
Less Effort, More Success: Efficient Genetic
Algorithm-Based Framework for Side-channel

Collision Attacks

Jiawei Zhang1, Jiangshan Long1,
⋆
, Changhai Ou1,

⋆⋆
, Kexin Qiao2, Fan Zhang3,

and Shi Yan1

1 Wuhan University, Wuhan Hubei Province, China
2 School of Cyberspace Science and Technology, Beijing Insitute of Technology
3 College of Computer Science and Technology, Zhejiang University, Hangzhou,

310027

Abstract. By introducing collision information, the existing side-channel
Correlation-Enhanced Collision Attacks (CECAs) performed collision-
chain detection, and reduced a given candidate space to a significantly
smaller collision-chain space, leading to more efficient key recovery. How-
ever, they are still limited by low collision detection speed and low success
rate of key recovery. To address these issues, we first give a Collision De-
tection framework with Genetic Algorithm (CDGA), which exploits Ge-
netic Algorithm to detect the collision chains and has a strong capability
of global searching. Secondly, we theoretically analyze the performance
of CECA, and bound the searching depth of its output candidate vectors
with a confidence level using a rigorous hypothesis test, which is suitable
both for Gaussian and non-Gaussian leakages. This facilitates the initial-
ization of the population. Thirdly, we design an innovative goal-directed
mutation method to randomly select new gene values for replacement,
thus improving efficiency and adaptability of the CDGA. Finally, to opti-
mize the evolutionary of CDGA, we introduce roulette selection strategy
to employ a probability assignment based on individual fitness values
to guarantee the preferential selection of superior genes. A single-point
crossover strategy is also used to introduce novel gene segments into the
chromosomes, thus enhancing the genetic diversity of the population.
Experiments verify the superiority of our CDGA.

Keywords: CDGA · Genetic Algorithm · collision attack · collision
chain · key recovery · side-channel analysis.

1 Introduction

Cryptographic systems, when subjected to the execution of their algorithms
on physical devices, are vulnerable to inadvertent leakage of secret information

⋆ Corresponding author:longjiangshan@whu.edu.cn
⋆⋆ Corresponding author: keanut@126.com

2 Jiawei Zhang et al.

through side channels such as execution time [14], power consumption [28], elec-
tromagnetic radiation [8], and even cache patterns [18]. Side-channel attacks
(SCAs) can be classified into two categories: divide-and-conquer attacks and
analytical attacks [3]. The former, like Correlation Power Analysis (CPA) [4]
and Template Attacks (TA) [6], compartmentalize the full key of an encryp-
tion/decryption algorithm into smaller blocks (e.g., sub-keys), and conquer them
independently. The latter, like collision attacks [29], simultaneously processes
multiple blocks by solving a system of equations. The analytical attacks, in
particular, capitalize on more leaky information, rendering them more potent.
Correlation-Enhanced Collision Attacks (CECA) is a very classic distinguisher,
and it obtains the rank vector of collision candidates by calculating the corre-
lation between the averaged power consumption of two blocks of plaintexts in
block ciphers. This allows adversaries to attack the key without needing to know
the specific details of cryptographic implementation, making it highly suitable
for scenarios like flawed maskings, and attracting wide attention.

It is noteworthy that the sub-keys or their collisions often does not rank as
the optimal ones in side-channel attacks when the sample size is insufficient. In
this case, the divide-and-conquer attacks achieve key search by combining a key
enumeration method [22, 25], while collision attacks perform collision detection
to seek collision chains containing information of sub-keys, and exploit a strategy
to recombine them to achieve key recovery. However, the existing key recovery
schemes of CECA still face issues such as slow collision detection speed and
low success rate in key recovery. In the next section, we will describe these key
recovery schemes before going on to explain our contributions.

1.1 Related Works

The purpose of collision-chain detection is to break the independence among
sub-keys and establish their connections by introducing collision information,
thereby avoiding the random combinations of candidates and the huge key can-
didate space facing with. Collision attacks can target serially implemented cryp-
tographic algorithms with S-box operations such as AES, DES, and PRESENT
[10]. These attacks prioritize the collision values from the most probable to the
least probable in collision analysis. A threshold is established for it, which means
the adversary only considers a part of best candidates for each collision. The in-
augural approach for collision-chain detection was given in [3]. Since this intro-
duction, various collision-chain detection schemes have been developed, aiming
to enhance collision exploitation, fault tolerance and storage optimization of
collision chains.

Regarding collision exploitation, the pioneering collision-chain detection scheme,
termed Test-Of-Chain (TOC), was given in [3]. For a block cipher with a total
of N sub-keys, TOC utilizes collisions between each of two adjacent sub-keys,
thereby exploiting only N − 1 collisions out of N(N − 1)/2 pairs while neglect-
ing the majority. The another scheme named Fault-Tolerant Chain (FTC) [27]
exploits collisions between the first sub-key and the remaining sub-keys, and in-
corporates fault-tolerant strategies to increase the probability of the correct key

Less Effort, More Success 3

meeting the given collision condition. TOC and FTC are the same if we extend
them to Full-Collision Chain (FCC) [20], in which all N(N − 1)/2 collisions are
exploited during collision-chain detection. Obviously, this is very easy to achieve.
Specifically, we only need to detect the collisions between the candidates of the
next collision and the candidates of each collision chain, and retain new chains
that meet the collision conditions [20,21]. Unlike the above schemes considering
the number of collisions satisfying the given collision conditions, some works like
Wiemers et al. [30], adopts cumulative correlation coefficients to select partially
optimal collision chains, and also works very well.

For storage optimization of collision chains, issues arise when multiple chains
share the same sub-key candidates. Similar to key enumeration schemes, to
alleviate the repetitive collision detection, collision chains are stored during
their detection. However, this consumes large storage space, and happens in
TOC [3], FTC [27], FCC [20] and all the existing schemes. To optimize this, the
Lightweight Collision Detection (LCD) algorithm was given in [21]. Taking ad-
vantage of tree storage structure, LCD adopts a top-down candidates insertion
mechanism to insert the collision candidates satisfying the collision conditions
into the tree. It further adopts a bottom-up branch removal mechanism to delete
the branches unsatisfying the collision conditions. However, this makes collision
detection significantly more time-consuming compared to TOC, FTC and FCC
in the scenarios where all collisions are considered.

The above strategies signify a shift towards more effective cryptographic anal-
ysis methods, which reveal key information with lower computational demand
by identifying and exploiting patterns of collisions. It is noteworthy that a rea-
sonable threshold τd, which means only τd optimal candidates for each collision
is considered, plays an important role in key recovery of CECAs. If there is with-
out such a threshold, these schemes mentioned above will return to the worst
case (i.e., exhaustive case), because when considering all collision values, the key
space to be faced is the same as the original key space. However, the theoretical
security of CECA and the depth estimation on the ranking of collision value have
never been supported by theory. All the above schemes set a unified threshold
for all collision values, which significantly increases computational power.

1.2 Our Contributions

In this paper, rather than enhancing the performance of CECA like these in [2]
and [7], we aim to introduce Genetic Algorithm for key recovery of CECA,
establish theoretical confidence intervals for resolving population initialization
issues. Our main contributions are as follows:

(1) We give a Collision Detection framework with Genetic Algorithm (CDGA),
which exploits Genetic Algorithm to detect the collision chain, and has a
strong capability of global searching.

(2) We theoretically analyze the performance of CECA, and bound the search-
ing depth of the output candidate vectors with a confidence level using a
rigorous hypothesis test which is suitable both for Gaussian leakages and

4 Jiawei Zhang et al.

non-Gaussian leakages. This allows us to efficiently initialize the population
of Genetic Algorithm in CDGA.

(3) We propose an innovative goal-directed mutation method for CDGA. This
method enhances the efficiency of mutation and the quality of solutions by
randomly selecting novel gene values from the candidates vector of a collision
value for replacement. The strategy takes the advantages of randommutation
and goal-directed selection, thereby enhancing the efficiency and adaptability
of CDGA.

(4) We introduces refined roulette wheel selection, which employs a probability
assignment process based on individual fitness values, thereby ensuring the
preferential selection of superior genes. We also employ single-point crossover
strategy and introduce novel gene segments into the chromosomes to enhance
the genetic diversity of the population.

Experiments on the benchmark DPA contest v4.1 dataset and AT89S52
micro-controller implementing AES-256 an AES-128 algorithms verify the su-
periority of our CDGA.

1.3 Organization

The rest of this paper is organized as follows: Section 2 introduces side-channel
attacks, CECA and its several existing key recovery schemes. Our CDGA frame-
work is presented in detail in Section 3, and its optimizations are presented in
Section 4. Section 5 presents experiments on the DPA contest v4.1 dataset and
an AT89S52 micro-controller implementing AES-256 and AES-128 algorithms to
illustrate the superiority of our CDGA. Finally, Section 6 concludes this paper.

2 Preliminaries

2.1 Side-channel Leakage

Let k∗ = (k∗1 , k
∗
2 , . . . , k

∗
N) denote the secret key with a total of N sub-keys (e.g.,

N = 16 for AES-128) and k = (k1, k2, . . . , kN) denote a guessing candidate.
Side-channel attacks usually assume a known plaintext scenario where a num-
ber of plaintexts together with the leakages unintentionally emitted during their
encryptions are available to the adversary. Let xi = (xi

1, x
i
2, · · · , xi

N) denote
the i-th encrypted plaintext and Li = (Li

1, L
i
2, · · · , Li

N) denote the correspond-
ing power side-channel leakage measurement (i.e., power traces) related to the
cryptographic computation f currently under interest (e.g., the nonlinear S-box
operation of AES). Here an identical leakage model can be expressed as:

Li
j = g ◦ f

(
xi
j , k

∗
j

)
+ Ni

j = φ
(
xi
j , k

∗
j

)
+ Ni

j , (1)

where g is the leakage function depending on the physical circuits (e.g., the
Hamming weight operator), φ is the composition of g and f for simplicity, and
N is the independent (but not necessarily Gaussian) noise. It captures both the

Less Effort, More Success 5

irrelevant leakages emitted from other computations simultaneously from the
monitored device and the electronic disturbance introduced because of possibly
poor measurement set-ups. Without loss of generality, we assume that the noise
follows a distribution with mean E{Ni

j} = µN and variance D{Ni
j} = σ2

N .
In a side-channel attack, the adversary first collects two Q×N matrices: the

plaintext byte matrix X = (x1, x2, . . . , xQ)T and the side-channel measurement
matrix L = (L1, L2, . . . , LQ)T. The symbol “T” here denotes matrix transpose.
Then in the offline phase, he turns to some efficient side-channel analysis tool to
recover k∗ from the two matrices illegally.

2.2 Correlation-Enhanced Collision Attack

Correlation-Enhanced Collision Attack (abbreviated as CECA here) [29] is a po-
tent side-channel attack to efficiently identify collisions in cryptographic compu-
tations. This attack is particularly effective against devices implementing block
ciphers like AES-128. In an AES-128 algorithm, a linear collision occurs when
two S-boxes within the same AES encryption or across different encryptions re-
ceive identical byte values as their inputs. Formally, a collision can be represented
as:

Sbox(xi1
j1
⊕ k∗j1) = Sbox(xi2

j2
⊕ k∗j2). (2)

Here the symbol “Sbox” denotes the look-up table operation. In this context,
we define δj1,j2 as the resulting XOR differential between the j1-th and j2-th
sub-keys implicated in the collision. Consequently, we can rewrite Equ. (2) as
follow:

δj1,j2 = k∗j1 ⊕ k∗j2 = xi1
j1
⊕ xi2

j2
. (3)

Obviously, the connection between these two sub-keys is established by δj1,j2 .
CECA categorises the leakage samples of j1-th and j2-th S-boxes into 256 distinct
groups based on the byte values of their plaintexts, respectively. It then averages
the power consumption of each group, and executes the correlation analysis using
these averaged power consumption for each collision δj1,j2 . The correlation is
quantified as:

ρ(L
β∈Fn

2

j1 , L
β⊕δj1,j2

j2) (4)

under a guessing δj1,j2 . Here ρ(·) denotes the correlation coefficient computation,

and L
β

j denotes the averaged power consumption corresponding to the j-th plain-
text byte with a value of β. Obviously, if the number of power traces is enough
for attack and the guessing value of δj1,j2 is correct, ρ should be maximized. In
other words, CECA ditinguisher satisfies:

DCECA = argmax
δj1,j2

∈Fn
2

ρ(L
β∈Fn

2

j1 , L
β⊕δj1,j2

j2). (5)

2.3 Collision Chain and Test-of-Chain

Let τd denote the threshold for CECA, i.e., only the optimal τd candidate of each
collision δj1,j2 are taken into consideration. When a collision occurs between two

6 Jiawei Zhang et al.

key bytes kj1 and kj2 , it is captured by the Equ. (4). If a total number of n
collisions are detected, the adversary obtains a system of m linear equations as
follows:

kj1 ⊕ kj2 = δj1,j2 ,

kj3 ⊕ kj4 = δj3,j4 ,
...

kj2n−1 ⊕ kj2n = δj2n−1,j2n .

(6)

This collision system may only contain partial information of the full key, rather
than cover its entire information. In this case, this collision system contains
several independent sub-systems, with each sub-system containing several sub-
keys, and each sub-key only belonging to a sub-system. To achieve key recovery,
we only need to guess a sub-key for a sub-system, thus considerably constricting
the candidate key space.

Cryptographic systems, such as AES-128 with its 2128 key candidate space,
present a formidable challenge for exhaustive key search. Leveraging collision
information, current key recovery schemes of CECAs transform the candidate
space confined by τd into a reduced collision domain, thus markedly decreas-
ing the key recovery expenses. Specifically, collision chains serve as an efficient
mechanism to reduce this complexity. Collision chain comprises sub-systems,
each associated with independent variables and containing collision information
for a subset of sub-keys. Test-of-Chain(TOC) [3] involves examining sequen-
tial collisions between adjacent sub-keys, i.e., it detects collisions δ1,2, δ2,3, . . .,
δN−2,N−1, δN−1,N for a cryptographic algorithm with a total of N sub-keys in
the full key (e.g., N = 16 for AES-128).

2.4 Collision Scheme of Wiemers et al.

Rather than detecting whether a collision δi,j is within the given threshold τd,
Wiemers et al. provided a candidate key selection method based on cumulative
correlation coefficients as:

B =
∑
j1<j2

ρ(L
β∈Fn

2

j1 , L
β⊕δj1,j2

j2), (7)

in [30]. This equation is employed to refine the selection of collision candidates
by maximizing observed correlations B, thereby enhancing the probability of
identifying the correct AES key or significantly narrowing down the candidate
space. By iteratively updating the score B, this method effectively ranks key
candidates and screens out the key with a high probability.

3 Collision-chain Detection Framework with Genetic
Algorithm

The Genetic Algorithm [26] is a probabilistic optimization method inspired by
natural evolution. In this paper, we introduce our Collision-chain Detection

Less Effort, More Success 7

framework with Genetic Algorithm (CDGA) for CECA, and employ selection,
crossover, and mutation operators to systematically search and optimize the
collision chain, thus achieving more efficient key recovery. Table 1 provides an
explanation of the Genetic Algorithm terms.

3.1 CDGA Framework

The corresponding framework of our CDGA is shown in Algorithm 1. We perform
CECA on a set of plaintextsX and the corresponding power traces L, and obtain
the ranked candidate vectors ∆ for each of the collisions (Step 1). In other words,
∆ stores N(N − 1)/2 collision candidate vectors for a block cipher with N sub-
keys, with each of them ranked according to their correlation coefficients in
descending order. We further employ rigorous hypothesis testing to extract a
part of optimal candidates in each collision (see Section 4). The corresponding
results are output in Clist (Step 1), in which we mark collision values as 1 and
non-collision values as 0 (see Section 3.2 for more details). The hypothesis testing
to bound a valid search depth of the candidates vector for each collision will be
detailed in Section 4.

Table 1: Genetic Algorithm terms.
Terms Explanation

Individual Collision chain
Gene Part of Collision Chain (i.e., δi,j)
Locus Position of Gene
Alleles Values of Gene

Phenotype Decoded Collision Chain
Genotype Encoded Collision Chain

First, we initialize the population using the results from CECA, output the
decimal initial population POP with a size of npop. By combining with Clist, the
candidates of each collision in ∆ are reordered. Candidates that are ranked high
in ∆ but identified as non-collisions in Clist are moved back, while candidates
that are ranked low in ∆ but identified as collisions in Clist are moved forward,
resulting in the reordered vectors as ∆

′
(Step 2). Then we compute the initial

population’s fitness in Step 3. Before the population evolves, the current evolu-
tion generation is set to 0 and the key recovery flag is set to false (Step 4). If
the correct key is not successfully recovered, or if the evolution generation has
not reached the threshold τh, the population evolves (Step 5). The population is
first encoded into a binary style BiPOP (Step 6). Then, selection, crossover and
mutation operations of Genetic Algorithm are performed, and the population
is updated by BiPOP

′
(Steps 7 ∼ 9). A target-directed mutation method is

designed to guide the population towards higher fitness in this work (see Sec-
tion 3.5). Then new population BiPOP

′
is decoded into a decimal style (Step

10). After applying the genetic operators, the new population’s fitness Flist is

8 Jiawei Zhang et al.

computed (Step 11). Using the new population and its fitness, the optimal indi-
vidual (collision chain) is selected and returned as k for key recovery (Step 12).
Finally, we verify the guessing key k using the known plaintexts x and their cor-
responding ciphertexts c. If the encryption algorithm can use the guessing key
k to encrypt the plaintexts x and generate the ciphertexts c, then we achieve a
successful key recovery (Steps 13 ∼ 16).

Algorithm 1 Efficient CDGA framework for CECA.

Input: threshold of generation τh, size of population npop, probability of crossover
pc, probability of mutation pm, a set of power traces L, a set of plaintexts X
corresponding to the power traces, mutation threshold τd.

Output: the key k∗.
1: [∆,Clist] := CECA(X,L);

2: [POP,∆
′
] := InitPop(∆,Clist, npop);

3: Flist := FITNESS(npop, POP,Clist);
4: flag := false; generation := 0;
5: while !flag and generation < τh do
6: BiPOP := EncodePOP(POP);

7: BiPOP
′
:= SELECTION(npop, BiPOP, Flist);

8: BiPOP
′
:= CROSSOVER(npop, BiPOP

′
, pc);

9: BiPOP
′
:= MUTATION(npop, BiPOP

′
, pm, τd.∆

′
);

10: POP
′
:= DecodePOP(BiPOP

′
);

11: Flist := FITNESS(POP
′
);

12: k := MaxFitness(POP
′
, Flist);

13: flag := KeyVerify(k,x,c);
14: if flag == true then
15: break;
16: end if
17: POP := POP

′
; generation := generation+ 1;

18: end while
19: return k∗ = k.

3.2 Population Initialization

The ranked candidates vectors of CECA are given as a two-dimensional array
∆ in Algorithm 1. In other words, we exploit ∆ to sequentially store candidates
of the collisions δ1,2, δ1,3, . . . , δ1,N , δ2,3, δ2,4, . . . , δ2,N , . . . , δN−1,N . ∆[i, j] denotes
the i-th optimal candidate (with the i-th largest correlation coefficient in CECA)
of the j-th collision. We can extract the optimal npop rows from array ∆ to form
the initial population, and an example is given in Fig. 1. We further employ
rigorous hypothesis testing to extract a part of optimal candidates in each colli-
sion (see Section 4). The corresponding results are output in Clist (Step 1). The
population initialization is further detailed in Algorithm 2. Here Clist is defined
as a two-dimensional array, with Clist[i, j] indicating whether the j-th collision

Less Effort, More Success 9

might take the value i (0 ≤ i ≤ 255). Clist[i, j] is set to 1 if the j-th collision is
possible, and 0 otherwise.

Fig. 1: An example of population initialization in our CDGA.

Algorithm 2 Population Initialization function: InitPop(·).
Input: the result ∆ of CECA, the population POP , the collision values Clist for all

δ-s, size of population npop, the number of key bytes N .

Output: the initial population POP , new collision rank ∆
′
.

1: [row, col] := size(∆);
2: for i := 1 to row do
3: List1 := [];
4: List0 := [];
5: for j := 1 to col do
6: if Clist[∆[i, j], j] == 1 then
7: List1 := append(List1,∆[i, j]);
8: else
9: List0 := append(List0,∆[i, j]);
10: end if
11: end for
12: ∆

′
[:, j] := concatenate(List1, List0);

13: end for
14: POP := ∆

′
[1 : npop, 1 : N − 1];

15: return POP , ∆
′
;

In the context of our CDGA framework, individuals are represented by colli-
sion chains with N − 1 collisions (δ1,2, δ1,3, . . . , δ1,N) to represent individuals in
the Genetic Algorithm. The initialization process commences with an iteration
through the elements in ∆. If the corresponding value in Clist for ∆[i, j] is 1,
the related collision value is added to the List1 (Step 7); otherwise, it is added

10 Jiawei Zhang et al.

to the List0 (Step 9). Subsequently, the concatenate function combines the ele-
ments of the List1 and the List0 in a sequential manner, thereby re-arranging
the elements of the ∆ list and generating a new list, designated as ∆

′
(Step 12).

Finally, the optimal npop rows of δ1,2, δ1,3, . . .,δ1,N−1 and δ1,N in array ∆ are
extracted in initialize the population (Step 14). Here N denotes the number of
sub-keys in a block cipher as mentioned before.

3.3 Selection and Fitness Computation

Fitness function plays a pivotal role in Genetic Algorithm, serving as the pri-
mary metric for evaluating the quality of each individual. It directly influences
the algorithm’s performance and outcomes. In this study, the fitness function
is defined in terms of the number of collisions for each individual. Algorithm 3
provides a comprehensive overview of the fitness function. Specifically, individ-
uals are initially represented as collision chains. In order to ensure the accuracy
of collision counting, it is necessary to expand each chain with partial collision
information into a chain with all collisions δ-s using the ChainExtension in
Step 4. This expansion process is based on the relationships between collision
values:

δi,k = δi,j ⊕ δj,k. (8)

Algorithm 3 Fitness computation function: FITNESS(·).
Input: size of population npop, the population POP , the collision values Clist.
Output: the fitness list Flist of POP .
1: [row, col] := size(POP);
2: for i := 1 to npop do
3: for j := 1 to col do
4: Chain[i, :] := ChainExtension(POP [i, :]);
5: end for
6: end for
7: [row, col] := size(Chain);
8: for i := 1 to npop do
9: Flist[i] := 0;
10: for j := 1 to col do
11: flag := isMember(Chain[i, j], Clist[i, :]);
12: if flag then
13: Flist[i] := Flist[i] + 1;
14: end if
15: end for
16: end for
17: return Flist;

For AES-128, a chain with 15 δ-s is extended into a chain with all 120 δ-s
through pairwise XOR operations (Step 4). We iterate through these collision

Less Effort, More Success 11

chains with all collisions information, and for each collision value in the chain,
we use the flag marker to determine whether it belongs to the set of candidate
values marked as collisions in Clist (Step 11). If the collision marker flag is
true, it is considered that a collision has occurred in that collision chain (Step
12). Subsequently, we accumulate the number of collisions that occur, which
represents the fitness of the corresponding individual (Step 13).

Next, the selection operation serves as the central aspect of the Genetic
Algorithm, aiming to select the better adapted individuals from the current
population to generate a new generation. This process emulates the Darwinian
principle of “survival of the fittest” from natural selection, implemented through
a roulette wheel selection strategy [15] to ensure that individuals with higher
fitness have a greater chance to be selected, as shown in Fig. 2.

Fig. 2: Selection operation in Genetic Algorithm.

The roulette wheel selection strategy begins with calculating the sum of the
fitness values TotalF itness of all individuals in the population (Step 1). Then,
each individual’s fitness value is divided by the TotalF itness to obtain the selec-
tion probability Probabilities for each individual (Step 2). Next, the cumulative
probability distribution for each individual is calculated (Step 3). Subsequently,
a total of npop random numbers between 0 and 1 are generated and then sorted
(Step 4). Individuals are selected through the random numbers (Steps 6∼7).
We select the first individual whose cumulative probability value exceeds the
random number to form the new population (Step 6). Algorithm 4 provides a
comprehensive account of this selection process, elucidating the manner in which
fitness evaluations are transformed into tangible individual selection actions. The
roulette wheel selection strategy ensures that individuals with higher fitness have
a greater chance of reproduction through proportional selection, while also main-

12 Jiawei Zhang et al.

taining population diversity to some extent, thus preventing the algorithm from
prematurely converging to local optima.

Algorithm 4 Selection function: SELECTION(·).
Input: size of population npop, binary population BiPOP , fitness values of the pop-

ulation Flist.
Output: new binary population BiPOP

′
after selection.

1: TotalF itness := sum(Flist);
2: Probabilities := Flist / TotalF itness;
3: CumulativeProb := cumSum(Probabilities);
4: RandomNum := sort(randomArray(npop));
5: for i := 1 to npop do
6: SelectedIdx := find(CumulativeProb ≥ RandomNum[i]);

7: BiPOP
′
[i, :] := BiPOP [SelectedIdx, :];

8: end for
9: return BiPOP

′
;

3.4 Crossover

Fig. 3: Crossover operation in CDGA.

The crossover operation represents a fundamental aspect of the genetic search
process in Genetic Algorithm. It simulates the chromosomal crossover observed
in biological genetics, introducing new genetic material into the offspring of
a population. The primary target of crossover is to enhance genetic diversity,
thereby expanding the search space and increasing the probability of identifying
the global optimum. We employ a single-point crossover strategy [12], as illus-
trated in Fig. 3. In single-point crossover, a randomly selected position on the
chromosomes of two parental individuals serves as the crossover point, thereby
dividing the chromosome into two parts. At this crossover point, the chromo-
some segments of the parents are exchanged, thereby creating two new offspring
individuals. In particular, the first offspring receives the front half of the chro-
mosome from the first parent and the rear half from the second parent, while
the second offspring receives the reverse inheritance order.

Algorithm 5 provides a comprehensive procedure for implementing single-
point crossover, where the input parameter pc represents the crossover probabil-
ity. The algorithm initially evaluates the population size in Step 1, then iterates

Less Effort, More Success 13

through each pair of individuals in the population to perform crossover opera-
tions. The algorithm compares a randomly generated number with the crossover
probability, pc, to determine whether to proceed with crossover (Steps 3∼4). If
a decision is made to execute the crossover, the crossover point cpoint is deter-
mined by multiplying a random number by the length of the individual and then
rounds the result to the nearest integer (Step 5). The individuals exchange gene
segments at the crossover point, thereby creating new individuals (Steps 6∼9).
This process helps to preserve beneficial genetic trait combinations and to avoid
disrupting them.

Algorithm 5 Crossover function: CROSSOVER(·).
Input: size of population npop, binary population BiPOP , probability of crossover pc.

Output: new binary population after crossover BiPOP
′
.

1: [row, col] := size(BiPOP);
2: for i := 1 to npop − 1 step by 2 do
3: r := Random(0,1);
4: if r < pc then
5: cpoint := round(r × col);

6: BiPOP
′
[i, 1 : cpoint] := BiPOP [i, 1 : cpoint];

7: BiPOP
′
[i, cpoint+ 1 : col] := BiPOP [i+ 1, cpoint+ 1 : col];

8: BiPOP
′
[i+ 1, 1 : cpoint] := BiPOP [i+ 1, 1 : cpoint];

9: BiPOP
′
[i+ 1, cpoint+ 1 : col] := BiPOP [i, cpoint+ 1 : col];

10: else
11: BiPOP

′
[i, :] := BiPOP [i, :];

12: BiPOP
′
[i+ 1, :] := BiPOP [i+ 1, :];

13: end if
14: end for
15: return BiPOP

′
.

3.5 A Goal-directed Mutation Strategy

A well-designed mutation strategy in Genetic Algorithm can significantly en-
hance its efficiency and the quality of solutions. We introduce a goal-directed
mutation method in this section. The method is characterized by the specifica-
tion of a threshold value, τd, for variation. Only new values from the optimal
τd collision candidates of a collision in ∆

′
are randomly selected for replace-

ment. The outline of our mutation function is presented by Algorithm 6. First,
we decode the current binary population into a decimal population (Step 1).
Then, a gene locus (mpoint) is first randomly determined by choosing a ran-
dom integer between 1 and 15 (Step 5). Then, we select the collision candidate
values corresponding to the gene locus from ∆

′
(Step 6), and randomly choose

one item from the optimal τd entries of these candidate values for replacement
(Steps 8∼9). After traversing all individuals in the population, we encode the
new decimal population back into a binary population (Step 14).

14 Jiawei Zhang et al.

A significant advantage of our mutation strategy is its ability to optimize
the search for collision chains by directing the population to explore collision
chains with a higher number of collisions while maintaining genetic diversity.
By purposefully selecting the optimal τd candidates of each collision in ∆

′
for

random replacement, it helps to increase the probability of finding a better
collision chain. Concurrently, the high flexibility and directed nature of this
strategy facilitate the reduction of the vast collision space, thereby reducing the
searching complexity on collision chains. Furthermore, by enabling the algorithm
to explore novel solution spaces not encompassed by the current population, basic
bit mutation facilitates the algorithm’s escape from local optima traps, thereby
enhancing the probability of identifying global optima.

Algorithm 6 Mutation function: MUTATION(·).
Input: size of population npop,the binary population BiPOP , the probability of mu-

tation pm, mutation threshold τd, new rank of collisions ∆
′
.

Output: new binary population after mutation BiPOP
′
.

1: POP := Decode(BiPOP);
2: for i = 1 to npop do
3: r := random(0,1);
4: if r < pm then
5: mpoint := randomInt([1, 15]);

6: choose := ∆
′
[1 : τd,mpoint];

7: POP
′
[i, :] := POP [i, :];

8: rankIndex := randomInt([1, τd]);

9: POP
′
[i,mpoint] := choose[rankIndex];

10: else
11: POP

′
[i, :] := POP [i, :];

12: end if
13: end for
14: BiPOP

′
:= Encode(POP

′
);

15: return BiPOP
′
;

4 Parameters Selection and Optimization

4.1 A Bottleneck

Taking advantages of the characteristics of Genetic Algorithm, our CDGA scheme
achieves a strong capability of global searching. However, its efficiency is largely
subject to performance of the side-channel collision attack exploited, especially
when the Signal-to-Noise Ratio (SNR) is low and the collision values in overall
are sunk to much deeper positions in the output candidate vectors. Therefore,
the proper choice of threshold τd for collision values becomes a serious bottleneck
for this kind of attacks, further optimizations for this issue is still expected and
motivating.

Less Effort, More Success 15

Table 2: Experimental ranks of collisions among sub-keys of AES-256 on DPA
contest v4.1 dataset.

ρ̂(δ1,2) ρ̂(δ1,3) ρ̂(δ1,4) ρ̂(δ1,5) ρ̂(δ1,6) ρ̂(δ1,7) . . .

0.747 (77) 0.646 (197) 0.731 (221) 0.747 (20) 0.707 (204) 0.753 (49) . . .

0.186 (155) 0.224 (250) 0.207 (102) 0.186 (198) 0.212 (133) 0.198 (88) . . .

0.177 (56) 0.198 (17) 0.189 (68) 0.164 (169) 0.212 (185) 0.173 (14) . . .

0.166 (150) 0.164 (206) 0.167 (40) 0.163 (251) 0.207 (240) 0.163 (224) . . .

0.164 (205) 0.162 (70) 0.158 (168) 0.159 (179) 0.191 (165) 0.162 (138) . . .

0.157 (36) 0.153 (150) 0.155 (12) 0.158 (92) 0.185 (132) 0.158 (39) . . .

0.156 (4) 0.151 (98) 0.154 (84) 0.158 (141) 0.181 (107) 0.156 (15) . . .

0.151 (126) 0.151 (30) 0.149 (11) 0.157 (197) 0.169 (78) 0.154 (68) . . .

0.150 (15) 0.150 (19) 0.147 (231) 0.151 (186) 0.156 (243) 0.148 (179) . . .

0.146 (132) 0.148 (3) 0.147 (159) 0.147 (207) 0.155 (134) 0.139 (161) . . .

0.145 (207) 0.146 (56) 0.141 (149) 0.143 (150) 0.153 (76) 0.136 (133) . . .

0.144 (113) 0.142 (144) 0.140 (105) 0.143 (175) 0.152 (80) 0.136 (176) . . .

0.138 (184) 0.141 (216) 0.139 (6) 0.140 (52) 0.151 (242) 0.136 (124) . . .

0.138 (240) 0.140 (72) 0.137 (73) 0.137 (225) 0.150 (73) 0.132 (222) . . .

0.137 (159) 0.139 (249) 0.136 (226) 0.136 (70) 0.141 (129) 0.131 (95) . . .

. .

To overcome the huge potential searching space left to our CDGA and achieve
a better initialization of population, a natural and direct way comes to bound
the searching depth of the output candidate vectors with a confidence level.
That is, for each output vector of the side-channel collision distinguisher, we
wish to identify a boundary (or criteria) so that we can discard those candidates
which in theory seem less worthy to consider. An experiment example of collisions
among 16 sub-keys in the first round of AES-128 returned by CECA on the open
dataset DPA contest v4.1 [1] is displayed in Table. 2. As shown, CECA sorts the
collision candidates according to the descending values of correlation coefficient,
indicating that those placed in front are most likely to be the correct ones.
Yet, the exact possibilities remain unclear so it raises a quantification question
that from which collision candidate (to the last one in the output vector) their
small possibilities are allowed to be omitted by without considering them in
the following CDGA. In essence, this is a hypothesis test problem where the
candidate space can be squeezed according to a settled confidence level. Once
successfully determining a valid searching depth, it will significantly reduce the
burdens of our CDGA (corresponding to the discarded candidates covered by
shadow in the Table 2) and improve its efficiency.

To bound a valid searching depth, we have to deal with the distribution of
correlation coefficients in CECA, which is a hard problem in statistic. Some
mathematical tools have been invented to approximate the distribution of corre-
lation coefficients asymptotically (e.g., the Fisher’s z-transformation [17]). How-
ever, they usually come with the cost of low accuracy and (or) requirement of
large samples which may be far from satisfactory. Therefore, in this paper, we
take an in-depth look on the behaviours of correlation coefficients in collision

16 Jiawei Zhang et al.

scenario and introduce an equivalent transformation which results in a much
easier derivation of the confidence interval.

4.2 Correlation Coefficient in Collision Scenario

In this subsection, we simplify the expression of correlation coefficient taking the
case of collision between the j1-th and j2-th sub-keys. Specifically, we strip off
those terms which are independent of the guessing collision δj1,j2 in the concerned
scenario of this paper. Expanding the expression of CECA, we have:

DCECA = argmax
δj1,j2

∈Fn
2

ρ̂(L
m∈Fn

2

j1 , L
m⊕δj1,j2

j2)

= argmax
δj1,j2

∈Fn
2

Êm∈Fn
2
{Lm

j1 × L
m⊕δj1,j2

j2 } − Êm∈Fn
2
{Lm

j1} × Êm∈Fn
2
{Lm⊕δj1,j2

j2 }√
D̂m∈Fn

2
{Lm

j1} ×
√

D̂m∈Fn
2
{Lm⊕δj1,j2

j2 }
.

(9)
CECA classifies leakages according to the plaintext byte value and calculates

sample means L
m

j1 = Êi∈[1,Q]{Li
j1
|xi

j1
= m} and L

m⊕δj1,j2

j2 = Êi∈[1,Q]{Li
j2
|xi

j2
=

m ⊕ δj1,j2} before estimating the correlation coefficient, in order to overcome
some effects of noise and random masking. As we have stated in Section 4.1,
we pursue the main goal of addressing the full secret key k∗ especially for the
cases in which correct candidates are buried deep in the output vector so the
time requirement for key exhaustion turns to be unaffordable. Typically, SNR
of this scenario is low and the corresponding leakage measurements should be
sufficient. As a result, there will appear all possible values of the randomly
encrypted plaintext bytes xj1 and xj2 . This ensures that ∀m, δj1,j2 ∈ Fn

2 , we can
always find leakages belonging to plaintext byte pair (xi1

j1
= m,xi2

j2
= m⊕ δj1,j2)

(the exact number of measurements needed to fulfill this condition can be found
in [16]). Guessing different candidates of the collision δ∗j1,j2 boils down to holding
the order of sample means from the j1-th sub-key while reordering those from
the j2-th. Based on this observation, the expression of CECA may be simplified
as:

DCECA =argmax
δj1,j2

∈Fn
2

ρ̂(L
m∈Fn

2

j1 , L
m⊕δj1,j2

j2)

= argmax
δj1,j2∈Fn

2

Êm∈Fn
2
{Lm

j1 × L
m⊕δj1,j2

j2 },
(10)

due to the closure property of “⊕” operation in cryptographic algorithm, which
is the same as that of balanced measurement set (see [5]).

4.3 Gaussian Leakages

In this subsection, we first focus on the most common side-channel collision
case where leakages follow Gaussian distribution so strict confidence interval is
available. Contrary to what we did in the simplification of correlation coefficient

Less Effort, More Success 17

(i.e., stripping off collision independent terms), here we add additional terms to
construct a statistic that is easy to tackle. In this case, Equ. (10) for CECA can
be rewritten as:

DCECA = argmax
δj1,j2∈Fn

2

Êm∈Fn
2
{Lm

j1 × L
m⊕δj1,j2

j2 }

= argmin
δj1,j2

∈Fn
2

Êm∈Fn
2
{−2× L

m

j1 × L
m⊕δj1,j2

j2 }

= argmin
δj1,j2

∈Fn
2

Êm∈Fn
2
{−2× L

m

j1 × L
m⊕δj1,j2

j2 }+ Êm∈Fn
2
{(Lm

j1)
2}

+ Êm∈Fn
2
{(Lm⊕δj1,j2

j2)2}

= argmin
δj1,j2

∈Fn
2

∑
m∈Fn

2

(
L
m

j1 − L
m⊕δj1,j2

j2 − 0

σN/
√
Q/2n+1

)2.

(11)

Traversing the output candidate vector, once we encounter the correct colli-
sion value, then we have a series of standard normally distributed variables

Z
(m,δ∗j1,j2

)
ceca =

√
Q

2n+1σ2
N
(L

m

j1 − L
m⊕δj1,j2

j2) ∼ N (0, 1), m = 0, 1, ..., 2n − 1. They

are independent and identically distributed (i.e., i.i.d). Otherwise for any in-

correct collision candidate, the variables become Z
(m,δj1,j2

)
ceca =

√
Q

2n+1σ2
N
(L

m

j1 −

L
m⊕δj1,j2

j2) ∼ N (µm, 1), m = 0, 1, ..., 2n − 1. Though independent, they may not
be identically distributed: ∃m1 ̸= m2, it has µm1

̸= µm2
̸= 0. As a consequence,

with such intuition, we are able to conduct a hypothesis testing checking the
zero population mean, based on the null hypothesis that the current candidate
is the correct one.

In order to act directly on the output candidate vector and to check all the

variables at once, let Z
(δj1,j2

)
ceca =

∑
m∈Fn

2
(Z

(m,δj1,j2
)

ceca)2. This statistic should follow

central χ2 distribution (i.e., E{Z(δj1,j2)
ceca } = 2n, D{Z(δj1,j2)

ceca } = 2n+1) if and only
if δj1,j2 = δ∗j1,j2 , or else non-central χ

2 distribution with a positive non-centrality

parameter λ =
∑

m∈Fn
2
µ2
m and E{Z(δj1,j2

)
ceca } = 2n + λ, D{Z(δj1,j2

)
ceca } = 2n+1 + 4λ.

It is clear that both right-tailed tests on mean and variance are feasible. In
this paper, we discuss the formal case due to its popularity. Fig. 4 exhibits
probability density functions (i.e., pdf) of χ2 distribution with different λ-s. The
only central χ2 distribution corresponding to δj1,j2 = δ∗j1,j2 is plotted in blue (i.e.,
λ = 0). The positive value of λ lies on collision candidate, algebraic property of
cryptographic algorithm and physical characteristic of the underlying circuits.
We choose λ = 10, 20, 30 just for illustration which are plotted in red, yellow and
purple respectively. They can belong to different incorrect candidates on a certain
target device. In the figure, we also set n = 4 (i.e., m ∈ F4

2, degree of freedom
df = 16) for simplicity which well represents some lightweight cryptographic
algorithms (e.g., PRESENT) in practice.

18 Jiawei Zhang et al.

0 10 20 30 40 50 60 70 80 90 100

ceca

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

P
ro

b
a

b
ili

ty
 D

e
n

s
it
y
 V

a
lu

e

Rejection Region

Fig. 4: χ2 distributions with different non-centrality parameters λ.

In the last step of the hypothesis testing, a significance level will be cho-
sen, says α, to help determining whether we have observed an occurrence of
rare event, on the basis of the null hypothesis that the current candidate under
checking is correct. The significance level α (0 < α < 1) satisfies:

P{Z(δj1,j2
)

ceca > χ2
α(df = 2n, λ = 0)} = α, (12)

where χ2
α(df = 2n, λ = 0) represents the quantile of α on the pdf and it is

plotted in grey dotted line. The rejection region is the right part of this line.
Taking λ = 30 as an example, the large purple shadow is the true possibility that

Z
(δj1,j2

)
ceca can fall in the rejection region. However, admitting the null hypothesis,

there are hardly any possibilities (i.e., the tiny blue shadow α). As a result,

once we have observed an instance Ẑ
(δj1,j2

)
ceca that fell into the rejection region,

we can directly reject the null hypothesis with very small probability of making
a mistake. Note that a smaller λ indicates a smaller chance to distinguish it
from the correct collision value (i.e., a close candidate from the perspective of
side-channel collision attack).

To verify the feasibility and effectiveness of above method in practical ap-
plication, we conduct a simulated experiment in which we control the Gaussian
noise. We wish to see whether and to which extent it can bound a reasonable
searching depth of the output candidate vector. Experimental results on collision

δ∗1,5 of AES-128 are displayed in Fig. 5. Values of instances Ẑ
(δ1,5)
ceca in this attack

are represented by 256 vertical solid lines. The left border of the unilateral rejec-
tion region under α = 0.01 is denoted by a grey dotted line. As shown, the only

pink line (corresponding to Ẑ
(δ∗1,5)
ceca) is not placed at the first of the output vector

(i.e., the ninth place) and therefore further searching is necessary. In the original
scheme, all of the 256 candidates needed to be considered, but only 21 are now
worthy of investigation thanks to the hypothesis testing. It reduces the entropy
from 256 to 22 by dividing all candidates into two parts and discards those that
fell into the rejection region. Additionally, for further validation, we sampled the

Less Effort, More Success 19

statistic Ẑ
(δ∗1,5)
ceca for 10000 times and plot the results in blue histogram whose bin

width is chosen according to the Scott’s rule [23]. The red dash-dotted line is the
theoretical pdf of distribution χ2(df = 256, λ = 0). Its pretty fitting rate with
the histogram implies the soundness of our theory.

Fig. 5: A simulation experiment on collision δ∗1,5 of AES-128.

4.4 Non-Gaussian Leakages

In practice, side-channel leakages may not strictly follow a Gaussian distribu-
tion which restricts the usage of χ2-based hypothesis testing and the bottleneck
problem of attack efficiency can again appear in this case. Hence, in this subsec-
tion, we improve the method and put forward a common form of statistic that
is suitable for any leakages. It is achieved by introducing a constant fraction:

DCECA = argmin
δj1,j2∈Fn

2

1

2n

∑
m∈Fn

2

(L
m

j1 − L
m⊕δj1,j2

j2)2. (13)

In accordance with the central limit theory, for a number of i.i.d random variables
X1, X2, ..., Xn, the sample mean variable 1

n

∑n
i=1 Xi is approximately Gaussian

(i.e., 1
n

∑n
i=1 Xi ∼ N (E(X),D(X)/n)) regardless of the actual distribution ofX.

This allows getting rid of the Gaussian leakage assumption. Again taking CECA

and S-box for illustration, let Y
(m,δj1,j2)
ceca = (L

m

j1 − L
m⊕δj1,j2

j2)2 and Y
(δj1,j2

)
ceca =

1
2n

∑
m∈Fn

2
Y

(m,δj1,j2)
ceca . The hypothesis testing on expectation focuses on:

20 Jiawei Zhang et al.

E{Y(δj1,j2
)

ceca } =
1

2n

∑
m∈Fn

2

E{(φ
(
m⊕ k∗j1

)
+ Nj1 − φ

(
m⊕ δj1,j2 ⊕ k∗j2

)
− Nj2)

2}

=
1

2n

∑
m∈Fn

2

(φ
(
m⊕ k∗j1

)
− φ

(
m⊕ δj1,j2 ⊕ k∗j2

)
)2 +E{(Nj1 − Nj2)

2}

+
1

2n

∑
m∈Fn

2

E{
(
φ
(
m⊕ k∗j1

)
− φ

(
m⊕ δj1,j2 ⊕ k∗j2

))
(Nj1 − Nj2)}

= κ(k∗j1 , k
∗
j2 ⊕ δj1,j2) +

2n+1σ2
N

Q
,

(14)
where Nj1 and Nj2 are the averaged independent noise components in Lj1 and
Lj2 , and κ(k∗j1 , k

∗
j2
⊕ δj1,j2) =

1
2n

∑
m∈Fn

2
(φ

(
m⊕ k∗j1

)
− φ

(
m⊕ δj1,j2 ⊕ k∗j2

)
)2 is

the so-called confusion coefficient describing the confusion property of the target
device from the perspective of side-channel attacks [9].

Fig. 6: A real experiment on collision δ∗1,5 of AES-128.

In light of the square operation in confusion coefficient, it is easy to find
that if and only if δj1,j2 = δ∗j1,j2 , then κ(k∗j1 , k

∗
j2

⊕ δj1,j2) = κ(k∗j1 , k
∗
j1

⊕ δ∗j1,j2 ⊕
δj1,j2) = κ(k∗j1 , k

∗
j1
) = 0. Otherwise, κ(k∗j1 , k

∗
j2
⊕ δj1,j2) > 0. Right side unilateral

hypothesis testing should be viable to detect outliers based on the null hypothesis
that the current candidate is the correct one. Remaining steps are the same as
the χ2-based hypothesis testing so we do not detail them here. To validate the
feasibility and effectiveness of above method in practical application, we conduct

Less Effort, More Success 21

a real experiment on DPA contest v4.1 dataset and the results are shown in
Fig. 6. Similar to the χ2-based hypothesis testing, a desirable result has been
achieved by suggesting us give up a total of 180 candidates. With it, we can
foresee a large improvement of the following CDGA.

4.5 Parameters Used in Genetic Operators

The crossover probability pc and the mutation probability pm collectively influ-
ence the efficiency of the Genetic Algorithm. Therefore, we examine both of these
two parameters concurrently. To evaluate the impact of each value of (pc, pm), we
performed our CDGA on power traces from DPA contest v4.1 dataset. Specifi-
cally, we set the population size to 20, pm was between 0 and 0.01 in increments
of 0.001, and pc was between 0.6 and 1 in increments of 0.1. Once the genetic
algorithm had converged, the number of collisions recovered under each (pc, pm)
was counted. Figs. 7 and 8 illustrated the impact of (pc, pm) on the number of
collisions recovered. The red lines indicated the highest average number of col-
lisions recovered for the corresponding pc/pm values. Our CDGA demonstrated
optimal performance when (pc, pm) = (0.7, 0.001).

Fig. 7: The relation between the number of collisions recovered and (pc, pm).

Fig. 8: The relation between the number of collisions recovered and (pc, pm).

22 Jiawei Zhang et al.

Based on the (pc, pm) optimization, we further selected the population size.
In the case of fewer power traces (e.g., 1500), we chose the population size from
2 to 250, with a step size of 5. In the case of more power traces (e.g., 2500), we
chose the population size from 2 to 250, with a step size of 10. Once the Genetic
Algorithm had converged, the number of recovered collisions was counted and
the results were shown in Fig. 9(a) and 9(b). The region where collisions were
recovered between 60 and 120 was labelled in the figure. It can be seen that
the population size npop = 50 was reached earlier to recover all collisions under
both 1500 and 2500 power traces. Therefore, in subsequent experiments, we set
npop = 50.

0 50 100 150 200 250
npop

0

20

40

60

80

100

120

N
u
m
b
er

of
C
ol
li
si
on

s
R
ec
ov
er
ed

(a) The relation between the number
of collisions recovered and npop under
1500 power traces.

0 50 100 150 200 250
npop

0

20

40

60

80

100

120

N
u
m
b
er

of
C
ol
li
si
on

s
R
ec
ov
er
ed

(b) The relation between the number
of collisions recovered and npop under
2500 power traces.

Fig. 9: The relation between the number of collisions recovered and npop.

5 Experimental Results

To evaluate the efficiency of our CDGA, experiments were conducted on DPA
contest v4.1 dataset and the dataset captured from the ATS8952 micro-controller,
where the AES-256 and AES-128 algorithms were serially implemented. This fa-
cilitates linear collision attacks4. First, CECA was conducted and its output
vectors were optimized and analyzed using the our CDGA, Collision scheme of
Wiemers et al., respectively. As mentioned in Section 2.3, TOC only exploits
N−1 out of N(N−1)/2 collisions. Taking AES-128 for an example, the original
TOC exploits only 15 collisions, with the remaining 105 collisions being dis-
carded, which is very wasteful. Additionally, it can be observed that TOC and
FTC are less effective when the collision space is relatively huge. This is due to
the fact that they utilize significantly fewer collisions and are time-consuming
when considering the same candidate space. To fully utilize the collision infor-
mation, we extended them to FCC, thus making the comparison fair.

4 Linear collision attack is infeasible in parallel implementation as well explained
in [11].

Less Effort, More Success 23

All experiments were conducted on a Lenovo desktop computer equipped
with a 10-core Intel Core i5-13400F CPU, 16GB RAM, and the Windows 10
operating system running MATLAB R2023a. Based on the methods outlined
in Sections 4.1∼4.4, we utilized a 95% confidence interval and incorporated the
results of CECA for population initialization. In the design of the genetic al-
gorithm, informed by the findings in Section 4.5, we set the population size to
50, with a crossover probability pc of 0.7 and a mutation probability pm of 0.01.
These parameters worked very well in our experiments. To reduce the search
space and enhance search efficiency, we conducted experiments with the colli-
sion value random replacement range τd of the target-oriented mutation strategy,
as described in Section 3.5, set to 25, 30, 35 and 50. Due to the fact that these two
schemes do not filter collision chains like CDGA, to prevent explosive growth on
number of chains and for simplicity, we only consider their 300 optimal collision
chain candidates in each iteration in the following experiments.

5.1 Experiments on DPA Contest v4.1 Dataset

DPA contest v4.1 provides a benchmark dataset with an AES-256 algorithm
protected by Rotated S-boxes Masking (RSM) [19] and implemented on an At-
mel ATMega-163 smart card. The time samples with the highest correlation
coefficients in CPA for each S-box were identified, and power traces were ran-
domly extracted for the experiments. A time-cumulative analysis was conducted
to evaluate the common evaluation indicator, success rate [24] of key recovery,
for three methods: CDGA, collision scheme of Wiemers et al., and FCC (also the
extended TOC and FTC). The analysis was performed with varying sample sizes
and τd parameters. The results in Fig .10(c) demonstrated that the success rate
of our CDGA with different sample sizes rapidly increased to nearly 1 after a
time consumption of approximately 0.7 seconds, well indicating its efficiency and
stability. In contrast, the time consumption of the collision scheme of Wiemers et
al. increased significantly with the number of power traces according to Table 3,
indicating that it is less efficient than our CDGA. FCC (the extended TOC and
FTC) demonstrated a lower success rate compared to the other two schemes
when consuming the same running time.

Table 3: Success rate and time consumption under different number of traces on
DPA contest v4.1 dataset

Number of traces 2500 2600 2700 2800 2900 3000

CDGA
0.8289s
94%

0.7463s
93%

1.4070s
88.5%

0.8256s
90%

1.1027s
90.5%

0.8308s
90%

FCC
(the extended
TOC and FTC)

35.2778s
90.7%

35.2508s
91.1%

35.8127s
90.8%

31.7694s
90%

31.7315s
90.2%

30.9265s
89.9%

Wiemers et al.
27.6279s
92.07%

27.7746s
91.6%

27.8549s
92.5%

33.0877s
89%

27.1979s
91.14%

35.6522s
89%

24 Jiawei Zhang et al.

22 24 26 28 30 32 34 36

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

num=2500

num=2600

num=2700

num=2800

num=2900

num=3000

(a) Wiemers et al.

28 29 30 31 32 33 34 35 36

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

num=2500

num=2600

num=2700

num=2800

num=2900

num=3000

(b) FCC (the extended TOC and FTC)

0.70 0.75 0.80 0.85 0.90

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

num=2500

num=2600

num=2700

num=2800

num=2900

num=3000

(c) CDGA

Fig. 10: Time consumption of three schemes under different number of traces on
DPA contest v4.1 dataset.

Table 4: Success rate and time consumption under different thresholds τd on
DPA contest v4.1 dataset.

Number of traces 25 30 35

CDGA
1.3286s
96.7%

1.3542s
95.4%

1.3228s
95.4%

FCC
(the extended
TOC and FTC)

23.46s
92%

29.64s
91.8%

34.44s
93.1%

Wiemers et al.
13.019s
94.1%

16.016s
92.6%

18.915s
93.6%

For different τd-s, we ran the three methods 200 times under 2500 power
traces, and τd is set to 25, 30 and 35, respectively. Our CDGA exhibited a con-
sistent running time of less than 1.4 seconds across all τd values according to
Table 4, with a success rate exceeding 95%. To achieve a success rate slightly
lower than that of CDGA, FCC (the extended TOC and FTC) requires approx-
imately 20 times of time consumption according to Fig. 11. Moreover, τd exerts
a considerable influence on the time consumption of collision scheme of Wiemers
et al. and FCC (the extended TOC and FTC) in Fig. 11(a) and Fig. 11(b),
whereas it has a relatively minor impact on CDGA.

Less Effort, More Success 25

13 14 15 16 17 18

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

td=25

td=30

td=35

(a) Wiemers et al.

15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

td=25

td=30

td=35

(b) FCC (the extended TOC and FTC)

0.7 0.8 0.9 1.0 1.1 1.2 1.3 1.4

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

td=25

td=30

td=35

(c) CDGA

Fig. 11: Time consumption of three schemes under different thresholds τd on
DPA Contest v4.1 Dataset.

In conclusion, our CDGA exhibits remarkable computational efficiency across
a wide range of sample sizes, with a stable running time of less than 1.4 sec-
onds. This is considerably lower than that of the FCC (also the extended TOC
and FTC) and the collision scheme of Wiemers et al. Moreover, the success rate
of our CDGA consistently exceeds 95%, indicating excellent stability and reli-
ability. CDGA achieves the optimal performance in both computational speed
and success rate compared to FCC (the extended TOC and FTC) and collision
scheme of Wiemers et al.

5.2 Experiments on an AT89S52 Micro-controller

Our second experiment was performed on an AES-128 algorithm implemented on
an AT89S52 micro-controller designed for side-channel attacks. It ran at 12 MHz
and we exploited a Picoscope 3000 to sample power traces under a sampling rate
of 125 MS/s.Fig. 12 depicts the time consumption and success rate of CDGA,
collision scheme of Wiemers et al., and FCC (the extended TOC and FTC)
under different number of traces, respectively. CDGA achieved a success rate of
over 90% in less than 0.75 seconds for all sample sizes according to Table 5. FCC
(the extended TOC and FTC) demonstrated a slightly lower success rate than
CDGA, with a significantly longer run time of 34∼36 seconds for processing 2,500
to 3,000 traces, as illustrated in Table 5. In comparison, the collision scheme of

26 Jiawei Zhang et al.

Wiemers et al. exhibited a success rate comparable to our CDGA, but took tens
of times as long as CDGA.

30 40 50 60 70 80

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

num=2500

num=2600

num=2700

num=2800

num=2900

num=3000

(a) Wiemers et al.

29 30 31 32 33 34 35 36

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

num=2500

num=2600

num=2700

num=2800

num=2900

num=3000

(b) FCC (the extended TOC and FTC)

0.68 0.69 0.70 0.71 0.72 0.73 0.74 0.75

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

num=2500

num=2600

num=2700

num=2800

num=2900

num=3000

(c) CDGA

Fig. 12: Time consumption of three schemes under different number of traces on
ATS8952 Dataset.

Table 5: Success rate and time consumption under different number of traces on
ATS8952 Dataset.

Number of traces 2500 2600 2700 2800 2900 3000

CDGA
0.7162s
93%

0.7191s
93.5%

0.7127s
95%

0.7107s
93%

0.7551s
92.5%

0.7494s
93%

FCC
(the extended
TOC and FTC)

36.1628s
90.5%

36.16s
90.7%

34.69s
90.7%

35.091s
91%

33.8120s
91.2%

34.5208s
91.5%

Wiemers et al.
97.21s
88.6%

79.85s
89.5%

79.7s
87.6%

79.59s
87.7%

78.91s
97.1%

53.88s
97.5%

Our framework was capable of achieving a success rate of nearly 100% under
different τd-s within one second according to Table 6 and Fig. 13(c). Our CDGA
maintained a stable and efficient performance with success rates ranging from
94.8% to 97.1%. In contrast, the FCC (the extended TOC and FTC) method
had a slightly lower success rate and a significantly higher time consumption,

Less Effort, More Success 27

requiring approximately 23 to 34 seconds to process a sample size of 2,500 to
3,000 traces according to Table 6. Moreover, collision scheme of Wiemers et
al., while achieving a comparable success rate, required a significantly longer
time, with time consumption ranging from approximately 12 to 19 seconds, as
illustrated in Fig. 13(a).

Table 6: Success rate and time consumption under different thresholds τd on
ATS8952 Dataset.

Number of traces 25 30 35

CDGA
0.863s
97.1%

0.899s
95.8%

0.813s
94.8%

FCC
(the extended
TOC and FTC)

23.46s
92%

29.64s
91.8%

34.44s
93.1%

Wiemers et al.
12.721s
93.6%

15.743s
96.5%

19.094s
95.5%

13 14 15 16 17 18 19

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

td=25

td=30

td=35

(a) Wiemers et al.

16 18 20 22 24

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

td=25

td=30

td=35

(b) FCC (the extended TOC and FTC)

0.70 0.75 0.80 0.85 0.90

Time Consumption (s)

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
S
u
c
c
e
ss

R
a
te

td=25

td=30

td=35

(c) CDGA

Fig. 13: Time consumption of three schemes under different thresholds τd on
ATS8952 Dataset.

The high efficiency of our CDGA is primarily attributable to its distinctive
optimization mechanism. CDGA rapidly explores the solution space by simu-
lating the natural evolutionary process through the use of operations such as

28 Jiawei Zhang et al.

selection, crossover and mutation, thereby identifying a near-optimal solution
in a shorter period of time. Furthermore, CDGA is capable of effectively paral-
lelizing the process and utilizing multiple individuals in the population to search
simultaneously, thereby enhancing computational efficiency. In contrast, FCC
(the extended TOC and FTC) and Wiemers et al. methods often necessitate
traversing a substantial number of potential combinations during processing,
resulting in significant time consumption.

6 Conclusion

The existing collision-chain detection algorithms still face difficulties in thresh-
old setting and low efficiency in collision detection. To address these issues, we
proposed a highly efficient framework named CDGA employing a Genetic Algo-
rithm for collision-chain detection. In comparison to the existing methodologies,
our CDGA facilitates a higher success rate in a shorter time. The experimental
results demonstrated its superiority compared with the existing works.

Key recovery from very huge candidate spaces in side-channel collision at-
tacks remains a highly challenging task. In the future, we will concentrate on
further optimizing our CDGA framework with the objective of enhancing the
speed of collision-chain detection. Moreover, more advanced Genetic Algorithm
strategies, such as multi-objective optimization algorithms [13] and adaptive ge-
netic algorithms [31], will be explored to improve the efficiency of collision-chain
detection and optimization. Finally, we will seek to enhance the selection, muta-
tion, and crossover strategies for our CDGA, thereby facilitating more efficient
computation and more accurate outcomes.

References

1. DPA contest v4.1. http://www.dpacontest.org/home/.
2. A. Bogdanov. Multiple-differential side-channel collision attacks on AES. In E. Os-

wald and P. Rohatgi, editors, Cryptographic Hardware and Embedded Systems -
CHES 2008, 10th International Workshop, Washington, D.C., USA, August 10-
13, 2008. Proceedings, volume 5154 of Lecture Notes in Computer Science, pages
30–44. Springer, 2008.

3. A. Bogdanov and I. Kizhvatov. Beyond the limits of DPA: combined side-channel
collision attacks. IEEE Trans. Computers, 61(8):1153–1164, 2012.

4. E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage
model. In M. Joye and J. Quisquater, editors, Cryptographic Hardware and Em-
bedded Systems - CHES 2004: 6th International Workshop Cambridge, MA, USA,
August 11-13, 2004. Proceedings, volume 3156 of Lecture Notes in Computer Sci-
ence, pages 16–29. Springer, 2004.

5. N. Bruneau, C. Carlet, S. Guilley, A. Heuser, E. Prouff, and O. Rioul. Stochastic
collision attack. IEEE Trans. Inf. Forensics Secur., 12(9):2090–2104, 2017.

6. S. Chari, J. R. Rao, and P. Rohatgi. Template attacks. In B. S. K. Jr., Ç. K.
Koç, and C. Paar, editors, Cryptographic Hardware and Embedded Systems - CHES
2002, 4th International Workshop, Redwood Shores, CA, USA, August 13-15, 2002,

Less Effort, More Success 29

Revised Papers, volume 2523 of Lecture Notes in Computer Science, pages 13–28.
Springer, 2002.

7. Y. Ding, L. Zhu, A. Wang, Y. Li, Y. Wang, S. M. Yiu, and K. Gai. A multiple sieve
approach based on artificial intelligent techniques and correlation power analysis.
ACM Trans. Multim. Comput. Commun. Appl., 17(2s):71:1–71:21, 2021.

8. T. Espitau, P. Fouque, B. Gérard, and M. Tibouchi. Side-channel attacks on
BLISS lattice-based signatures: Exploiting branch tracing against strongswan and
electromagnetic emanations in microcontrollers. In B. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, editors, Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2017, Dallas, TX, USA, October
30 - November 03, 2017, pages 1857–1874. ACM, 2017.

9. Y. Fei, A. A. Ding, J. Lao, and L. Zhang. A statistics-based success rate model
for DPA and CPA. J. Cryptogr. Eng., 5(4):227–243, 2015.

10. B. Gérard and F. Standaert. Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Cryptogr. Eng.,
3(1):45–58, 2013.

11. B. Gérard and F. Standaert. Unified and optimized linear collision attacks and
their application in a non-profiled setting: extended version. J. Cryptogr. Eng.,
3(1):45–58, 2013.

12. A. B. A. Hassanat, K. Almohammadi, E. Alkafaween, E. Abunawas, A. M. Ham-
mouri, and V. B. S. Prasath. Choosing mutation and crossover ratios for genetic
algorithms - A review with a new dynamic approach. Inf., 10(12):390, 2019.

13. A. M. Hernández, I. V. Nieuwenhuyse, and S. Rojas-Gonzalez. A survey on multi-
objective hyperparameter optimization algorithms for machine learning. Artif.
Intell. Rev., 56(8):8043–8093, 2023.

14. P. C. Kocher. Timing attacks on implementations of diffie-hellman, rsa, dss, and
other systems. In N. Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th
Annual International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer Science,
pages 104–113. Springer, 1996.

15. A. Lipowski and D. Lipowska. Roulette-wheel selection via stochastic acceptance.
Physica A: Statistical Mechanics and its Applications, 391(6):2193–2196, 2012.

16. J. Long, C. Ou, Y. Ma, Y. Fan, H. Chen, and S. Zheng. How to launch a powerful
side-channel collision attack? IEEE Transactions on Computers, 2023.

17. S. Mangard. Hardware countermeasures against DPA ? A statistical analysis of
their effectiveness. In T. Okamoto, editor, Topics in Cryptology - CT-RSA 2004,
The Cryptographers’ Track at the RSA Conference 2004, San Francisco, CA, USA,
February 23-27, 2004, Proceedings, volume 2964 of Lecture Notes in Computer
Science, pages 222–235. Springer, 2004.

18. A. Moghimi, G. Irazoqui, and T. Eisenbarth. Cachezoom: How SGX amplifies
the power of cache attacks. In W. Fischer and N. Homma, editors, Cryptographic
Hardware and Embedded Systems - CHES 2017 - 19th International Conference,
Taipei, Taiwan, September 25-28, 2017, Proceedings, volume 10529 of Lecture Notes
in Computer Science, pages 69–90. Springer, 2017.

19. M. Nassar, Y. Souissi, S. Guilley, and J. Danger. RSM: A small and fast counter-
measure for aes, secure against 1st and 2nd-order zero-offset scas. In W. Rosenstiel
and L. Thiele, editors, 2012 Design, Automation & Test in Europe Conference &
Exhibition, DATE 2012, Dresden, Germany, March 12-16, 2012, pages 1173–1178.
IEEE, 2012.

30 Jiawei Zhang et al.

20. C. Ou, S. Lam, and G. Jiang. The science of guessing in collision-optimized divide-
and-conquer attacks. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst.,
40(6):1039–1051, 2021.

21. C. Ou, S. Lam, C. Zhou, G. Jiang, and F. Zhang. A lightweight detection algo-
rithm for collision-optimized divide-and-conquer attacks. IEEE Trans. Computers,
69(11):1694–1706, 2020.

22. R. Poussier, F. Standaert, and V. Grosso. Simple key enumeration (and rank
estimation) using histograms: An integrated approach. In B. Gierlichs and A. Y.
Poschmann, editors, Cryptographic Hardware and Embedded Systems - CHES 2016
- 18th International Conference, Santa Barbara, CA, USA, August 17-19, 2016,
Proceedings, volume 9813 of Lecture Notes in Computer Science, pages 61–81.
Springer, 2016.

23. D. W. Scott. On optimal and data-based histograms. Biometrika, 66(3):605–610,
1979.

24. F. Standaert, T. Malkin, and M. Yung. A unified framework for the analysis of
side-channel key recovery attacks. In A. Joux, editor, Advances in Cryptology
- EUROCRYPT 2009, 28th Annual International Conference on the Theory and
Applications of Cryptographic Techniques, Cologne, Germany, April 26-30, 2009.
Proceedings, volume 5479 of Lecture Notes in Computer Science, pages 443–461.
Springer, 2009.

25. N. Veyrat-Charvillon, B. Gérard, M. Renauld, and F. Standaert. An optimal
key enumeration algorithm and its application to side-channel attacks. In L. R.
Knudsen and H. Wu, editors, Selected Areas in Cryptography, 19th International
Conference, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Se-
lected Papers, volume 7707 of Lecture Notes in Computer Science, pages 390–406.
Springer, 2012.

26. A. Vié. Qualities, challenges and future of genetic algorithms: a literature review.
CoRR, abs/2011.05277, 2020.

27. D. Wang, A. Wang, and X. Zheng. Fault-tolerant linear collision attack: A combi-
nation with correlation power analysis. In X. Huang and J. Zhou, editors, Infor-
mation Security Practice and Experience - 10th International Conference, ISPEC
2014, Fuzhou, China, May 5-8, 2014. Proceedings, volume 8434 of Lecture Notes
in Computer Science, pages 232–246. Springer, 2014.

28. W. Wang, Y. Yu, F. Standaert, J. Liu, Z. Guo, and D. Gu. Ridge-based DPA:
improvement of differential power analysis for nanoscale chips. IEEE Trans. Inf.
Forensics Secur., 13(5):1301–1316, 2018.

29. A. Wiemers and D. Klein. Entropy reduction for the correlation-enhanced power
analysis collision attack. In A. Inomata and K. Yasuda, editors, Advances in Infor-
mation and Computer Security - 13th International Workshop on Security, IWSEC
2018, Sendai, Japan, September 3-5, 2018, Proceedings, volume 11049 of Lecture
Notes in Computer Science, pages 51–67. Springer, 2018.

30. A. Wiemers and D. Klein. Entropy reduction for the correlation-enhanced power
analysis collision attack. In A. Inomata and K. Yasuda, editors, Advances in Infor-
mation and Computer Security - 13th International Workshop on Security, IWSEC
2018, Sendai, Japan, September 3-5, 2018, Proceedings, volume 11049 of Lecture
Notes in Computer Science, pages 51–67. Springer, 2018.

31. J. Zhao, J. Zhang, Y. Shi, and L. Shi. Based on adaptive improved genetic algo-
rithm of optimal path planning. In ICMIP 2022: 7th International Conference on
Multimedia and Image Processing, Tianjin, China, January 14 - 16, 2022, pages
225–230. ACM, 2022.

	Less Effort, More Success: Efficient Genetic Algorithm-Based Framework for Side-channel Collision Attacks

