
An acceleration of the AKS prime

identi�cation algorithm

Stephen Meredith Williams

email zen323167@zen.co.uk

Barcombe Services

3a Priory Court

Nettleton

CHIPPENHAM

Wiltshire SN14 7NY

UK

January 25, 2024

mailto:zen323167@zen.co.uk


Abstract

In its standard form, the AKS prime identi�cation algorithm is deterministic
and polynomial time but too slow to be of practical use. By dropping its
deterministic attribute, it can be accelerated to an extent that it is prac-
tically useful, though still much slower than the widely used Miller-Rabin-
Selfridge-Monier (MRSM) algorithm based on the Fermat Little Theorem or
the Solovay-Strassen algorithm based on the Euler Criterion. The change
made, in the last stage of AKS, is to check a modular equation not for a
long sequence of values but for a single one. Another change is to reduce,
arbitrarily, the size of the parameter r giving the degree of the polynomial
used for the last stage.12

1Key Words: AKS primality testing, single�value, Carmichael numbers, binomial

theorem, acceleration, algorithm
2MathSciNet Classi�cation 11Y11



0.1 Report

In 2004, Manindra Agrawal, Neeraj Kayal and Nitin Saxena described [1] a
general, unconditional, deterministic, polynomial-time algorithm that iden-
ti�es an input number as prime or composite. After their surname initials
it is generally known as AKS. It was seen as a breakthrough, but the run-
time polynomial in question was of degree 12, so high that the algorithm did
not supplant existing methods of identifying primality that are probabilistic
or conditional (under the Extended Riemann Hypothesis). These methods
matter particularly when it comes to cryptographic systems such as RSA,
whether in constructing large semi-primes to implement such a code or in
attempts by way of factoring the semi-prime to attack it.

AKS depends upon the binomial theorem:

(x+ y)n =

n∑
i=0

(
n

i

)
xn−iyi.

Since
(
n
i

)
= n!

i!(n−i)! and m! = m(m− 1)(m− 2) . . . 3.2.1 it can be seen that
when n is prime every coe�cient of the expansion except the �rst and the
last ones is divisible by n. In other words,

(x+ y)p ≡ xp + yp mod p

for prime p. We also have by the Fermat Little Theorem that if n is prime

yn ≡ y mod n

and so
(x+ a)n ≡ xn + a mod n (1)

(1) can form the basis of a valid but slow primality test, especially as many
computer languages will generate the binomial coe�cients for you. In GP-
PARI the short function: for(i=1,n-1,if(binomial(n,i)%n,return(0)));1;

implements this idea easily and successfully, but for quite small n there are
problems with the stack size.

What is special about AKS, is that, to get around the problem of com-
puting the high-degree polynomial (x + y)n, one computes the polynomial
modulo some small-degree polynomial. This is additional to computing it
modulo n as well. A simple polynomial of degree r is xr − 1.

In AKS, the double modular equality

(x+ a)n ≡ xn + a mod (n, xr − 1) (2)

is checked for a long sequence of values of a, starting with 1 and �nishing
with

√
φ(r) log(n) where φ is the Euler phi symbol, whose value for prime

r is r − 1. The acceleration being proposed is achieved largely by replacing

1



this sequence with any single value of a. Normally, in experimentation with
this idea, a = 2 was used.3 Very surprisingly, this has never been found to

give the wrong answer with a single proviso to be added. The answers are
all checked, e.g., by whether the number is in a �le of primes, or else by
probabilistic algorithm MRSM, which uses a converse of the Fermat Little
Theorem on a number of "witnesses" to primality.

The proviso mentioned above occurs earlier in the algorithm. In (2) a
value r appears which is the degree of the modular polynomial. This value
is speci�ed at the beginning of AKS (once it has been checked that n is not
a perfect power). The proviso is that

n2 6≡ 1 mod r (3)

AKS stipulates that
r(n) > log2 n (4)

that is, that the order of n modulo r should be greater than the square of log
n. This is part of the proof of the algorithm as deterministic. It produces
large values of r, but the algorithm will in practice run and terminate with
many di�erent and smaller values of r. Since the run-time is proportional to
r3/2 [5] (p. 16), small values of r give a shorter run-time. Taking this to the
extreme, the smallest value of r that works is 5, however that contravenes
(3) very often. If it does, this implementation then tries r = 29. If that
contravenes (3) then r = 37, is tried, then 41, 53, 59, 67, 71, 83, 89, 101,
103, 127, 131 will be tried if necessary. These values are those that appear
often in attempts to �nd r under (4) (using the algorithm given by [5], p.
16, section 3b.3). If none of them were to work, the implementation would
fall back on its initialization as r = 1, which would lead to a panic and stop
the program (something that has never yet happened).

For a test prime of 117 decimal digits (388 binary digits) namely (12109+
1)/13 the run-time on an i7 desktop system was 432 seconds for the full
sequence, but only half a second on the same system with 2 as the only
a. For a test composite of 121 decimal digits (402 binary digits) namely
(12113+1)/13 the run-time was again half a second with 2 as the only a but
now the same with the full sequence programmed as the loop exits at the �rst
double modular equality (2) to be checked. All these times are much slower
than MRSM (the approach based on witnesses to primality) which only takes
1ms for both of these numbers of about 400 bits each. Benchmarking for
some Mersenne primes con�rms this general picture.

Naturally, the utility of the claim that the algorithm works with a single
value of a depends on the extent to which the claim's correctness has been

3The only known exception is a = 1, which is also quite e�ective as a single value, but

fails seven times within the �rst million, for n = 473, 6443, 9701, 10153, 35621, 137419,

and 896203. Though there were no further failures for 106 < n ≤ 107, seven more were

found for 107 < n < 108.

2



tested. The following numbers have been checked with an implementation
in Rust4 and the outcome con�rmed mainly by MRSM:5

� natural numbers to 108

� prime numbers to 109, which amounts to 50847534 numbers

� some particularly challenging composites, i.e. strong pseudo-primes to
low base [9, 7]: 113 such numbers were all con�rmed composite

� a hundred million randomly chosen natural numbers between 108 and
1010

� a hundred thousand randomly chosen natural numbers between 10200+
108 and 10200 + 1010

� for everyday prime identi�cation e.g. in the course of factoring, sin-
gle�value AKS is routinely used by the author as a backup to MRSM.

The algorithm as modi�ed follows. It needs to be emphasized that there
is no guarantee that the decision as between prime and composite is correct.
It is merely that this algorithm has never been found to give a false result.
MRSM is probabilistic and will give the wrong answer very occasionally, but
with 25 witnesses so rarely that it can be taken as correct. If there ever were
to be a contradiction, it would have to be resolved by another algorithm, such
as that of Solovay-Strassen based on the Euler criterion or that of Lucas.

Input: integer n > 131
1. Check that n is not a perfect power
2. The set {5, 29, 37, 41, 53, 59, 67, 71, 83, 89, 101, 103, 127, 131} is used
to choose r. Starting from the left, the �rst value in the set that obeys
(3) is used.
3. If 1 < (a, n) < n for some a < r, output COMPOSITE.
4. If

(x+ 2)n ≡ xn + 2 mod (n, xr − 1)

output PRIME else output COMPOSITE

Algorithm for Primality Testing

The sub-algorithms needed for the checking of stage 4 are given in books
like [11] (algorithms 3.44 and 3.45) and the treatments in [12] and [4] (algo-
rithm 8.2.1) and [3] (algorithms 4.5.1, or 4.5.9 for D. J. Bernstein's quartic
time variant) are also recommended. The single�value algorithm is able to

4using the rug package when arbitrary-precision arithmetic was needed
5Another implementation that was in Rust, using 25 witnesses.

3



demonstrate the primality of repunit-1031 in 12 seconds and Mersenne-2203
(which is 969 decimal digits) in about half a second. As well, repunit-1021
is shown composite in about 12 seconds too.

An issue requiring further research is why (3) is necessary. It is a fact
that if it is omitted, there are failures of the algorithm presented above.
Stipulation (3) was included in experimentation because it is part of a con-
jecture sometimes attributed to Agrawal.[10] This would have the e�ect of
reducing the degree of the polynomial for the AKS run-time, originally 12,
which is why it is so impractical, to 3. A modi�ed form of the conjecture
is endorsed by [10] (Conclusion) but is more elaborate than the algorithm
above, namely, that a second value a = −1 should be added to a = 2 for the
algorithm to be valid. As stated previously, the present work suggested that
any single value of a, not just 2, will do. However, the algorithms presented
by [11] will not permit a negative a.

0.2 Afterword

As well as checking stage 4 for indeterminate x with these sub-algorithms like
[11] (algorithms 3.44, 3.45), it is also possible, and much faster, to omit r and
check the congruence (1) for a = 2 and speci�c values of x. Experimentation
led to prime values of x ∈ {5, 7, 11, . . . , 89, 97} being used. Intervening
composites or many more primes as x did not a�ect the results. These
were that the only values of n misidenti�ed were Carmichael numbers (and
that all of those were misclassi�ed as prime). There are 646 of these below
109 [6, 9] but, indeed, an in�nite number in all [2]. [8] gives much more on
the distribution of Carmichael numbers, including the database work of R.
G. E. Pinch. A test for primality could check that a number classi�ed as
prime on this basis was not a Carmichael number, since these are so rare,
but such a test would have no advantage over tests based on a converse of
the Fermat Little Theorem.

4



Bibliography

[1] Agrawal, M., Kayal, N., and Saxena, N. Primes is in P. The

Annals of Mathematics 160 (2004), 781�793.

[2] Alford, W., Granville, A., and Pomerance, C. There are in-
�nitely many Carmichael numbers. The Annals of Mathematics 139

(1994), 703�722.

[3] Crandall, R., and Pomerance, C. B. Prime numbers: a compu-

tational perspective, vol. 182. Springer Science & Business Media, 2006.

[4] Dietzfelbinger, M. Primality Testing in Polynomial Time: From

Randomized Algorithms to "Primes is in P". Springer, 2004.

[5] Granville, A. It is easy to determine whether a given integer is prime.
Bulletin of the American Mathematical Society 42 (2004), 3�38.

[6] Jaeschke, G. The Carmichael numbers to 1012. Mathematics of Com-

putation 55 (1990), 383�389.

[7] Jaeschke, G. On strong pseudoprimes to several bases. Mathematics

of Computation 61 (1993), 915�926.

[8] Jameson, G. Finding Carmichael numbers. The Mathematical Gazette

95 (2011), 244�255.

[9] Pomerance, C., Selfridge, J. L., and Wagstaff, S. On the
distribution of pseudoprimes to 25.109. Mathematics of Computation

37 (1980), 587�593.

[10] Popovych, R. A note on Agrawal conjecture. Tech. rep., Cryptolology
e-print archive, 2009.

[11] Wagstaff, S. S. The joy of factoring, vol. 68. American Mathematical
Soc., 2013.

[12] Yan, S. Y. Primality Testing and Integer Factorization in Public-Key

Cryptography. Kluwer, 2004.

5


	Report
	Afterword

