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Abstract—A common misconception is that the computational
abilities of circuits composed of additions and multiplications
are restricted to simple formulas only. Such arithmetic circuits
over finite fields are actually capable of computing any function,
including equality checks, comparisons, and other highly non-
linear operations. While all those functions are computable,
the challenge lies in computing them efficiently. We refer
to this search problem as arithmetization. Arithmetization
is a key problem in secure computation, as techniques like
homomorphic encryption and secret sharing compute arithmetic
circuits rather than the high-level programs that programmers
are used to. The objective in arithmetization has typically
been to minimize the number of multiplications (multiplicative
size), as multiplications in most secure computation techniques
are significantly more expensive to compute than additions.
However, the multiplicative depth of a circuit arguably plays an
even more important role in deciding the computational cost:
For homomorphic encryption, it strongly affects the choice of
cryptographic parameters and the number of bootstrapping
operations required, which are orders of magnitude more
expensive to compute than multiplications. In fact, if we can
limit the multiplicative depth of a circuit such that we do not
need to perform any bootstrapping, we can omit the large
bootstrapping keys required to perform them all together.
We argue that arithmetization should be treated as a multi-
objective minimization problem, in which a trade-off can
be made between a circuit’s multiplicative size and depth.
We present efficient depth-aware arithmetization methods for
many primitive operations such as exponentiation, univariate
functions, equality checks, comparisons, and ANDs and ORs,
which take into account that squaring can be cheaper than
arbitrary multiplications, and we study how to compose them.

1. Introduction

Within cryptography, the area of secure computation has
come to know many different techniques, such as lattice-
based homomorphic encryption and secret sharing, each with
different trade-offs. Secret sharing-based secure computation
typically suffers from a high degree of interaction, incurring
network latency. On the other hand, somewhat and fully-
homomorphic encryption allows for computations to be

performed locally, but the computational cost is significantly
higher. Other techniques, such as garbled circuits, provide
even more trade-offs. The main problem that we want to
solve in secure computation is to find the most efficient
protocols that compute a given function. For secret sharing,
this typically comes down to minimizing the interactivity, and
for homomorphic encryption, this comes down to minimizing
the computational cost.

As part of this optimization problem, it is often not
straightforward how to compute a given function using secure
computation techniques because they require a problem to
be expressed in terms of additions and multiplications in
some algebraic structure. We refer to this sub-problem as
arithmetization. So far, most works find an arithmetization of
some function that minimizes the number of multiplications,
known as the multiplicative size. This objective stands
to reason because multiplications are significantly more
expensive to compute than additions in all of the techniques
mentioned above. However, these techniques do not consider
the multiplicative depth of a circuit, which is the largest
number of multiplications in any path through the circuit.

In this work, we propose a new type of arithmetization
called depth-aware arithmetization, which considers both a
circuit’s multiplicative size and multiplicative depth. In doing
so, depth-aware arithmetization allows one to significantly
reduce the number of interactions in secret sharing and the
size of the parameters needed in lattice-based homomorphic
encryption schemes, resulting in a lower computational cost.
Specifically, we study the arithmetization of deterministic
high-level functions while minimizing both the multiplicative
size and depth of the generated circuit. We restrict these
circuits to be deterministic (so constants are truly constant)
and do not allow intermediate revealing of values. We also
restrict the algebraic structure to a prime field Fp, in which
any function can be expressed as an arithmetic circuit.

As a second consideration, we take into account that
squaring is typically a more efficient operation than per-
forming arbitrary multiplications. We do so by defining a
metric called the multiplicative cost, which is the number
of multiplications between distinct non-constant inputs plus
the total squaring cost, which is the number of squarings
multiplied by 0.5 ≤ σ ≤ 1.0. In Table 1, we explain how the
multiplicative depth and multiplicative cost indeed capture



important efficiency aspects in different secure computation
techniques. We note that in some arithmetic garbling schemes,
the multiplicative depth also plays an important role in the
efficiency of a circuit [1].

TABLE 1. THE ROLE OF THE MULTIPLICATIVE DEPTH IN SECURE
COMPUTATION, AND THE WAY IN WHICH SQUARING IS CHEAPER.

Technique Multiplicative depth Squaring

Lattice-based HE Noise growth Cheaper tensor products
Secret sharing Number of interactions Smaller Beaver tuples
Arithmetic garbling - Smaller gates

While our work applies to multiple secure computation
techniques, it directly applies to lattice-based homomorphic
encryption schemes. The reason is that, for these schemes,
there is a highly non-trivial relation between a circuit’s
depth and cost in determining the overall efficiency. To
accomodate this non-trivial relationship, the output of depth-
aware arithmetization is not one circuit but a collection of
circuits that optimally trade off depth and cost. Moreover,
many use cases rely solely on local computations, which
suits our restriction that no intermediate values are revealed.

The most popular lattice-based homomorphic encryption
schemes rely on the hardness of (variants of) the learning
with errors problem. The hardness is determined in part
by a small amount of noise that is added to samples. In
homomorphic encryption schemes derived from this problem,
ciphertexts contain noise that grows linearly during homo-
morphic additions and exponentially during multiplications.
For successful decryption, this noise must stay under some
bound. Parameters for these schemes are therefore chosen to
be large enough so that the noise has enough room to grow,
remaining under the noise limit with high probability. In other
words, the size of those parameters are largely determined
by the multiplicative depth of the evaluated circuit. At the
same time, large parameters negatively impact the efficiency
of each homomorphic multiplication.

Our work is not the first to reduce the depth of arithmetic
circuits. Some works [2], [3], [4], [5] take in arbitrary
arithmetic circuits and reduce their depth while increasing
their size. We do not consider these generic depth reduction
methods in this work for two reasons. Firstly, these methods
ignore the function that is being computed, but since we
have this knowledge, we exploit it. Secondly, these methods
reduce the depth by distributing products of sums, while
increasing the multiplicative size. However, opportunities
for distributing products of sums do not arise in the circuits
generated in this paper (unlike Boolean circuits, where this
is much more common).

Unlike the methods described above, our work considers
depth reduction during arithmetization, which allows us to
generate circuits that these methods could not. To demon-
strate this, we consider the function x1∨· · ·∨x7 and generate
two depth-aware arithmetizations in F5. Figure 1 shows an
arithmetization of size 4 and depth 4, whereas Figure 2 shows
an arithmetization of size 5 and depth 3. The latter circuit
cannot be generated from the first circuit using the methods

described above. Moreover, it is not immediately clear which
of these two circuits would be faster to compute using
lattice-based homomorphic encryption. We use fhegen [6]
to generate parameters and execute the circuits on an 8-core
M1 CPU to find that the size-4 circuit takes 41.3 ± 0.5
milliseconds, while the size-5 circuit took only 22.8± 1.7
milliseconds. While previous methods typically prioritize
the size-4 circuit, the size-5 circuit outperforms the former
because it supports a smaller ring dimension.

x1 + + · · + + · ·
x2

x3 +

x4

x5

x6 +

x7

Figure 1. An arithmetization of x1∨x2∨· · ·∨x7 in F5 with a multiplicative
size of 4 and a multiplicative depth of 4.

x1 ¬ · ¬ + + · ·
x2 ¬
x3 ¬ · ¬
x4 ¬
x5 ¬ · ¬ +

x6 ¬
x7

Figure 2. An arithmetization of x1∨x2∨· · ·∨x7 in F5 with a multiplicative
size of 5 and a multiplicative depth of 3.

In the rest of the work, we will compare circuits rather
than run times. Since we generate the entire Pareto front, the
user can define any run time estimation script to select the
desired circuit. Note that we will be looking at p that are
not necessarily NTT-friendly, but our algorithms are generic.
One can still run the same circuit many times in parallel on
different data.

The rationale behind our work is to propose algorithms
for generating efficient circuits for several common primitives.
These primitives can be composed into more complex circuits.
In each section, we first discuss how to obtain anchor
points: the points that minimize the multiplicative cost
(with the multiplicative depth as a secondary objective) or
the multiplicative depth (with the multiplicative cost as a
secondary objective). After that, we discuss how to obtain
the other solutions in the depth-cost front. At the end of
each section, we perform a case study, where we use the
primitive for a common practical use case.

The structure of our paper is as follows. In Section 2,
we describe our notation. In Section 3, we briefly review
related work. In Section 4, we discuss the depth-aware



arithmetization of sums and products. After that, in Sec-
tion 5, we provide a MaxSAT formulation for generating
exponentiation circuits. We use the exponentiation circuits
to arithmetize the equality operator. In Section 6, we vary a
parameter in two existing techniques to generate circuits for
univariate polynomial evaluation. We use these circuits for
arithmetizating the comparison operator. We present the last
primitive in Section 7, where we generate circuits for AND
and OR operations. We study veto voting circuits, which
are essentially OR operations. In Section 8, we compose
these primitives into larger circuits. Finally, we conclude in
Section 9.

2. Notation and conventions
In this work, we typically denote circuits by upper-case

letters and symbolic variables by lower-case letters. Since
multiplications with constants are much cheaper to compute
than other multiplications, we denote the former as e.g. 3C
or 3 · 5, while we denote the latter using a × operator.

An arithmetic circuit C = (V,E) is a directed acyclic
graph consisting of variable & constant nodes, which form
the leaves of the graph, and arithmetic operations. The roots
of the graph are the outputs of the circuit. In this work, we
consider only addition and multiplication operations, but we
note that arithmetic circuits are used in various different
contexts, which may allow for a larger set of arithmetic
operations such as subtraction.

In many cases, we will write e.g. C = X + Y when we
know that C only has a single root, and it is an addition
node. In this work, we do not work with the set of edges E,
so we use X ∈ C to actually denote X ∈ V . In other words,
we only consider C’s nodes. Putting these two shorthands
together, we write [X × Y ∈ C] = {Z ∈ C | Z = X × Y }
to denote the set of all multiplications in C.

We define several metrics for arithmetic circuits below.
These metrics only consider multiplications. For this reason,
arithmetic circuits that also allow subtraction do not affect
the results in this work.

Definition 2.1 (Multiplicative size). The multiplicative size
of a circuit or several subcircuits is the number of multipli-
cations in these potentially-overlapping (sub)circuits:

size(C1, . . . , Cn) = |[X × Y ∈ C1]∪ · · · ∪ [X × Y ∈ Cn]| .
Definition 2.2 (Multiplicative cost). The multiplicative cost
of a circuit is a weighted sum of the cost of all multiplications
in a circuit. One might define the cost of squaring operations
to be a factor σ of that of arbitrary multiplications, yielding:

cost(C1, . . . , Cn) = σ|[X×X ∈ C1]∪· · ·∪[X×X ∈ Cn]|
+ |[X×Y ∈ C1 | X ̸= Y ]∪ . . .∪ [X×Y ∈ Cn | X ̸= Y ]| .
Definition 2.3 (Multiplicative depth). The multiplicative
depth of a circuit C is the largest number of multiplications
in any path through the circuit:

depth(C)=


0 If C is a leaf
max(depth(X),depth(Y )) If C=X+Y

1+max(depth(X),depth(Y )) If C=X×Y

For any circuit C, there exist an infinite number of differ-
ent circuits C ′ that perform the same computation. We denote
such an equivalence as C = C ′. An interesting question to
answer is for some circuit C, what is an equivalent circuit C ′

that minimizes some metric (such as the ones defined above).
We denote the minimal multiplicative size, cost, or depth,
that can be achieved by any equivalent circuit to some circuit
C as size∗(C), cost∗(C), and depth∗(C), respectively.

3. Related work

We briefly go over previous works in the same order as
this work, and describe their relation.

3.1. Arithmetization of Sums & Products

Products can be trivially expressed in an arithmetic circuit.
While the multiplicative size of a product cannot be reduced,
depth-aware arithmetization may rebalance a multiplication
tree to reduce the multiplicative depth. This has been studied
before, such as in the EVA and Ramparts compilers [7],
[8]. However, these compilers rebalance multiplication trees
without regard for the multiplicative depths of the operands,
so the result is suboptimal. We provide a simple algorithm
for optimally rebalancing multiplication trees and a closed-
form expression for the resulting multiplicative depth. There
are also works [2], [3], [4], [5] that show how to reduce the
multiplicative depth of a circuit beyond multiplication trees
by distributing products.

3.2. Arithmetization of Exponentiations

The problem of arithmetizing exponentiations (repeated
multiplication) is equivalent to the problem of arithmetization
of repeated additions. In cryptography, exponentiation circuits
have been studied extensively. As a result, methods like
square & multiply (also known as double & add) [9],
window methods [9], and ones based on heuristics [10] are
widely deployed. While these methods are highly efficient in
generating circuits, they only optimize for the multiplicative
size, meaning that the circuits themselves are not necessarily
efficient. Besides that, these methods do not consider that
squaring can be cheaper than arbitrary multiplications, and
they ignore the cyclic nature of Fp.

Abbas & Gustafsson [11] propose a depth-aware arithme-
tization method for exponentiations based on a mixed-integer
linear program (MILP) formulation. They also show how to
adapt the formulation to consider that squaring is cheaper
than arbitrary multiplications. While the formulation allows
one to find optimal arithmetic circuits, it is slow in practice. In
Section 5, we translate this MILP to a MaxSAT formulation
that is significantly faster to solve. We also provide several
optimizations.

3.3. Arithmetization of Polynomial Evaluation

The arithmetization of polynomial evaluation has been
studied in many previous works, but the work by Pater-
son & Stockmeyer [12] is of particular interest because



it specifically considers minimizing the number of non-
scalar multiplications (i.e. the multiplicative size). Paterson
& Stockmeyer provide two methods, which we discuss in
more detail in Section 6, and we show how to tweak them
to obtain a depth-size trade-off.

Iliashenko et al. [13], [14] show that for many common
integer functions, it is possible to choose a convenient p such
that the polynomial is efficiently computable. The key idea is
that the polynomial has a sparse structure of equally-spaced
monomials apart from the leading term. This choice of p is
quite restrictive. For example, for some of the functions it
must hold that p is a Mersenne prime. In our work, we want
to allow any choice of p.

Comparisons between two elements in Fp have also
been studied in other works. Let us focus on x < y, from
which the other comparisons follow easily. The approach
taken by the T2 compiler [15] performs an equality check
for each positive case of the comparison. In other words,∑p−1

x′=0

∑p−1
y′=x′+1(x = x′ · y = y′), which has optimal depth

but requires a large amount on non-scalar multiplications.
Iliashenko & Zucca [13] show how to generate efficient
circuits that only work for half of the elements in Fp.
These circuits have significantly lower multiplicative size,
but a higher depth. In this work, we show how to trade off
multiplicative cost and depth. We also use our formulation for
finding efficient exponentiation circuits to reuse the powers
that must be precomputed for polynomial evaluation, which
allows us to find slightly smaller comparison circuits.

3.4. ORs & ANDs

ANDs are typically arithmetized using a product x1 ∧
x2 ∧ · · · ∧ xk = x1 × x2 × · · · × xk, which leads to a
circuit of depth ⌈log2 k⌉. The OR operation follows using
DeMorgan’s law, which does not introduce further non-
scalar multiplications. An alternative arithmetization [16]
uses a summation and an IsNonZero check to compute such
operations on many inputs. Figures 1 and 2 show that by
combining both arithmetizations in F5, one can find circuits
on the depth-size front. Here, IsNonZero(z) is efficient to
compute because z4 only requires squaring twice. As a
result, these arithmetic circuits require fewer non-scalar
multiplications than the equivalent Boolean circuit, which
would have size 7 and depth 3.

4. Arithmetization of Sums & Products

Let us consider the class of arithmetic circuits consisting
of only multiplications. In such a circuit, one can only
reduce the number of multiplications by eliminating common
subexpressions, possibly introducing a trade-off between
the circuit’s multiplicative depth and size. When such an
arithmetic circuit does not contain common subexpressions,
we cannot reduce its multiplicative size, but we may still
reduce its multiplicative depth. An example can be seen
in Figure 3. The left subfigure shows a depth-3 product,
whereas the right subfigure shows a rearranged product

x1 × × ×
x2

x3

x4

x1 × ×
x2

x3 ×
x4

Figure 3. Two circuits that compute x1×x2×x3×x4. Left, an inefficient
circuit of depth 3. Right, an optimal circuit that uses a binary tree to
compute the product in depth 2.

of depth 2. This is the minimal depth that such a circuit
can achieve, because a binary tree of depth d can only
contain 2d − 1 operations, so a product of n = 4 distinct
inputs requiring n − 1 = 3 binary multiplications requires
d ≥ log2 n = 2. This simple optimization called rebalancing
has been implemented in multiple homomorphic encryption
compilers [7], [8].

General arithmetic circuits which also contain additions
are harder to analyze. In those cases, reducing the depth
beyond rebalancing requires distributing multiplications of
sums. It is still possible to determine the minimal depth of
such a circuit by relating it to the number of multiplicands.
For this reason, we define the multiplicative breadth:

Definition 4.1 (Multiplicative breadth). The multiplicative
breadth of a node in an arithmetic circuit is the largest
number of multiplicands in any path of the circuit up to that
node. The breadth of a node is given by:

breadth(C)=

1 If C is a leaf
max(breadth(X),breadth(Y )) If C =X+Y

breadth(X) + breadth(Y ) If C =X×Y

The breadth of an arithmetic circuit does not change when
the circuit is rebalanced, therefore it relates to the circuit’s
minimal multiplicative depth. Since each multiplication can
only take two operands, we have that:

depth∗(C) = ⌈log2 breadth(C)⌉ . (1)

Conversely, it always holds that breadth(C) ≤ 2depth(C).
In our work we do not consider depth reduction of

general arithmetic circuits, but we rather study how to
arithmetize several high-level operations. For this reason, we
do not consider distributing multiplications of sums. As such,
we can consider additions as ‘optimization fences’ beyond
which we do not change the circuit. Even in this limited
model, we show that the rebalancing operation described
above can be improved by taking into account the depth
of the operands. Algorithm 1 shows how to perform depth-
aware rebalancing, effectively answering the question of
how to optimally perform depth-aware products of distinct
multiplicands.

We can adapt the equation before to derive a closed-form
expression of the depth of the circuit resulting from depth-
aware arithmetization of a product. Since we do not modify



Algorithm 1 Depth-aware product of distinct multiplicands
1: procedure PRODUCT(C1, . . . , Cn)
2: Let Q be an empty priority queue
3: for n = 1, . . . , n do
4: Insert Ci into Q with priority depth(Ci)
5: while |Q| ≥ 2 do
6: Pop X and Y from Q ▷ Returns lowest depth
7: d← 1 + max(depth(X),depth(Y ))
8: Insert X × Y into Q with priority d
9: Pop C from Q ▷ There is only one C in Q

10: return C

the subcircuits, we model them as having maximal breadth
for their depth, yielding:

depth(PRODUCT(C1, . . . , Cn)) =

⌈
log2

n∑
i=1

2depth(Ci)

⌉
.

(2)
Since the multiplicative size (and the cost) of such a product
is n− 1, there is no depth-cost trade-off.

5. Arithmetization of Exponentiations

Exponentiations are a crucial primitive in many high-
level operations. In this section, we show how to perform
optimal depth-aware arithmetization of the map xt, for a
constant exponent t. Our main tool is a MaxSAT solver [17],
which we use to solve a reformulation of the mixed-integer
linear programming (MILP) formulation by Abas & Gustafs-
son [11]. Such a solver attempts to find a variable assignment
that satisfies a set of hard clauses and as many soft clauses
as possible (possibly dropping some). We assign a weight
to some of these soft clauses.

We first describe how to generate a minimum-cost circuit,
after which we use an adapted formulation to find a minimum-
depth anchor point. Having this anchor point and a lower
bound on the cost of the exponentiation circuit allows us to
efficiently generate the entire front. We conclude by applying
our exponentiation circuits for performing equality checks.

5.1. Finding a Minimum-Cost Circuit

Finding minimum-cost exponentiation circuits has been
studied under the name of ‘addition chains’ (as multiplica-
tion chains are effectively addition addition chains in the
exponent). The aim is typically to find minimum-length
chains, which correspond to minimizing the multiplicative
size of exponentiation circuits, but some works also con-
sider the multiplicative cost [11], [18]. Much theoretical
work has been done [19] and many heuristics have been
proposed [10], [18]. Variants of the problem have also been
studied, such as addition sequences [20], which compute
multiple exponentiations, reusing intermediate computations.
Because exponentiations are so crucial in determining the
efficiency of other high-level operations, we are looking
for optimal solutions. We propose a MaxSAT formulation

that is amenable to computing addition sequences and to
consider precomputations provided by other computations
(see Section 6.2).

We adapt the MILP formulation by Abbas & Gustafs-
son [11] into a MaxSAT formulation that is significantly
more efficient to solve in practice. Let Boolean variables xi

represent that number i is covered in the addition chain, and
let yi,j represent that the chain computes i + j. Abbas &
Gustafsson define the following constraints:

1) If yi,j = 1, then xi = 1, xj = 1, and xi+j = 1.
2) Cutting away: x⌈ k

2 ⌉
∨ · · · ∨ xk−1 = 1.

To minimize the size of the addition chain, we want to
maximize the number of xi that are 0. I.e. we want to
maximize

∧
i∈I ¬xi. The authors also suggest replacing this

objective with an objective that maximizes the number of yi,j
that are 0, which allows taking into account that squaring is
cheaper operation. In other words, it allows us to minimize
the multiplicative cost.

We define P = {(i, j) ∈ [1, t]2 : i ≤ min(j, t − j)},
which is the set of all ordered pairs (i, j) such that i+ j ≤ t.
Our basic MaxSAT formulation is as follows:
Hard clauses:

(xt),

(¬yi,j ∨ xi), ∀(i, j) ∈ P

(¬yi,j ∨ xj), ∀(i, j) ∈ P¬xk ∨
∨

(i,j)∈P :i+j=k

yi,j

, ∀k ∈ [2, t]

Soft clauses:

weight 1 (¬yi,j), ∀(i, j) ∈ P : i ̸= j

weight σ (¬yi,j). ∀(i, j) ∈ P : i = j

We can add several cuts to this formulation to make
solving it faster in practice. We add three kinds of cuts:

• Bounds from original [11]
• The bounds derived by Thurber & Clift [21]. Given

an upper bound on the cost of the chain, we can
use these to find lower bounds for the ith element in
the chain. For our MaxSAT formulation, let Tt(cmax)
return a set of pairs (l, u) such that the ith element
is bounded from below by l and from above by u
for a chain with cost at most cmax. We also have that
cmax ≥ σsmin.

• Knowing a lower bound smin on the size of the chain,
we can add a cardinality constraint that

∑t
i=2 xi ≥

smin. This constraint can be turned into a set of
clauses using multiple different techniques. We find
a sequential counter approach [22] to work well in
practice.1

1. Our implementation supports the choices offered by PySAT [23].



We can add these cuts using the following hard clauses: k∨
m=⌈ k

2 ⌉

xm

, ∀k ∈ [2, t]

(
u∨

m=l

xm

)
, ∀(l, u) ∈ Tt(c)(

t∑
i=2

xi ≥ smin

)
, encoded with [22]

To determine smin we combine three lower bounds
reported by Schönhage [19], where ν(t) is the Hamming
weight of t:

smin(t) ≥ ⌈log2(t)⌉ , (3)
smin(t) ≥ ⌈log2(t) + log2(ν(t))− 2.13⌉ , (4)
smin(t) ≥ ⌈log2(t) + log3(ν(t))− 1⌉ . (5)

Finally, in a finite field, we must take into account its
cyclic nature (or the resulting exponentiation circuit cannot
be considered optimal). For example, x62 ≡ x128 (mod 67),
but the shortest addition chain for 62 has 8 multiplications,
while 128 requires 7 multiplications. We solve this problem
by generating an exponentiation circuit for several t′ =
t+ iϕ(p), with i = 1, 2, . . . , and selecting the most efficient.

The challenge in the solution provided above is in
determining when to stop increasing i. To do so, we use
monotonically growing lower bound cmono on the multiplica-
tive cost of the exponentiation circuit:

cmono(t
′) = σ⌈log2 t′⌉ . (6)

If cmono(t
′) is greater or equal to the current best cost, we

can terminate the search. Next to that, when we find a circuit
with a lower multiplicative cost than before, we can lower
cmax(t

′), making the formulation faster to solve and allowing
us to skip targets t′ for which σsmin(t) ≥ cmax(t

′).

5.2. Finding a Minimum-Depth Anchor Point

One very common method for arithmetizing exponen-
tiations is the square & multiply method, which produces
a circuit as shown in Figure 4. As seen in the figure, this
method actually produces minimum-depth circuits, seeing as
a multiplication can at most double the exponent in either
of its inputs, so:

depth∗
(
Xt
)
= ⌈log2 t⌉ . (7)

x · · ·
. . .

. . .

· · ·. . .

Figure 4. Square & multiply method for computing xt.

While square & multiply produces a minimum-depth
circuit, it does not necessarily produce a minimum-depth

anchor point (i.e. a circuit that is minimal in depth and
secondarily minimal in cost). To find such an anchor point,
we make another call to the MaxSAT formulation, but this
time we provide the following constraints:

• The maximum depth is ⌈log2 t⌉.
• The maximum cost is cmax = σ⌊log2 t⌋ + ν(t) − 1,

corresponding to the cost of square & multiply.

What remains, is to modify the MaxSAT formulation to
incorporate a bound on the depth dmax of the exponentiation
circuit. We introduce the following sets of hard clauses:

(dk,m+1 ∨ ¬di,m ∨ ¬yi,j), ∀(i, j) ∈ P, ∀m ∈ [0, dmax]

(dk,m+1 ∨ ¬dj,m ∨ ¬yi,j), ∀(i, j) ∈ P, ∀m ∈ [0, dmax]

(¬dk,dmax+1), ∀k ∈ [2, t]

(d1,0).

These clauses encode the depth of an exponent as a
Boolean vector, such that the highest-index Boolean that is
true represents the depth of that exponent. By forcing the
dmax + 1th Boolean to be false, we ensure that the depth
limit is not exceeded. This is a different encoding than the
one used by Abbas & Gustafsson [11], which uses integers
to denote the depth (as they use a MILP solver).

5.3. Finding Circuits on the Depth-Cost Front

We can generate circuits on the depth-cost front using
the same method that we described for finding an anchor
point given a minimal-depth circuit with suboptimal cost.
We do so by incrementally going through all such circuits,
from least to highest depth. For the the maximum cost, we
can use the current best cost. We present our approach in
Algorithm 2, in which we call our MaxSAT formulation
as ADDCHAIN(t, dmax, cmax, σ, smin), which returns a circuit
satisfying the constraints or ⊥ if no circuit could be found.

Algorithm 2 Depth-aware product of distinct multiplicands
1: procedure GENEXPFRONT(C)
2: Find and yield C such that cost(C) = cost∗(C)
3: d← ⌈log2 t⌉
4: c← σ⌊log2 t⌋+ ν(t)− 1
5: while c < cost∗(C) and d < depth(C) do
6: Compute smin using (3), (4), and (5)
7: C ′ ← ADDCHAIN(t, d, c, σ, smin)
8: if C ′ ̸= ⊥
9: yield C ′

10: c← cost(C ′)
11: d← d+ 1

5.4. Case Study: Equality Checks

As explained by Iliashenko & Zucca [13], equality checks
can be arithmetized as [x = y] = 1− (x− y)p−1. The cost
of such an operation is almost exclusively determined by the



exponentiation circuit, as it is the only operation requiring
multiplications. In Figure 5, we plot the multiplicative cost
of the optimal exponentiation circuits we found using our
MaxSAT formulation for different prime moduli p and
for fixed σ = 0.75. We also show how long it took to
generate these circuits, with and without consideration of
the cyclic nature of Fp. For the moduli in Figure 5, the
circuits generated by ignoring or considering the modulus
are the same, but it is significantly more efficient to ignore
the modulus. One can interpret the ‘considering modulus’
generation time as the time it takes to prove optimality.

6. Arithmetization of Polynomial Evaluation

For many high-level operations there is not a straight-
forward arithmetization. For example, checking if a field
element is within a given range can be expressed as a large
number of equality operations but this is inefficient. In these
situations, it is typical to interpolate a polynomial and to find
an efficient circuit to evaluate it. In this section, we show
how to perform depth-aware arithmetization for univariate
polynomial evaluation. These cover many common operations
including comparisons, which we highlight in our case study
at the end of this section.

When it comes to the multiplicative cost of polynomial
evaluation circuits, we know that the multiplicative cost
of a degree-d polynomial is at least as high as that of an
exponentiation circuit with target t. Next to that, Paterson &
Stockmeyer [12] provide an asymptotic bound:

cost∗
(
xd
)
≤ cost∗

(
d∑

i=0

cix
i

)
≤ O(

√
d) . (8)

In fact, Paterson & Stockmeyer already provide two al-
gorithms that generate circuits with the same asymptotic
complexity. We discuss these two algorithms later on.

The multiplicative depth of polynomial evaluation circuits
can also be bounded. To achieve the minimal depth, we can
simply compute all monomials and evaluate the polynomial
using a linear combination. So:

depth∗

(
d∑

i=0

cix
i

)
= ⌈log2(d)⌉ . (9)

This is an equality because we cannot evaluate xd with fewer
multiplications. In Paterson & Stockmeyers’s methods, this
is equivalent to choosing k = d. Our key idea for generating
circuits that trade off multiplicative depth and cost is to vary
this parameter k.

6.1. Baby-Step Giant-Step

The baby-step giant-step method was one of the two
algorithm proposed by Paterson & Stockmeyer [12], but we
refer to it with this name because it is colloquially known
as such in the cryptography community. It is also known as
the two-level evaluation method [24].

The algorithm, parameterized by an integer 1 ≤ k ≤ d,
starts by precomputing the monomials X2, X3, . . . , Xk. It
will later use these precomputed powers to evaluate a k− 1-
degree polynomial without performing any more multiplica-
tions. In this work, we also want to minimize the multiplica-
tive depth, so we do not use sequential multiplications to
compute these powers. Instead, we start by computing X2

and use it to compute X3 and X4. We then use X4 to com-
pute X ×X4 = X5, X2 ×X4 = X6, . . . , X4 ×X4 = X8,
etc. Given these precomputed powers, the key idea behind
this algorithm is the following identity:[

d∑
i=0

ciX
i

]
← Xk

[
d−k∑
i=0

qiX
i

]
+

[
k−1∑
i=0

riX
i

]
, (10)

where the rightmost polynomial can be evaluated using
only additions and constant multiplications. In other words,
the polynomial can be evaluated by taking approximately
d
k giant steps after computing k baby steps. Paterson &
Stockmeyer show that this method requires approximately
2
√
d multiplications for the right choice of k. This makes

it asymptotically optimal in terms of the multiplicative cost
and size. Due to its sequential nature, the circuits generated
by this method are typically larger in depth than the circuits
generated by the other two methods that we discuss.

6.2. Paterson & Stockmeyer’s method

Paterson & Stockmeyer also propose a method that
evaluates polynomials of a specific degree in

√
2d+O(log d)

non-constant multiplications for the right choice of k. This
method is defined for monic polynomials (i.e. the leading
coefficient is 1) of degree d = (2n − 1)k, but it can be
adapted to evaluate any polynomial by extending it to the
next monic polynomial of the correct degree (or using a
constant multiplication if it is a non-monic polynomial of
the correct degree). We can then remove this added monomial
from the final result by computing it and subtracting it or
by adapting the coefficients.

Paterson & Stockmeyer’s method [12] works by reducing
the evaluation of a degree-(2n−1)k monic polynomial to the
evaluation of two monic polynomials of degree (2n−1− 1)k
and a polynomial of degree k−1 using the following identity:X(2n−1)k +

(2n−1)k−1∑
i=0

ciX
i

←
(
X2n−1k +

[
k−1∑
i=0

c′iX
i

])X(2n−1−1)k +

(2n−1−1)k−1∑
i=0

qiX
i


+

X(2n−1−1)k +

(2n−1−1)k−1∑
i=0

riX
i

 , (11)

where the square brackets group together the terms of a
polynomial. The coefficients of these smaller polynomials
can be obtained using a Euclidean division. Note that the
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Figure 5. Equality circuits generated using square & multiply and our MaxSAT formulation, where σ = 0.75. Square & multiply is only optimal when p is
of the form 2k + 1. When we find a depth-cost trade-off, we denote the depth in the markers. The run time of our algorithm is hard to predict, but it
increases with the modulus p. In some cases, ignoring the modulus makes a large difference in generation time, but the result is not guaranteed to be
optimal.

polynomial of degree k − 1 can be computed using the
precomputed powers without any multiplications. Note that
where the previous method only precomputes monomials
X2, X3, . . . , Xk, this method must also precompute mono-
mials X2k, X4k, X2n−1k, which requires n− 1 squarings.

As described previously, the method can be extended to
any polynomial of degree-d by padding it with a monomial
(2n − 1)k ≥ d, which is of the correct degree. However, we
must compensate for this added monomial in the final result.
If it holds that i = (2n − 1)k mod ϕ(p) ≤ d, where ϕ()
is the totient function, then we can easily compensate for
it by decrementing the i-th coefficient. Otherwise, we must
compute the monomial separately and subtract it at the end.

For the case that we must compute the padding monomial
separately, we slightly modify the MaxSAT formulation
described in Section 5 to take into account that the polyno-
mial evaluation circuit already precomputes a large number
of monomials. We ensure that these monomials count for
free towards the cost of the addition chain, while still
considering their depth. We do so by adding new variables zk
that represent using previously-computed power Xk. When
they are enabled, they incorporate the fixed depth of the
precomputed power. Given precomputed powers t1, . . . , tn
with depths d1, . . . , dn, we add the following hard clauses:

(dti,di
,¬zti), ∀i ∈ [1, n]

Next to that, we adapt the following hard clause in the
original formulation to allow xk to be true when zk is:¬xk ∨ zk ∨

∨
(i,j)∈P :i+j=k

yi,j

. ∀k ∈ {t1, . . . , tn}

We also have to remove the cuts described in Sec-
tion 5.1 from the formulation, as they do not apply to depth-
constrained circuits.

6.3. Our work: Divide & conquer

We propose a new method for evaluating univariate poly-
nomials of any degree inspired by Paterson & Stockmeyer’s
method. While our method does not achieve as small of a
multiplicative cost, it achieves a low multiplicative depth. It
is essentially a simplified version of Paterson & Stockmeyer’s
method that retains the divide & conquer strategy. The key
idea is to split evaluation of a degree-2nk polynomial into
the evaluation of two degree-2n−1k polynomials:

[
d∑

i=0

ciX
i

]
←X2n−1k

d−(2n−1k−1)∑
i=0

qiX
i

+
2n−1k−1∑

i=0

riX
i

 ,

(12)
where d ≤ 2nk. This method requires the same precomputa-
tions as Paterson & Stockmeyer’s method.

We briefly analyze the cost and depth of the circuits
generated by our method. Let N(d) denote the cost of
computing a degree-d polynomial using our method when
we have already computed the precomputations. We have:

N(2nk) ≤

{
0 If n = 0

1 + 2N(2n−1k) If n > 0
. (13)

As a result:

N(2nk) ≤ 1 + 2(1 + 2N(2n−2k)) , (14)
= 3 + 4N(2n−2k) , (15)
≤ 2i − 1 + 2iN(2n−ik) , (16)
≤ 2n − 1 + 2n0 , (17)
= 2n − 1 . (18)



If it takes k− 1 multiplications to compute X2, . . . , Xk and
n−1 squarings to compute X2k, X4k, . . . , X2n−1k, then the
total cost of our circuit C is:

cost(C) ≤ k+n+2n−3 ≤ k+log2

(⌈
d

k

⌉)
+

⌈
d

k

⌉
. (19)

The depths of precomputations Xi for i = 2, . . . , k are
⌈log2 i⌉, and the depths of X2ik for i = 1, . . . , n − 1 are
⌈log2 k⌉+ i. As a result, the depth of the circuit is:

depth(C) ≤ ⌈log2 k⌉+ n ≤ ⌈log2 k⌉+
⌈
d

k

⌉
. (20)

From this analysis it is clear that choosing a large value of
k reduces the depth significantly.

6.4. Finding Circuits on the Depth-Cost Front

The three methods described above all achieve a different
depth-cost trade-off when varying k. Our depth-aware arith-
metization method for polynomial evaluation is to simply try
all three methods on all values 1 ≤ k ≤ d. It turns out that,
while it is possible to compute the optimal k for reducing the
multiplicative cost, there are cases where other values of k
achieve a lower cost. In Figure 6 we highlight such a situation.
In this figure, we show all circuits computing x (mod 7) in
F127 that we can generate by varying k. While Paterson &
Stockmeyer show that k = 8 minimizes the multiplicative
cost, it turns out that we can achieve a significantly better
circuit using k = 9.

6.5. Case Study: Comparisons

We show that our depth-aware arithmetization method
allows to generate a front of circuits that trade off mul-
tiplicative depth and cost, even for complex operations
such as comparisons. We use the technique proposed by
Iliashenko & Zucca [13] for performing comparisons between
half of the elements in the field Fp using a univariate
polynomial evaluation. By computing the leading term of
the polynomial separately, the remainder of the polynomial
can be decomposed so that its degree is only p−1

2 .
Another method for generating such circuit is imple-

mented in the T2 compiler [15], in which the comparison is
implemented as a number of equality checks:

[X < Y ] =

p∑
a= p+1

2

[(X−Y ) = a] =

p∑
a= p+1

2

1−(X−Y−a)p−1 .

(21)
We provide an optimistic implementation of this technique
in which we use the minimal-cost exponentiation circuit to
implement the equality checks.

We also provide an optimistic implementation of the
work by Iliashenko & Zucca [13], in which we only use
the Paterson & Stockmeyer method with their choice of k
with the intent of minimizing the multiplicative cost. One
problem is that their proposed way to compute the final term
requires a certain polynomial degree, but it is not possible
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Figure 6. Polynomial evaluation circuits for computing x (mod 7) with
p = 127. This is a degree 126 polynomial, so the parameter for minimizing
the multiplicative size determined by Paterson & Stockmeyer is k =√

126
2

≈ 8. The optimum occurs when k = 8, and the actual optimum
occurs when using the BSGS method. By varying k we can generate three
circuits that trade off multiplicative size and depth.

for all p to find a certain k. Instead, we use our method for
finding the optimal addition chain given precomputed powers
to compute the leading term of the univariate polynomial.

In Table 2 we provide an overview of different methods
for generating comparison circuits. We find that our work
consistently finds circuits in the depth-size front, but the
other methods do so too. We mark values on the front in
bold. For example, while the T2 compiler finds circuits with
large size, their depth is minimal. We find that the method
by Iliashenko & Zucca does not outperform ours, unless we
apply common subexpression elimination. In some cases,
this allows the method to find circuits on the front.

TABLE 2. COMPARISON CIRCUITS FOR DIFFERENT MODULI p; σ = 1.0.

Method p = 29 p = 43 p = 61 p = 101 p = 131
Depth Size Depth Size Depth Size Depth Size Depth Size

T2 compiler 5 84 6 147 7 210 7 400 8 520

IZ21 7 12 7 13 9 14 8 16 9 21
IZ21 + CSE 7 12 7 12 9 13 8 16 9 19

Our work 6 11 7 12 7 15 8 16 8 20
7 10 8 14

7. Arithmetization of ANDs and ORs

Finally, we study the depth-aware arithmetization of AND
and OR operations. The typical arithmetization of an AND



operation is to treat it as a product:

X1 ∧ · · · ∧Xk = X1 × · · · ×Xk . (22)

As shown in Section 4, there is a single optimal circuit C1

to compute this product. It has the following properties:

cost(C1) = k − 1 + cost(X1, . . . , Xk) , (23)

depth(C1) =

⌈
log2

k∑
i=1

2depth(Xi)

⌉
. (24)

OR operations are sometimes arithmetized as follows:

X1 ∨ · · · ∨Xk = (X1 + · · ·+Xk)
p−1 , (25)

where xp−1 maps 0 7→ 0 and {1, . . . , p − 1} 7→ 1. Note
that this arithmetization is only guaranteed to work when
k < p, otherwise the result of the summation might wrap
around the modulus. Let circuit C2 be a circuit that evaluates
this arithmetization, which first sums the operands and then
uses another circuit Cexp for exponentiation by p− 1. Then,
C2(Cexp) has the following properties:

cost(C2(Cexp)) = cost(Cexp) + cost(X1, . . . , Xk) , (26)
depth(C2(Cexp)) = depth(Cexp) + max

i=1,...,k
depth(Xi) .

(27)

While this method allows varying the depth and size us-
ing different circuits for Cexp, this only provides minimal
variance.

DeMorgan’s law provides a bidirectional transformation
between AND and OR circuits that does not increase the
size or depth because it only requires negation, which does
not require non-scalar multiplications:

X1 ∧ · · · ∧Xk = X1 ∨ · · · ∨Xk . (28)

So, either of the two arithmetizations above can be used
for AND and OR operations at the same depth and size
cost. In fact, they can be composed to achieve a hybrid
arithmetization. This allows one to trade off depth and size.
It also allows reaching smaller sizes than what could be
reached by a non-hybrid arithmetization.

We cannot prove that minimizing the depth and size of
the hybrid arithmetization described above coincides with
minimizing the depth and size of all potential arithmetic
circuits for ANDs and ORs. That said, we argue that our
method is a useful heuristic.

7.1. Finding a Minimum-Cost Circuit

It is easy to see that if k < p, then cost(C2(Cexp)) <
cost(C1) ⇐⇒ cost(Cexp) < k − 1. So in this case, it is
easy to decide the minimum-cost circuit. Let N(k) represent
the minimal multiplicative cost of a circuit for the hybrid
arithmetization of an AND or OR operation with k operands,
and let c denote the multiplicative cost of Cexp. We have:

N(k) = min(c, k − 1) if k ≤ p− 1 . (29)

When k ≥ p, we must consider a hybrid arithmetization.
Notice that the cost of the smallest hybrid circuit C3(Cexp)
grows monotonically with k. So, if it holds that cost(Cexp) ≤
p − 1, we can perform C2(Cexp) on p − 1 operands (e.g.
X1, . . . , Xp−1) to obtain a new problem with k − (p − 1)
operands. It turns out that cost∗(Cexp) ≤ p− 1 always holds.

Using the strategy described above, we get that:

N (k) = c+N (k − (p− 1) + 1) , (30)
= 2c+N (k − p− (p− 1) + 1) , (31)
... (32)
= rc+N (k − r(p− 1) + r) , (33)
= rc+N (k + r(2− p)) . (34)

We reach the base case when k + r(2 − p) ≤ p − 1. This
happens when r = ⌈p−1−k

2−p ⌉, so we have:

cost∗(C3(Cexp))=N(k)=

⌊
k

p

⌋
c+min

(
c, k −

⌊
k

p

⌋
p− 1

)
(35)

Notice that increasing c always increases the total multiplica-
tive cost, apart from the case where k < p and c ≥ k − 1,
in which case c does not influence the result. We conclude
that to minimize N(k), c needs to be minimal.

7.2. Finding Circuits on the Depth-Cost Front

In minimizing the multiplicative depth of the circuit, we
define a useful metric called fullness. This metric captures
both the depth of the circuit and how many multiplications
can still be absorbed by the multiplication tree in the outer
layer of the circuit without increasing the circuit’s depth.

Definition 7.1 (Fullness). The fullness is defined as:

fuln(X + Y ) = 2max(depth(X),depth(Y ))

fuln(X × Y ) = fuln(X) + fuln(Y )

fuln(v) = 1

Notice that:

depth(C) = ⌈log2 fuln(C)⌉ .

To find a minimum-depth anchor point, we put forward
a recursive algorithm that finds a circuit for performing
an AND operation while satisfying the constraint that the
fullness is at most f , and the cost is less than c. We present
it in Algorithm 3, in which cost(()C) ignores the cost of
subcircuits X1, . . . , Xk. The algorithm also inputs E, which
is a collection of exponentiation circuits that are on the
Pareto front, and p, the order of the prime field.

Our recursive algorithm is essentially a bounded search.
We use the bounds derived above to decide whether certain
branches are not worth exploring. By starting with f = 2d

for d = ⌈log2 fuln(X1)⌉, where X1 is the operand with
the highest fullness, we can iteratively increment d until the
algorithm finds a circuit. This first circuit is a minimum-depth
anchor point because the algorithm outputs the minimal cost
circuit for this fullness bound f .
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Figure 7. Circuits computing an OR operation with σ = 1.0, for a growing
number of operands. The number of ticks on a marker indicates the depth
of the circuit. Depending on the depth that one wants to achieve and the
number of operands, it is better to choose p = 7 or p = 13.

We can keep going in the fashion described above,
incrementing d, to generate the entire depth-cost front. Since
it is easy to compute cost∗(C3(Cexp)), we know when to
stop the search. Note that while we describe the algorithm to
compute a circuit for an AND operation, the algorithm for
OR operations follows almost identically: For OR operations,
one must apply DeMorgan’s law.

7.3. Case Study: Veto Voting

We study the problem of veto voting, where multiple
parties submit a Boolean value, indicating whether they veto
or not. If no one vetoes, the result should be false. If anyone
vetoes, the result should be true. This is exactly an OR
operation. We consider the setting where we do not know a
bound on the possible number of vetoes.

In Figure 7, we demonstrate the circuits that our algorithm
generates for two values of p when the number of operands
grows. It is clear that for almost every number of operands,
there exists a cost-depth trade-off. What is more, there is
also a trade-off between different values of p. Whereas a
larger value of p allows one to find circuits with fewer
multiplications when the number of operands grows, there
are still cases where one might favor a smaller p as it provides
a better depth-cost trade-off. For example, when there are
13 operands, p = 7 permits a depth-4 circuit at 10 multipli-
cations, while p = 13 requires 12 multiplications. Finally,
notice that there are only a few cases where computing an
OR operation using a C1 circuit is necessary to achieve a
minimum depth. In many other cases, we can achieve the
same minimum depth with far fewer multiplications.

Algorithm 3 Finds an AND circuit with fullness ≤ f and
minimal cost < c, returning ⊥ if it cannot be found.

1: procedure AND(X1, . . . , Xk, f, c, E, p)
2: Ensure that fuln(X1) ≥ · · · ≥ fuln(Xk)

3: if k = 1 ▷ Base cases
4: if fuln(X1) ≤ f and c > 0
5: return X1

6: return ⊥
7: if f < 1 or c ≤ 0
8: return ⊥
9: if cost∗(X1 ∧ · · · ∧Xk) ≥ c

10: return ⊥
11:
12: Cout = ⊥
13: for Cexp ∈ E do
14: C = X1 × · · · ×Xk ▷ C1 circuit
15: if

∑k
i=1 fuln(Xi) ≤ f and cost(C) < c

16: Cout ← C, c← cost(C)
17: fexp ← 2⌈log2 f⌉−depth(Cexp) ▷ Max fuln for C2

18: if k < p

19: C ← Cexp(X1 + · · ·+Xk) ▷ C2 circuit
20: if

∧k
i=1 fuln(Xi) ≤ fexp and cost(C) < c

21: Cout ← C, c← cost(C)
22: continue
23: if

∧k
i=1 fuln(Xi) ≤ fexp ▷ C2 works for all Xi

24: if cost(Cexp) ≥ c
25: continue
26: cache ← {}
27: for i = 1, . . . , k − 1 do
28: C ′ ← Cexp(Xi + · · ·+Xi+p−2)
29: X←C ′, X1, . . . , Xi−1, Xi+p−1, . . . , Xk

30: if {fuln(x) | x ∈ X} ∈ cache
31: continue
32: Add {fuln(x) | x ∈ X} to cache
33: C ← AND(X, f, c− cost(Cexp), E, p)
34: if C ̸= ⊥
35: Cout ← C, c← cost(C)
36: else ▷ We can isolate Xi that must use C1

37: Find t s.t. fuln(Xt)>fexp, fuln(Xt+1)≤fexp
38: if t = 0 or t ≥ c
39: continue
40: fnew ← f −

∑t
i=1 fuln(Xi)

41: C ′ ← AND(Xt+1, . . . , Xk, fnew, c− t, E, p)
42: if C ′ ̸= ⊥
43: C ← C ′ ×X1 × · · · ×Xt

44: Cout ← C, c← cost(C)

45: return Cout



8. Depth-Aware Composition

In the previous sections, we put forward methods for the
depth-aware arithmetization of several common primitives,
but many interesting circuits emerge as the composition of
these primitives. In this section, we show how to perform
depth-aware arithmetization for high-level circuits that com-
pose multiple primitives.

Suppose we have a circuit X31 < Y 31. We can generate
a front for the exponentiation circuits of X31 and Y 31, but at
that point we are stuck, because our method for arithmetizing
comparisons inputs subcircuits rather than two fronts of
circuits. For composition, we propose the following heuristic:
we generate a new Pareto front in which we try all possible
combinations of input arithmetizations. This is a heuristic
because we do not change the arithmetizations of the inputs,
even when this could lead to a lower cost or depth.

While the method described above offers a generic solu-
tion of dealing with composition, it can be highly inefficient.
For example, when we want to arithmetize X31 + Y 31, we
know that it is never better to choose a subcircuit for X31

with a lower depth as the subcircuit for Y 31 and vice versa.
In those cases, we do not exhaustively try all combinations,
but we iteratively increment a depth limit and choose the
lowest-cost subcircuits that still satisfy the depth limit.

Finally, one might consider heuristics that cut away even
more solutions. For example, increasing a circuit’s depth by
one layer while saving one multiplication may not be worth
it in practice. We do not implement such a heuristic, and
leave it to future work.

To highlight the effectiveness of our methods, we apply
them to a practical example that composes all of the primi-
tives described in this work. Specifically, we evaluate them on
the cardio circuit as proposed by Carpov et al. [25] and used
as a benchmark in other works [26]. The circuit computes a
number of predicates relating to a person’s cardiac health
and returns how many evaluate to true. These predicates
involve comparisons, such as checking whether a person’s
weight is smaller than its height - 90. We also consider a
variant of this circuit that we call cardio-elevated, which
only returns if any of the risk factors were true. In other
words, we compute an OR over all the predicates.

In Table 3 we present the results of our methods applied
to the cardio and cardio-elevated circuits for a fixed value
p = 257, since all values fit under this modulus. We report
the fronts that our methods generated for different costs of
squaring σ, and how long these fronts took to generate. We
do not take the cyclic nature of Fp into account for the
exponentiations in padding the polynomials to make it run
in reasonable time, and since these are unlikely to produce
significantly better results for p = 257. We show that the
cardio circuit can be evaluated in 427 multiplications.

Notice that if we solely optimize multiplicative cost/size,
the resulting circuits may be wasteful in terms of the
multiplicative depth. A good example is in the cardio-
elevated circuit when σ = 1.0: If we would only focus
on multiplicative cost, we would save 1 multiplication at the
cost of 5 layers of depth.

TABLE 3. FRONTS GENERATED BY OUR METHODS FOR THE cardio AND
cardio-elevated CIRCUITS, DISPLAYING THE COST-DEPTH TRADE-OFF.

Cardio risk assessment Cardio elevated risk
Depth σ = 1.0 σ = 0.75 σ = 0.5 Depth σ = 1.0 σ = 0.75 σ = 0.5

Gen.(s) 265 268 264 248 272 272

12 427.0 394.0 361.0 15 436.0 402.0 368.0
13 386.0 345.0 16 · 395.0 354.0
14 382.0 337.0 17 · 391.0 346.0

· · · ·
20 435.0 · ·
· · ·

22 388.0 341.0

9. Conclusion

In this work, we introduced the concept of depth-aware
arithmetization, in which we generate arithmetic circuits for
high-level operations while considering the trade-off between
multiplicative depth and multiplicative cost. We proposed
methods for the depth-aware arithmetization of exponentia-
tions, polynomial evaluation, and AND/OR operations. In
turn, these primitives allow one to perform equality checks,
comparisons, and perform operations such as veto voting.
They may also be composed into larger circuits.

Our methods have limitations. For example, they can
take minutes to arithmetize circuits with only a handful of
comparisons. Moreover, they are not necessarily optimal: we
only provide optimal methods for exponentiation circuits.

There is still room for future work. One may look for:

• Faster methods for generating optimal addition chains
with depth constraints and/or precomputed values.

• An optimal method for polynomial evaluation, al-
though this may be as hard as solving a system of
multivariate polynomials.

• Other polynomial evaluation methods, e.g. mixing or
generalizing the methods that we use in this work.

• An optimal method for AND/OR operations, or a
proof that our current approach is optimal.

• Efficient ways of composing arithmetized primitives.
• Methods for arithmetizing multiple polynomial eval-

uations at once, reusing the precomputed powers
across evaluations.
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