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Abstract

Streaming functional encryption (sFE), recently introduced by Guan, Korb, and Sahai
[Crypto 2023], is an extension of functional encryption (FE) tailored for iterative computa-
tion on dynamic data streams. Unlike in regular FE, in an sFE scheme, users can encrypt and
compute on the data as soon as it becomes available and in time proportional to just the size
of the newly arrived data.

As sFE implies regular FE, all known constructions of sFE and FE for P/Poly require strong
cryptographic assumptions which are powerful enough to build indistinguishability obfuscation.
In contrast, bounded-collusion FE, in which the adversary is restricted to making at most Q
function queries for some polynomial Q determined at setup, can be built from the minimal
assumptions of public-key encryption (for public-key FE) [Sahai and Seyalioglu, CCS 2010;
Gorbunov, Vaikuntanathan, and Wee, CRYPTO 2012] and secret-key encryption (for secret-key
FE)[Ananth, Vaikuntanathan, TCC 2019].

In this paper, we introduce and build bounded-collusion streaming FE for any polynomial
bound Q from the same minimal assumptions of public-key encryption (for public-key sFE)
and secret-key encryption (for secret-key sFE). Similarly to the original sFE paper of Guan,
Korb, and Sahai, our scheme satisfies semi-adaptive-function-selective security which is similar
to standard adaptive indistinguishability-based security except that we require all functions to
be queried before any of the challenge messages.

Along the way, our work also replaces a key ingredient (called One-sFE) from the original
work of Guan, Korb, and Sahai with a much simpler construction based on garbled circuits.
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1 Introduction

Streaming functional encryption (sFE) [GKS23] is an extension of functional encryption (FE)
[SW05, BSW11, O’N10] designed for scenarios involving iterative computation on dynamic and
evolving data streams. In a standard FE scheme, given an encryption of x generated using the
master public key, and a function key for some function f generated using the master secret key,
a user should be able to compute f(x) and nothing else. In streaming FE, we extend the mes-
sage space to data streams x = x1 . . . xn, and the function space to streaming functions which can
perform iterative computation on these message streams. Furthermore, we allow encryption and
decryption to be done piece by piece as the data becomes available.

In more detail, streaming FE considers streaming functions which are stateful functions that
take as input a value xi and a state sti, and output a value yi and the next (updated) state sti+1.
We say that the output of streaming function f on a stream x = x1 . . . xn (denoted f(x)) is the
sequence of values y = y1 . . . yn resulting from iteratively computing (yi, sti+1) = f(xi, sti) starting
from st1 = ⊥.

Figure 1: Computation of a streaming function f on a data stream x = x1 . . . x4.

Using the master secret key, an authority can generate function keys for streaming functions
f of their choice. Then, as soon as the ith value xi of the stream becomes available, a user can
generate a ciphertext cti for xi using the master public key.1 Finally, given a function key for f and
access to a stream of ciphertexts ct1 . . . ctn encrypting stream x = x1 . . . xn, a user can iteratively
decrypt each ciphertext cti (as soon as it arrives) to learn the corresponding ith output yi of f(x).
For security, we desire that the user only learns f(x) = y1 . . . yn and nothing else. Furthermore, we
require the scheme to be streaming efficient, meaning that the runtime of all algorithms should be
independent of the stream length n.

We remark that the standard notion of FE has garnered significant attention in the literature
(e.g. [SS10,GVW12,GGH+13,GKP+13,GGG+14a,GJKS15,AV19,AMVY21,JLS21,JLS22]), with
major applications like building indistinguishability obfuscation2 (iO) [AJ15, BV15]. iO itself is
very powerful and can be used to build a wide-variety of objects [SW14, CLTV15, BPR15]. FE
has also been used to build other cryptographic applications, including reusable garbled circuits
[GKP+13], adaptive garbling [HJO+16], multi-party non-interactive key exchange [GPSZ17], uni-
versal samplers [GPSZ17], and verifiable random functions [GHKW17,Bit17,BGJS17].

Our goal: Building sFE from weaker/minimal assumptions. The only known construc-
tions of sFE are [GKS23, DGKS24], the latter of which builds an adaptively secure sFE scheme

1Ciphertexts corresponding to the same input stream x = x1 . . . xn must be generated under the same encryption
state Enc.st which can be generated once using the master public key and which does not need to be updated during
encryption. This is to prevent mix and match attacks between ciphertexts of different streams.

2The particular notion of FE that can be used to build iO is called compact FE, where the runtime of the
encryption algorithm is assumed to be independent of the function sizes supported by the scheme.
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from iO and injective PRGs, and the former which builds a semi-adaptive-function-selectively3 se-
cure sFE scheme from standard FE.4 Both these constructions require the usage of heavy duty
primitives. FE and iO are notoriously complex to build and, at present, requires three different
cryptographic assumptions [JLS22]. Indeed, these difficulties seem inherent to the construction of
sFE, since sFE implies standard FE which implies iO. However, we would ideally like to build a
version of sFE which does not require such strong assumptions.

This gives us the following goal: Can we construct a notion of sFE which maintains a meaningful
notion of security, but that requires much weaker assumptions than iO or FE? To this end, we will
construct a bounded-collusion5 sFE scheme from the minimal assumptions of public-key encryption
(for public-key sFE) and secret-key encryption (for secret-key sFE). As we explain below, this
notion of security is still meaningful in many real world scenarios.

The advantages of sFE, even with bounded collusion. Streaming FE allows us to extend
the usage of FE to a variety of new applications and scenarios in which using standard FE may
incur a significant cost in efficiency or usability. In particular, sFE is especially useful in situations
where the data we wish to encrypt either is not concurrently available, is too large to store or
compute on all at once, or is being continually added to and updated. All of these situations make
it difficult to compute on the data in one go, which therefore creates a need to process the data in
batches or as a stream. Furthermore, sFE allows users to obtain partial outputs as and when the
encrypted data becomes available, rather than needing to wait for all of the data to arrive.

As a motivating example, consider the following use case: Suppose several medical institutions
would like to run machine-learning algorithms on a large set of patient data stored by some hospital.
While the hospital is supportive of this research, it cannot simply give out the patient data as that
would violate patient privacy laws. However, using sFE we can easily facilitate this process! The
hospital can first generate and distribute function keys for each of the machine learning algorithms
requested by the research institutions. Then, the hospital can start encrypting its large medical
database in batches as the data becomes available and as computing resources are freed up. The
flexibility of being able to encrypt smaller chunks of data at a time allows the hospital to both use
a smaller number of simultaneous computing resources and to easily incorporate any new patient
data it may gather from future patients. As soon as the first batch of encrypted data arrives, the
research institutions can begin processing their algorithms on the data. Then, upon receipt of each
subsequent batch of encrypted data, the institutions can update their algorithms to incorporate
the new data in time proportional to the size of just the newly arrived data. The correctness of
sFE ensures that each institution will learn the output of its algorithm on the data received so far,
while the security of sFE ensures that no other patient data is leaked.

Observe that if we had tried to use standard FE rather than sFE, then this process would become
much more difficult as both the hospital and the research instutions would need to compute on the
entire database all at once. This requires both parties to have much larger simultaneous computing
power and also may incur delays since they would need to wait until all of the data becomes available
to them. Furthermore, if the data evolves or changes, then the entire encryption and decryption

3Semi-adaptive-function-selective security is similar to adaptive security, except that we require all function
queries to come before any message query.

4In particular, [GKS23] build their scheme from a selectively secure FE scheme, in which security is only required
to hold when the challenge messages are chosen at the beginning of the experiment. Though [GKS23] state that their
scheme must also be compact, this is not a necessary requirement since compact, selectively secure FE for P/Poly can
be built from (non-compact) selectively secure FE for P/Poly [AJS15,BV15].

5This is the notion where an adversary can only query for an a-priori bounded number of function keys in the
security experiment.
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process would need to be restarted.

Bounded collusions. In the example use case mentioned above, the hospital may need to gen-
erate a large number of ciphertexts, since each institution may wish to run their algorithms on
different sets (or streams) of evolving patient data, depending on the nature of the experiment.
However, the number of function keys that are ever left outstanding is equal to the number of
current medical researchers working on patient data. This group may not be exorbitantly large
since computing on the data requires both a large amount of computing power as well as permission
(and appropriate background checks) from the hospital or regulators. Thus, it could be reasonable
to place an a priori bound on the number of researchers allowed to concurrently operate on the
data. Combined with careful data deletion policies for no longer needed function keys, the hospital
could ensure that the number of function keys in circulation never exceeds this bound.

This brings us to the notion of bounded-collusion sFE, which is a variant of sFE in which
security is only required to hold when the number of function keys released does not exceed some
a-priori bound Q specified during setup. We will call Q the collusion bound, and will use the term
Q-bounded to refer to a bounded-collusion scheme which is secure against Q function key queries.
While weaker than the standard notion of security, this notion of security still permits many natural
use cases such as the one described above.

Indeed, bounded-collusion security for standard FE and other related primitives (such as IBE
and ABE) has been studied extensively in the literature (e.g. [SS10,GLW12,GVW12,AR17,Agr17,
ISV+17, GKW18, AV19, GSW21,Wee21, AKM+22, GGLW22, GGL24, DKXY02, HK04, CHH+07]).
As it turns out, there is a massive gap between the assumptions needed to build fully secure
FE and bounded-collusion FE. While fully secure FE requires the same assumptions needed to
build iO, Q-bounded FE for any polynomial Q of the security parameter can be built from the
minimal assumptions of one-way functions (for secret-key FE) or public-key encryption (for public-
key FE) [AV19]. Given this massive difference in assumptions, it is natural to ask whether a similar
difference holds for sFE. Thus, we ask the following question:

Can we construct a bounded-collusion sFE scheme from weaker (minimal) assumptions
such as one-way functions or public-key encryption?

Our results. In this paper, we answer the question in the affirmative and prove the following
theorem:

Theorem 1.1 ((Informal)). Assuming the existence of CPA-secure public-key (resp. secret-key)
encryption, there exists a Q-bounded, semi-adaptive-function-selectively secure, public-key (resp.
secret-key) sFE scheme for P/Poly for any polynomial Q = Q(λ) of the security parameter λ.

Our assumptions are identical to those needed for building adaptively secure, bounded-collusion
standard FE [AV19], and indeed are the minimal assumptions needed to build this primitive. (Note
also that one-way functions are equivalent to CPA-secure secret-key encryption.) Additionally, this
is the first sFE construction that does not depend on assumptions which imply iO.

Our final scheme is Q-bounded, semi-adaptive-function-selectively secure (see Definition 3.15),
which is the same as standard bounded-collusion indistinguishability based security except that we
require all function keys to be queried before any challenge message queries. We remark that this
restriction on the ordering of function and message queries is not a novel development of our work.
The original construction of sFE in [GKS23] achieved only semi-adaptive-function-selective security
which is the corresponding notion of security in the unbounded-collusion setting. Furthermore,
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while [DGKS24] - the only other known construction of sFE - achieved adaptive security, they were
only able to do so by utilizing complex iO-based techniques, which we do not wish to use here.
We leave the construction of Q-bounded, adaptively secure sFE from weaker assumptions as an
interesting open problem.

Indeed, not only do we achieve new results, we also significantly simplify the construction of
[GKS23] along the way. Let’s recall the basic 2-step blueprint of [GKS23]:

1. First, they construct a secret-key sFE scheme One-sFE that is only required to be secure
against one challenge function and one challenge stream.

2. Then, they bootstrap this scheme into a bounded-collusion public-key (or secret-key) sFE
scheme.

Our construction completely reworks the first step in a much simpler way, using minimal assump-
tions. This reworked step can completely replace the much more complicated FE-based construction
found in [GKS23]. We also make some modifications to the second step which are needed in order
to make it work in the bounded-collusion setting.

In more detail, in prior work, the first step relied upon a recursive FE computation, which led
to circular parameter dependencies. To solve these parameter issues, prior work had to add a lot of
strong assumptions and additional machinery, including using two alternating FE schemes, one of
which was strongly-compact.6 In our construction, we build One-sFE using just one way functions!

For the second step, prior work required unbounded-collusion FE. As we only know how to
build such FE schemes from strong assumptions, we had to modify the procedure. We were able
to downgrade the unbounded-collusion FE scheme to a bounded-collusion FE scheme by careful
reorganization and restructuring of the construction.

Related works. As mentioned, [DGKS24] builds an adaptively secure sFE scheme from iO and
injective PRGs, and [GKS23] builds a semi-adaptive-function-selectively secure sFE scheme from
standard FE.

There has been a long line of work on bounded-collusion FE [SS10, GVW12, AR17, Agr17,
GKW18, AV19] culminating in the construction of public-key bounded-collusion FE from PKE.
[GGLW22,GGL24] construct a dynamically-bounded FE scheme from IBE.7 [AMVY21,AKM+22]
build bounded-collusion FE schemes for TMs.

Two two types of FE most similar to sFE are FE for Turing machines [GKP+13, AS16] and
multi-input FE (MIFE) [GGG+14b,ACF+19,BKS16,GJO16]. While FE for Turing machines also
involves iterative computation, unlike sFE, the entire input must be known at encryption time
and no output can be generated before the computation is completed. MIFE, like sFE, allows for
different portions of the input to be encrypted at different times. However, in MIFE, decryption
can only occur once the decryptor receives ciphertexts for all portions of the input. In contrast, in
sFE, the decryptor can begin decryption on the stream of ciphertexts as soon as they arrive.

6A strongly-compact FE scheme is one where the size of the setup and encryption circuits are independent of the
size of the functions used in key generation.

7In a dynamically-bounded FE scheme, the collusion-bound Q can be independently specified for each new
ciphertext. In particular, the collusion-bound does not have to be chosen at setup.
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2 Technical Overview

Following the general blueprint used in prior work [GKS23,DGKS24], we will construct our bounded-
collusion sFE scheme in two steps:

1. First, we construct a secret-key sFE scheme One-sFE that is only secure against adversaries
who are given just one function key followed by one encrypted challenge stream. We prove
the following:

Theorem 2.1. Assuming OWFs, there exists a single-key, single-ciphertext, function-selectively
secure, secret-key sFE scheme for P/Poly.

2. We then bootstrap One-sFE into a bounded-collusion, public-key sFE scheme.

Theorem 2.2. Assuming

(a) a Q-bounded, adaptively secure, public-key (resp. secret-key) FE scheme for P/Poly

(b) a single-key, single-ciphertext, function-selectively secure, secret-key sFE scheme for
P/Poly

there exists a Q-bounded, semi-adaptive-function-selectively secure, public-key (resp. secret-
key) sFE scheme for P/Poly.

As bounded-collusion FE can be built from PKE (for public-key FE) or OWFs (for secret-key
FE) [AV19], this gives us our main theorem (Theorem 1.1).

Contrasting this with prior work, for Step 1, [GKS23] construct One-sFE from compact8 FE,
and [DGKS24] construct an adaptively secure variant of One-sFE using iO and injective PRGs.
We remark that since compact FE can be used to build iO [BV15], we only know how to build
compact FE from the same assumptions needed to build iO. In particular, we do not have any
constructions of compact FE from PKE/OWFs. For Step 2, both [GKS23] and [DGKS24] use
unbounded-collusion FE to bootstrap their One-sFE scheme into an unbounded-collusion, public-
key sFE scheme. Their final scheme maintains the same type of security (i.e. function-selective
or adaptive) as their One-sFE scheme. In contrast, we will bootstrap our scheme using bounded-
collusion FE. As we will explain below, this requires some non-trivial changes to the bootstrapping
construction.

2.1 Single-Key, Single-Ciphertext, Secret-Key Streaming FE

We will first focus on constructing One-sFE. As all prior work crucially required either compact
FE or iO, which we do not know how to build from PKE/OWFs, we will need new ideas.

Starting Point: Iterative Use of Functional Encryption As our starting point, we consider
the following natural idea: We will use regular FE to execute each iteration of our streaming
function. Here, we assume the existence of a simulation secure, single-key, single-ciphertext, secret-
key functional encryption scheme FE which can be built from OWFs [SS10,GVW12]. Since this
scheme is only secure for one message and one key, we will use a different FE scheme for every
iteration i.9

8Specifically, they require that the size of the setup and encryption algorithm of the FE scheme are independent
of the size of the functions for which function keys are generated.

9This was also an idea from [GKS23].
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Now, in a streaming FE scheme, we need to combine three elements in each iteration: a function
f , an input xi, and a state sti. However, regular FE only allows us to securely combine two elements:
a function g and a message m. Therefore, we will place both the function f and the state sti inside
the function key and will place the stream value xi in the ciphertext. Then, our FE scheme will
allow us to securely compute (yi, sti+1) = f(xi, sti). In order to pass on sti+1 to the FE scheme of
the next iteration, we will have the ith FE scheme output a function key containing both f and
sti+1 under the (i+ 1)th scheme. This gives us the following construction, depicted in Figure 2:10

In more detail, our master secret key will be a PRF key K, which can be used to generate FE
master secret keys mski for each iteration i. To encrypt the ith stream value xi, we will encrypt
xi and the master secret key mski+1 for the next iteration under the ith FE scheme. To generate
a function key for f , we will create a function key for gf,st1 (where st1 = ⊥ and gf,st1 is as defined
below) using the 1st FE scheme. This will enable us to begin the decryption process, starting at
iteration 1. We can then decrypt the ciphertext for xi using the ith FE scheme and the function
key for gf,sti generated from the previous iteration (or given in the function key if i = 1) to get the
correct output value yi and the function key for the next iteration.

gf,sti(xi,mski+1):

1. (yi, sti+1) = f(xi, sti).

2. Output (yi,FE.KeyGen(mski+1, gf,sti+1
)).

Figure 2: Initial Idea for Building One-sFE

The correctness of our One-sFE scheme follows from the correctness of the underlying FE scheme.
For security, the idea is to sequentially simulate each FE scheme starting from iteration 1. Observe
that simulating the ith scheme will hide the values present in the ith ciphertext, namely xi and
mski+1. This means that after simulating the ith FE scheme, mski+1 will be removed from the
experiment, which will allow us to invoke the security of the (i + 1)th FE scheme in the following
iteration. Then, after simulating every iteration, the entire stream x = x1 . . . xn will be hidden.

Unfortunately, there are a few issues with the scheme laid out above.

10Figure 2 is imported from [GKS23] as our starting idea is the same as the starting idea from [GKS23].
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1. Standard FE only allows us to generate function keys for deterministic functionalities. How-
ever, since FE.KeyGen is, in general, a randomized function, then gf,sti may also be a random-
ized function.

2. Since standard FE does not guarantee function privacy, the intermediate states sti, which are
placed in the function keys, are not hidden. This compromises the security of our sFE scheme
as we require both the stream values and the intermediate states to remain hidden.

3. Our definition of gf,sti is recursive since it needs to output a function key for gf,sti+1
. Since

we are using an FE scheme for circuits, this means that the size of each gf,sti must be strictly
larger than the size of gf,sti+1

. Thus, the size of the initial function gf,st1 will depend on the
total number of iteration n we wish to compute, breaking the efficiency requirements of our
sFE scheme.

The first two issues end up being relatively easy to solve. For the first issue, we can either instantiate
FE with a scheme that has a deterministic key generation algorithm (such as [SS10]) or can provide
the randomness needed for key generation in the ciphertexts.

For the second issue, rather than placing sti directly in the function key, we will instead place
an encryption s̃ti of sti (using a one-time pad) in the function key. When encrypting xi, we will also
generate and encrypt one-time pads pi and pi+1. These pads will be generated using a PRF key K
which will be the master secret key of our One-sFE scheme. We will then modify each function gf,s̃ti
(as shown below) so that we encrypt and decrypt the intermediate states as appropriate using the
one-time pads pi, pi+1 provided by the corresponding ciphertext. Observe that since our security
proof relies on us simulating every ciphertext, then we will eventually hide all of the one-time pads
pi, and thus will eventually hide all of the states sti.

gf,s̃ti(xi, pi, pi+1,mski+1):

1. sti = s̃ti ⊕ pi

2. (yi, sti+1) = f(xi, sti).

3. s̃ti+1 = sti+1 ⊕ pi+1

4. Output (yi,FE.KeyGen(mski+1, gf,s̃ti+1
)).

Figure 3: Definition of gf,s̃ti .

The third issue, however, ends up being quite problematic. In [GKS23], they solve the third issue
by using a complicated construction which involves splitting their FE scheme into two alternating
FE schemes and utilizing the compactness of one of these FE scheme to prevent circular parameter
dependencies. However, as previously mentioned, we do not wish to use compact FE as we are
trying to build our scheme from simple assumptions such as OWFs.

In this paper, rather than just adding machinery on top of this blueprint (as was done in
[GKS23]), we will instead instantiate the underlying FE scheme with a particular construction,
and then make non-black-box modifications which involve the particulars of both the choice of FE
scheme and the general blueprint. Our starting FE scheme will be from [SS10] which we describe
below.
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Summary of [SS10]. We now summarize the simulation-secure, secret-key FE scheme from
[SS10] which is only secure against adversaries who are given one function key followed by one
challenge ciphertext. Let ℓ denote the length of circuits supported by our FE scheme, and let SKE
be a secret-key encryption scheme.

• Setup(1λ): Generate 2ℓ SKE keys {skj,b}j∈[ℓF ],b∈{0,1}. Output these keys as the MSK.

• Enc(MSK, x): Define circuit Ux which takes as input a function f and computes Ux(g) = g(x).
Garble Ux using a circuit garbling scheme (e.g. [Yao86]) to get garbled circuit Ũ and input
labels {labj,b}j∈[ℓ],b∈{0,1}. Encrypt each label labj,b under skj,b to get ctj,b. Output CT =

(Ũ , {ctj,b}j∈[ℓ],b∈{0,1}).

• KeyGen(MSK, g): Output SKg = {skj,g[j]}j∈[ℓ] where g[j] is the jth bit of g.

• Dec(SKg,CTx): Use the secret keys {skj,g[j]}j∈[ℓ] from SKg to decrypt the corresponding

ciphertexts from CTm and recover {labj,g[j]}j∈[ℓ]. Then, evaluate the garbled circuit Ũ on
these labels to learn Ux(g) = g(x).

Figure 4: FE scheme from [SS10].

Correctness follows from the correctness of SKE and the garbling scheme. To argue security, we
can first switch all ciphertexts ctj,1−g[j] for the unused labels labj,1−g[j] to encryptions of ⊥ since
the corresponding secret keys skj,1−g[j] are kept hidden from the adversary. We can then use the

security of the garbling scheme to simulate both the garbled circuit Ũ for x and the input labels
{labj,g[j]}j∈[ℓF ] for g from (g, g(x) = Ux(g)). Since the circuit Ũ is now being simulated, nothing
about the input x is leaked beyond what is revealed by g(x), giving us the desired security.

Can we just use [SS10] directly? Suppose we directly plug [SS10] into our initial construction
(Figure 2). Then, the ciphertext for xi will consist of a garbled univeral circuit Ui (with xi and
other values hardwired into it) and encryptions of the corresponding input labels. The function
key for iteration i will simply be a series of secret keys, one for each bit in the description of gf,s̃ti .
Unfortunately, as previously mentioned, we would still have an efficiency/size problem with our
function keys since the definition of gf,s̃ti is recursive.
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Exploiting the structure of garbled circuits. However, we observe that in the construction
of [SS10], the structure of the function key is relatively simple, and most of the heavy lifting is
done by the ciphertext. In particular, the function key for gf,sti depends only on the bit-string
description of gf,sti .

Our key observation is that the description of our function g does not change much between
iterations. In particular, the only thing that changes in the description of g between iteration i
and i + 1 is that the encrypted state changes from s̃ti to state s̃ti+1. Thus, the only parts of the
description of gf,sti that are unknown to the encryptor at encryption time are the function f and
the encrypted state sti. Therefore, we can greatly simplify our function keys by offloading the static
parts of g to the encryptor! As we will show, this change will solve the issue of exploding key sizes!

Let us go into more detail. If we we directly plug in [SS10] to our initial construction, then the
ciphertext for xi consists of a garbled circuit and encrypted input labels for the following function:

U [xi, pi, pi+1,mski+1](gf,s̃ti):

1. Output gf,s̃ti(xi, pi, pi+1,mski+1)

where we define gf,s̃ti as in Figure 3 and where mski+1 is the [SS10] master secret key for iteration
i+ 1.

Our change will be to eliminate g in its entirety, by modifying U as below. Here, we expand
out mski+1 = {ski+1,j,b}j,b along with [SS10]’s key generation algorithm which simply outputs a
selection of SKE keys. We use (f, s̃ti+1)[j] to denote the jth bit of the tuple (f, s̃ti+1).

U [xi, pi, pi+1, {ski+1,j,b}j,b](f, s̃ti):

1. pi = s̃ti ⊕ pi.

2. (yi, sti+1) = f(xi, sti).

3. s̃ti+1 = sti+1 ⊕ pi+1.

4. Output (yi, {ski+1,j,(f,s̃ti+1)[j]
}j,b).

Observe that we no longer have any recursive function definitions! This is because our main function
U is generated by the encryptor, and thus does not need to recursively generate copies of itself.
The only thing that needs to be passed onto the next iteration are the SKE keys ski+1,j,(f,s̃ti)[j]

representing the (i+1)th [SS10] function key, which can be of fixed size only dependent on the size
of (f, sti). Thus, we have fixed our parameter issues!

As one further optimization, we can modify U so that rather than outputting the SKE secret
keys for both f and s̃ti+1, it only outputs the secret keys corresponding to s̃ti+1. Since the function
f does not change between iterations, we can provide the SKE keys corresponding to f directly in
the One-sFE function key for f . More precisely, the One-sFE function key for f will contain PRF
keys which will allow the user to generate the corresponding SKE keys for f for every iteration i.

Final Construction. This gives us the following scheme, depicted in Figure 5. Let ℓF and ℓS
be the lengths of the functions f and intermediate states sti supported by our scheme, and let SKE
be a secret-key encryption scheme.

• Setup(1λ): Generate PRF keys for computing pads pi along with 2(ℓF + ℓS) SKE keys
{ski,j,b}j∈[ℓF ],b∈{0,1}, {ski,k,b}k∈[ℓS ],b∈{0,1} for every iteration i. Output these PRF keys as the
master secret key MSK.
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• EncSetup(MSK): Output Enc.st = ⊥.

• Enc(MSK,Enc.st, i, xi):

1. Use MSK to generate the 2(ℓF + ℓS) SKE keys for indices i and i+ 1.

2. Define circuit Ui = U [xi, pi, pi+1, {ski+1,j,b}j,b, {ski+1,k,b}k,b] as below where Ui has input
xi, the pads pi and pi+1, and the secret keys {ski+1,j,b}j∈[ℓF ],b∈{0,1}, {ski+1,k,b}k∈[ℓS ],b∈{0,1}
for the next iteration hardwired into it.

3. Garble Ui using a circuit garbling scheme to get Ũi and input labels {labi,j,b}j∈[ℓF ],b∈{0,1},
{labi,k,b}k∈[ℓS ],b∈{0,1} where the first set of labels will correspond to the input wires for

f and the second set of labels will correspond to the input wires for s̃ti.

4. Encrypt each label labi,j,b under ski,j,b to get cti,j,b. Similarly, encrypt each label labi,k,b
under ski,k,b to get cti,k,b.

5. Output CTi = (Ũi, {cti,j,b}j,b, {cti,k,b}k,b).

• KeyGen(MSK, f): Use MSK to compute the SKE keys {ski,k,s̃t1[k]}k∈[ℓS ] for the first encrypted

state s̃t1 = p1 ⊕ st1. Then, use MSK to generate a limited selection of PRF keys which will
allow the user to compute {ski,j,f [j]}j∈ℓF for every iteration i, but no other SKE keys. Output

these PRF keys along with the SKE keys for s̃t1 as the function key SKf .

• Dec(SKf ,Dec.sti, i,CTi): Use the SKE keys for f and s̃ti+1 provided in SKf and/or Dec.sti to
decrypt the corresponding ciphertexts from CTi and recover {labi,j,f [j]}j∈[ℓF ], {labi,k,s̃ti[k]}k∈[ℓS ].
Then, evaluate the garbled circuit Ũi from CTi on these labels to learn Ui(f, s̃ti) = (yi, {ski+1,k,s̃ti+1[k]

}k).
Output yi and Dec.sti+1 = {ski+1,k,s̃ti+1[k]

)}k.
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U [xi, pi, pi+1{ski+1,k,b}k,b](f, s̃ti):

1. pi = s̃ti ⊕ pi.

2. (yi, sti+1) = f(xi, sti).

3. s̃ti+1 = sti+1 ⊕ pi+1.

4. Output (yi, {ski+1,k,s̃ti+1[k]
}k,b).

Figure 5: Construction of One-sFE.

Correctness follows from the correctness of the garbling scheme and the SKE scheme. For
security, we will sequentially simulate each of the garbled circuits Ui starting from iteration 1.
Observe that simulating the (i−1)th circuit will hide all of the values hardwired into Ui−1, including
xi−1 and the SKE keys for the next iteration. Thus, after simulating iteration i − 1, we can
switch all ciphertexts {cti,j,1−f [j]}j , {cti,k,1−s̃t[k]}k for the unused labels {cti,j,1−f [j]}j , {cti,k,1−s̃t[k]}k
to encryptions of ⊥ since the corresponding secret keys are now kept hidden from the adversary.
Then, we can use the security of the garbling scheme to simulate both the garbled circuit Ũi for
xi and the input labels {labi,j,f [j]}j∈[ℓF ], {labi,j,s̃t[j]}j∈[ℓS ] from ((f, s̃ti), Ui(f, s̃ti)). Once we have
simulated all of the circuits, then the entire stream x = x1 . . . xn will be hidden beyond what is
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learned from f(x). Furthermore, even though we reveal the padded states s̃ti, the intermediate
states sti are also hidden, since the pads pi embedded in each Ui are also hidden. Thus, we have
the desired security.

Function-Selective Security. Our final One-sFE scheme inherits the function-selective security
of [SS10], meaning that the scheme is only secure if the adversary makes its function query before its
message queries. This is due to the selective security of our garbled circuits. It might be tempting
to try to get adaptive security by either using an adaptive garbling scheme or to use a (single-key,
single-ciphertext) adaptively secure FE scheme from OWFs, such as [GVW12], instead of [SS10].
However, there are some barriers to this approach. In particular, adaptive simulation-secure sFE is
impossible even in the secret key setting and even when the adversary receives just one function key
and one stream of challenge ciphertexts.11 This means that any adaptive version of One-sFE would
need to rely on additional techniques beyond just simulation techniques. However, we observe that
both adaptive garbling schemes and (single-key, single-ciphertext) adaptively secure FE schemes
like [GVW12] are simulation-secure, and thus we should expect to find additional problems if
we directly try to insert them into our construction. Indeed, using these primitives will lead to
parameter issues as adaptive garbling schemes have large input encodings, and [GVW12] has large
function keys. Consequently, we leave adaptively secure One-sFE from OWFs (or any assumption
weaker than iO) as an interesting open problem.

2.2 Bootstrapping to a Q-Bounded Public-Key Streaming FE

We now adapt techniques from [AS16,GKS23] to bootstrap One-sFE to aQ-bounded, semi-adaptive-
function-selective secure, public-key FE scheme.

Prior Work. Let us first review the prior work. [GKS23] show how to bootstrap a single-
key, single-ciphertext, secret-key sFE scheme One-sFE into an unbounded-collusion public-key sFE
scheme using unbounded-collusion public-key FE. At a high level, the idea is to generate a new
One-sFE master secret key for every (function, stream) pair. This way, each One-sFE master secret
key will only ever be used once, allowing us to use a reduction to the security of One-sFE.

In more detail, we will utilize three functional encryption schemes:

• One-sFE: the single-key, single-ciphertext, secret-key sFE scheme we wish to bootstrap.

• FE: an (unbounded-collusion) public-key FE scheme. This scheme will be responsible for gen-
erating a new One-sFE master secret key One-sFE.msk and a corresponding One-sFE function
key One-sFE.skf for every (function, stream) pair.

• FPFE: an (unbounded-collusion) function-private, secret-key FE scheme.12 This scheme will
use the One-sFE master secret key generated by FE to encrypt each stream value xi under
One-sFE.

To perform the bootstrapping, we will do the following:13

11An adaptive simulation-secure scheme necessitates simulation of an unbounded number of ciphertexts (one for
each element of the stream) without knowledge of any of the output values; followed by the simulation of an a priori
bounded-size function key that provides the correct output values for all of the ciphertexts (c.f. [BSW11]).

12A function-private FE scheme hides both the messages and the functions. In the secret-key setting, we can build
a function-private FE scheme from any standard FE scheme using the function-privacy transformation of [BS18].

13For ease of explanation, we have omitted some details from this construction. In particular, in the actual
construction, G and H have additional branches of computation which are only ever used in the security proof.
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• Our setup algorithm will generate FE keys (FE.mpk,FE.msk) which will be the master public
key and master secret key of our scheme.

• To generate a function key for a streaming function f , we will create an FE function key
FE.skG for the function Gf,s defined below where s is a random value. Gf,s will generate a
fresh One-sFE master secret key One-sFE.msk along with a corresponding encryption state
One-sFE.Enc.st and a corresponding function key One-sFE.skf for f . The output of Gf,s will
be One-sFE.skf and an FPFE ciphertext encrypting (1) One-sFE.msk, (2) One-sFE.Enc.st and
(3) a PRF key.

• To encrypt a stream x = x1 . . . xn:

1. We will first create an FE ciphertext FE.ct of (FPFE.msk,PRF.K) where FPFE.msk is an
FPFE master secret key and PRF.K is a PRF key. We will provide FE.ct with the first
ciphertext of our sFE scheme.

2. Upon receiving the ith stream value xi, we will create and output an FPFE function
key FPFE.skHi for the function Hi = Hi,xi,ti defined below where ti is a random value.
Hi will take as input a One-sFE master secret key (and a few other needed values) and
output a One-sFE encryption One-sFE.cti of xi.

• To decrypt:

1. We can first use FE to decrypt FE.ct (from our first sFE ciphertext) with FE.skG (from
our sFE function key) to get One-sFE.skf and an FPFE ciphertext FPFE.ct.

2. We can then use FPFE to decrypt FPFE.ct with FPFE.skHi (from the ith sFE ciphertext)
to get One-sFE.cti.

3. Finally, we can use One-sFE to decrypt each One-sFE.cti using One-sFE.skf to learn the
corresponding output values yi.
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Gf,s(FPFE.msk,PRF.K):

1. (rSetup, rEncSetup, rKeyGen, rPRF2, rEnc)← PRF.Eval(PRF.K, s).

2. One-sFE.msk← One-sFE.Setup(1λ; rSetup).

3. One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup).

4. One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen).

5. PRF2.K ← PRF2.Setup(1λ; rPRF2).

6. FPFE.ct← FPFE.Enc(FPFE.msk, (One-sFE.msk,One-sFE.Enc.st,PRF2.K); rEnc).

7. Output (One-sFE.skf ,FPFE.ct).

Hi,xi,ti(One-sFE.msk,One-sFE.Enc.st,PRF2.K):

1. ri ← PRF2.Eval(PRF2.K, ti)

2. Output One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

Figure 6: [GKS23]’s technique for bootstrapping to public-key sFE.

Correctness follows from the correctness of the underlying functional encryption schemes. For
security, we will focus on each (function,stream) pair at a time to define the hybrids. We will
first program the output values (One-sFE.skf ,FPFE.ct) inside the function key for Gf,s as part of
an SKE ciphertext, where FPFE.ct is encrypting the tuple (One-sFE.msk,One-sFE.Enc.st,PRF2.K),
and put the corresponding SKE secret key inside the FE ciphertext output during encryption of
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the first block. This allows us to get rid of the values FPFE.msk and PRF.K from the FE ci-
phertext, so that we can now use FPFE security to hardwire the One-sFE ciphertext, encrypting
the ith input block xi, inside the FPFE function key for function Hi. This is to remove the values
(One-sFE.msk,One-sFE.Enc.st,PRF2.K) from the FPFE ciphertext and xi from the FPFE function
key for Hi, so that we can now use One-sFE security and make the final switch for this (func-
tion,stream) pair.

Adapting to the bounded-collusion setting. As a first natural idea, we will try replacing
each of the (unbounded-collusion) schemes in the bootstrapping with Q-bounded schemes which
can be built from PKE using the work of [AV19].

Let us count the number of FE and FPFE function keys that will be generated during the security
game of the Q-bounded sFE scheme. For our FE scheme, we see that we only need to generate
one FE key per function key of our sFE scheme. Thus, a collusion-bound on the FE scheme would
match the collusion-bound of our One-sFE scheme. Unfortunately, for our FPFE scheme, we need
a number of function keys each to the length n of the challenge stream. This can be an arbitrary
polynomial which may be larger than our collusion-bound Q.

Our key observation is that while we may need to generate many FPFE function keys, we
actually only need to generate one FPFE ciphertext per (function, stream) pair (or equivalently,
one FPFE ciphertext per function per FPFE.msk). Then, since a function-private FE scheme is
symmetric with respect to the hiding properties provided for the function and the message, we can
solve our issues by swapping the roles of the ciphertexts and the function keys in our FPFE scheme.
This gives us the scheme depicted in Figure 7.

This means that for each function key in our sFE scheme, we will only need one FE and FPFE
function key per corresponding FE or FPFE master secret key. Thus, in the security proof of our
Q-bounded sFE scheme, it suffices for the FE and FPFE schemes to be Q-bounded since we will
never need more than Q function keys per schemes. As Q-bounded FE and FPFE can be built from
PKE, then the bootstrapping step only requires PKE. This completes our construction.
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Gf,s(FPFE.msk,PRF.K):

1. (rSetup, rEncSetup, rKeyGen, rPRF2, rEnc)← PRF.Eval(PRF.K, s).

2. One-sFE.msk← One-sFE.Setup(1λ; rSetup).

3. One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup).

4. One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen).

5. PRF2.K ← PRF2.Setup(1λ; rPRF2).

6. FPFE.skH ← FPFE.KeyGen(FPFE.msk, H[One-sFE.msk,One-sFE.Enc.st,PRF2.K]; rEnc).

7. Output (One-sFE.skf ,FPFE.skH).

H[One-sFE.msk,One-sFE.Enc.st,PRF2.K](i, xi, ti):

1. ri ← PRF2.Eval(PRF2.K, ti)

2. Output One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri)

Figure 7: Our technique for bootstrapping to public-key sFE.
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3 Preliminaries

Throughout, we will use λ to denote the security parameter.

Notation

• We say that a function f(λ) is negligible in λ if f(λ) = λ−ω(1), and we denote it by f(λ) =
negl(λ).

• We say that a function g(λ) is polynomial in λ if g(λ) = p(λ) for some fixed polynomial p,
and we denote it by g(λ) = poly(λ).

• For n ∈ N, we use [n] to denote {1, . . . , n}.

• If R is a random variable, then r ← R denotes sampling r from R. If T is a set, then i← T
denotes sampling i uniformly at random from T .

We use the standard definitions of one way functions (OWFs), pseudorandom functions (PRFs),
and secret-key encryption (SKE) with pseudorandom ciphertexts. We formally define the latter
two notions in Appendix A.1.

Definition 3.1 (Garbling Scheme). A garbling scheme is a tuple of PPT algorithms GC = (Garble,Eval)
defined as follows:

• Garble(1λ, C): takes as input the security parameter λ and a circuit C with n-bit inputs,
and outputs a garbled circuit C̃ and input labels {labk,b}k∈[n],b∈{0,1} where each label labk,b ∈
{0, 1}λ.

• Eval(C̃, {labk}k∈[n]): takes as input a garbled circuit C̃ and input labels {labk}k∈[n], and out-
puts a value y.

Correctness: For all λ ∈ N, all circuits C with n-bit inputs, and all inputs x ∈ {0, 1}n,

Pr[Eval(C̃, {labk,x[k]}k∈[n]) = C(x) : (C̃, {labk,b}k∈[n],b∈{0,1})← Garble(1λ, C)] = 1

where x[k] denotes the kth bit of x.

Selective Simulation Security: There exists a PPT simulator Sim and a negligible function µ
such that for all PPT adversaries A and all λ ∈ N,∣∣∣Pr[ExptGC-Sel-SIMA,Sim (1λ, 0) = 1]− Pr[ExptGC-Sel-SIMA,Sim (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for b ∈ {0, 1} and λ ∈ N, we define

ExptGC-Sel-SIMA (1λ, b):

1. A takes as input 1λ and outputs (C, x) where C is a circuit with n-bit inputs and x ∈
{0, 1}n.

2. If i = 0, (C̃, {labk,b}k∈[n],b∈{0,1})← Garble(1λ, C).

3. If i = 1, (C̃, {labk,x[k]}k∈[n])← Sim(1λ, 1|C|, x, C(x)).

4. Send (C̃, {labk,x[k]}k∈[n]) to A.
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5. A outputs b′ which is the output of the experiment.

Lemma 3.2 ( [Yao86]). If there exist OWFs, then there exists a garbling scheme.

3.1 Functional Encryption

Here we provide some fundamental definitions for functional encryption (FE) schemes. In this
paper, we focus on Q-bounded FE schemes in which the adversary is restricted to obtaining at
most Q functional keys. [AV19] show how to build such schemes from minimal assumptions.

Theorem 3.3 ( [AV19]). Assuming the existence of a public-key (resp. secret-key) encryption
scheme, there exists a Q-bounded, adaptive-IND-secure, public-key (resp. secret-key) FE scheme
for P/Poly.

To define FE for P/Poly, we first define a class of functions parameterized by function size,
input length, and output length.

Definition 3.4 (Function Class). The function class F [ℓF , ℓX , ℓY ] is the set of all functions f that
have a description f̂ ∈ {0, 1}ℓF , take inputs in {0, 1}ℓX , and output values in {0, 1}ℓY .

3.1.1 Public-Key Functional Encryption

Definition 3.5 (Public-Key Functional Encryption). A public-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,Enc,KeyGen,Dec) defined as follows:14

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , an input
size ℓX , and an output size ℓY , and outputs the master public key mpk and the master secret
key msk.

• Enc(mpk, x): takes as input the master public key mpk and a message x ∈ {0, 1}ℓX , and
outputs an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓX , ℓY ],
and outputs a function key skf .

• Dec(skf , ct): takes as input a function key skf and a ciphertext ct, and outputs a value
y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓX , ℓY ≤ p(λ), all x ∈ {0, 1}ℓX , and all f ∈ F [ℓF , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :
(mpk,msk)← Setup(1λ, 1ℓF , 1ℓX , 1ℓY )

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

Definition 3.6 (Q-Bounded, Adaptive-IND-Security for Public-Key FE). A public-key functional
encryption scheme FE for P/Poly is Q-bounded, adaptive-IND-secure if there exists a negligible
function µ such that for all λ ∈ N and every PPT adversary A,∣∣∣Pr[ExptFE-Q-Ad-IND

A (1λ, 0) = 1]− Pr[ExptFE-Q-Ad-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

14We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.
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ExptFE-Q-Ad-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: (mpk,msk)← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. Public Key: Send mpk to A.

4. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query: The adversary can make at most Q = Q(λ) such queries:

i. A outputs a function query f ∈ F [ℓF , ℓX , ℓY ]
ii. skf ← FE.KeyGen(msk, f)

iii. Send skf to A
(b) Challenge Message Query: The adversary can make at most one such query.

i. A outputs a challenge message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .
ii. ct← FE.Enc(mpk, xb)

iii. Send ct to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f(x0) ̸= f(x1) for some message query (x0, x1) and function
query f submitted by the adversary.

Definition 3.7 (Other Public-Key FE Security Definitions). There are many variations of the
security definition. We list a few below:

• Q-Bounded, Semi-Adaptive-IND-Security: The adversary is required to make the mes-
sage query before the function queries. This is identical to Definition 3.6, except that we do
not allow the adversary to make a Challenge Message Query after it has made a Function
Query.

• Q-Bounded, Semi-Adaptive-Function-Selective-IND-Security: The adversary is re-
quired to make all function queries before the message query. This is identical to Defini-
tion 3.6, except that we do not allow the adversary to make a Function Query after it has
made a Challenge Message Query.

• Q-Bounded, Selective-IND-Security: The adversary is required to make the message
query at the beginning of the experiment. This is similar to Definition 3.6, except that we
allow the adversary to made a Challenge Message Query in between the Setup step and the
Public Key step, but do not allow the adversary to make any Challenge Message Queries after
the Public Key step.

• Q-Bounded, Function-Selective-IND-Security: The adversary is required to make all
function queries at the beginning of the experiment. This is similar to Definition 3.6, except
that we allow the adversary to make up to Q Function Queries in between the Setup step and
the Public Key step, but do not allow the adversary to make any Function Queries after the
Public Key step.
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3.1.2 Secret-Key Functional Encryption

We can also define FE in the secret-key setting.

Definition 3.8 (Secret-Key Functional Encryption). Secret-key FE is the same as public-key FE
except that Setup only outputs a master secret key and Enc requires the master secret key instead
of the (non-existent) master public key.

Remark 3.9 (Security Definitions). We can analogously define our public-key definitions of security
in the secret-key setting. The only difference is that we do not give the (non-existent) master public
key to the adversary and will therefore allow the adversary to make multiple challenge message
queries. We formally define these security definitions in Appendix A.2.

Remark 3.10 (Function Privacy). In the secret-key setting, we can also achieve a notion of function
privacy. We defer this definition to Appendix A.2.

3.2 Streaming Functional Encryption

Guan, Korb, and Sahai [GKS23] define streaming functional encryption (sFE) as functional cncryp-
tion (FE) for a class of streaming functions. In this paper, we focus on Q-bounded sFE schemes in
which the adversary is restricted to obtaining at most Q functional keys.

3.2.1 Streaming Functions

Definition 3.11 (Streaming Function). A streaming function with state space S, input space X ,
and output space Y is a function f : X × S → Y × S.

• We define the output of f on x = x1 . . . xn ∈ X n (denoted f(x)) to be y = y1 . . . yn ∈ Yn

where15 we have st1 = ⊥ and

(yi, sti+1) = f(xi, sti)

Definition 3.12 (Streaming Function Class). The streaming function class F [ℓF , ℓS , ℓX , ℓY ] is the
set of all streaming functions f that have a description f̂ ∈ {0, 1}ℓF , state space S = {0, 1}ℓS , input
space X = {0, 1}ℓX , and output space Y = {0, 1}ℓY .

3.2.2 Public Key Streaming Function Encryption

Following the syntax of standard FE, we define public key sFE as follows.

Definition 3.13 (Public-Key Streaming FE). A public-key streaming functional encryption scheme
for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec) defined as fol-
lows:16

• Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master public key mpk
and the master secret key msk.

15We assume that all streaming functions have the same starting state ⊥ (or the all zero string) which is included
in their state space. Note that we can still begin computing from any arbitrary starting value by simply hardwiring
that value into the description of our streaming function.

16We also allow Enc,EncSetup,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input,
but omit them from our notation for convenience.
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• EncSetup(mpk): takes as input the master public key mpk and outputs an encryption state
Enc.st.

• Enc(mpk,Enc.st, i, xi): takes as input the master public key mpk, an encryption state Enc.st,
an index i, and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

• KeyGen(msk, f): takes as input the master secret key msk, and a function f ∈ F [ℓF , ℓS , ℓX , ℓY ]
and outputs a function key skf .

• Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE must be streaming efficient, meaning that the size and runtime of all algorithms of sFE
on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :

(mpk,msk)← Setup(1λ, 1ℓF1ℓS , 1ℓX , 1ℓY ),

ctx ← Enc(mpk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define17

• Enc(mpk, x) outputs ctx = (cti)i∈[n] produced by sampling Enc.st ← EncSetup(mpk) and then
computing cti ← Enc(mpk,Enc.st, i, xi) for i ∈ [n].

• Dec(skf , ctx) outputs y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti) for i ∈ [n].

Definition 3.14 (Q-Bounded, Adaptive-IND-Security for Public-Key sFE). A public-key streaming
FE scheme sFE for P/Poly is Q-bounded, adaptive-IND-secure if there exists a negligible function
µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[ExptsFE-Q-Ad-IND

A (1λ, 0) = 1]− Pr[ExptsFE-Q-Ad-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptsFE-Q-Ad-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: (mpk,msk)← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. Public Key: Send mpk to A.

4. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query: The adversary can make at most Q = Q(λ) such queries:

17As with all streaming functions, we assume that Dec.st1 = ⊥ if not otherwise specified.
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i. A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
ii. skf ← sFE.KeyGen(msk, f).

iii. Send skf to A.
(b) Challenge Message Query:

i. If this is the first challenge message query, sample Enc.st← sFE.EncSetup(mpk)
and initialize the index i = 1. Else, increment the index i by 1.

ii. A outputs a challenge message pair (x
(0)
i , x

(1)
i ) where x

(0)
i , x

(1)
i ∈ {0, 1}ℓX .

iii. cti ← sFE.Enc(mpk,Enc.st, i, x
(b)
i ).

iv. Send cti to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields different
outputs on the challenge message streams submitted so far (i.e. if f(x(0)) ̸= f(x(1)) for some

function query f submitted by the adversary where {(x(0)i , x
(1)
i )}i∈[t] are the message queries

submitted so far, x(0) = x
(0)
1 . . . x

(0)
t , and x(1) = x

(1)
1 . . . x

(1)
t ).

Definition 3.15 (Other Public-Key sFE Security Definitions). There are many variations of the
security definition. We list a few below:

• Q-Bounded, Semi-Adaptive-IND-Security: The adversary is required to make all mes-
sage queries before any function queries. This is identical to Definition 3.14, except that we
do not allow the adversary to make a Challenge Message Query after it has made a Function
Query.

• Q-Bounded, Semi-Adaptive-Function-Selective-IND-Security: The adversary is re-
quired to make all function queries before any message queries. This is identical to Defini-
tion 3.14, except that we do not allow the adversary to make a Function Query after it has
made a Challenge Message Query.

• Q-Bounded, Selective-IND-Security: The adversary is required to make all message
queries at the beginning of the experiment. This is similar to Definition 3.14, except that
we allow the adversary to make a polynomial number of Challenge Message Queries in be-
tween the Setup step and the Public Key step, but do not allow the adversary to make any
Challenge Message Queries after the Public Key step.

• Q-Bounded, Function-Selective-IND-Security: The adversary is required to make all
function queries at the beginning of the experiment. This is similar to Definition 3.14, except
that we allow the adversary to make up to Q Function Queries in between the Setup step and
the Public Key step, but do not allow the adversary to make any Function Queries after the
Public Key step.

3.2.3 Secret-Key Streaming Functional Encryption

We can also define sFE in the secret-key setting.

Definition 3.16 (Secret-Key Streaming Functional Encryption). Secret-key sFE is the same as
public-key sFE except that Setup only outputs a master secret key and EncSetup and Enc require the
master secret key instead of the (non-existent) master public key.
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Remark 3.17 (Security Definitions). We can analogously define our public-key definitions of secu-
rity in the secret-key setting. The only difference is that we do not give the (non-existent) master
public key to the adversary and will therefore allow the adversary to submit multiple pairs of
challenge streams. We formally define these security definitions in Appendix A.3.

Definition 3.18 (Single-Key, Single-Ciphertext Security). In our security definitions, we may use
the modifier “single-key, single-ciphertext” instead of “Q-bounded”. This is a weakening of the
security definition where we only require security against an adversary who is restricted to making
only one function query (i.e. 1-bounded) and submitting only one pair of challenge message streams
(though each stream may consist of many elements) in the relevant security game.

Remark 3.19 (Simulation Security). We will also define a weak notion of simulation security in
the secret-key setting. We formally define this in Appendix A.3.
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4 Single-Key, Single-Ciphertext, Secret-Key Streaming FE

In this section, we construct our main building block: a single-key, single-ciphertext, function-
selective-SIM-secure, secret-key sFE scheme. We prove the following:

Theorem 4.1. Assuming OWFs, there exists a single-key, single-ciphertext, function-selective-
SIM-secure, secret-key sFE scheme for P/Poly.

To prove Theorem 4.1, we build an sFE scheme from the following tools, which can each be
built from OWFs using standard techniques. [Gol01,Gol09,Yao86]

Tools.

• PRF1,PRF2,PRF3,PRFp: Secure pseudorandom function families where
PRFc = (PRFc.Setup,PRFc.Eval) for all c ∈ {1, 2, 3, p}.

• SKE = (SKE.Setup, SKE.Enc,SKE.Dec): A secure secret-key encryption scheme.

• GC = (GC.Garble,GC.Eval): A secure garbling scheme.

4.1 Parameters

On security parameter 1λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY , we will
instantiate our primitives with the following parameters:

• We instantiate our PRFs with the following parameters:

Security Parameter Input Size Output Size

PRF1 λ log(ℓF ) + 1 λ

PRF2 λ λ λ

PRF3 λ λ+ log(ℓS) + 1 λ

PRFp λ λ ℓS

• SKE: We instantiate SKE with security parameter λ. We will use SKE to encrypt messages
of length λ.

• GC: We instantiate GC with security parameter λ. We will use GC to garble circuits of
the form U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8 where xi ∈ {0, 1}ℓX ,
pi, pi+1 ∈ {0, 1}ℓS , each sk′i+1,k,b is a secret key of SKE, and which takes inputs of size ℓF + ℓS .
Let ℓU be the size of such circuits. Recall that each of the input labels of a garbled circuit
are size λ.

Remark 4.2. We assume without loss of generality that for security parameter λ, all algorithms
only require randomness of length λ. If the original algorithm required additional randomness, we
can replace it with a new algorithm that first expands the λ bits of randomness using a PRG of
appropriate stretch and then runs the original algorithm. Note that this replacement can be imple-
mented with OWFs and does not affect the security of the above schemes (as long as ℓF , ℓS , ℓX , ℓY
are polynomial in λ).
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4.2 Construction

We now construct our single-key, single-ciphertext streaming functional encryption scheme One-sFE.

Notation For notational convenience, when the parameters are understood, we will often omit the
security, input size, and output size parameters from our algorithms.

• One-sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ):

1. K ← PRF1.Setup(1
λ), K ′ ← PRF3.Setup(1

λ),Kp ← PRFp.Setup(1
λ).

* Throughout, for i ∈ [2λ], j ∈ [ℓF ], k ∈ [ℓS ], b ∈ {0, 1}, we will define

Kj,b = PRF2.Setup(1
λ;PRF1.Eval(K, (j, b)))

ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i))

sk′i,k,b = SKE.Setup(1λ;PRF3.Eval(K
′, (i, k, b)))

pi = PRFp.Eval(Kp, i)

Observe that these values can be computed from i, j, k, b, K, K ′, and Kp.

2. Output MSK = (K,K ′,Kp).

• One-sFE.EncSetup(MSK): Output Enc.st = ⊥.

• One-sFE.Enc(MSK,Enc.st, i, xi):

1. Parse MSK = (K,K ′,Kp).

2. Garble circuit:

(a) Compute pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1} from K ′,Kp.

(b) Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

(c) (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).
18

3. Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
(a) Compute ski,j,b from K.

(b) cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

4. Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
(a) Compute sk′i,k,b from K ′.

(b) ct′i,k,b ← SKE.Enc(sk′i,k,b, lab
′
i,k,b).

5. Output CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}).

18For notational convenience, we split the input labels for Ũi into two categories depending upon what part of
the input they represent. We use {labi,j,b}j∈[ℓF ],b∈{0,1} to refer to the labels for the part of the input representing
f (i.e. the first ℓF bits of the input), and use {lab′i,k,b}k∈[ℓS ],b∈{0,1} to refer to the labels for the part of the input
representing s̃ti (i.e. the last ℓS bits of the input).
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U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}](f, s̃ti):

1. sti = s̃ti ⊕ pi.

2. (yi, sti+1) = f(xi, sti).

3. s̃ti+1 = sti+1 ⊕ pi+1.

4. Output (yi, (s̃ti+1, {sk′i+1,k,s̃ti+1[k]
}k∈[ℓS ])).

Figure 8: Definition of U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}]

• One-sFE.KeyGen(MSK, f)

1. Parse MSK = (K,K ′,Kp).

2. Compute PRF keys for generating SKE keys for f :

(a) Compute {Kj,f [j]}j∈[ℓF ] from K.

3. Compute SKE keys for s̃t1:

(a) Compute p1 from Kp.

(b) s̃t1 = p1.
(Here, we assume st1 = 0ℓS for all streaming functions so that s̃t1 = st1 ⊕ p1 = p1.)

(c) Compute {sk′
1,k,s̃t1[k]

}k∈[ℓS ] from K ′.

4. Output SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])).

• One-sFE.Dec(SKf ,Dec.sti, i,CTi):

1. Parse SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])).

2. If i > 1, parse Dec.sti = (s̃ti, {sk′i,k,s̃ti[k]}k∈[ℓS ]).

3. Parse CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}).
4. Recover function labels: For j ∈ [ℓF ],

(a) ri,j,f [j] = PRF2.Eval(Kj,f [j], i).

(b) ski,j,f [j] = SKE.Setup(1λ; ri,j,f [j]).

(c) labi,j,f [j] = SKE.Dec(ski,j,f [j], cti,j,f [j]).

5. Recover state labels: For k ∈ [ℓS ],

(a) lab′
i,k,s̃ti[k]

= SKE.Dec(sk′
i,k,s̃ti[k]

, ct′
i,k,s̃ti[k]

).

6. Evaluate garbled ciruit:

(a) (yi, (s̃ti+1, {sk′i+1,k,s̃ti+1[k]
}k∈[ℓS ])) = GC.Eval(Ũi, {labi,j,f [j]}j∈[ℓF ], {lab′i,k,s̃ti[k]}k∈[ℓS ]).

7. Dec.sti+1 = (s̃ti+1, {sk′i+1,k,s̃ti+1[k]
}k∈[ℓS ]).

8. Output (yi,Dec.sti+1).
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4.3 Correctness and Efficiency

Efficiency: Using our discussion above on parameters, it is easy to see that the size and runtime
of all algorithms of our One-sFE scheme on security parameter 1λ, function size ℓF , state size ℓS ,
input size ℓX , and output size ℓY are poly(λ, ℓF , ℓS , ℓX , ℓY).

Correctness Intuition: The ith ciphertext consists of a garbled circuit for Ui (which has xi
embedded within it) along with encryptions of each of the input labels for the garbled circuit.
Using the function key for f , we can recover the input labels corresponding to input f . Using the
decryption state (or the function key if i = 1), we can recover the input labels corresponding to
an encryption s̃ti of sti. Then, we can use the garbled circuit to evaluate Ui(f, s̃ti) which gives us
yi, an encryption s̃ti+1 of sti+1 where f(xi, sti) = (yi, sti+1), and keys for later recovering the input
labels corresponding to s̃ti+1. This gives us the desired output.

Correctness: More formally, let p be any polynomial and consider any λ and any ℓF , ℓS , ℓX , ℓY ≤
p(λ). Let SKf be a function key for function f ∈ F [ℓF , ℓS , ℓX , ℓY ], and let CT = {CTi}i∈[n] be a

ciphertext for stream x where x = x1 . . . xn for some n ∈ [2λ] and where each xi ∈ {0, 1}ℓX .

The function key SKf consists of

• The function f

• PRF2 keys {Kj,f [j]}j∈[ℓF ] for computing SKE keys {ski,j,f [j]}j∈[ℓF ] corresponding to f .

• A (one-time-pad) encryption s̃t1 of state st1

• SKE keys {sk1,k,s̃t1[k]}k∈[ℓS ] corresponding to s̃t1.

The ith ciphertext CTi consists of

• A garbled circuit Ũi for the circuit U [xi, pi, pi+1, {ski+1,k,b}k∈[ℓS ],b∈{0,1}] depicted in Figure 8.

• Ciphertexts cti,j,b encrypting labels labi,j,b for each j ∈ [ℓF ], b ∈ {0, 1}.

• Ciphertexts ct′i,k,b encrypting labels lab′i,k,b for each k ∈ [ℓS ], b ∈ {0, 1}.

Thus, we can prove by induction on i starting with i = 1 that

One-sFE.Dec(SKf ,Dec.sti, i,CTi)

= GC.Eval(Ũi, {SKE.Dec(ski,j,f [j], cti,j,f [j])}j∈[ℓF ], {SKE.Dec(ski,k,s̃ti[k], lab
′
i,k,s̃ti[k]

}k∈[ℓS ])

= GC.Eval(Ũi, {labi,j,f [j]}j∈[ℓF ], {lab′i,k,s̃ti[k]}k∈[ℓS ])

= U [xi, pi, pi+1, {ski+1,k,b}k∈[ℓS ],b∈{0,1}](f, s̃ti)
= (yi,Dec.sti = (s̃ti+1, {sk′i+1,k,s̃ti+1[k]

}k∈[ℓS ]))

where (yi, sti+1) = f(xi, sti), s̃ti+1 is a (one-time-pad) encryption of sti+1, and {ski+1,k,s̃ti+1[k]
}k∈[ℓS ]

are SKE keys corresponding to s̃ti+1. Here, the first equality follows from the definition of One-sFE.Dec
and our use of PRF2 keys, the second equality follows by the correctness of SKE, the third equality
follows by the correctness of GC, and the fourth equality follows from the definition of U . Thus,
we get the correct output value yi at each step.

29



4.4 Security

In this section, we prove that One-sFE is single-key, single-ciphertext, function-selective-SIM-secure.

4.4.1 Proof Overview

To build intuition, we provide a brief overview of each hybrid in our proof.

• HybridA
0 (λ): This is the real world experiment where we use the algorithms defined in our

construction.

• HybridA
1 (λ): Here, we reorder several steps from the previous hybrid. In particular, the

challenger now computes the random (one-time) pads pi, the PRF keys, and the SKE keys
earlier in the hybrid. For each message query xi, the challenger also computes and stores
the output value yi and the updated state sti+1. This hybrid is identically distributed to the
previous hybrid.

• HybridA
2 (λ): The outputs generated by the PRF keys K,K ′ and Kp are replaced with truly

random strings. Indistinguishability follows from the security of PRF1,PRF3, and PRFp.

• HybridA
3 (λ): For each index i, we change how s̃ti and pi are generated. In the previous

hybrids, we sampled a random pi and set s̃ti = sti ⊕ pi. Now, we sample a random s̃ti and
set pi = sti ⊕ s̃ti. Since we have just swapped the roles of two random variables in an XOR
equation, the two hybrids are identically distributed

• HybridA
4 (λ): We remove usage of the PRF2 keys corresponding to the negation of the bit-

string for function f . More precisely, when answering the function query for f , the challenger
only samples keys {Kj,f [j]}j∈[ℓF ] and does not sample keys {Kj,1−f [j]}j∈[ℓF ]. When answering
the challenge message queries, the challenger samples SKE keys ski,j,1−f [j], for j ∈ [ℓF ], by
using true randomness instead of using Kj,1−f [j] as was done previously. Indistinguishability
follows by the security of PRF2.

• HybridA
5 (λ): We replace the ciphertexts cti,j,1−f [j] with encryptions of ⊥. This removes the

input labels corresponding to the negation of the bit-string for f from the adversary’s view.
This is feasible since the corresponding secret keys ski,j,1−f [j] are completely hidden from the
adversary due to the change made in the previous hybrid. Indistinguishability follows from
the security of SKE.

• We now go through the following hybrids for α ∈ [BoundA] where BoundA is a bound on the
runtime of A, and thus an implicit bound on the number of challenge message queries made
by the adversary. On iteration α, the goal is to switch to a hybrid where we simulate the αth

garbled circuit.

– HybridA
6,α,0(λ): For i < α, we generate the garbled circuit Ũi and the input labels

corresponding to (f, s̃ti) using the simulator for the garbling scheme. Since we are
simulating the garbled circuit for Uα−1, we no longer need to embed the secret keys
sk′

α,k,1−s̃t[α]
into Uα−1. Thus, we can replace the ciphertexts ct′

α,k,1−s̃t[α]
with encryptions

of ⊥. This removes the input labels corresponding to the negation of the bit-string for
s̃tα from the adversary’s view. For α = 1, this hybrid is indistinguishable from HybridA

5

by the security of SKE.
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– HybridA
6,α,1(λ): We generate the garbled circuit Ũα and the input labels corresponding

to (f, s̃tα) using the simulator for the garbling scheme. This is feasible because we have
already removed the αth input labels for both the negation of the bit-string for f and
the negation of the bit-string for s̃ti from the adversary’s view. Indistinguishability
follows from the security of the garbling scheme. Additionally, the indistinguishability
of HybridA

6,α,1 and HybridA
6,α+1,0 follows from the security of SKE.

• HybridA
7 (λ): This is the ideal world experiment written using an explicit simulator Sim.

This hybrid is identically distributed to HybridA
6,BoundA,1 since HybridA

6,BoundA,1 simulates
every circuit Ui using the garbling scheme, and thus does not need to know any of the stream
values xi which were previously embedded in the circuits Ui.
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4.4.2 Formal Proof

We now formally prove Theorem 4.1 via a hybrid argument.

HybridA
0 (1

λ): This is the real world experiment.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup: K ← PRF1.Setup(1
λ), K ′ ← PRF3.Setup(1

λ),Kp ← PRFp.Setup(1
λ).

3. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute PRF keys for generating SKE keys for f :

i. Compute {Kj,f [j]}j∈[ℓF ] from K.

(c) Compute SKE keys for s̃t1:

i. Compute p1 from Kp.

ii. s̃t1 = p1.

iii. Compute {sk′
1,k,s̃t1[k]

}k∈[ℓS ] from K ′.

(d) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

4. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Garble circuit:

i. Compute pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1} from K ′,Kp.

ii. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

iii. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

(c) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. Compute ski,j,b from K.

ii. cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

(d) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
i. Compute sk′i,k,b from K ′.

ii. ct′i,k,b ← SKE.Enc(sk′i,k,b, lab
′
i,k,b).

(e) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.
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HybridA
1 (1

λ): We reorder several steps of the hybrid.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup: K ← PRF1.Setup(1
λ), K ′ ← PRF3.Setup(1

λ),Kp ← PRFp.Setup(1
λ).

3. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. s̃t1 = p1 = PRFp.Eval(Kp, 1).

ii. For j ∈ [ℓF ], b ∈ {0, 1}, Kj,b = PRF2.Setup(1
λ;PRF1.Eval(K, (j, b))).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b = SKE.Setup(1λ;PRF3.Eval(K
′, (1, k, b))).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

4. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. pi+1 = PRFp.Eval(Kp, i+ 1).

ii. For j ∈ [ℓF ], b ∈ {0, 1}, ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b = SKE.Setup(1λ;PRF3.Eval(K
′, (i+ 1, k, b))).

(c) st1 = 0ℓS .

(d) Compute (yi, s̃ti+1):

i. (yi, sti+1) = f(xi, sti).

ii. s̃ti+1 = sti+1 ⊕ pi+1.

(e) Garble circuit:

i. Compute pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1} from K ′,Kp.

ii. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

iii. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. Compute ski,j,b from K.

ii. cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
i. Compute sk′i,k,b from K ′.

ii. ct′i,k,b ← SKE.Enc(sk′i,k,b, lab
′
i,k,b).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.3. For all adversaries A,∣∣∣Pr[HybridA
0 (1

λ)]− Pr[HybridA
1 (1

λ)]
∣∣∣ = 0.

Proof. The hybrids are identical.
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HybridA
2 (1

λ): We exchange the randomness generated by K,K ′,Kp with true randomness.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup: K ← PRF1.Setup(1
λ), K ′ ← PRF3.Setup(1

λ),Kp ← PRFp.Setup(1
λ).

3. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. s̃t1 = p1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1}, Kj,b ← PRF2.Setup(1

λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

4. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. pi+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1}, ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

(c) st1 = 0ℓS .

(d) Compute (yi, s̃ti+1):

i. (yi, sti+1) = f(xi, sti).

ii. s̃ti+1 = sti+1 ⊕ pi+1.

(e) Garble circuit:

i. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

ii. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
i. ct′i,k,b ← SKE.Enc(sk′i,k,b, lab

′
i,k,b).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.4. If PRF1,PRF3 and PRFp are secure PRFs, then for all PPT adversaries A,∣∣∣Pr[HybridA
1 (1

λ)]− Pr[HybridA
2 (1

λ)]
∣∣∣ ≤ negl(λ).
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Proof. We will first show indistinguishability betweenHybridA
1 and an intermediate hybridHybridA

1,1(1
λ)

which is the same as HybridA
1 except that all the outputs of PRF1 have been replaced by truly

random strings (but the outputs of PRF3 and PRFp are still pseudorandom values). Suppose for
sake of contradiction, that there exists a PPT adversary A such that∣∣∣Pr[HybridA

1 (1
λ)]− Pr[HybridA

1,1(1
λ)]

∣∣∣ > negl(λ) (1)

We build a PPT adversary B that breaks the security of PRF1. B gets the security parameter from
its PRF1 challenger and provides it to A who outputs parameters (1ℓF , 1ℓS , 1ℓX , 1ℓY ) to B. B samples
keys K ′ ← PRF3.Setup(1

λ) and Kp ← PRFp.Setup(1
λ). B also queries its PRF1 challenger on values

{(j, b)}j∈[ℓF ],b∈{0,1} and receive values {rj,b}j∈[ℓF ],b∈{0,1}, where the string rj,b is the output obtained
on query (j, b). Upon receiving a function query from A for some function f ∈ F [ℓF , ℓS , ℓX , ℓY ], B
samples PRF2 keys Kj,b = PRF2.Setup(1

λ; rj,b) for j ∈ [ℓF ], b ∈ {0, 1}. B then performs the rest of
the operations as in HybridA

1 (1
λ) (while interacting with A) and eventually outputs the output

bit b′ received from A as its own output.
Observe that if B’s PRF1 oracle was a uniform random function R, then B exactly emulates

HybridA
1,1, and if B’s PRF1 oracle was PRF1.Eval(K, ·) for some PRF1 key K, then B emulates

HybridA
1 . Moreover, B does not need to know the PRF1 keyK for performing these experiments, as

it is not used in any place other than for the function query responses. Therefore, by Equation 1, this
means that B breaks the security of PRF1 since B has a non-negligible advantage in distinguishing
between the two challenge oracles in the PRF1 experiment.

Using a similar argument, we can prove that the outputs of PRF3 and PRFp can also be replaced
with random values, resulting in HybridA

2 .
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HybridA
3 (λ): For each i, we now determine pi by XOR-ing the true state sti with a random value

s̃ti.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. p1 = s̃t1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1}, Kj,b ← PRF2.Setup(1

λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

3. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. s̃ti+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1}, ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

(c) st1 = 0ℓS .

(d) Compute (yi, pi+1):

i. (yi, sti+1) = f(xi, sti).

ii. pi+1 = sti+1 ⊕ s̃ti+1.

(e) Garble circuit:

i. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

ii. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
i. ct′i,k,b ← SKE.Enc(sk′i,k,b, lab

′
i,k,b).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.5. For all adversaries A,∣∣∣Pr[HybridA
2 (1

λ)]− Pr[HybridA
3 (1

λ)]
∣∣∣ = 0.

Proof. The hybrids are identically distributed since we have just switched the roles of variables pi
and s̃ti which were uniformly distributed random variables conditioned on sti = pi ⊕ s̃ti.
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HybridA
4 (λ): We exchange the randomness generated by Kj,1−f [j] with true randomness.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. p1 = s̃t1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], Kj,f [j] ← PRF2.Setup(1

λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

3. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. s̃ti+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1},

A. If b = f [j], ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

B. If b ̸= f [j], ski,j,b ← SKE.Setup(1λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

(c) st1 = 0ℓS .

(d) Compute (yi, pi+1):

i. (yi, sti+1) = f(xi, sti).

ii. pi+1 = sti+1 ⊕ s̃ti+1.

(e) Garble circuit:

i. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

ii. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
i. ct′i,k,b ← SKE.Enc(sk′i,k,b, lab

′
i,k,b).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.6. If PRF2 is a secure PRF, then for all PPT adversaries A,∣∣∣Pr[HybridA
3 (1

λ)]− Pr[HybridA
4 (1

λ)]
∣∣∣ ≤ negl(λ).
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Proof. For J ∈ [ℓF ], we define sub-hybrid HybridA
3,J(1

λ) to be the same as Hybrid3 except
that for j ≤ J , we do not compute Kj,1−f [j] during the hybrid and thus sample the corre-

sponding keys ski,j,1−f [j] ← SKE.Setup(1λ) for each i using uniform randomness. In other words,

with regards to PRF2, sub-hybrid HybridA
3,J(1

λ) behaves identically to HybridA
4 (1

λ) for j ≤ J ,

and HybridA
3,J(1

λ) behaves identically to HybridA
3 (1

λ) for j > J . Observe that HybridA
3,0 =

HybridA
3 and HybridA

3,ℓF
= HybridA

4 .

We now show that for all J ∈ [ℓF ], HybridA
3,J−1 and HybridA

3,J are indistinguishable. This
proves our lemma. Suppose for sake of contradiction, that there exists a PPT adversary A and an
index J ∈ [ℓF ] such that∣∣∣Pr[HybridA

3,J−1(1
λ)]− Pr[HybridA

3,J(1
λ)]

∣∣∣ > negl(λ) (2)

We build a PPT adversary B that breaks the security of PRF2. B follows the steps of HybridA
3,J

by interacting with A except that on each challenge message query xi, B computes ski,J,1−f [J ] ←
SKE.Setup(1λ, ri,J) where ri,J is the output of B’s PRF2 oracle on input i. B outputs whatever A
outputs.

Observe that if B’s PRF2 oracle was a uniform random function R, then B exactly emulates
HybridA

3,J−1, and if B’s PRF2 oracle was PRF2.Eval(KJ,1−f [J ], ·) for some PRF2 key KJ,1−f [J ], then

B emulates HybridA
3,J . Moreover, B does not need to know the PRF2 key KJ,1−f [J ] for performing

these experiments. Therefore, by Equation 2, this means that B breaks the security of PRF2 since
B has a non-negligible advantage in distinguishing between the two challenge oracles in the PRF2
experiment.
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HybridA
5 (λ): We replace the ciphertexts cti,j,1−f [j] with encryptions of ⊥. This removes the input

labels which don’t correspond to f from the adversary’s view.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. p1 = s̃t1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], Kj,f [j] ← PRF2.Setup(1

λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

3. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. s̃ti+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1},

A. If b = f [j], ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

B. If b ̸= f [j], ski,j,b ← SKE.Setup(1λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

(c) st1 = 0ℓS .

(d) Compute (yi, pi+1):

i. (yi, sti+1) = f(xi, sti).

ii. pi+1 = sti+1 ⊕ s̃ti+1.

(e) Garble circuit:

i. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

ii. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. If b = f [j], cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

ii. If b ̸= f [j], cti,j,b ← SKE.Enc(ski,j,b,⊥).
(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},

i. ct′i,k,b ← SKE.Enc(sk′i,k,b, lab
′
i,k,b).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.7. If SKE is a secure secret-key encryption scheme, then for all PPT adversaries A,∣∣∣Pr[HybridA
4 (1

λ)]− Pr[HybridA
5 (1

λ)]
∣∣∣ ≤ negl(λ).
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Proof. For the sake of contradiction, assume that there exists a PPT adversary A such that

AdvA(λ) =
∣∣∣Pr[HybridA

4 (1
λ)]− Pr[HybridA

5 (1
λ)]

∣∣∣ (3)

is a non-negligible function in λ. Let n be the number of challenge message queries requested
by A. For each I ∈ [n] and J ∈ {0, . . . , ℓF}, we define sub-hybrid HybridA

4,I,J to be the same

as HybridA
4 except that for indices (i, j) where either i < I or (i = I and j ≤ J), HybridA

4,I,J

computes cti,j,1−f [j] as an encryption of ⊥ rather than an encryption of labi,j,1−f [j].
For each I ∈ [n], J ∈ [ℓF ], let

AdvI,JA (λ) = Pr[HybridA
4,I,J−1(1

λ)]− Pr[HybridA
4,I,J(1

λ)]

Then, by Equation 3, since

• HybridA
4 (1

λ) = HybridA
4,1,0(1

λ),

• HybridA
5 (1

λ) = HybridA
4,n,ℓF

(1λ),

• for all i ∈ [n], HybridA
4,I−1,ℓF

= HybridA
4,I,0,

there must exist an I ∈ [n] and J ∈ [ℓF ] such that AdvI,JA (λ) is a non-negligible function in λ. Let
(I, J) be such values. We build a PPT adversary B that breaks the security of SKE.
B receives the security parameter from its SKE challenger and provides it to A who outputs

parameters (1ℓF , 1ℓS , 1ℓX , 1ℓY ) to B. WhenA outputs a challenge function query f , B behaves identi-
cally to HybridA

4,I,J−1(1
λ). When A outputs a challenge message query xi, B behaves identically to

HybridA
4,I,J−1(1

λ) except that if i = I, rather than computing ctI,J,1−f [j] as in HybridA
4,I,J−1(1

λ),
B sends challenge message pair (labI,J,1−f [J ],⊥) to its SKE challenger, receives back ct∗ from its
SKE challenger, and sets ctI,J,1−f [J ] = ct∗. At the end of the experiment, B outputs whatever A
outputs.

Observe that if ct∗ was an encryption of labI,J,1−f [J ], then B exactly emulates HybridA
4,I,J−1,

and if ct∗ was an encryption of ⊥, then B emulates HybridA
4,I,J . B is a valid SKE adversary because

the secret key skI,J,1−f [J ] is not needed by B. Therefore, B has non-negligible advantage AdvI,JA in
breaking its SKE game, contradicting the security of SKE.
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We now go through the following hybrids for α ∈ [BoundA] where BoundA is a bound on the
runtime of A, and thus an implicit bound on the number of challenge message queries made by the
adversary. On iteration α, the goal is to switch to a hybrid where we simulate the αth garbled circuit.

HybridA
6,α,0(λ): We replace the ciphertexts ct′

α,k,1−s̃t[α]
with encryptions of ⊥. This removes the

input labels which don’t correspond to s̃tα from the adversary’s view.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. p1 = s̃t1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], Kj,f [j] ← PRF2.Setup(1

λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

3. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. s̃ti+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1},

A. If b = f [j], ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

B. If b ̸= f [j], ski,j,b ← SKE.Setup(1λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

(c) st1 = 0ℓS .

(d) Compute (yi, pi+1):

i. (yi, sti+1) = f(xi, sti).

ii. pi+1 = sti+1 ⊕ s̃ti+1.

(e) Garble circuit:

i. If i ≥ α,

A. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

B. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

ii. If i < α,

A. (Ũi, {labi,j,f [j]}j∈[ℓF ], {lab′i,k,s̃ti[k]}k∈[ℓS ])
← GC.Sim(1λ, 1ℓU , (f, s̃ti), (yi, {sk′i+1,k,s̃ti+1[k]

}k∈[ℓS ]))

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. If b = f [j], cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

ii. If b ̸= f [j], cti,j,b ← SKE.Enc(ski,j,b,⊥).
(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},
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i. If i > α or b = s̃ti[k], ct
′
i,k,b ← SKE.Enc(sk′i,k,b, lab

′
i,k,b).

ii. If i ≤ α and b ̸= s̃ti[k], ct
′
i,k,b ← SKE.Enc(sk′i,k,b,⊥).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.8. If SKE is a secure secret-key encryption scheme, then for all PPT adversaries A,∣∣∣Pr[HybridA
5 (1

λ)]− Pr[HybridA
6,1,0(1

λ)]
∣∣∣ ≤ negl(λ).

Proof. Suppose for sake of contradiction, that there exists a PPT adversary A such that∣∣∣Pr[HybridA
5 (1

λ)]− Pr[HybridA
6,1,0(1

λ)]
∣∣∣ > negl(λ) (4)

We build a PPT adversary B that breaks the security of SKE. B receives the security parameter from
its SKE challenger and provides it to A who outputs parameters (1ℓF , 1ℓS , 1ℓX , 1ℓY ) to B. When A
outputs a challenge function query f , B behaves identically to HybridA

5 (1
λ) except that B does

not compute sk′
1,k,1−s̃t1[k]

. When A outputs a challenge message query xi, B behaves identically

to HybridA
5 (1

λ) except that if i = 1, rather than computing ct′
1,k,1−s̃t1[k]

as in HybridA
5 (1

λ), B
sends challenge message pair (lab1,k,1−s̃t1[k]

,⊥) to its SKE challenger, receives back ct∗ from its SKE
challenger, and sets ct1,k,1−s̃t[k] = ct∗. At the end of the experiment, B outputs whatever A outputs.

Observe that if ct∗ was an encryption of lab1,k,1−s̃t1[k]
, then B exactly emulates HybridA

5 , and

if ct∗ was an encryption of ⊥, then B emulates HybridA
6,1,0. Moreover, B does not need to know

the SKE key sk1,k,1−s̃t1[k]
for performing these experiments. Therefore, by Equation 4, this means

that B breaks the security of SKE since B can distinguish between the two SKE ciphertexts with
non-negligible probability.
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HybridA
6,α,1(λ): We simulate the garbled circuit for Uα.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Compute keys and pads:

i. p1 = s̃t1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], Kj,f [j] ← PRF2.Setup(1

λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

(c) Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

3. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute keys and pads:

i. s̃ti+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1},

A. If b = f [j], ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

B. If b ̸= f [j], ski,j,b ← SKE.Setup(1λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

(c) st1 = 0ℓS .

(d) Compute (yi, pi+1):

i. (yi, sti+1) = f(xi, sti).

ii. pi+1 = sti+1 ⊕ s̃ti+1.

(e) Garble circuit:

i. If i > α,

A. Let Ui = U [xi, pi, pi+1, {sk′i+1,k,b}k∈[ℓS ],b∈{0,1}] as defined in Figure 8.

B. (Ũi, {labi,j,b}j∈[ℓF ],b∈{0,1}, {lab′i,k,b}k∈[ℓS ],b∈{0,1})← GC.Garble(1λ, Ui).

ii. If i ≤ α,

A. (Ũi, {labi,j,f [j]}j∈[ℓF ], {lab′i,k,s̃ti[k]}k∈[ℓS ])
← GC.Sim(1λ, 1ℓU , (f, s̃ti), (yi, (s̃ti+1, {sk′i+1,k,s̃ti+1[k]

}k∈[ℓS ]))).

(f) Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},
i. If b = f [j], cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

ii. If b ̸= f [j], cti,j,b ← SKE.Enc(ski,j,b,⊥).
(g) Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},

i. If i > α or b = s̃ti[k], ct
′
i,k,b ← SKE.Enc(sk′i,k,b, lab

′
i,k,b).

ii. If i ≤ α and b ̸= s̃ti[k], ct
′
i,k,b ← SKE.Enc(sk′i,k,b,⊥).

(h) Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.
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Lemma 4.9. If GC is a secure garbling scheme, then for all α ∈ N and all PPT adversaries A,∣∣∣Pr[HybridA
6,α,0(1

λ)]− Pr[HybridA
6,α,1(1

λ)]
∣∣∣ ≤ negl(λ).

Proof. Suppose for sake of contradiction, that there exists a PPT adversary A and an index α ∈ N
such that ∣∣∣Pr[HybridA

6,α,0(1
λ)]− Pr[HybridA

6,α,1(1
λ)]

∣∣∣ > negl(λ) (5)

We build a PPT adversary B that breaks the security of GC. B receives the security parameter
from its GC challenger and provides it to A who outputs parameters (1ℓF , 1ℓS , 1ℓX , 1ℓY ) to B.
When A outputs a challenge function query f , B behaves identically to HybridA

6,α,0(1
λ). When

A outputs a challenge message query xi where i ̸= α, B behaves identically to HybridA
6,α,0(1

λ).

When A outputs the αth message query xα, B acts similarly to HybridA
6,α,0(1

λ) except that rather

than computing (Ũα, {labα,j,b}j∈[ℓF ],b∈{0,1}, {lab′α,k,b}k∈[ℓS ],b∈{0,1}}) as in HybridA
6,α,0(1

λ), B first

computes (Uα, (f, s̃tα)) as in as HybridA
6,α,0(1

λ), sends (Uα, (f, s̃tα)) to its GC challenger, and sets

(Ũα, {labα,j,f [j]}j∈[ℓF ], {lab′α,k,s̃t[k]}k∈[ℓS ]}) equal to the values output by its GC challenger. Observe

that the missing input labels {labα,j,1−f [j]}j∈[ℓF ], {lab′α,k,1−s̃t[k]
}k∈[ℓS ]} which are not output by the

GC challenger are not needed by B in these hybrids. At the end of the experiment, B outputs
whatever A outputs.

Observe that if the GC challenger generates the garbled circuits and input labels honestly, then
B exactly emulates HybridA

6,α,0, and if the GC challenger simluates these values, then B emulates

HybridA
6,α,1. Thus, by Equation 5, B breaks the security of GC since B has a non-negligible

advantage in distinguishing between a real garbling and a simulated one.

Lemma 4.10. If SKE is a secure secret-key encryption scheme, then for all α ∈ N and all PPT
adversaries A, ∣∣∣Pr[HybridA

6,α,1(1
λ)]− Pr[HybridA

6,α+1,0(1
λ)]

∣∣∣ ≤ negl(λ).

Proof. This proof follows by a straightforward reduction to the security of SKE using a proof similar
to Lemma 4.8. In particular, for k ∈ [ℓS ], we can use the security of SKE to change ciphertexts
ct′

α+1,k,1−s̃tα+1[k]
from encryptions of lab′

α+1,k,1−s̃tα+1[k]
to encryptions of ⊥. This can be argued

since the secret keys sk′
α+1,k,1−s̃tα+1[k]

are no longer used anywhere in these hybrids because the

garbled circuit for Uα is now being simulated. For brevity, we omit further details.
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HybridA
7 (λ): This is the idea world experiment written using an explicit simulator Sim. This

hybrid is identical to HybridA
6,BoundA,1 where BoundA is a bound on the runtime of A, and thus an

implicit bound on the number of message queries A will make.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY . The simulator Sim receives
(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Simulated Function Key: Sim receives f and computes the following:

i. Compute keys and pads:

A. p1 = s̃t1 ← {0, 1}ℓS .
B. For j ∈ [ℓF ], Kj,f [j] ← PRF2.Setup(1

λ).

C. For k ∈ [ℓS ], b ∈ {0, 1}, sk′1,k,b ← SKE.Setup(1λ).

ii. Send SKf = (f, {Kj,f [j]}j∈[ℓF ], (s̃t1, {sk′1,k,s̃t1[k]}k∈[ℓS ])) to A.

3. Challenge Message Queries: For i = 1, 2, 3, . . .

(a) A outputs a challenge message xi ∈ {0, 1}ℓX .
(b) Compute Output Value: (yi, sti+1) = f(xi, sti) where st1 = 0ℓS .

(c) Simulated Ciphertext: Sim receives yi and computes the following:

i. s̃ti+1 ← {0, 1}ℓS .
ii. For j ∈ [ℓF ], b ∈ {0, 1},

A. If b = f [j], ski,j,b = SKE.Setup(1λ;PRF2.Eval(Kj,b, i)).

B. If b ̸= f [j], ski,j,b ← SKE.Setup(1λ).

iii. For k ∈ [ℓS ], b ∈ {0, 1}, sk′i+1,k,b ← SKE.Setup(1λ).

iv. Garble circuit:

A. (Ũi, {labi,j,f [j]}j∈[ℓF ], {lab′i,k,s̃ti[k]}k∈[ℓS ])
← GC.Sim(1λ, 1ℓU , (f, s̃ti), (yi, {sk′i+1,k,s̃ti+1[k]

}k∈[ℓS ])).
v. Encrypt function labels: For j ∈ [ℓF ], b ∈ {0, 1},

A. If b = f [j], cti,j,b ← SKE.Enc(ski,j,b, labi,j,b).

B. If b ̸= f [j], cti,j,b ← SKE.Enc(ski,j,b,⊥).
vi. Encrypt state labels: For k ∈ [ℓS ], b ∈ {0, 1},

A. If b = s̃ti[k], ct
′
i,k,b ← SKE.Enc(sk′i,k,b, lab

′
i,k,b).

B. If b ̸= s̃ti[k], ct
′
i,k,b ← SKE.Enc(sk′i,k,b,⊥).

vii. Send CTi = (Ũi, {cti,j,b}j∈[ℓF ],b∈{0,1}, {ct′i,k,b}k∈[ℓS ],b∈{0,1}) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 4.11. For all adversaries A,∣∣∣Pr[HybridA
6,BoundA,1(1

λ)]− Pr[HybridA
7 (1

λ)]
∣∣∣ = 0.

where BoundA is a bound on the runtime of A.

Proof. The hybrids are identical.
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Thus, our lemmas give us the following corollary:

Corollary 4.12. If

• SKE is a secure secret-key encryption scheme,

• PRF1,PRF2,PRF3,PRFp are secure pseudorandom function families,

• GC is a secure garbling scheme,

then One-sFE is a single-key, single-ciphertext, function-selective-SIM-secure, secret-key sFE scheme
for P/Poly.

Proof. The corollary immediately follows from Lemmas 4.3-4.11.

Corollary 4.12 then implies Theorem 4.1 since we can instantiate each of the required primitives
from OWFs.
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5 Bootstrapping to a Q-Bounded Public-Key sFE Scheme

In this section, we prove the following theorem:

Theorem 5.1. Assuming

1. a Q-bounded, adaptive-IND-secure, public-key (resp. secret-key) FE scheme for P/Poly

2. a single-key, single-ciphertext, function-selective-IND-secure, secret-key sFE scheme for P/Poly

there exists a Q-bounded, semi-adaptive-function-selective-IND-secure, public-key (resp. secret-key)
sFE scheme for P/Poly.

Then by applying Theorem 4.1 and a theorem from [AV19], we get our main theorem.19

Theorem 5.2. Assuming the existence of a public-key (resp. secret-key) encryption scheme, there
exists a Q-bounded, semi-adaptive-function-selective-IND-secure, public-key (resp. secret-key) sFE
scheme for P/Poly for any polynomial Q = Q(λ) of the security parameter λ.

To prove Theorem 5.1, we build an sFE scheme from the following tools.

Tools.

• One-sFE = (One-sFE.Setup,One-sFE.EncSetup,One-sFE.Enc,One-sFE.KeyGen,One-sFE.Dec):
A single-key, single-ciphertext, function-selective-IND-secure, secret-key sFE scheme for P/Poly.

• The following primitives can be built from a Q-bounded, adaptive-IND-secure, public-key
(resp. secret-key) FE scheme for P/Poly:

– PRF = (PRF.Setup,PRF.Eval): A secure pseudorandom function family.

– PRF2 = (PRF2.Setup,PRF2.Eval): A secure pseudorandom function family.

– SKE = (SKE.Setup, SKE.Enc,SKE.Dec): A secure secret-key encryption scheme with
pseudorandom ciphertexts.

– FE = (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec): AQ-bounded, selective-IND-secure, public-
key (resp. secret-key) FE scheme for P/Poly.

– FPFE = (FPFE.Setup,FPFE.Enc,FPFE.KeyGen,FPFE.Dec): AQ-bounded, function-private,
function-selective-IND-secure, secret-key FE scheme for P/Poly.

Instantiation of the Tools. Let AdFE be a Q-bounded, adaptive-IND-secure, public-key (resp.
secret-key) FE scheme for P/Poly.

• We can build PRF,PRF2, SKE from any one-way function using standard cryptographic tech-
niques (e.g. [Gol01,Gol09]). As functional encryption implies one-way functions, then we can
build these from AdFE.

• AdFE already satisfies the security requirements needed for FE.

• AdFE immediately implies a Q-bounded, function-selective-IND-secure, secret-key FE scheme
SKFE for P/Poly. We can then build FPFE by using the function-privacy transformation
of [BS18] on SKFE.

19In particular, [AV19] show how to build a Q-bounded, adaptive-IND-secure, public-key (resp. secret-key) FE
scheme for P/Poly from a public-key (resp. secret-key) encryption scheme. We show in Theorem 4.1 how to build a
single-key, single-ciphertext, function-selective-SIM-secure, secret-key sFE scheme for P/Poly from OWFs. Note that
OWFs can be built using secret-key (or public-key) encryption and SIM security can be easily shown to imply the
equivalent IND security.
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5.1 Parameters

On security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY , we will
instantiate our primitives with the following parameters:

Security Parameter Input Size Output Size Function Size State Size

One-sFE λ ℓX ℓY ℓF ℓS
PRF λ λ 5λ

PRF2 λ λ λ

SKE λ

FPFE λ ℓFPFE.m ℓFPFE.out ℓH
FE λ ℓFE.m ℓFE.out ℓG

where we define

• ℓFPFE.m = 2λ+ 2ℓX + ℓOne-sFE.ct where ℓOne-sFE.ct is the size of ciphertexts of One-sFE.

• ℓFPFE.out = ℓOne-sFE.ct where ℓOne-sFE.ct is the size of ciphertexts of One-sFE.

• ℓH is the maximum of

– the size of H[One-sFE.msk,One-sFE.Enc.st,PRF2.K] defined in Figure 10

– the size of H ′[One-sFE.msk,One-sFE.Enc.st,PRF2.K] defined in Figure 11

– the size of H∗ defined in Figure 12

for any master secret key One-sFE.msk and encryption state One-sFE.Enc.st of One-sFE, and
any key PRF2.K of PRF2.

• ℓFE.m = ℓFPFE.msk + ℓPRF.K + 1 + ℓSKE.sk where ℓFPFE.msk is the size of master secret keys of
FPFE, ℓPRF.K is the size of keys of PRF, and ℓSKE.sk is the size of keys of SKE.

• ℓFE.out = ℓOne-sFE.sk+ℓFPFE.sk where ℓOne-sFE.sk is the size of secret keys of One-sFE and ℓFPFE.sk
is the size of function keys of FPFE.

• ℓG is the maximum size of Gf,s,c defined in Figure 9 for any f ∈ F [ℓF , ℓS , ℓX , ℓY ], s ∈ {0, 1}λ,
and c of size ℓSKE.ct where ℓSKE.ct is the size of ciphertexts of SKE when encrypting plaintexts
of size ℓSKE.m = ℓFE.out.

Notation For notational convenience, when the parameters are understood, we will often omit the
security, input size, output size, function size, or state size parameters from each of the algorithms
listed above.

Remark 5.3. We assume without loss of generality that for security parameter λ, all algorithms
only require randomness of length λ. If the original algorithm required additional randomness, we
can replace it with a new algorithm that first expands the λ bits of randomness using a pseudoran-
dom generator (PRG) of appropriate stretch and then runs the original algorithm. Note that this
replacement can be implemented with OWFs and does not affect the security of the above schemes
(as long as ℓF , ℓS , ℓX , ℓY are polynomial in λ).
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5.2 Construction

We now construct our Q-bounded streaming functional encryption scheme sFE.

Remark 5.4. We provide our construction in both the secret-key and public-key settings. In the
secret-key seting, sFE and FE are both secret-key schemes, and in the public-key setting, sFE and
FE are both public-key schemes. We use input MSK/MPK to denote that the algorithm receives
MSK in the secret-key setting and MPK in the public-key setting.

Remark 5.5. Recall that for notational convenience, we may omit the security, input size, out-
put size, function size, or state size parameters from our algorithms. For information on these
parameters, please see the parameter section above.

• sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ):

1. Secret-Key Setting:

(a) FE.msk← FE.Setup(1λ).

(b) Output MSK = FE.msk.

2. Public-Key Setting:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ).

(b) Output (MPK,MSK) = (FE.mpk,FE.msk).

• sFE.EncSetup(MSK/MPK):

1. Secret-Key Setting: Parse MSK = FE.msk. Set FE.ek = FE.msk.

2. Public-Key Setting: Parse MPK = FE.mpk. Set FE.ek = FE.mpk.

3. PRF.K ← PRF.Setup(1λ).

4. FPFE.msk← FPFE.Setup(1λ).

5. FE.ct← FE.Enc(FE.ek, (FPFE.msk,PRF.K, 0, 0ℓSKE.sk)).

6. Output Enc.ST = (FPFE.msk,FE.ct).

• sFE.Enc(MSK/MPK,Enc.ST, i, xi):

1. Parse Enc.ST = (FPFE.msk,FE.ct).

2. ti ← {0, 1}λ.
3. FPFE.cti ← FPFE.Enc(FPFE.msk, (i, ti, xi, 0

ℓX , 0ℓOne-sFE.ct)).

4. If i = 1, output CT1 = (FE.ct,FPFE.ct1).

5. Else, output CTi = FPFE.cti.

• sFE.KeyGen(MSK, f):

1. Parse MSK = FE.msk.

2. s← {0, 1}λ.
3. c← {0, 1}ℓSKE.ct .
4. Let G = G[f, s, c] as defined in Figure 9.

5. FE.skG ← FE.KeyGen(FE.msk, G).

6. Output SKf = FE.skG.

49



G[f, s, c](FPFE.msk,PRF.K, α, SKE.sk):

1. If α = 0,

(a) (rSetup, rEncSetup, rKeyGen, rPRF2, rH)← PRF.Eval(PRF.K, s).

(b) One-sFE.msk← One-sFE.Setup(1λ; rSetup).

(c) One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup).

(d) One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen).

(e) PRF2.K ← PRF2.Setup(1λ; rPRF2).

(f) Let H = H[One-sFE.msk,One-sFE.Enc.st,PRF2.K] as defined in Figure 10.

(g) FPFE.skH ← FPFE.KeyGen(FPFE.msk, H; rH).

(h) Output (One-sFE.skf ,FPFE.skH).

2. Else,

(a) Output (One-sFE.skf ,FPFE.skH)← SKE.Dec(SKE.sk, c).

Figure 9: Definition of G[f, s, c]

H[One-sFE.msk,One-sFE.Enc.st,PRF2.K](i, ti, xi, x
′
i, vi):

1. ri ← PRF2.Eval(PRF2.K, ti).

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi; ri).

Figure 10: Definition of H[One-sFE.msk,One-sFE.Enc.st,PRF2.K]

• sFE.Dec(SKf ,Dec.STi, i,CTi):

1. If i = 1,

(a) Parse CT1 = (FE.ct,FPFE.ct1) and SKf = FE.skG.

(b) (One-sFE.skf ,FPFE.skH) = FE.Dec(FE.skG,FE.ct).

(c) Set One-sFE.Dec.st1 = ⊥.
2. If i > 1,

(a) Parse CTi = FPFE.cti.

(b) Parse Dec.STi = (One-sFE.skf ,FPFE.skH ,One-sFE.Dec.sti).

3. One-sFE.cti = FPFE.Dec(FPFE.skH ,FPFE.cti).

4. (yi,One-sFE.Dec.sti+1) = One-sFE.Dec(One-sFE.skf ,One-sFE.Dec.sti, i,
One-sFE.cti).

5. Output (yi,Dec.STi+1 = (One-sFE.skf ,FPFE.skH ,One-sFE.Dec.sti+1)).

We also define the following functions which will be used in our security proof.
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H ′[One-sFE.msk,One-sFE.Enc.st,PRF2.K](i, ti, xi, x
′
i, vi):

1. ri ← PRF2.Eval(PRF2.K, ti).

2. Output One-sFE.cti ← One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, x′i; ri).

Figure 11: Definition of H ′[One-sFE.msk,One-sFE.Enc.st,PRF2.K]

H∗(i, ti, xi, x
′
i, vi): Output vi.

Figure 12: Definition of H∗

5.3 Correctness and Efficiency

Efficiency: Using our discussion above on parameters, it is easy to see that the size and runtime
of all algorithms of our FE scheme on security parameter 1λ, function size ℓF , state size ℓS , input
size ℓX , and output size ℓY are poly(λ, ℓF , ℓS , ℓX , ℓY).

Correctness Intuition: Our ciphertext consists of (FE.ct, {FPFE.cti}i∈[n]), and our function
key consists of SKf = FE.skG. We can combine FE.ct and FE.skG via FE decryption to get a
function key One-sFE.skf for f under One-sFE.msk, and a function key FPFE.skH for H which has
One-sFE.msk hardwired into it. Then, for i ∈ [n], we can combine FPFE.cti and FPFE.skH to get
the ith ciphertext One-sFE.cti of the encryption of x under One-sFE.msk. We can then combine
One-sFE.skf and {One-sFE.cti}i∈[n] using One-sFE decryption to compute f(x).

Correctness: More formally, let p be any polynomial and consider any λ and any ℓF , ℓS , ℓX , ℓY ≤
p(λ). Let SKf be a function key for function f ∈ F [ℓF , ℓS , ℓX , ℓY ], and let CT = {CTi}i∈[n] be a

ciphertext for x where x = x1 . . . xn for some n ∈ [2λ] and where each xi ∈ {0, 1}ℓX .
First parse SKf = FE.skG, CT1 = (FE.ct,FPFE.ct1), and CTi = FPFE.cti for i ∈ [n]\{1}. Then,

by correctness of FE, except with negligible probability,

FE.Dec(FE.skG,FE.ct) = G[f, s, c](FPFE.msk,PRF.K, 0, 0ℓSKE.sk)

= (One-sFE.skf ,FPFE.skH)

where One-sFE.skf is a One-sFE function key for f generated under One-sFE.msk, and FPFE.skH is
an FPFE function key for H[One-sFE.msk,One-sFE.Enc.st,PRF2.K] as defined by

(rSetup, rEncSetup, rKeyGen, rPRF2, rH)← PRF.Eval(PRF.K, s)

One-sFE.msk← One-sFE.Setup(1λ; rSetup)

One-sFE.Enc.st← One-sFE.EncSetup(One-sFE.msk; rEncSetup)

One-sFE.skf ← One-sFE.KeyGen(One-sFE.msk, f ; rKeyGen)

PRF2.K ← PRF2.Setup(1λ; rPRF2)

Let H = H[One-sFE.msk,One-sFE.Enc.st,PRF2.K] as defined in Figure 10.

FPFE.skH ← FPFE.KeyGen(FPFE.msk, H; rH).
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Then, by correctness of FPFE, except with negligible probability, for all i ∈ [n],

FPFE.Dec(FPFE.skH ,FPFE.cti) = H[One-sFE.msk,One-sFE.Enc.st,PRF2.K](i, ti, xi, 0
ℓX , 0ℓOne-sFE.ct)

= One-sFE.Enc(One-sFE.msk,One-sFE.Enc.st, i, xi;PRF2.Eval(PRF2.K, ti))

= One-sFE.cti

where One-sFE.cti is the i
th One-sFE ciphertext for x under One-sFE.msk. Thus, if One-sFE.Dec.st1 =

⊥ is the proper starting decryption state for One-sFE, and if we define One-sFE.Dec.sti for i > 1
inductively by

(yi,One-sFE.Dec.sti+1) = One-sFE.Dec(One-sFE.skf ,One-sFE.Dec.sti, i,One-sFE.cti)

then by correctness of One-sFE, except with negligible probability, y = y1 . . . yn = f(x). Therefore,
for i = 1 and using the values we defined above,

sFE.Dec(SKf ,Dec.ST1, 1,CT1) = sFE.Dec(FE.skG,⊥, 1, (FE.ct,FPFE.ct1))
= (y1,Dec.ST2 = (One-sFE.skf ,FPFE.skH ,One-sFE.Dec.st2))

For i > 1, using the values defined above,

sFE.Dec(SKf ,Dec.STi, i,CTi) = sFE.Dec(FE.skG, (One-sFE.skf ,FPFE.skH ,One-sFE.Dec.sti), i,FPFE.cti)

= (yi,Dec.STi+1 = (One-sFE.skf ,FPFE.skH ,One-sFE.Dec.sti+1))

Therefore, decryption correctly outputs y = f(x).
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5.4 Security

In this section, we prove that sFE is Q-bounded, semi-adaptive-function-selective-IND-secure.

5.4.1 Proof Overview

To build intuition, we provide a brief overview of each hybrid below.

• HybridA
0 : This is the real world experiment with b = 0.

• For each stream id w, we proceed through a sequence of hybrids to swap the encryption of

stream x
(0)
w = x

(0)
w,1x

(0)
w,2 . . . x

(0)
w,n with an encryption of stream x

(1)
w = x

(1)
w,1x

(1)
w,2 . . . x

(1)
w,n.

– HybridA
1,w,0: For stream identities id < w, we encrypt x

(1)
id instead of x

(0)
id . For w = 1,

this hybrid is identical to HybridA
0 .

– HybridA
1,w,1: For each function key SKfj = FE.skGj , we hardwire the output of Gj on

stream w into the ciphertext cj embedded within Gj . Indistinguishability follows from
the pseudorandom ciphertext property of SKE.

– HybridA
1,w,2: We swap ciphertext FE.ctw from an encryption of (FPFE.mskw,PRF.Kw, 0, 0

ℓSKE.sk)

to an encryption of (0ℓFPFE.msk , 0ℓPRF.K , 1, SKE.sk). Now, when decrypting FE.ctw with
FE.skGj , we will invoke the α = 1 branch of Gj , and output the value encrypted
within cj . Since the value within cj had been previously set to the correct output
value, indistinguishability follows from the security of FE. This change also removes
(FPFE.mskw,PRF.Kw) from the hybrid..

– HybridA
1,w,3: We replace the values generated by PRF.Kw with true randomness. This

includes the randomness used to generate the One-sFE, PRF2, and FPFE keys for stream
w. Indistinguishability follows from the security of PRF.

– Within each ciphertext FPFE.cti for stream w, we encrypt both x
(0)
w,i and x

(1)
w,i. Then, for

each k ∈ [Q], we proceed through a sequence of hybrids to change FPFE.skHk,w
from a

function key which decrypts using x
(0)
w,i to a function key which decrypts using x

(1)
w,i.

∗ HybridA
1,w,4,k,0: Within each ciphertext FPFE.ctw,i for stream w, we additionally

encrypt x
(1)
w,i and vk,w,i = FPFE.Dec(FPFE.skHk,w

,FPFE.ctw,i). For j < k, we set

function Hj,w to a function which computes its output using x
(1)
w . For j = k,

we set Hj,w to a function that simply outputs vk,w,i. For k = 1, this hybrid is
indistinguishable from HybridA

1,w,3 by the security of FPFE.

∗ HybridA
1,w,4,k,1: We exchange the randomness generated by PRF2.Kw with true

randomness. This randomness is used to compute vk,w,i. Indistinguishability follows
from the security of PRF2.

∗ HybridA
1,w,4,k,2: We invoke the security of One-sFE to change each vk,w,i from an

encryption of x
(0)
w,i to an encryption of x

(1)
w,i. Indistinguishability follows from the

security of One-sFE.

∗ HybridA
1,w,4,k,3: We revert back to using PRF2.Kw to compute the randomness

needed for determining vk,w,i. Indistinguishability follows from the security of PRF2.

∗ HybridA
1,w,4,k,4: We change Hk,w from a function that simply outputs vk,w,i to a

function that decrypts using x
(1)
w . Indistinguishability follows from the security of
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FPFE. Additionally, the indistinguishability ofHybridA
1,w,4,k,4 andHybridA

1,w,4,k+1,0

follows by the security of FPFE.

– HybridA
1,w,5: This is identical to HybridA

1,w,4,Q,4 Observe that every FPFE.skHk,w
now

decrypts using x
(1)
w,i instead of x

(0)
w,i.

– HybridA
1,w,6: Within each ciphertext FPFE.ctw,i for stream identity w, we encrypt x

(1)
w,i,

but no longer encrypt either x
(0)
w,i or vk,w,i. We also change each FPFE.skHk,w

back to

its original value. Since we now only encrypt x
(1)
w , we will continue to compute using

stream x
(1)
w . Indistinguishability follows from the security of FPFE.

– HybridA
1,w,7: We revert back to using PRF.Kw to generate the randomness needed for

computing the One-sFE, PRF2, FPFE keys for stream w. Indistinguishability follows
from the security of PRF.

– HybridA
1,w,8: We change FE.ctw back to its original value. Indistinguishability follows

from the security of FE.

– HybridA
1,w,9: We change the ciphertexts cj back to pseudorandom values. Indistin-

guishability follows from the pseudorandom ciphertext property of SKE. This hybrid is
also identical to HybridA

1,w+1,0.

• HybridA
2 : This is the real world experiment with b = 1. This hybrid is identical to

HybridA
1,BoundA,9 where BoundA is a bound on the runtime of A and thus an implicit bound

on the number of stream identities queries by A.
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5.4.2 Formal Proof

We now formally prove Theorem 5.1 via a hybrid argument. We will be simultaneously proving both
the secret-key and public-key versions of the theorem. The differences are explicitly highlighted in
the hybrids and theorem statements.

Remark 5.6 (Multiple Pairs of Challenge Streams). In the secret-key setting (Definition A.9),
the adversary is allowed to make message queries across multiple pairs of challenge streams. For
each message query, the adversary may choose to either append new stream values to an existing
pair of challenge streams or to start a new pair of challenge streams from index 1. The adversary
indicates which pair of streams each message query belongs to using a stream identity id. We
assume without loss of generality that whenever the adversary makes a query to a new stream
identity id, the adversary sets id = i where i is the number of unique stream identities queried thus
far including this one. Note that this can be accomplished via relabeling.

In the public-key setting (Definition 3.14), the adversary is only allowed to make message
queries for one pair of challenge streams. Thus, the stream identity is not specified in the security
game since we do not need to differentiate between multiple pairs of challenge streams. However,
since we are simultaneously proving security in both the public-key and secret-key settings, we
will nevertheless refer to the stream identity in the following hybrids and proof of security. In the
public-key setting, we will assume that any message query made by the adversary has a default
stream identity id = 1.20

Remark 5.7 (Abort Condition). We require all of our hybrids to immediately halt and output 0
if the adversary ever aborts or if it at any point some function query f submitted by the adversary

yields different outputs on any of the challenge message streams submitted so far (i.e. if f(x
(0)
id ) ̸=

f(x
(1)
id ) for some function query f submitted by the adversary where {(x(0)id,i, x

(1)
id,i)}i∈[t] are the

message queries submitted so far under some stream identity id, x
(0)
id = x

(0)
id,1 . . . x

(0)
id,t, and x

(1)
id =

x
(1)
id,1 . . . x

(1)
id,t). For notational simplicity, we will omit this requirement from the description of our

hybrids.

Remark 5.8 (Bootstrapping in the Adaptive Setting). In fact, if our One-sFE scheme was adap-
tively secure, then our bootstrapping would produce an adaptively secure sFE scheme.

More precisely, assuming (1) a Q-bounded, adaptive-IND-secure, public-key (resp. secret-key)
FE scheme for P/Poly, and (2) a single-key, single-ciphertext, adaptive-IND-secure, secret-key sFE
scheme for P/Poly, there exists a Q-bounded adaptive-IND-secure, public-key (resp. secret-key)
sFE scheme for P/Poly.

The construction is identical to the construction given in section 5.2. The proof of security is
also identical except that (1) we change step 5 in the hybrids to “The adversary may make up to
Q function queries and any polynomial number of message queries in any order”, and (2) we use
the adaptive security of One-sFE to prove Lemma 5.15. It is easy to check that this modified proof
works regardless of the order in which message and function queries are received.

20Alternatively, we could allow the adversary in the public-key setting to also make message queries across multiple
pairs of challenge streams in a similar manner as in the secret-key setting. By a standard hybrid argument, this
modified security definition is equivalent to Definition 3.14.
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HybridA
0 (1

λ): This is the real world experiment with b = 0. Note that we have rearranged some
steps and thus will compute the Encryption Setup step early on rather than when we receive the
message queries. This does not affect the outcome of the experiment since we can receive at most
BoundA stream identities id during the hybrid where BoundA is a bound on the runtime of A.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

• Secret-Key Setting:

(a) FE.msk← FE.Setup(1λ).

(b) FE.ek = FE.msk.

• Public-Key Setting:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ).

(b) FE.ek = FE.mpk.

(c) Send MPK = FE.mpk to the adversary.

3. Encryption Setup: For id ∈ [BoundA] where BoundA is a bound on the runtime of A.

(a) PRF.Kid ← PRF.Setup(1λ).

(b) FPFE.mskid ← FPFE.Setup(1λ).

(c) FE.ctid ← FE.Enc(FE.ek, (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk)).

4. Precompute Values: Do nothing. (Will be added in a later hybrid.)

5. The adversary can make up to Q function queries followed by any polynomial number of
message queries.

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ.
ii. cj ← {0, 1}ℓSKE.ct .
iii. Let Gj = G[fj , sj , cj ] as defined in Figure 9 (page 50).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj).

v. Send SKfj = FE.skGj to the adversary.

(b) Message Query: For the ith message query made to stream identity id, A outputs a

message pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

i. tid,i ← {0, 1}λ.
ii. FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x

(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

iii. If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

iv. Send CTid,i to the adversary.

6. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.
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HybridA
1,w,0(1

λ): For stream identities id < w, we encrypt x
(1)
id instead of x

(0)
id .

This is the same as HybridA
0 except that we change the following steps:

5b. Message Query: For the ith message query made to stream identity id, A outputs a message

pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

(a) tid,i ← {0, 1}λ.

(b) If id < w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(c) If id ≥ w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(d) If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

(e) Send CTid,i to the adversary.

Lemma 5.9. For all adversaries A,∣∣∣Pr[HybridA
0 (1

λ) = 1]− Pr[HybridA
1,1,0(1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical since we have assumed that each stream identity id ≥ 1. (See
Remark 5.6.)
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HybridA
1,w,1(1

λ): For each j, we hardcode into cj the values

(One-sFE.skfj ,w,FPFE.skHj,w) = Gj(FPFE.mskw,PRF.Kw, 0, 0
ℓSKE.sk)

which would be generated in the real world experiment. This will allow us to later switch to the
α = 1 branch in Gj using the security of FE. Observe that the values being hardcoded into cj can
be computed before receiving any message queries.

This is the same as HybridA
1,w,0 except that we change the following steps:

2. Setup:

• Secret-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) FE.msk← FE.Setup(1λ).

(c) FE.ek = FE.msk.

• Public-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) (FE.mpk,FE.msk)← FE.Setup(1λ).

(c) FE.ek = FE.mpk.

(d) Send MPK = FE.mpk to the adversary.

4. Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) (rSetup,j,w, rEncSetup,j,w, rKeyGen,j,w, rPRF2,j,w, rH,j,w)← PRF.Eval(PRF.Kw, sj).

(c) One-sFE.mskj,w ← One-sFE.Setup(1λ; rSetup,j,w).

(d) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w; rEncSetup,j,w).

(e) PRF2.Kj,w ← PRF2.Setup(1λ; rPRF2,j,w).

(f) Let Hj,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in Figure 10
(page 50).

(g) FPFE.skHj,w ← FPFE.KeyGen(FPFE.mskw, Hj,w; rH,j,w).

5a. Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adversary:

(a) sj ← {0, 1}λ.
(b) One-sFE.skfj ,w ← One-sFE.KeyGen(One-sFE.mskj,w, fj ; rKeyGen,j,w).

(c) cj,w ← SKE.Enc(SKE.sk, (One-sFE.skfj ,w,FPFE.skHj,w)).

(d) Let Gj = G[fj , sj , cj,w] as defined in Figure 9 (page 50).

(e) FE.skGj ← FE.KeyGen(FE.msk, Gj).

(f) Send SKfj = FE.skGj to the adversary.

Lemma 5.10. If SKE has pseudorandom ciphertexts, then for all PPT adversaries A and all
w ∈ [BoundA], ∣∣∣Pr[HybridA

1,w,0(1
λ) = 1]− Pr[HybridA

1,w,1(1
λ) = 1]

∣∣∣ ≤ negl(λ)
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Proof. Suppose for sake of contradiction that there exists a PPT adversary A and a w ∈ [BoundA]
such that ∣∣∣Pr[HybridA

1,w,0(1
λ) = 1]− Pr[HybridA

1,w,1(1
λ) = 1]

∣∣∣ > negl(λ) (6)

We build a PPT adversary B that breaks the pseudorandom ciphertext property of SKE. B first
runs steps 1-3 as in HybridA

1,w,1 except that B does not compute SKE.sk. For j ∈ [Q], B computes

(sj ,One-sFE.mskj,w, rKeyGen,j,w,FPFE.skHj,w) as in step 4 of HybridA
1,w,1.

• For each function query fj output by A, B does the following: B computes One-sFE.skfj ,w ←
One-sFE.KeyGen(One-sFE.mskj,w, fj ; rKeyGen,j,w) and sendsmj,w = (One-sFE.skfj ,w,FPFE.skHj,w)
to its SKE challenger. B receives cj,w which is either an encryption of mj,w or a uniform ran-
dom value. B computes FE.skGj ← FE.KeyGen(FE.msk, Gj) where Gj = G[fj , sj , cj,w], and
sends SKfj = FE.skGj to the adversary.

• For each message query (x
(0)
id,i, x

(1)
id,i) output byA, B computes CTid,i as in step 5b ofHybridA

1,w,1,
and sends CTid,i to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if every cj,w is an independent uniform random
value, then B exactly emulates HybridA

1,w,0, and if each cj,w is an encryption of mj,w, then B
emulates HybridA

1,w,1. Additionally, B does not need to know SKE.sk to carry out this experiment.
Thus, by Equation 6, this means that B breaks the pseudorandom ciphertext property of SKE
as B can distinguish between receiving random values and valid ciphertexts with non-negligible
probability.
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HybridA
1,w,2(1

λ): We change the message encrypted in FE.ctw so that we use the α = 1 branch of
every Gj . This allows us to remove FPFE.mskw and PRF.Kw from FE.ctw.

This is the same as HybridA
1,w,1 except that we change the following steps:

3. Encryption Setup: For id ∈ [BoundA] where BoundA is a bound on the runtime of A.

(a) PRF.Kid ← PRF.Setup(1λ).

(b) FPFE.mskid ← FPFE.Setup(1λ).

(c) If id ̸= w, FE.ctid ← FE.Enc(FE.ek, (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk)).

(d) If id = w, FE.ctid ← FE.Enc(FE.ek, (0ℓFPFE.msk , 0ℓPRF.K , 1, SKE.sk)).

Lemma 5.11. If FE is a public-key (resp. secret-key) Q-bounded, selective-IND-secure scheme,
then for all PPT adversaries A and all w ∈ [BoundA], for the public-key (resp. secret-key) version
of the hybrids, ∣∣∣Pr[HybridA

1,w,1(1
λ) = 1]− Pr[HybridA

1,w,2(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and a w ∈ [BoundA]
such that ∣∣∣Pr[HybridA

1,w,1(1
λ) = 1]− Pr[HybridA

1,w,2(1
λ) = 1]

∣∣∣ > negl(λ) (7)

We build a PPT adversary B that breaks the Q-bounded, selective-IND-security of FE. B first runs
step 1 of HybridA

1,w,2 and computes (SKE.sk, {(PRF.Kid,FPFE.mskid)}id∈[BoundA]) as in steps 2-3 of

HybridA
1,w,2.

B sends challenge message pair (m0,w,m1,w) = ((FPFE.mskw,PRF.Kw, 0, 0
ℓSKE.sk),

(0ℓFPFE.msk , 0ℓPRF.K , 1, SKE.sk)) to its FE challenger and receives FE.ctw which is an encryption of
either m0,w or m1,w.

For id ∈ [BoundA]\{w}, B sets mid = (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk). In the secret-key setting,

for id ∈ [BoundA]\{w}, B sends challenge message pair (mid,mid) to its FE challenger and receives
an encryption FE.ctid of mid. In the public-key setting, B receives FE.mpk from its FE challenger,
computes FE.ctid ← FE.Enc(FE.mpk,mid) for id ∈ [BoundA]\{w}, and sends MPK = FE.mpk to A.

• For each function query fj output by A, B does the following: B computes Gj = G[fj , sj , cj,w]
as in step 5a of HybridA

1,w,2. B sends function query Gj to its FE challenger and receives a
function key FE.skGj . This is a valid function query since for all j ∈ [Q],

G[fj , sj , cj,w](FPFE.mskw,PRF.Kw, 0, 0
ℓSKE.sk) = G[fj , sj , cj,w](0

ℓFPFE.msk , 0ℓPRF.K , 1, SKE.sk)

because cj,w encrypts (One-sFE.skfj ,w,FPFE.skHj,w) which are generated in the same way as
in the α = 0 branch of G[fj , sj , cj,w]. B then sends SKfj = FE.skGj to A. Note that since A
can only make at most Q function queries, than B will also make at most Q function queries
to its FE challenger.

• For each message query (x
(0)
id,i, x

(1)
id,i) output byA, B computes CTid,i as in step 5b ofHybridA

1,w,2

and sends CTid,i to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if B received FE ciphertexts for the first message
in each challenge pair (i.e. either m0,w or mid), then B exactly emulates HybridA

1,w,1, and if B
received FE ciphertexts for the second message in each challenge pair (i.e. either m1,w or mid),
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then B emulates HybridA
1,w,2. Additionally, B does not need to know FE.msk to carry out this

experiment and makes at most Q function queries. Thus, by Equation 7, this means that B breaks
the Q-bounded, selective-IND-security of FE as B can distinguish between the two security games
with non-negligible probability.
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HybridA
1,w,3: We exchange the randomness generated by PRF.Kw with true randomness.

This is the same as HybridA
1,w,2 except that we change the following steps:

4. Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) (rSetup,j,w, rEncSetup,j,w, rKeyGen,j,w, rPRF2,j,w, rH,j,w)← PRF.Eval(PRF.Kw, sj).

(c) One-sFE.mskj,w ← One-sFE.Setup(1λ; rSetup,j,w).

(d) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w; rEncSetup,j,w).

(e) PRF2.Kj,w ← PRF2.Setup(1λ; rPRF2,j,w).

(f) Let Hj,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in Figure 10
(page 50).

(g) FPFE.skHj,w ← FPFE.KeyGen(FPFE.mskw, Hj,w; rH,j,w).

5a. Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adversary:

(a) One-sFE.skfj ,w ← One-sFE.KeyGen(One-sFE.mskj,w, fj ; rKeyGen,j,w).

(b) cj,w ← SKE.Enc(SKE.sk, (One-sFE.skfj ,w,FPFE.skHj,w)).

(c) Let Gj = G[fj , sj , cj,w] as defined in Figure 9 (page 50).

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj).

(e) Send SKfj = FE.skGj to the adversary.

Lemma 5.12. If PRF is a secure PRF, then for all PPT adversaries A and all w ∈ [BoundA],∣∣∣Pr[HybridA
1,w,2(1

λ) = 1]− Pr[HybridA
1,w,3(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and a w ∈ [BoundA]
such that ∣∣∣Pr[HybridA

1,w,2(1
λ) = 1]− Pr[HybridA

1,w,3(1
λ) = 1]

∣∣∣ > negl(λ) (8)

We build a PPT adversary B that breaks the security of PRF. B first runs steps 1-3 as inHybridA
1,w,3

except that B does not compute PRF.Kw.
For j ∈ [Q], B samples sj ← {0, 1}λ and queries its PRF challenger on input sj to receive values

(rj,1, rj,2, rj,3, rj,4, rj,5).
B then runs steps 4-6 as in HybridA

1,w,2 except that for each j, instead of computing the values
(rSetup,j,w, rEncSetup,j,w, rKeyGen,j,w, rPRF2,j,w, rH,j,w) from some PRF key PRF.Kw, B sets these values
equal to (rj,1, rj,2, rj,3, rj,4, rj,5).

At the final step, A outputs b′ which B also outputs. If the experiment for A aborts for any
reason, B instead outputs 0. Observe that if B’s PRF oracle was a uniform random function R, then
B exactly emulates HybridA

1,w,2, and if B’s PRF oracle was PRF.Eval(PRF.Kw, ·) for some PRF key

PRF.Kw, then B emulates HybridA
1,w,3. Additionally, B does not need to know PRF.Kw to carry

out this experiment. Thus, by Equation 8, this means that B breaks the security of PRF as B can
distinguish between a random function and PRF evaluations.
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HybridA
1,w,4,k,0(1

λ): Our next goal is to change the ciphertexts for stream identity w from encryp-

tions of x
(0)
w to encryptions of x

(1)
w . We begin this process by changing the behavior of the hybrid

one function at a time.
For j < k, we set Hj,w = H ′[One-sFE.mskk,One-sFE.Enc.stk,PRF2.Kk] which will operate on

the second stream input given, namely x
(1)
w,i which we will additionally encrypt inside FPFE.ctw,i.

For j = k, we set Hk,w = H∗ which simply outputs the last value of its input tuple. To maintain
consistency, for each i, we set the last value of the tuple encrypted in FPFE.ctw,i to vk,w,i which we

compute as the output of the original Hk,w on (i, tw,i, x
(0)
w,i, 0

ℓX , 0ℓOne-sFE.ct). These changes allow us
to remove (One-sFE.mskk,w, One-sFE.Enc.stk,w,PRF2.Kk,w) from FPFE.skHk,w

.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

• Secret-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) FE.msk← FE.Setup(1λ).

(c) FE.ek = FE.msk.

• Public-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) (FE.mpk,FE.msk)← FE.Setup(1λ).

(c) FE.ek = FE.mpk.

(d) Send MPK = FE.mpk to the adversary.

3. Encryption Setup: For id ∈ [BoundA] where BoundA is a bound on the runtime of A.

(a) PRF.Kid ← PRF.Setup(1λ).

(b) FPFE.mskid ← FPFE.Setup(1λ).

(c) If id ̸= w, FE.ctid ← FE.Enc(FE.ek, (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk)).

(d) If id = w, FE.ctw ← FE.Enc(FE.ek, (0ℓFPFE.msk , 0ℓPRF.K , 1, SKE.sk)).

4. Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) One-sFE.mskj,w ← One-sFE.Setup(1λ).

(c) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w).

(d) PRF2.Kj,w ← PRF2.Setup(1λ).

(e) If j < k, let Hj,w = H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in
Figure 11 (page 51).

(f) If j = k, let Hk,w = H∗ as defined in Figure 12 (page 51).

(g) If j > k, let Hj,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj.w] as defined in Fig-
ure 10 (page 50).

(h) FPFE.skHj,w ← FPFE.KeyGen(FPFE.mskw, Hj,w).

63



5. The adversary can make up to Q function queries followed by any polynomial number of
message queries.

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. One-sFE.skfj ,w ← One-sFE.KeyGen(One-sFE.mskj,w, fj).

ii. cj,w ← SKE.Enc(SKE.sk, (One-sFE.skfj ,w,FPFE.skHj,w)).

iii. Let Gj = G[fj , sj , cj,w] as defined in Figure 9 (page 50).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj).

v. Send SKfj = FE.skGj to the adversary.

(b) Message Query: For the ith message query made to stream identity id, A outputs a

message pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

i. tid,i ← {0, 1}λ.
ii. If id < w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x

(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

iii. If id = w,

A. rk,w,i ← PRF2.Eval(PRF2.Kk,w, tw,i).

B. vk,w,i ← One-sFE.Enc(One-sFE.mskk,w,One-sFE.Enc.stk,w, i, x
(0)
w,i; rk,w,i).

C. FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i)).

iv. If id > w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

v. If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

vi. Send CTid,i to the adversary.

6. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 5.13. If FPFE is Q-bounded, function-private, function-selective-IND-secure, then for all
PPT adversaries A and all w ∈ [BoundA],∣∣∣Pr[HybridA

1,w,3(1
λ) = 1]− Pr[HybridA

1,w,4,1,0(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and a w ∈ [BoundA]
such that ∣∣∣Pr[HybridA

1,w,3(1
λ) = 1]− Pr[HybridA

1,w,4,1,0(1
λ) = 1]

∣∣∣ > negl(λ) (9)

We build a PPT adversary B that breaks the Q-bounded, function-private, function-selective-
IND-security of FPFE. B first runs steps 1-3 as in HybridA

1,w,3 except that B does not compute
FPFE.mskw.

For j ∈ [Q], B does the following: B computes (sj ,One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w)

as in step 4 of HybridA
1,w,3 and sets H

(0)
j,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w].

• If j = 1, B sets its 1st challenge function pair to (H
(0)
1,w, H

∗)

• If j > 1, B sets its jth challenge function pair to (H
(0)
j,w, H

(0)
j,w)

B then sends all Q challenge function pairs to its FPFE challenger and receives {FPFE.skHj,w}j∈[Q].

• For each function query fj output by A, B computes SKfj as in step 5a of HybridA
1,w,3, and

sends SKfj to A.
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• For each message query (x
(0)
id,i, x

(1)
id,i) output by A:

If id ̸= w, B computes CTid,i as in step 5a of HybridA
1,w,3, and sends CTid,i to A.

If id = w, B computes (tw,i, v1,w,i) as in step 5b of HybridA
1,w,4,1,0. B sends challenge message

pair ((i, tw,i, x
(0)
w,i, 0

ℓX , 0ℓOne-sFE.ct), (i, tw,i, x
(0)
w,i, x

(1)
w,i, v1,w,i)) to its FPFE challenger and receives

FPFE.ctw,i. This is a valid message query since

– For j = 1, H
(0)
1,w(i, tw,i, x

(0)
w,i, 0

ℓX , 0ℓOne-sFE.ct) = H∗(i, tw,i, x
(0)
w,i, x

(1)
w,i, v1,w,i)

since H∗ simply outputs v1,w,i which has been programmed to be equal to the lefthand
side of the equation

– For j ∈ [Q]\{1}, H(0)
j,w(i, tw,i, x

(0)
w,i, 0

ℓX , 0ℓOne-sFE.ct) = H
(0)
j,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, v1,w,i)

since H
(0)
j,w ignores its last two inputs.

If i = 1, B sets CTw,1 = (FE.ctw,FPFE.ctw,1). Else, B sets CTw,i = FPFE.ctw,i. B sends CTw,i

to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if B received only ciphertexts and function keys
for the first message or function of each of its challenge pairs, then B exactly emulates HybridA

1,w,3,
and if B received only ciphertexts and function keys for the second message or function of each
of its challenge pairs, then B emulates HybridA

1,w,4,1,0. Additionally, B does not need to know
FPFE.mskw to carry out this experiment and makes only Q function queries. Thus, by Equation 9,
this means that B breaks the Q-bounded, function-private, function-selective-IND-security of FPFE
as B can distinguish between the two security games with non-negligible probability.
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HybridA
1,w,4,k,1(1

λ): We exchange the randomness generated by PRF2.Kk,w with true randomness.

This is the same as HybridA
1,w,4,k,0 except that we change the following steps:

5b. Message Query: For the ith message query made to stream identity id, A outputs a message

pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

(a) tid,i ← {0, 1}λ.

(b) If id < w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(c) If id = w,

i. rk,w,i ← PRF2.Eval(PRF2.Kk,w, tw,i).

ii. vk,w,i ← One-sFE.Enc(One-sFE.mskk,w,One-sFE.Enc.stk,w, i, x
(0)
w,i; rk,w,i).

iii. FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i)).

(d) If id > w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(e) If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

(f) Send CTid,i to the adversary.

Lemma 5.14. If PRF2 is a secure PRF, then for all PPT adversaries A, all w ∈ [BoundA], and
all k ∈ [Q], ∣∣∣Pr[HybridA

1,w,4,k,0(1
λ) = 1]− Pr[HybridA

1,w,4,k,1(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A, w ∈ [BoundA], and
k ∈ [Q] such that∣∣∣Pr[HybridA

1,w,4,k,0(1
λ) = 1]− Pr[HybridA

1,w,4,k,1(1
λ) = 1]

∣∣∣ > negl(λ) (10)

We build a PPT adversary B that breaks the security of PRF2. B first runs steps 1-4 as in
HybridA

1,w,4,k,1 except that B does not compute PRF2.Kk,w.

• For each function query fj output by A, B computes SKfj as in step 5a of HybridA
1,w,4,k,1,

and sends SKfj to A.

• For each message query (x
(0)
id,i, x

(1)
id,i) output byA, B computes CTid,i as in step 5b ofHybridA

1,w,4,k,1

except that if id = w, instead of computing rk,w,i using PRF2, B samples tw,i ← {0, 1}λ, sends
tw,i to its PRF2 challenger to receiver r∗w,i and sets rk,w,i = r∗w,i. B then sends CTid,i to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if B’s PRF2 oracle was a uniform random function
R, then B exactly emulates HybridA

1,w,4,k,1, and if B’s PRF2 oracle was PRF2.Eval(PRF2.Kk,w, ·)
for some PRF2 key PRF2.Kk,w, then B emulates HybridA

1,w,4,k,0. Additionally, B does not need to
know PRF2.Kk,w to carry out this experiment. Thus, by Equation 10, this means that B breaks
the security of PRF2 as B can distinguish between a random function and PRF2 evaluations.
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HybridA
1,w,4,k,2(1

λ): We now invoke the security of One-sFE to change each vk,w,i from an encryption

of x
(0)
w,i to an encryption of x

(1)
w,i.

This is the same as HybridA
1,w,4,k,1 except that we change the following steps:

5b Message Query: For the ith message query made to stream identity id, A outputs a message

pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

(a) tid,i ← {0, 1}λ.

(b) If id < w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(c) If id = w,

i. vk,w,i ← One-sFE.Enc(One-sFE.mskk,w,One-sFE.Enc.stk,w, i, x
(1)
w,i).

ii. FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i)).

(d) If id > w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(e) If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

(f) Send CTid,i to the adversary.

Lemma 5.15. If One-sFE is single-key, single-ciphertext, function-selective-IND-secure, then for
all PPT adversaries A, all w ∈ [BoundA], and all k ∈ [Q],∣∣∣Pr[HybridA

1,w,4,k,1(1
λ) = 1]− Pr[HybridA

1,w,4,k,2(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A, w ∈ [BoundA], and
k ∈ [Q] such that∣∣∣Pr[HybridA

1,w,4,k,1(1
λ) = 1]− Pr[HybridA

1,w,4,k,2(1
λ) = 1]

∣∣∣ > negl(λ) (11)

We build a PPT adversary B that breaks the single-key, single-ciphertext, function-selective-IND-
security of One-sFE. B first runs steps as in 1-4 of HybridA

1,w,4,k,2 except that B does not compute
(One-sFE.mskk,w,One-sFE.Enc.stk,w) in step 4. Note that these values are not needed to compute
these steps since Hk,w = H∗.

• For each function query fj output by A:
If j ̸= k, B computes SKfj as in step 5a of HybridA

1,w,4,k,2, and sends SKfj to A.
If j = k, B sends fk to its One-sFE challenger and receives a function key One-sFE.skfk . B com-
putes ck,w ← SKE.Enc(SKE.sk, (One-sFE.skfk ,FPFE.skHk,w

)) and FE.skGk
← FE.KeyGen(FE.msk, Gk)

for Gk = G[fk, sk, ck,w]. B sends SKfk = FE.skGk
to A.

• For each message query (x
(0)
id,i, x

(1)
id,i) output by A:

If id ̸= w, B computes CTid,i as in step 5b of HybridA
1,w,4,k,2, and sends CTid,i to A.

If id = w, B sends challenge message pair (x
(0)
w,i, x

(1)
w,i) to its One-sFE challenger and receives

One-sFE.ctw,i. This is a valid message query since A is restricted to function and message
queries that satisfy

fk(x
(0)
w ) = fk(x

(1)
w )

B then computes tw,i ← {0, 1}λ and FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i,One-sFE.ctw,i).

If i = 1, B sets CTw,1 = (FE.ctw,FPFE.ctw,1). Else, B sets CTw,i = FPFE.ctw,i. B sends CTw,i

to A.
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After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts

for any reason, B instead outputs 0. Observe that if B received ciphertexts for x
(0)
w from its One-sFE

challenger, then B exactly emulates HybridA
1,w,4,k,1, and if B received ciphertexts for x

(1)
w , then B

emulatesHybridA
1,w,4,k,2. Additionally, B does not need to know (One-sFE.mskk,w,One-sFE.Enc.stk,w)

to carry out this experiment and makes only one function query followed by one message query
to its One-sFE challenger. Thus, by Equation 11, this means that B breaks the single-key, single-
ciphertext, function-selective-IND-security of One-sFE as B can distinguish between the two security
games with non-negligible probability.
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HybridA
1,w,4,k,3(1

λ): We revert back to using PRF2.Kk,w to compute the randomness needed for
determining each vk,w,i.

This is the same as HybridA
1,w,4,k,2 except that we change the following steps:

5b. Message Query: For the ith message query made to stream identity id, A outputs a message

pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

(a) tid,i ← {0, 1}λ.

(b) If id < w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(c) If id = w,

i. rk,w,i ← PRF2.Eval(PRF2.Kk,w, tw,i).

ii. vk,w,i ← One-sFE.Enc(One-sFE.mskk,w,One-sFE.Enc.stk,w, i, x
(1)
w,i; rk,w,i).

iii. FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i)).

(d) If id > w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(e) If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

(f) Send CTid,i to the adversary.

Lemma 5.16. If PRF2 is a secure PRF, then for all PPT adversaries A, all w ∈ [BoundA], and
all k ∈ [Q], ∣∣∣Pr[HybridA

1,w,4,k,2(1
λ) = 1]− Pr[HybridA

1,w,4,k,3(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. This proof is essentially the same as the proof of Lemma 5.14.
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HybridA
1,w,4,k,4(1

λ): We change functionHk,w fromH∗ toH ′[One-sFE.mskk,w,One-sFE.Enc.stk,w,PRF2.Kk,w],

which operates on the second stream input given, namely x
(1)
w,i.

This is the same as HybridA
1,w,4,k,3 except that we change the following steps:

4. Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) One-sFE.mskj,w ← One-sFE.Setup(1λ).

(c) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w).

(d) PRF2.Kj,w ← PRF2.Setup(1λ).

(e) If j ≤ k, let Hj,w = H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in
Figure 11 (page 51).

(f) If j = k, let Hk,w = H∗ as defined in Figure 12 (page 51).

(g) If j > k, let Hj,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj.w] as defined in Fig-
ure 10 (page 50).

(h) FPFE.skHj,w ← FPFE.KeyGen(FPFE.mskw, Hj,w).

Lemma 5.17. If FPFE is Q-bounded, function-private, function-selective-IND-secure, then for all
PPT adversaries A, all w ∈ [BoundA], and all k ∈ [Q],∣∣∣Pr[HybridA

1,w,4,k,3(1
λ) = 1]− Pr[HybridA

1,w,4,k,4(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A, w ∈ [BoundA], and
k ∈ [Q] such that∣∣∣Pr[HybridA

1,w,4,k,3(1
λ) = 1]− Pr[HybridA

1,w,4,k,4(1
λ) = 1]

∣∣∣ > negl(λ) (12)

We build a PPT adversary B that breaks the Q-bounded, function-private, function-selective-
IND-security of FPFE. B first runs steps 1-3 of HybridA

1,w,4,k,4 except that B does not compute
FPFE.mskw.

For j ∈ [Q], B does the following: B computes (sj ,One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w)

as in step 4 of HybridA
1,w,4,k,4. B sets H

(0)
j,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] and

H
(1)
j,w = H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w].

• If j < k, B sets its jth challenge function pair to (H
(1)
j,w, H

(1)
j,w).

• If j = k, B sets its jth challenge function pair to (H∗, H
(1)
k,w).

• If j > k, B sets its jth challenge function pair to (H
(0)
j,w, H

(0)
j,w).

B then sends all Q challenge function pairs to its FPFE challenger and receives {FPFE.skHj,w}j∈[Q].

• For each function query fj output by A, B computes SKfj as in step 5a of HybridA
1,w,4,k,4,

and sends SKfj to A.
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• For each message query (x
(0)
id,i, x

(1)
id,i) output by A:

If id ̸= w, B computes CTid,i as in step 5b of HybridA
1,w,4,k,4, and sends CTid,i to A.

If id = w, B computes (tw,i, vk,w,i) as in step 5b of HybridA
1,w,4,k,4. B sends challenge mes-

sage pair ((i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i), (i, tw,i, x

(0)
w,i, x

(1)
w,i, vk,w,i)) to its FPFE challenger and receives

FPFE.ctw,i. This is a valid message query since

– For j = k, H∗(i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i) = H

(1)
k,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk,w,i))

since H∗ simply outputs vk,w,i which has been programmed to be equal to the righthand
side of the equation

– For j ∈ [Q]\{k}, the functions and messages in each function or message pair are the
same.

If i = 1, B sets CTw,1 = (FE.ctw,FPFE.ctw,1). Else, B sets CTw,i = FPFE.ctw,i. B sends CTw,i

to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if B received only ciphertexts and function keys for
the first message or function of each of its challenge pairs, then B exactly emulates HybridA

1,w,4,k,3,
and if B received only ciphertexts and function keys for the second message or function of each of its
challenge pairs, then B emulatesHybridA

1,w,4,k,4. Additionally, B does not need to know FPFE.mskw
to carry out this experiment and makes only Q function queries. Thus, by Equation 12, this means
that B breaks the Q-bounded, function-private, function-selective-IND-security of FPFE as B can
distinguish between the two security games with non-negligible probability.

Lemma 5.18. If FPFE is Q-bounded, function-private, function-selective-IND-secure, then for all
PPT adversaries A, all w ∈ [BoundA], and all k ∈ [Q− 1],∣∣∣Pr[HybridA

1,w,4,k,4(1
λ) = 1]− Pr[HybridA

1,w,4,k+1,0(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A, w ∈ [BoundA], and
k ∈ [Q− 1] such that∣∣∣Pr[HybridA

1,w,4,k,4(1
λ) = 1]− Pr[HybridA

1,w,4,k+1,0(1
λ) = 1]

∣∣∣ > negl(λ) (13)

We build a PPT adversary B that breaks the Q-bounded, function-private, function-selective-
IND-security of FPFE. B first runs steps 1-3 of HybridA

1,w,4,k,4 except that B does not compute
FPFE.mskw.

For j ∈ [Q], B does the following: B computes (sj ,One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w)

as in step 4 of HybridA
1,w,4,k,4. B sets H

(0)
j,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] and

H
(1)
j,w = H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w].

• If j < k + 1, B sets its jth challenge function pair to (H
(1)
j,w, H

(1)
j,w).

• If j = k + 1, B sets its jth challenge function pair to (H
(0)
k+1,w, H

∗).

• If j > k + 1, B sets its jth challenge function pair to (H
(0)
j,w, H

(0)
j,w).

B then sends all Q challenge function pairs to its FPFE challenger and receives {FPFE.skHj,w}j∈[Q].
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• For each function query fj output by A, B computes SKfj as in step 5a of HybridA
1,w,4,k,4,

and sends SKfj to A.

• For each message query (x
(0)
id,i, x

(1)
id,i) output by A:

If id ̸= w, B computes CTid,i as in step 5b of HybridA
1,w,4,1,4, and sends CTid,i to A.

If id = w, B samples tw,i ← {0, 1}λ and uses this to compute vk,w,i as in step 5b of
HybridA

1,w,4,k,4 and vk+1,w,i as in step 5b of HybridA
1,w,4,k+1,0. B sends challenge message

pair ((i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i), (i, tw,i, x

(0)
w,i, x

(1)
w,i, vk+1,w,i)) to its FPFE challenger and receives

FPFE.ctw,i. This is a valid message query since

– For j = k + 1, H
(0)
k+1,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk,w,i) = H∗(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk+1,w,i))

since H∗ simply outputs vk+1,w,i which has been programmed to be equal to the lefthand
side of the equation

– For j ∈ [Q]\{k + 1},

H
(0)
j,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk,w,i) = H

(0)
j,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk+1,w,i))

H
(1)
j,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk,w,i) = H

(1)
j,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vk+1,w,i))

since H
(0)
j,w and H

(1)
j,w ignore the last input.

If i = 1, B sets CTw,1 = (FE.ctw,FPFE.ctw,1). Else, B sets CTw,i = FPFE.ctw,i. B sends CTw,i

to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if B received only ciphertexts and function keys for
the first message or function of each of its challenge pairs, then B exactly emulates HybridA

1,w,4,k,4,
and if B received only ciphertexts and function keys for the second message or function of each
of its challenge pairs, then B emulates HybridA

1,w,4,k+1,0. Additionally, B does not need to know
FPFE.mskw to carry out this experiment and makes only Q function queries. Thus, by Equation 13,
this means that B breaks the Q-bounded, function-private, function-selective-IND-security of FPFE
as B can distinguish between the two security games with non-negligible probability.
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HybridA
1,w,5(1

λ): This is identical to HybridA
1,w,4,Q,4. Observe that we have now set each Hj,w to

H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] which means that every function key will com-

pute its output values for stream identity w using x
(1)
w instead of x

(0)
w .

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

• Secret-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) FE.msk← FE.Setup(1λ).

(c) FE.ek = FE.msk.

• Public-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) (FE.mpk,FE.msk)← FE.Setup(1λ).

(c) FE.ek = FE.mpk.

(d) Send MPK = FE.mpk to the adversary.

3. Encryption Setup: For id ∈ [BoundA] where BoundA is a bound on the runtime of A.

(a) PRF.Kid ← PRF.Setup(1λ).

(b) FPFE.mskid ← FPFE.Setup(1λ).

(c) If id ̸= w, FE.ctid ← FE.Enc(FE.ek, (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk)).

(d) If id = w, FE.ctw ← FE.Enc(FE.ek, (0ℓFPFE.msk , 0ℓPRF.K , 1, SKE.sk)).

4. Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) One-sFE.mskj,w ← One-sFE.Setup(1λ).

(c) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w).

(d) PRF2.Kj,w ← PRF2.Setup(1λ).

(e) Let Hj,w = H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in Figure 11
(page 51).

(f) FPFE.skHj,w ← FPFE.KeyGen(FPFE.mskw, Hj,w).

5. The adversary can make up to Q function queries followed by any polynomial number of
message queries.

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. One-sFE.skfj ,w ← One-sFE.KeyGen(One-sFE.mskj,w, fj).

ii. cj,w ← SKE.Enc(SKE.sk, (One-sFE.skfj ,w,FPFE.skHj,w)).

iii. Let Gj = G[fj , sj , cj,w] as defined in Figure 9 (page 50).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj).

v. Send SKfj = FE.skGj to the adversary.
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(b) Message Query: For the ith message query made to stream identity id, A outputs a

message pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

i. tid,i ← {0, 1}λ.
ii. If id < w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x

(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

iii. If id = w,

A. rQ,w,i ← PRF2.Eval(PRF2.KQ,w, tw,i).

B. vQ,w,i ← One-sFE.Enc(One-sFE.mskQ,w,One-sFE.Enc.stQ,w, i, x
(1)
w,i; rQ,w,i).

C. FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i, vQ,w,i)).

iv. If id > w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

v. If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

vi. Send CTid,i to the adversary.

6. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 5.19. For all adversaries A and all w ∈ [BoundA],∣∣∣Pr[HybridA
1,w,4,Q,4(1

λ) = 1]− Pr[HybridA
1,w,5(1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical.
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HybridA
1,w,6(1

λ): Since every function key now computes its output values for stream identity w

using x
(1)
w instead of x

(0)
w , we can fully switch to using x

(1)
w . For every i, we change FPFE.ctw,i to

an encryption of (i, tw,i, x
(1)
w,i, 0

ℓX , 0ℓOne-sFE.ct), and for every j, we restore Hj,w to its original value.

This is the same as HybridA
1,w,5 except that we change the following steps:

4. Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) One-sFE.mskj,w ← One-sFE.Setup(1λ).

(c) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w).

(d) PRF2.Kj,w ← PRF2.Setup(1λ).

(e) Let Hj,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in Figure 10
(page 50).

(f) FPFE.skHj,w = FPFE.KeyGen(FPFE.mskw, Hj,w).

5b. Message Query: For the ith message query made to stream identity id, A outputs a message

pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

(a) tid,i ← {0, 1}λ.

(b) If id ≤ w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(c) If id = w,

i. rQ,w,i ← PRF2.Eval(PRF2.KQ,w, tw,i).

ii. vQ,w,i ← One-sFE.Enc(One-sFE.mskQ,w,One-sFE.Enc.stQ,w, i, x
(1)
w,i; rQ,w,i).

iii. FPFE.ctw,i ← FPFE.Enc(FPFE.mskw, (i, tw,i, x
(0)
w,i, x

(1)
w,i, vQ,w,i)).

(d) If id > w, FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x
(0)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

(e) If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

(f) Send CTid,i to the adversary.

Lemma 5.20. If FPFE is Q-bounded, function-private, function-selective-IND-secure, then for all
PPT adversaries A and all w ∈ [BoundA],∣∣∣Pr[HybridA

1,w,5(1
λ) = 1]− Pr[HybridA

1,w,6(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. Suppose for sake of contradiction that there exists a PPT adversary A and w ∈ [BoundA],∣∣∣Pr[HybridA
1,w,5(1

λ) = 1]− Pr[HybridA
1,w,6(1

λ) = 1]
∣∣∣ > negl(λ) (14)

We build a PPT adversary B that breaks the Q-bounded, function-private, function-selective-IND-
security of FPFE. B first runs steps 1-3 of HybridA

1,w,6 except that B does not compute FPFE.mskw.
For j ∈ [Q], B does the following: B computes (sj ,One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w)

as in step 4 of HybridA
1,w,6. B sets H

(0)
j,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] and

H
(1)
j,w = H ′[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w].

• B sets its jth challenge function pair to (H
(1)
j,w, H

(0)
j,w).

75



B then sends all Q challenge function pairs to its FPFE challenger and receives {FPFE.skHj,w}j∈[Q].

• For each function query fj output by A, B computes SKfj as in step 5a of HybridA
1,w,6, and

sends SKfj to A.

• For each message query (x
(0)
id,i, x

(1)
id,i) output by A:

If id ̸= w, B computes CTid,i as in step 5a of HybridA
1,w,6, and sends CTid,i to A.

If id = w, B computes (tw,i, vQ,w,i) as in step 5b of HybridA
1,w,5. B sends challenge message

pair ((i, tw,i, x
(0)
w,i, x

(1)
w,i, vk,w,i), (i, tw,i, x

(1)
w,i, 0

ℓX , 0ℓFPFE.ct)) to its FPFE challenger and receives
FPFE.ctw,i. This is a valid message query since for all j,

H
(1)
j,w(i, tw,i, x

(0)
w,i, x

(1)
w,i, vQ,w,i) = H

(0)
j,w(i, tw,i, x

(1)
w,i, 0

ℓX , 0ℓFPFE.ct)

If i = 1, B sets CTw,1 = (FE.ctw,FPFE.ctw,1). Else, B sets CTw,i = FPFE.ctw,i. B sends CTw,i

to A.

After A is done making queries, A outputs b′ which B also outputs. If the experiment for A aborts
for any reason, B instead outputs 0. Observe that if B received only ciphertexts and function keys
for the first message or function of each of its challenge pairs, then B exactly emulates HybridA

1,w,5,
and if B received only ciphertexts and function keys for the second message or function of each of its
challenge pairs, then B emulates HybridA

1,w,6. Additionally, B does not need to know FPFE.mskw
to carry out this experiment and makes only Q function queries. Thus, by Equation 14, this means
that B breaks the Q-bounded, function-private, function-selective-IND-security of FPFE as B can
distinguish between the two security games with non-negligible probability.
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HybridA
1,w,7(1

λ): We revert back to using PRF.Kw to compute the randomness needed for One-sFE,
PRF2, and FPFE.KeyGen on stream identity w.

This is the same as HybridA
1,w,6 except that we change the following steps:

4 Precompute Values: For j ∈ [Q],

(a) sj ← {0, 1}λ.
(b) (rSetup,j,w, rKeyGen,j,w, rEncSetup,j,w, rPRF2,j,w, rH,j,w)← PRF.Eval(PRF.Kw, sj).

(c) One-sFE.mskj,w ← One-sFE.Setup(1λ; rSetup,j,w).

(d) One-sFE.Enc.stj,w ← One-sFE.EncSetup(One-sFE.mskj,w; rEncSetup,j,w).

(e) PRF2.Kj,w ← PRF2.Setup(1λ; rPRF2,j,w).

(f) Let Hj,w = H[One-sFE.mskj,w,One-sFE.Enc.stj,w,PRF2.Kj,w] as defined in Figure 10
(page 50).

(g) FPFE.skHj,w = FPFE.KeyGen(FPFE.mskw, Hj,w; rH,j,w).

5a. Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adversary:

(a) One-sFE.skfj ,w ← One-sFE.KeyGen(One-sFE.mskj,w, fj ; rKeyGen,j,w).

(b) cj,w ← SKE.Enc(SKE.sk, (One-sFE.skfj ,w,FPFE.skHj,w)).

(c) Let Gj = G[fj , sj , cj,w] as defined in Figure 9 (page 50).

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj).

(e) Send SKfj = FE.skGj to the adversary.

Lemma 5.21. If PRF is a secure PRF, then for all PPT adversaries A and all w ∈ [BoundA],∣∣∣Pr[HybridA
1,w,6(1

λ) = 1]− Pr[HybridA
1,w,7(1

λ) = 1]
∣∣∣ ≤ negl(λ)

Proof. This proof is essentially the same as the proof of Lemma 5.12.
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HybridA
1,w,8(1

λ): We change the message encrypted in FE.ctw back to its original value.

This is the same as HybridA
1,w,7 except that we change the following steps:

3. Encryption Setup: For id ∈ [BoundA] where BoundA is a bound on the runtime of A.

(a) PRF.Kid ← PRF.Setup(1λ).

(b) FPFE.mskid ← FPFE.Setup(1λ).

(c) If id ̸= w, FE.ctid ← FE.Enc(FE.ek, (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk)).

(d) If id = w, FE.ctw ← FE.Enc(FE.ek, (0ℓFPFE.msk , 0ℓPRF.K , 1,SKE.sk)).

Lemma 5.22. If FE is a public-key (resp. secret-key) Q-bounded, selective-IND-secure scheme,
then for all PPT adversaries A and all w ∈ [BoundA], for the public-key (resp. secret-key) version
of the hybrids, ∣∣∣Pr[HybridA

1,w,7(1
λ) = 1]− Pr[HybridA

1,w,8(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. This proof is essentially the same as the proof of Lemma 5.11.
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HybridA
1,w,9(1

λ): For each j, we replace cj,w with a uniform random value cj . Note that this hybrid

is the same as HybridA
1,w+1,0.

This is the same as HybridA
1,w,8 except that we change the following steps:

2. Setup:

• Secret-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) FE.msk← FE.Setup(1λ).

(c) FE.ek = FE.msk.

• Public-Key Setting:

(a) SKE.sk← SKE.Setup(1λ).

(b) (FE.mpk,FE.msk)← FE.Setup(1λ).

(c) FE.ek = FE.mpk.

(d) Send MPK = FE.mpk to the adversary.

4. Precompute Values: Do nothing.

5a. Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adversary:

(a) sj ← {0, 1}λ.
(b) cj ← {0, 1}λ.
(c) Let Gj = G[fj , sj , cj ] as defined in Figure 9 (page 50).

(d) FE.skGj ← FE.KeyGen(FE.msk, Gj).

(e) Send SKfj = FE.skGj to the adversary.

Lemma 5.23. If SKE has pseudorandom ciphertexts, then for all PPT adversaries A and all
w ∈ [BoundA], ∣∣∣Pr[HybridA

1,w,8(1
λ) = 1]− Pr[HybridA

1,w,9(1
λ) = 1]

∣∣∣ ≤ negl(λ)

Proof. This proof is essentially the same as the proof of Lemma 5.10.

Lemma 5.24. For all adversaries A and all w ∈ [BoundA − 1],∣∣∣Pr[HybridA
1,w,8(1

λ) = 1]− Pr[HybridA
1,w+1,0(1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical.
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HybridA
2 (1

λ): This is the real world experiment with b = 1. This is identical to HybridA
1,BoundA,9.

1. Parameters: The adversary A receives security parameter 1λ, and outputs a function size
1ℓF , a state size 1ℓS , an input size 1ℓX , and an output size 1ℓY .

2. Setup:

• Secret-Key Setting:

(a) FE.msk← FE.Setup(1λ).

(b) FE.ek = FE.msk.

• Public-Key Setting:

(a) (FE.mpk,FE.msk)← FE.Setup(1λ).

(b) FE.ek = FE.mpk.

(c) Send MPK = FE.mpk to the adversary.

3. Encryption Setup: For id ∈ [BoundA] where BoundA is a bound on the runtime of A.

(a) PRF.Kid ← PRF.Setup(1λ).

(b) FPFE.mskid ← FPFE.Setup(1λ).

(c) FE.ctid ← FE.Enc(FE.ek, (FPFE.mskid,PRF.Kid, 0, 0
ℓSKE.sk)).

4. Precompute Values: Do nothing.

5. The adversary can make up to Q function queries followed by any polynomial number of
message queries.

(a) Function Query: For the jth function query fj ∈ F [ℓF , ℓS , ℓX , ℓY ] made by the adver-
sary:

i. sj ← {0, 1}λ.
ii. cj ← {0, 1}ℓSKE.ct .
iii. Let Gj = G[fj , sj , cj ] as defined in Figure 9 (page 50).

iv. FE.skGj ← FE.KeyGen(FE.msk, Gj).

v. Send SKfj = FE.skGj to the adversary.

(b) Message Query: For the ith message query made to stream identity id, A outputs a

message pair (x
(0)
id,i, x

(1)
id,i) where x

(0)
id,i, x

(1)
id,i ∈ {0, 1}

ℓX .

i. tid,i ← {0, 1}λ.
ii. FPFE.ctid,i ← FPFE.Enc(FPFE.mskid, (i, tid,i, x

(1)
id,i, 0

ℓX , 0ℓOne-sFE.ct)).

iii. If i = 1, set CTid,1 = (FE.ctid,FPFE.ctid,1). Else, set CTid,i = FPFE.ctid,i.

iv. Send CTid,i to the adversary.

6. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Lemma 5.25. For all adversaries A,∣∣∣Pr[HybridA
1,BoundA,9(1

λ) = 1]− Pr[HybridA
2 (1

λ) = 1]
∣∣∣ = 0

Proof. The hybrids are identical.
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Thus, our lemmas give us the following corollary:

Corollary 5.26. If

• One-sFE is a single-key, single-ciphertext, function-selective-IND-secure, secret-key sFE scheme
for P/Poly,

• PRF and PRF2 are secure pseudorandom function families,

• SKE is a secure secret-key encryption scheme with pseudorandom ciphertexts,

• FE is a Q-bounded, selective-IND-secure, public-key (resp. secret-key) FE scheme for P/Poly,

• and FPFE is a Q-bounded, function-private, function-selective-IND-secure, secret-key FE
scheme for P/Poly,

then sFE is a Q-bounded, function-selective-IND-secure, public-key (resp. secret-key) sFE scheme
for P/Poly.

Proof. The corollary immediately follows from Lemmas 5.9-5.25.

Corollary 5.26 then implies Theorem 5.1, since as shown earlier, we can instantiate the required
primitives from a Q-bounded, adaptive-IND-secure, public-key (resp. secret-key) FE scheme for
P/Poly and a single-key, single-ciphertext, function-selective-IND-secure, secret-key, sFE scheme
for P/Poly.
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A Preliminaries Continued

A.1 Standard Notions

Definition A.1 (Pseudorandom Function (PRF)). A pseudorandom function family (PRF) with
key space K = {Kλ,n,m}λ,n,m∈N is a tuple of PPT algorithms PRF = (PRF.Setup,PRF.Eval) where

• PRF.Setup(1λ, 1n, 1m) is a randomized algorithm that takes as input the security parameter
λ, an input length n, and an output length m, and outputs a key K ∈ Kλ,n,m

• PRF.Eval(K,x) is a deterministic algorithm that takes as input a key K ∈ Kλ,n,m and an
input x ∈ {0, 1}n, and outputs a value y ∈ {0, 1}m.

Security requires that there exists a negligible function µ such that for all λ ∈ N and all PPT
adversaries A, ∣∣∣Pr[ExptPRFA (1λ, 0) = 1]− Pr[ExptPRFA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptPRFA (1λ, b)

1. Parameters: A takes as input 1λ and outputs an input size 1n and an output size 1m.

2. Setup:

(a) If b = 0, sample K ← PRF.Setup(1λ, 1n, 1m).

(b) If b = 1, sample R ← Rn,m where Rn,m is the set of all functions from {0, 1}n to
{0, 1}m.

3. PRF Queries: The following can be repeated any polynomial number of times:

(a) A outputs a value x ∈ {0, 1}n.
(b) If b = 0, send y = PRF.Eval(K,x) to A.
(c) If b = 1, send y = R(x) to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Definition A.2 (Secret Key Encryption (SKE)). A secret key encryption scheme with key space
K = {Kλ}λ and ciphertext size m(·) is a tuple of PPT algorithms SKE = (SKE.Setup, SKE.Enc, SKE.Dec)
where

• SKE.Setup(1λ) is a randomized algorithm that takes as input the security parameter λ and
outputs a secret key sk ∈ Kλ
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• SKE.Enc(sk, x) is a randomized algorithm that takes as input a secret key sk ∈ Kλ,n and a
message x ∈ {0, 1}∗ and outputs an encryption ct ∈ {0, 1}m(λ,|x|) of x.

• SKE.Dec(sk, ct) is a deterministic algorithm that takes as input a secret key sk ∈ Kλ and a
ciphertext ct ∈ {0, 1}m(λ,n) for some n and outputs a value y ∈ {0, 1}n.

Correctness requires that for all λ, n ∈ N and every x ∈ {0, 1}n,

Pr
[
SKE.Dec(sk,SKE.Enc(sk, x)) = x : sk← SKE.Setup(1λ)

]
= 1

Security requires that there exists a negligible function µ such that for all λ ∈ N and all PPT
adversaries A, ∣∣∣Pr[ExptSKEA (1λ, 0) = 1]− Pr[ExptSKEA (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSKEA (1λ, b)

1. Parameters: A takes as input 1λ.

2. Setup: sk← SKE.Setup(1λ).

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message pair (x0, x1) where |x0| = |x1|.
(b) ctb ← SKE.Enc(sk, xb)

(c) Sent ctb to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

We will sometimes require that our secret key encryption scheme has pseudorandom ciphertexts.
Intuitively, this means that ciphertexts should be indistinguishable from random strings of the same
size.

Definition A.3 (Secret Key Encryption with Pseudorandom Ciphertexts). A secret key encryption
scheme with key space K = {Kλ,n}λ,n∈N and ciphertext size m(·) has pseudorandom ciphertexts if
there exists a negligible function µ such that for all λ ∈ N and every PPT adversary A,∣∣∣Pr[ExptSKE-Pseudorandom-CT

A (1λ, 0) = 1]− Pr[ExptSKE-Pseudorandom-CT
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

ExptSKE-Pseudorandom-CT
A (1λ, b)

1. Parameters: A takes as input 1λ.

2. Setup: sk← SKE.Setup(1λ)

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) A outputs a challenge message x where x ∈ {0, 1}∗.
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(b) If b = 0, ct← SKE.Enc(sk, x).

(c) If b = 1, ct← {0, 1}m(λ,|x|)

(d) Send ct to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

A.2 Secret-Key Functional Encryption

In this section, we formally define secret-key functional encryption.

Definition A.4 (Secret-Key Functional Encryption). A secret-key functional encryption scheme
for P/Poly is a tuple of PPT algorithms FE = (Setup,KeyGen,Enc,Dec) defined as follows:21

• Setup(1λ, 1ℓF , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , an input
size ℓX , and an output size ℓY , and outputs the master secret key msk.

• Enc(msk, x): takes as input the master secret key msk and a message x ∈ {0, 1}ℓX , and outputs
an encryption ct of x.

• KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓX , ℓY ],
and outputs a function key skf .

• Dec(skf , ct): takes as input a function key skf and a ciphertext ct, and outputs a value
y ∈ {0, 1}ℓY .

FE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all 1λ ∈ N, all ℓF , ℓX , ℓY ≤ p(1λ), all x ∈ {0, 1}ℓX , and all f ∈ F [ℓF , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :
msk← Setup(1λ, 1ℓF , 1ℓX , 1ℓY )

ctx ← Enc(msk, x)
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ).

Definition A.5 (Q-Bounded, Adaptive-IND Security for Secret-Key FE). A secret-key functional
encryption scheme FE for P/Poly is Q-bounded, adaptive-IND-secure if there exists a negligible
function µ such that for all λ ∈ N and every PPT adversary A,∣∣∣Pr[SKExptFE-Q-Ad-IND

A (1λ, 0) = 1]− Pr[SKExptFE-Q-Ad-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(1λ)

where for each b ∈ {0, 1} and 1λ ∈ N, we define

SKExptFE-Q-Ad-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query: The adversary can make at most Q = Q(λ) such queries:

21We also allow Enc,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓX , 1ℓY as input, but omit them
from our notation for convenience.
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i. A outputs a function query f ∈ F [ℓF , ℓX , ℓY ]
ii. skf ← FE.KeyGen(msk, f)

iii. Send skf to A
(b) Message Query:

i. A outputs a message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .
ii. ct← FE.Enc(msk, xb).

iii. Send ct to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f(x0) ̸= f(x1) for some message query (x0, x1) and function
query f submitted by the adversary.

Definition A.6 (Other Secret-Key FE Security Definitions). There are many variations of the
security definition. We list a few below:

• Q-Bounded, Selective-IND-Security: The adversary is required to make all message
queries at the beginning of the experiment. This is identical to Definition A.5, except that we
do not allow the adversary to make a Challenge Message Query after it has made a Function
Query.

• Q-Bounded, Function-Selective-IND-Security: The adversary is required to make all
function queries at the beginning of the experiment. This is identical to Definition A.5, except
that we do not allow the adversary to make a Function Query after it has made a Challenge
Message Query.

In the secret-key setting, we can also achieve function privacy. We define it below for the case
of Q-bounded, function-selective-IND-security.

Definition A.7 (Q-Bounded, Function-Private, Function-Selective-IND-Security for Secret-Key
FE). A secret-key functional encryption scheme FE for P/Poly is Q-bounded, function-private,
function-selective-IND-secure if there exists a negligible function µ such that for all λ ∈ N and
every PPT adversary A,∣∣∣Pr[SKExptFE-Q-FuncPriv-FuncSel-IND

A (1λ, 0) = 1]− Pr[SKExptFE-Q-FuncPriv-FuncSel-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

SKExptFE-Q-FuncPriv-FuncSel-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , an input size 1ℓX ,
and an output size 1ℓY .

2. Setup: msk← FE.Setup(1λ, 1ℓF , 1ℓX , 1ℓY ).

3. Function Queries: The following can be repeated at most Q = Q(λ) times:

(a) A outputs a function query pair (f0, f1) where f0, f1 ∈ F [ℓF , ℓX , ℓY ]
(b) skf ← FE.KeyGen(msk, fb)

(c) Send skf to A
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4. Message Queries: The following can be repeated any polynomial number of times:

(a) A outputs a message pair (x0, x1) where x0, x1 ∈ {0, 1}ℓX .
(b) ct← FE.Enc(msk, xb).

(c) Send ct to A.

5. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point f0(x0) ̸= f1(x1) for some message query (x0, x1) and function
query (f0, f1) submitted by the adversary.

A.3 Secret-Key Streaming Functional Encryption

In this section, we formally define secret-key streaming functional encryption.

Definition A.8 (Secret-Key Streaming FE). A secret-key streaming functional encryption scheme
for P/Poly is a tuple of PPT algorithms sFE = (Setup,EncSetup,Enc,KeyGen,Dec) defined as fol-
lows:22

1. Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ): takes as input the security parameter λ, a function size ℓF , a
state size ℓS , an input size ℓX , and an output size ℓY , and outputs the master secret key msk.

2. EncSetup(msk): takes as input the master secret key msk and outputs an encryption state
Enc.st

3. Enc(msk,Enc.st, i, xi): takes as input the master secret key msk, an encryption state Enc.st,
an index i, and a message xi ∈ {0, 1}ℓX and outputs an encryption cti of xi.

4. KeyGen(msk, f): takes as input the master secret key msk and a function f ∈ F [ℓF , ℓS , ℓX , ℓY ]
and outputs a function key skf .

5. Dec(skf ,Dec.sti, i, cti): where for each function key skf , Dec(skf , ·, ·, ·) is a streaming function
that takes as input a state Dec.sti, an index i, and an encryption cti and outputs a new state
Dec.sti+1 and an output yi ∈ {0, 1}ℓY .

sFE must be streaming efficient, meaning that the size and runtime of all algorithms of sFE
on security parameter λ, function size ℓF , state size ℓS , input size ℓX , and output size ℓY are
poly(λ, ℓF , ℓS , ℓX , ℓY).

sFE satisfies correctness if for all polynomials p, there exists a negligible function µ such that for
all λ ∈ N, all ℓF , ℓS , ℓX , ℓY ≤ p(λ), all n ∈ [2λ], all x = x1 . . . xn where each xi ∈ {0, 1}ℓX , and all
f ∈ F [ℓF , ℓS , ℓX , ℓY ],

Pr

Dec(skf , ctx) = f(x) :

msk← Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ),

ctx ← Enc(msk, x),
skf ← KeyGen(msk, f)

 ≥ 1− µ(λ)

where we define23

22We also allow Enc,EncSetup,KeyGen, and Dec to additionally receive parameters 1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY as input,
but omit them from our notation for convenience.

23As with all streaming functions, we assume that Dec.st1 = ⊥ if not otherwise specified.
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• Enc(msk, x) outputs ctx = (cti)i∈[n] produced by sampling Enc.st ← EncSetup(msk) and then
computing cti ← Enc(msk,Enc.st, i, xi) for i ∈ [n].

• Dec(skf , ctx) outputs y = (yi)i∈[n] where (yi,Dec.sti+1) = Dec(skf ,Dec.sti, i, cti) for i ∈ [n].

Definition A.9 (Q-Bounded, Adaptive-IND-Security for Secret-Key sFE). A secret-key streaming
FE scheme sFE for P/Poly is Q-bounded, adaptive-IND-secure if there exists a negligible function
µ such that for all λ ∈ N and all PPT adversaries A,∣∣∣Pr[SKExptsFE-Q-Ad-IND

A (1λ, 0) = 1]− Pr[SKExptsFE-Q-Ad-IND
A (1λ, 1) = 1]

∣∣∣ ≤ µ(λ)

where for each b ∈ {0, 1} and λ ∈ N, we define

SKExptsFE-Q-Ad-IND
A (1λ, b)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: Compute msk← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).

3. For a polynomial number of rounds, the adversary can do either one of the following in
each round:

(a) Function Query: The adversary can make at most Q = Q(λ) such queries:

i. A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
ii. skf ← sFE.KeyGen(msk, f).

iii. Send skf to A.
(b) Message Query:

i. A outputs a stream identity id.

a. If this is the first message query with stream identity id, sample Enc.stid ←
sFE.EncSetup(msk) and initialize indexid = 1. Else, increment indexid by 1.

b. Set i = indexid.

ii. A outputs a message pair (x
(0)
id,i, x

(1)
id,i) for stream identity id where x

(0)
id,i, x

(1)
id,i ∈

{0, 1}ℓX .
iii. ctid,i ← sFE.Enc(msk,Enc.stid, i, x

(b)
id,i).

iv. Send ctid,i to A.

4. Experiment Outcome: A outputs a bit b′ which is the output of the experiment.

Additionally, when running the experiment, we immediately halt and output 0 if the adversary
ever aborts or if it at any point some function query f submitted by the adversary yields

different outputs on any of the challenge message streams submitted so far (i.e. if f(x
(0)
id ) ̸=

f(x
(1)
id ) for some function query f submitted by the adversary where {(x(0)id,i, x

(1)
id,i)}i∈[t] are the

message queries submitted so far under some stream identity id, x
(0)
id = x

(0)
id,1 . . . x

(0)
id,t, and x

(1)
id =

x
(1)
id,1 . . . x

(1)
id,t).

Definition A.10 (Other Secret-Key sFE Security Definitions). There are many variations of the
security definition. We list a few below:
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• Q-Bounded, Selective-IND-Security: The adversary is required to make all message
queries before any function queries. This is identical to Definition A.9, except that we do
not allow the adversary to make a Challenge Message Query after it has made a Function
Query.

• Q-Bounded, Function-Selective-IND-Security: The adversary is required to make all
function queries before any message queries. This is identical to Definition A.9, except that
we do not allow the adversary to make a Function Query after it has made a Challenge
Message Query.

We also define a weak notion of simulation security in the secret-key setting.

Definition A.11 (Single-Key, Single-Ciphertext, Function-Selective-SIM-Security). A secret-key
streaming FE scheme sFE for P/Poly is single-key, single-ciphertext, function-selective-SIM-secure
if there exists a PPT simulator Sim and a negligible function µ such that for all λ ∈ N and all PPT
adversaries A,∣∣∣Pr[RealExptOne-sFE-SIM

A (1λ) = 1]− Pr[IdealExptOne-sFE-SIM
A,Sim (1λ) = 1]

∣∣∣ ≤ µ(λ)

where for λ ∈ N, we define

RealExptOne-sFE-SIM
A (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY .

2. Setup: msk← sFE.Setup(1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY )

3. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) skf ← sFE.KeyGen(msk, f)

(c) Send skf to A.

4. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) If this is the first challenge message query, sample Enc.st← sFE.EncSetup(msk) and
initialize the index i = 1. Else, increment the index i by 1.

(b) A outputs a challenge message xi ∈ {0, 1}ℓX .
(c) cti ← sFE.Enc(msk,Enc.st, i, xi).

(d) Send cti to A.

5. Experiment Outcome: A outputs a bit b which is the output of the experiment.

IdealExptOne-sFE-SIM
A,Sim (1λ)

1. Parameters: A takes as input 1λ, and outputs a function size 1ℓF , a state size 1ℓS , an
input size 1ℓX , and an output size 1ℓY . Sim receives (1λ, 1ℓF , 1ℓS , 1ℓX , 1ℓY ).
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2. Function Query:

(a) A outputs a streaming function query f ∈ F [ℓF , ℓS , ℓX , ℓY ].
(b) Sim receives f and outputs a function key skf .

(c) Send skf to A.

3. Challenge Message Queries: The following can be repeated any polynomial number
of times:

(a) If this is the first challenge message query, initialize the index i = 1 and set st1 = ⊥.
Else, increment i by 1.

(b) A outputs a message xi ∈ {0, 1}ℓX .
(c) (yi, sti+1) = f(xi, sti).

(d) Sim receives yi and outputs a ciphertext cti.

(e) Send cti to A.

4. Experiment Outcome: A outputs a bit b which is the output of the experiment.

Remark A.12. In the secret-key setting, single-key, single-ciphertext, function-selective-SIM-
security implies single-key, single-ciphertext, function-selective-IND-security.
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