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Abstract

We present an efficient layered circuit design for SHA3-256 Merkle tree
verification, suitable for a GKR proof system, that achieves logarithmic
verification and proof size. We demonstrate how to compute the predicate
functions for our circuit in O(logn) time to ensure logarithmic verification
and provide GKR benchmarks for our circuit.

1 Introduction

The Zero-Knowledge Proof (ZKP) is a crucial foundational element that sup-
ports various essential infrastructures, including remote authentication, elec-
tronic voting, cryptocurrency, and decentralized finance. ZKPs can typically be
designed to be non-interactive and transparent, addressing even more practical
demands. As a potential breakthrough for enhancing security and privacy in cy-
berspace, substantial research and industrial investment have been directed to-
ward creating faster and more compact Non-Interactive Zero-Knowledge (NIZK)
proofs.

Many cutting-edge zero-knowledge proof systems [2,5–7] are based on GKR,
a foundational randomized protocol that converts the validity of layered circuit
computations into significantly fewer (primarily linear) polynomial constraints.
The key differences among these protocols arise mainly from their approaches
to proving the resulting polynomial constraints.

To archive fast verification and proof size, the crucial part to prove a particu-
lar computation in GKR is too design an efficient layered circuit with logarithmic
predict functions for each layer. One should consider whether they need to in-
clude more witness in the input to simplify the computation and how the layers
should be constructed to provide more pattern for the predicate functions.

An important application for ZKP is the verification of Merkle tree opening
on one commitment. And we try to use the standard SHA3-256 for the hash
function in the tree construction. In this paper, we will show that it is possible
for a layered circuit to achieve fast verification on this kind of application.
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2 Preliminaries

2.1 GKR

Multilinear Extension. The multilinear extension of any function V : {0, 1}ℓ 7→
F is denoted by Ṽ : Fℓ 7→ F, a polynomial defined as

Ṽ (x0, . . . , xℓ−1)
def
=

∑
b∈{0,1}ℓ

(
V (b)

∏
i∈ℓ

(
(1− xi)(1− bi) + xibi

))
.

Obviously, ∀x ∈ {0, 1}ℓ, Ṽ (x) = V (x). Using multilinear extension, the validity
of all evaluations of V can be reduced to checking a single uniform random point
of Ṽ , except for a soundness error of 1/|F|.
SumCheck. The goal of the sumcheck protocol [4] is to verify the summation of
a polynomial f : {0, 1}ℓ 7→ F on a binary hypercube, i.e.,

∑
bi∈{0,1} f(b1, . . . , bℓ).

It is achieved by reducing a correct summation into evaluating f̃ on a random
point, i.e., f̃(r1, . . . , rℓ) with ri ∈ F uniformly picked by V in each of the ℓ
rounds. In the ith round, P sends polynomial

f̃i(xi)
def
=

∑
bi+1,...,bℓ∈{0,1}

f̃(r1, . . . , ri−1, xi, bi+1, . . . , bℓ)

where r1, . . . , ri−1 are random values picked by V in previous rounds. Then V
checks

f̃i−1(ri−1) = f̃i(0) + f̃i(1)

and sends random ri ∈ F. Overall, V checks ℓ linear equalities and the validity
of f̃(r). The ith SumCheck round introduces soundness error deg(fi)/|F|.
GKR. Given a d-layer circuit, the GKR protocol [3] captures the correctness
of the ith layer computation with a multivariate polynomial Vi : {0, 1}si 7→ F
defined by

Vi(z) =
∑
x,y

(
addi(x, y, z)

(
Vi+1(x) + Vi+1(y)

)
+muli(x, y, z)Vi+1(x)Vi+1(y)

)
where addi,muli are the predicate functions for addition and multiplication gates
on the ith layer.

The GKR protocol starts from using multilinear extension to reduce the
validity of all outputs of the circuit to Ṽ0(t0) where t0 is a random point picked
by V. Then, for i from 1 to d − 1, GKR uses SumCheck to verify Vi−1(ti−1),

reducing it to checking the values of Ṽi(ri), Ṽi(si) and a equality:

v = ãddi(ri, si, ti−1)
(
Ṽi(ri) + Ṽi(si)

)
+ m̃uli(ri, si, ti−1)Ṽi(ri)Ṽi(si)
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where v is a value P claimed in the last SumCheck round and ri, si, ti−1 are
random challenges picked by V in previous SumCheck rounds. Finally, at the
initial input layer, the validity of any evaluation of Ṽd can be established by
interpolating the multilinear polynomial defined by the circuit’s initial inputs.
One concern of this scheme is that the number of points to check on Ṽi doubles
as i increments. Chiesa et al. [1] proposed to fix this issue by combining Ṽi(ri)

and Ṽi(si) at each layer using public-coin random coefficients.

2.2 SHA3

Keccak is a family of sponge functions that has been standardized in the form
of SHAKE128 and SHAKE256 extendable output functions and of SHA3-224
to SHA3-512 hash functions in FIPS 202.

In Keccak, the underlying function is a permutation chosen in a set of seven
Keccak-f permutations, denoted Keccak-f [b], where b is the width of the per-
mutation and b = 1600 for SHA3-256. The width of the permutation is also
the width of the state in the sponge construction. The state is organized as an
array of 5x5 lanes, each of length w = b/25.

Detailed pseudo-code for the permutation and sponge functions are described
in Figure 1.

2.3 Merkle Tree

Merkle hash tree proposed by Ralph Merkle in [29] is a common primitive to
commit a vector and open it at an index with logarithmic proof size and verifi-
cation time.

For merkle tree with n leaves, each merkle tree proof consists of the log n
number of sibling nodes of each path nodes and additional log n number of bits
indicating the left or right of each path nodes.

The verification process is described in Figure 2.

3 Circuit Design

3.1 Circuit Layout

The input layer is parallel divided into log n blocks, each of which has 512
inputs. The first blocks has 128 inputs for the message, 64 inputs for the left-
right selectors padding with 64 input of zeros and finally 256 inputs for the
root-hash. The rest blocks of the input layer has the same pattern: 256 inputs
of the prev-hash and 256 inputs of the sibling hash.

The second layer will decompress the input layer by extending each block
into 1024 gates. In the first block, the message input is extent to 512 wires
with 384 padding zeros, the rest 512 gates is relaying the 256 root-hash with
256 padding zeros. The rest blocks each has 256 selected left hash, 256 selected
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Keccak-f [b](A) {
f o r i in 0..n− 1

A = Round[b](A,RC[i])
r e turn A

}

Round[b](A,RC) {
# θ s tep
C[x] = A[x, 0]⊕A[x, 1]⊕A[x, 2]⊕A[x, 3]⊕A[x, 4] , f o r x in 0..4
D[x] = C[x− 1]⊕ rot(C[x+ 1], 1) , f o r x in 0..4
A[x, y] = A[x, y]⊕D[x] , f o r (x, y) in (0..4, 0..4)

# ρ and π s t ep s
B[y, 2 ∗ x+ 3 ∗ y] = rot(A[x, y], r[x, y]) , f o r (x, y) in (0..4, 0..4)

# χ s tep
A[x, y] = B[x, y]⊕ ((∼ B[x+ 1, y]) ·B[x+ 2, y]) , f o r (x, y) in (0..4, 0..4)

# ι s tep
A[0, 0] = A[0, 0]⊕RC
re turn A

}

Keccak[r, c](Mbytes | | Mbits) {
# Padding
d = 2ˆ |Mbits | + sum fo r i =0 . . |Mbits |−1 o f 2ˆ i ∗Mbits [ i ]
P = Mbytes | | d | | 0x00 | | . . | | 0x00
P = P xor (0 x00 | | . . | | 0x00 | | 0x80 )

# I n i t i a l i z a t i o n
S [ x , y ] = 0 , f o r (x , y ) in ( 0 . . 4 , 0 . . 4 )

# Absorbing phase
f o r each block Pi in P

S [ x , y ] = S [ x , y ] xor Pi [ x+5∗y ] , f o r (x , y ) such that x+5∗y < r /w
S = Keccak−f [ r+c ] ( S)

# Squeezing phase
Z = empty s t r i n g
whi l e output i s r eques ted

Z = Z | | S [ x , y ] , f o r (x , y ) such that x+5∗y < r /w
S = Keccak−f [ r+c ] ( S)

re turn Z
}

Figure 1: SHA3-256 Pseudo-Code
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Verify(Root, Open, Siblings, Left-Right) {

k = Siblings.length
m = SHA3-256(Open)

f o r i in 0..k − 1
i f Left-Right[i] == 0
m = SHA3-256(m ∥ Siblings[i])

e l s e
m = SHA3-256(Siblings[i] ∥ m)

re turn m == Root

}

Figure 2: SHA3-256 Merkle Tree Verification

right hash, 256 bit prev-hash and 256 bit sibling hash. After this arrangement,
the first 512 wires of each block is the pre-image to each SHA3-256.

The next 48 layers corresponds the 24-iteration loop of SHA3-256 round,
each consists of one linear layer for the θ, ρ, π and ι steps, and one non-linear
layer for the χ step. The width of each block is further extent to 4096, where
the first 1600 gates are used to store the SHA3-256 inner states. The rest gates
are storing the pre-hash which should be the result of the SHA3-256 in-block
and 256 bit-tests for sibling hash.

In the output layer, we will test the SHA3-256 output with the prev-hash by
outputting the subtraction results, and also output the bittest results. There-
fore, a correct computation will output zeros on all the output gates.

3.2 Predicate Functions

3.2.1 In-block predicates

The predicate function for a kind of gate that has a pattern that all of the input
and output wires are in the same block can be easily logarithmic paralleled. For
example, a fan-in-2 gates g in a m-bit layer with k-bit block has

predg(x, y, o) =

eq(xk..xm−1, yk..ym−1, zk..zm−1) · sub-predg(x0..xk−1, y0..yk−1, z0..zk−1).

where

eq(xk..xm−1, yk..ym−1, zk..zm−1) =

m−1∏
i=k

(xiyizi + (1− xi)(1− yi)(1− zi))

It can be easily seen that the cost is O(m − k) = O(log n), where n is the
number of blocks.
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3.2.2 Inter-block predicates

Now we consider a more complicated case where at least one of the input wire
is in another block. In our case, since each SHA3-256 will use the SHA3 result
from the previous hash, i.e. the previous block, for a fan-in-2 g gate with input
x, y, z, we can assume that the first input x is from the previous layer while y
and z are in the same block.

predg(x, y, z) =

inter-block-pred(xk..xm−1, yk..ym−1, zk..zm−1) · sub-predg(x0..xk−1, y0..yk−1, z0..zk−1).

The idea is to test the least significant bit of x, if it is zero, then the least
significant bit of y is one and the rests are the same with x. Otherwise, the
least significant bit of y should be zero and we will recursively call the previous
by removing the least significant bit of x and y. And we should also consider
the output z, which is always the same as y.

inter-block-pred(xk..xm−1, yk..ym−1, zk..zm−1) =

(xk == 0 ∧ yk == 1 ∧ zk == 1) · eq(xk+1..xm−1, yk+1..ym−1, zk+1..zm−1)+

(xk == 1 ∧ yk == 0 ∧ zk == 0) · inter-block-pred(xk+1..xm−1, yk+1..ym−1, zk+1..zm−1)

where

(xk == 0 ∧ yk == 1 ∧ zk == 1) = (1− xk)ykzk

(xk == 1 ∧ yk == 0 ∧ zk == 0) = xk(1− yk)(1− zk)

Since the number of recursion is m− k = log n, the cost is still O(log n).

4 Experiment

We experiment our SHA3-256 merkle tree verification circuit with GKR protocol
with Rust code. The binary field we have tested is 192-bit which can easily
achieve 128-bit security for the GKR protocol. All the results are obtained on
a Linux laptop with Intel i9-11900H CPU and 64GB DDR4.

The results in Table 1 clearly shows a logarithmic verifier and proof size.

5 Conclusion

We propose a new design of layered circuit for SHA3-256 Merkle tree verification,
with logarithmic predicate functions for each layer, which offers logarithmic time
for GKR verification.
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log n Prover time (ms) Verifier time (ms) Proof size (kB)

2 83.70 24.283 48.93
3 163.63 24.534 52.49
4 321.09 25.196 56.05
5 654.46 25.491 59.62
6 1301.87 25.991 63.18
7 2577.37 27.306 66.74

Table 1: Experiment Result
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