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Data Privacy Made Easy: Enhancing

Applications with Homomorphic Encryption
Charles Gouert, and Nektarios Georgios Tsoutsos

Abstract

Homomorphic encryption is a powerful privacy-preserving technology that is notoriously difficult

to configure and use, even for experts. The key difficulties include restrictive programming models of

homomorphic schemes and choosing suitable parameters for an application. In this tutorial, we outline

methodologies to solve these issues and allow for conversion of any application to the encrypted domain

using both leveled and fully homomorphic encryption.

The first approach, called Walrus, is suitable for arithmetic-intensive applications with limited depth

and applications with high throughput requirements. Walrus provides an intuitive programming interface

and handles parameterization automatically by analyzing the application and gathering statistics such as

homomorphic noise growth to derive a parameter set tuned specifically for the application. We provide

an in-depth example of this approach in the form of a neural network inference as well as guidelines for

using Walrus effectively.

Conversely, the second approach (HELM) takes existing HDL designs and converts them to the

encrypted domain for secure outsourcing on powerful cloud servers. Unlike Walrus, HELM supports

FHE backends and is well-suited for complex applications. At a high level, HELM consumes netlists

and is capable of performing logic gate operations homomorphically on encryptions of individual bits.

HELM incorporates both CPU and GPU acceleration by taking advantage of the inherent parallelism

provided by Boolean circuits. As a case study, we walk through the process of taking an off-the-shelf

HDL design in the form of AES-128 decryption and running it in the encrypted domain with HELM.

I. INTRODUCTION

Fully homomorphic encryption (FHE) has received increasing attention in the research community and

industry as new cryptographic schemes and application-specific optimizations have demonstrated that the

technology is fast approaching feasibility in realistic scenarios. This powerful class of encryption allows
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users to execute algorithms on encrypted data and serves as a robust solution to privacy concerns in the

context of cloud computing. Users can encrypt sensitive data locally, upload the resulting ciphertexts to

the cloud, instruct the cloud to execute an algorithm on the ciphertexts, receive the encrypted output,

and decrypt it locally to view the correct plaintext result of the computation. In this way, organizations

can outsource computationally expensive calculations to the cloud, while having strong data privacy

guarantees.

While standard encryption mechanisms such as AES have been used to enforce data confidentiality

for outsourced data in the past, these solutions only work for storage and transmission. In this case, if

any meaningful computation needs to be done on the encrypted data, the user would need to pull the

data from the cloud, decrypt it, perform the computation locally on the plaintext data, re-encrypt it, and

finally re-upload to the cloud. Conversely, HE can help accomplish the same task without engaging the

user, since the computation can be performed directly on the encrypted data stored on the cloud. Because

the data in use remains encrypted with HE, the cloud has no knowledge of the underlying plaintext. In

addition, if a cloud server is compromised, the attacker will be unable to decrypt the ciphertexts without

the secret key (known only to the user). A diagram depicting this secure cloud computing scenario is

shown in Figure 2.

Only a few years ago, the idea that FHE could be adopted in a cloud computing context outside of

research circles was a distant dream. When first conceived in 2009 by Gentry [1], it was estimated

that the cost of performing a Google search over encrypted data would be a trillion times slower

than a regular search [2]. Now, state-of-the-art FHE libraries [3] and novel computational techniques

tailored for encrypted computation [4] have accelerated the evaluation time of homomorphic algorithms

by several orders of magnitude. Further, leveled homomorphic encryption (LHE) provides an efficient

alternative to FHE and can achieve much faster speeds for certain types of applications. Even still,

software optimizations and hardware acceleration has led to significant speedups over the years. General

trends in terms of performance since the inception of FHE is shown in Figure 1.

Unfortunately, while the efficiency of both FHE and LHE operations continues to increase, usability is

not advancing at the same speed. For instance, choosing optimal parameter sets at an acceptable security

level for most HE libraries remains a notoriously difficult problem. While one set of parameters may result

in efficient computation for one application, the same set of parameters may result in poor performance

for a different set of computations on encrypted data. Even for crypto-savvy programmers, the process

of optimizing encryption parameters is time consuming and requires a high degree of trial-and-error.

Additionally, the programming models associated with FHE and LHE are somewhat restrictive and

users must write their applications in the form of a directed acyclic graph (DAG). Depending on the
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Fig. 1: FHE Speed Trend: Early FHE was prohibitively expensive, but was improved over time with

software-oriented optimizations. Eventually, these improvements stagnated and further speedups were

gained through hardware acceleration in the form of GPUs and ASICs. The DPRIVE initiative started by

the US Defense Advanced Research Projects Agency (DARPA) for FHE ASICs aims for a 10× slowdown

relative to plaintext computation in the near future.

scheme and configuration, the DAG must take the form of a Boolean circuit composed of standard logic

gates or an arithmetic circuit with solely addition and multiplication nodes. This design approach is not

scalable for complex applications such as neural network inference, which may require circuits composed

of millions of gates or arithmetic operations.

Prior work has identified efficient and secure parameter sets, most notably the homomorphic encryption

standard of 2018 [5], and existing HE libraries typically provide a set of default parameters, but these

parameter sets are not tailored for any given application. In addition, the level of security may not be

appropriate for some users as many parameter sets are preconfigured for 80 bits of security or less,

which today is considered relatively low. For HE schemes such as BGV [6], default parameter sets may

not be well suited for high degrees of batching. The latter is a very powerful technique applicable to a

subset of HE schemes that allows multiple plaintext values to be encoded in one ciphertext. When an

HE operation is conducted with a batched ciphertext, each plaintext element will be affected, in a similar

way to SIMD-style computation. For many types of applications, such as neural network training and

inference, this strategy can drastically improve throughput. The size of the plaintext vector that can be

encoded is determined by the parameter set and can vary from less than 10 to several thousand. One can
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Fig. 2: Secure Outsourced Computation: A user has sensitive plaintext, encrypts the data, sends the

ciphertext (in red) to a cloud server that computes analytics, and returns the encrypted results to the user,

who decrypts them locally.

achieve speedups of orders of magnitude compared to ill-suited configurations when selecting parameters

well tuned for the target computation.

In terms of usability, several compilers have aimed to allow programmers to express algorithms in

high-level code and automatically map the input programs into a series of HE primitives. For instance,

the TenSEAL library [7] provides a high-level Python API for linear algebra operations between encrypted

tensors of arbitrary shape. Under the hood, the linear algebra operations (like matrix multiplication) are

mapped to a sequence of encrypted arithmetic operations with the Microsoft SEAL library [8], which

implements the BFV, BGV, and CKKS schemes that operate over encrypted integers or floats.

This tutorial aims to address the problem of selecting good parameters for any given application and

to allow users to more easily wield the full power that current state-of-the-art HE libraries provide. To

this end, we introduce the following:

• A methodology for seamlessly evaluating existing HDL designs with FHE,

• Automatic parameterization techniques for efficient LHE evaluation,

• A case-study applying the developed techniques for two realistic use-cases in the form of AES

decryption and neural network inference.

The next section gives a high-level overview of homomorphic encryption and its different variants, as

well as a brief look at some of the most important HE schemes. Then, we identify methodologies for

optimized parameter tuning and converting existing designs for LHE, followed by FHE. For both cases,

we demonstrate methodologies to convert non-trivial applications to the encrypted domain and analyze

the performance.
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II. HOMOMORPHIC ENCRYPTION PRIMER

Homomorphic encryption can be subdivided into different categories that define their relative com-

putational powers. The most limited type of HE is known as partial homomorphic encryption, or PHE.

These cryptosystems allow for unbounded multiplication [9], [10] or addition [11], [12] on encrypted

data. Notably, PHE can not be used to implement arbitrary algorithms with only one arithmetic operator,

which enables only simple use cases, such as aggregation.

Leveled HE (LHE), on the other hand, supports both addition and multiplication over ciphertext

data. Therefore, this class of HE exposes a functionally complete set of operations and can be used to

implement arbitrary algorithms. The only caveat is that the algorithm must have a bounded depth. LHE

constructions rely on variants of the learning with errors (LWE) problem [13] for security guarantees

(unlike PHE which relies on other hard problems like factorization). The key ramification is that as a

plaintext is encrypted with LHE, a small amount of noise is injected to make the encryption harder to

break without knowledge of the secret key. Consequently, the noise grows as additions and multiplications

are conducted on the encrypted data. The noise grows linearly when two ciphertexts are added together,

while multiplication between two ciphertexts causes an exponential noise growth. Once the magnitude of

the noise exceeds a threshold, with high probability the noisy ciphertext will not yield the expected result

when decrypted, which offers limited utility for the client. Nevetheless, if the depth of the application,

defined by the number of multiplications performed successively on ciphertext data, is bounded, it is

possible to choose parameter sets that will allow the LHE scheme to successfully evaluate the entire

circuit without exceeding the noise threshold. At the same time, very deep circuits require large parameter

sets, resulting in significant memory and computational overheads.

Three of the most popular LHE schemes include BFV [14], BGV [6], and CKKS [15]. BGV and

BFV encrypt integers modulo a configurable plaintext modulus, while CKKS encrypts floating point or

complex numbers. In these schemes, a ciphertext is represented as a pair of high-degree polynomials with

large coefficients modulo a high-degree irreducible cyclotomic polynomial of order m, which limits the

maximum polynomial degree. The size of each coefficient is reduced by a ciphertext modulus q, which

is a product of primes. In practice, m defines the number of coefficients in each ciphertext polynomial

and q defines the coefficient size. As a result, the overall ciphertext size scales with both q and m. More

formally, each ciphertext consists of a pair of polynomials in Zq[X]/(Xm + 1).
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Fig. 4: Key Switching: HE multiplication results in a larger product ciphertext that is encrypted under

the square of the secret key. Key switching serves to reduce the dimensionality of the product as well as

remap the ciphertext back to a secret key.

Fig. 3: Batched Ciphertexts: LHE enables vectors of plaintext elements to be encrypted into a

single ciphertext. When two batched ciphertexts are added, the behavior is identical to vector addition.

Multiplication parallels element-wise multiplication between two vectors. The power of batching lies

in its ability to enable parallel arithmetic over independent values with no additional cost, thus vastly

improving the throughput of HE operations.

These LHE schemes also support batching, which allows for vector-like processing that can vastly

improve the throughput of homomorphic operations. Instead of encrypting scalars and single values,

one can encrypt vectors of integers or floating point numbers into a single ciphertext. When encrypted

arithmetic is performed between ciphertexts, each vector element is affected individually in a similar

fashion to SIMD instructions. Notably, additions and multiplications across ciphertexts encrypting vectors

incur the same cost as ciphertexts encrypting single values assuming the same q and m. An example

of addition with two batched ciphertexts is depicted in Figure 3. Depending on the polynomial degree

selected, a single ciphertext can hold potentially thousands of independent plaintext elements.

Addition between two ciphertexts is straightforward as it is simply a set of additions between corre-

sponding tuples of polynomials in the two ciphertexts. On the other hand, multiplication is more expensive
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Fig. 5: Modulus Switching: This operation manipulates the chain of primes (of size 64 bits in this figure)

composing the ciphertext modulus. Each invocation removes a prime from the chain and hence decreases

the bit size of all coefficients in the ciphertext.

and results in undesirable side effects. Multiplication involves multiplying the pairs of polynomials

together, which effectively introduces a third large polynomial to the product ciphertext. Consequently,

each subsequent multiplication will cause the ciphertext to become larger and larger and take up increasing

amounts of memory. Luckily, an operation called key switching can be used to deal with this issue and

effectively constrain the ciphertexts to their original sizes. Key switching also tackles an orthogonal issue

related to the secret key: part of the product ciphertext is actually encrypted under the square of the

secret key. This must be switched back to the original secret key (hence the name key switching), or a

different secret key to avoid assuming circular security. Key switching will output a ciphertext with only

two polynomials and more noise. This operation following a multiplication is illustrated in Figure 4.

A modulus switching operation will typically follow a multiplication (and subsequent key switch).

This operation solely affects the ciphertext modulus q, which can be thought of as a chain of prime

numbers, as shown in Figure 5. By removing one of the primes from the chain, the ciphertext modulus

will correspondingly decrease by the bit size of the removed prime. This effectively scales down the

magnitude of the ciphertext coefficients, which also serves to scale down the magnitude of the noise.

However, this operation can only be done a limited number of times because there is a finite number of

primes in the chain. Even with batching and modulus switching, LHE becomes infeasible for complex

algorithms as the ciphertext sizes will scale with the number of multiplications required to evaluate

the target circuit. Consequently, arithmetic operations become more expensive with higher polynomial

degrees and coefficient sizes in each ciphertext; additionally, the memory requirements increase as well

for the same reasons. Therefore, for algorithms exhibiting a large multiplicative depth, or algorithms with

an unbounded number of operations, it is more appropriate to use a most powerful form of HE.
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Fig. 6: Bootstrapping: Starting with a noisy ciphertext under secret key S1, represented by a red circle,

bootstrapping will add another layer of encryption by encrypting the ciphertext under key S2 with

less noise. Next, the inner layer of encryption is stripped away by executing the decryption function

homomorphically. The result is a ciphertext under key S2 encrypting the same message with reduced

noise.

Fully homomorphic encryption (FHE) is identical to LHE besides the inclusion of the most effective

(and expensive) form of noise reduction, called bootstrapping. Consider the following scenario in an LHE

context: the cloud computes on a ciphertext until it becomes noisy and then asks the user to refresh the

noise on behalf of the cloud. The user can do this by downloading the ciphertext, decrypting it, and then

sending the cloud a fresh encryption of the underlying plaintext value in the original ciphertext. Now, the

cloud can proceed to do more operations with the ciphertext. However, this is a suboptimal solution as it

requires the user to be active during the computation, increases the communication overhead associated

with sending a large ciphertext between the cloud server to the user, and it is against the principle of

using HE in the first place. Bootstrapping employs the intuition from this scenario and allows it to happen

entirely on the cloud server without any interaction from the user.

In more details, bootstrapping performs a decryption procedure in the encrypted domain, as illustrated

in Figure 6. In order to accomplish this, the user sends the cloud an encryption of their secret key, referred

to as the evaluation key. One can envision this as happening inside another layer of encryption (i.e., the

green circle), so the plaintext value is never exposed. After evaluating the homomorphic decryption

procedure (with the encrypted key), the result is a new ciphertext encoding the same underlying value

as the original noisy ciphertext, but its noise magnitude is reduced to a level that allows for more HE

operations to be executed. Here, it is important to consider the depth of the decryption circuit, which adds

further noise before the total noise can ultimately be reduced, and thus requires some remaining noise

budget to work correctly. Additionally, the complexity of the decryption circuit will affect the amount of

noise capable of being removed by the bootstrapping procedure itself. Generally, the larger the plaintext

modulus, the deeper the decryption circuit becomes.

Unlike other noise reducing techniques like modulus switching, bootstrapping can be invoked an

unlimited number of times, allowing FHE schemes to execute algorithms with unbounded depth. It
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can also be combined with modulus switching, where the latter is used as an initial noise mitigation

technique until no more primes can be removed, and then bootstrapping can be invoked. Bootstrapping

will regenerate ciphertext primes, so modulus switching can be used in between subsequent bootstraps.

All LHE schemes can become FHE schemes with the inclusion of bootstrapping. Unfortunately, this

ability comes with a steep cost: bootstrapping is the major bottleneck in all FHE schemes. For BGV,

CKKS, and BFV, this procedure can take dozens of seconds to several minutes depending on parameters.

However, while newer schemes have improved bootstrapping latency, these schemes maintain the highest

throughput per bootstrap due to batching capabilities.

The first latency-optimized bootstrapping scheme is FHEW [16], which introduced a much faster

bootstrapping mechanism that takes less than a second to evaluate on a CPU. This scheme encrypts

single bits of plaintext as individual ciphertexts and allows users to evaluate homomorphic Boolean

gate operations. Contrary to prior schemes, bootstrapping plays a key role in evaluating the logic gates,

so each gate operation requires a bootstrap, with the exception of the NOT gate. The bootstrapping

operation can be used to perform a programmable mapping operation; for instance, an encryption of 1

can be mapped to an encryption of 0 for no added cost during the bootstrap. The FHEW scheme was

improved by CGGI [3], which accelerated bootstrapping to approximately ten milliseconds. In the case

of parameterizing these libraries, the key consideration is the desired plaintext space. While both schemes

naturally support encoding of bits, the bootstrapping that plays a pivotal role in the computation of logic

gates can be extended to evaluate arbitrary univariate functions over multi-bit plaintexts in the form of a

programmable lookup table (LUT). The precision of the lookup table (i.e., how many plaintext bits can

be mapped to a specified output) is entirely dependent on parameter choice, with higher precision LUTs

requiring larger polynomial degrees. In this tutorial, we chose CGGI as a key focus for arbitrary FHE

computation due to its fast bootstrapping speeds and ability to perform non-linear operations with ease

through Boolean circuits.

III. CONVERTING APPLICATIONS FOR LHE EVALUATION

LHE is the optimal choice for applications that require high throughput and exhibit a limited multiplica-

tive depth. Additionally, arithmetic-intensive applications are natural candidates for LHE evaluation as

all popular LHE schemes encode multi-bit plaintexts and support multiplication and addition as primitive

operations. For these reasons, LHE is widely used for shallow neural networks and other applications

that incorporate linear algebra operations [7], [17], [18]. This section presents an intuitive methodology

for user-driven parameterization and development, as well as an introduction of a framework built on top
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of the Microsoft SEAL HE library [8] to rapidly develop LHE applications by incorporating automated

techniques for parameter selection.

A. Development with Manual Parameterization

Implementations of BGV [6], BFV [14], and CKKS [15] typically grant users a very high degree of

freedom when it comes to customizing a wide variety of encryption parameters. Most importantly, the

user can select the size of the prime chain (and hence the ciphertext modulus) and the degree of the

irreducible cyclotomic polynomial (which serves to constrain the number of coefficients in ciphertext

polynomials).

These two parameters must be balanced to achieve a suitable level of security. On one hand, having

a longer prime chain allows one to increase the number of possible modulus switches, allowing for a

greater number of leveled operations. However, the size of the prime chain has a negative impact on

security and must be minimized to achieve just enough levels to evaluate any given application. On the

other hand, increasing the polynomial degree has a positive impact on security. This parameter also serves

to govern the speed of homomorphic operations; operations involving ciphertexts with larger polynomials

will be slower.

In our experience, the most straightforward methodology for finding the optimal parameters for a given

application involves first focusing on tuning the ciphertext modulus size and then altering the polynomial

degree to achieve a desired security level and number of slots. The first step involves analyzing the

application and identifying the multiplicative depth, i.e., the maximum number of multiplications that

happen on a single ciphertext. For complex applications, this can be non-trivial, in which case a rough

approximation can be used instead. Once this is determined, a general rule of thumb is that you should

add d + 1 primes to the chain, where d is the multiplicative depth. The size of the primes vary per

implementation, but usually the primes in the chain are chosen to be approximately the same size. For

CKKS, it’s essential that the intermediate primes are approximately the same bitwidth in order to keep

the scale factor consist after a rescaling operation. However, it is most common for the first and last

prime to be larger than the intermediate primes to maintain a high precision for encryption and decryption.

Consequently, since the composite number of the prime chain is the modulus of the polynomial coefficients

of ciphertext polynomials, the larger the prime chain, the more memory is required to hold ciphertext

data.

Once the bit size of the initial ciphertext modulus is decided, one can then run multiple iterations of

the HE program to fine-tune this value. It is recommended to use small polynomial degrees for these

tests (i.e., up to degree 4096) which yield low security in practice but can allow one to rapidly verify
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TABLE I: Walrus API: Walrus provides a set of high-level functions that allow users to encode plaintexts,

encrypt and decrypt ciphertexts, and conduct operations between ciphertexts as well as operations between

ciphertexts and plaintexts. For simplicity, we omit the public key material that must be passed to the

functions for encrypted evaluation. Here, cti represent ciphertexts, pti represents an encoded plaintext,

while A represents a public scalar that is neither encoded nor encrypted.

Type Function Operands Description

E
nc

/D
ec

WalrusEncryptSingle ct A ct = Enc(A)

WalrusEncryptVector ct A0...AN ct = Enc(A0...AN )

WalrusDecryptSingle A ct A = Dec(ct)

WalrusDecryptVector A0...AN ct A0...AN = Dec(ct)

A
ri

th
m

et
ic

WalrusAdd ct0 ct1 ct2 ct0 = ct1 + ct2

WalrusAddPlain ct0 ct1 pt ct0 = ct1 + pt

WalrusSub ct0 ct1 ct2 ct0 = ct1 − ct2

WalrusSubPlain ct0 ct1 pt ct0 = ct1 − pt

WalrusMult ct0 ct1 ct2 ct0 = ct1 × ct2

WalrusMultPlain ct0 ct1 pt ct0 = ct1 × pt

correctness. If the final decrypted answer matches the expected value for given input pairs across multiple

runs, the modulus is sufficiently large. Lastly, the modulus should be decreased until the answer becomes

non-deterministic (meaning that the result is too noisy) and the last size that resulted in correct evaluation

should be selected as the final modulus size. This entire process is tedious even for experts and can be

extremely time-consuming for large applications like encrypted neural network inference.

B. Rapid Development with Walrus

In this tutorial, we discuss an FHE parameter optimization and evaluation library called Walrus, which

utilizes SEAL as a cryptographic backend, provides a friendly C++ frontend, and requires no manual

parameterization on behalf of users. An overview of the user interface for HE operations with Walrus

is shown in Table I. Additionally, the WalrusParameterize function is invoked to parameterize

the program and is invoked with the output ciphertexts; the returned SEAL parameter set can be used

to facilitate the actual homomorphic computation. To facilitate this, Walrus applications are executed

in two passes; a first pass will be executed on the cloud side with dummy data that will serve to

gather various statistics about the arithmetic circuit representing the application. Conversely, the second

pass will be run on the cloud using the parameters derived in the initial pass and processes the actual
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Fig. 7: Critical Noise Path: The red path in this arithmetic circuit indicates the path with maximal noise

growth; the first pass in Walrus identifies this path and chooses parameters accordingly.

encrypted inputs supplied by the user. Specifically, Walrus keeps track of the number of additions and

multiplications conducted with a ciphertext as well as the noise budget remaining before a ciphertext is

rendered undecryptable with high probability at each point in the circuit.

After the first pass, Walrus analyzes the gathered circuit statistics and deduces the critical path of

the circuit in terms of noise growth. Figure 7 visualizes the critical path with respect to noise growth

(highlighted in red) for a simple arithmetic circuit. With this information, Walrus chooses an appropriate

parameter set that will ensure correct decryption for the target application. The user can optionally

specify additional constraints, such as the plaintext precision or a minimum number of ciphertext slots

for applications where high throughput is necessary. Walrus takes these constraints and the maximum

required noise budget and chooses the smallest parameter set from a collection of efficient, pre-built

parameter sets supplied by the underlying SEAL library that satisfies all provided constraints.

In some cases, Walrus will be unable to find a parameter set that satisfies either the noise budget or the

user-provided constraints. For the former case, Microsoft SEAL only supports polynomial degrees up to

215 and does not support FHE evaluation for arbitrarily deep applications. As a result, SEAL could only

be used to evaluate arithmetic circuits with a maximum multiplicative depth of approximately fourteen;

if the critical noise path contains more than fourteen multiplications from an input to an output, then

it is impossible to correctly evaluate the circuit with the SEAL backend. Instead, these applications can

be executed with the methodology presented in the next section about converting applications for FHE

evaluation. Likewise, for the latter case, the user may request a plaintext precision that can’t be achieved

with the SEAL parameter sets or the desired number of slots is unachievable.

After Walrus performs the first pass, it chooses appropriate cryptographic parameters for secure and

efficient outsourced evaluation. On the second pass through the circuit, Walrus consumes encrypted inputs
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Fig. 8: Neural Network Inference: We present an architecture with eight input and output neurons and

four hidden neurons. The network consists of two fully-connected layers with a square activation function

in between.

(using the parameters derived from the first pass), executes each HE operation on the cloud side, and

then returns the encrypted results back to the client for decryption.

C. A Case Study: Neural Network Inference

Privacy-preserving neural network inference is a popular use-case for HE and is well-suited for MLaaS

(machine-learning as a service), where a cloud service provider that owns an ML model can offer

classification services for client inputs. MLaaS can be utilized for a wide variety of applications, such

as categorizing images and aiding in medical diagnoses. However, regulations such as HIPAA prevent

health practitioners from sharing patient health data with third party cloud servers. In this case, HE can

be utilized to encrypt the medical data and allow the cloud to run the ML model directly on the encrypted

data.

As a case study, we will construct a neural network with an architecture resembling Figure 8, yet

with a larger number of neurons. The first and third layer are fully-connected layers, which are akin to

matrix-vector products between the vectorized inputs and a matrix of trained weights. In between the

fully-connected layers is an activation function, which in this case is a square function (i.e., y = x2). The

square function was chosen because it can be implemented with one HE multiplication. Other popular

non-linear activation functions, such as the rectified linear unit (ReLU) function or the sigmoid function,

are non-polynomial and can’t be implemented directly with HE. The only recourse for utilizing these

functions is to use a polynomial approximation, which can add unacceptable multiplicative depth to a

network if close approximations of the non-polynomial functions are required.



14

Notably, the network parameters, such as the weights, are not encrypted as we assume that the cloud

owns the ML model and therefore their plaintext values are known to the computing party (i.e., the cloud

server). In the case where the client also owns the model, the weights can be intuitively encrypted in the

same fashion as the inputs and uploaded to the cloud. However, the latency will increase significantly

as mixed operations between plaintext and ciphertext are less expensive than operations between two

ciphertexts. In fact, prior work has found that using encrypted weights versus plaintext weights can result

in a slowdown of over 2× for a similar network for MNIST classification [19].

1 vector<vector<Plaintext>> cloud_weights;
2 void cloud_generate_weights() {
3 // Create random generator (Mersenne twister with a state size of 19937

bits)
4 random_device rd;
5 mt19937 gen(rd());
6 // Set the range of the generator (non-zero 4 bit numbers)
7 uniform_int_distribution<uint64_t> distribution(1, 15);
8 // Generate random numbers and convert to SEAL Plaintexts
9 for (int i = 0; i < 2; i++) { // 2 fully-connected layers

10 vector<Plaintext> layer_weights;
11 // Weight matrix shape: # input neurons x # output neurons
12 for (int j = 0; j < IO_LEN * NUM_HIDDEN_NEURONS; j++) {
13 // Get random value from distribution
14 uint64_t sample = distribution(gen);
15 // Generate SEAL plaintext encoding sample
16 auto tmp = Plaintext(util::uint_to_hex_string(&sample, size_t(1)));
17 layer_weights.push_back(tmp);
18 }
19 cloud_weights.push_back(layer_weights);
20 }
21 }

Listing 1: Cloud Network Parameter Setup: Since we assume the cloud owns the model, the
network weights do not need to be encrypted. However, they must be encoded as SEAL plaintexts
in order to serve as operands along with encrypted data for arithmetic operations. In this code
snippet, we generate two weight matrices (one for each fully-connected layer) and initialize them
with plaintexts representing 1. In a realistic setting, this value can be replaced by trained weights.

Listing 1 showcases a sample network parameter setup phase on the cloud side that entails encoding the

raw weights (in this case 4-bit integers) into plaintext objects compatible with the SEAL cryptographic

backend. For demonstration, we use randomly generated weights instead of trained parameters. IO_LEN

corresponds to the size of the network inputs and outputs (which are assumed to have the same shape

for the purposes of demonstration as shown in the diagram of Figure 8) and NUM_HIDDEN_NEURONS

indicates the number of inputs and outputs for the activation function in the middle of the network. We

note that the weights are represented in this case as a 2D vector, with the outer dimension corresponding

to the layer (i.e., the first or second fully-connected layer) and the inner dimension corresponds to the

weight matrix of size IO_LEN × NUM_HIDDEN_NEURONS unrolled row-wise.
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1 EncryptionParameters cloud_first_pass(vector<WalrusCtxt>& input_ct) {
2 vector<WalrusCtxt> hidden_neurons(NUM_HIDDEN_NEURONS);
3 vector<WalrusCtxt> out_neurons(IO_LEN);
4 // First Fully-Connected Layer
5 for (int i = 0; i < NUM_HIDDEN_NEURONS; i++) {
6 hidden_neurons[i] = WalrusCtxt(scheme_type::bgv);
7 for (int j = 0; j < IO_LEN; j++) {
8 WalrusCtxt tmp = WalrusCtxt(scheme_type::bgv);
9 // Multiply input ciphertexts by plaintext weight and store in tmp

10 WalrusMultPlain(tmp, input_ct[j], cloud_weights[0][i*IO_LEN+j]);
11 // Accumulate results
12 WalrusAdd(hidden_neurons[i], hidden_neurons[i], tmp);
13 }
14 }
15 // Activation Function (xˆ2)
16 for (int i = 0; i < NUM_HIDDEN_NEURONS; i++) {
17 WalrusMult(hidden_neurons[i], hidden_neurons[i], hidden_neurons[i]);
18 }
19 // Second Fully-Connected Layer
20 for (int i = 0; i < IO_LEN; i++) {
21 out_neurons[i] = WalrusCtxt(scheme_type::bgv);
22 for (int j = 0; j < NUM_HIDDEN_NEURONS; j++) {
23 WalrusCtxt tmp = WalrusCtxt(scheme_type::bgv);
24 // Multiply previous layer outputs by plaintext weight and store in

tmp
25 WalrusMultPlain(tmp, hidden_neurons[j],

cloud_weights[1][i*NUM_HIDDEN_NEURONS+j]);
26 // Accumulate results
27 WalrusAdd(out_neurons[i], out_neurons[i], tmp);
28 }
29 }
30 return WalrusParameterize(out_neurons);
31 }

Listing 2: Initial Pass for Parameterization: This pass doesn’t utilize any key material and the
input ciphertexts are not loaded with actual values. Instead, Walrus uses this pass to build a model
of the application and compute statistics about noise growth. After all of the operations have been
invoked, the WalrusParameterize function will select the most appropriate parameter set for
the application that SEAL provides.

After the cloud initializes the network parameters, either the client or the cloud can execute the initial

pass of the circuit that will serve to parameterize the actual encrypted inference (shown in Listing 2). As

discussed, this first pass is executed on the cloud side (with dummy input data); notably, Walrus will not

actually evaluate the HE operations at this stage, and this step only serves to aggregate noise statistics

during each invocation of an HE operation like WalrusMult or WalrusAdd. Walrus effectively models

the growth of noise in the circuit and uses this pass to determine the maximum multiplicative depth of

the circuit.

Once the circuit simulation has concluded, the output neurons of the network are passed to the

WalrusParameterize function that will choose an appropriate parameter set based on the gathered
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noise statistics. The algorithm first considers the maximum multiplicative depth of all provided outputs

to determine the minimum ciphertext modulus needed. Recall that each multiplication is followed by a

mod switching operation that deletes one of the primes in the ciphertext modulus. As a consequence,

if the largest multiplicative depth is 7, the ciphertext modulus must have at least 8 primes (one prime

needs to remain in the modulus after the 7 mod switches). Next, the addition depth is considered; the

authors have experimentally verified the number of additions that can be done with the provided SEAL

parameter sets through manual experiments. If the smallest parameter set that satisfies the multiplicative

depth can’t support the number of additions in the input algorithm, Walrus increases the modulus. After

the target modulus is selected, the appropriate polynomial degree is selected to yield at least 128 bits of

security according to the recommendations put forward by the HE standard [5]. At this point, a SEAL

class object encompassing the derived parameters is created. This final parameter set will be utilized on

the client-side for key generation and encryption of the initial inputs.

1 vector<WalrusCtxt> cloud_second_pass(Encryptor& encryptor, Evaluator&
evaluator,

2 RelinKeys& relin_keys, vector<WalrusCtxt>& input_ct) {
3 // Create variables for intermediate and output values
4 vector<WalrusCtxt> neurons(NUM_HIDDEN_NEURONS);
5 vector<WalrusCtxt> out_neurons(IO_LEN);
6 // First Fully-Connected Layer
7 for (int i = 0; i < NUM_HIDDEN_NEURONS; i++) {
8 // Instantiate each output neuron and load with encryptions of 0
9 neurons[i] = WalrusCtxt(scheme_type::bgv);

10 encryptor.encrypt_zero(neurons[i].ctxt);
11 // Multiply input neurons with weights and accumulate
12 for (int j = 0; j < IO_LEN; j++) {
13 WalrusCtxt tmp = WalrusCtxt(scheme_type::bgv);
14 tmp.WalrusEncryptSingle(encryptor, 0);
15 WalrusMultPlain(tmp, input_ct[j], cloud_weights[0][i*IO_LEN+j],

evaluator);
16 WalrusAdd(neurons[i], neurons[i], tmp, evaluator);
17 }
18 }
19 // Activation Function (xˆ2)
20 for (int i = 0; i < NUM_HIDDEN_NEURONS; i++) {
21 WalrusMult(neurons[i], neurons[i], neurons[i], evaluator, relin_keys);
22 }
23 // Second Fully-Connected Layer
24 for (int i = 0; i < IO_LEN; i++) {
25 out_neurons[i] = WalrusCtxt(scheme_type::bgv);
26 out_neurons[i].WalrusEncryptSingle(encryptor, 0);
27 // Mod switch twice to ensure out_neurons ctxts have the same modulus

for accumulation
28 evaluator.mod_switch_to_next_inplace(out_neurons[i].ctxt);
29 evaluator.mod_switch_to_next_inplace(out_neurons[i].ctxt);
30 for (int j = 0; j < NUM_HIDDEN_NEURONS; j++) {
31 WalrusCtxt tmp = WalrusCtxt(scheme_type::bgv);
32 tmp.WalrusEncryptSingle(encryptor, 0);
33 WalrusMultPlain(tmp, neurons[j],
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cloud_weights[1][i*NUM_HIDDEN_NEURONS+j], evaluator);
34 evaluator.mod_switch_to_next_inplace(tmp.ctxt);
35 WalrusAdd(out_neurons[i], out_neurons[i], tmp, evaluator);
36 }
37 }
38 return out_neurons;
39 }

Listing 3: Encrypted Evaluation: The second pass consists of the actual HE evaluation with secure
input ciphertexts provided by the user. Additionally, public key material is passed to the function
to allow for HE operations with SEAL and mod switching invocations are added to ensure that
ciphertexts have identical moduli before arithmetic occurs between them.

After the client has generated encryption keys and sent the public key material and input ciphertexts

to the cloud (shown in Listing 4), the cloud evaluates the circuit homomorphically. We can see that

the encrypted evaluation in Listing 3 is very similar to Listing 2 with a few differences. First, the

encrypt_zero function calls are needed to initialize the output neurons of each layer to zero. Addi-

tionally, extra input parameters are needed for the Walrus arithmetic functions to facilitate HE evaluation,

such as the relin_keys for multiplications. Lastly, the mod_switch_to_next_inplace function

of the SEAL evaluator engine is needed to ensure that ciphertexts are compatible with each other for a

given operation. After a multiplication operation, a modulus switching operation is invoked to reduce the

noise, which also decreases the size of the ciphertext modulus associated with that ciphertext. In order

to perform computations with two ciphertexts, both inputs should have the same ciphertext modulus;

the mod_switch_to_next_inplace function facilitates this and removes the next prime from the

polynomials of the ciphertext with a larger modulus. Listing 3 returns the ciphertext vector that contains

the raw classification scores for each input instead of the parameter set returned in Listing 2.

1 void client() {
2 // Create ciphertext objects for parameterization
3 vector<WalrusCtxt> inputs(IO_LEN);
4 for (size_t i = 0; i < IO_LEN; i++) {
5 inputs[i] = WalrusCtxt(scheme_type::bgv);
6 }
7 // Get optimal parameters from Walrus (running on the cloud)
8 EncryptionParameters parms = cloud_first_pass(inputs);
9 SEALContext context(parms);

10 // Generate secret key for decryption and public key for encryption
11 KeyGenerator keygen(context);
12 SecretKey secret_key = keygen.secret_key();
13 PublicKey public_key;
14 keygen.create_public_key(public_key);
15 // Generate keyswitching keys needed for multiplications
16 RelinKeys relin_keys;
17 keygen.create_relin_keys(relin_keys);
18 // Create engines for HE operations
19 Encryptor encryptor(context, public_key);
20 Evaluator evaluator(context);
21 Decryptor decryptor(context, secret_key);
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22 BatchEncoder batch_encoder(context);
23 // Create generator for 8-bit numbers (based on Mersenne twister)
24 random_device rd;
25 mt19937 gen(rd());
26 uniform_int_distribution<uint64_t> distribution(1, 255);
27 // Encrypt batched inputs
28 size_t slot_count = batch_encoder.slot_count();
29 for (size_t i = 0; i < IO_LEN; i++) {
30 vector<uint64_t> in_vec(slot_count);
31 for (size_t j = 0; j < slot_count; j++) {
32 in_vec[j] = distribution(gen);
33 }
34 inputs[i].WalrusEncryptVector(batch_encoder, encryptor, in_vec);
35 }
36 // Run encrypted inference on the cloud
37 vector<WalrusCtxt> enc_res = cloud_second_pass(encryptor, evaluator,

relin_keys, inputs);
38 // Decrypt and postprocess the classification results
39 vector<uint64_t> top_scores(slot_count);
40 vector<int> top_class(slot_count);
41 // Find top score for each input
42 for (size_t i = 0; i < enc_res.size(); i++) {
43 auto res_vec = enc_res[i].WalrusDecryptVector(batch_encoder,

decryptor);
44 for (int j = 0; j < res_vec.size(); j++) {
45 if (res_vec[j] > top_scores[j]) {
46 top_scores[j] = res_vec[j];
47 // Chosen class is the index of the max element
48 top_class[j] = i;
49 }
50 }
51 }
52 for (size_t i = 0; i < slot_count; i++) {
53 cout << "Classification #" << i << ": " << top_class[i] << endl;
54 }
55 return;
56 }

Listing 4: Client-side Operations: The user is responsible for generating encryption keys and creating
various objects needed to facilitate the HE operations supported by the SEAL backend. Additionally,
encryption of secure inputs and decryption of the final results are handled by the user. In this specific
case, the decrypted classification scores are post-processed to identify the highest scoring class for
each input.

The script shown in Listing 4 demonstrates all operations executed by the client for the inference

application. First, empty ciphertext objects are created for the first pass executed by the cloud to determine

the correct encryption parameters (i.e., lines 3-8). These WalrusCtxt input objects hold no actual input

data, but will be instantiated with noise metadata automatically that will serve as input to the first pass,

which will manipulate this metadata as the circuit simulation proceeds. After the proper encryption

parameters are derived from the first pass, the client creates the necessary encryption keys, all of which

are public aside from the secret key used for decryption. Additionally, all necessary engines for HE

evaluation are created (lines 19-22). Engines constitute classes in the underlying SEAL library that expose
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functionality for different types of HE operations. Specifically, the Encryptor engine encapsulates the

public key and is used solely for encrypting data into ciphertexts. Similarly, the Decryptor engine

encapsulates the secret key and is only utilized by the client to decrypt ciphertexts back into plaintext

elements. The BatchEncoder engine is needed to turn vectors of plaintext elements into a plaintext

object for encryption. Lastly, the Evaluator engine contains the functionality for performing HE

arithmetic operations. From the client perspective, they must generate the engines, which are passed to

the high-level Walrus functions.

Next, the client encrypts the desired inputs, and batches N inputs together into the same ciphertext

(where N is the number of ciphertext slots that can be exploited with the determined parameter set). In

this way, N inferences can be evaluated simultaneously with no additional cost. For the purposes of our

case study, each input is a vector of 8-bit values. At this point the client sends the input ciphertexts along

with the public key material to the cloud for evaluation (line 37). We note that this is emulated in the

tutorial, but one can utilize a TCP library or other network protocol to transfer data between the client

and remote server.

The client can decrypt the final classification results after the cloud finishes the computation. We remark

that the homomorphic evaluation in Listing 3 does not compute an encryption of the selected class that

the input was assigned; instead it computes an integer score for each class, where the magnitude of the

score is correlated to the probability that the input belongs to that particular close. This is intentional

design choice as computing the maximum of a set of encrypted values is a costly procedure; therefore,

it is up to the client to postprocess the raw classification scores corresponding to each class and select

the highest score.

Figure 9 showcases the inference latencies and throughput for a variety of network sizes. The reported

times measure Listing 3, which corresponds to the actual encrypted operations on the cloud side. The

throughput is computed as the latency divided by the number of inferences that are batched together.

We can see that the performance gets exponentially slower when doubling the size of each layer, which

is due to both the greatly increased number of arithmetic operations and the increase in noise growth,

which requires Walrus to choose larger parameters. For instance, the smallest network configuration can

be evaluated with a polynomial degree of 213, while the 100− 50− 100 and 200− 100− 200 networks

require the polynomial degrees to be doubled. Doubling the polynomial degree results in significantly

slower polynomial arithmetic operations due to both the increased coefficient size and the number of

coefficients.
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Fig. 9: Neural Network Performance: Each network is identified by the number of neurons in the layer

(i.e., 50− 25− 50 corresponds to a fully connected layer with 50 inputs and 25 outputs followed by an

activation function over the 25 output neurons of the first layer, etc.). Walrus selected a polynomial degree

of 8192 for the 50−25−50 network, a degree of 16384 for both the 100−50−100 and 200−100−200

networks, and a poly degree of 32768 for the largest 400− 200− 400 network.

D. Debugging Walrus Applications

From an HE perspective, Walrus will not allow users to run an application where no parameter

set supported by SEAL can satisfy the constraints. For instance, a very deep program with a large

multiplicative depth will trigger an exception in the WalrusParameterize function at the end of the

first pass.

A common issue, as seen in the neural network inference, is ensuring that all input ciphertexts

to an arithmetic operation have the same ciphertext modulus. Walrus will automatically decrease the

modulus of the product ciphertext of a multiplication, but will not automatically match the moduli of

the input ciphertexts of any given computation. If there is a mismatch, an exception will be thrown by

the SEAL library. There are generally two techniques for resolving this issue: manually inserting SEAL

modulus switching invocations akin to the neural network example or comparing the moduli of both input

ciphertexts directly using SEAL. The former approach is suitable for simple applications, while the latter

is somewhat cumbersome but necessary for complex programs. The latter approach involves extracting the

identifier for the current parameters of a ciphertext by first extracting a unique identifier called parms_id

from the ciphertext object. This identifier can be used to fetch a pointer to the parameters corresponding to

the identifier by using the SEAL Context object (i.e. context.get_context_data(parms_id).

The actual parameters can be extracted with auto &parms = parms_ptr->parms(); and then
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the number of primes in the modulus can be found with parms.coeff_modulus().size(). Using

the number of primes of both input ciphertexts, one can deduce which ciphertext has the highest level

and also how many mod switching operations are required to match the parameters. For instance, if cta

has a modulus length of 5 and ctb has a modulus length of 3, cta must be mod switched twice in order to

arrive at the same modulus as ctb. Note that it is impossible to add primes to the modulus of a ciphertext.

IV. CONVERTING APPLICATIONS FOR FHE EVALUATION

The HELM library [20] is a compiler written in Rust that can take existing HDL designs written

in synthesizable Verilog and automatically convert and execute the resulting netlist with Boolean FHE.

Compared to the Walrus framework, HELM is better suited for arbitrary computation and can outperform

Walrus for applications with many non-linear, bitwise, or comparison operations. Additionally, HELM is

tuned specifically for evaluation on high performance cloud servers with many CPU cores or a powerful

GPU.

A. RTL Synthesis and Preprocessing

In order to generate a netlist in the form that HELM expects for encrypted evaluation, we utilize the

open-source Yosys synthesis suite [21]. Aside from generating a gate circuit from a Verilog input, Yosys

performs an important role in optimizing the underlying circuit, which will be evaluated virtually with

FHE. Many optimizations proposed for electronic design automation and hardware development can also

benefit Boolean FHE applications, such as removing redundant gates. Additionally, Yosys can utilize the

ABC verification and synthesis tool [22] to rigorously optimize the combinational logic in the circuit,

which ultimately results in fewer FHE operations. Prior work has explored encoding the computational

costs of different Boolean FHE gates as a function of area in a custom technology library [23]. With this

technique, Yosys can try to prioritize less expensive logic gate operations in the encrypted domain as it

tries to reduce the overall area of the circuit. When opting for such a custom tech library, one should

only define the logic gates natively supported by the cryptographic backend, so that all available gates

have an FHE counterpart. HELM supports two cryptographic backends in the form of TFHE-rs [24]

and a modified version of concrete-core [25] capable of executing standard two input logic gates,

inverters, 2:1 multiplexers, as well as many-to-one lookup tables.

After Yosys has optimized the circuit, HELM requires it to be formatted in Verilog. The output netlist

then needs to be passed to the HELM preprocessor, which will remove auxiliary information from the

netlist, such as the clock signals and connections to ground and VCC, as this is not needed for FHE

evaluation. We note that HELM does not support clock gating for this reason, but it is capable of emulating
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sequential circuit elements. This unique ability of HELM and practical considerations are covered later

in this section.

Next, HELM will find duplicate wires in the netlist and collapse them into a single wire; Yosys often

refers to a single wire by multiple identifiers, which can cause incorrect connections and redundant

ciphertexts if these wires are treated distinctly by HELM. As such, HELM detects these duplicate wire

assignments and changes all identifiers to a single value. For wire assignments that directly propagate

an input wire to an output, HELM adds a low-cost buffer gate that initiates a ciphertext copy operation.

Lastly, HELM adds an encryption gate for constant wires where the value is public; this step is necessary

in order to allow the constant wire values to be mixed with other secure ciphertexts.

1 module chi_squared (N0, N1, N2, alpha, beta_1, beta_2, beta_3);
2
3 // Define input ports
4 input [15:0] N0;
5 input [15:0] N1;
6 input [15:0] N2;
7 // Define output parts
8 output [15:0] alpha;
9 output [15:0] beta_1;

10 output [15:0] beta_2;
11 output [15:0] beta_3;
12 // Declare tmp variables (single assignment)
13 wire [15:0] tmp_0, tmp_1, tmp_2, tmp_3, tmp_4;
14 wire [15:0] tmp_5, tmp_6, tmp_7, tmp_8, tmp_9;
15
16 // Compute alpha = (4*N0*N2 - N1ˆ2)ˆ2
17 assign tmp_0 = 4 * N0;
18 assign tmp_2 = tmp_0 * N2;
19 assign tmp_1 = N1 * N1;
20 assign tmp_9 = tmp_2 - tmp_1;
21 assign alpha = tmp_9 * tmp_9;
22 // Compute beta_1 = 2 * (2*N0 + N1)ˆ2
23 assign tmp_3 = 2 * N0;
24 assign tmp_4 = tmp_3 + N1;
25 assign tmp_5 = tmp_4 * tmp_4;
26 assign beta_1 = tmp_5 * 2;
27 // Compute beta_2 = (2*N0 + N1) * (2*N2 + N1)
28 assign tmp_6 = 2 * N2;
29 assign tmp_7 = tmp_6 + N1;
30 assign beta_2 = tmp_4 * tmp_7;
31 // Compute beta_3 = 2 * (2*N2 + N1)ˆ2
32 assign tmp_8 = tmp_7 * tmp_7;
33 assign beta_3 = tmp_8 * 2;
34
35 endmodule

Listing 5: HELM Chi-Squared Verilog Design: This behavioral verilog code takes three 16 bit
inputs and computes four 16 bit output variables through a series of multi-bit arithmetic operations.
This code can be directly ran with HELM’s arithmetic mode, or converted to a netlist with Yosys and
executed with HELM’s LUT or gate modes depending on the specific technology mapping command
used.
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B. Preparing Inputs and Decrypting Outputs

HELM is ready to evaluate the circuit after the preprocessor generates a modified, but functionally

equivalent, version of the netlist made by Yosys. However, without providing values for the input wires,

HELM will evaluate the circuit with the input wires loaded with encryptions of zero. There are two

methods to supply HELM with actual input wires: using a CSV file or passing the values via command

line in a series of key/value pairs. The latter approach is well suited for debugging and for circuits with

few input ports, as it becomes tedious otherwise.

1 Wire, Value, Width
2 N0, 18, 16
3 N1, 19, 16
4 N2, 20, 16

Listing 6: CSV Input File for Chi-Squared: This listing outlines the structure of the corresponding
CSV input files for HELM running the Chi-squared example circuit. Notably, HELM can save the
final decrypted outputs to a CSV with an identical format. For the Chi-squared example, it consists
of four output ports (alpha, beta_1, beta_2, beta_3).

As an example, Listing 5 shows a Verilog design provided in HELM that can be used to evaluate the Chi

squared statistical test on encrypted data. This design takes in three 2-byte inputs (named N0, N1, and N2),

performs a series of arithmetic operations, and generates four 2-byte outputs. Via command-line, this ex-

ample can be run using cargo run --bin helm --release -- --verilog chi-squared.v

-w N0 12 16 -w N1 13 16 -w N2 14 16, which will initialize N0 with 0x12, N1 with 0x13,

and N2 with 0x14. The 16 parameter that follows the data value for each wire specifies the width of

the port. Conversely, one can also create a CSV file with the following structure: the first line of the file

reads wire, value, width and then every subsequent line specifies the port identifier, followed by

the data to be encrypted into that port, and then the length of the data in bits. The CSV version of the

previous command is shown in Listing 6.

Decryption is automatically handled by HELM after circuit evaluation and the output is printed directly

to the terminal by default. Optionally, one can use the --output-wires-file flag to specify the

name of a CSV file that will be generated after decryption. The structure of this CSV file is identical to

the input CSV files.

C. Choosing the Right Computational Domain with HELM

Unlike Walrus, HELM supports different sets of cryptographic primitives for program evaluation that

can have a significant impact on the performance of applications. An overview of the different modes

are depicted in Table II.



24

TABLE II: HELM Modes: Each mode of HELM is distinguished by which primitive operations are

supported.

Mode Input Verilog Format Supported Operations Word Sizes

Gate Structural Standard Logic Gates Any

LUT Structural 2:1 LUTs Any

Arithmetic Behavioral Addition & Multiplication Up to 128 bits

1) FHE Parameterization: Parameterizing FHE involves different considerations than LHE as all FHE

parameters by definition can be used to evaluate arbitrarily deep circuits. Instead, one must consider the

desired precision of the ciphertexts with CGGI. In Boolean FHE, only one bit of data needs to be encoded,

so only one parameter set at 128 bits of security is needed and constitutes the optimal parameter choice.

For arithmetic mode, which requires a larger plaintext precision, the polynomial degree must necessarily

be larger. In HELM, a polynomial degree of 211 is utilized, while the Boolean ciphertexts employ a

polynomial degree of 210. Conveniently, each mode of HELM has one hardcoded parameter set that

works for any program and does not need to be tuned by users.

2) Arithmetic Mode: The Chi squared example in Listing 5 is composed of strictly integer arithmetic

operations; this is a less-desirable use-case for Boolean FHE as each multiplication, addition, and

subtraction will become a large, computationally expensive subcircuit. For programs of this nature, HELM

supports an arithmetic mode, which encodes multiple bits of data into a single ciphertext. In this form,

the primitive operations include addition and multiplication, operating similarly to an FHE equivalent of

Walrus. In this mode, no logic synthesis is required and HELM can directly parse the behavioral Verilog

as long as there is only one arithmetic operator per line and there are no bitwise operations.

3) Boolean Modes: For Boolean ciphertexts, HELM supports both a logic gate mode and a mode that

employs exclusively 2:1 LUTs. The difference between the two may seem subtle, as the LUT mode is

essentially a generalization of the gates mode, allowing for non-standard cells. However, the bootstrapping

technique used for each mode is different, and different cryptographic parameters are required for each.

Prior work [20] has shown that the logic gates outperform the LUTs for all ISCAS-85 [26] and ISCAS-

89 circuits [27]. However, the LUTs appear superior for larger circuits with hundreds of thousands of

gates. From a usability perspective, the only change required for using LUTs versus logic gates mode is

a small tweak to the Yosys synthesis steps; Yosys can replace standard gate cells with 2:1 LUTs using

the technology mapping capability of ABC with abc -luts 2. Nevertheless, this step can sometimes

result in a netlist that also employs larger LUT widths; in this case, the nlutmap command can be used
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to directly specify how many LUTs of different widths can be used. For example, nlutmap -luts

0,10000000,0 will instruct Yosys that there is a large abundance of 2:1 LUTs, but no availability for

other widths. As a result, this command will ensure that Yosys will generate a circuit with solely 2:1

LUTs.

D. Considerations for Sequential Circuits

Sequential circuits can be challenging to evaluate in the encrypted domain, as many rely on a READY

signal to indicate when the result of a computation is ready. However, because all of the wires in the

circuit are encrypted, it’s impossible for the cloud to determine when this signal is asserted and halt the

computation. This observation is known as the termination problem of HE, which stipulates that it is

impossible to make runtime decisions based on encrypted data [28]. An example design that showcases

this issue is depicted in Listing 7. Here, the target application consists of a state machine with three

possible states: an idle state that loads the input data, a division state that divides the data by 2 until a

threshold is reached, and a final state asserts the READY signal and loads the data into the output.

1 module Divider (clk, rst, input_data, threshold, res, ready);
2
3 // Declare input ports
4 input clk;
5 input rst;
6 input [7:0] input_data, threshold;
7 // Declare output parts
8 output reg [7:0] res,
9 output ready;

10 // Declare temp variables
11 reg [7:0] data;
12 reg [2:0] state;
13
14 // Trigger logic on rising edge of clk or rst signals
15 always @(posedge clk or posedge rst) begin
16 if (rst) begin
17 // Return to initial state
18 state <= 3’b000;
19 ready <= 0;
20 res <= 8’b0;
21 data <= 8’b0;
22 end else begin
23 case (state)
24 3’b000: begin
25 // Idle
26 done <= 0;
27 if (input_data > threshold) begin
28 // Load input data
29 data <= input_data;
30 state <= 3’b001;
31 end
32 end
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33 3’b001: begin
34 // Divide by 2
35 if (data > threshold) begin
36 data <= data >> 1;
37 end else begin
38 state <= 3’b010;
39 end
40 end
41 3’b010: begin
42 // Finish
43 res <= data;
44 ready <= 1;
45 state <= 3’b000;
46 end
47 default: state <= 3’b000;
48 endcase
49 end
50 end
51
52 endmodule

Listing 7: Simple state machine that divides an input by 2 until it reaches a user-defined threshold.
This is an example of a program with a ready signal that can’t be checked by the computing party
(e.g., cloud server).

One possible solution to evaluate this circuit over FHE data is for the cloud to send to the client the

encrypted READY signal after each clock cycle, have the client decrypt it, and then receive a response

telling the cloud to continue or halt. Indeed, this approach has been adopted by the VSP homomorphic

processor [29]. However, this technique can be abused and lead to sensitive data leakage, including both

the input values and the secret encryption key. Instead of sending the encryption of the READY signal,

the cloud can simply swap it for one of the input ciphertexts and wait for the client’s response. If the

input ciphertext is an encryption of 1, the client will tell the cloud to halt execution, effectively acting as

a decryption oracle for the cloud server. Additionally, since the evaluation key required for bootstrapping

contains encryptions of the user’s secret key, the cloud could send these key encryptions to the client

as well, effectively leaking bits of the secret key. With knowledge of the secret key, any data encrypted

under it can be easily decrypted by the cloud.

Unfortunately, the only way to securely deal with this termination challenge is to have the client inform

the server in advance of the maximum number of clock cycles required to derive the expected result. With

this information, the cloud can evaluate the sequential circuit using the worst-case number of cycles C.

With respect to the example in Listing 7, the largest input value is a single byte. Assuming the worst-case

setting of 0x00 as the threshold input, then the number of clock cycles required to evaluate the divider

circuit for any input is 8. If the client is willing to potentially leak information about the range of the

threshold or the input values, she can also declare a smaller maximum number of clock cycles to evaluate.
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For instance, if the threshold is 27, then the maximum number of clock cycles for the division state is

1. For some circuits, such as a sequential implementation of AES-128, the number of cycles is always

fixed and therefore this approach does not result in any negative performance impacts. To simulate clock

cycles, HELM unrolls the circuit, effectively duplicating the combinational logic C times. Flip-flops are

interpreted by HELM as delayed buffers that propagate their input values to the outputs at the start of

the next clock cycle.

E. Choosing the Correct Hardware Platform with HELM

HELM automatically parallelizes circuit evaluation to make the best use of powerful cloud servers.

Specifically, for nodes (i.e. gates or LUTs) at the same circuit depth, HELM dispatches each one to

different processing units. For wide circuits, this parallelization technique can drastically decrease latency.

As a case in point, HELM was demonstrated to be up to 65× faster than the Romeo framework [30]

for large benchmarks. Much of this speedup can be attributed to the fact that the approach employed by

Romeo is only suited for sequential processing by a single CPU thread.

HELM can execute HE operations on either multi-core CPUs or a CUDA-enabled GPU. Notably, the

GPU backend only supports logic gate circuits. However, for wide circuits with hundreds of thousands

of gate evaluations in total, HELM running on an NVIDIA A100 GPU outperforms a 48-threaded CPU

implementation (running on a c5.12xlarge AWS instance) by approximately 3× [20]. Circuits with

consistently wide levels can exploit the ample parallelism supplied by a powerful datacenter GPU like the

A100 and achieve considerable speedup versus multi-core CPUs. Conversely, if the target circuit exhibits

thin levels with only a few gates that can be evaluated in parallel and a long critical path, a GPU can

be detrimental as the overheads associated with data movement can result in a net slowdown relative to

a multi-core CPU.

F. Case Study: AES Decryption

At first glance, it seems non-intuitive why AES is a good application for HE; it’s a traditional block

cipher that doesn’t exhibit homomorphic properties and applying another layer of encryption doesn’t

necessarily result in stronger security guarantees. However, one notable feature of AES and other block

ciphers is that there is no significant data expansion when generating ciphertexts from plaintext data.

Conversely, HE can result in size expansions of a few orders of magnitude when encrypting data, as each

ciphertext becomes a set of high-degree polynomials with large coefficients.

Luckily, there is a technique called transciphering that allows HE to take advantage of this lack of data

expansion in traditional cryptosystems like AES. If there were a way to transition from AES ciphertexts
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Fig. 10: Transciphering with AES: Traditional cryptographic algorithms can be used in tandem with

HE to drastically reduce the communication overhead when sending sensitive data from the client to the

cloud server.

(used for data transfers) to HE ciphertexts (used for computation), one could drastically reduce the

ciphertext size when transmitting data from the client to the computing server. Since FHE allows for

arbitrary computation, it stands that it is possible to homomorphically evaluate the decryption circuit of

AES.

In the transciphering process (depicted in Figure 10), a user can homomorphically encrypt the symmet-

ric key of AES (which must remain secret to protect the confidentiality of the input data) and send to the

cloud a standard AES encryption of the secret data to be computed upon. Note that the AES ciphertext

data is orders of magnitude smaller in size than its equivalent ciphertext form in HE. Next, the cloud can

compute the AES decryption circuit using HE operations with an HE encryption of the symmetric AES

key and the AES ciphertext data supplied by the user. Surprisingly, the output ciphertext will be a valid

HE encryption of the original data and can be used in meaningful computation (i.e., the AES protection

layer is stripped away and replaced by an HE encryption layer, protected by a secret HE key known only

to the user). We remark that only the forward operation is possible (i.e., replacing AES with HE); the

cloud cannot send the final result ciphertexts back to the user in AES form. This stems from the fact that

doing so would require an HE decryption, which is impossible for the cloud to perform without the HE

secret key. For applications with a large amount of input data, this technique can result in significantly
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lower network traffic, at the expense of additional computation required to evaluate the AES decryption

circuit homomorphically.

1 def hex_to_bits(hex_string):
2 # Interpret hex string in base 2 and remove the leading ’0x’

characters
3 binary_string = bin(int(hex_string, 16))[2:]
4
5 # Pad binary to nearest multiple of 4 (each hex character is 4

bits)
6 padding_length = 4 * len(hex_string) - len(binary_string)
7 binary_string = ’0’ * padding_length + binary_string
8 return [bit == ’1’ for bit in binary_string]
9

10 def gen_csv():
11 args = parse_args()
12 with open(args.csv[0], ’w’, newline=’’) as csvfile:
13 writer = csv.writer(csvfile)
14
15 # Add preamble (same for each file)
16 first_line = ["wire", " value"]
17 writer.writerow(first_line)
18
19 # Iterate through each provided port
20 for i in range(len(args.id)):
21 bit_values = hex_to_bits(args.val[i][0])
22 # Write one line for each bit of the port
23 for j in range(len(bit_values)):
24 value = bit_values[-(j+1)]
25 str_value = ""
26 if value:
27 str_value = " true"
28 else:
29 str_value = " false"
30 writer.writerow([f"{args.id[i][0]}[{j}]", str_value])

Listing 8: Generate Input CSV Files: Input ports with their corresponding input values can be
generated with this code snippet. In some cases, automatically generating the CSV input files that
are used to load the input wires is less cumbersome than specifying them via command line with
HELM.

For the purposes of demonstrating the usability of HELM, we employ an existing open-source AES-128

decryption codebase in Verilog [31]. Listing 8 shows the core of a Python script used to easily generate

the CSV file that HELM reads for inputs to the chosen AES circuit. The Python code can be utilized

along with a standard AES module to generate keys (and expanded keys if necessary) along with the

AES encryptions of the input data on the client side.

Furthermore, we can generate an additional variant that omits the key scheduling procedure from

the AES algorithm. Omitting the key scheduling step results in less overall latency, but increases the

communication overhead as the client needs to derive each round key locally, encrypt it homomorphically,

and send it to the cloud. As ten round keys are required for the AES-128 evaluation, a total of 1280
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Fig. 11: AES-128 Decryption Performance: The AES with key scheduling HE circuit consumes an

128-bit HE-encrypted AES key as well as an AES ciphertext block, while the AES variant without key

scheduling consumes an AES ciphertext block and a set of ten 128-bit HE-encrypted AES round keys.

encrypted bits must be transmitted, which adds to the overall network traffic from the client to the server.

Figure 11 shows the results of both AES-128 decryption circuit variants running on a c5.12xlarge

AWS server. To demonstrate scalability as the CPU threads increase, we restrict the evaluation to 12, 24,

and 48 threads. Both variants exhibit near ideal speedup for doubling the number of threads from 12 to

24, but only exhibit modest latency reductions when moving to 48 threads. This is primarily due to the

width of the AES circuit, as many circuit levels do not exhibit enough width to exploit all of the CPU

threads effectively.

1 import csv
2
3 # Read the input data from the CSV file
4 input_data = []
5 with open(’aes_verif.output.csv’, ’r’) as csvfile:
6 reader = csv.reader(csvfile)
7 next(reader) # Skip the header
8 for row in reader:
9 input_data.append(row)

10
11 # Convert ’true’ to 1 and ’false’ to 0
12 def convert_to_bit(value):
13 return 1 if value.strip() == ’1’ else 0
14
15 # Create a dictionary to store bit values indexed by their positions
16 bit_dict = {}
17 for row in input_data:
18 index = int(row[0].split(’[’)[1].split(’]’)[0])
19 bit = convert_to_bit(row[1])
20 bit_dict[index] = bit
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21
22 # Convert the bit values to an integer
23 integer_value = 0
24 for index, bit in sorted(bit_dict.items()):
25 integer_value |= (bit index)
26
27 # Print the sorted bit_dict
28 print(’Sorted bit_dict:’, sorted(bit_dict.items()))
29
30 # Print the integer value
31 print(’Integer Value:’, integer_value)
32
33 # Print the integer value in hexadecimal format
34 hex_value = format(integer_value, ’x’)
35 print(’Hex Value:’, hex_value)

Listing 9: This listing converts HELM decryptions to ordered bit strings, hex strings, and integers
to make it easier to interpret the results.

The last step is decrypting the final result; as mentioned earlier, HELM can output a CSV detailing

the recovered 128 bit output of the AES circuit. However, interpreting the CSV can be tedious as HELM

will only include one decrypted bit per line in the output file. The Python script in Listing 9 parses the

CSV file line by line, orders the output bits, and constructs a hex string for easy interpretation. When

applied to this particular use-case, the code will output a 128 bit result corresponding to the original

plaintext prior to AES encryption.

G. Debugging HELM Applications

Unlike Walrus, HELM has no programming API and will simply evaluate a provided netlist that has

been generated by the Yosys synthesis tool. If HELM detects an unsupported primitive, such as a logic

gate with a fan-in greater than 2, it will throw an exception. Notably, HELM does not support circuits that

mix lookup tables and gates as these two sets of primitives require different parameter sets to evaluate.

Yosys will always generate a compliant circuit for gates with the following abc command: abc -g

simple,-MUX. Similarly abc -luts 2 will typically yield a circuit with 2:1 LUTs, though in some

cases an additional nlutmap command must be employed to force Yosys to squash any larger LUTs in

the circuit. If the final answer does not yield the expected result, the netlist can be easily verified with

Yosys as well. After Yosys has processed the input behavioral Verilog and completed the logic synthesis

process, it is capable of simulating the circuit with provided input pairs using the eval command. This

command has additional arguments to set each input wire and can additionally generate a truth table

with the table flag. For sequential circuits, the number of cycles for the simulation can be specified;

this feature can also be used to determine the number of cycles to provide to HELM during encrypted

evaluation.
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V. UNIFIED CASE STUDY: CHI SQUARED

The Chi squared test, as mentioned briefly in the previous section, is an important statistical measure

that has seen utility in previous works focusing on privacy-preserving computation [32], [33], [34]. This

benchmark, composed of strictly multi-bit arithmetic operations, can be evaluated with both approaches

outlined in the previous two sections. In more detail, the target program takes three 16-bit inputs (N0, N1,

and N2) and computes a total of four output variables (α, β1, β2, and β3) through the use of both mixed

operations between fixed plaintext constants and encrypted data, as well as addition, multiplication, and

subtraction between ciphertexts.

1 vector<WalrusCtxt> cloud_second_pass(Encryptor& encryptor, Evaluator&
evaluator, RelinKeys& relin_keys, vector<WalrusCtxt>& input_ct) {

2 // Chi Squared has four outputs: alpha, beta_1, beta_2, beta_3
3 vector<WalrusCtxt> output_variables(4);
4 for (int i = 0; i < 4; i++) {
5 output_variables[i] = WalrusCtxt(scheme_type::bgv);
6 }
7
8 // Create temp variables to hold specific intermediate values
9 WalrusCtxt tmp = WalrusCtxt(scheme_type::bgv);

10 WalrusCtxt tmp_2 = WalrusCtxt(scheme_type::bgv);
11
12 // Create constants
13 uint64_t four = 4;
14 uint64_t two = 2;
15 Plaintext pt_four = Plaintext(util::uint_to_hex_string(&four,

size_t(1)));
16 Plaintext pt_two = Plaintext(util::uint_to_hex_string(&two, size_t(1)));
17
18 // Compute alpha = (4*N0*N2 - N1ˆ2)ˆ2
19 WalrusMultPlain(output_variables[0], input_ct[0], pt_four, evaluator);
20 WalrusMult(output_variables[0], output_variables[0], input_ct[2],

evaluator, relin_keys);
21 WalrusMult(tmp, input_ct[1], input_ct[1], evaluator, relin_keys);
22 WalrusSub(output_variables[0], output_variables[0], tmp, evaluator);
23 WalrusMult(output_variables[0], output_variables[0],

output_variables[0], evaluator, relin_keys);
24
25 // Compute beta_1 = 2 * (2*N0 + N1)ˆ2
26 WalrusMultPlain(output_variables[1], input_ct[0], pt_two, evaluator);
27 WalrusAdd(tmp, output_variables[1], input_ct[1], evaluator);
28 WalrusMult(output_variables[1], tmp, tmp, evaluator, relin_keys);
29 WalrusMultPlain(output_variables[1], output_variables[1], pt_two,

evaluator);
30
31 // Compute beta_2 = (2*N0 + N1) * (2*N2 + N1)
32 WalrusMultPlain(output_variables[2], input_ct[2], pt_two, evaluator);
33 WalrusAdd(tmp_2, output_variables[2], input_ct[1], evaluator);
34 WalrusMult(output_variables[2], tmp_2, tmp, evaluator, relin_keys);
35
36 // Compute beta_3 = 2 * (2*N2 + N1)ˆ2
37 WalrusMult(output_variables[3], tmp_2, tmp_2, evaluator, relin_keys);
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38 WalrusMultPlain(output_variables[3], output_variables[3], pt_two,
evaluator);

39
40 return output_variables;
41 }

Listing 10: This code shows the Walrus evaluation pass for the Chi Squared benchmark. Each output
is computed as a series of additions and multiplications. For efficiency, some intermediate values are
saved in temporary variables and re-used later for help with computing subsequent output variables.

The Verilog program corresponding to the Chi squared test is shown in Listing 5. This particular code

can be evaluated using all three of HELM’s supported backends: 2:1 LUTs, gates, and arithmetic mode.

Conversely, Listing 10 showcases the evaluation pass for Walrus for the identical program. Unlike the

neural network inference, the Chi squared application does not require any manual modulus switching to

match ciphertext parameters on behalf of the user. This is primarily due to the fact that the majority of

ciphertext multiplications are squaring operations. Additionally, the code utilizes two additional interme-

diate ciphertexts to hold the results of specific computations in order to avoid recomputing them later;

this further reduces the total depth and computational overhead of the circuit. A more in-depth discussion

about modulus switching to match ciphertext parameters can be found in Section III. We remark that a

similar technique is also employed by the Verilog code in Listing 5.

Fig. 12: Chi Squared Comparative Performance: The amortized latency axis represents the throughput

measurement; as the CGGI cryptosystem does not allow batching, the latency and throughput are identical.

From the results, it is evident that the LHE is the proper choice for this particular benchmark due to its

shallow depth and prevalence of arithmetic operators. However, for deeper circuits with predominantly

bitwise operations like AES, LHE evaluation would be a poor choice.
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Figure 12 shows the results of executing the Chi squared benchmark, where Walrus configured with

the BGV cryptosystem chose a parameter set with a polynomial degree of 213 at 128 bits of security

and HELM was configured with the default 128 bit parameter sets for all three modes (with polynomial

degrees varying from 210 to 211). Of these modes, the arithmetic mode performs the best as it natively

supports multi-bit addition and multiplication as primitive operations. Conversely, the corresponding LUT

circuit consists of nearly 3500 2:1 LUT operations (where each one requires a bootstrapping), while the

gate circuit consists of over 3700 encrypted logic gates. Notably, all HELM variants are parallelized

while Walrus is single-threaded; even so, Walrus exhibits significantly lower latency for this benchmark

as the depth is shallow (allowing small parameters) and arithmetic operations are more efficient in BGV

(native support) compared to CGGI (implemented as multi-bit adder/multiplier circuits).

VI. LESSONS LEARNED

This tutorial has demonstrated how to employ two distinct frameworks for enhancing applications with

both leveled and fully homomorphic encryption. Any program that can be implemented as a directed

acyclic graph with nodes that involve arithmetic, bitwise, and relational operators can be readily converted

with at least one of the outlined frameworks.

The Walrus LHE methodology enables high throughput applications with low latency at the cost of

imposing limitations on the applications (i.e. the maximum multiplicative depth is bounded). Additionally,

the ciphertexts that Walrus generates are significantly larger in size than those employed by HELM, but

the capacity of each ciphertext is far larger as Walrus can fit thousands of multi-bit numbers into a single

ciphertext. However, using this ability requires some modifications on behalf of the user and requires

re-interpreting the application as a series of vector operations. In the same vein, modifications related

to matching the moduli of each ciphertext may be required for certain applications, as illustrated by the

mod switching calls in Listing 3. Additionally, it is impossible to branch on encrypted data, so changes

in control flow based on a WalrusCtxt can’t be resolved. As a consequence, applications such as

sorting must always incur the worst-case performance. In this case, a data-independent sorting network

such as the Batcher network [35] are more optimal as they exhibit a better worst-case complexity than

algorithms like Quicksort. We note that it is possible to resolve multiple branches in specific cases, albeit

at a steep computational cost. For instance, a ternary operation such as x = y ? a : b, where x is

set to a if y is true, or b otherwise, can be implemented as a series of arithmetic operations. This can

be done using the following equation (all variables are encrypted): x = y × a + (1 − y) × b. The key

constraint of this approach is that y encrypts 0 or 1.
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Conversely, the HELM framework is optimized for reduced latency of applications that can be in-

terpreted as large Boolean circuits. Unlike Walrus, the only constraint that HELM imposes on the

input programs is that it must be synthesizable. Assuming an HDL design satisfies this constraint, it

is automatically compatible with HELM and no manual changes to the source code are required on

behalf of the user. However, Boolean FHE is not a good choice for applications with a large number

of multi-bit arithmetic operations, as seen in Section V where Walrus exhibited both lower latency and

significantly higher throughput than all modes of HELM. One of the largest influences on circuits that

have multi-bit arithmetic operations is the chosen word size, as larger word sizes drastically increase

the number of logic gates required to evaluate the operation. Therefore, it is extremely important to

use the smallest word size possible in the input HDL design in order to maximize the efficiency of

the FHE operations. Lastly, we note that HLS techniques can be utilized in tandem with Yosys to allow

programmers to use a high-level language like C to design applications for HELM. Indeed, prior work has

utilized this approach with HELM in the context of performing private set similarity [36]. The primary

downside of this approach is the cost of the HLS conversion process from C to Verilog, but we note that

this is a one-time cost. For some complex applications, the usability benefits of incorporating HLS into

the toolchain may outweigh this downside.

VII. CONCLUSION

Usability is one of the largest hurdles that HE needs to overcome to see widespread adoption. In this

tutorial, we demonstrate two approaches that can be used to efficiently and easily develop applications in

the encrypted domain. The first approach discusses a new demonstration framework called Walrus, which

serves as a front-end for the SEAL LHE library. Walrus is well-suited to applications that exhibit a limited

multiplicative depth, are composed of arithmetic operations, and demand high throughput requirements.

For all other applications, we discuss how the HELM framework can enable arbitrary computation

with FHE; HELM can readily evaluate existing HDL designs written in Verilog with minimal changes

and evaluate the design with FHE efficiently on high performance cloud servers. We demonstrate both

methodologies with realistic benchmarks in the form of a shallow neural network inference for Walrus

and an AES decryption circuit for HELM.
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