness, or a party’s long-term key. Some AKE security models also allow the registration of malicious
public keys (e.g., [16]), but we omit that from our model for simplicity.

The Test query models the session key indistinguishability security property. As long as the adversary has
not already tested this session or its partner (if any), we give the adversary either the real session key or a
randomly chosen value. Note that the same hidden challenge bit b is used for every Test query, so either all
Test queries return real keys, or all Test queries return random values; Section 5 gives the rationale behind
using real-or-random with a single bit across all Test queries.

The IsPartnered query permits the adversary to check whether two sessions are partnered, i.e., have
computed the same session key. This enables composability for protocols without public partnering; see Section 4.

However, the adversary is not allowed to query any of these oracles directly. Instead, all queries go through
the oracle O. This follows the “silencing” approach of Rogaway and Zhang [60], where the adversary only learns
the output of a query if it does not cause tested sessions to become unfresh. E.g., if the adversary queries RevSK
for a tested session, this would be a “trivial win” because it would allow the adversary to immediately determine
the hidden challenge bit b. If O silences the query, a special silence symbol 3 is returned, and any changes to the
game state are undone. Section 6 discusses alternatives: quantifying over adversaries that never violate freshness,
or “penalizing” such adversaries by artificially recording a “loss”.

2.3 Freshness

Our model is parameterized by a freshness condition F , which is used to capture security against different
attacker capabilities, such as forward secrecy or the different permitted reveal patterns allowed in the CK [24] or
eCK [52] models. Localizing the different attacker capabilities into a parameterized freshness condition follows
the approach of Boyd, Cremers, Feltz, Paterson, Poettering, and Stebila [16] and permits comparing the relative
strength of security models solely by comparing their freshness conditions. For more discussion, we refer the
reader to Section 6.

A freshness condition F with input (Φ, i) checks whether a particular session S[i] is fresh based on the global
experiment state Φ, which includes all current session states, the list of all non-filtered queries, and the list of
tested sessions.

For example, Figure 3 shows a freshness condition (F eCK) capturing the core attacker capabilities of the
extended Canetti–Krawczyk (eCK) model [52]. In the eCK model, a session is considered fresh as long as all of
the following are satisfied:

1. the session’s session key has not been revealed;
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F eCK(Φ, i)

1101 // The session’s session key has not been revealed
1102 if 〈RevSK, i, ∗〉 ∈ Q:
1103 return false

1104 // At most one of the session’s ephemeral randomness or
1105 // the owner’s long-term key has been revealed
1106 if 〈RevLTK,S[i].owner, ∗〉 ∈ Q and 〈RevRand, i, ∗〉 ∈ Q:
1107 return false

1108

1109 // For all partner sessions
1110 for all j 6= i . S[i].k ≡ S[j].k:
1111 // The partner’s session key has not been revealed
1112 if 〈RevSK, j, ∗〉 ∈ Q:
1113 return false

1114 // At most one of the partner’s ephemeral randomness or
1115 // the peer’s long-term key has been revealed
1116 if 〈RevLTK,S[j].owner, ∗〉 ∈ Q and 〈RevRand, j, ∗〉 ∈ Q:
1117 return false

1118

1119 // If there is no partner session, the peer’s long-term key
1120 // has not been revealed
1121 if @j 6= i . S[i].k = S[j].k and 〈RevLTK,S[i].peerID, ∗〉 ∈ Q:
1122 return false

1123

1124 return true

Fig. 3: Freshness conditions capturing attacker capabilities similar to the eCK security model [52]. Recall that
≡ treats two values as equal only if they have previously been defined, see notation in Section 2.

2. both the session’s ephemeral randomness and the session’s owner’s long-term secret key have not been
revealed (but revealing one or the other is okay);

3. for all partner sessions that exist, we have that both:

(a) the partner session’s session key has not been revealed;

(b) both the partner session’s ephemeral randomness and the peer’s long-term secret key have not been
revealed (revealing one or the other is okay); and

4. if no partner sessions exist, the peer’s long-term secret key has not been revealed.

Different freshness conditions can be used to capture different attacker capabilities, e.g., prohibiting any
RevRand query to capture the BR93/BWM model [10,15], or prohibiting revealing the peer’s long-term key
before acceptance to capture forward secrecy. Figure 4 shows example freshness conditions for attacker capabilities
in the BR93/BWM model and the eCK-PFS model [32].10

In the remainder of this section, we define two core security properties in our model.

2.4 Session key indistinguishability

The first security property that we define using our experiment is session key indistinguishability. As already
mentioned, this property is often considered the most central security goal for key exchange protocols. An
adversary is deemed to have broken session key indistinguishability if it can distinguish real session keys from
random; this is captured in the adversary’s ability to guess the hidden challenge bit b. We model this in the
security experiment by checking if the security predicate is equal to the distinguished symbol KI, which leads to
several special cases in the experiment. This allows us to define key indistinguishability as follows:

Definition 3. For a freshness condition F and number of parties n ∈ N, a protocol Π provides ε-key-
indistinguishability against an adversary A if

AdvKI,F
Π,n (A) :=

∣∣∣∣Pr
[
ExpKI,F

Π,n (A)⇒ 1
]
− 1

2

∣∣∣∣ ≤ ε .
10 We do not claim that our models with the corresponding freshness conditions are equivalent to the original security

models from the literature. For example, BR93 and BWM use matching conversations for partnering, rather than key
partnering. Our intention is to represent the permitted query patterns that capture attacker capabilities at a high level.
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F BWM(Φ, i)

1201 // The session’s session key has not been revealed
1202 if 〈RevSK, i, ∗〉 ∈ Q:
1203 return false

1204 // For all partner sessions
1205 for all j 6= i . S[i].k ≡ S[j].k:
1206 // The partner’s session key has not been revealed
1207 if 〈RevSK, j, ∗〉 ∈ Q:
1208 return false

1209 // Neither party’s long-term key was revealed
1210 if 〈RevLTK,S[i].owner, ∗〉 ∈ Q ∨ 〈RevLTK,S[i].peerID, ∗〉 ∈ Q:
1211 return false

1212 // No ephemeral randomness revealed anywhere
1213 if 〈RevRand, ∗, ∗〉 ∈ Q:
1214 return false

1215

1216 return true

F eCK-PFS(Φ, i)

1301 //
1302 // same as Lines 1101 to 1117 of F eCK

1315 //
1316 // If there is no partner session, the peer’s long-term key has not been revealed before the session accepted
1317 if @j 6= i . S[i].k = S[j].k and ∃r < s . Q[r] = 〈RevLTK,S[i].peerID, ∗〉 and Q[s] = 〈Send, (i, ∗), (accepted, ∗)〉:
1318 return false

1319

1320 return true

Fig. 4: Freshness conditions capturing attacker capabilities similar to the Blake-Wilson–Menezes model [15] (the
public key analog of BR93 [10]) and the eCK model with forward secrecy (“eCK-PFS” in [32]).

2.5 Session key confinement

Our second security property, session key confinement, models the common expectation of two-party key exchange
that a particular session key ends up in at most two different sessions. We can capture this either implicitly
through key-indistinguishability or explicitly as its own security goal.

In the implicit approach, the adversary is supposed to be able to capitalize on the event that more than two
sessions share the same session key by distinguishing the challenge key. That is, once three sessions end up with
the same key, they are by definition not considered partners anymore, so the adversary can reveal the session
key of one of them and use it to break any of the other two.

While this is a valid encoding of session key confinement, we prefer to state security properties explicitly and
thus reward the adversary directly if it manages to get more than two sessions to agree on the same key. Thus,
we define session key confinement via the event:

Confined(Φ, i) :
∣∣∣{j ∣∣ Φ.S[j].k ≡ Φ.S[i].k

}∣∣∣ ≤ 2. (1)

Definition 4 (Session key confinement). For a freshness condition F and number of parties n ∈ N, a
protocol Π provides ε-(session key) confinement against adversary A if

AdvConfined,F
Π,n (A) := Pr

[
ExpConfined,F

Π,n (A)⇒ 1
]
≤ ε .

When using key-partnering, key-indistinguishability does not imply confinement. For example, consider the
non-interactive key exchange protocols of Freire, Hofheinz, Kiltz, and Paterson [40], where there may be several
sessions between the same pair of parties, each of which is established non-interactively using the same long-term
keys and thus leads to the same session key every time. Such protocols provide session key indistinguishability
under key partnering (since none of the sessions sharing the same session key can be revealed), but clearly violate
confinement.

Note that Equation (1) does not require sessions to be fresh: the adversary may reveal all secrets in the
experiment. This might seem to make confinement very difficult to achieve. However, for protocols that derive
their session keys from a key derivation function (KDF), confinement can usually be proven either by the random
oracle assumption, or in the standard model, by assuming collision resistance (satisfied by, e.g., HKDF [49]).
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3 Falsifiability and partnering

As noted in the introduction, key exchange security models using existential partnering [3, 9, 11, 19, 21–25,34, 38,
46,50,59,61] allow the prover to state a session identifier or partner function for which their protocol can be
proven secure, rather than the model providing one. We call this a partnering mechanism: the security model
explicitly defines a relation that decides whether two sessions should be considered partners or not.

Without further restrictions on this relation, it is possible to define unnatural and pathological mechanisms
that allow intuitively insecure protocols to be proven secure, or mechanisms that make all protocols insecure.

For example, a partnering mechanism that partners all sessions artificially limits the adversary’s powers,
since it cannot reveal the session key of any session. As a result, protocols where the session key of different
sessions are not independent of each other can be proven secure. More generally, allowing a partnering mechanism
that partners everyone—even sessions with different session keys—is an example of over-provisioning, since it
partners sessions that intuitively should have nothing to do with each other.

At the other end of the spectrum is a partnering mechanism which partners no one. This is an example of
partner under-provisioning since it allows attacks in the model that do not correspond to any real-world attacks.

In this section we formalize soundness and “inverse soundness” that capture over- and under-provisioning
respectively. We then show that a protocol that is secure with respect to a partnering mechanism that does not
over- or under-provision is also secure with respect to key partnering; we call this the baseline theorem of key
exchange partnering.

3.1 Partnering

Definition 5 (Partnering mechanism). Let I be the space of all instance states. A partnering mechanism is
a binary relation on I.

For example, key partnering is Pkey(π, π′) = (π.k = π′.k); matching conversations is

Pmc(π, π′) = (π.transcript = π′.transcript)

∨ (∃m . π.transcript = π′.transcript‖[m]))

∨ (∃m . π.transcript‖[m] = π′.transcript))

Our security experiment and freshness conditions in Section 2 are stated with key-partnering already built into
the definitions. For the purposes of this section, we need to generalize them to an arbitrary partnering mechanism
P , which is done simply by replacing all session key equality checks with the general partnering check.

In particular, we define ExpSecPred,F,P
Π,n by making the following modifications in Figure 2:

– Test line 903 becomes: “if ∃j . P (S[i],S[j]) and j ∈ T :”
– IsPartnered line 1001 becomes: “return P (S[i],S[j])”

The freshness condition F is also allowed to depend on the partnering mechanism P . For example, in Figure 3:

– F eCK line 1110 becomes: “for all j . P (S[i],S[j]):”
– F eCK line 1121 becomes: “if @j . P (S[i],S[j]) and ∃ . . . ”

Note that our partnering mechanism compares session states, so our security experiment uses indices i, j, etc.
to index into the list of sessions S and then evaluates the partnering mechanism on session states S[i],S[j].

We now turn to assessing whether a partnering mechanism over- or under-provisions session partners, which
we will model by certain soundness properties.11

Beginning with the problem of over-provisioning, we demand that partners should derive the same session
key. This is captured by the following event defined on security experiment ExpSecPred,F,P

Π,n :

SoundP (Φ, i) : ∀π, π′ ∈ Φ.S . P (π, π′) =⇒ π.k = π′.k.

ε-soundness is defined analogously to Definition 4.
To deal with the issue of under-provisioning, we demand that any two sessions that derive the same session

key should also be partners. We call this inverse soundness, defined by the event:

InvSoundP (Φ, i) : ∀π, π′ ∈ Φ.S . π.k ≡ π′.k =⇒ P (π, π′).

ε-inverse-soundness is defined analogously to Definition 4.
Notice both soundness and inverse soundness are required to hold unconditionally with respect to session

freshness: each must hold even when the adversary can obtain any secret value it wants.
Soundness is one of the conditions required of Match security [22]. Inverse soundness is seldom mentioned in

key exchange models, but was described by Kudla and Paterson [51] as strong partnering. Together, these two
properties allow us to prove in the next section our baseline theorem relating security under key partnering to
security under arbitrary partnering mechanisms.

11 Here, “soundness” refers to a property of the partnering mechanism; we use the term “correctness” for the property
that honest parties, in the absence of active adversarial interference, derive equal session keys.
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3.2 Baseline theorem of key exchange partnering

Theorem 1 (Baseline theorem of key exchange partnering). Let Π be a key exchange protocol. For any
security property SecPred, Π is secure under key-partnering if and only if it is secure under P -partnering, as long
as the partnering mechanism P is sound and inverse-sound. More precisely, for all SecPred, Π, n, F , P , and A,∣∣∣Adv

SecPred,F,Pkey

Π,n (A)− AdvSecPred,F,P
Π,n (A)

∣∣∣ ≤ Pr[SoundP ] + Pr[InvSoundP ]. (2)

Note that while the same F is used in the two experiments in (2), that F may call the partnering mechanism
used in the respective experiment, so we would have “F -with-Pkey” or “F -with-P”. Also recall that we use
Pr[SoundP ] and Pr[InvSoundP ] as a short-hand for the advantage an adversary has in breaking soundness or
inverse-soundness of Π with P . Interestingly, de Saint Guilhem, Fischlin and Warinschi [33, Theorem 5.1]
prove that if Match security holds, then equal keys implies equal partners already so that the requirement of
inverse soundness might seem superfluous. However, their implication only holds for fresh sessions and thus, the
additional requirement of inverse soundness is needed in our theorem.

A direct consequence of Theorem 1 is the falsifiability of security models using session identifiers or general
partnering functions. If an attack is shown against a security property of a key exchange protocol when using a
sound and inverse-sound partnering mechanism, then that is indeed an attack against the protocol under key
partnering or (by transitivity) under any other sound or inverse-sound partnering mechanism.

Proof. Consider the run of ExpSecPred,F,P
Π,n (A) with the same random coins for the experiment and the adversary as

in the run of Exp
SecPred,F,Pkey

Π,n (A), but using P instead of Pkey. Let Same be the event that P (π, π′) = Pkey(π, π′)
at every evaluation of the partnering mechanism in the experiment and freshness conditions, as described earlier
in Section 3.1; Same is the complement of Same. Then the two runs behave identically as long as Same does not
occur, i.e., ∣∣∣Adv

SecPred,F,Pkey

Π,n (A)− AdvSecPred,F,P
Π,n (A)

∣∣∣ ≤ Pr[Same]. (3)

If Same occurs, and thus there is some point in time for which there is some pair of sessions π, π′ for which
P (π, π′) 6= Pkey(π, π′), then either (a) P (π, π′) but π.k 6= π′.k (which we will show violates soundness for P ), or
(b) π.k = π′.k but ¬P (π, π′) (which will violate inverse-soundness for P ).

There are three places within the experiment which can cause the event Same to occur, namely the three
places where we modified ExpSecPred,F

Π,n to ExpSecPred,F,P
Π,n at the start of Section 3.1:

– Line 903 of the Test(i) query: If there is some j for which P (S[i],S[j]) 6= Pkey(S[i],S[j]), then this would
also have been true at the most recent Init or Send query involving either S[i] or S[j]. Note that we only
have to consider Init and Send queries since they are the only queries that modify session variables, and we
only have to consider the most recent such query involving one of those sessions since Init or Send queries
to other sessions do not affect the partnering of S[i] or S[j].

– Line 1001 of the IsPartnered query: Similarly.
– Inside the call to F on line 307 of the O oracle: The freshness condition F may evaluate the partner

predicate zero or more times, on two arbitrary sessions π, π′ ∈ S. Note that F uses the partnering mech-
anism of its experiment, therefore it is either F -with-Pkey or F -with-P , depending on whether we are in

Exp
SecPred,F,Pkey

Π,n (A) or ExpSecPred,F,P
Π,n (A). If, at any of F ’s evaluations of the partnering mechanism, we

have that P (π, π′) 6= Pkey(π, π′), then it would also have been true at the most recent Init or Send query
involving either π or π′.

Thus, if Same occurs in ExpSecPred,F,P
Π,n (A), then either the game ExpSound,F,P

Π,n (A) or the experiment ExpInvSound,F,P
Π,n (A)

(with the same random coins for the experiment and adversary) outputs 1. Hence

Pr[Same] ≤ Pr[SoundP ] + Pr[InvSoundP ]. .

Combining (3) with the above inequality yields the result.

Note that key partnering is clearly perfectly sound and inverse-sound.
At first glance, Theorem 1 might seem vacuous: security with P -partnering approximates security with

key-partnering if P -partnering approximates k-partnering. However, there are variants of ExpSecPred,F
Π,n for which

proving the baseline theorem becomes unclear. For example, we initially tried to write ExpSecPred,F
Π,n with all

security predicates evaluated at the end of the main experiment on line 218, rather than continuously evaluating
non-KI predicates in the Send query as Figure 2 shows. We were unable to prove the corresponding baseline
theorem: soundness/inverse-soundness would only be guaranteed at the end of the experiment, but there might
have been intermediate points where it was temporarily violated, which might result in different behavior between
the experiment using key-partnering versus P -partnering.

Theorem 1 uses a generic security predicate: it holds for, e.g., session-key indistinguishability, confinement,
and the authentication properties in Appendix B.
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4 Composition should be possible

Brzuska, Fischlin, Warinschi, and Williams [22] (BFWW) show that if a key exchange protocol is composable,
then it is possible to (weakly) determine which sessions derive the same keys only based on the public protocol
transcript. However, BFWW consider a model that does not expose a session matching oracle, and we argue
now, that if the model itself exposes a session matching oracle, then the key exchange protocol can actually
be composable without admitting a public session-matching algorithm based on transcripts only. That is, we
show that the class of key exchange protocols that are securely composable is bigger than the class identified by
BFWW. In this section, we first explain why a key exchange secure in security model with a session matching
oracle is composable and then discuss a separating example of a key exchange protocol that is composable,
intuitively and provably, but was excluded by BFWW due to the absence of a public session-matching algorithm.

4.1 Composability

In order to prove that a key exchange model provides composability with a symmetric-key primitive, one first
needs a definition of security for the symmetric-key primitive and a definition of a composed game. Let’s think
of k←$ {0, 1}n as being a line of pseudo-code in the game defining the security of the symmetric primitive. The
composed game will replace this line by using the session key of the key exchange game. Besides, the composed
game will expose the same queries to the adversary as the game defining the security of the symmetric primitive
and the key exchange game, except for Test and Reveal queries. The composed game uses bit b = 0 for the
key exchange, and the adversary wins the composed game based on the winning condition of the symmetric
primitive.

To reduce the composed security to the two underlying building blocks, one first reduces to the key exchange
security to replace real session keys with random session keys. Then, one can reduce to the security of the
symmetric-key protocol. Making this proof outline rigorous is less straightforward than one might think. A tricky
part in the proof is that the symmetric primitive game needs to be multi-session and key exchange sessions that
belong together must be mapped to the same instance of the symmetric primitive. Therefore, in the reduction to
the key exchange, the reduction needs to know which two sessions are partnered. BFWW [22] thus argued that a
protocol must have a public matching algorithm. This approach was also followed by [20] for composition of
non-forward secure key exchange protocols and by Skrobot and Lancrenon [62] for password-based authenticated
key exchange. Moreover, due to the session identifiers in Universal Composability, also Canetti and Krawczyk [26]
assumed the protocol to have public partnering. In turn, Brzuska, Delignat-Levaud, Fournet, Kohbrok, and
Kohlweiss [18] and George and Rackoff [42] provide the adversary with a session-matching oracle that tells the
adversary which pairs of sessions are partnered. In this paper, we argue for the advantages of the latter choice.
Namely, it allows to establish secure composability of a larger class of protocols.

4.2 A separating example

Let Π be a key exchange protocol that is secure in an arbitrary key exchange model with mutual authentication
and pre-specified peers. We now add public-keys for a re-randomizable encryption scheme to Π and encrypt all
messages of the original Π protocol with re-randomizable encryption of the intended peer. (Here, we use mutual
authentication and pre-specified peers). We obtain a new protocol Π′. In the previous subsection, we showed
that protocols secure in a model with a partnering oracle are composable. In this section, we show that Π′ is
indeed secure in a model with a partnering oracle but Π′ does not have a public partnering mechanism.

Π′ is secure in a model with a partnering oracle. Let A be an adversary against Π′ in a model with a partnering
oracle. We now build an adversary B against Π. B first draws all keys for the rerandomizable encryption scheme
and whenever a party Pi with intended peer Pj sends a message m, then B encrypts m under the public key
of Pj with the rerandomizable encryption scheme. In turn, when the adversary makes a Send(i,m) query to
session i, and P is the owner of session i, then B first decrypts m using the secret key of P of the rerandomizable
encryption scheme and forwards the decrypted message to the experiment. All other oracle queries are forwarded.
The soundness of the simulation is a bit hard to argue in an arbitrary model, but the emulation of the Send
query is perfect, RevSK, IsPartnered, RevLTK (here, we need to add the secret key) also return the same
answer, RevRand (here, we need to add the randomness for the rerandomizable encryption scheme).

Π′ does not have public partnering. Consider an adversary A that creates two sessions for Pi and two sessions
for Pj , flips a bit to see which one is matched to which and then re-randomizes messages. By security of
rerandomizable encryption, from the public transcript, one cannot tell which session is matched with which
session. If one wants these probabilities to be more dramatic, one can take many pairs of such sessions and gets
a guessing probability of 1

2

c
, where c is the number of sessions: the guessing probability is upper bounded by 1

2

c

or the probability of breaking the rerandomizable encryption scheme. If c is polynomial, the guessing probability
is negligible.
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4.3 A general composition theorem

We can bypass the aforementioned counterexample and impossibility result by Brzuska, Fischlin, Warinschi and
Williams [22], as we added a partnering oracle to our model which tells the adversary whether two sessions
are partnered or not. A similar observation was made by Brzuska, Delignat-Lavaud, Fournet, Kohbrok and
Kohlweiss [18] who establish composability of a specific eCK variant. We can generalize their theorem to arbitrary
key exchange protocols which can be formalized in our above model, regardless of their freshness predicate.
To prove such a general composability theorem, we need to formalize the above mechanism that defines the
composition of a key exchange protocol with a symmetric-key primitive. To be able to do this, we use the
technique of [18] to slice code into several pieces of code. The first object we need is a keys array which will
replace some of the code of the Test oracle.

SET(i, k)

2001 // store key
2002 T [i]← k
2003 return ()

GEN(i)

2101 if T [i] 6= ⊥:
2102 return ()

2103 T [i]←$K
2104 return ()

GET(i)

2201 return T [i]

Gameb

Keys
GET

GEN

Q SA

Fig. 5: Keys Array

Definition 6 (Keys Array). A Keys array is a piece of pseudocode which exposes the oracles SET, GEN and
GET which behave as specified in Figure 5.

Now, we first define a symmetric-key security game which relies on the Keys array and then modify our key
exchange experiment to interact with the Keys array, too.

Definition 7 (Symmetric-Key Security Game). Let G0 and G1 be stateful pieces of pseudocode that expose
the same set S of oracles to the adversary and make queries to the GET oracle of a Keys array. Then, we
define the game Gb → Keys as the game where an adversary can call oracles S ∪ {GEN}, where GEN calls of
the adversary are executed by Keys. Gb → Keys is depicted on the right side of Figure 5. For an adversary A
interacting with Gb → Keys, we define the advantage as

εG→Keys(A) :=
∣∣Pr[1 = A → G0 → Keys]− Pr[1 = A → G1 → Keys]

∣∣
The key exchange experiment ExpKI,F

Π,n (A) does not terminate early and it always terminates in line 215.

Additionally, it does not rewind the adversary. We can thus externalize the adversary and write A → ExpKI,F
Π,n

as an adversary which interacts with the oracles of ExpKI,F
Π,n . Additionally, we can fix the bit b in ExpKI,F,b

Π,n and
change the Test query such that, instead of returning a key to the adversary, it writes the key into Keys via a
SET(i, k) query if b = 0 and makes a GEN(i) query to Keys if b = 1. The adversary is now given access to the
GET oracle of Keys.

Definition 8 (Composable Key Exchange Game). Let A → ExpKI,F
Π,n be an adversary that interacts with

the oracles of ExpKI,F
Π,n , where we fix b in ExpKI,F,b

Π,n . Let the Test query write the key into Keys via a SET(i, k)
query if b = 0 and make a GEN(i) query to Keys if b = 1. The adversary is given access to the GET oracle of
Keys. We define the adversary’s external advantage as εExpKI,F

Π,n→Keys(A) :=∣∣∣Pr[1 = A → ExpKI,F,0
Π,n → Keys]− Pr[1 = A → ExpKI,F,1

Π,n → Keys]
∣∣∣ .

Note that εExpKI,F
Π,n→Keys(A) is twice the standard advantage. We can now naturally define the composed game

where ExpKI,F,b
Π,n is connected to Keys via a SET query (if b = 0) or via a GEN query (if b = 1), Gb

′
is connected

to Keys via a GET query, and the adversary has access to the oracles of ExpKI,F
Π,n and G (but not to any oracle of

Keys). In line with [18], we denote the parallel composition of two games by a fraction notation.

Definition 9 (Composed Game). Let ExpKI,F
Π,n (A) be a key exchange game from our family, let G0 and G1

be a symmetric-key security game, then we define the advantage of A against their composition as εcomp(A) :=∣∣∣∣∣Pr[1 = A →
ExpKI,F,0

Π,n

G0
→ Keys]− Pr[1 = A →

ExpKI,F,1
Π,n

G1
→ Keys]

∣∣∣∣∣ .
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Theorem 2. Let ExpKI,F
Π,n (A) be a key exchange game from our family, let G0 and G1 be a symmetric-key

security game, then

εcomp(A) ≤ εExpKI,F
Π,n→Keys(A → G0) + εG→Keys(A → ExpKI,F,1

Π,n )

Proof. The proof is purely syntactical. In the first game hop, we move from
ExpKI,F,0

Π,n

G0 → Keys to
ExpKI,F,1

Π,n

G0 → Keys
by making the code of G0 part of the adversary, i.e., we consider A → G0 together as an adversary against the

key exchange. In the game-hop from
ExpKI,F,1

Π,n

G0 → Keys to
ExpKI,F,1

Π,n

G1 → Keys, we do the converse, i.e., we make the

code of ExpKI,F,1
Π,n part of the adversary and consider A → ExpKI,F,1

Π,n as an adversary against Gb. This concludes
the proof.

5 Composition should be tight

In the previous section we argued that for an AKE security notion to be useful it should be possible to compose
it with other security notions. Here we go one step further and argue that composition should also be efficient. By
efficient we mean in the sense of practice-oriented provable security [58]: a reduction from the composed protocol
to the AKE should be tight [27,28]. More concretely, suppose you have a protocol Π = KE;Σ consisting of the
composition of an AKE protocol KE and symmetric protocol Σ, i.e., where the keys used by Σ are generated by
KE. Now assume KE is secure according to some composable AKE security notion AKE, Σ is secure according
to some notion X, and the goal is to show that Π is secure according to some notion Y . Then we want the
Y -security of Π to be tightly reducible to the AKE-security of KE and the X-security of Σ, informally stated:

AdvYKE;Σ ≤ AdvAKE
KE + AdvXΣ . (4)

For example, Σ could be an authenticated encryption scheme, X could be the security notion of multi-user
authenticated encryption (mu-AE) [45], and Y could be the security notion of authenticated and confidential
channel establishment (ACCE) [44].

Intuitively, this should be possible since an AKE protocol is fundamentally a multi-user object, and so the
security of KE should “line-up” with the multi-user security of Σ to provide security for their composition Π. In
particular, we want the AKE security notion to support the following natural proof strategy: start by replacing
the session keys of all fresh sessions with random keys (which can be done since KE is secure), then appeal to
the X-security of Σ to argue that the composition Π = KE;Σ now satisfies Y -security. This argument has been
formalized by Brzuska, Fischlin, Warinschi, and Williams [22], showing that BR-secure AKE protocols can be
composed with arbitrary symmetric-key protocols. Unfortunately, the reduction given in [22] is not quite of the
form (4), but rather

AdvYKE;Σ ≤ q · AdvAKE
KE + AdvXΣ , (5)

where the factor q = n2
U · ns depends on the number of users nU and the number of sessions per user ns. For

systems with billions of users and sessions such as TLS, the factor q can become very substantial. As a result, if
parameters are to be selected in a theoretically sound manner supported by reductions, they would have to be
increased significantly, thereby hurting performance.

So where does the factor q in (5) come from? It comes from a hybrid argument in [22] where, one-by-one, the
session keys of all fresh sessions are replaced with random keys. The hybrid argument is necessary since the AKE
model in [22] only allows one Test query. A 1-Test model is thus not conducive to a tight composition result
like (4). More conceptually, we see the 1-Test model as failing to reflect the multi-user nature of key exchange.

n-FtG vs. RoR. Given that a 1-Test model is inadequate for tight composition, the natural solution is to use
an n-Test model where the adversary can make multiple Test queries. But there are two reasonable ways
in which this can be done: the n-FtG (Find-then-Guess) model, where each session is equipped with its own
independent secret bit bi and each Test query is answered real-or-random based on the corresponding session’s
secret bit; or the RoR (Real-or-Random) model, where all Test queries are either all answered with real keys,
or all are answered with random keys, based a single secret bit b.12 Both the n-FtG model [4, 34, 38, 43] and the
RoR model [1–3] have seen use in the literature. So which one should you prefer? Answer: RoR.

The n-FtG model is no better than the 1-FtG model when it comes to tight composition, because in the
reduction it does not allow replacement of all fresh session keys with random keys in one big swoop due to the
secret bits bi being independent. On the other hand, the RoR model allows all fresh session keys to be replaced
at once. Thus, the proof of (4) is simply a matter of “lining up” the keys from KE with the correct instances of
the symmetric protocol Σ. In fact, Skrobot and Lancrenon [62] have carried out exactly this proof by adapting
the composition framework of BFWW [22] to the RoR setting (albeit for password-based protocols).

12 The FtG and RoR labels are inspired by the similarly-named IND-CPA security notions for symmetric encryption [7].
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Fig. 6: Relationship between notions; X
L−→ Y indicates that notion X implies notion Y with security loss O(L).

Comparing the RoR and n-FtG models (see Figure 6), one can show that RoR tightly implies n-FtG, while
n-FtG only implies RoR with a tightness loss of n. Moreover, this loss is inherent. All of these claims can be
proven by adapting the corresponding proofs in [3] to our model given in Section 2. Note that this is not just an
exercise in moving definitions around so that a tightness gap is hidden elsewhere. For example, our proof in
Appendix A of the security of the NAXOS++ protocol obtains the same tightness gap to the underlying hardness
assumptions in the RoR model as the original proof of the NAXOS+ protocol did in the 1-FtG model [54],
but due to the RoR-model there is no additional gap when composing the AKE protocol with a subsequent
symmetric protocol.

Finally, we note a peculiarity of the n-FtG model. For security to be meaningfully defined in the 1-FtG and
RoR models all test sessions must be fresh, otherwise the adversary could trivially win the game. However, in
the n-FtG model—where the adversary’s output (i, b′) is a guess of the singular session i’s secret bit—one could
technically allow the compromise of all the other test sessions, since this wouldn’t necessarily trivialize the game.
But we do not recommend this variant of n-FtG. First of all, we find it conceptually wrong, since the whole
purpose of the Test query is to measure the adversary’s ability to distinguish session keys of valid targets. If
the adversary really wanted to learn the keys of the other test sessions it should have used the Reveal query.
Second, with this variant we can no longer prove the implication RoR =⇒ n-FtG.

Tight AKE constructions vs. tight AKE composition. This section has focused on the usefulness of the AKE
security notion itself, i.e., how tightly can the security of a complex protocol be reduced to the security of the
underlying AKE? In a sense, we have focused on the user of the AKE security notion.

In contrast, tightness considerations in the literature have mainly focused on the construction of the AKE
protocol itself, i.e., how tightly can the security of the AKE protocol be reduced to the security of some underlying
building block, such as Diffie-Hellman or RSA? So far, only a few AKE protocols with tight, or nearly tight,
reductions are known [4,5, 29,43].

Note that these two types of tightness considerations are complementary. For the security proof of the overall
system to be maximally meaningful (in the sense of practice-oriented provable security [6, 28,41,57,58]), both
the construction and the composition need to be tight.

6 Comparability of models

The main reason to compare key exchange security models is to compare the relative strength of a considered
adversary, i.e., which capabilities are the adversary assumed to have in the model? However, existing models
typically entangle the capabilities in slightly different ways, and hence there are no common capability parameters
that could serve as a basis for comparison.

If one commits to only using a specific family of models parametrized solely by a freshness condition (such as

the one in [32], [16], or our ExpSecPred,F
Π,n in Section 2), then the comparison boils down to comparing the freshness

conditions. However, in practice, other aspects may also differ, such as the choice of partnering mechanism [31].
Nevertheless, our baseline theorem shows that the behavior of different partnering mechanisms is approximately
the same, provided they satisfy the two natural soundness properties. Thus, here we focus instead on another
source of incomparability, namely the treatment of adversarial misbehavior, which has not been considered by
previous works.

For a given property, we aim to determine a protocol’s security against adversaries that do not violate the
freshness condition; what we will call well-behaved adversaries. Surprisingly, there is no consensus on how to
ensure that only well-behaved adversaries are considered in the security definition, as illustrated by the following
different approaches taken in the literature.

A) Exclusion-style. In this approach one simply quantify over the well-behaved adversaries only. The security
experiment is typically formulated as follows (see, e.g., [16]):

1. The experiment begins, and the adversary can issue any permissible query.
2. At some point it issues a Test query to a fresh session.
3. It continues issuing queries, under the condition that the test session remains fresh.
4. Finally, the adversary outputs a guess b′.
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While the exclusion-style formulation is probably the one most commonly found in the literature, it has some
conceptual drawbacks. Quoting Rogaway and Zhang [60]:

Exclusion-style definitions compel consideration of adversary classes. They disqualify adversaries that
only rarely misbehave. They ignore whether or not an adversary can ‘know’ it has misbehaved. And they
promote ambiguity, as the relevant restrictions are not expressed in game code.

We refer the reader to [60] for further details.

B) Penalty-style. Another approach is to quantify over all adversarial behaviors, but then penalize the misbehavior
at the end of the experiment (e.g, by outputting a random bit on the adversary’s behalf). The difference between
the exclusion-style and the penalty-style definitions has previously been considered by Bellare, Hofheinz, and
Kiltz [8] in the context of IND-CCA security for public-key encryption. Examples of models using the penalty-style
are given in [9, 19,35,54]. For a proof using a penalty-style definition, the relevant adversary restrictions will
manifest themselves during the probability analysis where one needs to check that indeed, the reduction will not
be penalized by the game it is playing and/or that it is penalized if and only if the original adversary would
have been penalized in its game as well. These analyses can sometimes be quite subtle.

C) Filtering-style. Finally, we have the approach we prefer, where queries that constitute adversarial misbehavior
are not executed, and no response is returned to the adversary. This filtering-style definition is inspired by
George and Rackoff [42] and the work of Rogaway and Zhang [60].13 The advantage of a filtering-style definition
is that it makes the accepted adversarial behaviour explicit in the game code, and it avoids the need for subtle
freshness analyses at the end of the proof.

Relations between notions. The relationship between the three notions is subtle. First, security in a filter-style
model implies security in an exclusion-style model, but not the other way around. The problem is that one
cannot always publicly check whether a query is valid or not. However, if the validity can be publicly checked
(i.e., if it does not depend on secret game state), then exclusion-style security implies filter-style security. This is
similar to a result by Rogaway and Zhang [60].

For penalty-style security the situation is much more complicated. First, similar to the direction exclusion-style
security → filter-style security, security in a penalty-style model only implies security in a filter-style model if
one can publicly check validity. However, in the converse direction filter-style security fails to imply penalty-style
security. To illustrate this, consider a penalty-style adversary A for which we aim to build a filter-style adversary
B (against the same protocol) using the eCK-like freshness predicate F eCK given in Figure 3. Now suppose A
behaves as follows: (1) it reveals all long-term keys; (2) it forwards messages passively between two sessions until
one of them accepts; (3) it tests this session; (4) it delivers the test session’s final message to the other one (so
they become partners); (5) it stops and outputs a guess. The problem for B occurs in step (3): at this point the
test-session is non-fresh according to F eCK, so it won’t get a response back if it forwards A’s Test query to its
own filter-style game. However, it can’t simply abort, because A is a valid penalty-style adversary due to step
(4) (since the test-session eventually gets a partner, it is fresh by the time of step (5)).

The reason for this issue is that in a penalty-style model the “intermediate” freshness state of a session could
be non-monotonic. I.e., even though a session is fresh when the experiment ends, it could have been considered
unfresh at certain points during the experiment. In our view, this non-monotonic aspect of the penalty-style
model is counter-intuitive and complicates reasoning. Also, it is not clear whether the obstacle to proving that
filter-style security implies penalty-style security represents an actual security difference, or whether it is merely
a proof technicality.

7 Discussion

For the cryptographer developing a protocol, we offer a family of key exchange models in Section 2, parameterized
by a freshness condition tailored to capture the intended adversarial attack capabilities. A proof in one of our
models ensures that no attack exists under a different reasonable partnering mechanism, and that efficient
composition with a symmetric-key protocol is possible.

Our results are useful beyond the family of models: for those who prefer to use session identifiers rather
than key partnering for your proof, our baseline theorem of key exchange partnering says this is fine, as long
as soundness of the session identifiers is proven. For those who prefer to penalize adversaries that violate the
freshness condition, rather than filtering the response from unfresh queries, the IsPartnered oracle provides
the public checkability of partnering to show these equivalent.

Our results show that by some careful choices for key exchange models, one can relatively easily obtain sanity
in interpreting and relating different key exchange security models, and assurance that protocols satisfying those
models can be composed in reasonable ways.

13 In the silencing definition of Rogaway and Zhang [60], the game state is updated and only the response is suppressed,
whereas our formulation in Figure 2 reverts the game state if the response is to be suppressed.
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A Case Study: Analyzing NAXOS+ in our model

In this section we showcase the security model we defined in Section 2 by providing a proof of the NAXOS+
protocol [54]. In fact, we consider a slight variant of NAXOS+ we call NAXOS++, whose only difference is that
it includes the full protocol transcript into the key derivation function.

Specifically, in NAXOS++, each party U has a long-term Diffie-Hellman key pair over a group G of prime
order p, generated by a generator g, i.e.:

KG() 7→ (sk, pk) : a←$ {1, .., p}, sk← a, pk← ga

Each party draws an ephemeral random string esk and computes its ephemeral Diffie-Hellman exponent using
the NAXOS trick, i.e.:

New(U, skU , pkU , role, V,PK) 7→ (π,m) :

esk←$ {1, .., p},
if role = init : x← H1(esk, skU ), X ← gx, m← X

if role = resp : y ← H1(esk, skU ), Y ← gy, m← ⊥

The initiator and responder then both compute all possible combinations of Diffie-Hellman secrets and hash
them together with their long-term public-keys and the ephemeral Diffie-Hellman public shares (including these
public-shares is somewhat redundant, but it makes the key material uniqueness argument for NAXOS++ a little
easier than the analogous argument about NAXOS+), i.e.:

Run(π,m) 7→ (π′,m′) : // π.owner = U, π.pid = V

if role = init :

m′ ← ⊥, parse Y ← m

keymat← (pkU , pkV , X, Y, pkskU
V , Y skU , pkxV , Y

x)

if role = resp :

m′ ← Y, parse X ← m

keymat← (pkV , pkU , X, Y, pkskU
V , pkyV , X

skU , Xy)

k ← H2(keymat)

We now state our theorem for NAXOS++ Π = (KG,New,Run) and observe that, although we prove security
for an arbitrary number of Test sessions, the bounds and the conceptual reduction arguments remain essentially
the same as in Lee and Park [54], only the additive statistical terms Theorem 3 are slightly increased. Recall
that we prove security in the tightly composable RoR model while Lee and Park [54] prove security in the 1-FtG
model, cf. Figure 6.

Theorem 3. For all adversaries A, there are efficient, explicit constructions of adversaries B1(A), B2(A) and
B3(A) such that

AdvKI,F eCK

Π,n (A) ≤ n · Advdlog
G,g (B1(A))

+ n2
s · AdvCDH

G,g (B2(A))

+ nns · AdvCDH
G,g (B3(A))

+
q2
1 + q2

2 + 2n3
sq2 + 2n2

sq1q2 + n2
sq

2
2

2λ

+
n2 + n2

s + 2nnsq2 + 2nn2
sq1q2

p

(6)

where n denotes number of users, ns is the (total) number of sessions, q1 is the number of queries to random
oracle H1, q2 is the number of queries to random oracle H2, dlog is the Discrete Logarithm problem, and CDH is
the Computational Diffie-Hellman problem.

Proof. The proof proceeds through a sequence of six game-hops that are summarized in Figure 7. G0 is equal to

ExpKI,F eCK

Π,n (A). The lines following G` are only executed in games Gm with m ≥ `. Note that in our game-hops,
we use our filtering mechanism to ensure that fewer and fewer bad events can occur. Essentially, this captures
“identical-up-to-bad” reasoning [12], but without the complexity of conditional probabilities. Instead, we simply
modify the game such that the undesirable behavior cannot occur anymore.

From game G0 to G1, we remove collisions on the long-term keys. From game G1 to G2, we remove random
oracle collisions on the random oracles H1 and H2. From game G2 to G3, we remove collisions between the
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randomness that is drawn by each session. From game G3 to G4, we remove the case that there exists a party U
with long-term secret sk such that the adversary A makes a random oracle query H1(∗, skU ) before, or without,
making a RevLTK(U) query. From game G4 to G5, we remove random oracle queries to H2 with the key
material of a Test session i that is not partnered. From game G5 to G6, we remove random oracle queries to H2

with the key material of a Test session i that is partnered. In game G6, the adversary cannot make random
oracle queries to the random oracle H2 with the key material of any Test session, and thus, the adversary’s
advantage in G6 is the statistical distance between random keys and non-colliding keys (since several collisions
have been removed).

ExpKI,F eCK

Π,n (A)

201 b←$ {0, 1} // Pick hidden challenge bit
202 S ← [] // Initialize list of session states
203 Q ← [] // Initialize list of queries
204 T ← ∅ // Initialize set of tested sessions
205 cnt← 0 // Initialize session counter
206

207 for all U ∈ {1, . . . , n}: // Generate all long-term key pairs
208 a←$ {1, .., p}
209 a←$ {1, .., p} \ {skV : V < U} // G1: No long-term key collisions
210 skU ← a, pkU ← ga

211 PK[U ]← pkU
212

213 Φ← {b,S,Q, T , cnt,PK} // Global experiment state
214 b′←$AO(PK) // Run the adversary
215 output b = b′

// All adversary queries are “filtered” through O
O(Query, x)

301 Φ′ ← Φ // Save the current global experiment state
302 y ← Query(x) // Run the adversary’s query
303 Q←←〈Query, x, y〉
304

305 if // Check if all tested sessions would remain fresh
306 ∀i ∈ T . F eCK(Φ, i)
307 // Check if there are RO collisions
308 G2 : ∀x, x′ . T1[x] ≡ T1[x′] orT2[x] ≡ T2[x′]
309 =⇒ x = x′

310 // Check if there are randomness collisions
311 G3 : ∀i, i′ . S[i].esk ≡ S[i′].esk =⇒ i = i′

312 // Check if there are secret longterm key guesses
313 G4 : ∀U . ∃〈H1, (∗, skU ), ∗〉 ∈ Q
314 =⇒ ∃〈RevLTK, U, ∗〉 ∈ Q
315 // Check if there are session-key guesses for non-partnered sessions
316 G5 : ∃i . ∃〈Test, i, ∗〉 ∈ Q
317 and @j 6= i . S[i].k ≡ S[j].k
318 =⇒ @〈H2, (S[i].keymat), ∗〉 ∈ Q
319 // Any session-key guesses for partnered sessions?
320 G6 : ∃i . ∃〈Test, i, ∗〉 ∈ Q
321 and ∃j 6= i . S[i].k ≡ S[j].k
322 =⇒ @〈H2, (S[i].keymat), ∗〉 ∈ Q :
323 return y
324 else
325 Φ← Φ′ // Revert effects of bad query
326 return 3 // Silence response

Init(U, role, V )

401 cnt← cnt + 1
402 (S[cnt],m)←$ Π.New(U,

skU , pkU , role, V,PK)
403 return (cnt,m)

Send(i,m)

501 (S[i],m′)← Π.Run(S[i],m)
502 return (S[i].status,m′)

RevSK(i)

601 return S[i].k

RevRand(i)

701 return S[i].rand

RevLTK(U)

801 return skU

Test(i)

901 if i ∈ T :
902 return ⊥
903 if ∃j . S[i].k = S[j].k ∧ j ∈ T :
904 return ⊥
905 T ←← i
906 k0 ← S[i].k
907 k1←$K
908 return kb

IsPartnered(i, j)

1001 return (S[i].k ≡ S[j].k)

H1(esk, sk)

1101 if T1[esk, sk] = ⊥:
1102 T1[esk, sk]←$ {0, 1}λ

1103 return T1[esk, sk]

H2(keymat)

1201 if T2[keymat] = ⊥:
1202 T2[keymat]←$ {0, 1}λ

1203 return T2[keymat]

Fig. 7: Key Exchange Experiment for NAXOS++ protocol and freshness F eCK. The lines following G` are only
executed in games Gm with m ≥ `. Recall that ≡ treats two values as equal only if they have previously been
defined, see Section 2.2.

We now bound the difference between each subsequent pair of games. In the following, let εi denote A’s
advantage in game Gi. For the first three game hops, simple collision arguments gives

|ε0 − ε1| ≤
n2

p
, |ε1 − ε2| ≤

q2
1

2λ
+
q2
2

2λ
and |ε2 − ε3| ≤

n2
s

p
.

Bounding game G3 and game G4 is analogous to the reduction to the discrete logarithm problem (DLOG)
given by Lee and Park [54]. They lose a factor n when guessing a random party whereas we simply perform a
hybrid argument over the number of parties, yielding a stronger claim with the same security loss and the same
reasoning. Only the constant additive term gets increased by the hybrid argument when compared with the
guessing argument.

ε3 − ε4 ≤ n ·
(

Advdlog
G,g (B1(A)) +

2nsq2

p

)
(7)
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The two remaining game-hops involve reductions to the Computational Diffie-Hellman (CDH) assumption. Again,
the proofs are analogous to reductions for the corresponding events in [54]. For the step from G4 to G5, Lee and
Park [54] guess a pair of random sessions where they embed the challenge Diffie-Hellman share. We, instead of
guessing them at random, perform a hybrid over all pairs. If it turns out that the pair in consideration does not
end up in a a Test session, the reduction outputs a random bit (and moreover, the condition introduced for G4

for this pair does not affect the game behavior, so the adversary’s advantage in this hybrid step is indeed 0). For
the step from G5 to G6, we replace guessing one party and one session by a hybrid argument over all possible
combinations of a session and a party.

ε4 − ε5 ≤ n2
s ·
(

AdvCDH
G,g (B2(A)) +

ns + q1

2λ−1

)
,

and

ε5 − ε6 ≤ nns ·
(

AdvCDH
G,g (B3(A)) +

2nsq1

p

)
.

In game G6, the adversary cannot make random oracle queries to the random oracle H2 with the key material of
any Test session, and thus, the adversary’s advantage in G6 is the statistical distance between uniformly random

keys and actual keys, and ε6 is upper bounded by
n2
sq

2
2

2λ
.

B Authentication

To be useful, a key exchange protocol typically needs to provide authentication guarantees in addition to
key-indistinguishability. For example, when a key is locally accepted by some session, it should be clear who
else (if anyone) is in possession of the same key. One can also demand that one or both parties involved in
the exchange are authenticated (mutual vs. one-way), that the guarantee holds as soon as the exchange has
ended or when the key is actually used (explicit vs. implicit). Furthermore, the guarantees can be considered
under a variety of trust assumptions where the adversary can corrupt long term keys of parties or not (i.e.
key-compromise impersonation attacks) and can corrupt ephemeral keys.

In this section we show how authentication guarantees can be expressed as security predicates in our model.
However, an exhaustive treatment of all different combinations is outside the scope of this paper, and we refer to
de Saint Guilhem, Fischlin and Warinschi [33] for a thorough survey. We focus on providing definitions for some
minimal set of authentication / agreement guarantees which we would normally expect to be satisfied.

B.1 Implicit authentication

We start with a minimal agreement guarantee we would expect a good key-exchange protocol to satisfy: entity
agreement, a.k.a. implicit authentication. Implicit authentication is a useful property to prove in addition to
secrecy of the session key. We demand that if an accepted sessions has a partner, then that partner should be at
the session’s intended peer. Our formulation uses key-partnering.

ImplAuthF : ∀i 6= j .
((
S[i].status = accepted ∧ S[i].k = S[j].k ∧ F (Φ, i)

)
=⇒ S[i].pid = S[j].owner

)
(8)

Definition 10 (Implicit authentication). For a freshness condition F and number of parties n ∈ N, a
protocol Π provides ε-implicit authentication against an adversary A if

AdvImplAuth,F
Π,n (A) := Pr

[
Exp

ImplAuthF ,F
Π,n (A)⇒ 1

]
≤ ε .

We stress that our formulation is generic in that it does not fix any particular freshness predicate. Different
instantiations of the freshness lead to (substantially) different guarantees. E.g., if freshness allows the adversary
to compromise the long term key of the owner of S[i], then the notion captures security against key-compromise
impersonation (KCI) attacks. If freshness allows for the intended partner of S[i] to be compromised, then one
captures unknown-key share attacks under this more liberal corruption model.

Furthermore, our requirement for implicit authentication is minimal. It only demands that partners agree
upon the protocol participants. However, it is straightforward to extend this agreement property to cover
additional variables. For instance, to ensure that the participants have different roles in the protocol, one can
add this as an extra requirement to the ImplAuth event. In fact, agreement could be used to define a more
fine-grained version of matching conversations, by demanding that partners should agree upon specific parts of

25



their communication transcripts (and possibly leaving other parts open to manipulation). E.g., see the use of
agreement related to transcripts and downgrade attacks in [14].

Additionally, the supposition of ImplAuth depends on key partnering. It would be possible to formulate
ImplAuth to depend on a generic partnering mechanism, which would potentially imply subtly different authenti-
cation properties. However, as Appendix B.3 notes, our baseline theorem of key exchange partnering implies
that implicit authentication under key-partnering or a generic partnering mechanism behave similarly if the
partnering mechanism is sound and inverse-sound.

Finally, we note that implicit authentication does not provide any meaningful guarantees for protocols that
do not satisfy key secrecy, since in such a case no meaningful authentication is achieved.

B.2 Explicit Authentication

The “implicit” aspect of implicit authentication means that a partner session satisfying the requirements is not
actually guaranteed to exist. Some protocols also provide an explicit assurance that such a partner session exists:
this is explicit entity authentication [10].

Explicit authentication demands that when a session i accepts, it is partnered with a session of the intended
partner j. For stateless protocols, a minimal requirement to achieve this is that the intended peer is not corrupted
before session i accepts. We capture this property via the predicate FPNC below, in which the antecedent of the
implication identifies the acceptance in the list of queries, and the consequent excludes any preceding long-term
key reveals for the peer:

FPNC(Φ, i) : ∀r < s .
(
Q[s] = 〈Send, (i, ∗), (accepted, ∗)〉 =⇒ Q[r] 6= 〈RevLTK,S[i].peerID, ∗〉

)
. (9)

We can then state explicit authentication as:

ExplAuth : ∀i .
((
S[i].status = accepted∧FPNC(Φ, i)

)
=⇒ ∃j 6= i .

(
S[i].k = S[j].k∧S[i].pid = S[j].owner

))
(10)

Notice that the predicates which define implicit authentication and explicit authentication have potentially
different trust assumptions: ImplAuth allows for an arbitrary freshness predicate, while ExplAuth hard-codes
the requirement that the intended peer was not corrupted before the session accepted. This is because implicit
agreement guarantees can make sense even if the intended partner of session S[i] is corrupt (for example, with
eCK-type protocols), but do not make sense for explicit authentication.

The following weaker intermediate property captures just the aliveness property of authentication: when a
session accepts, and the intended partner is not corrupt, a session of the peer exists.

Alive : ∀i .
((
S[i].status = accepted ∧ FPNC(Φ, i)

)
=⇒ ∃j .

(
S[i].pid = S[j].owner

))
(11)

Relationship with key-confirmation. Another property which is sometimes mentioned alongside explicit authenti-
cation is key-confirmation. I.e., if a session accepts a key, then it is assured that some other session must also
have computed the same key.14 Intuitively, if key-confirmation is combined with a protocol that provides secrecy
and implicit authentication, explicit authentication is achieved. Note that secrecy is strictly required here: a
protocol that satisfies implicit authentication with an added key-confirmation step need not achieve explicit
authentication.

B.3 Falsifiability and partnering for authentication properties

A consequence of the baseline theorem of key exchange partnering (Theorem 1) is the following. Let Π be a
protocol, let φ be one of the three authentication properties in this section, and let P be a sound and inverse-sound
partnering mechanism. Then, Π provides φ under key-partnering if and only if it provides φ under P -partnering.15

One might initially think that one can prove falsifiability of some of the authentication properties relying only
on one of soundness or inverse-soundness. E.g., consider implicit authentication. In the ImplAuth predicate, the
key equality-partnering check is in the supposition of the predicate. So in order to argue, e.g., that, if implicit
authentication holds with P -partnering, it also holds with key-partnering, one might think that it suffices to have
soundness: the set of sessions satisfying the supposition of the ImplAuth predicate under key partnering would

14 Modulo some technicalities regarding which session sent/received the last message of the protocol. See [39] for a more
extensive treatment of key-confirmation, including these details.

15 Strictly speaking, to apply the baseline theorem, we need to consider the adaptations of ImplAuth, ExplAuth to P -
partnering rather than key-partnering, by replacing the key equality checks S[i].k = S[j].k on lines (8) and (10) with a
partnering check P (S[i],S[j]).
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then be a subset of the set of sessions satisfying the predicate under P -partnering. However, we cannot consider
the ImplAuth predicate in isolation: while the predicate itself only uses partnering in one way, there are other
parts of the overall security experiment which use partnering in various ways. In particular, the IsPartnered
oracle allows the adversary to exactly learn the partner status of every session under the partnering mechanism
in use (key partnering or P -partnering), which means we must have both soundness and inverse-soundness to
guarantee the whole experiment behaves identically.
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C Changelog

Here we list the main differences between the publicly available versions.

– v12.0, July 2024: After a “slightly” protracted process, released the first public version.
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