
K-Waay: Fast and Deniable Post-Quantum

X3DH without Ring Signatures∗

Daniel Collins1, Löıs Huguenin-Dumittan†1, Ngoc Khanh Nguyen‡2,
Nicolas Rolin§3, and Serge Vaudenay1

1EPFL, Switzerland, firstname.lastname@epfl.ch
2King’s College London, United Kingdom, ngoc khanh.nguyen@kcl.ac.uk

3Spuerkeess, Luxembourg, nicrolin@hotmail.fr

January 27, 2024

Abstract

The Signal protocol and its X3DH key exchange core are regularly used by billions of
people in applications like WhatsApp but are unfortunately not quantum-secure. Thus,
designing an efficient and post-quantum secure X3DH alternative is paramount. Notably,
X3DH supports asynchronicity, as parties can immediately derive keys after uploading them
to a central server, and deniability, allowing parties to plausibly deny having completed key
exchange. To satisfy these constraints, existing post-quantum X3DH proposals use ring
signatures (or equivalently a form of designated-verifier signatures) to provide authentica-
tion without compromising deniability as regular signatures would. Existing ring signature
schemes, however, have some drawbacks. Notably, they are not generally proven secure in
the quantum random oracle model (QROM) and so the quantum security of parameters
that are proposed is unclear and likely weaker than claimed. In addition, they are generally
slower than standard primitives like KEMs.

In this work, we propose an efficient, deniable and post-quantum X3DH-like protocol
that we call K-Waay, that does not rely on ring signatures. At its core, K-Waay uses a split-
KEM, a primitive introduced by Brendel et al. [SAC 2020], to provide Diffie-Hellman-like
implicit authentication and secrecy guarantees. Along the way, we revisit the formalism of
Brendel et al. and identify that additional security properties are required to prove a split-
KEM-based protocol secure. We instantiate split-KEM by building a protocol based on the
Frodo key exchange protocol relying on the plain LWE assumption: our proofs might be of
independent interest as we show it satisfies our novel unforgeability and deniability security
notions. Finally, we complement our theoretical results by thoroughly benchmarking both
K-Waay and existing X3DH protocols. Our results show even when using plain LWE and a
conservative choice of parameters that K-Waay is significantly faster than previous work.

∗This is the full version of an article published at USENIX Security 2024. [Col+24]
†The author is supported by a grant (project no. 192364) of the Swiss National Science Foundation (SNSF).
‡All of this work was completed while the author was working at EPFL.
§Part of this work was completed while the author was studying at EPFL.

1

Contents

1 Introduction 3
1.1 Our Results . 4
1.2 Technical Overview . 6
1.3 Additional Related Work . 8

2 Preliminaries 9
2.1 Key-Encapsulation Mechanism (KEM) . 9
2.2 Signature . 10
2.3 Triple PRF . 10

3 Split-KEM 11
3.1 Security . 11
3.2 Deniability . 14

4 Model for DAKE 15
4.1 Syntax . 15
4.2 Security Model . 15

4.2.1 Parties and sessions . 15
4.2.2 Partnering . 16
4.2.3 KIND Security Game . 17

4.3 Deniability . 19

5 K-Waay: Post-Quantum X3DH from Split-KEM 20
5.1 Construction . 20
5.2 Security . 22

6 Deniable Split-KEM from Lattices 28
6.1 Lattice Toolbox . 29
6.2 Extended-LWE . 30
6.3 Construction . 33
6.4 Security Analysis . 33

6.4.1 OW-CPA Security . 34
6.4.2 Deniability . 34
6.4.3 Decaps-OW-CPA Security . 37

6.5 Building a UNF-1KCA and IND-1BatchCCA Split-KEM 38
6.6 Concrete Instantiation . 40

6.6.1 Correctness error and security loss . 41
6.6.2 Hardness of Extended-LWE . 42

7 Benchmarks, Comparison and Discussion 42
7.1 Benchmarks . 42
7.2 Advantages, Limitations and Discussion . 45

A Proof of Theorem 5 54
A.1 QROM preliminaries . 54
A.2 Proof in the QROM . 56
A.3 Proof in the ROM . 57

B Proof of Theorem 6 58
B.1 Proof in the ROM . 58
B.2 Proof in the QROM . 59

2

C Differences from the Proceedings Version 62

1 Introduction

Researchers for several years now have sought to build cryptographic primitives and proto-
cols that are resistant to efficient quantum attacks [Sho94]. This is highly evidenced with the
NIST Post-Quantum Cryptography competition for standardising quantum-safe key encapsu-
lation mechanisms (KEM) and signatures, organised by the United States National Institute of
Standards and Technology (NIST). Recently, four schemes were selected by NIST for standard-
isation, out of which three rely on algebraic lattices. Indeed, with the US National Security
Agency releasing their new CNSA 2.0 Suite [US], which says that CRYSTALS-Kyber [Bos+18]
and CRYSTALS-Dilithium [Duc+18] should be the main cryptographic force for communica-
tion security beginning from 2030, lattices are a natural candidate for building more advanced
cryptographic primitives, such as secure messaging.

The widely used Signal protocol for secure messaging as currently deployed is not quantum-
safe since it is based on Diffie-Hellman key exchange [DH76]. The protocol, used in appli-
cations like Signal and WhatsApp, comprises two components, namely 1) the X3DH key ex-
change [MP16] which is used to bootstrap sessions of 2) the Double Ratchet messaging pro-
tocol [PM16]. The Double Ratchet has been investigated in a line of recent works [ACD19;
Bie+22; Can+22] that each neatly abstract the protocol into primitives like so-called continu-
ous key agreement. Fortunately, these primitives have post-quantum (PQ) instantiations that
leaves the core structure and resulting security guarantees of the Double Ratchet in place.

In standard X3DH, parties use a mixture of ephemeral (one-time), semi-static (many-time
but temporary) and long-term keys. First, parties upload their keying material to a central
server or public key infrastructure in a so-called prekey bundle. A party can then derive a
session key by downloading their partner’s bundle and performing three (or four) Diffie-Hellman
key exchanges with a mixture of ephemeral and long-term (resp. plus semi-static) keys, ensuring
at least confidentiality if the ephemeral or long-term key of each party is corrupted.

Observe that X3DH does not use signatures after signed prekeys are uploaded: at that
point, the DH exchanges provide (implicit) authentication guarantees. Consequently, the pro-
tocol provides a level of deniability [DNS04; RGK06; UG15] as was formalized by Vatandas et
al. [Vat+20]: informally, a participant can deny having performed key exchange with its coun-
terpart. This is an important privacy guarantee that prevents (at least on a cryptographic level)
a conversation transcript from incriminating an unsuspecting party, particularly in situations
like whistleblowing and protesting.

In 2023, Signal announced and rolled out their initial hybrid post-quantum key exchange so-
lution called PQXDH [KS23]. Like in X3DH, several Diffie-Hellman key exchanges are performed
at once, but in PQXDH, parties upload prekey bundles that also contain a Kyber-1024 public
key that the initiator additionally encapsulates to the responder with. Moreover, prekey bundles
are still signed with the same signature scheme as regular X3DH based on Curve25519 [Ber06].
Although PQXDH provides post-quantum confidentiality [Bha+23], which is an important first
step towards post-quantum security as it prevents “store-now-decrypt-later” attacks, it does not
provide post-quantum authentication as an active quantum attacker can trivially forge pre-key
bundles. It is thus prudent to design a suitable X3DH alternative that is fully post-quantum
secure.

A natural direction for building such a protocol is to emulate X3DH’s structure by replacing
Diffie-Hellman key exchange with a cryptographic group action, such as CSIDH [Cas+18]. In
order to broadly capture this protocol structure, Brendel et al. [Bre+21] introduce a primitive
called split-KEM that captures the symmetry of e.g. Diffie-Hellman. In a split-KEM, a party
B encapsulates to their partner A by using their own secret skB and their partner’s public
key pkA to produce a ciphertext; A then decapsulates it using skA and pkB. The authors

3

define indistinguishability-based security notions and notice that Frodo [Bos+16] lattice-based
key-exchange fulfills the split-KEM syntax and the weakest notion of indistinguishability they
define.1 Although they present a X3DH-like protocol, they do not define a security model, and,
looking ahead, their split-KEM security notions do not suffice to construct a X3DH-like key
exchange with authenticity and deniability.

In two recent works, Hashimoto et al. [Has+21; Has+22] and Brendel et al. [Bre+22] con-
currently proposed instead to construct X3DH-like key exchange using KEMs directly. Since a
core feature of X3DH is its asynchronicity, a challenge-response protocol cannot be employed
using KEMs alone to provide authentication [SSW20]. Thus to ensure deniability, two seem-
ingly different approaches were proposed: Hashimoto et al. [Has+21] apply ring signatures
while Brendel et al. [Bre+22] use a flavour of designated verifier signatures; these primitives
were later shown to be equivalent [Has+22].

As described in the aforementioned works, the currently most efficient post-quantum ring
signatures [BKP20; ESZ22; LAZ19; LN22; Yue+21] are proven to be secure in the random
oracle model [BR93] and can enjoy signatures that are a handful of kilobytes large. Often,
however, the constructions do not come with a security proof in the quantum random oracle
model (QROM) [Bon+11]. In this vein, parameters are generally optimistically chosen as the
security loss incurred by proofs in the ROM is not taken into account when setting them,
without even mentioning QROM loss, which is usually much larger. Further, security notions
can differ between papers, making it less clear exactly when they are appropriate for use.

More generally, it is of interest to determine the cost (or overhead) that deniability incurs
in (X3DH-like) key exchange. Towards this goal, Hashimoto et al. [Has+22] provide bench-
marks for their baseline, non-deniable X3DH-like protocol based on signatures and KEMs, and
Brendel et al. [Bre+22] consider parameter sizes for (but do not benchmark) existing ring and
designated verifier signatures. As such, a more fine-grained and detailed evaluation will help
inform practitioners on the overhead incurred by deniability in the post-quantum setting.

While the use of ring signatures to build PQ and deniable X3DH is at least theoretically
understood, this far from exhausts the protocol design space. Motivated by this and the above
discussion, we therefore first ask: Can we design a provably-secure, efficient and deniable post-
quantum X3DH alternative that does not require ring signatures?

1.1 Our Results

In this work, we propose an efficient, deniable and post-quantum X3DH-like protocol without
ring signatures that we call K-Waay. To summarise our contributions:

• Towards building our protocol, we revisit the split-KEM formalism proposed by Brendel et
al. [Bre+21] and deduce that several additional properties, namely notions of authenticity
and deniability, are needed to construct a secure X3DH-like deniable authenticated key
exchange protocol (DAKE).

• We propose K-Waay, a X3DH-like DAKE that uses deniable and unforgeable split-KEM
at its core. Our protocol uses signatures to sign prekeys, and then uses ephemeral KEM,
long-term KEM and split-KEM for the final key exchange step. We compare the security
of our protocol with the state-of-the-art in Table 1.

• The main drawback of a naive version of our protocol is that parties can run out of
ephemeral keys, thus making the protocol synchronous if this happens (e.g. Alice needs
to wait for Bob’s fresh ephemeral key before sending a message). While such a problem
would rarely occur in practice, given enough keys are uploaded on the server, we propose

1The construction can conceptually be seen as instantiating the lattice-based cryptographic group action
from [BKP20].

4

Protocol PQ Conf PQ Auth KCI FS SSR RR Deniability

X3DH [MP16; Coh+20] ✗ ✗ ✓ PFS ✓ ✓ Malicious
PQXDH [KS23; Bha+23] ✓ ✗ ✓ PFS ✗ ✗ Semi-honest+
KEM+Sigs [Has+22] ✓ ✓ ✓ PFS ✓ ✗ ✗

HKKP [Has+22] ✓ ✓ ✓ WFS ✓ ✗ Semi-honest
SPQR [Bre+22] ✓ ✓ ✓ WFS ✗ ✓ Semi-honest
K-Waay (Section 5) ✓ ✓ ✓ WFS ✓ ✗ Semi-honest

Table 1: Comparison between different security properties proven for existing X3DH-like key ex-
change protocols, namely post-quantum confidentiality (PQ Conf), authentication (PQ Auth),
resistance to key-compromise impersonation attacks when long-term keys are exposed (KCI),
perfect forward secrecy (PFS) or weak forward secrecy (WFS) [Kra05], session state reveal
(SSR), randomness reveal (RR) and deniability (where the judge/adversary is either honest-
but-curious or is malicious and can inject messages). Protocols can be generically strengthened
to handle randomness reveal by standard application of the so-called NAXOS trick [LLM07].
“KEM+Sigs” refers to the non-deniable baseline X3DH-like protocol proposed by Hashimoto
et al. [Has+21; Has+22], and “HKKP” refers to their deniable X3DH protocol without NIZKs
(their protcool with NIZKs implies maliciously-secure deniability w.r.t. a classical adversary).
The security of PQXDH is based on the recent analysis of Bhargavan et al. [Bha+23] except
that Kret and Schmidt argue it also provides at least semi-honest deniability [KS23].

a simple trick that makes the reuse of ephemeral keys possible on the receiver’s side for
messages they received while offline. We think this trick could be of independent interest
as it – perhaps surprisingly – allows for a specific kind of key reuse for a split-KEM that
is not IND-CCA secure.

• We prove key indistinguishability in our model that captures ephemeral key reuse and
session state exposure, and prove a variant of deniability that strengthens the notion of
Brendel et al. [Bre+22] by additionally leaking the victim’s session state to the adversary
in the security game.

• We instantiate a post-quantum split-KEM secure under our new security notions derived
from the Frodo key exchange protocol (FrodoKEX) [Bos+16] based on the plain LWE
assumption. The parameters we chose provide strong security guarantees, providing more
than 192 bits of classical and quantum security for our core split-KEM security notions
OW-CPA, decaps-OW-CPA and deniability. We then use a transform in the (Q)ROM
to prove it UNF-1KCA and IND-1BatchCCA (i.e. our new unforgeability and indistin-
guishability definitions for split-KEM). This construction incurs a security loss as usual in
the (Q)ROM, but our final split-KEM still provides around 128 (resp. 64) bits of security
in the ROM (resp. QROM) assuming the adversary is limited to 264 (resp. quantum)
random oracle queries.

• We benchmark our protocol K-Waay using our modified version of FrodoKEX (which we
call FrodoKEX+) as the split-KEM, along with standard X3DH and the two previous
proposals for PQ X3DH-like AKE [Has+22; Bre+22]. We find that while K-Waay has
larger prekeys, it is 6× faster compared to these. In addition, the only non-standard
primitive we use in K-Waay (i.e. FrodoKEX+) is based on both an assumption (i.e. LWE)
and a scheme (FrodoKEM) that have been thoroughly scrutinized by the cryptographic
community. Overall, we believe our protocol is more mature and therefore suitable for
short to medium-term integration compared to previous work based on ring signatures.

5

1.2 Technical Overview

X3DH-like key exchange. A quantum-secure X3DH-like protocol should satisfy certain
properties. Apart from satisfying standard authenticated key exchange (AKE) properties like
secrecy and authentication, it should also be asynchronous. That is, parties should be able to
upload keying material to a central server, after which an initiating party can derive a session key
immediately with their counterpart who may be offline. This also entails receiver-obliviousness,
using the language of Hashimoto et al. [Has+22], as the initial key upload should not depend on
the keys of any other party. Another is deniability, allowing parties to claim that they plausibly
did not participate in the key exchange. Note that we cannot possibly ensure that parties
can claim that they never uploaded prekeys as they are signed (and using primitives like ring
signatures would violate receiver-obliviousness). Finally, a DAKE should, like X3DH, provides
security guarantees even if the session state of a party is leaked.

Revisiting split-KEM. In an attempt to model the primitive central to X3DH-like AKE,
Brendel et al. [Bre+21] introduced split-KEM, which is similar to a standard KEM except the
encapsulator can contribute to the derived key. However, we discovered that the accompanying
security definitions were not sufficient to use such a primitive as the main component of a
key exchange protocol. The reason being is that their notions ensure that an encapsulated
ciphertext will not leak information on its encapsulated key, but not that only the sender can
send a “legitimate” ciphertext to the sender (or that only the sender and receiver can derive
a common key). In other words, there is no guarantee of implicit authentication. Therefore,
we introduce the notion of unforgeability against one known-ciphertext attacks for split-KEM
(UNF-1KCA), which ensures that if Alice receives a message allegedly sent by Bob, either Bob
really sent it or the decapsulation will fail. Jumping ahead, this will be used in the security proof
of the protocol to argue that either the adversary relayed a legitimate split-KEM ciphertext to
the receiver that the adversary cannot learn the decapsulation of, or the receiver aborts as the
ciphertext is forged.

We also introduce an intermediary notion that we call decaps-OW-CPA, which enforces that
an adversary should not be able to recover a key decapsulated by some party without knowing
the sender’s or receiver’s secret key. We will prove that our lattice-based split-KEM satisfies this
notion, then we will apply some transform in the (Q)ROM to obtain a UNF-1KCA split-KEM.

Finally, we also define a notion capturing deniability for split-KEM, which states that no
judge J can be convinced that a party B sent a given ciphertext to A, even knowing A’s secret
key but assuming both parties did not deviate from the protocol. This models a setting where
A communicates with B and later tries to frame the latter by giving the transcript and their
own secret key to J .

Construction. As any X3DH-like protocol, our construction works in 4 phases: long-term
key generation, prekey generation, sending and receiving. The first observation we make is that
in X3DH, prekey bundles are signed with a long-term signing key before being uploaded to the
server. This fact is often abstracted away in formal analysis as it hurts the claims one can
make about the deniability of X3DH: as a signature is undeniable by definition, users cannot
deny they participated in the protocol. Based on this, our goal was to achieve some level of
peer-deniability [CF11], where parties can deny they communicated with someone in particular,
and to leverage the fact that we use signatures to authenticate the prekeys. Our protocol works
then as follows (see Figure 1 for a high-level overview). The long-term key pair consists of
a KEM and signature key pair, the latter being used to sign the prekey, which comprises an
ephemeral KEM key pair and ephemeral split-KEM key pair. The former is used for forward
secrecy while the second is used for implicit authentication of the sender. Although usually
ephemeral keys cannot be used for authentication as they are dynamic, in our case we can since
they are authenticated (i.e. signed) by their owner. Then, the sender encapsulates against both

6

Bob (lpkA, vkA)

(eskskemB , epkskemB)←$ KeyGenBsKEM

Kℓ, ctℓ ←$ EncapsKEM(lpkA)

Kskem
e , ctskeme ←$ EncapssKEM(epkskemA , eskskemB)

Kkem
e , ctkeme ←$ EncapsKEM(epkkemA)

K ← KDF(Kℓ,K
skem
e ,Kkem

e)

Alice (lpkB, vkB)

(eskskemA , epkskemA)←$ KeyGenAsKEM

(eskkemA , epkkemA)←$ KeyGenKEM

K′
ℓ ← DecapsKEM(lskA, ctℓ)

K′
e
skem ← DecapssKEM(epkskemB , eskskemA , ctskeme)

K′
e
kem ← DecapsKEM(eskkemA , ctkeme)

K′
ℓ

?
= ⊥ ∨ K′

e
skem ?

= ⊥ ∨ K′
e
kem ?

= ⊥

K′ ← KDF(K′
ℓ,K

′
e
skem,K′

e
kem)

{epkskemB }skB{epkskemA , epkkemA }skA

ctℓ, ct
skem
e , ctkeme

Figure 1: High-level overview of the K-Waay protocol. Values in brackets {·}sk are signed with
sk and the signature is verified upon reception. For clarity, we omit the calculation and addition
of session identifier sid to KDF.

KEM public keys of the receiver, and uses their own split-KEM secret key and the receiver’s
public key to derive a split-KEM ciphertext. Upon decapsulation, the receiver recovers the
three encapsulated keys and combines them using a PRF to derive the shared key.

Ephemeral split-KEM key reuse. The way our protocol is described above works perfectly
well if the split-KEM satisfies the UNF-1KCA unforgeability notion introduced above. However,
in practice, it could happen that some party, say Alice, is offline for too long and all their
ephemeral split-KEM keys have been used. If that occurs, another sender would have to wait
for Alice to come online and upload new keys before they can send her a message.

We fix this issue by modifying the protocol as follows: when Alice’s ephemeral public keys
have run out on the server, a sender can simply reuse one of them. Then, when Alice is
back online, she groups the ciphertexts corresponding to the same public key and decrypts all
ciphertexts in a group at once. If one or more of the split-KEM decapsulations in a group fails,
Alice outputs ⊥ for all ciphertexts and, e.g., restarts the protocol. Otherwise, Alice proceeds
as before (and never decapsulates again using the same split-KEM key). We formally model
this key reuse with an algorithm BatchReceive that takes as input a given session state and one
or more messages to be received.

Security. We show this version of the protocol is secure assuming the split-KEM satisfies a
stronger notion than IND-CPA that we call IND-1BatchCCA (in addition to UNF-1KCA secu-
rity). This definition is the same as traditional IND-CPA (adapted to the split-KEM syntax),
except the adversary can query a decapsulation oracle once with multiple public keys and ci-
phertexts, and the oracle returns ⊥ if one or more of the decapsulations failed, and the resulting
keys otherwise. We show that one can easily build an IND-1BatchCCA split-KEM out of a CPA
secure one in the (Q)ROM, conveniently using the same transform mentioned above that builds
a UNF-1KCA scheme out of a decaps-OW-CPA one.

7

As in previous protocols [Bre+22; Has+22], the long-term KEM provides implicit authen-
tication of the receiver as only they can decrypt. As mentioned above, the ephemeral KEM
provides forward secrecy, and the UNF-1KCA/IND-1BatchCCA split-KEM provides implicit
authentication of the sender, as it guarantees that only the sender could have sent a cipher-
text that correctly decapsulates (unforgeability), and no adversary knows what is inside that
ciphertext (indistinguishability), even after seeing the decapsulation of one batch of ciphertexts
encapsulated against the same public key (given no decapsulation failed). We note that the
sender-to-receiver authentication depends both on a long-term key (i.e. the signing key) and an
ephemeral one (the split-KEM key). Consequently, our model (that allows session state expo-
sure) is more restrictive than that of Hashimoto et al. [Has+22], since in particular it suffices
for the adversary to learn a receiver’s ephemeral state during key exchange to forge a message
that the receiver accepts. Intuitively, this is because split-KEM is effectively a symmetric prim-
itive. Nevertheless, the security that we achieve is stronger than weak forward security without
session state exposure.

Deniable split-KEM from lattices. We provide the first lattice-based split-KEM which sat-
isfies both deniability and UNF-1KCA security. Our starting point is the Frodo key-exchange
(FrodoKEX) [Bos+16], which was identified (among other schemes) as a split-KEM by Brendel
et al. [Bre+21], the security of which relies on the well-known Learning with Errors (LWE)
problem [Reg05]. We highlight that the vanilla construction of FrodoKEX does not enjoy the
aforementioned properties.2 Indeed, when looking closely at the security games of deniabil-
ity and UNF-1KCA, partial information about the secret keys are revealed - thus making a
reduction to LWE completely non-trivial. We circumvent this problem in two ways.

First, we reduce deniability of our scheme to a so-called Extended-LWE problem [AP12],
where in addition to a standard LWE instance, the adversary is given a short random combina-
tion of the secret coefficients. We show that deniability of our scheme reduces straightforwardly
to Extended-LWE, and then follow the methodology of Alperin-Sheriff and Peikert [AP12] to
reduce it further to plain LWE.

Towards UNF-1KCA security, we slightly modify the Frodo split-KEM by introducing mask-
ing terms. As the name suggests, they are used to hide the partial information about secret
keys. In Section 7.2 we discuss the necessity of this (perhaps seemingly artificial) change.

1.3 Additional Related Work

The security of X3DH has been modelled in detail by Cohn-Gordon et al. [Coh+20]. Vatandas
et al. [Vat+20] investigate the deniability of X3DH and similar key exchange protocols under
the deniability notion of Di Raimondo et al. [RGK06], requiring strong knowledge-of-exponent-
type assumptions to prove X3DH secure. Dobson and Galbraith [DG22] propose a SIDH-based
X3DH-like protocol which is unfortunately now broken [CD23]. Very recently, [Kil+23] prove
a simplified version of X3DH tightly-secure in the generic group model under a new multi-
user assumption supporting corruptions although do not allow the adversary to expose parties’
session states.

Unger and Goldberg build a number of different DAKEs [UG15; UG18]. However, the pro-
tocols do not provide post-quantum guarantees: only in their later paper [UG18] is it suggested
to add a PQ KEM for post-quantum confidentiality and the authors do not propose a more
comprehensive hybrid protocol. Nevertheless, the protocols provide relatively strong online
deniability (i.e. where a judge and a party can communicate while trying to frame another
party) at the expense of stronger primitives like dual-receiver encryption and non-committing
encryption.

2Nevertheless, we found no practical attack on deniability/UNF-1KCA for FrodoKEX.

8

Alwen et al. [Alw+21] introduce the notion of authenticated key encapsulation mechanism
(AKEM) and some security definitions. AKEM captures the same primitive as a split-KEM,
but we opted for the syntax and language of the latter as it was meant to be used in a X3DH-like
protocol.

Cremers and Feltz [CF11] introduce peer-deniability, which captures the kind of participation
deniability property we are after in this work, namely that a party cannot deny using a system
but can deny communicating with a particular party. However, their security notion does not
require the simulator to output the session key nor the judge/adversary to distinguish between
the real and simulated key, and so composability issues may arise from using it.

2 Preliminaries

In this work, we denote by efficient adversary a probabilistic polynomial-time or quantum
polynomial-time algorithm unless otherwise specified. Let [n] = {1, . . . , n}, i.e. the set of
integers between 1 and n.

2.1 Key-Encapsulation Mechanism (KEM)

Definition 2.1 (KEM). A KEM KEM is a tuple of three efficient algorithms (KeyGen,Encaps,Decaps)
defined as follows:

• (pk, sk) ←$ KeyGen(1λ): The key generation function takes the security parameter λ as
input, and outputs a pair of public/secret keys (pk, sk).

• K, ct ←$ Encaps(pk): The encapsulation function takes a public key pk as input, and
outputs a ciphertext ct and a key K.

• K/⊥ ← Decaps(sk, ct): The decapsulation function takes a secret key sk and a ciphertext
ct as inputs, and outputs a key K or the error symbol ⊥.

Finally, we say a KEM is (1− δ)-correct if

Pr

K ̸= K ′ :
(pk, sk)←$ KeyGen(1λ);
K, ct←$ Encaps(pk);
K ′ ← Decaps(sk, ct)]

 ≤ δ .

IND-CCA/CPAKEM(A)
1 : b←$ {0, 1}
2 : (pk, sk)←$ KeyGen(1λ)

3 : ct∗,K0 ←$ Encaps(pk)

4 : K1 ←$ K
5 : b′ ←$ADEC(pk, ct∗,Kb)

6 : return 1b′=b

DEC(ct)

1 : if ct = ct∗ : return ⊥
2 : K ′ ← Decaps(sk, ct)

3 : return K ′

Figure 2: Indistinguishability games for KEM. In IND-CPA the adversary cannot make any
query to DEC.

Definition 2.2 (KEM Indistinguishability). We consider the games defined in Fig. 2. Let K
be a finite key space. A KEM scheme over K KEM = (KeyGen,Encaps,Decaps) is IND-CCA

9

SUF-CMASig(A)
1 : L← ∅
2 : (pk, sk)←$ KeyGen(1λ)

3 : m∗, σ∗ ←$ASIGN(pk)

4 : if Vrfy(pk,m∗, σ∗) and (m∗, σ∗) ̸∈ L

5 : return 1

6 : return 0

SIGN(m)

1 : σ ←$ Sign(sk,m)

2 : L← L ∪ {m,σ}
3 : return σ

Figure 3: SUF-CMA game.

(resp. IND-CPA) if for any efficient adversary A (respectively any efficient adversary with no
access to the decapsulation oracle) we have

Adv
ind-cca/cpa
KEM (A) :=

∣∣∣∣Pr [IND-CCA/CPAKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

where Pr [IND-CCA/CPAKEM(A)⇒ 1] is the probability that A wins the IND-
CCA/CPAKEM(A) game defined in Fig. 2.

2.2 Signature

Definition 2.3. A signature scheme is a tuple of three efficient algorithms (KeyGen,Sign,Vrfy):

• (pk, sk)←$ KeyGen(1λ): The key generation function outputs a pair of keys.

• σ ←$ Sign(sk,m): The signing function takes as inputs a secret key sk and the message to
sign m, and it outputs a signature σ.

• 0/1← Vrfy(pk,m, σ): The verification function takes as inputs a public key pk, the signed
message m, and the signature σ, and it outputs either 0 or 1 (for failure and success,
respectively).

Finally, we say a signature scheme is (1− δ)-correct if for all messages m:

Pr

[
Vrfy(pk,m, σ) = 0 :

(pk, sk)←$ KeyGen(1λ);
σ ← Sign(sk,m)

]
≤ δ

Definition 2.4 (SUF-CMA security). We consider the game shown in Figure 3. We say a
signature scheme Sig is SUF-CMA if for all efficient adversaries A, we have

Advsuf−cma
Sig (A) := Pr[SUF-CMASig(A)⇒ 1] = negl .

2.3 Triple PRF

Definition 2.5 (Triple PRF). Let F : K × K × K × D → R be a function. We consider the
game shown in Figure 4. We say that F is a 3PRF if for all efficient adversaries, we have:

Adv3prfF (A) := max
i∈{1,2,3}

∣∣∣∣Pr [PRFFi(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

where Fi denotes F keyed in its i-th argument for i ∈ {1, 2, 3}.

The notion of a triple PRF generalises the by now common notion of a dual PRF [Bel06]. A
triple PRF Ftriple can be trivially constructed in the random oracle model, or from a dual PRF
Fdual as Ftriple(k1, k2, k3, x) = Fdual(k1, Fdual(k2, k3, x), x).

10

PRFF (A)
1 : Sample random function G

2 : k ←$ K
3 : b←$ {0, 1}
4 : b′ ←$APRF(1λ)

5 : return 1b′=b

PRF(a, b, c)

1 : if b = 0 :

2 : return Fk(a, b, c)

3 : else :

4 : return G(a, b, c)

Figure 4: PRF game for function Fk taking three arguments as input.

3 Split-KEM

As mentioned above, the primitive at the core of our protocol is a split-KEM, which we present
in this section. It was first defined by Brendel et al. [Bre+21].

Definition 3.1 (Split-KEM). An (asymmetric) split-KEM sKEM is a tuple of four efficient
algorithms (KeyGenA,KeyGenB,Encaps,Decaps) defined as follows:

• (pkA, skA)←$ KeyGenA(1λ) (resp. (pkB, skB)←$ KeyGenB(1λ)): The key generation func-
tion of the first/second party takes the security parameter λ as input, and outputs a pair
of public/secret keys (pkA, skA) (resp. (pkB, skB)).

• K, ct←$ Encaps(pkA, skB): The encapsulation function takes the public key pkA of a party
A and the other party’s secret key skB as inputs, and outputs a ciphertext ct and a key K.

• K/⊥ ← Decaps(pkB, skA, ct): The decapsulation function takes the secret key skA of a
party A, the other party’s public key pkB and a ciphertext ct as inputs, and outputs a key
K or the error symbol ⊥.

We say a split-KEM is (1− δ)-correct if

Pr

K ̸= K ′ :

(pkA, skA)←$ KeyGenA(1λ);
(pkB, skB)←$ KeyGenB(1λ);
K, ct←$ Encaps(pkA, skB);
K ′ ← Decaps(pkB, skA, ct)]

 ≤ δ .

Intuitively, a split-KEM is similar to a normal KEM except material from both participants
is used for encapsulation (i.e. the final key will depend on both parties’ secret/public keys). In
a X3DH-like protocol, it can be used to implicitly authenticate the party encapsulating. In the
language of Brendel et al. [Bre+21], our notion of split-KEM is “asymmetric”, as it is assumed
that B always encapsulates and A always decapsulates. This is sufficient for our purpose, but
we note that all the results presented in this paper can be adapted to a symmetric split-KEM
where KeyGenA = KeyGenB.

3.1 Security

We will need several security properties from the split-KEM to prove our whole protocol secure.
We first define one-wayness (OW-CPA) for sKEM, which is very similar to the usual one for
KEM and another new notion called IND-1BatchCCA. Looking ahead, we will show that any
OW-CPA split-KEM can easily be transformed into a IND-1BatchCCA one in the (Q)ROM.

Definition 3.2 (split-KEM OW-CPA). We consider the OW-CPA game defined in Figure 5. A
split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is OW-CPA if for any efficient
adversary A we have

Advow-cpa
sKEM (A) = Pr [OW-CPAsKEM(A)⇒ 1] = negl .

11

Definition 3.3 (split-KEM IND-1BatchCCA). We consider the IND-1BatchCCA game defined
in Figure 5. Let K be a finite key space. A split-KEM scheme over K sKEM = (KeyGenA,KeyGenB,
Encaps,Decaps) is IND-1BatchCCA if for any efficient adversary A we have

Advind-1batchccasKEM (A) :=
∣∣∣∣Pr [IND-1BatchCCAsKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

IND-1BatchCCAsKEM(A)
1 : b←$ {0, 1}; q ← 0

2 : pkA, skA ←$ KeyGenA(1λ)

3 : pkB, skB ←$ KeyGenB(1λ)

4 : K0, ct
∗ ←$ Encaps(pkA, skB)

5 : K1 ←$ K
6 : b′ ←$ABatchDec(pkA, pkB, ct

∗,Kb)

7 : return 1b′=b

BatchDec({(pki, cti)}di=1)

1 : if q = 1 : return ⊥
2 : else : q ← q + 1

3 : for i ∈ {1, . . . , d} :
4 : if (pki, cti) = (pkB, ct

∗) : return ⊥
5 : K ′

i ← Decaps(pki, skA, cti)

6 : if K1 = ⊥ ∨ . . . ∨Kd = ⊥ : return ⊥
7 : return (K1, . . . ,Kd)

OW-CPAsKEM(A)
1 : pkA, skA ←$ KeyGenA(1λ); pkB, skB ←$ KeyGenB(1λ)

2 : K∗, ct∗ ←$ Encaps(pkA, skB)

3 : K ′ ←$A(pkA, pkB, ct∗)
4 : return 1K′=K∗

Figure 5: IND-1BatchCCA and OW-CPA games.

We also recall the different notions of indistinguishability for (asymmetric) split-KEM de-
fined by Brendel et al. [Bre+21]:

xy-IND-CCAsKEM(A)
1 : b←$ {0, 1}
2 : nx ← 0;ny ← 0;

3 : pkA, skA ←$ KeyGenA(1λ)

4 : pkB, skB ←$ KeyGenB(1λ)

5 : K0, ct
∗ ←$ Encaps(pkA, skB)

6 : K1 ←$ K
7 : b′ ←$ADEC,ENC(pkA, pkB, ct

∗,Kb)

8 : return 1b′=b

ENC(pk)

1 : if ny ≥ y : return ⊥
2 : ny ← ny + 1

3 : K, ct←$ Encaps(pk, skB)

4 : if (pk, ct) = (pkA, ct
∗) : return ⊥

5 : return K, ct

DEC(pk, ct)

1 : if nx ≥ x : return ⊥
2 : nx ← nx + 1

3 : if (pk, ct) = (pkB, ct
∗) : return ⊥

4 : return Decaps(pkB, skA, ct)

Figure 6: xy-IND-CCA games for an “asymmetric” split-KEM from Brendel et al. [Bre+21],
where x,y ∈ {n, s, m}. When doing the comparison on the first line of both oracles, we assume
n = 0, s = 1 and m =∞.

Definition 3.4 (split-KEM xy-IND-CCA). We consider the xy-IND-CCA game defined in
Figure 6. A split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is xy-IND-CCA,

12

with x, y ∈ {n, s, m} if for any efficient adversary A we have

Advxy-ind-ccasKEM (A) :=
∣∣∣∣Pr [xy-IND-CCAsKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

These indistinguishability notions range from nn-IND-CCA, which is similar to some kind
of IND-CPA security as the adversary has no access to encapsulation or decapsulation oracles,
to mm-IND-CCA, which captures strong IND-CCA security for split-KEMs. More generally, all
notions are of the form xy-IND-CCA, x, y ∈ {n, s, m}, where x (resp. y) specifies the number
of queries an adversary can make to the decapsulation (resp. encapsulation) oracle (i.e. none,
single, or many).

On the original split-KEM security. We recall that the advantage of split-KEMs over
normal KEMs is that they capture the fact that the party encapsulating can contribute (static)
keying material towards the shared key, whereas it is not the case with KEMs, as the encapsu-
lation function only takes the receiving party’s public key as input. In particular, this means
that KEMs cannot be used for implicit authentication of the encapsulator, unlike split-KEMs.
However, we argue that the original xy-IND-CCA definitions for split-KEMs [Bre+21] do not
capture implicit authentication either and thus are not suited for their purpose (i.e. building an
asynchronous DAKE). In fact, any IND-CPA (resp. IND-CCA) KEM can easily be converted
to an (asymmetric) split-KEM satisfying nn-IND-CCA (resp. mm-IND-CCA).

More formally, imagine a setting where Alice and Bob know each other’s public key, and
Bob wants to implicitly authenticate to Alice using a split-KEM. In addition, we assume a
mm-IND-CCA split-KEM sKEM0 exists (note mm-IND-CCA security is the strongest so this
holds for all weaker notions). We first modify sKEM0 such that on a special ciphertext ct⋆ not
in the original ciphertext space, Decaps returns a constant key K⋆. Let’s call this modified
scheme sKEM. We observe that sKEM is still mm-IND-CCA secure as no adversary can break
an honestly-generated challenge ciphertext. Now, implicit authentication means that if Alice
decapsulates a ciphertext and obtains a key K, then only Bob knows K. However, in our case,
any adversary can send ct⋆ to Alice and set their own key to K⋆. Both the adversary and
Alice will share the same key and implicit authentication does not hold. In a way, xy-IND-CCA
security does not prevent forgeries.

UNF-1KCA. This leads us to define our notion of UNF-1KCA security for split-KEMs below
which, along with OW-CPA (which can be turned into IND-1BatchCCA), guarantees that only
Bob (and obviously Alice) can know the result of Alice’s decapsulation on some ciphertext.
More precisely, UNF-1KCA ensures that no adversary can forge a valid split-KEM ciphertext
for B even knowing a ciphertext that was computed with respect to a public key chosen by
the adversary3, under the condition that the public key used for encapsulation and the known
ciphertext are different from the pair made of A’s public key and the ciphertext output by the
adversary. We also define a security notion called decaps-OW-CPA that will serve as a building
block to build UNF-1KCA. The decaps-OW-CPA notion ensures that it is hard for an adversary
knowing a ciphertext ct (under an adversarially-chosen public key) to come up with a ciphertext
ct′ (possibly equal to ct) and a key K ′ such that the decapsulation of ct′ returns K ′.

Definition 3.5 (split-KEM UNF-1KCA). We consider the UNF-1KCA game defined in Fig-
ure 7. A split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is UNF-1KCA if for
any efficient adversary A we have

Advunf-1kcasKEM (A) := Pr [UNF-1KCAsKEM(A)⇒ 1] = negl .

3Looking ahead, the fact that the public key is adversarially-chosen will be useful for proving security under
key-compromise impersonation attacks for our full protocol.

13

UNF-1KCAsKEM(A)
1 : pkA, skA ←$ KeyGenA(1λ)

2 : pkB, skB ←$ KeyGenB(1λ)

3 : pk←$A(pkA, pkB)
4 : KB, ct←$ Encaps(pk, skB)

5 : ct′ ←$A(pkA, pkB, ct,KB)

6 : if (ct, pk) = (ct′, pkA) : return 0

7 : KA ← Decaps(pkB, skA, ct
′)

8 : if KA = ⊥ : return 0

9 : return 1

decaps-OW-CPAsKEM(A)
1 : b←$ {0, 1}
2 : pkA, skA ←$ KeyGenA(1λ)

3 : pkB, skB ←$ KeyGenB(1λ)

4 : pk←$A(pkA, pkB)
5 : KB, ct←$ Encaps(pk, skB)

6 : K ′
A, ct

′ ←$A(pkA, pkB, ct)
7 : KA ← Decaps(pkB, skA, ct

′)

8 : if KA = ⊥ : return 0

9 : return 1KA=K′
A

Figure 7: Games UNF-1KCA and decaps-OW-CPA.

DENYREAL
sKEM,Sim(A)

1 : (pkA, skA)←$ KeyGenA(1λ)

2 : (pkB, skB)←$ KeyGenB(1λ)

3 : K, ct←$ Encaps(pkA, skB)

4 : b←$A(pkA, pkB, skA,K, ct)

5 : return b

DENYSIM
sKEM,Sim(A)

1 : (pkA, skA)←$ KeyGenA(1λ)

2 : (pkB, skB)←$ KeyGenB(1λ)

3 : K, ct←$ Sim(pkB, skA)

4 : b←$A(pkA, pkB, skA,K, ct)

5 : return b

Figure 8: Deniability game.

Definition 3.6 (split-KEM decaps-OW-CPA). We consider the decaps-OW-CPA game defined
in Figure 7. A split-KEM scheme sKEM = (KeyGenA,KeyGenB,Encaps,Decaps) is decaps-OW-
CPA if for any efficient adversary A we have

Advdecaps-ow-cpa
sKEM (A) :=

∣∣∣∣Pr [decaps-OW-CPAsKEM(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

3.2 Deniability

We finally state the notion of split-KEM deniability we would like to achieve.

Definition 3.7 (Deniability). We consider the game shown in Figure 8. We say a split-KEM
sKEM is DENY if there exists a simulator Sim s.t. for all efficient adversaries A, we have

AdvdenysKEM,Sim(A) :=
∣∣∣Pr[DENYREAL

sKEM,Sim(A)⇒ 1]− Pr[DENYSIM
sKEM,Sim(A)⇒ 1]

∣∣∣ = negl .

Informally, the setting considered is the following. Alice and Bob use the split-KEM to
establish a shared key (we assume the public keys are only used for this one exchange), and
Alice (while following the protocol) wants to frame Bob and prove that he did communicate with
her. Therefore, after receiving Bob’s ciphertext and deriving the key, Alice gives both public
keys, the derived key, the ciphertext and her own secret key to a judge (i.e. the adversary)
that must decide whether Bob actually sent the ciphertext that was used to derive the key or
not. The scheme is deniable if there is a simulator that, given Alice’s view, outputs a ciphertext
and a key indistinguishable from the ones output by Bob. We discuss deniability further after
introducing our key exchange deniability notion (Section 4.3) and in Section 7.2.

14

4 Model for DAKE

In this section, we describe our model for deniable authenticated key exchange (DAKE) that
we tailor to the semantics and flow of X3DH.

4.1 Syntax

A DAKE DAKE is a tuple of four efficient algorithms (KeyGen, Init, Send,BatchReceive) defined
as follows:

• (pk, sk)←$ KeyGen(1λ). This function takes as input the security parameter λ and outputs
the long-term public/secret key pair of the caller.

• (sti, preki)←$ Init(ski, role). This function takes as inputs a long-term secret key ski and a
role role ∈ {sender, receiver} and outputs a session state sti and a prekey bundle preki. Init
models the creation of key material that will be uploaded to the public key infrastructure
by both parties (e.g., a prekey bundle in X3DH). The output values depend only on the
public key of party i executing the function.

• (k,m) ←$ Send(ski, pkj , sti, prekj). This function takes as inputs the secret key of the
executing party i, the public key of the intended recipient pkj , party i’s session state sti
and the (claimed) prekey bundle of the intended recipient prekj , and outputs a key k and
a message m.

• {ks}s ← BatchReceive(ski, sti, {pkj , prekj ,mj}j). This function takes as inputs the secret
key of the executing party i, an ephemeral state of party i sti and a vector of size d ≥ 1 of
the form (pkj , prekj ,mj) for party i’s session with the public key of the (claimed) sender
pkj , the (claimed) prekey bundle of party j prekj and a message mj , and outputs a vector
of d keys (k1, . . . , kd), some or all of which may be ⊥.

Init explicitly captures parties uploading ephemeral keys to a central server in the first protocol
step. This contrasts with the formal modelling in some previous works on X3DH-like key
exchange [Bre+22; Has+22] that model a three-move key exchange with a single initiator. As
Init is independent of keying material from the caller’s counterpart, our definition captures so-
called receiver obliviousness [Has+22] (sometimes post-specified peers [CK02]), corresponding
to some, but not all, key exchange protocols in the literature.

The most novel part of our primitive is BatchReceive which in particular captures ephemeral
key reuse when uploaded ephemeral keys are exhausted. In the case of key exhaustion, when a
party comes back online, they execute BatchReceive several times (once per ephemeral state sti),
where the number of inputs of the form (pkj , prekj ,mj) in a given BatchReceive call corresponds
to how many times sti is re-used. Otherwise, BatchReceive can be used as in standard AKE
with a single value (pkj , prekj ,mj) as input.

4.2 Security Model

We now describe the security model we consider for our DAKE, which extends existing models
in some ways to support BatchReceive.

4.2.1 Parties and sessions

We assume that there are n parties P1, . . . Pn (or 1, . . . , n) where party Pi (resp. or i) is
associated with long-term key pair (pki, ski) output by KeyGen. Each party runs one or more
sessions (sometimes called oracles [Bre+21]), where the s-th session of Pi is denoted by πs

i .
Each session πs

i is associated with the following local fields:

15

• sid, the session identifier or session id.

• pid, the partner identifier.

• role ∈ {⊥, sender, receiver}, the role of Pi.

• status ∈ {⊥, accept, reject}, the status of πs
i .

• k, the session key.

• st, the session state.

• rand, the session randomness.

All fields are initialised to ⊥ except rand which is initialised to uniform randomness. A session
either has role sender or receiver, and its counterpart, its partner pid, has the other role; note a
receiver may have several counterparts (capturing ephemeral key reuse).

Fields pid, role, status and rand in session πs
i are set directly by the challenger, and the rest

are (sometimes implicitly) set by the underlying DAKE algorithms called by the challenger.
Moreover, in light of the definition of BatchReceive, sid, pid and k are vectors for a receiver
(role = receiver); we sometimes write s⃗id, p⃗id and k⃗ for clarity to indicate this.

Suppose Pi is acting as a receiver. Initially, Pi calls Init, and then eventually calls
BatchReceive. Before this point, one or more senders Pj (i.e., parties with role = sender)
may call Init and then Send with respect to the output prek from Pi’s Init call (assuming honest
message delivery), which output messages of the form mj . Finally, Pi invokes BatchReceive with
one or more mj values as input. A party has status = accept if and only if k ̸= ⊥4, and stores
any session state after calling Init and before setting status ̸= ⊥ due to a Send or BatchReceive
call in st.

4.2.2 Partnering

We define partnering between two sessions to capture security using session identifiers:

Definition 4.1 (Partnering). For any (i, Pj , s, t), we say that sessions πs
i and πt

j are partners
if

1. πs
i .role ̸= πt

j .role.

2. If πs
i .role = sender, then πs

i .pid = j and i ∈ πt
j .p⃗id. If πs

i .role = receiver, then j ∈ πs
i .p⃗id

and i = πt
j .pid.

3. If πs
i .role = sender, then πs

i .sid ∈ πt
j .s⃗id ̸= ⊥. If πs

i .role = receiver, then πt
j .sid ∈ πs

i .s⃗id ̸= ⊥.

Looking ahead, this definition ensures that two sessions can only be partners if they both
have set status = accept. Our definition mainly differs from previous work in that there can
be many senders (and thus partnered sessions) for a given receiver. Ignoring this aspect, our
definition is only slightly different from that of Hashimoto et al. [Has+22] in that we restrict sid
to be not equal to ⊥; this is an artifact of the fact we model ‘four-move’ key exchange (including
prekey uploading).

4In particular, BatchReceive may output several keys; as long as at least one of them is not ⊥, the calling
party accepts.

16

4.2.3 KIND Security Game

We first define key indistinguishability (KIND) and then define deniability separately. Following
previous work, we define a KIND experiment played between a challenger C and adversary A
in text below. The experiment KINDn

DAKE is parameterised by the DAKE DAKE and integer n,
the number of parties (honest or otherwise) in the lifetime of the game’s execution. The game
is divided into distinct phases defined as follows.

Setup. C first uniformly samples challenge bit b ∈ {0, 1}. Then, for each party Pi, C calls
(pki, ski)←$ KeyGen(1λ) and provides {pk1, . . . , pkn} and 1λ as input to A.

Phase 1. A adaptively makes any number of the following queries in any order:

• EXEC(i, s, prek,m): A starts or runs the next step of execution in session πs
i . In each

call, C uses randomness tape πs
i .rand as needed.

– To start the execution in session πs
i not previously started, A calls EXEC(i, s, prek,m)

with special input m = (start, sender, j) (resp. (start, receiver, j⃗)) (where start is
defined only in the context of this game) that, if not previously called, sets πs

i .pid = j
(resp. πs

i .pid = j⃗) and πs
i .role = sender (resp. πs

i .role = receiver); observe input prek
is ignored by C. Then, C invokes (sti, preki)←$ Init(ski, role) and outputs preki to A.

– Given that Pi has started in πs
i , π

s
i .status = ⊥ and πs

i .role = sender, when A calls
EXEC(i, s, prek,⊥), C invokes (k,m) ←$ Send(ski, pkj , sti, prek) (where j = πs

i .pid),
returns output m to A and sets πs

i .status to reject (resp. accept) if k = ⊥ (resp.
k ̸= ⊥).

– If πs
i .role = receiver and πs

i .status = ⊥, when A calls
EXEC(i, s, {sj , prekj ,mj}j∈j⃗′), C aborts if j⃗′ ̸= πs

i .pid and otherwise invokes
k← BatchReceive(ski, sti, {pkj , prekj ,mj}j) and outputs to A ⊥ if BatchReceive fails
(resp. nothing otherwise) and sets πs

i .status to reject (resp. accept).

• LTK(i) outputs ski. Pi is hereafter corrupted.

• REGISTER(pki, i) registers a new party Pi for i > n not previously registered, sets their
long-term public key to pki and distributes pki to all other oracles; Pi is immediately
marked as corrupted.

• STATE(i, s) outputs πs
i .st, which is hereafter revealed.

• KEY(i, s, j) outputs πs
i .kj if πs

i .role = receiver and πs
i .status ̸= ⊥ and otherwise outputs

πs
i .k.

Test. When A decides to move to the next phase, it issues the following query TEST which
(if successful) returns either a real or random key:

• TEST(i, s, j): If πs
i .status ̸= accept, C returns ⊥. Otherwise:

– If πs
i .role = sender, C aborts if j ̸= πs

i .pid, and otherwise returns either πs
i .k if b = 0

or a uniformly sampled key k if b = 1;

– If πs
i .role = receiver, C aborts if j ̸∈ πs

i .p⃗id, and otherwise returns either πs
i .kj if b = 0

or a uniformly sampled key k if b = 1.

At this point, πs
i (which we say is with respect to key j if πs

i .role = receiver) is said to be
the test session.

17

Phase 2. A adaptively issues queries as in Phase 1.

Guess, freshness and correctness. After Phase 2, A outputs bit b′. Suppose that A made
query TEST(i, s, j), i.e., πs

i is the test session with respect to key j and j ∈ πs
i .pid (with equality

at least when πs
i .role = sender). The following freshness conditions are checked by C; if any

condition is not satisfied, C sets b′ to a uniform bit (i.e., A gains no advantage):

1. KEY(i, s, j′) has not been queried, where j′ is arbitrary if πs
i .role = sender and j′ = j if

πs
i .role = receiver.

2. If πs
i and πt

j are partners, then KEY(j, t, i′) has not been queried, where i′ is arbitrary if
πs
i .role = sender and i′ = i if πs

i .role = receiver.

3. Pi is not corrupted or πs
i .st has not been revealed.

4. If πs
i and πt

j are partners, then Pj is not corrupted or πt
j .st has not been revealed.

5. If πs
i has no partner session, then Pj is not corrupted when πs

i .status = ⊥.

6. If πs
i has no partner session, then if πs

i .role = sender, for any session πt
j such that prekj

was both output by Init(skj , receiver) and input to Send in πs
i by C, Pj is not corrupted

or πt
j .st is not revealed.

7. If πs
i has no partner session, then if πs

i .role = receiver, for any session πt
j such that prekj

was both output by Init(skj , sender) and input to BatchReceive in πs
i by C, πt

j .st is not
revealed and πs

i .st is not revealed.

Then, the following correctness conditions are checked by C which, iterating over all relevant
parties i, j, k, only consider the subset of sessions corresponding to honest protocol runs where
A faithfully follows the protocol specification. If any condition is satisfied, C sets b = b′ (i.e.,
A wins):

1. There exist distinct sessions πs
i and πt

j such that πs
i .role = πt

j .role and either 1) πs
i =

receiver and πs
i .sidj = πt

j .sidi or 2) π
s
i .sid = πt

j .sid.

2. Assuming πs
i .role = receiver, there exist sessions πs

i with respect to key j and πt
j that are

partners such that πs
i .kj ̸= πt

j .k (analogously when πs
i .role = sender).

3. There exist distinct sessions πs
i , π

t
j and πu

k such that πs
i .status = πt

j .status = πu
k .status =

accept and πs
i .sidk = πt

j .sidk = πu
k .sid (assuming i, j are receivers here but analogously in

other cases).

Finally, the game outputs 1 if and only if b = b′.

Security is formally captured in Definition 4.2 below.

Definition 4.2 (DAKE key indistinguishability). We consider the KIND game described above.
We say a DAKE DAKE is KIND if for all efficient adversaries A and polynomially-bounded n
(the total number of parties), we have

AdvkindDAKE,n(A) :=
∣∣∣∣Pr[KINDn

DAKE(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

Discussion. Following previous work, we define freshness conditions to prevent the adversary
from mounting trivial attacks. Conditions 1 to 5 correspond exactly to the forward-secure
variant of security in [Has+22]. Due to the design of our DAKE K-Waay, we additionally restrict
the adversary via conditions 6 and 7. The clauses in these conditions essentially due to the fact

18

DENYexp
DAKE,n,Sim(A)

1 : b←$ {0, 1}
2 : L← ∅
3 : for i ∈ [n] :

4 : (pki, ski)←$ KeyGen(1λ)

5 : L← L ∪ {(pki, ski)}
6 : b′ ←$ACHAL(L)

7 : return 1b′=b

CHAL(i, j)

1 : require i ∈ [n] ∧ j ∈ [n]

2 : (k,m)← (⊥,⊥)
3 : (sti, preki)←$ Init(ski, sender)

4 : (stj , prekj)←$ Init(skj , receiver)

5 : if b = 0 : (k,m)←$ Send(ski, pkj , sti, prekj)

6 : else : (k,m)←$ Sim(skj , pki, stj , preki, prekj)

7 : T ← (preki, prekj ,m)

8 : if exp = true : return (k, T, stj)

9 : else : return (k, T)

Figure 9: Deniability game.

that in K-Waay the only secret keying material required to call Send is an ephemeral split-KEM
secret. For example, suppose that the tested πs

i is the receiver. Due to the ‘symmetric’ nature
of split-KEM, without these restrictions, revealing πs

i .st allows the adversary to inject to Pi by
simulating Send (akin to a key-compromise impersonation (KCI) attack using Pi’s ephemeral
state) and trivially distinguish. Consequently, we restrict session state exposure in this case.

Our model does not support randomness exposure or manipulation. As is standard, however,
one can employ the NAXOS trick [LLM07] to obtain security given, e.g., randomness but not
long-term keying material is exposed. Note also that we do not force Init to be called, e.g., by
the sender or senders first or Init to be called by both the sender or senders and receiver before
a party calls Send or BatchReceive.

Apart from the fact we make several extensions to typical AKE modelling to capture
BatchReceive, the game is closest to that of [Has+22] except that we additionally enforce cor-
rectness checks as in [Bre+22]. To capture partnering, we consider partner and key identifiers
that may be vectors for a receiver, such that several sender sessions may be partnered with a
receiver session if, for a given sender session, it partners with a part/component of the receiver
session. We do not capture semi-static keys explicitly as in [Bre+22], although in principle they
could be captured in Init. Like [Has+22], our game supports message injection, session state
exposure (revealing) (unlike [Bre+22]), session key exposure, long-term key exposure (corrup-
tion) and adversarial long-term key registration (also considered corruption). During execution,
a single challenge test query is made by the adversary that reveals a real or random key output
in some session. For BatchReceive which can output several keys, just one of the output keys
are tested.

Trivial attacks. We restrict the adversary’s behaviour to prevent ‘trivial’ attacks (e.g. di-
rectly revealing the challenge key) by defining freshness predicates. Due to our protocol’s
design, our notion restricts more than the full forward security notion under session state ex-
posure defined by Hashimoto et al. [Has+22]. Our freshness predicates imply weak forward
secrecy and implicit authentication given session state exposure is not allowed (enforced in
some recent works like [Bad+15; Coh+19]). Brendel et al.’s model provides these guarantees
but additionally protect against randomness exposure [Bre+22], whereas we allow exposures on
session states under some conditions unlike them.

4.3 Deniability

We next introduce our security notion for a deniable DAKE. To this end, we introduce security
game DENYexp

DAKE,Sim in Figure 9.

19

Definition 4.3 (DAKE deniability). We consider the game shown in Figure 9. We say a DAKE
DAKE is DENYexp for exp ∈ {true, false} if there exists an efficient simulator Sim s.t. for all
efficient adversaries A and polynomially-bounded n, we have

AdvdenyDAKE,Sim,exp(A) :=
∣∣∣∣Pr[DENYexp

DAKE,n,Sim(A)⇒ 1]− 1

2

∣∣∣∣ = negl .

Our definition captures the following deniability property. Initially, the judge A is given the
long-term keys of all parties. A then observes honest protocol runs between pairs of parties (via
CHAL). Depending on the challenge bit b, either Send or a simulator Sim that takes as input
the secret keying material of the receiver trying to frame the sender is executed in each run.
Moreover, A is given the prekey messages independent of b and, if the parameter exp is set to
true, also the session state of the receiver in each protocol run. The goal of the adversary is to
distinguish whether Send or Sim is being called.

Our notion DENYfalse corresponds most closely with that of Brendel et al. [Bre+22] which
was also adopted by Cremers et al. [CZ24]. Due to how Brendel et al.’s AKE primitive is defined,
they also consider semi-static key pairs which are also given to the adversary. DENYtrue provides
stronger deniability, corresponding in practice to a receiver who co-operates with a judge by
handing over the entire contents of their device. Although incomparable formally, our DAKE
would not be considered deniable under a notion like that of Brendel et al. [Bre+22] since
their protocol does not formally model long-term signatures. Note that our definition, like
Brendel et al.’s [Bre+22], can be straightforwardly converted to a “simulation-based” notion
like Definition 3.7.

Finally, observe that our definition, like that of Brendel et al. [Bre+22] does not consider
deniability for the receiver but only for the sender. One could define such a notion, in which
the goal is for the judge (adversary) to distinguish between the output of BatchReceive and a
simulator Sim that has access to the long-term and ephemeral states of all corresponding senders
and is given (honest) ciphertexts output by Send as input. Here, one could argue deniability
for K-Waay using the security of the ephemeral KEM and then the KDF. A weaker definition
would require the judge to distinguish between the output of Send and BatchReceive calls, and
the output of a simulator Sim given the senders’ states, which is trivial to satisfy (and thus
we did not capture it) but is closer to offline semi-honest deniability (whereas the first notion
sketched above is more ‘online’).

5 K-Waay: Post-Quantum X3DH from Split-KEM

5.1 Construction

We present our DAKE K-Waay5 (Key-exchange With asynchrony, authentication and peer-
deniability) in Figure 10.

Each party is associated with a long-term public/secret key pair which in K-Waay comprises
of a signature and KEM key pair generated in KeyGen. In Init, ephemeral KEM and split-KEM
keys for both parties are generated and the public keys are signed with the long-term signature
key.

After initialisation, the sender Pi (sometimes called the initiator) invokes Send that takes the
prekey prekj output by the receiver Pj ’s Init call as input. After verifying the signature in prekj ,
Pi encapsulates to 1) the long-term KEM key of Pj ; 2) the ephemeral KEM key contained in
prekj ; and 3) the ephemeral split-KEM key contained in prekj . Note that the split-KEM provides
implicit authentication (without it, Send could be simulated without secrets). Pi then combines

5Pronounced ké-wè [ke: wε]. Dated regionalism from the Neuchâtel area in Switzerland which can mean
anything between yeah and of course. Coincidentally, resembles the name of a brand of raincoats that are
reliable, efficient, and that protect against adversarial conditions.

20

KeyGen(1λ)

1 : // long-term key generation

2 : (kpk, ksk)←$ KeyGenLKEM(1
λ)

3 : (spk, ssk)←$ KeyGenSig(1
λ)

4 : pk← (spk, kpk)

5 : sk← (ssk, ksk)

6 : return (pk, sk)

Init(ski, role)

1 : // prekey generation/upload

2 : if role = sender :

3 : (espki, esski)←$ KeyGenBsKEM(1
λ)

4 : ekpki ← ⊥
5 : else :

6 : (espki, esski)←$ KeyGenAsKEM(1
λ)

7 : (ekpki, ekski)←$ KeyGenEKEM(1
λ)

8 : σi ←$ SignSig(ski.ssk, (espki, ekpki))

9 : preki ← (espki, ekpki, σi)

10 : return (sti = (esski, ekski, preki), preki)

Send(ski, pkj , sti, prekj)

1 : (esski, ekski, preki)← sti

2 : (espkj , ekpkj , σj)← prekj

3 : msg ← (espkj , ekpkj)

4 : require VrfySig(pkj .spk,msg, σj)

5 : (Kℓ, ctℓ)←$ EncapsLKEM(pkj .kpk)

6 : (Kk, ctk)←$ EncapsEKEM(ekpkj)

7 : (Ks, cts)←$ EncapssKEM(espkj , esski)

8 : m← (ctℓ, ctk, cts)

9 : sid← Pi||Pj ||pki||pkj ||preki||prekj ||m
10 : k← KDF(Kℓ,Kk,Ks, sid)

11 : return (k,m)

BatchReceive(ski, sti, S = {pkj , prekj ,mj}j)
1 : (esski, ekski, preki)← sti

2 : fail← false; kj ← ⊥
3 : for j : (pkj , prekj ,mj) ∈ S :

4 : (ctℓ, ctk, cts)← mj

5 : (espkj , ekpkj , σj)← prekj

6 : if ¬VrfySig(pkj .spk, (espkj , ekpkj), σj) :

7 : kj ← ⊥
8 : continue

9 : Kℓ ← DecapsLKEM(ski.ksk, ctℓ)

10 : Kk ← DecapsEKEM(ekski, ctk)

11 : Ks ← DecapssKEM(espkj , esski, cts)

12 : sid← Pj ||Pi||pkj ||pki||prekj ||preki||mj

13 : if Ks = ⊥ : fail← true

14 : if (Kℓ = ⊥) ∨ (Kk = ⊥) ∨ (Ks = ⊥) : kj ← ⊥
15 : else : kj ← KDF(Kℓ,Kk,Ks, sid)

16 : if fail : return ⊥|S|

17 : else : return {kj}j

Figure 10: K-Waay: A X3DH-like DAKE from IND-CCA KEMs EKEM and LKEM, SUF-CMA
signature scheme Sig and IND-1BatchCCA and UNF-1KCA split-KEM sKEM.

the encapsulated keys using a KDF and outputs the key and its message for Pj consisting of
the three encapsulation ciphertexts. Receiving is analogous: receiver Pi verifies Pj ’s prekey,
decapsulates using its three respective secret keys and derives the session key. If Pi’s prekeys
have run out, it is possible that multiple Pj ’s have sent using the same prekey preki. In that
case, Pi decapsulates for all sessions using the same secret keys but aborts if any split-KEM
decapsulations failed in any of the sessions (a signature check failing does not however lead to
the receiver aborting). We assume that for a given BatchReceive(ski, sti, S) call, each element
of S corresponds to a different party.

21

5.2 Security

Theorem 1. Consider (1− δEKEM)-correct IND-CCA KEM EKEM, (1− δLKEM)-correct IND-
CCA KEM LKEM, (1 − δSig)-correct SUF-CMA signature scheme Sig and (1 − δsKEM)-correct
IND-1BatchCCA, UNF-1KCA split-KEM sKEM and 3PRF KDF used to build K-Waay (Fig-
ure 10). Then, we have that for polynomially-bounded n and every efficient adversary A that
makes at most q oracle queries, one can build an adversary B such that

AdvkindK-Waay,n(A) ≤
q

3
·
(
δSig + δLKEM + δEKEM + δsKEM

)
+

2q2 · (ϵEKEM + ϵLKEM + 2ϵKDF + 2ϵSig) +

q3 ·
(
ϵEKEM + ϵLKEM + ϵsKEM + 3ϵKDF

)
,

where ϵEKEM = Advind-ccaEKEM (B), ϵLKEM = Advind-ccaLKEM (B), ϵSig = Advsuf-cma
Sig (B), ϵsKEM =

Advind-1batchccasKEM (B) + Advunf-1kcasKEM (B) and ϵKDF = Adv3prfKDF(B).

Proof. Our proof proceeds by constructing sequences of hybrids, which we first summarise. Let
Game Γ1 be exactly the KIND game played with respect to DAKE K-Waay (Figure 10). We
first transition to Game Γ2, which differs from Game Γ1 in that honest protocol runs, all VrfySig
checks in BatchReceive calls are removed and Decaps calls are replaced by the output of the
Encaps calls in the corresponding Send calls whenever they are consistent. To this end, we
invoke the correctness of K-Waay’s building blocks. Then, we transition to Game Γ3 in which
the challenger immediately outputs the session πs

i that the adversary makes real-or-random
challenge query TEST(i, s, j∗) with respect to. We then partition A’s possible executions of
Game Γ3 into several events.

Suppose πs
i has a partner session (with respect to key j∗ if πs

i .role = receiver) (event Ep), say
πt
j . Observe that by definition of partnering and construction of the protocol (in particular by

definition of sid), it follows that partnered sessions correspond to honest protocol runs. Then,
considering πs

i and πt
j , if the receiver’s session state, say πt

j .st, is revealed (event Ep ∧ Ec1), we
reduce to the IND-CCA security of the long-term KEM LKEM, since the freshness conditions
imply Pj must not have been corrupted. Otherwise (event Ep ∧ ¬Ec1), we reduce to the IND-
CCA security of the ephemeral KEM EKEM. After both cases, we transition to an unwinnable
game by keying KDF with the now uniformly random key output by the respective KEM call,
a transition we perform repeatedly and omit from this description hereafter. Otherwise (event
¬Ep), we consider whether party Pi in test session πs

i has the role sender or receiver:

• πs
i .role = sender (event ¬Ep ∧ Es): As Pj can only be corrupted after Pi accepts, we first

use the SUF-CMA security of Sig to argue that Pi’s Send call in the test session must be
with honestly-generated input (prek). Then, let Ec2 be the event that Pj is corrupted.
Given ¬Ep ∧ Es ∧ Ec2, we reduce to the security of EKEM, since by freshness the state
πt
j .st associated with prek must not have been exposed. Otherwise (¬Ep ∧Es ∧ ¬Ec2) we

reduce to the security of LKEM.

• πs
i .role = receiver (event ¬Ep ∧ ¬Es): As above, we first argue using SUF-CMA security

that input prekj used in the test session’s BatchReceive call must have been honestly
generated. Then by freshness, we know that neither πs

i .st nor π
t
j .st associated with prekj

are revealed, in which case we first reduce to the UNF-1KCA security of sKEM to prevent
injections on the split-KEM ciphertext, after which we reduce to the IND-1BatchCCA
security of sKEM.

Let AdvgiDAKE,n(A) be the advantage of adversary A in winning game Game Γi for relevant

i which we introduce below. Furthermore, let AdvgiDAKE,n(A, E) be the same advantage

except restricted to event E, so in particular if AdvgiDAKE,n(A) is of the form
∣∣Pr[X]− 1

2

∣∣,
22

AdvgiDAKE,n(A, E) is of the form
∣∣Pr[X ∧ E]− 1

2

∣∣.
Game Γ1: This is the original key indistinguishability game.

Game Γ2: This differs from Game Γ1 in that, in honest protocol runs, all signature veri-
fication calls in BatchReceive calls are removed and the output of Decaps calls are replaced
with the output of the corresponding Encaps call in Send. It follows at this point that the three
correctness checks in the KIND game evaluate to true. Since for a given BatchReceive(·, ·, S)
call there must be |S| corresponding Send and Init calls, there are at most q/3 iterations of the
for loop in BatchReceive (counting over all such calls in a given execution of Game Γ1). It then
follows from a standard hybrid argument and the correctness of Sig, LKEM, EKEM and sKEM
that:

Advg1DAKE,n(A) ≤ Advg2DAKE,n(A) +
q

3
·
(
δSig + δLKEM + δEKEM + δsKEM

)
.

Game Γ3: This differs from Game Γ3 in that the challenger immediately outputs the session πs
i

that the adversary A calls TEST(i, s, j∗) with respect to. Noting that there are at most q such
possible sessions and applying a standard argument, it follows that:

Advg2DAKE,n(A) ≤ q · Advg3DAKE,n(A) .

Case 1: Test session πs
i is partnered (Game Γ3a and Game Γ3b):

Game Γ3a.1: Let Ep be the event that test session πs
i has a partner, say πt

j . Let Ec1

be the event that the ephemeral state st of the receiver (in πs
i and πt

j) is revealed. Games
Game Γ3a.i are defined given Ep ∧ Ec1. Game Γ3a.1 differs from Game Γ3 in that the game
initially outputs πt

j , the partner of πs
i (observe that j = j∗ where j∗ is defined in the previous

hop), as well as a bit indicting whether πs
i is the sender or receiver. By the same reasoning as

above, we have
Advg3DAKE,n(A, Ep ∧ Ec1) ≤ 2q · Advg3a.1DAKE,n(A) .

Game Γ3a.2: Game Γ3a.2 differs from Game Γ3a.1 in that the output key K in the call to
LKEM.Encaps and the corresponding LKEM.Decaps call or calls (which are guaranteed to exist
given Ep, and K is identical by definition of Game Γ2) made in the test and partner sessions
with respect to the receiver’s public key and secret key, respectively, are replaced with a key k
uniformly sampled by the challenger. Observe that since Ec1 holds, by freshness, Pj cannot be
corrupted, and thus we reduce to the security of LKEM.

Let A′ be a IND-CCA adversary who simulates for Game Γ3a.1/Game Γ3a.2 adversary A as
follows. Let pk be the IND-CCA challenge public key, (ct∗,K∗) be the challenge ciphertext and
key respectively.

In the Setup phase, A′ uniformly samples bit bsim, calls (pkℓ, skℓ)←$ KeyGen(1λ) locally for
ℓ ̸= k where k is the sender, sets pkk ← pk, and returns {pk1, . . . pkn} and 1λ to A. Observe
here (and later for Game Γ3b.2) that, since Ep holds, we have matching sid values for test session
πs
i and partner πt

j . Note by construction of sid, the presence of substring preki||prekj and m
in the common value sid implies that Send must have been called honestly in πs

i and also in
BatchReceive for tuple (pkj , prekj ,mj) in πt

j for Ep to hold. Thus, we do not need to consider
injections in the test session itself (although we have to in general in the BatchReceive call).

Before proceeding, we argue that A′ can simulate on behalf of parties with a maliciously-
registered long-term key locally, which applies here and in the rest of the proof. Since πs

i is
partnered, as argued above, πs

i and πt
j correspond to honest (completed) executions, and so

neither Pi and Pj can be malicious. For unpartnered sessions, since Send and BatchReceive
cannot be called by the game, the test session πs

i cannot be corrupted itself (since testing

23

requires πs
i .status ̸= ⊥), and otherwise condition 5 restricts the non-tested party Pj from being

corrupted, thus precluding its key from being registered maliciously. Finally, computation
involving messages or prekey bundles from maliciously-registered parties does not require any
secret material not already known to A′.

In Phase 1, when A calls EXEC(k′, ·, ·, ·) where k′ corresponds to the sender in πs
i and πt

j

and the challenger is supposed to invoke Send, A′ replaces the call to EncapsLKEM with the
output (ct∗,K∗), and otherwise simulates locally. When A calls EXEC(k, ·, ·, ·) corresponding
to the receiver in πs

i and πt
j and the challenger is supposed to invoke BatchReceive, A′ replaces

the output of the relevant DecapsLKEM calls corresponding to either i or j, depending on who is
the receiver, with K∗ and the output of other calls DecapsLKEM with the output obtained from
DEC(·); A′ otherwise simulates locally.

In the Test phase, i.e. when A calls TEST(i, s, j), A′ simulates with respect to bit bsim.
A′ then simulates Phase 2 as above and the rest of the game locally, ultimately outputting
the same bit as A; observe that A′ can efficiently evaluate the freshness conditions. Since A′
perfectly simulates Game Γ3a.1 when playing with respect to challenge bit 0 and Game Γ3a.2

when it is 1, it follows that:

Advg3a.1DAKE,n(A) ≤ Advg3a.2DAKE,n(A) + Advind−ccaLKEM (A′) .

Game Γ3a.3: This differs from Game Γ3a.2 in that, for the test and partner sessions, the call to
KDF made in Send and the corresponding calls made in BatchReceive with respect to ciphertext
ctℓ output by Send are replaced with uniformly sampled keys. LetA′ be a PRF adversary playing
with respect to KDF keyed in its first argument simulating for Game Γ3a.2/Game Γ3a.3 adversary
A as follows. A′ simulates locally all calls except the Send and BatchReceive calls made in πs

i

and πt
j , where it replaces the relevant calls KDF(Kℓ,Kk,Ks, sid) with the call PRF(Kk,Ks, sid).

Since Kℓ is uniform (by definition of Game Γ3a.2) and, by definition of freshness, Kℓ is not
revealed to A, the simulation is perfect and we have:

Advg3a.2DAKE,n(A) ≤ Advg3a.3DAKE,n(A) + Adv3prfKDF(A
′) .

Finally, we have Advg3a.3DAKE,n(A) = 0 since the output of TEST is identical regardless of the
challenge bit and it is not otherwise used by the challenger or leaked to the adversary.

Game Γ3b.1: We now consider the case when Ep ∧ ¬Ec1, i.e. the case where the re-
ceiver’s session state st in πs

i and πt
j is not revealed. Game Γ3b.1 differs from Game Γ3 in that

the game initially outputs πt
j , the partner of πs

i , as well as a bit indicating whether πs
i is the

sender or receiver. Since Game Γ3b.1 is exactly Game Γ3a.1, we have

Advg3DAKE,n(A, Ep ∧ ¬Ec1) ≤ q · Advg3b.1DAKE,n(A) .

Game Γ3b.2: In Game Γ3b.2, the output of EncapsEKEM and the corresponding DecapsEKEM call
or calls in the test session are replaced with a uniformly random key k. IND-CCA adversary
A′ simulates for Game Γ3b.1/Game Γ3b.2 adversary A as follows. A′ follows the same broad
approach as the adversary defined in the hop between Game Γ3a.1 and Game Γ3a.2. In particular,
A′ simulates the receiver in their session’s call to Init except it uses the IND-CCA challenge
public key pk, replaces the output of EKEM in the test session Encaps and the corresponding
Decaps calls with the challenge ciphertext and key and replaces other Decaps calls with calls to
oracle DEC. By the same reasoning as before, it follows that:

Advg3b.1DAKE,n(A) ≤ Advg3b.2DAKE,n(A) + Advind−ccaEKEM (A′) .

Game Γ3b.3: This replaces the relevant outputs of KDF in the test session with a uniformly

random key. As in Game Γ3a.3, this game is now unwinnable, i.e. Advg3b.3DAKE,n(A) = 0. As

24

before, we reduce to the security of KDF, except now we key KDF in the PRF game with the
second argument Kk. We then arrive at:

Advg3b.2DAKE,n(A) ≤ Advg3b.3DAKE,n(A) + Adv3prfKDF(A
′) .

Case 2: Test session πs
i is unpartnered and πs

i .role = sender (Game Γ3c):

Game Γ3c.1: Let πs
i .pid = j and Es be the event that πs

i .role = sender. Game Γ3c.1 dif-
fers from Game Γ3 in that the challenger immediately outputs j. By a standard argument, we
have:

Advg3DAKE,n(A,¬Ep ∧ Es) ≤ q · Advg3c.1DAKE,n(A) .

Game Γ3c.2: This differs from Game Γ3c.1 in that the challenger aborts if the call
Send(ski, pkj , sti, prekj) in the test session is such that prekj was not previously output by a
call to Init(skj , receiver). Note that by freshness condition 5 that Pj must not be corrupted
until after πs

i .status is changed from ⊥, which, by definition of Es, means until after it is set to
accept. In order for Send to accept on input prekj = (espkj , ekpkj , σj) not previously output by
Init(skj , receiver) (and thus for the game to abort), A needs to find a different prekj such that
VrfySig(pkj .spk, (espkj , ekpkj), σj) (by construction of Send). Using this observation, we reduce
to the SUF-CMA security of Sig.

Let A′ be a SUF-CMA adversary simulating for Game Γ3c.1 adversary A. Let pk be the
SUF-CMA challenge public key. In the Setup phase, A′ sets pkj = pk and otherwise simulates
locally. In particular, unlike in previous hops, A′ also samples the random Game Γ3c.1 bit. In
each subsequent phase, for each call EXEC(j, u, ·,m) such that m = (start, role, ·), A′ replaces
the SignSig(skj .ssk, (espkj , ekpkj)) call in Init(skj , receiver) by a call to SIGN((espkj , ekpkj)), and
otherwise simulates the call locally. When the challenger calls Send(·, pkj , ·, prekj) where prekj =
(espkj , ekpkj , σj), A′ checks whether 1) (espkj , ekpkj) was previously queried to SIGN which
output σj and 2) VrfySig(pk, (espkj , ekpkj), σj) = 1. Given 1) and 2) both hold, A′ returns
(m,σ) = ((espkj , ekpkj), σj) to its challenger. A′ otherwise simulates locally, aborting if A
outputs a bit. The simulation is perfect and it follows that:

Advg3c.1DAKE,n(A) ≤ Advg3c.2DAKE,n(A) + Advsuf−cma
Sig (A′) .

Game Γ3c.3: In Game Γ3c.3, the challenger initially outputs πt
j , where π

t
j is the session that prek

is output by Init(skj , receiver) and input to the Send call in test session πs
i . By a standard

failure event argument, we have:

Advg3c.2DAKE,n(A) ≤ q · Advg3c.3DAKE,n(A) .

Game Γ3c.4a.1: Let Ec2 be the event that Pj is corrupted. We construct hybrid sequence
Game Γ3c.4a (resp. Game Γ3c.4b) to deal with the case that Ec2 holds (resp. does not hold).
Game Γ3c.4a.1 differs from Game Γ3c.3 in that the output of EncapsEKEM in the Send call in
test session πs

i and of the (possible) corresponding DecapsEKEM calls in πt
j are replaced with

uniformly random output. By freshness, Pj ’s session state πt
j .st associated with prek input to

the test Send call is not revealed.
IND-CCA adversary A′ simulates for Game Γ3c.4a.1 adversary A as follows. Let (pk, k, ct)

the challenge public key, key and corresponding ciphertext (respectively) of A′. A′ embeds pk
in session πt

j by replacing the public key output by KeyGenEKEM in Init(skj , receiver) with pk,
which outputs prekj . Upon prekj being input to Send in the test session, A′ replaces the output
of EncapsEKEM with (k, ct). When the challenger calls BatchReceive(skj , ·, {·, ·,mj′ = (·, ct′, ·)}j′)
in session πt

j , if ct
′ = ct, A′ replaces the output of DecapsEKEM with k; else, A′ replaces the call

25

DecapsEKEM(·, ct′) with the call DEC(ct′). A′ otherwise simulates locally and outputs the same
bit as A. By similar reasons to before, we have:

Advg3c.3DAKE,n(A, Ec2) ≤ Advg3c.4a.1DAKE,n(A) + Advind−ccaEKEM (A′) .

Game Γ3c.4a.2: This replaces the output of KDF in the Send and BatchReceive calls as before
in the test session and πt

j with uniformly random keys. By the exact same argument as for

Game Γ3b.3, we have Advg3c.4a.2DAKE,n(A) = 0 and

Advg3c.4a.1DAKE,n(A) ≤ Advg3c.4a.2DAKE,n(A) + Adv3prfKDF(A
′) .

Game Γ3c.4b.1: We assume ¬Ec2, i.e. that Pj is not corrupted. We reduce to the IND-CCA secu-
rity of LKEM. The reduction follows the same high-level strategy as previous hops (embedding
the challenge pk in pkj and the challenge in the test Send call and possibly the corresponding
BatchReceive call), noting that non-challenge DecapsLKEM(skj , ·) queries are replaced with calls
to DEC. We then have:

Advg3c.3DAKE,n(A,¬Ec2) ≤ Advg3c.4b.1DAKE,n(A) + Advind−ccaLKEM (A′) .

Game Γ3c.4b.2: As in Game Γ3c.4a.2, this replaces the output of KDF in the Send and BatchReceive
calls in πs

i and πt
j with a uniformly random key. As argued several times above, it follows that

Advg3c.4b.2DAKE,n(A) = 0 and

Advg3c.4b.1DAKE,n(A) ≤ Advg3c.4b.2DAKE,n(A) + Adv3prfKDF(A
′) .

Case 3: Test session πs
i is unpartnered and πs

i .role = receiver (Game Γ3d):

Game Γ3d.1: Game Γ3d.1 differs from Game Γ3 in that the challenger immediately out-
puts j, the third argument in A’s TEST(i, s, j) call. As for Game Γ3c.1, we have

Advg3DAKE,n(A,¬Es) ≤ q · Advg3d.1DAKE,n(A) .

Game Γ3d.2: This differs from Game Γ3d.1 in that the challenger aborts if the call
BatchReceive(ski, sti, {pkj′ , prekj′ ,m}j′) in the test session is such that prekj was not previously
output by a call to Init(skj , sender). As in Game Γ3c.2, Pj must not be corrupted until after
πs
i .status is set to accept. By reducing to SUF-CMA security essentially as in Game Γ3c.2, it

follows that:

Advg3d.1DAKE,n(A) ≤ Advg3d.2DAKE,n(A) + Advsuf−cma
Sig (A) .

Game Γ3d.3: This differs from Game Γ3d.2 in that the challenger initially outputs πt
j , the session

that generated prekj which formed part of the input to BatchReceive in the test session πs
i . By

a standard argument we have:

Advg3d.2DAKE,n(A) ≤ q · Advg3d.3DAKE,n(A) .

Game Γ3d.4: This differs from Game Γ3d.3 in that the challenger aborts if the
Send(skj , pki, stj , preki) call in session πt

j (if it exists) and the relevant component in the
BatchReceive call in the test session πs

i were not both with respect to honestly generated split-
KEM keying material (namely, an honestly generated split-KEM public key from preki and
prekj from the previous hop) and the same split-KEM ciphertext. By freshness, neither of the
two ephemeral states πs

i .st and πt
j .st are revealed. Consequently, we reduce to the UNF-1KCA

security of split-KEM sKEM.

26

UNF-1KCA adversary A′ simulates for Game Γ3d.3/Game Γ3d.4 adversary A as follows. Let
(pkA, pkB) be the two challenge public keys given to A′. In the Init(ski, receiver) call in session πs

i ,
A′ simulates except replaces the call to KeyGenAsKEM by pkA. Similarly, in the Init(skj , sender)
call in session πt

j , A′ replaces KeyGenBsKEM by pkB. In the Send(..., prek) call in session πt
j where

prek = (espk, ...), A′ outputs espk to its UNF-1KCA challenger, receives (pkA, pkB, ct,KB) from
its challenger, and replaces the call to EncapssKEM with tuple (ct,KB). Finally, when the
BatchReceive(ski, ·, {·, prekj′ ,m = (·, ·, cts)}j′) call in test session πs

i is made, A′ outputs cts
corresponding to j′ = j to its challenger. As the simulation is perfect and the probability that
A′ wins is exactly the probability that 1) (ct, pkA) ̸= (cts, pk) and 2) relevant DecapssKEM call
in BatchReceive outputs k ̸= ⊥, it follows by a standard failure event argument that:

Advg3d.3DAKE,n(A) ≤ Advg3d.4DAKE,n(A) + Advunf−1kcasKEM (A′) .

Game Γ3d.5: This differs from Game Γ3d.4 in that the output k of the relevant test session
split-KEM decapsulation and the corresponding encapsulation (if it exists) are both replaced
by a uniformly random key. Note that by definition of Game Γ3d.4, A can only input an
honestly generated split-KEM ciphertext to the BatchReceive call in the test session from Pj

and that the split-KEM public key in Pj ’s corresponding Send call (if it exists) must be honestly
generated. We therefore reduce to the IND-1BatchCCA security of sKEM. We embed the
IND-1BatchCCA keys pkA, pkB in the simulation as in the previous hop. When A queries
EXEC(i, s, S = {sj′ , prekj′ ,mj′}j′), A′ replaces all DecapssKEM calls involving skA except the
call corresponding to the test session by the output of its query to oracle BatchDec, replaces
this final DecapssKEM call with the IND-1BatchCCA challenge key and otherwise simulates
locally. It follows that:

Advg3d.4DAKE,n(A) ≤ Advg3d.5DAKE,n(A) + Advind−1batchccasKEM (A′) .

Game Γ3d.6: This game replaces the relevant invocation of KDF in the test session’s BatchReceive

call by a uniformly random value. Note as usual that Advg3d.6DAKE,n(A) = 0. By keying KDF in its
third argument as a PRF and a standard argument it follows that:

Advg3d.5DAKE,n(A) ≤ Advg3d.6DAKE,n(A) + Adv3prfKDF(A
′) .

Finally note that by the triangle inequality, we have, among other inequalities:

Advg3DAKE,n(A) ≤ Advg3DAKE,n(A, Ep) + Advg3DAKE,n(A,¬Ep) .

The result follows using this observation and by combining the sequences of hybrids together
in a standard way.

Theorem 2. Consider deniable split-KEM sKEM with simulator SimsKEM used to build K-
Waay (Figure 10). Then, we have that for every efficient adversary A that makes at most q
oracle queries, there exists an efficient Sim s.t. one can build an adversary B such that for
exp ∈ {true, false} we have:

AdvdenyK-Waay,Sim,exp(A) ≤ q · AdvdenysKEM,SimsKEM
(B) .

Proof. We construct a sequence of hybrids and reduce to the deniability of sKEM (i.e.
DENYsKEM,SimsKEM

security) in each step. Before this, we define the simulator Sim that we
use in the proof, which uses the simulator SimsKEM as a subroutine.

Observe in K-Waay that, given an honestly generated prekj , any party with knowledge only
of public keying material can simulate all steps in Send except for the EncapssKEM call which
requires sender Pi’s secret key. Thus, our simulator Sim (Figure 11) simulates these steps and

27

Sim(skj , pki, stj , preki, prekj)

1 : (esskj , ekskj , prekj)← stj

2 : (espki, ekpki, σi)← preki

3 : (espkj , ekpkj , σj)← prekj

4 : spk← GetPK(skj .ssk)

5 : require VrfySig(spk, (espkj , ekpkj), σj) = 1

6 : (Kℓ, ctℓ)←$ EncapsLKEM(pkj .kpk)

7 : (Kk, ctk)←$ EncapsEKEM(ekpkj)

8 : (Ks, cts)←$ SimsKEM(espki, esskj)

9 : m← (ctℓ, ctk, cts)

10 : sid← Pi||Pj ||pki||pkj ||preki||prekj ||m

11 : k← KDF(Kℓ,Kk,Ks, sid)

12 : return (k,m)

Figure 11: Simulator Sim for the deniability game where we assume function GetPK(sk) that
takes a signature secret key as input and outputs the corresponding public key.

since it takes the receiver’s key skj as input it can also invoke the deniability simulator SimsKEM

to complete the call.
Let Γ0 be the DAKE DENY game instantiated with K-Waay. For i ∈ [q], let Γi be the same

as Γi−1 except that in the i-th CHAL call, the call to Send is replaced with a call to Sim. Note
that the steps executed in Send only differ in that it calls EncapssKEM rather than SimsKEM.

For i ∈ [q], let B be a split-KEM DENY adversary with input (pkA, pkB, skB,K, ct) from
its challenger playing DENYREAL given A is playing Γi−1 and DENYSIM if it is playing Γi. B′
locally simulates long-term public key generation and the first i − 1 calls to CHAL. When A
makes their i-th call to CHAL, B simulates CHAL until it reaches the if statement except that
it replaces the output of calls KeyGenA/KeyGenB calls in Init calls with pkA/pkB. Then, instead
of executing the if/else block in CHAL, B simulates Sim except that it replaces the output
of the call to SimsKEM with (K, ct). B then simulates locally, and returns (k, T, str) (where
str contains skB) if exp = true and returns (k, T) otherwise. B continues simulating locally
and finally outputs the same bit as A. Noting that DAKE deniability game DENYK-Waay,Sim

considers only honest executions of K-Waay, it follows that the simulation is perfect, and so by
DENYsKEM security we have∣∣∣AdvΓi−1

DAKE(A)− AdvΓi
DAKE(A)

∣∣∣ ≤ AdvdenysKEM,SimsKEM
(B) .

By application of the triangle inequality and telescoping sums:∣∣∣AdvΓ0
DAKE(A)− Adv

Γq

DAKE(A)
∣∣∣ ≤ q · AdvdenysKEM,SimsKEM

(B) .

To complete the proof, observe that Adv
Γq

DAKE,n(A) = 0 since CHAL behaves identically inde-
pendent of challenge bit b.

6 Deniable Split-KEM from Lattices

In this section we build an efficient deniable split-KEM under the hardness of LWE. We start
by introducing briefly several concepts of lattice-based cryptography that we use to design the
scheme.

28

6.1 Lattice Toolbox

L∞ and Lα norms. We start by recalling what the L∞ and Lα norms over Zq are. For an
element w in Zq, we write ∥w∥∞ to mean |⟨w⟩q|. Then, we define the L∞ and Lα norms for
w = (w1, w2, . . . , wn) over Zq as follows:

∥w∥∞ = max
j∈[n]
∥wj∥∞, ∥w∥α = α

√
∥w1∥α∞ + . . .+ ∥wn∥α∞.

By default, ∥w∥ := ∥w∥2.

Probability distributions. For a finite set S, we define U(S) to be the uniform distribution
on S. We will also use the binomial distribution Bin1 which is defined as: Bin1(−1) = Bin1(1) =
1/4 and Bin1(0) = 1/2.

Rounding functions. Given two parameters q and B < log q − 1, we define the rounding
function ⌊·⌉q,2 and the cross-rounding function ⟨·⟩q,B as follows:

⌊·⌉q,B : v 7→
⌊
2B

q
· v

⌉
mod 2B, ⟨·⟩q,B : v 7→

⌊
2B+1

q
· v

⌋
mod 2 ,

for any v ∈ Zq.

Reconciliation function. We recall the (generalized) reconciliation mechanism from Bos et
al. and Peikert [Bos+16; Pei14], which for every approximate agreement in Zq allows extracting
shared bits. We refer the reader to the aforementioned works for more details. Let q be a
positive integer. Let B be the number of bits we want to extract from one coefficient in Zq so
that B < log q − 1. Now, for any v ∈ Zq, which is represented as an integer in [0, q), we define
the following functions.

Definition 6.1 (Randomised doubling function (dbl)). For any v ∈ Zq, we define dbl(·) as
follows:

dbl(v) : v 7→ 2v − e, e←$ Bin1

Then, we have the following property which comes from [Bos+16, Claim 3.1].

Lemma 1. Let q be odd. If v ∈ Zq is uniformly random and v̄ ←$ dbl(v) ∈ Z2q, then ⌊v̄⌉2q,B is
uniformly random given ⟨v̄⟩2q,B.

Now, we are ready to define the reconciliation function Rec : Z2q × Z2 → Z2B .

Definition 6.2 (Reconciliation function (Rec)). For any w ∈ Z2q and bit b ∈ {0, 1}, let v be
the closest element to w ∈ Z2q s.t. ⟨v⟩2q,B = b. Then, we define Rec as

Rec(w, b) := ⌊v⌉2q,B .

The next result gives an important property of the reconciliation function Rec, as described by
Peikert [Pei14, Section 3.2].

Lemma 2. Let q be odd and v̄ ←$ dbl(v). If |v − w| ≤ ⌊ q
2B+2 ⌋ then

Rec(2w, ⟨v̄⟩2q,B) = ⌊v̄⌉2q,B.

Finally, we define the HelpRec : Zq 7→ {0, 1} function as follows:

Definition 6.3 (HelpRec function). On any input v ∈ Zq,

HelpRec(v) := ⟨v̄⟩2q,B, where v̄ ← dbl(v) .

All the functions above can be naturally generalized to take as input vectors and matrices over
Zq by applying the function to each of the coefficients.

29

Learning-with-Errors. The security of our lattice constructions relies on the Learning-with-
Errors (LWE) problem introduced by Regev [Reg05]. In this paper we will consider the case
where both the secret and error coefficients come from a probability distribution over Z.

Definition 6.4 (LWEn,m,χ,q). Let n,m ∈ N and χ be a probability distribution over Z. The
LWE problem asks the adversary A to distinguish between the following two cases:

1. (A,As+ e mod q) for A←$ U(Zn×m
q), a secret s←$ χm and error e←$ χn,

2. (A, t)←$ U(Zn×m
q)× U(Zn

q).

We say that an efficient algorithm A solves LWEn,m,χ,q if it can distinguish between the two
distributions above with non-negligible probability.

6.2 Extended-LWE

Our proof of deniability for the split-KEM will involve a new security assumption, which we
call the Extended-LWE problem (ELWE). Intuitively, it is similar to the plain LWE problem,
but the adversary is now also given random linear combinations of the secrets and errors.

Definition 6.5 (ELWEn,m,n̄,χ,q). Let n,m ∈ N and χ be a probability distribution over Z. The
ELWE problem asks the adversary A to distinguish between the following two cases:

1. (A,As+ e mod q,Z,W,Zs+We mod q) for A←$ U(Zn×m
q), secret s←$ χm, error e←$

χn, and (Z,W)←$ χn̄×m × χn̄×n,

2. (A, t,Z,W,Zs+We mod q) for A ←$ U(Zn×m
q), t ←$ U(Zn

q), secret s ←$ χm, error
e←$ χn, and (Z,W)←$ χn̄×m × χn̄×n.

We say that an efficient algorithm A solves ELWEn,m,n̄,k,χ,q if it can distinguish between the two
distributions above with non-negligible probability.

This problem is a natural generalization of the Extended-LWE problem by Alperin-Sheriff
and Peikert [AP12], where now (Z,W) are matrices and not just vectors. Here, we also simplify
the definition and assume that the coefficients of Z and W come from the same distribution χ
as the secrets and errors.

We show in the following theorem that the hardness of this newly introduced ELWE problem
reduces to the hardness of LWE.

Theorem 3. Let q be an odd prime and χ be symmetric around 0. If there is an efficient
adversary A which wins ELWEn,m,n̄,χ,q with probability ε, then there also exists an efficient
adversary B which wins LWEn+m,m,χ,q with probability at least δelwe · ε− negl(n) where

δelwe := Pr
[
Z(e− d) = 0 (mod q) : Z←$ χn̄×(n+m), e,d←$ χn+m

]
. (1)

Proof. We prove the statement by introducing a sequence of LWE-type games Γi. We start
with Γ1 := ELWEn,m,n̄,χ,q and give an efficient reduction from Γi to Γi+1. In the end, we finish
with LWEn+m,m,χ,q. We denote Advi(A) to be the probability that A wins Γi. Then, the proof
follows by the composition of the constant number of efficient reductions.

Game Γ1: This is the standard ELWEn,m,n̄,χ,q game. The adversary A wins this game
with probability ε.

Game Γ2: Here, we consider the ELWE-type game where the secret vector is uniformly

30

random. Namely, the challenger samples the public A←$ U(Z(n+m)×m
q), secret s←$ U(Zm

q), er-

ror e←$ U(Zn+m
q) as well as the hint matrix Z←$ χn̄×(n+m). Then it flips a bit b←$ U({0, 1}).

If b = 0 then the challenger computes

t := As+ e

and otherwise it samples t←$ U(Zn+m
q). The challenger outputs (A, t,Z,Ze).

Lemma 3. For every efficient adversary A, there is an efficient adversary B such that
Adv2(B) ≥ Adv1(A)− negl(n).

Proof. The reduction follows similarly as in the one by Applebaum et al. [App+09]. Suppose
the algorithm B is given a tuple (A, t,Z,h) from Γ2. With probability at most 1/q(n+m)−m−1 ≤
1/qn−1, matrixA is not full-rank. Let us exclude that case and assume without loss of generality
that we can write

A :=

[
A0

A1

]
, Z :=

[
Z0 Z1

]
, and t :=

[
t0
t1

]
where A1 ∈ Zn×m

q and the matrix A0 ∈ Zm×m
q , which contains the first m rows of A, is

invertible. Thus, define A′ := A1A
−1
0 ∈ Zn×m

q , and t′ := A′t0 − t1 ∈ Zn
q . Then, it runs A on

input (
A′, t′,Z0,−Z1,h

)
and returns what A outputs.

Suppose that t = As+ e where s ∈ Zm
q and e := (e0, e1) ∈ Zm

q × Zn
q . Then

t′ = A′t0 − t1 = A1A
−1
0 (A0s+ e0)− (A1s+ e1) = A′e0 − e1

which is a valid LWE instance since χ is symmetric around 0. Also, if A is uniformly random
among all nonsingular matrices, then A′ and B′ are statistically close to uniformly random
matrices over Zq. As for the hints, note that

h = Z0e0 + Z1e1 = Z0e0 + (−Z1)(−e1),

so h is a well-formed hint for Γ1.
On the other hand, if t is uniformly random, then so is t′. It can be argued similarly as

before that all the other components follow the distribution for b = 1.

Game Γ3: We consider the knapsack version of ELWE. Here, the challenger samples the public

G :=←$ U(Zn×(n+m)
q), secret e←$ U(Zn+m

q) and the hint matrix Z←$ χn̄×(n+m). Then it flips
a bit b ←$ U({0, 1}). If b = 0 then the challenger computes t := Ge, and otherwise it samples
t←$ U(Zn

q). Finally, the challenger outputs (G, t,Z,Ze).

Lemma 4. For every efficient adversary A, there is an efficient adversary B such that
Adv3(B) ≥ Adv2(A)− negl(n).

Proof. The reduction is similar to the proof of Micciancio and Mol [MM11, Lemma 4.9]. Suppose
the algorithm B is given a tuple (G, t,Z,h) from Γ3. Then, B can construct a randomized

matrix A ∈ Z(n+m)×m
q whose columns generate the kernel of G. In particular, if G is uniformly

random, then so are (A,B), up to the constraint that they are nonsingular. Then, B computes
any solution r such that Gr = t. Finally, it samples a uniformly random s←$ U(Zm

q) and runs
A on input

(A,As+ r,Z,h)

and returns what A outputs.

31

Suppose that Ge = t = Gr. By definition of the matrix A, G(r− e) = 0 implies that there
exists some vector x ∈ Zm

q such that r− e = Ax. Thus,

As+ r = A(s+ x) + e

which is a valid LWE instance since s+x is still uniformly random over Zm
q . As for the hints, we

still have h = Ze and thus B correctly simulates Γ2 for b = 0. The case b = 1 follows by arguing
that t is uniformly random and if G is nonsingular then r must be uniformly random.

Game Γ4: This game is a plain knapsack LWE problem. The challenger samples the public

G←$ U(Zn×(n+m)
q) and a secret e←$ U(Zn+m

q). Then it flips a bit b←$ U({0, 1}). If b = 0 then
the challenger computes t := Ge, and otherwise it samples t←$ U(Zn

q). Finally, the challenger
outputs (G, t).

Lemma 5. For every efficient adversary A, there is an efficient adversary B such that
Adv4(B) ≥ δelwe · Adv3(A).

Proof. We follow the proof strategy from [AP12, Theorem 1]. Suppose the algorithm B is
given a tuple (G0,G1, t) from Γ4. Then, it samples Z ←$ χn̄×(n+m), d ←$ χn+m and a matrix
V←$ U(Zn×n̄

q). Further, it sets

G′ := G−VZ and t′ := t−VZd.

Finally, it runs A on input (
G′, t′,Z,Zd

)
and returns what A outputs.

Clearly, if G (resp. t) is uniformly random then so is G′ (resp. t′). Hence, the case b = 1
follows directly. Suppose b = 0 and thus t = Ge. Then, we have

t′ = t−VZd = Ge−VZd = G′e+V(Ze− Zd).

Hence, if Ze = Zd then ([G′0 G1], t
′,Z,Zd) is indeed a valid knapsack ELWE tuple. This

happens exactly with probability at most δelwe by definition. Otherwise, V(Ze − Zd) is a
uniformly random vector over Zq, and so is t′. Thus, the tuple output by B follows the case
b = 1 for Γ3. The statement now follows by simple calculation.

Game Γ5: Here, we consider the plain LWE game. Recall that the challenger samples the public

A←$ U(Z(n+m)×m
q), secret s←$ U(Zm

q), error e←$ U(Zn+m
q). Then it flips a bit b←$ U({0, 1}).

If b = 0 then the challenger computes t := As+ e, and otherwise it samples t←$ U(Zn+m
q). At

the end, the challenger outputs (A, t).

Lemma 6. For every efficient adversary A, there is an efficient adversary B such that
Adv5(B) ≥ Adv4(A)− negl(n).

Proof. The reduction is identical to the one of Micciancio and Mol [MM11, Lemma 4.8] which
we recall for completeness. Suppose the algorithm B is given a tuple (A, t) from Γ5. If A is

full-rank, then B can construct a (randomized) matrix G ∈ Zn×(n+m)
q whose rows generate all

the vectors x such that xTA = 0. Also, if A is chosen at random among all full-rank matrices,
then G is also distributed statistically close to a uniformly random. Then, B outputs (G,Gt)
to A and returns what A outputs.

Suppose b = 0 and t = As + e. Then Gt = GAs + e = Ge, which is the correct instance
of Γ4 for b = 0. On the other hand, if t is uniformly random, then so is Gt.

The statement of the theorem now follows by combining all the previous lemmas using
reduction composition.

32

KeyGenA(1λ)

1 : SA,DA ←$ χ(Zn×n
q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : pkA ← (A,BA)

5 : skA ← (SA,DA,FA)

6 : return (pkA, skA)

Encaps(pkA = (A,BA), skB = (SB,DB,FB))

1 : // We assume B encapsulates

2 : EB ←$ χn̄×n̄

3 : V← SBBA +EB

4 : ct← HelpRec(V)

5 : K← Rec(2V, ct)

6 : return (K, ct)

KeyGenB(1λ)

1 : SB,DB ←$ χn×n

2 : FB ←$ χn×n

3 : BB ← SBA+DB

4 : pkB ← (A,BB)

5 : skB ← (SB,DB,FB)

6 : return (pkB, skB)

Decaps(pkB = (A,BB), skA = (SA,DA,FA), ct)

1 : V′ ← BBSA + FA

2 : K′ ← Rec(2V′, ct)

3 : return K′

Figure 12: Our variant of FrodoKEX [Bos+16] expressed as a split-KEM. The matrix A ∈ Zn×n
q

is assumed to be a public parameter and sampled uniformly at random.

6.3 Construction

We can now present our Frodo-inspired [Bos+16] split-KEM, which we call FrodoKEX+. The
scheme is given in Figure 12. The key generation works as follows. The public key pkA for party
A is a pair (A,BA), where A is a uniformly random matrix over Zq given as a public parameter,
and BA := ASA +DA where SA,DA ←$ χn×n̄. The secret key becomes a pair skA = (SA,DA).
Similarly, the public key pkB for party B is a pair (A,BB), where BB := SBA+DB, while the
secret key is skB = (SB,DB), where SB,DB ←$ χn̄×n.

Then, B samples a matrix EB ←$ χn̄×n̄ and computes the matrix V := SBBA + EB. Next,
it computes ct ← HelpRec(V) and K ← Rec(V, ct). Then, B outputs ct. Then, party A
decapsulates as follows: given (pkB, skA, ct), it computesV′ = BBSA+FA andK′ = Rec(2V′, ct).
Finally, A returns the key K′.

We note that the construction can easily be made symmetric, in the sense that A could
encapsulate using B’s public key by changing the order of matrices when multiplying in Encaps
such that the dimensions match. Then, Decaps can be modified similarly such that B can
decapsulate the resulting ciphertext.

6.4 Security Analysis

Lemma 7 (Correctness). Let χ be a symmetric distribution around 0 and δcorr be the following
probability:

Pr
[
|⟨s,d⟩+ e+ f | > q

2B+2
: s,d←$ χ2n, e, f ←$ χ

]
. (2)

Then, sKEM defined in Fig. 12 is (n̄2δcorr)-correct.

Proof. Suppose (pkA, skA)←$ KeyGenA(1λ) and (pkB, skB)←$ KeyGenB(1λ), and let

(K, ct)←$ Encaps(pkA, skB) and K′ ←$ Decaps(pkB, skA, ct).

We want to prove that K = K′. By definition of encapsulation, we know that K = Rec(2V, ct)
where ct = HelpRec(V) and

V = SBBA +EB = SBASA + SBDA +EB.

33

Thus, by Lemma 2, K = ⌊V⌉2q,2B . On the other hand,

V′ = BBSA + FA = SBASA +DBSA + FA

which implies that V−V′ = SBDA +EB−DBSA−FA. If ∥V−V′∥∞ < q
2B+2 then by Lemma

2 we must have
K′ = Rec(2V′,HelpRec(V)) = ⌊V⌉2q,2B = K

so correctness holds. Now, using the fact that χ is symmetric around 0, the probability ∥V −
V′∥∞ > q

2B+2 can be upper-bounded using the union bound as follows:

Pr
[
∥SBDA +EB −DBSA − FA∥∞ >

q

2B+2

]
≤ n̄2 · Pr

[
|sT0 d0 + sT1 d1 + e+ f | > q

2B+2

]
where s0, s1,d0,d1 ←$ χn and e, f ←$ χ. This concludes the proof.

6.4.1 OW-CPA Security

Next, we focus on proving OW-CPA security.

Lemma 8 (OW-CPA Security). Let n̄ = O(λ) and χ be a symmetric distribution over [−γ, γ]
for any γ > 0. Then, under the LWEn,n,χ,q and LWEn+n̄,n,χ,q assumptions, for every efficient

adversary A, the probability of A winning the OW-CPA game is at most 2−Bn̄2
+ negl(λ).

Proof. Let A be an efficient adversary against the OW-CPA game. We prove the statement
using the hybrid games described explicitly in Fig. 13. In each game Γi, we define εi to be the
probability that the efficient adversary A wins the security game.

Game Γ1: This is the standard OW-CPA game.

Game Γ2: Instead of computing BA ← ASA + DA, the experiment samples BA ← U(Zn×n̄
q).

One can naturally build an efficient adversary, which can solve the LWEn,n,χ,q problem with
probability at least 1

n̄ |ε2 − ε1|. Hence, we deduce that this probability is negligible.

Game Γ3: Here, the experiment computes the values BB and V differently. Namely,
instead of computing: [

BB V
]
:= SB

[
A BA

]
+
[
DB EB

]
,

it samples [
BB V

]
←$ U(Zn̄×(n+n̄)

q).

Thus, one can naturally construct an efficient reduction which solves LWEn+n̄,n,χ,q with
probability at least 1

n̄ |ε6 − ε5|.

Finally, it is easy to see that in Γ3 the matrix V is actually uniformly random over Zq.
Hence by Lemma 1, for the adversary A, which is given ct, the key K looks uniformly random.
Therefore, the probability of guessing the key is bounded by 2−n̄

2B.

6.4.2 Deniability

We will use the (transposed) matrix version of ELWE where the secrets and errors are now
matrices. In particular, we will be interested in the problem of distinguishing between

(A,SA+E mod q,Z,W,SZ+EW mod q)

34

Γ1(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : SB,DB ←$ χn×n

5 : FB ←$ χn×n

6 : BB ← SBA+DB

7 : EB ←$ χn̄×n̄

8 : V← SBBA +EB

9 : ct← HelpRec(V)

10 : K← Rec(2V, ct)

11 : K′ ←$A(A,BA,BB, ct)

12 : return 1K=K′

Γ2(A)
1 : BA ← U(Zn×n̄

q)

2 : SB,DB ←$ χn×n

3 : FB ←$ χn×n

4 : BB ← SBA+DB

5 : EB ←$ χn̄×n̄

6 : V← SBBA +EB

7 : ct← HelpRec(V)

8 : K← Rec(2V, ct)

9 : K′ ←$A(A,BA,BB, ct)

10 : return 1K=K′

Γ3(A)
1 : BA ← U(Zn×n̄

q)

2 : BB ←$ U(Zn×n̄
q)

3 : V←$ U(Zn̄×n̄
q)

4 : ct← HelpRec(V)

5 : K← Rec(2V, ct)

6 : K′ ←$A(A,BA,BB, ct)

7 : return 1K=K′

Figure 13: Security games for the proof of Lemma 8. The lines in blue highlight the main
differences from the previous game.

and
(A,T,Z,W,SZ+EW mod q)

where S←$ χn̄×m, E←$ χn̄×n and T←$ U(Zn̄×n
q). This problem can be reduced to ELWE with

reduction loss n̄ via a standard hybrid argument.
We are ready to prove deniability of the split-KEM based on Extended-LWE. Intuitively,

matrices (S,E) := (SB,DB) will be the secret and error constructed by party B, which are
hidden from the adversary, while (Z,W) := (DA,SA) will be the error and the secret generated
by A which are given as input to the simulator. The key observation is that the additional hint
provided as SZ+EW mod q will be used to simulate the “shared key” V (before applying the
reconciliation function).

Theorem 4 (Deniability). Let n̄ = poly(λ). Then, the sKEM defined in Figure 12 is deniable
under the ELWEn,n,n̄,χ,q and LWEn,n,χ,q assumptions.

Proof. Let A be an efficient adversary against the deniability game. We prove the statement
using the hybrid games defined in Fig. 15. In each game Γi, we define εi to be the probability
that the efficient adversary A outputs b = 1.

Game Γ1: This is the standard (real) deniability experiment, which we recall here. First, both
SA,DA ←$ χn×n and SB,DB ←$ χn×n and FA,FB ←$ χn̄×n̄ are sampled. Then, the public keys
BA = ASA + DA and BB = SBA + DB are computed. The encapsulation algorithm samples
EB ←$ χn̄×n̄ and sets V ← SBBA + EB. Finally, the experiment runs ct ← HelpRec(V) and
K← Rec(2V, ct) and eventually outputs

(A,BA,BB,SA,DA,FA,K, ct)

to the adversary A.

Game Γ2: The experiment is identical to the previous one, apart from the fact that
now V is explicitly computed as V = SBDA −DBSA +BBSA +EB. Clearly, ε1 = ε2 since

V = SBDA −DBSA +BBSA +EB

= SBDA −DBSA + (SBA+DB)SA +EB

= SBBA +EB.

Game Γ3: Here, the experiment follows Γ2 with the only difference being that the experiment
samples BB uniformly at random from Zn̄×n

q instead of computing BB = SBA+DB.

35

Sim(A,BB,SA,DA,FA)

1 : Ssim,Dsim ←$ χn̄×n

2 : Esim ←$ χn̄×n̄

3 : Vsim ← SsimDA −DsimSA +BBSA +Esim

4 : ct← HelpRec(Vsim)

5 : K← Rec(2Vsim, ct)

6 : return (K, ct)

Figure 14: Simulator for the deniability game.

Lemma 9. There exists an efficient algorithm B that solves the ELWEn,n,n̄,χ,q problem with
probability at least 1

n̄ |ε3 − ε2|.

Proof. We provide a reduction B to the (transposed) matrix-version of the Extended-LWE
problem as described above. Namely, the reduction is given a tuple of matrices (A,B,Z,W,H).
Then, it sets SA := −W, DA := Z and BB := B. Further, the reduction samples FA ←$ χn×n

and computes
BA := ASA +DA and V := H+BBSA +EB

where EB ←$ χn̄×n̄. Finally, the reduction runs ct ← HelpRec(V) and K ← Rec(2V, ct) and
outputs (A,BA,BB,SA,DA,FA,K, ct) to the adversary.

Suppose the input tuple received by B is a true Extended-LWE instance, i.e. BB = B =
SBA + DB for SB,DB ←$ χn×n. This implies that H = SBZ + DBW = SBDA −DBSA and
hence

V = H+BBSA +EB = SBDA −DBSA +BBSA +EB.

This implies that when the input tuple is the Extended-LWE instance then B perfectly simulates
the output of Γ2

6. On the other hand, if BB is uniformly random then B perfectly simulates
the output of Γ3. Finally the statement follows by further reducing the matrix-version of ELWE
to the standard one.

Game Γ4: First, we rename the variables (SB,DB,EB) := (Ssim,Dsim,Esim). Further, instead
of picking BB uniformly at random, the experiment now samples alternative secrets/errors
SB,DB ←$ χn×n for B and sets BB := SBA+DB. The rest is identical as in Γ3.

Lemma 10. There exists an efficient algorithm B′ that solves the LWEn,n,χ,q problem with
probability at least 1

n̄ |ε3 − ε2|.

Proof. We describe a reduction B which solves the matrix-version of LWE. Then, the reduction
to plain LWE follows by a hybrid argument. First, B is given a tuple (A,B) where either
B = SBA +DB for short SB,DB or B is uniformly random. In either case, only given A and
B, the reduction B can simulate the rest of Γ3 (and Γ4). If B = SBA+DB then this becomes
Γ4, and when BB is uniformly random then B simulates Γ3.

Finally, we present the simulator in Fig. 14. Γ4 can now be alternatively described in
the following way. The experiment first samples SA,DA ←$ χn×n and SB,DB ←$ Zn×n

q and
FA ←$ χn̄×n̄. Further, the public keys are defined as BA = ASA +DA and BB = SBA +DB.
Finally, it runs (K, ct)←$ Sim(A,BB,SA,DA,FA) and outputs (A,BA,BB,SA,DA,FA,K, ct).
Thus, deniability follows by simply combining the previous lemmas.

6We used the fact that χ is symmetric around 0 to argue that SA := −W is correctly distributed.

36

Γ1(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$ χn×n

7 : FB ←$ χn×n

8 : BB ← SBA+DB

9 : pkB = (A,BB)

10 : EB ←$ χn̄×n̄

11 : V← SBBA +EB

12 : ct← HelpRec(V)

13 : K← Rec(2V, ct)

14 : b←$A(pkA, pkB, skA,K, ct)

15 : return b

Γ2(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$ χn×n

7 : FB ←$ χn×n

8 : BB ← SBA+DB

9 : pkB = (A,BB)

10 : EB ←$ χn̄×n̄

11 : V← SBDA −DBSA +BBSA +EB

12 : ct← HelpRec(V)

13 : K← Rec(2V, ct)

14 : b←$A(pkA, pkB, skA,K, ct)

15 : return b

Γ3(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$ χn×n

7 : FB ←$ χn×n

8 : BB ← U(Zn̄×n
q)

9 : pkB = (A,BB)

10 : EB ←$ χn̄×n̄

11 : V← SBDA −DBSA +BBSA +EB

12 : ct← HelpRec(V)

13 : K← Rec(2V, ct)

14 : b←$A(pkA, pkB, skA,K, ct)

15 : return b

Γ4(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : pkA = (A,BA)

5 : skA = (SA,DA,FA)

6 : SB,DB ←$ χn×n

7 : FB ←$ χn×n

8 : BB ← SBA+DB

9 : pkB = (A,BB)

10 : Esim ←$ χn̄×n̄

11 : Ssim,Dsim ←$ χn×n

12 : V← SsimDA −DsimSA +BBSA +Esim

13 : ct← HelpRec(V)

14 : K← Rec(2V, ct)

15 : b←$A(pkA, pkB, skA,K, ct)

16 : return b

Figure 15: Security games for the proof of Theorem 4. The lines in blue highlight the main
differences from the previous game. The lines in gray correspond to the simulator defined in
Fig. 14.

6.4.3 Decaps-OW-CPA Security

Finally, we show that our split-KEM satisfies the decaps-OW-CPA security notion (see Defini-
tion 3.6).

Lemma 11 (decaps-OW-CPA Security). Let n̄ = O(λ), m be such that the ciphertext space of
sKEM is {0, 1}m, and χ be a probability distribution over [−γ, γ] symmetric around 0 for any
γ > 0. Suppose LWEn+n̄,n,χ,q is hard. Then, for every efficient algorithm A, the probability of

winning the decaps-OW-CPA game is at most 2m · (δn̄2

cpa + negl(λ)) where

δcpa := max
ct∈{0,1}
u∈Z

2B

Pr
w←$Zq

[Rec(2w, ct) = u] . (3)

Proof. Let A be an efficient adversary against the decaps-OW-CPA game. We prove the

37

statement using the hybrid games described explicitly in Fig. 16. In each game Γi, we define
εi to be the probability that the efficient adversary A wins the security game.

Game Γ1: This is the standard decaps-OW-CPA game corresponding to the sKEM in
Fig. 12.

Game Γ2: In this game, the ciphertext ct is not given to the adversary anymore. Note
that the first phase adversary outputting B is now useless and it can be removed, along with
the operations needed to compute ct. Given the ciphertext space is {0, 1}m for some m ∈ Z, we
have ϵ2 ≥ 1

2m ϵ1 as any adversary in Γ2 can simulate the view of an adversary in Γ1 by guessing
ct.

Game Γ3: In this game, the only change is that instead of computing BB = SBA + DB, it is
picked uniformly at random from Zn̄×n

q . The indistinguishability between Γ3 and Γ2 follows
directly from LWEn,n,χ,q.

Game Γ4: Now, instead of computing BA and V′ as:[
BA

V′

]
=

[
A
BB

]
SA +

[
DA

FA

]
,

the experiment samples BA ←$ U(Zn×n̄
q) and V′ ←$ U(Zn̄×n̄

q) uniformly at random. Then,
the reduction executes Lines 4 to 6 of Γ4. Clearly there is an efficient adversary which solves
LWEn+n̄,n,χ,q with probability at least 1

n̄ |ε4 − ε3|.

Finally, since V′ is uniformly random, the probability that any adversary wins Γ4, i.e.
KA = K′A, can be upper-bounded by δn̄

2

cpa by definition of δcpa. The statement now follows by
combining the previous hybrid games.

Remark. We highlight that the construction does not require a super-polynomial modulus.
To see this, let us first focus on δcpa in (3). In the instantiation we set B = O(1), n̄ = O(

√
λ) and

γ = O(1). Further, δcpa can be bounded by 2−B + 1/q, and if q = poly(λ) then δcpa ≤ (2−B +

1/q)n̄
2
= negl(λ). Hence, the winning probability in Lemma 11 is negligible for q = poly(λ).

Now, let us move on to Equation 2. Recall that n is a dimension responsible for hardness
of LWE, say n = poly(λ). Suppose as in Lemma 11 that the distribution χ outputs integers
between −γ and γ. Then, to obtain δcorr = 0, we need to pick q > 2B+2(2nγ2 + 2γ) = poly(λ),
hence asymptotically the modulus can still be polynomial. In practice (and in this work), we
would allow negligible δcorr, and thus we further decrease the modulus.

6.5 Building a UNF-1KCA and IND-1BatchCCA Split-KEM

We have proven so far that the modified version of FrodoKEX given above is decaps-OW-
CPA and OW-CPA. We show now that any scheme satisfying both these properties can easily
be transformed into a UNF-1KCA and IND-1BatchCCA split-KEM in the ROM and QROM.
The construction is similar to the TCH transform introduced by Huguenin-Dumittan and Vaude-
nay [HV22] translated to the split-KEM setting. We present it in Figure 17. Then, the following
theorem states the security guarantees of the resulting split-KEM.

Theorem 5. Let sKEM0 be any split-KEM and sKEM := Tskem
CH (sKEM0) be the split-KEM

obtained from applying the Tskem
CH transform (Figure 17) to sKEM0. Then, in the ROM, we have

38

Γ1(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : SB,DB ←$ χn×n

5 : FB ←$ χn×n

6 : BB ← SBA+DB

7 : B←$A(BA,BB)

8 : EB ←$ χn̄×n̄

9 : V← SBB+EB

10 : ct← HelpRec(V)

11 : K← Rec(2V, ct)

12 : K′
A, ct

′ ←$A(A,BA,BB, ct)

13 : V′ ← BBSA + FA

14 : KA ← Rec(2V′, ct′)

15 : return 1KA=K′
A

Γ2(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : SB,DB ←$ χn×n

5 : BB ← SBA+DB

6 : K′
A, ct

′ ←$A(A,BA,BB)

7 : V′ ← BBSA + FA

8 : KA ← Rec(2V′, ct′)

9 : return 1KA=K′
A

Γ3(A)
1 : SA,DA ←$ χ(Zn×n

q)

2 : FA ←$ χn×n

3 : BA ← ASA +DA

4 : BB ←$ U(Zn̄×n
q)

5 : K′
A, ct

′ ←$A(A,BA,BB)

6 : V′ ← BBSA + FA

7 : KA ← Rec(2V′, ct′)

8 : return 1KA=K′
A

Γ4(A)
1 : BA ←$ U(Zn×n̄

q)

2 : BB ←$ U(Zn̄×n
q)

3 : V′ ←$ U(Zn̄×n̄
q)

4 : K′
A, ct

′ ←$A(A,BA,BB)

5 : KA ← Rec(2V′, ct′)

6 : return 1KA=K′
A

Figure 16: Security games for the proof of Lemma 11. The lines in blue highlight the main
differences from the previous game.

39

KeyGensKEM(1λ)

1 : (pk, sk)←$ KeyGensKEM0
(1λ)

2 : return (pk, sk)

DecapssKEM(pkB, skA, (ct, t))

1 : K ′
0 ← DecapssKEM0

(pkB, skA, (ct, t))

2 : if H ′(pkA, pkB, ct,K
′
0) ̸= t :

3 : return ⊥
4 : return H(pkA, pkB, ct,K

′
0)

EncapssKEM(pkA, skB)

1 : K0, ct←$ EncapssKEM0
(pkA, skB)

2 : t← H ′(pkA, pkB, ct,K0)

3 : K ← H(pkA, pkB, ct,K0)

4 : return K, (ct, t)

Figure 17: Tskem
CH transform for split-KEMs. We assume that pkB can be derived from skB or is

contained in it.

that for any efficient UNF-1KCA adversary A, one can build efficient B and C adversaries s.t.

Advunf−1kcasKEM (A) ≤
q2H′ + 1

2s
+ (qH + qH′ + 1) · Advdecaps−ow−cpasKEM0

(C) ,

where qH and qH′ are the number of queries made by A to the random oracles H and H ′,
respectively, and s is the output size of both random oracles. In the QROM, the bound becomes

Advunf−1kcasKEM (A) ≤ 8(qH + qH′)2

22s
+ ϵ+ 2(2(qH + qH′) + 1)2 · Advdecaps−ow−cpasKEM0

(B) ,

where ϵ := 2
2s + 8

√
2/2s +

40e2(qH′+2)3+2
2s .

Proof. We defer the proof to Appendix A.

Similarly, we have that the Tskem
CH transform makes an IND-1BatchCCA scheme out of an

OW-CPA one, which is stated in the following theorem.

Theorem 6. Let sKEM0 be any split-KEM and sKEM := Tskem
CH (sKEM0) be the split-KEM

obtained from applying the Tskem
CH transform (Figure 17) to sKEM0. Then, in the ROM, we have

that for any efficient IND-1BatchCCA adversary A, one can build efficient B s.t.

Advind−1batchccasKEM (A) ≤
q2H′ + d

2s
+ 2(qH + qH′ + d) · Advow−cpasKEM0

(B)

where qH and qH′ are the number of queries made by A to the random oracles H and H ′,
respectively, s is the output size of both random oracles, and d is the number of tuples submitted
to the IND-1BatchCCA oracle BatchDec. In the QROM, the previous bound becomes

Advind−1batchccasKEM (A) ≤ δ + ϵ1 + ϵ2 + ϵ3 + 2(qH + d+ qH′)
√
2Advow−cpasKEM0

(B) ,

where δ is the correctness error, ϵ1 =
40e2(qH′+d+1)3+2

2s , ϵ2 = 8d(d+2qH′ +1)
√
2/2s and ϵ3 =

4d
2s .

Proof. As the proof is nearly identical to the proof of IND-qCCA security of the TCH transform
for PKE/KEM [HV22], we defer it to the Appendix B.

6.6 Concrete Instantiation

In Table 2 we propose a parameter set for FrodoKEX+ where we aim for 256-bit security before
applying the transform and 128-bit (resp. 64-bit) security after the transform assuming 264

random oracle (resp. quantum random oracle) queries. In addition, we give the security terms
in Table 3. We show in the following how these parameters were computed, where we set
(B, n̄) = (4, 8).

40

n n̄ q B χ |t| |pk| |ct|
1452 8 31751 4 U({−1, 1}) 64B 21.3KB 72B

Table 2: Concrete parameters for our lattice-based split-KEM. We note that in practice, we
do not need to include the whole matrix A in the public key pk, but rather the seed for the
pseudorandom function to generate it (as is the case in this table). The ciphertext ct comprises
the original split-KEM ciphertext (8B) and the tag t (64B).

n̄2δcorr (2) δelwe (1) δcpa (3)

2−48 2−46 2−3.9996

Table 3: Correctness and security terms.

6.6.1 Correctness error and security loss

One of the main challenges in instantiating our FrodoKEX variant is computing δcorr and δelwe
from Equations 2 and 1. They are related to the correctness error and the security loss of
ELWE. To this end, we introduce a simple distribution χ which will allow us to efficiently
compute these values. Namely, we set χ to be a uniform distribution over the set {−1, 1}.
Clearly, it is symmetric around 0 and has standard deviation equal to 1.

Another useful property of this distribution is that a product XY , where X,Y ←$ χ, still
follows the distribution of χ. Based on this observation, we have

δcorr = Pr
X1,...,X2n+1←$χ

E←$χ

[∣∣∣∣∣
2n+1∑
i=1

Xi + E

∣∣∣∣∣ > q

2B+2

]
.

We can directly compute this term using Laurent polynomials. Namely, define

P (X) := Pr
X←$χ

[X = 1] ·X + Pr
X←$χ

[X = −1] ·X−1 = 1

2
·
(
X +X−1

)
.

Then, using the convolution properties, we observe that the probability of X1+ . . .+X2n+2 = k,
for some −2n − 2 ≤ k ≤ 2n + 2, is equal to the k-th coefficient of the polynomial P (X)2n+2.
Hence, we calculate δcorr by computing P (X)2n+2 and summing all the k-th coefficients, such
that 2n+ 2 ≥ |k| > q

2B+2 .
We now turn into computing δelwe. The first step is the analysis of the following random

variable v = 1
2 · (e− d) · z, where e, d←$ χ and z←$ χn̄. We denote this distribution as V. By

simple calculation we get:

Pr [v = a] = Pr

[
1

2
· (e− d) · z = a

]
=

1
2 if a = 0
1

2n̄+1 if a ∈ {−1, 1}n̄

0 otherwise

Then, the multivariate Laurent polynomial corresponding to v has an elegant form:

P (X1, . . . , Xn̄) =
1

2
+

1

2n̄+1

n̄∏
i=1

(Xi +X−1i).

As before, we observe that δelwe is the probability that for v1, . . . ,vn+m ←$ V,

2 · (v1 + . . .+ vn+m) = 0 (mod q) ⇐⇒ v1 + . . .+ vn+m = 07.

7This holds as long as n+m < q/2 since then no modulo overflow occurs.

41

In terms of the newly defined Laurent polynomials, δelwe is the constant coefficient of:

P (X1, . . . , Xn̄)
n+m =

∑n+m
j=0

(
n+m
j

)
1

2n+m−j · 1
2(n̄+1)j ·

∏n̄
i=1(Xi +X−1i)j .

We now look at the constant coefficient of each of the n +m + 1 terms of the sum. The first
observation is that

(Xi +X−1i)j =

j∑
k=0

(
j

k

)
X

(j−k)
i X−ki =

j∑
k=0

(
j

k

)
X

(j−2k)
i .

Hence, the constant coefficient of the expression above is 0 if j is odd, and
(j
j/2

)
when j is even.

Consequently, the constant coefficient of
∏n̄

i=1(Xi +X−1i)j is either 0, for odd j, or
(j
j/2

)n̄
for

even j. Hence, we conclude that

δelwe =
∑
j even

(
n+m

j

)
1

2n+m−j ·
1

2(n̄+1)j
·
(
j
j
2

)n̄

which can then be computed efficiently for our parameters. Finally, δcpa can be straightforwardly
computed for small primes 8, such as ≈ 215.

6.6.2 Hardness of Extended-LWE

We measure the hardness following the methodology used for the original FrodoKEX [Bos+16]
for fair comparison, and refer to it for more details on the attacks. Here, the main bottleneck
of setting the parameters is the reduction loss between ELWE and plain LWE. Taking this into
account for the parameters proposed above, we aim for 307-bit classical LWE security.

We consider the primal and dual BKZ attacks [SE94; CN11]. As a subroutine, the BKZ
algorithm with block-size b uses an algorithm for the shortest vector problem (SVP) in lattices
of dimension b. As in Frodo [Bos+16], for precautionary purposes we only count the cost of one
such call (even though in practice it will run the SVP sub-algorithm polynomially many times).
The lower-bound on the time complexity of one call is given by about b2cb CPU cycles, where
c ≈ 0.292 for classical attacks, and c ≈ 0.265 for quantum attacks (see Laarhoven [Laa16, Section
14.2.10]). For 307-bit classical security, this corresponds to the block size being 1018, and the
root Hermite factor being ≈ 1.0020 (in the quantum setting these parameters correspond to 279
bits of security). Further, we estimate the hardness of LWE against known attacks using the
LWE estimator by Albrecht et al. [APS15]. Namely, we run the estimator under both “sieving”
and “enumeration”, and set the final root Hermite factor δ as the largest root Hermite factor
returned by the program. Finally, we make sure that δn̄

2

cpa ≈ 2−256 for the decaps-OW-CPA
proof.

7 Benchmarks, Comparison and Discussion

Hereafter, we refer to the X3DH-like protocol of Brendel et al. [Bre+22] as SPQR, and the
baseline deniable protocol (i.e., with ring signatures and without NIZKs) by Hashimoto et
al. [Has+22] as HKKP.

7.1 Benchmarks

Security of the relevant non-standard primitive. Like K-Waay, SPQR and HKKP can
each be implemented using only (soon to be) standardised primitives, except for a single prim-
itive in each case, we consider here the security of the relevant non-standard primitives. In

8One can formally prove that δcpa can be bounded by 1
2B

+ 1
q
, but we compute the value directly instead.

42

Scheme Cl. (C) Cl. (Q) ROM bnd QROM bnd Assumption

FrodoKEX+ 128 64 (qH + d)/2192 (qH + d)/2128 LWE
Raptor [LAZ19] 114 103 ? ✗ NTRU

DualRing-LB [Yue+21] (128) (64) ? ✗ MSIS, MLWE
Falafl [BKP20] 128 64 ? ✗ MSIS, MLWE

Table 4: Security comparison between FrodoKEX+and several post-quantum RS. ‘Cl.’ stands for
claimed number of security bits. DualRing-LB’s authors do not seem to make a clear security
claim, we thus assume NIST level I. ‘?’ indicates that no bound is explicitly given for the
security, ‘✗’ indicates that no proof is provided in the QROM.

the case of K-Waay it is a split-KEM, here implemented using a variant of FrodoKEX passed
through the Tskem

CH transform (that we call FrodoKEX+), and in the case of both HKKP and
SPQR it is a ring signature scheme, or RS (or a designated-verifier signature scheme (DVS)
derived from RS). The authors of both SPQR and HKKP proposed possible implementations for
the RS without picking one in particular. The most efficient one for a ring of size 2 we are aware
of that has an existing C implementation is Raptor [LAZ19] which we use for the benchmarks
below. Other candidates would be Falafl [BKP20] or DualRing-LB [Yue+21].

We present in Table 4 a summary of the security claims, approximate leading factor in the
bounds in the (Q)ROM, and assumptions for these non-standard primitives. We note that none
of these primitives are proven secure in the standard model and all are based on lattices.

First, we note that parameters for these RS schemes were chosen before the reduction in the
ROM was performed. That is, a primitive P based on lattices is built, parameters are chosen
such that P satisfies the security claim, then P is used to build a RS in the ROM, which incurs a
loss factor that usually depends on the number of queries to the random oracle qH . In particular,
it is common to have at least a qH factor in the security bound (e.g. if the adversary can make
264 queries to the RO, the security level is reduced by 64 bits). Therefore, the claimed security
level does not match the provable security level. In the QROM, the security loss is usually
greater: square root and q2H or q3H losses are quite common, however these schemes have not
been proven secure in this model.

We took a different approach in designing a split-KEM with a conservative assumption (i.e.,
plain LWE) and choice of parameters. Therefore, FrodoKEX+ with our proposed parameters
achieve 128 (resp. 64) bits of classical (resp. quantum) security after the (Q)ROM proof.
We provide the (approximate) highest terms of both the ROM and QROM security bounds in
Table 4. These satisfy our security claims as long as qH + d ≤ 264, where d is the number of
public key/ciphertext tuples allowed in the IND-1BatchCCA game. In K-Waay, d corresponds
to the number of distinct users trying to communicate with an offline receiver after all prekeys
have run out, and thus should typically be small.

The reason behind the approximations and lack of QROM proofs for PQ ring signatures is
likely the youth of the field and the speed at which it is evolving. Still, we believe it is worth
noting as it makes any comparison between our protocol and previous ones quite difficult.

Benchmarking. The protocols we benchmarked are: our own implementation of the X3DH
protocol; Brendel et al.’s [Bre+22] protocol SPQR based on PQ KEMs, a signature scheme and
DVS; Hashimoto et al.’s [Has+22] protocol HKKP based on PQ KEMs, a signature scheme and
RS; a baseline protocol made only with PQ KEMs and a signature scheme similar to the non-
deniable variant of HKKP; and our protocol K-Waay based on FrodoKEX+ as a PQ split-KEM,
PQ KEMs and a signature scheme.9

9SPQR and HKKP do not formally treat (regular) signatures, but we include them for fair comparison and
because a practical system would use signatures for prekey bundles.

43

101

104

107

1010

1013

Long term key generation Static key generation One-time key generation Initiator Responder

X
3D
H

K
yb
er
-5
12
+
D
ili
th
iu
m
2

K
yb
er
-5
12
+
Fa
lc
on
-5
12

SP
Q
R
+
D
ili
th
iu
m
2

SP
Q
R
+
Fa
lc
on
-5
12

H
K
K
P
+
D
ili
th
iu
m
2

H
K
K
P
+
Fa
lc
on
-5
12

K
-W
aa
y
+
D
ili
th
iu
m
2

K
-W
aa
y
+
Fa
lc
on
-5
12

101

104

107

1010

1013

1
,6
3
5
,9
4
0

6
9
1
,0
1
9

3
3
,1
8
5
,6
0
0

1
8
9
,0
6
3
,0
0
0

2
1
8
,3
4
6
,0
0
0

1
8
9
,3
0
8
,0
0
0

2
2
0
,3
1
4
,0
0
0

3
0
,4
4
3
,7
0
0

6
4
,0
8
9
,2
0
0

cy
cl
es

Figure 18: Speed benchmark for X3DH protocols.

We chose Kyber-512 as the KEM, both Falcon-512 and Dilithium2 for signatures, and Raptor
for ring signatures. We implemented both HKKP and SPQR with signed prekeys as is the case
in Signal’s implementation of X3DH. That is, a PQ signature key pair is part of the long-term
key, and ephemeral keys uploaded to server are signed with it. Note that this is make explicit
in K-Waay as the ephemeral keys are signed with the long-term one. The authors of HKKP
show that this is not necessary in their protocol, however not doing so weakens perfect forward
secrecy.

We built the different protocols in C using the liboqs library10 for Kyber, Falcon, and
Dilithium, the Raptor implementation provided by the authors11, and a modified version of the
lwe-frodo library12 with scaled parameters to properly simulate FrodoKEX+. More precisely,
the modulus was set to the first power of 2 larger than the modulus in FrodoKEX+, the addition
of the noise during decapsulation was also added, and the noise distributions were modified to
match the ones of FrodoKEX+. We did not optimise the scheme in any way (e.g. by using AVX
instructions or parallelisation) and we leave this as future work. For the sake of completeness,
we also provide a reference implementation of FrodoKEX+ in Rust13 for the interested reader.
All benchmarks were run on a virtual machine running Ubuntu 22.04 with 2 cores of an Intel
i7-9750H running at 2.60GHz and 4GB of RAM allocated.

Speed. For the speed benchmark, we measured how many cycles each protocol takes in one
execution. We summarise our results in a logarithmic graph on Figure 18 (note that the internal
division of the bars is linear).

Fixing the choice of KEM and signature scheme, our protocol K-Waay, depending on the
choice of KEM and signature scheme, is between 3 and 6 times faster than the previous pro-
posals even with our relatively conservative parameter choice. In our protocol K-Waay using
Dilithium2, most cycles are spent in the ephemeral key generation, while using Falcon makes
the static key generation as expensive as the ephemeral key one. Overall, one can see that
Falcon, while more compact than Dilithium2, has a great impact on efficiency. For instance,
K-Waay with Dilithium2 is faster than the non-deniable scheme using Kyber and Falcon.

Apart from Falcon, we see that the most time-consuming primitives are the non-standard
ones, i.e., ring signatures and split-KEM. Hence, we see that the KEM+SIG protocol (HKKP’s
baseline proposal) performs even better than X3DH, which shows once again that lattice-based
schemes can be faster than their classical counterparts. However, we recall that it does not

10https://github.com/open-quantum-safe/liboqs
11https://github.com/zhenfeizhang/raptor
12https://github.com/lwe-frodo/lwe-frodo
13https://github.com/lehugueni/frodokexp-rust

44

https://github.com/open-quantum-safe/liboqs
https://github.com/zhenfeizhang/raptor
https://github.com/lwe-frodo/lwe-frodo
https://github.com/lehugueni/frodokexp-rust

Scheme |lpk| |prek| |ct|
K-Waay + Dilithium 2112 24520 1632
K-Waay + Falcon 1697 22790 1632
HKKP [Has+22] 1700 1700 4056
HKKP [Has+22] + Dilithium2 3012 4120 4056
HKKP [Has+22] + Falcon 2597 2390 4056
SPQR [Bre+22] 3400 1632 4824
SPQR [Bre+22] + Dilithium2 4712 4052 4824
SPQR [Bre+22] + Falcon 4297 2322 4824

Table 5: Size comparison in bytes between K-Waay instantiated with FrodoKEX+, HKKP
[Has+22] and SPQR [Bre+22]. We also computed the sizes for both HKKP and SPQR im-
plemented with signed prekey bundles.

provide deniability. At last, we note that X3DH is the only construction that spends more
time in sending and receiving than generating keys. Our protocol’s Send and Receive (i.e.
BatchReceive with a single input message) procedures are very fast.

Data size. In Table 5, we provide for each scheme the size of the long-term keys, the prekeys
(output by Init in our DAKE syntax), and the ciphertext output by the sender. We computed
for both HKKP and SPQR the size with and without long-term signatures. We see that K-Waay
compares well in terms of long-term public key and ciphertext size as both are smaller than
signed HKKP and SPQR. However, the prekeys are much larger as one could expect from a
LWE-based scheme and due to our conservative setting of parameters.

7.2 Advantages, Limitations and Discussion

Running out of ephemeral keys. The main disadvantage of our protocol is that running
out of ephemeral keys requires the receiver to abort if any of the sessions that used the same
prekey is bogus. If this happens, then a malicious party could mount some kind of denial of
service (DoS) attack against the user that was offline for too long by sending a bogus split-
KEM ciphertext. There is an obvious trade-off between the risk of such an attack happening
and the number of ephemeral keys uploaded on the server (and thus also storage). We leave the
analysis and the mitigation of such a threat as future work, but we believe that if a reasonable
amount of prekeys are uploaded, creating fake accounts is difficult (e.g., by requiring a phone
number as in Signal), and/or users are online often enough, such an attack would be difficult
to mount. Furthermore, several practical mitigations are possible. For instance, if the receiver
(i.e. the victim) received a bogus ciphertext among the n ciphertexts sent for the same prekey
while offline, they can restart K-Waay with each the n parties but as the initiator, which will
probably succeed. The victim could also send n new prekeys to the n initiators directly, making
sure the protocol will succeed at the next iteration. This would make the attack less useful as
it could only delay communication and not prevent it.

We also think it is worth mentioning that the trick we propose might be easy to misimple-
ment. In particular, it is crucial that no information about which split-KEM ciphertext failed
leaks if such a situation occurs. That is, precautions should be taken such that leakage via
side-channels in the scope of the system designer’s threat model are prevented.

split-KEM instead of ring signatures. The fact that we use a primitive similar to a
post-quantum KEM allows us to leverage the extensive literature on the topic and existing
safe/optimised implementations. This also gives good security guarantees as post-quantum
KEMs have been heavily scrutinised as part of the NIST standardisation process. For example,

45

as mentioned above, our proposed lattice-based implementation is based on a key-exchange
variant of FrodoKEM, which is itself the PQ KEM recommended by the German Federal Office
for Information Security (BSI) [Inf23]. Overall we think that a split-KEM such as FrodoKEX+
is more mature and closer to being usable in practice than ring signatures.

On the necessity of modifying FrodoKEX. Currently, our split-KEM significantly differs
from the original FrodoKEX in two aspects: (i) the modulus for our construction has to be
prime in order for our reduction from Extended-LWE to LWE to hold14, and (ii) we have to
introduce additional masking terms to prove UNF-1KCA security. However, we believe that
both changes are artefacts of the security proofs, and the original FrodoKEX split-KEM should
be (up to a reasonable security loss) deniable.

There are alternative reduction techniques from Extended-LWE to LWE in the literature
[Bou+21; Bra+13], which do not rely on having an odd modulus at the cost of using discrete
Gaussian error distributions with large parameters. It is thus an interesting research problem
to efficiently reduce Extended-LWE to LWE for even modulus with small reduction loss. In
practice, the most efficient LWE attacks do not consider the structure of the modulus, so
intuitively this should translate to the Extended-LWE setting15.

As for our second main modification, it is unclear how to argue decaps-OW-CPA security
without the additional masking terms.

Deniability. While the signature on the ephemeral public keys might give the impression that
our protocol is less deniable than X3DH or previous PQ alternatives, this is actually not the
case. The reason is that prekey bundles in these protocols are signed as well, but this detail is
abstracted away in the analysis (i.e. it is assumed that all parties have received and authen-
ticated all public keys before the protocol actually starts). While this kind of analysis allows
for strong deniability claims, in practice these protocols do not satisfy something stronger than
some kind of peer-deniability. The exception is the ring signature based variant by Hashimoto
et al. [Has+22], where the prekey bundle is not necessarily signed. However, in this variant,
the authors can only prove the security of their protocol in a weaker model (i.e. it satisfies
a weaker notion of forward secrecy). Overall, if deniability should not come at the price of
security, peer-deniability seems like the best notion one can achieve in these DAKEs.

We wished to provide a transparent model for peer-deniability, where the upload of signed
ephemeral keys is made explicit. We also strengthen the deniability definition of Brendel et
al. [Bre+22] by allowing the exposure of one of the parties (i.e. the receiving one, which would
be the malicious party trying to frame the sender). While our protocol satisfies our stronger (in
terms of key exposure) notion of deniability, we believe both previous PQ X3DH alternatives
satisfy it as well. Indeed, in these schemes, the ephemeral keys are KEM and RS keys only,
which are deniable. Hence, exposing these should not harm deniability.

Hashimoto et al. [Has+22] consider a strong notion of deniability where the adversary is
malicious (i.e. can arbitrarily deviate from the protocol) and show how to modify HKKP such
that it is secure against such a threat. However, such deniability comes at the expense of NIZKs,
which are complex, expensive and are not always proven secure in the QROM when random
oracles are used. Moreover, as in other deniable systems against malicious adversaries, non-
falsifiable assumptions (i.e., knowledge-type assumptions) are required to prove the security. In
addition, it seems difficult to defend against adversaries actively trying to frame a given user
in messaging in practice [GPA19; CCH23]; for example, an adversary could also simply ask
questions that would identify the victim with good probability. Because of these reasons, we do
not consider such a notion of deniability here.

14Recall FrodoKEX [Bos+16] uses a power-of-two modulus for efficiency.
15Recently, various frameworks have been developed [Dac+20; Dac+23], which measure concrete hardness of

LWE given hints of specific form, such as linear combination of secrets with short random coefficients.

46

To contextualise our results, we remark here that cryptographic deniability, which is targeted
by this work and all previous work on deniable X3DH key exchange, translates to deniability on
a system level only if the application preserves deniability. For example, Collins et al. [CCH23]
observe that Signal as currently deployed does not provide this kind of ‘practical’ deniability for
ordinary users. Suppose Bob is trying to frame Alice and hands over their phone that contains
a transcript of communication between Alice and Bob to a judge. Because Signal authenticates
users (either directly or indirectly through Signal sealed sender [Lun18]), unless Bob was able
to modify their phone (which depends on the technical expertise of Bob), the judge can deduce
that the conversation plausibly took place as in the transcript, regardless of the cryptographic
protocols employed underneath. It is interesting future work to further explore deniability on
the broader system level and practical deniability [Rei+23; YGS23].

An optimisation. As presented in Section 5, the K-Waay protocol generates a signature for
each ephemeral public key uploaded. This can easily be optimised by signing the whole prekey
bundle containing several ephemeral keys. This way, the server needs to store only one PQ
signature for each user. The downside is that now each user needs to download the whole
bundle to verify the signature. This offers a trade-off between data stored at the server and
sent to clients.

Improving security and efficiency. Note that we proved the key indistinguishability of
K-Waay in a model that considers state exposures like Hashimoto et al.’s [Has+22] but is
nonetheless weaker (our protocol is provably-secure under a notion similar to that of [Bre+22]).
This is mainly since our protocol only uses ephemeral split-KEM keys. As noted by Brendel et
al. [Bre+21], however, it seems much more difficult to construct split-KEM secure under several
encapsulation/decapsulation queries, which we leave again as important future work.

An interesting line of research would be to try to build other unforgeable IND-1BatchCCA
split-KEMs that are more efficient (mostly in key and ciphertext size). One obvious direction
would be to work over structured lattices [LS15; LPR10; Ste+09]. Indeed, Ring/Module-LWE
with hints (similar to our Extended-LWE problem) have already been analysed from a theo-
retical point of view, e.g. [Bou+21; Mer+22]. We also believe that our techniques can also be
applied in the ring setting. However, for security purposes one needs to take a ring dimension d
to be at least linear in the security parameter λ which becomes problematic when proving de-
niability. Indeed, the leaked hint is informally the product of secret keys of both parties. Thus,
in the ring setting the hint would be at least a single polynomial, which contains d = O(λ)
coefficients. We predict that this would result with much larger reduction loss than what we
have now. However, the concrete analysis is left as future work.

On a more practical side, it would be informative to benchmark our protocol and others in a
real-life scenario or something close to it, and to implement other ring signatures schemes to have
a more complete comparison. In light of the recent deployment of the PQXDH protocol [KS23],
it would be prudent also to benchmark this and compare it with our protocols, replacing our
choice of Kyber-512 with Kyber-1024 to be consistent with PQXDH which uses the latter KEM
(note that the non-standard primitive used for the deniable PQ protocols will nonetheless be
more of a bottleneck).

One could also try to build one-time ring signatures that are both efficient and provably
secure (possibly in the QROM). In turn, these could possibly be used to build efficient ephemeral
split-KEMs. For instance, Scafuro et al. [SZ21] designed an efficient linkable one-time ring
signatures from hash functions alone and proved the security of the scheme in the ROM. It
would be of interest to understand whether split-KEMs can be built out of such a construction
or a variant, and/or to prove the security in the QROM. Different parameter sets to achieve
higher level of security could also be provided and benchmarked.

47

References

[ACD19] Joël Alwen, Sandro Coretti, and Yevgeniy Dodis. “The double ratchet: Security
notions, proofs, and modularization for the signal protocol”. In: EUROCRYPT.
Springer. 2019, pp. 129–158.

[Alw+21] Joël Alwen, Bruno Blanchet, Eduard Hauck, Eike Kiltz, Benjamin Lipp, and Doreen
Riepel. “Analysing the HPKE standard”. In: EUROCRYPT 2021. Springer. 2021,
pp. 87–116.

[AP12] Jacob Alperin-Sheriff and Chris Peikert. “Circular and KDM Security for Identity-
Based Encryption”. In: Public Key Cryptography. Vol. 7293. Lecture Notes in Com-
puter Science. Springer, 2012, pp. 334–352.

[App+09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai. “Fast Crypto-
graphic Primitives and Circular-Secure Encryption Based on Hard Learning Prob-
lems”. In: CRYPTO. Vol. 5677. Lecture Notes in Computer Science. Springer, 2009,
pp. 595–618.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness of
Learning with Errors. Cryptology ePrint Archive, Report 2015/046. https://ia.
cr/2015/046. 2015.

[Bad+15] Christoph Bader, Dennis Hofheinz, Tibor Jager, Eike Kiltz, and Yong Li. “Tightly-
Secure Authenticated Key Exchange”. In: Theory of Cryptography - 12th Theory of
Cryptography Conference, TCC 2015, Warsaw, Poland, March 23-25, 2015, Pro-
ceedings, Part I. Ed. by Yevgeniy Dodis and Jesper Buus Nielsen. Vol. 9014. Lecture
Notes in Computer Science. Springer, 2015, pp. 629–658. doi: 10.1007/978-3-662-
46494-6_26. url: https://doi.org/10.1007/978-3-662-46494-6%5C_26.

[Bel06] Mihir Bellare. “New proofs for NMAC and HMAC: Security without collision-
resistance”. In: CRYPTO 2006. Springer. 2006, pp. 602–619.

[Ber06] Daniel J Bernstein. “Curve25519: new Diffie-Hellman speed records”. In: Interna-
tional Workshop on Public Key Cryptography. Springer. 2006, pp. 207–228.

[Bha+23] Karthikeyan Bhargavan, Charlie Jacomme, Franziskus Kiefer, and Rolfe Schmidt.
An Analysis of Signal’s PQXDH. https://cryspen.com/post/pqxdh/ Accessed:
23.10.23. 2023.

[Bie+22] Alexander Bienstock, Jaiden Fairoze, Sanjam Garg, Pratyay Mukherjee, and Srini-
vasan Raghuraman. “A More Complete Analysis of the Signal Double Ratchet
Algorithm”. In: CRYPTO 2022. Ed. by Yevgeniy Dodis and Thomas Shrimpton.
Vol. 13507. Lecture Notes in Computer Science. Springer, 2022, pp. 784–813. doi:
10.1007/978-3-031-15802-5_27.

[BKP20] Ward Beullens, Shuichi Katsumata, and Federico Pintore. “Calamari and Falafl:
Logarithmic (Linkable) Ring Signatures from Isogenies and Lattices”. In: ASI-
ACRYPT (2). Vol. 12492. Lecture Notes in Computer Science. Springer, 2020,
pp. 464–492.

[Bon+11] Dan Boneh, Özgür Dagdelen, Marc Fischlin, Anja Lehmann, Christian Schaffner,
and Mark Zhandry. “Random Oracles in a Quantum World”. In: ASIACRYPT.
Vol. 7073. Lecture Notes in Computer Science. Springer, 2011, pp. 41–69.

[Bos+16] Joppe Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Valeria Niko-
laenko, Ananth Raghunathan, and Douglas Stebila. “Frodo: Take off the ring! prac-
tical, quantum-secure key exchange from LWE”. In: Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security. 2016, pp. 1006–
1018.

48

https://ia.cr/2015/046
https://ia.cr/2015/046
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6_26
https://doi.org/10.1007/978-3-662-46494-6%5C_26
https://cryspen.com/post/pqxdh/
https://doi.org/10.1007/978-3-031-15802-5_27

[Bos+18] Joppe W. Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehlé. “CRYSTALS
- Kyber: A CCA-Secure Module-Lattice-Based KEM”. In: 2018 IEEE European
Symposium on Security and Privacy, EuroS&P. 2018, pp. 353–367.

[Bou+21] Katharina Boudgoust, Corentin Jeudy, Adeline Roux-Langlois, and Weiqiang Wen.
“On the Hardness of Module-LWE with Binary Secret”. In: CT-RSA. Vol. 12704.
Lecture Notes in Computer Science. Springer, 2021, pp. 503–526.

[BR93] Mihir Bellare and Phillip Rogaway. “Random Oracles are Practical: A Paradigm
for Designing Efficient Protocols”. In: CCS. ACM, 1993, pp. 62–73.

[Bra+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
“Classical Hardness of Learning with Errors”. In: CoRR abs/1306.0281 (2013).

[Bre+21] Jacqueline Brendel, Marc Fischlin, Felix Günther, Christian Janson, and Douglas
Stebila. “Towards post-quantum security for signal’s X3DH handshake”. In: Se-
lected Areas in Cryptography: 27th International Conference, Halifax, NS, Canada
(Virtual Event), October 21-23, 2020, Revised Selected Papers 27. Springer. 2021,
pp. 404–430.

[Bre+22] Jacqueline Brendel, Rune Fiedler, Felix Günther, Christian Janson, and Douglas
Stebila. “Post-quantum asynchronous deniable key exchange and the signal hand-
shake”. In: IACR International Conference on Public-Key Cryptography. Springer.
2022, pp. 3–34.

[Can+22] Ran Canetti, Palak Jain, Marika Swanberg, and Mayank Varia. “Universally Com-
posable End-to-End Secure Messaging”. In: CRYPTO 2022. Ed. by Yevgeniy Dodis
and Thomas Shrimpton. Vol. 13508. Lecture Notes in Computer Science. Springer,
2022, pp. 3–33. doi: 10.1007/978-3-031-15979-4_1.

[Cas+18] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost
Renes. “CSIDH: An Efficient Post-Quantum Commutative Group Action”. In: ASI-
ACRYPT 2018. Ed. by Thomas Peyrin and Steven D. Galbraith. Vol. 11274. Lecture
Notes in Computer Science. Springer, 2018, pp. 395–427. doi: 10.1007/978-3-030-
03332-3_15.

[CCH23] Daniel Collins, Simone Colombo, and Löıs Huguenin-Dumittan. “Real World Deni-
ability in Messaging”. In: Cryptology ePrint Archive (2023).

[CD23] Wouter Castryck and Thomas Decru. “An efficient key recovery attack on SIDH”.
In: Annual International Conference on the Theory and Applications of Crypto-
graphic Techniques. Springer. 2023, pp. 423–447.

[CF11] Cas Cremers and Michele Feltz. One-round Strongly Secure Key Exchange with Per-
fect Forward Secrecy and Deniability. Cryptology ePrint Archive, Paper 2011/300.
2011. url: https://eprint.iacr.org/2011/300.

[CK02] Ran Canetti and Hugo Krawczyk. “Security analysis of IKE’s signature-based key-
exchange protocol”. In: Advances in Cryptology—CRYPTO 2002: 22nd Annual In-
ternational Cryptology Conference Santa Barbara, California, USA, August 18–22,
2002 Proceedings 22. Springer. 2002, pp. 143–161.

[CN11] Yuanmi Chen and Phong Q. Nguyen. “BKZ 2.0: Better Lattice Security Estimates”.
In: ASIACRYPT. Vol. 7073. Lecture Notes in Computer Science. Springer, 2011,
pp. 1–20.

49

https://doi.org/10.1007/978-3-031-15979-4_1
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://eprint.iacr.org/2011/300

[Coh+19] Katriel Cohn-Gordon, Cas Cremers, Kristian Gjøsteen, H̊akon Jacobsen, and Tibor
Jager. “Highly efficient key exchange protocols with optimal tightness”. In: Advances
in Cryptology–CRYPTO 2019: 39th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 18–22, 2019, Proceedings, Part III 39. Springer.
2019, pp. 767–797.

[Coh+20] Katriel Cohn-Gordon, Cas Cremers, Benjamin Dowling, Luke Garratt, and Douglas
Stebila. “A Formal Security Analysis of the Signal Messaging Protocol”. In: J.
Cryptol. 33.4 (2020), pp. 1914–1983. doi: 10.1007/s00145-020-09360-1.

[Col+24] Daniel Collins, Löıs Huguenin-Dumittan, Ngoc Khanh Nguyen, Nicolas Rolin, and
Serge Vaudenay. “K-Waay: Fast and Deniable Post-Quantum X3DH without Ring
Signatures”. In: 33rd USENIX Security Symposium (USENIX Security 24). https:
//www.usenix.org/conference/usenixsecurity24/presentation/collins.
2024.

[CZ24] Cas Cremers and Mang Zhao. “Secure Messaging with Strong Compromise Re-
silience, Temporal Privacy, and Immediate Decryption”. In: IEEE S&P. 2024.

[Dac+20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. “LWE with
Side Information: Attacks and Concrete Security Estimation”. In: CRYPTO (2).
Vol. 12171. Lecture Notes in Computer Science. Springer, 2020, pp. 329–358.

[Dac+23] Dana Dachman-Soled, Huijing Gong, Tom Hanson, and Hunter Kippen. “Revisit-
ing Security Estimation for LWE with Hints from a Geometric Perspective”. In:
Advances in Cryptology – CRYPTO 2023. Ed. by Helena Handschuh and Anna
Lysyanskaya. Cham: Springer Nature Switzerland, 2023, pp. 748–781.

[DG22] Samuel Dobson and Steven D. Galbraith. “Post-Quantum Signal Key Agree-
ment from SIDH”. In: Post-Quantum Cryptography - 13th International Workshop,
PQCrypto 2022, Virtual Event, September 28-30, 2022, Proceedings. Ed. by Jung
Hee Cheon and Thomas Johansson. Vol. 13512. Lecture Notes in Computer Science.
Springer, 2022, pp. 422–450. doi: 10.1007/978-3-031-17234-2_20.

[DH76] Whitfield Diffie and Martin E. Hellman. “New directions in cryptography”. In: IEEE
Trans. Inf. Theory 22.6 (1976), pp. 644–654. doi: 10.1109/TIT.1976.1055638.
url: https://doi.org/10.1109/TIT.1976.1055638.

[DNS04] Cynthia Dwork, Moni Naor, and Amit Sahai. “Concurrent zero-knowledge”. In:
Journal of the ACM (JACM) 51.6 (2004), pp. 851–898.

[Don+22] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. “Online-
Extractability in the Quantum Random-Oracle Model”. In: EUROCRYPT 2022.
Ed. by Orr Dunkelman and Stefan Dziembowski. Cham: Springer International
Publishing, 2022, pp. 677–706. isbn: 978-3-031-07082-2.

[Duc+18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe,
Gregor Seiler, and Damien Stehlé. “CRYSTALS-Dilithium: A Lattice-Based Digital
Signature Scheme”. In: IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018.1 (2018),
pp. 238–268.

[ESZ22] Muhammed F. Esgin, Ron Steinfeld, and Raymond K. Zhao. “MatRiCT+: More
Efficient Post-Quantum Private Blockchain Payments”. In: IEEE Symposium on
Security and Privacy. IEEE, 2022, pp. 1281–1298.

[GPA19] Lachlan J Gunn, Ricardo Vieitez Parra, and N Asokan. “Circumventing Crypto-
graphic Deniability with Remote Attestation”. In: Proceedings on Privacy Enhanc-
ing Technologies 3 (2019), pp. 350–369.

50

https://doi.org/10.1007/s00145-020-09360-1
https://www.usenix.org/conference/usenixsecurity24/presentation/collins
https://www.usenix.org/conference/usenixsecurity24/presentation/collins
https://doi.org/10.1007/978-3-031-17234-2_20
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.1109/TIT.1976.1055638

[Has+21] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An
Efficient and Generic Construction for Signal’s Handshake (X3DH): Post-Quantum,
State Leakage Secure, and Deniable”. In: Public-Key Cryptography - PKC 2021 -
24th IACR International Conference on Practice and Theory of Public Key Cryp-
tography, Virtual Event, May 10-13, 2021, Proceedings, Part II. Ed. by Juan A.
Garay. Vol. 12711. Lecture Notes in Computer Science. Springer, 2021, pp. 410–
440. doi: 10.1007/978-3-030-75248-4_15.

[Has+22] Keitaro Hashimoto, Shuichi Katsumata, Kris Kwiatkowski, and Thomas Prest. “An
efficient and generic construction for signal’s handshake (X3DH): post-quantum,
state leakage secure, and deniable”. In: Journal of Cryptology 35.3 (2022), p. 17.

[HHK17] Dennis Hofheinz, Kathrin Hövelmanns, and Eike Kiltz. “A modular analysis of
the Fujisaki-Okamoto transformation”. In: Theory of Cryptography Conference.
Springer. 2017, pp. 341–371.

[HV22] Löıs Huguenin-Dumittan and Serge Vaudenay. “On IND-qCCA security in the ROM
and its applications: CPA security is sufficient for TLS 1.3”. In: EUROCRYPT 2022.
Springer. 2022, pp. 613–642.

[Inf23] BSI - German Federal Office for Information Security. BSI TR-01102-1. https:
/ / www . bsi . bund . de / SharedDocs / Downloads / EN / BSI / Publications /

TechGuidelines/TG02102/BSI-TR-02102-1.html. 2023.

[JMZ23] Haodong Jiang, Zhi Ma, and Zhenfeng Zhang. “Post-Quantum Security of Key En-
capsulation Mechanism against CCA Attacks with a Single Decapsulation Query”.
In: Cryptology ePrint Archive (2023).

[Kil+23] Eike Kiltz, Jiaxin Pan, Doreen Riepel, and Magnus Ringerud. “Multi-user CDH
problems and the concrete security of NAXOS and HMQV”. In: Cryptographers’
Track at the RSA Conference. Springer. 2023, pp. 645–671.

[Kra05] Hugo Krawczyk. “HMQV: A high-performance secure Diffie-Hellman protocol”. In:
Annual international cryptology conference. Springer. 2005, pp. 546–566.

[KS23] Ehren Kret and Rolfe Schmidt. The PQXDH Key Agreement Protocol. https :
//signal.org/docs/specifications/pqxdh/pqxdh.pdf. 2023.

[Laa16] Thijs Laarhoven. Search problems in cryptography: from fingerprinting to lattice
sieving. English. Proefschrift. Feb. 2016.

[LAZ19] Xingye Lu, Man Ho Au, and Zhenfei Zhang. “Raptor: a practical lattice-based (link-
able) ring signature”. In: Applied Cryptography and Network Security: 17th Inter-
national Conference, ACNS 2019, Bogota, Colombia, June 5–7, 2019, Proceedings
17. Springer. 2019, pp. 110–130.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. “Stronger security of au-
thenticated key exchange”. In: Provable Security: First International Conference,
ProvSec 2007, Wollongong, Australia, November 1-2, 2007. Proceedings 1. Springer.
2007, pp. 1–16.

[LN22] Vadim Lyubashevsky and Ngoc Khanh Nguyen. “BLOOM: Bimodal Lattice One-
out-of-Many Proofs and Applications”. In: ASIACRYPT (4). Vol. 13794. Lecture
Notes in Computer Science. Springer, 2022, pp. 95–125.

[LPR10] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. “On Ideal Lattices and Learn-
ing with Errors over Rings”. In: EUROCRYPT. Vol. 6110. Lecture Notes in Com-
puter Science. Springer, 2010, pp. 1–23.

[LS15] Adeline Langlois and Damien Stehlé. “Worst-case to average-case reductions for
module lattices”. In: Des. Codes Cryptogr. 75.3 (2015), pp. 565–599.

51

https://doi.org/10.1007/978-3-030-75248-4_15
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://www.bsi.bund.de/SharedDocs/Downloads/EN/BSI/Publications/TechGuidelines/TG02102/BSI-TR-02102-1.html
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf
https://signal.org/docs/specifications/pqxdh/pqxdh.pdf

[Lun18] Joshua Lund. Technology preview: Sealed sender for Signal. https://signal.org/
blog/sealed-sender/. Last visited on 13-09-2023. 2018.

[Mer+22] Jose Maria Bermudo Mera, Angshuman Karmakar, Tilen Marc, and Azam Solei-
manian. “Efficient Lattice-Based Inner-Product Functional Encryption”. In: Public
Key Cryptography (2). Vol. 13178. Lecture Notes in Computer Science. Springer,
2022, pp. 163–193.

[MM11] Daniele Micciancio and Petros Mol. “Pseudorandom Knapsacks and the Sample
Complexity of LWE Search-to-Decision Reductions”. In: CRYPTO. Vol. 6841. Lec-
ture Notes in Computer Science. Springer, 2011, pp. 465–484.

[MP16] Moxie Marlinspike and Trevor Perrin. “The x3dh key agreement protocol”. In: Open
Whisper Systems 283 (2016).

[Pei14] Chris Peikert. “Lattice Cryptography for the Internet”. In: PQCrypto. Vol. 8772.
Lecture Notes in Computer Science. Springer, 2014, pp. 197–219.

[PM16] Trevor Perrin and Moxie Marlinspike. “The double ratchet algorithm”. In: GitHub
wiki (2016).

[Reg05] Oded Regev. “On lattices, learning with errors, random linear codes, and cryptog-
raphy”. In: Proceedings of the thirty-seventh annual ACM symposium on Theory of
computing. 2005, pp. 84–93.

[Rei+23] Nathan Reitinger, Nathan Malkin, Omer Akgul, Michelle L Mazurek, and Ian Miers.
“Is Cryptographic Deniability Sufficientƒ Non-Expert Perceptions of Deniability in
Secure Messaging”. In: 2023 IEEE Symposium on Security and Privacy (SP). IEEE.
2023, pp. 274–292.

[RGK06] Mario Di Raimondo, Rosario Gennaro, and Hugo Krawczyk. “Deniable authenti-
cation and key exchange”. In: Proceedings of the 13th ACM Conference on Com-
puter and Communications Security, CCS 2006, Alexandria, VA, USA, October 30
- November 3, 2006. Ed. by Ari Juels, Rebecca N. Wright, and Sabrina De Capitani
di Vimercati. ACM, 2006, pp. 400–409. doi: 10.1145/1180405.1180454.

[SE94] Claus-Peter Schnorr and M. Euchner. “Lattice basis reduction: Improved practi-
cal algorithms and solving subset sum problems”. In: Math. Program. 66 (1994),
pp. 181–199.

[Sho94] Peter W. Shor. “Polynominal time algorithms for discrete logarithms and factoring
on a quantum computer”. In: Algorithmic Number Theory, First International Sym-
posium, ANTS-I, Ithaca, NY, USA, May 6-9, 1994, Proceedings. Ed. by Leonard M.
Adleman and Ming-Deh A. Huang. Vol. 877. Lecture Notes in Computer Science.
Springer, 1994, p. 289. doi: 10.1007/3-540-58691-1_68.

[SSW20] Peter Schwabe, Douglas Stebila, and Thom Wiggers. “Post-Quantum TLS Without
Handshake Signatures”. In: CCS ’20: 2020 ACM SIGSAC Conference on Com-
puter and Communications Security, Virtual Event, USA, November 9-13, 2020.
Ed. by Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna. ACM, 2020,
pp. 1461–1480. doi: 10.1145/3372297.3423350.

[Ste+09] Damien Stehlé, Ron Steinfeld, Keisuke Tanaka, and Keita Xagawa. “Efficient Public
Key Encryption Based on Ideal Lattices”. In: ASIACRYPT. Vol. 5912. Lecture
Notes in Computer Science. Springer, 2009, pp. 617–635.

[SZ21] Alessandra Scafuro and Bihan Zhang. “One-time traceable ring signatures”. In:
Computer Security–ESORICS 2021: 26th European Symposium on Research in
Computer Security, Darmstadt, Germany, October 4–8, 2021, Proceedings, Part
II 26. Springer. 2021, pp. 481–500.

52

https://signal.org/blog/sealed-sender/
https://signal.org/blog/sealed-sender/
https://doi.org/10.1145/1180405.1180454
https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1145/3372297.3423350

[UG15] Nik Unger and Ian Goldberg. “Deniable Key Exchanges for Secure Messaging”.
In: Proceedings of the 22nd ACM SIGSAC Conference on Computer and Commu-
nications Security, Denver, CO, USA, October 12-16, 2015. Ed. by Indrajit Ray,
Ninghui Li, and Christopher Kruegel. ACM, 2015, pp. 1211–1223. doi: 10.1145/
2810103.2813616. url: https://doi.org/10.1145/2810103.2813616.

[UG18] Nik Unger and Ian Goldberg. “Improved Strongly Deniable Authenticated Key Ex-
changes for Secure Messaging”. In: Proc. Priv. Enhancing Technol. 2018.1 (2018),
pp. 21–66. doi: 10.1515/popets-2018-0003.

[US] US National Security Agency. Announcing the Commercial National Security Al-
gorithm Suite 2.0. https://media.defense.gov/2022/Sep/07/2003071834/-1/-
1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF.

[Vat+20] Nihal Vatandas, Rosario Gennaro, Bertrand Ithurburn, and Hugo Krawczyk.
“On the Cryptographic Deniability of the Signal Protocol”. In: ACNS 2020. Ed.
by Mauro Conti, Jianying Zhou, Emiliano Casalicchio, and Angelo Spognardi.
Vol. 12147. Lecture Notes in Computer Science. Springer, 2020, pp. 188–209. doi:
10.1007/978-3-030-57878-7_10.

[YGS23] Tarun Kumar Yadav, Devashish Gosain, and Kent Seamons. “Cryptographic Deni-
ability: A Multi-perspective Study of User Perceptions and Expectations”. In: 32nd
USENIX Security Symposium (USENIX Security 23). 2023, pp. 3637–3654.

[Yue+21] Tsz Hon Yuen, Muhammed F Esgin, Joseph K Liu, Man Ho Au, and Zhimin Ding.
“DualRing: generic construction of ring signatures with efficient instantiations”. In:
CRYPTO 2021. Springer. 2021, pp. 251–281.

53

https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1145/2810103.2813616
https://doi.org/10.1515/popets-2018-0003
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://media.defense.gov/2022/Sep/07/2003071834/-1/-1/0/CSA_CNSA_2.0_ALGORITHMS_.PDF
https://doi.org/10.1007/978-3-030-57878-7_10

COLL(A)
1 : (x1, t1), . . . , (xm, tm)← AS

2 : for i ∈ {1, . . . ,m} : t′i ← S(xi)

3 : for i ∈ {1, . . . ,m} : xe
i ← Ext(ti)

4 : if ∃i : xe
i ̸= xi and ti = t′i :

5 : return 1

6 : return 0

Figure 19: Collision game for Property 8 Definition A.1.

A Proof of Theorem 5

A.1 QROM preliminaries

In this section, we assume the random oracles output values in {0, 1}n for some integer n. We
first recall the notion of extractable random-oracle simulator introduced by Don et al. [Don+22]
and the corresponding properties as presented in [HV22], and a useful lemma. We refer the
reader to the original paper for more details.

Definition A.1 (Extractable RO [Don+22]). An extractable RO-simulator is a tuple (S,Ext),
where S is a compressed RO efficiently simulatable and Ext is the extractor, such that the
following properties hold.

1. If the extractor is never called, the simulator is indistinguishable from a (standard) RO.

2. Any two subsequent independent queries to S commute.

3. Any two subsequent independent queries to Ext commute.

4. Any two subsequent independent queries to Ext and S 8
√
2/2n-almost commute.

5. Querying classically the simulator S on the same value multiples times in a row has the
same effect on the state of S as making one of these queries.

6. Let xe ← Ext(t) for some t, and t′ ← S(xe) be two subsequent classical queries. Then,

Pr[t ̸= t′ ∧ xe ̸=⊥] ≤ 2/2n .

7. Let t← S(x) for some x and xe ← Ext(t) be two subsequent classical queries. Then,

Pr[x̂ =⊥] ≤ 2/2n .

8. Let COLL be the game defined in Figure 19. Then, for any A we have

Pr[COLL(A)⇒ 1] ≤ 40e2(q +m+ 1)3 + 2

2n
,

where q is the number of queries A makes to S and m is the number of tuples output by
A in the game.

Lemma 12 (Early Extraction). Let Γ be a game where an adversary runs on some input, queries
a quantum RO H, and outputs two values t and o. Then, the game applies some deterministic
function on o to obtain a value x and queries h← H(x). The game returns 1 if h = t. Now let
Γ′ be the same as Γ, except the extractor is called on t right after it is returned by A, and the
game returns 1 if h = t and x = x⋆, where x⋆ is the value extracted. Then,

Pr[Γ⇒ 1]− Pr[Γ′ ⇒ 1] ≤ 2

2n
+ 8

√
2/2n +

40e2(qH + 2)3 + 2

2n
.

54

SH,A
i∗ (Θ)

1 : (j, b)←$ ({0, . . . qH − 1} \ {i∗} × {0, 1}) ∪ {(qH , 0)}
2 : q ← 1

3 : (x, z)←$AH′
and

4 : x′ ← measure A’s j + 1-th query input register

5 : return (x, z)

H ′(x)

1 : if q = i∗ :

2 : return Θ

3 : if q < j + b+ 1 :

4 : return H(x)

5 : else

6 : if x = x′ :

7 : return Θ

8 : else :

9 : return H(x)

Figure 20: Algorithm S for Lemma 14.

Proof. This follows from Corollary 4.7 in Don et al. and the fact that if h = t, where h = H(x),
then Pr[x⋆ = ⊥] ≤ 2

2n .

We also recall the algorithmic one-way to hiding lemma [HHK17].

Lemma 13 (AOW2H [HHK17]). Let A be a quantum adversary making at most qH queries to
the QRO H : {0, 1}ℓ 7→ {0, 1}n and outputting 0 or 1. Then, for any algorithm F that does not
use H ∣∣Pr[AH(inp)⇒ 1 : σ∗ ←$ {0, 1}ℓ; inp← F(σ∗, H(σ∗))]

− Pr[AH(inp)⇒ 1 : (σ∗,K)←$ {0, 1}ℓ+n; inp← F(σ∗,K)]
∣∣

≤ 2qH

√
Pr

[
σ∗ ← EA,H(inp) :

(σ∗,K)←$ {0, 1}ℓ+n;
inp← F(σ∗,K)

]
.

where E is an algorithm that runs A, measures the input register of a random query made to
H, and outputs the result.

Finally, we recall the measure-and-reprogram lemma of Jiang et al. [JMZ23].

Lemma 14 (Lemma 3.1 [JMZ23]). Let H : {0, 1}m 7→ {0, 1}n be a quantum random oracle and
AH be a quantum algorithm that makes q quantum queries to H and outputs (x, z), where x
and z are classical. Furthermore, we assume the i∗-th query of A to H is classical and equal to
x, for some i∗ ∈ [qH]. In addition, let V (x, y, z) be some predicate s.t. V (x, y, z) = 1 implies
that y was output on A’s i∗-th query to H.
Then, there exists an algorithm Si∗ (see Figure 20), that takes some Θ ∈ {0, 1}n as input and
is such that

Pr
[
V (x,H(x), z) = 1 : (x, z)← AH

]
≤ 2(2qH +1)2 Pr

[
V (x,Θ, z) = 1 : (x, z)← SAi∗ (Θ)

]
+

8q2H
2n

where the probabilities are taken over the randomness of the algorithms, the random oracle H
and the sampling of Θ at random.

Informally, the previous lemma states that if some adversary AH can satisfy a predicate
with probability p, one can build another algorithm SA that does not query H on the i∗-th
query (but uses its input instead) but that can satisfy with probability ≈ p

q2H
.

55

A.2 Proof in the QROM

We proceed with a sequence of games that is detailed in Figure 21. The proof uses the
extractable RO-simulator of Don et al. [Don+22] (see Definition A.1).

Game Γ0: This is the UNF-1KCA game with sKEM := Tskem
CH (sKEM0) written explicitly.

In addition, the RO used to compute the tag corresponding to ct (i.e. t = H1(pk, pkB, ct,KB))
is different from the one used to compute the tag for ct′ (i.e. tc = H2(pkA, pkB, ct

′,KA)). Note
that since (pk, ct) ̸= (pkA, ct

′) for the adversary to win, both oracles can be separated in this way.

Game Γ1: The game is the same as the previous one, except we use the simulated RO for H2,
and we use the extractor on t′ (the tag output by the adversary) at the end. Note that this
does not change anything to the probability of success of the game.

Game Γ2: Now the game outputs 0 if the values extracted are different than (pkA, pkB, ct
′,KA).

For the game to return 1, tc must be equal to t′, so let’s assume it is the case. Hence, Γ2 and
Γ1 differ only if S.Ext(tc) ̸= (pkA, pkB, ct

′,KA) and H2(pkA, pkB, ct
′,KA) = tc. By Lemma 12,

this happens with probability at most ϵ := 2
2n + 8

√
2/2n +

40e2(qH′+2)3+2
2n . Hence, we have

Pr[Γ1]− Pr[Γ2] ≤ ϵ .

Game Υ1: We see that if an adversary A wins Γ2, one can build an adversary B that wins the
game Υ1 defined in Figure 21. The reduction works simply by B running A, simulating H2 with
the simulated RO, and running the extractor on t′ at the end. Therefore, we have

Pr[Γ2] ≤ Pr[Υ1] .

In addition, note that one can consider oracles H and H1 as one oracle H∗ := H1 ⊗ H with
images in {0, 1}2n that can be accessed qH + qH′ times by the adversary.

Game Υ2: We change the game such that (t,K) are picked at random and the oracle used

is now Ĥ instead of H∗ := H1 ⊗ H. Now, let’s consider a game C that runs Γ1 and outputs
(x = (pk, pkB, ct,KB), z = ((t,K),KA,K

′
A). In addition, let V (x, y, z) := 1z1=y∧1z2=z3 . Clearly,

we have that
Pr[Υ1] ≤ Pr[V (x,H∗(x), z) : (x, z)←$ CH∗

]

as V is satisfied iff KA = K ′A. Also, note that the condition z1 = y in the predicate is always
satisfied by the definition of z1 itself. Therefore, one can apply Lemma 14 with i∗ equal to the
query to H∗ made by the game (i.e. (t,K)← H∗(pk, pkB, ct,KB)) and we get

Pr[Υ1] ≤ 2(2(qH + qH′) + 1)2 Pr
[
V (x, (t,K), z) = 1 : (x, z)← SAi∗ ((t,K)

]
+

8(qH + qH′)2

22n

where (t,K) is sampled at random and Si∗ is the algorithm shown in Figure 20. By inspection,
one can see that if the output of Si∗ satisfies the predicate V then Υ2 would output 1. Therefore,
we have

Pr[Υ1] ≤ 2(2(qH+qH′)+1)2 Pr
[
V (x, (t,K), z) = 1 : (x, z)← SAi∗ ((t,K)

]
+
8(qH + qH′)2

22n
≤ Pr[Υ2].

Finally, one can see that if A wins Υ2, one can build an adversary B s.t. B wins the
decaps-OW-CPA game against sKEM0. That is, the first phase of B runs the first phase of A
and outputs the same public key pk. Then, in the second phase, B runs AĤ with its own input
(pkA, pkB, ct) and random tag and key (t,K). In addition, note that B can perfectly simulate Ĥ.

56

Γ0(A)
1 : pkA, skA ←$ KeyGenA(1

λ)

2 : pkB, skB ←$ KeyGenB(1
λ)

3 : pk←$AH,H1,H2 (pkA, pkB)

4 : (KB, ct)←$ Encaps(pk, skB)

5 : t← H1(pk, pkB, ct,KB)

6 : K ← H(pk, pkB, ct,KB)

7 : (ct′, t′)←$AH,H1,H2 (pkA,

8 : pkB, (ct, t),K)

9 : if (pkA, ct
′) = (pk, ct) : return 0

10 : KA ← Decaps(pkB, skA, ct
′)

11 : tc ← H2(pkA, pkB, ct
′,KA)

12 : if tc ̸= t′ : return 0

13 : return 1

Γ1(A)
1 : pkA, skA ←$ KeyGenA(1

λ)

2 : pkB, skB ←$ KeyGenB(1
λ)

3 : pk←$AH,H1,H2 (pkA, pkB)

4 : (KB, ct)←$ Encaps(pk, skB)

5 : t← H1(pk, pkB, ct,KB)

6 : K ← H(pk, pkB, ct,KB)

7 : (ct′, t′)←$AH,H1,H2 (pkA,

8 : pkB, (ct, t),K)

9 : if (pkA, ct
′) = (pk, ct) : return 0

10 : KA ← Decaps(pkB, skA, ct
′)

11 : tc ← H2(pkA, pkB, ct
′,KA)

12 : if tc ̸= t′ : return 0

13 : (pk⋆1, pk
⋆
2, ct

⋆,K⋆
A)← S.Ext(t′)

14 : return 1

Γ2(A)
1 : pkA, skA ←$ KeyGenA(1

λ)

2 : pkB, skB ←$ KeyGenB(1
λ)

3 : pk←$AH,H1,H2 (pkA, pkB)

4 : (KB, ct)←$ Encaps(pk, skB)

5 : t← H1(pk, pkB, ct,KB)

6 : K ← H(pk, pkB, ct,KB)

7 : (ct′, t′)←$AH,H1,H2 (pkA,

8 : pkB, (ct, t),K)

9 : (pk⋆0, pk
⋆
1, ct

⋆,K⋆
A)← S.Ext(t′)

10 : if (pkA, ct
′) = (pk, ct) : return 0

11 : KA ← Decaps(pkB, skA, ct
′)

12 : tc ← H2(pkA, pkB, ct
′,KA)

13 : if tc ̸= t′ : return 0

14 : if (pk⋆1, pk
⋆
2, ct

⋆,K⋆
A) ̸= (pkA, pkB, ct

′,KA) :

15 : return 0

16 : return 1

Υ1(A)
1 : pkA, skA ←$ KeyGenA(1

λ)

2 : pkB, skB ←$ KeyGenB(1
λ)

3 : pk←$AH,H1 (pkA, pkB)

4 : (KB, ct)←$ Encaps(pk, skB)

5 : (t,K)← H∗(pk, pkB, ct,KB)

6 : in← (pkA, pkB, (ct, t),K)

7 : K′
A, ct

′ ←$AH,H1 (in)

8 : KA ← Decaps(pkB, skA, ct
′)

9 : if (pkA, ct
′) = (pk, ct) or KA ̸= K′

A :

10 : return 0

11 : return 1

Υ2(A)
1 : (j, b)←$ ({0, . . . qH − 1} × {0, 1}) ∪ {(qH , 0)}
2 : x′ ← measure A’s j + 1-th query input register

3 : q ← 0

4 : pkA, skA ←$ KeyGenA(1
λ)

5 : pkB, skB ←$ KeyGenB(1
λ)

6 : (KB, ct)←$ Encaps(pkA, skB)

7 : pk←$AĤ(pkA, pkB)

8 : (KB, ct)←$ Encaps(pk, skB)

9 : (t,K)←$ {0, 1}2n

10 : K′
A, ct

′ ←$AĤ(pkA, pkB, (ct, t),K)

11 : KA ← Decaps(pkB, skA, ct
′)

12 : if KA ̸= K′
A :

13 : return 0

14 : return 1

Ĥ(x)

1 : q ← q + 1

2 : if q < j + b+ 1 :

3 : return H∗(x)

4 : else

5 : if x = x′ :

6 : return (t,K)

7 : else :

8 : return H∗(x)

Figure 21: Sequence of games for the proof of Theorem 5. H∗ is defined as H1 ⊗H1.

Finally, B outputs the same as the adversary A. If KA = K ′A then B wins the decaps-OW-CPA
game. Hence, we have that

Pr[Υ2] ≤ Pr[decaps-OW-CPAsKEM0
(B)⇒ 1] .

Collecting the probabilities concludes the proof.

A.3 Proof in the ROM

The proof follows a similar idea as the one in the QROM.

Game Γ0: This is the same as the UNF-1KCA game with sKEM = Tskem
CH (sKEM0), except we

assume there is no collision on H ′. Thus, Γ0 is the same as UNF-1KCA except with probability

at most
q2
H′
2n .

Game Γ1: In this game, we return 0 if A did not query H ′(pkA, pkB, ct
′,KA). As we can

assume (pk, ct) ̸= (pkA, ct
′), this changes the probability of A winning only if A outputs t′ =

H ′(pkA, pkB, ct
′,KA) without having made the oracle query. Since the query was not made, one

can actually lazy sample the value of H ′(pkA, pkB, ct
′,KA) after A returns t′, and the probability

both values are equal is 1
2n . Hence,

Pr[Γ0]− Pr[Γ1] ≤
1

2n
.

57

O(LH′ , {(pki, (cti, ti))}di=1)

1 : for i ∈ [d] :

2 : K′
i ← Decaps(pki, skA, cti)

3 : if ((pki, cti,K
′
i), ti) /∈ LH′ : return 0

4 : return 1

Figure 22: Oracle O used in the proof of Theorem 6.

Game Υ1: If Γ1 outputs 1, it means A outputs (ct, t′) s.t. ((pkA, pkB, ct
′,KA), t

′) is in
the list of queries made by the A. Hence, if that happens, one can find ct′ and KA s.t.
Decaps(pkB, skA, ct

′) = KA by running (ct′, t′) ←$ A and looking for t′ in the list of queries
(note that we assume there is no collision). Therefore, it means one can build an adversary that
wins the game Υ1 in Fig. 21, and we have

Pr[Γ1] ≤ Pr[Υ1] .

Game Υ2: We modify the game s.t. the tag t and the key given to the adversary are picked
uniformly at random as shown in Figure 21. Both games are indistinguishable unless A queries
(pk, pkB, ct,KB) to H or H ′. Then, an adversary B playing Υ2 can perfectly simulate A’s view
in Υ1 if it guesses correctly which query it is going to be and if such a query is going to happen.
Overall, B can make a correct guess with probability 1

qH′+qH+1 . If that happens though, one

can build an OW-CPA adversary B against sKEM0 that runs A and picks a random query made
by A to H or H ′. Hence, we have

Pr[Υ1] ≤ (qH′ + qH + 1)Pr[Υ2] .

Finally, one can see that Υ2 is the same as the decaps-OW-CPA for sKEM0 if we omit the
random values K and t and the more restrictive winning condition (pkA, ct

′) ̸= (pk, ct). Hence,
one can build an adversary C such that

Pr[Υ2] ≤ Pr[decaps-OW-CPAsKEM0
(C)⇒ 1] .

B Proof of Theorem 6

B.1 Proof in the ROM

Proof. The idea of the proof is very similar to the IND-qCCA proof of the TCH transform by
Huguenin-Dumittan et al. [HV22] and is the following. Either all tags in the decapsulation query
are valid and thus they are the form H ′(pkA, pki, cti,K

′
i), or the oracle returns ⊥. Then, if they

are valid, with high probability the adversary queried (pkA, pki, cti,K
′
i) to H ′ and thus K ′i can

be recovered from the list of queries to the RO, i.e. the decapsulation oracle can be simulated
without the knowledge of skA. In other words, the only information leaked by a query to the
decapsulation oracle is whether all tags are valid or not, i.e. 1 bit of information, which is not
sufficient to break the OW-CPA game. We prove this formally with a sequence of hybrid games.

Game Γ0: This is the IND-1BatchCCA game with sKEM = Tskem
CH (sKEM0).

Game Γ1: We modify the previous game s.t. we abort if the adversary finds any colli-
sion when querying H ′. We have that

Pr[Γ0]− Pr[Γ1] ≤
q2H′

2n

58

where q′H is the number of queries the adversary makes to H ′.
Game Γ2: We modify the game s.t. it aborts if BatchDec({(pki, (cti, ti))}di=1) does not return
⊥ but one of the tags ti was not obtained through an adversary’s query to H ′. The probability
that some tag ti is valid but H ′(pkA, pki, cti,K

′
i) (with (pkA, pki, cti, ti) ̸= (pkA, pkB, ct

∗, t∗i)) was
not queried by the adversary is 1

2n . Hence, overall we have

Pr[Γ1]− Pr[Γ2] ≤
d

2n

Game Γ3: We now change the game as follows. We record all queries toH ′ of the form (pkA, ·, ·, ·)
made by the adversary in a list LH′ = {((pkj , ctj ,Kj), hj)}

q′H
j=1 s.t. H ′(pkA, pkj , ctj ,Kj) = hj

for all j ∈ [qH′]. Then, the BatchDec oracle is modified as follows. If some tag ti is s.t. for
all K ∈ K ((pki, cti,K), ti) /∈ LH′ then ⊥ is returned. Then, O(LH′ , {(pki, (cti, ti))}di=1)→ r is
queried, where O is defined in Figure 22. If r = 0 BatchDec outputs ⊥, otherwise it outputs
H(pkA, pki, cti,Ki) for all i ∈ [d], where Ki is s.t. ((pki, cti,Ki), ti) ∈ LH′ . Note that all these
modifications are only syntactical as O outputs 1 iff for all i ∈ [d], Ki is (the unique) value in
LH′ s.t. H ′(pkA, pki, cti,Ki := Decaps(pki, skA)) = ti. Hence, we have

Pr[Γ2] = Pr[Γ3] .

Game Γ4: We replace the challenge tag t∗ and the real key K0 by random values. This change
can only be noticed if the adversary or the BatchDec oracle queries H(pkA, pkB, ct

∗,K∗) or
H ′(pkA, pkB, ct

∗,K∗) at some point in the game. Let QUERY be this event. We show that if
QUERY occurs, then one can break the OW-CPA security of sKEM0 with high probability. The
reduction works as follows. The OW-CPA adversary B receives a challenge ciphertext ct∗ and
public keys pkA, pkB from its own challenger. Next, it samples random values K, t∗ and passes
all these to the IND-1BatchCCA adversary A. Then, B can simulate everything in BatchDec
(except the oracle call to O) by recording A’s queries to H ′. In order to simulate O, B samples
a bit r at random instead, which succeeds with probability 1

2 . Finally, it samples at random a
query made by A to H or H ′ or a query made to H by itself, and it outputs the key K that was
part of this query. Overall, the simulation is correct with probability 1

2 and if QUERY occurs B
recovers K∗ with probability 1

qH+qH′+d . Hence,

Pr[Γ3]− Pr[Γ4] ≤ Pr[QUERY] ≤ 2(qH + qH′ + d)Advow-cpa
sKEM (A) .

Finally, we see that the adversary’s view is independent of b in Γ4, therefore Pr[Γ4] =
1
2 . This

concludes the proof.

B.2 Proof in the QROM

Proof. As in the proof of Theorem 5, we use the extractable RO-simulator by Don et
al. [Don+22] and we proceed with a sequence of hybrid games. We note the proof is nearly
identical to the QROM IND-qCCA proof of TCH [HV22] and we refer the reader to the latter
for a detailed explanation of the game transitions.

Game Γ0: This is the IND-1BatchCCA game with sKEM = Tskem
CH (sKEM0). We also assume that

the adversary only makes queries of the form (pkA, ·, ·, ·) to the oracles. This has no consequence
on the winning probability of the adversary as other type of queries are independent of the key.

Game Γ1: We modify the BatchDec oracle s.t. it returns ⊥ whenever the list of (pki, cti, ti) in
the query contains (pki, cti) = (pkB, ct

∗) (and thus ti ̸= t∗). This change has no impact except

59

if Decaps(pkB, skA, ct
∗) ̸= K0, where K0 is the challenge real key. In turn, this would imply that

ct∗ is an incorrect ciphertext. Hence,

Pr[Γ0]− Pr[Γ1] ≤ δ .

Game Γ2: Now, we split the random oracle H ′ into two oracles H ′0 and H ′1 s.t.

H ′(pkA, pk, ct,K) :=

{
H ′0(K), if (pk, ct) = (pkB, ct

∗)

H ′1(pk, ct,K), otherwise

and we give the adversary access to H ′0, H
′
1 instead of H ′. We also switch to the RO simulator

instead of using H ′1. In addition, at the end of the game, the challenger calls the extractor
on all tags ti queried as part of the call to the BatchDec oracle to obtain extracted values
(pkei , ct

e
i ,K

e
i), i ∈ [d]. Note that H ′0 is never called as part of a BatchDec query due to the

modification in the previous game. These changes have no impact on the success of the game
and thus

Pr[Γ1] = Pr[Γ2] .

Game Γ3: We abort whenever the decapsulation oracle does not return ⊥ but the extracted
values (pkei , ct

e
i ,K

e
i) are not equal to ⊥ or (pki, cti,K

′
i), where K ′i = Decaps(pki, skA, cti). By

Property 8 of the extractable oracle, we have

Pr[Γ2]− Pr[Γ3] ≤
40e2(qH′ + d+ 1)3 + 2

2n
.

Game Γ4: We move the extraction to the BatchDec oracle, right after the corresponding tag
verification. By Property 4 of the extractable oracle, we have

Pr[Γ3]− Pr[Γ4] ≤ 8d(d+ qH′)
√
2/2n .

Game Γ5: We modify the BatchDec oracle s.t. we abort if all tag checks pass, i.e.
H ′(pki, cti,K

′
i) = ti, ∀i ∈ [d] but some extracted value is equal to ⊥, i.e. (pkei , ct

e
i ,K

e
i) =⊥

for some i ∈ [d]. By Property 7 of the extractable oracle we have

Pr[Γ4]− Pr[Γ5] ≤ d
2

2n
.

Game Γ6: We modify the BatchDec oracle s.t. the queries to H ′ made for the tag verification
are made after the corresponding extraction. By Property 8 of the extractable oracle we have

Pr[Γ5]− Pr[Γ6] ≤ 8d
√
2/2n .

Game Γ7: We modify the previous game as follows. Let r be a bit set to 1 iff for all i ∈ [d]
(pkei , ct

e
i) = (pki, cti) and Decaps(pkei , skA, ct

e
i) = Ke

i . Then, we change BatchDec s.t. it returns
⊥ if r = 0, otherwise it returnsH(pkA, pki, cti,K

e
i) for all i ∈ [d]. In addition, the tag verification

is now skipped. We argue this affects only negligibly the advantage of the adversary compared
to the previous game:

• If BatchDec returns H(pkA, pki, cti,K
′
i) , i ∈ [d] in Γ6, then by the previous changes

we know that (pkei , ct
e
i ,K

e
i) = (pki, cti,K

′
i) for all i ∈ [d], therefore BatchDec returns

H(pkA, pki, cti,K
′
i) , i ∈ [d] in Γ7 as well.

60

• If BatchDec returns H(pkA, pki, cti,K
e
i) , i ∈ [d] in Γ7, we know that (pkei , ct

e
i ,K

e
i) =

(pki, cti,K
′
i). In addition, for each i ∈ [d], ti = H(pkei , ct

e
i ,K

e
i) with probability 1− 2

2n by
Property 6 of the extractable oracle. Therefore, the tag verification would pass in Γ6 with
high probability and BatchDec would return the same values in that game as well.

Overall, we have

Pr[Γ6]− Pr[Γ7] ≤ d
2

2n
.

Game Γ8: Now we move all d queries to H ′ made in BatchDec to the end of the game. By
Property 8 of the extractable oracle, we have

Pr[Γ7]− Pr[Γ8] ≤ 8dqH′
√
2/2n .

Note that we can now forget about the queries to H ′ we just moved to the end of the game.

Game Γ9: We replace the real key K0 and the challenge tag t∗ by random values. We have
Pr[Γ9] =

1
2 . Applying the OW2H lemma on H ⊗H ′0, we get

Pr[Γ8]− Pr[Γ9] ≤ 2(qH′ + qH + d)
√
Pr[Υ]

where Υ is the same as Γ9, except the challenger measures a random query made to H ⊗ H ′0
and outputs 1 iff the query contains K∗, where K∗ is the key encapsulated in ct∗. We can build
an OW-CPA adversary B against sKEM0 that wins with high probability when Υ outputs 1.
The reduction works nearly as in the ROM proof: B receives a challenge ciphertext ct∗ and
two public keys pkA, pkB, then it samples t∗ and K∗ at random and passes all these values to
A. Then, B can perfectly simulate BatchDec as in Γ9, except for the bit r that it can guess
correctly with probability 1

2 . Finally, B measures a random query that was made to H or H ′

in the execution and outputs the corresponding value K. Overall, we have

Pr[Υ] ≤ 2Advow-cpa
sKEM (A)

which concludes the proof.

61

C Differences from the Proceedings Version

Apart from providing all relevant proofs and formal statements where relevant and including ad-
ditional text, we have updated this work since submitting the camera-ready version to USENIX
Security 2024 [Col+24]. In particular, our protocol was not proven secure in the presence of
key-compromise impersonation (KCI) attacks because we disallowed long-term key exposure of
a non-partnered receiver being tested in the KIND game, and now is. The following attack also
was not therefore considered before: if a malicious party chooses a prekey bundle adversarially
with a chosen split-KEM public key, then a sender who used that prekey could potentially learn
some information about the sender’s ephemeral split-KEM secret. In this revised document, we
strengthened our decaps-OW-CPA and UNF-1KCA (previously UNF-1KMA) notions to allow
the encapsulation call to be with respect to a chosen (potentially malicious) public key and
capture these attacks. The corresponding proofs were changed accordingly. In particular, for
the decaps-OW-CPA proof of our split-KEM, we now simply use a guessing technique that
implies a security loss of 64 bits. This has the advantage of removing the need for rejection
sampling without affecting our security claims. We also included a table comparing our (up-
dated) protocol with the state-of-the-art in the introduction and made other minor changes
including correcting some minor mistakes and typos.

62

	Introduction
	Our Results
	Technical Overview
	Additional Related Work

	Preliminaries
	Key-Encapsulation Mechanism (KEM)
	Signature
	Triple PRF

	Split-KEM
	Security
	Deniability

	Model for DAKE
	Syntax
	Security Model
	Parties and sessions
	Partnering
	KIND Security Game

	Deniability

	K-Waay: Post-Quantum X3DH from Split-KEM
	Construction
	Security

	Deniable Split-KEM from Lattices
	Lattice Toolbox
	Extended-LWE
	Construction
	Security Analysis
	OW-CPA Security
	Deniability
	Decaps-OW-CPA Security

	Building a UNF-1KCA and IND-1BatchCCA Split-KEM
	Concrete Instantiation
	Correctness error and security loss
	Hardness of Extended-LWE

	Benchmarks, Comparison and Discussion
	Benchmarks
	Advantages, Limitations and Discussion

	Proof of Theorem 5
	QROM preliminaries
	Proof in the QROM
	Proof in the ROM

	Proof of Theorem 6
	Proof in the ROM
	Proof in the QROM

	Differences from the Proceedings Version

