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Abstract. (Receiver) Anamorphic encryption, introduced by Persiano
et al. at Eurocrypt 2022, considers the question of achieving private
communication in a world where secret decryption keys are under the
control of a dictator. The challenge here is to be able to establish a secret
communication channel to exchange covert (i.e. anamorphic) messages
on top of some already deployed public key encryption scheme.
Over the last few years several works addressed this challenge by show-
ing new constructions, refined notions and extensions. Most of these con-
structions, however, are either ad hoc, in the sense that they build upon
specific properties of the underlying PKE, or impose severe restrictions
on the size of the underlying anamorphic message space.
In this paper we consider the question of whether it is possible to have
realizations of the primitive that are both generic and allow for large
anamorphic message spaces. We give strong indications that, unfortu-
nately, this is not the case.
Our first result shows that any black-box realization of the primitive,
i.e. any realization that accesses the underlying PKE only via oracle
calls, must have an anamorphic message space of size at most poly(λ) (λ
security parameter).
Even worse, if one aims at stronger variants of the primitive (and, specif-
ically, the notion of asymmetric anamorphic encryption, recently pro-
posed by Catalano et al.) we show that such black-box realizations are
plainly impossible, i.e. no matter how small the anamorphic message
space is.
Finally, we show that our impossibility results are rather tight: indeed,
by making more specific assumptions on the underlying PKE, it becomes
possible to build generic AE where the anamorphic message space is of
size Ω(2λ).
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1 Introduction

Anamorphic encryption [PPY22] (AE, for short) is a novel paradigm to allow
private communication in a world where a dictator has the power to control
every user to some extent. This includes knowing the secret keys corresponding
to public encryption key (violating receiver privacy) and limiting user’s freedom
to choose the message sent (violating sender freedom). Such capabilities are
indeed plausible in dictatorships, where, for instance, citizens may be subject to
censorship measures.

In [PPY22] Persiano et al. proposed two flavors of Anamorphic Encryption
depending on whether sender freedom or receiver privacy are violated. The two
notions (called sender anamorphic and receiver anamorphic encryption, respec-
tively) build from similar ideas. For the case of receiver anamorphic encryption,
which is the focus of this work, AE can be deployed in one (of two) possible
modes: regular and anamorphic. In regular mode, the encryption scheme works
exactly as an ordinary public key scheme. In anamorphic mode, a public key
(apk) is produced along with two secret keys: a regular looking one (ask) and a
second one called double key (dk). Bob shares dk privately with Alice and uses
apk as his public key. When forced to reveal his secret key though, he only hands
over ask.

To avoid suspicion (apk, ask) have to be compatible with the regular mode
scheme. However, Alice can further use dk as a symmetric key to embed an
extra message into the ciphertext that remains hidden even when ask is leaked.
More specifically, when employed in anamorphic mode, the scheme permits the
encryption of two messages: a regular-looking m, meant to be observed by the
dictator, and a covert m̂. The resulting anamorphic ciphertext reveals either
m, when decrypted with ask, or m̂ when decrypted anamorphically using dk. A
crucial requirement then is that regular ciphertexts should be indistinguishable
from anamorphically created ones.

In [PPY22] Persiano et al. argued that, to address privacy needs in the pres-
ence of a dictator, coming up with new schemes might be useless: the dictator
can simply ban them as illegal and prevent their usage. Therefore, the challenge
lies in showing that existing, possibly currently deployed, constructions are (or
can be easily made) anamorphic.

Over the last two years several works [PPY22, KPP+23b, BGH+24, WCHY23,
CGM24] took on this challenge, resulting in new constructions surprisingly cov-
ering a large class of known encryption schemes4. Most of them, however, exploit
rather specific properties of the underlying encryption scheme. In particular a
dictator can always ban PKE schemes achieving those properties known to yield
anamorphic encryption. For this reason generic constructions, that do not de-
pend on the underlying encryption scheme, appear more appealing.

The first such black-box construction was proposed in [PPY22]. We briefly
recall it here. Given any pseudo-random function F and any PKE chosen by the
dictator, anamorphic mode is set as follows. Public and secret keys (apk, ask) are

4 [KPP+23b] refers to this phenomenon as the prevalence of anamorphic cryptography.
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generated from the PKE regular key generation procedure, while the double key
dk is a random seed k for F . To encrypt a regular message m and a covert bit
m̂ Alice produces an encryption c of m such that F (k, c) = m̂ through rejection
sampling. Bob then retrieves m by decrypting c using sk and m̂ as F (k, c).

Although elegant and generic, this construction does not support large anamor-
phic messages. Indeed it is possible to convey at most O(log λ) bit long anamor-
phic messages per ciphertext while keeping the sender polynomial time5. The
same limitation affects the generic construction in [BGH+24]. Although the issue
might be mitigated through other means, such as sending multiple ciphertexts
[WCHY23], these may dangerously increase the risk of detection (e.g. through
traffic analysis). Moreover, it is unclear why users not interested in sending covert
messages should adopt such a risky behavior.

This state of affairs thus leads to the (quite natural) question of whether
such limitation is inherent. More precisely, we ask:

Question: Is it possible to build a compiler that, given any (standard) PKE,
turns it into an anamorphic scheme with large anamorphic message space, i.e.
of size Ω(2λ), with security parameter λ?

We argue this to be a fundamental question as a positive answer would pro-
vide a viable solution regardless of the imposed encryption standard. A negative
one instead would imply that crafting ad hoc AE for currently used PKE (which
may however be eventually banned) is the only way to ensure efficient secure
communication in this setting. Furthermore, such a negative answer would leave
open the possibility of practically adoptable PKE not admitting anamorphic
counterparts with large message space6. This would significantly affect the main
raison d’être of anamorphic encryption as cryptographic primitive: a (powerful
enough) dictator can simply decide to allow the usage of that single scheme and
declare illegal all other ones.

1.1 Our Contributions

In this paper we (partially) answer the question above in the negative. We do so
by focusing only on generic constructions with black-box access to the underlying
PKE chosen by the dictator. More precisely we prove that:

– Any black-box construction of AE, i.e. that only accesses the underlying
PKE through oracle key-generation, encryption and decryption calls, must
have anamorphic message space of size at most |M̂ | = poly(λ) with λ the
security parameter.

5 Finding through rejection sampling c such that F (k, c) = m̂ requires on expectation
O(2|m̂|) iterations, with |m̂| the bit-length of m̂, thus |m̂| = O(log λ).

6 Here by practically adoptable we mean an efficient PKE leading to an AE with large
(anamorphic) message space, without resorting to the multiple ciphertexts strategy
mentioned above.
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– Black-box constructions of (weak) asymmetric AE, an enhanced notion re-
cently introduced in [CGM24] and discussed below, are impossible, regardless
of the anamorphic message space size.

The notion of asymmetric AE referred to in our second result can be in-
formally thought as a public-key variant of AE-mode. In this setting the re-
ceiver generates two extra keys dk, tk (as opposed to one). dk is shared with
the sender(s) to encrypt anamorphic messages, while decryption is performed
with tk. Slightly more precisely, dk acts as an asymmetric key that allows to
encrypt anamorphic messages bot not to decrypt anamorphic ciphertexts. Weak
asymmetric security then requires that anamorphic messages remains indistin-
guishable given the regular public key apk and the double key dk. The technical
challenges of these two results are exposed in details in the next section. First,
however, we clarify how they should be interpreted, and possibly circumvented.

Implications. A direct consequence of our results is that the “rejection sampling”
construction [PPY22] discussed before is optimal from different perspectives. The
first one is indeed that communicating O(log λ) bits per ciphertext is the best
a black-box construction can achieve. Moreover, the usage of dk as a symmetric
key to encrypt and decrypt anamorphic messages cannot be avoided. Note also
that both results readily extends to stronger primitives such as black-box robust
AE [BGH+24] and anamorphic extensions [BGH+24] in the respective setting.
Similarly, as our second result holds for weak asymmetric AE, it further extends
to all stronger notions (e.g. fully asymmetric AE [CGM24]).

Limitations. We stress that our results concern generic AE constructions in-
teracting with the PKE only through oracle call (we call these black-box con-
structions). This clearly excludes all constructions that, while generic, are non
black-box. Thus, both our negative results might be bypassed via some explicit
usage of a circuit7 evaluating the underlying PKE. This could be achieved, for
instance, by relying on garbled circuits [Yao86] or iO [BGI+01]. We remark,
however, that such techniques are unlikely to yield practically efficient solutions.

Towards practical solutions, a more promising approach consists in assuming
that the underlying PKE satisfies some extra properties. This is for instance the
case for constructions in [BGH+24, KPP+23b, CGM24].

In this sense, inspired by our proof techniques, we provide a novel “semi-
generic” construction that is asymmetric (in the sense discussed above) and
supports exponential anamorphic message space. More precisely, we require the
underlying PKE to have polynomially small message space and to be dense (i.e.
any random string in the ciphertext space is a valid encryption with significant
probability).

Since our results are quite technical, in what follows we provide some intuition
about the main ideas they build upon.
7 As in the case of Identity Based Encryption [Sha84, BF01] which admits no black-

box construction from pairing-free groups [PRV12, Zha22] and yet can be generically
realized from them through garbled circuits [DG17].
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1.2 Technical Overview

As a starting point assume Σ = (AT.Gen,AT.Enc,AT.Dec) is a generic construc-
tion that turns any PKE into an anamorphic encryption scheme. We restrict to
AEs that access the underlying PKE algorithms only through oracle queries. As
customary in the black-box separations literature [IR89], we then study their
behavior when interacting with an ideal PKE Π = (E.Gen,E.Enc,E.Dec). The
latter scheme is similar to the one proposed by Gertner et al. in [GKM+00] and
by Zhandry and Zhang in [ZZ20], and is based on two truly random permuta-
tions specifying the key generation and encryption behavior. Decryption instead
consists in (inefficiently) inverting the encryption permutation.

Ciphertext Selection Lemma. Our first step towards both results is to prove a
fundamental property of the anamorphic encryption procedure AT.Enc. Namely
that, up to negligible probability, it can only return one of the ciphertexts it
obtains from oracle calls to E.Enc. First notice that, being AT.Enc anamorphic,
its produced ciphertexts have to be indistinguishable from regular-mode ones.
As security is assumed to hold for any PKE, this has to be the case also for the
ideal PKE mentioned above. In this latter case, however, there is essentially no
way to meaningfully manipulate ciphertexts. Thus, the only way for AT.Enc to
return a valid ciphertext (i.e. encrypting the intended regular message m), has
to be to simply choose it among the obtained ones8.

Limits of black-box anamorphic conversion. To prove our first lower bound we
start from an information-theoretic game where a sender S wishes to commu-
nicate a message m to a receiver R. The rules of this game are that a random
oracle H is available to both, and all S can do is choose one of the outputs y it
received from H and send it to R. The goal of R is to get back m from y with
overwhelming probability. Finally S and R are allowed to have shared random-
ness. We call this setting a Random Oracle Channel. Assuming both procedures
can access H only poly(λ) many times, we prove that the message space size |M |
has to be polynomially bounded. Intuitively, this should be the case as S’s choice
can bias at most log(λ) many bits of y, while R’s queries seem useful only when
it finds a preimage to y.

Our final step consists in building a Random Oracle Channel from a black-
box AE scheme. The basic idea is that SH computes and sends the anamorphic
encryption of a message m̂, while RH decrypts it. Crucially, both parties use
H to answer encryption queries performed respectively by AT.Enc and AT.Dec9,
which results in a good approximation of the ideal PKE scheme. Next, we use
the ciphertext selection lemma to argue that AT.Enc can only "choose" one of
the ciphertexts it observed. Thus, the anamorphic ciphertext that S forwards to
8 Actually, another possible way is by decrypting a (random) ciphertext with E.Dec

hoping it returns m. For carefully chosen ideal PKE’s parameters however this strat-
egy only succeeds with negligible probability.

9 In this technical overview we deliberately ignore the significant technical challenges
related to dealing with decryption queries. See Section 5 for details

7



R is a value it got from H, which, in turn, means that (S,R) defines a random
oracle channel. As a consequence, its associated (anamorphic) message space has
to be polynomially bounded.

Impossibility of Asymmetric AE. Another application of the ciphertext selec-
tion lemma is that (weak) asymmetric AE as discussed above cannot be realized
black-box. An intuitive reason for this is that AT.Enc, in order to correctly choose
a ciphertext encrypting the anamorphic message m̂ it wish to send, must some-
how distinguish those that encrypt m̂ from those that do not.

This suggests the following proof strategy. An (efficient) adversary A refut-
ing the weak asymmetric property can initially query its challenger to get c∗,
either the anamorphic encryption of (m, m̂0) or (m, m̂1), where m here denotes
the regular message, whereas m̂0, m̂1 are anamorphic ones. Then it locally runs
AT.Enc(apk, dk,m, m̂0) with both apk and dk being provided to A at the be-
ginning. When AT.Enc calls the underling PKE encryption procedure, A replies
with the correct ciphertext for all but a randomly chosen query. For this latter
query it replies with c∗. Finally, when AT.Enc returns c′, A outputs 1 if c∗ = c′

and 0 otherwise.
Oversimplifying the analysis, if c∗ is an encryption of m̂0, then AT.Enc should

choose it with significant probability (≈ 1/q with q the total number of encryp-
tion queries). If c∗ encrypts m̂1, on the other hand, correctness of encryption
dictates that AT.Enc(apk, dk,m, m̂0) can output it only with negligible probabil-
ity.

This simple strategy fails for a variety of technical reasons, some of which are
not discussed here. The most challenging one though, is that c∗ may be incor-
rectly distributed. More specifically, during its execution AT.Enc expects regular
ciphertexts as answers to its encryption calls. Yet, c∗ is an anamorphic one. Al-
though the security definition from [PPY22] guarantees that regular ciphertexts
are indistinguishable from anamorphic ones, this only holds when given apk, ask
but not dk. As AT.Enc gets dk it may easily distinguish c∗ and potentially abort,
thus preventing our proof to go through.

To address this issue we analyze in depth an abstract object, that we call
symmetric choice functions. Such an object is meant to describe AT.Enc’s be-
havior but, we believe, could be of independent interest.

Informally, a choice function is any (probabilistic) function that outputs one
of its arguments, without modifying it in any way. If it does not depend on the
order of its input, we further call it symmetric.

We prove that symmetric choice functions have the very interesting property
of being consistent in their choices. Specifically, imagine that on (uniformly
distributed) input x1, . . . , xk the choice function f outputs one of them (and
let us call z such a value). Interestingly, on input (z, u2, . . . , uk), for uniformly
distributed u2, . . . , uk, f will output back z with probability at least 1/k − ε.
This may seem obvious at first, as the inputs look uniformly distributed in both
cases. Notice however, that while z is chosen from uniformly distributed inputs,
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its distribution is (or at least might be) biased by f and, thus, it might not be
uniform anymore10.

The previously unjustified step in our (simplified) analysis is then fixed by
showing that AT.Enc essentially behaves like a symmetric choice function. Thus,
when receiving from A a c∗ that (anamorphically) encrypts (m, m̂0), along with
q − 1 almost uniformly random ciphertexts11, it will choose the same c∗ again
with probability at least 1/q − ε.

A semi-generic Realization. Both our impossibility results crucially rely on the
ciphertext selection lemma discussed above. Interesting this lemma requires the
ideal PKE to satisfy certain conditions. In particular, its proof does not go
through for the special case of PKE with small message space and dense cipher-
text space12. We show that this is no coincidence and, in fact, we prove such
restrictions to be sufficient to achieve efficient asymmetric anamorphic conver-
sions with large (anamorphic) message spaces. Specifically, we prove that if one
starts with a PKE with the two properties above, that also guarantees a mild
pseudorandom property on the produced ciphertexts (see section 6 for details
about this), then there exists a simple black-box asymmetric AE with exponen-
tial anamorphic message space. This construction can be seen as the dual of
the rejection sampling scheme from [PPY22] when swapping the role of regu-
lar and anamorphic messages. At a (very) high level, one starts with a PKE
Π = (E.Gen,E.Enc,E.Dec) satisfying the conditions above, together with a PKE
Πpr = (Πpr.Gen,Πpr.Enc,Πpr.Dec), whose ciphertexts are indistinguishable from
(uniformly) distributed ones in the ciphertext space of Π. We remark that, as
we show in Appendix A.1, it is easy to construct such a Πpr from standard PKE
and pseudorandom permutations. Equipped with Π and Πpr, the construction
is as follows. To encrypt a (regular) message m and a covert one m̂, one keeps
encrypting m̂ with Πpr.Enc until is found a ciphertext c such that decrypting
c with E.Dec outputs m. Notice that, since Π has dense ciphertexts and small
message space, this procedure is expected to end in polynomial time.

1.3 Related Works

Anamorphic Encryption is a notion similar to other ones studied in the past
by cryptographers, such as key-escrow (e.g. [Mic93, Bla94, FY95]), deniable en-
cryption (e.g. [CDNO97]), kleptography (e.g. [YY96, YY97]) and public key
steganography (e.g. [vH04]), but at the same time it differs from all of these. We
refer to the work of Persiano et al. [PPY22] for a comparison of these notions.

In [KPP+23b, CGM24] the notion of receiver AE has been refined requiring
privacy for the normal and covert messages even against the holders of dk. In
10 Think, for instance, to the case when f is the minimum function: this satisfies our

notion of symmetric choice function but, even when executed on inputs uniformly
distributed in some finite set X, its output is hardly uniform in X.

11 As is the case when the underlying PKE is the ideal one.
12 By dense, we mean that a significant fraction of the strings in the ciphertexts space

are actually valid ciphertexts.
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[BGH+24] the notion of robust AE and Anamorphic Extension have been intro-
duced. Later on in [WCHY23] the notion of robustness has been extended and
adapted also to sender AE. In [KPP+23a] the notion of Anamorphic Signatures
has been introduced in order to face a more extreme scenario in which all com-
munications must pass through a central authority controlled by the dictator. In
this context, the usage of encryption channels becomes even more problematic
and to face this problem they rely on authenticated channels (i.e., using digital
signatures) to be able to send covert messages between parties.

The study of black-box separations instead started from the seminal work
of Impagliazzo and Rudich [IR89], from which stemmed a long standing and
active area of research [Sim98, KST99, GT00, GKM+00, GMR01, GGK03]. All
these works however share similar limitations with ours. Indeed they can only
rule out black-box constructions using the underlying primitive as an oracle, but
not any possible construction. Concrete examples are the case of Identity Based
Encryption and Non-Interactive Zero-Knowledge proofs from pairing-free prime
order groups. In both case negative results are known, [PRV12, Zha22] for the
former and [Giu23] for the latter. Yet, generic non-black-box constructions were
given respectively in [DG17] and [JJ21].

Concurrent Works. A concurrent work by Dodis and Goldin also investigates
the limitations of anamorphic encryption. In particular they study a mildly dif-
ferent model where the dictator generates (backdoored) public parameters, and
show that in such model relative to a random oracle there exists an anamorphic
resistant scheme, i.e. a PKE such that any anamorphic triplet for it must have
polynomially small message space. They further introduce a new notion they
call unforgeability which strengthen robustness. Although related, their results
are ultimately incomparable with ours: Our lower-bound for black-box construc-
tions does not imply their result, because they describe an explicit anamorphic
resistant PKE. On the other hand, their result does not directly imply ours due
to their different model, which grants more power to the dictator and makes the
construction of AE harder.

2 Preliminaries

2.1 Notation

λ ∈ N denotes the security parameter. A function f : N → R+ is negligible if
it vanishes faster than the inverse of any polynomial. negl(λ) denotes a generic
negligible function. In logic propositions, we use commas to denote logical AND.
We also use “wildcard notation” in place of existential quantifier, e.g. (a, ·) ∈
A×B means ∃b : (a, b) ∈ A×B.

Given a probabilistic Turing Machine A we denote y ← A(x; r) its output on
input x and random tape r. The notation y←$A(x) is short for y ← A(x; r) with
r being a uniformly sampled tape. With PPT we denote probabilistic polynomial
time. Given a set S we denote by x←$ S the uniformly random sampling of an
element x from the set S. We further write x ∼ U(S) to indicate that x is a
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uniformly distributed random variable over S. Unless otherwise specified, we
assume adversaries in security definitions to be stateful, and procedures in a
given scheme (e.g. a PKE) to be stateless.

2.2 Anamorphic Encryption

The notion of (receiver) anamorphic encryption was first introduced in [PPY22]
to model private communication in the presence of a dictator who controls the
PKE scheme in use and knows each user’s secret key. In this paper, we use a
more general definition proposed in [CGM24] which contains [PPY22] as a special
case. To achieve the above seemingly impossible goal, the receiver is allowed to
generate its own public and secret key apk, ask in anamorphic mode, exchange
secretly with the sender a double key dk, and locally storing a trapdoor key tk to
decrypt anamorphic messages from the sender.

Definition 1 (Anamorphic Triplet). Formally, an anamorphic triplet Σ =
(AT.Gen,AT.Enc,AT.Dec) is a triplet of efficient algorithms such that

– AT.Gen(λ) $→(apk, ask, dk, tk) with apk, ask being the anamorphic public and
secret keys while dk, tk are the double and (a possibly empty) trapdoor key.

– AT.Enc(apk, dk,m, m̂) $→ c, with m ∈ M and m̂ ∈ M̂ being respectively the
standard and anamorphic messages encrypted in c.

– AT.Dec(ask, tk, c)→ m̂/⊥, with m̂ being the anamorphic message encrypted
in c.

In the definition above we do not explicitly provide apk, dk as part of AT.Dec
input, as we implicitly assume them to be contained in ask and tk respectively.

Definition 2 (Anamorphic Encryption). A PKE Π = (E.Gen,E.Enc,E.Dec)
is an Anamorphic Encryption scheme if it is IND-CPA secure and there exists an
anamorphic triplet Σ = (AT.Gen,AT.Enc,AT.Dec) such that any PPT adversary
A has negligible advantage, defined as

AdvAnamA,Π,Σ(λ) := |Pr [RealGΠ(λ,A) = 1]− Pr [AnamorphicGΣ(λ,A) = 1]|

where RealGΠ and AnamorphicGΣ are described in Figure 1.

Finally, regarding correctness we follow the game-based definition provided
[BGH+24], provided in the Appendix, Section B.1. For the sake of generality
however we will only use a weaker notion, holding only for uniformly sampled
messages (and correct keys). Formally, given (apk, ask, dk, tk)←$ AT.Gen(λ) and
m, m̂ uniformly sampled messages, then

Pr
[
m̃ ̸= m̂

∣∣∣ m̃← AT.Dec(ask, tk, c), c←$ AT.Enc(apk, dk,m, m̂)
]
≤ negl(λ).
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RealGΠ(λ,A)

1 : (pk, sk)←$ E.Gen(λ)

2 : return AOreal(pk, sk)

Oreal(m, m̂)

1 : Sample a random r

2 : return E.Enc(pk,m; r)

AnamorphicGΣ(λ,A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : return AOanam(apk, ask)

Oanam(m, m̂)

1 : Sample a random r

2 : return AT.Enc(apk, dk,m, m̂; r)

Fig. 1. Anamorphic Encryption security game.

2.3 Asymmetric Anamorphic Encryption

The notion of Asymmetric Anamorphic Encryption [CGM24], intuitively, re-
quires that the Anamorphic Triplet Σ realizes an asymmetric scheme for covert
messages. The notion is formalized through the game in Figure 2, where D is a
PPT adversary, b ∈ {0, 1} and Σ = (AT.Gen,AT.Enc,AT.Dec) is an Anamorphic
Triplet. The advantage of a given distinguisher D is defined as

AdvAsy-AnamD,Σ (λ) :=
∣∣Pr [AsyAnam-IND-CPA0

Σ(λ,D) = 1
]

−Pr
[
AsyAnam-IND-CPA1

Σ(λ,D) = 1
]∣∣ .

AsyAnam-IND-CPAb
Σ(λ,D)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : (m, m̂0, m̂1)←$D(apk, ask, dk)

3 : c←$ AT.Enc(apk, dk,m, m̂b)

4 : return D(c)

Fig. 2. Asymmetric Anamorphic Encryption security game.

Definition 3 (Asymmetric Anamorphic Encryption). An Anamorphic En-
cryption scheme Π equppied with an anamorphic triplet Σ is an Asymmetric
Anamorphic Encryption scheme if for every PPT distinguisher D,

AdvAsy-AnamD,Σ (λ) ≤ negl(λ).

In this paper we define a weaker notion, called Weak Asymmetric Anamorphic
Encryption. We weaken the previous definition requiring that the adversary in
the security game has no access to ask. More precisely, let D be a PPT adversary,
b ∈ {0, 1} and Σ = (AT.Gen,AT.Enc,AT.Dec) be an Anamorphic Triplet. The

12



Weak Asymmetric AE security game is then detailed in Figure 3. The advantage
of a distinguisher D for such game is defined as

AdvWeak-Asy-Anam
D,Σ (λ) :=

∣∣Pr [Weak-AsyAnam-IND-CPA0
Σ(λ,D) = 1

]
−Pr

[
Weak-AsyAnam-IND-CPA1

Σ(λ,D) = 1
]∣∣ .

Weak-AsyAnam-IND-CPAb
Σ(λ,D)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : (m, m̂0, m̂1)←$D(apk, dk)

3 : c←$ AT.Enc(apk, dk,m, m̂b)

4 : return D(c)

Fig. 3. Weak Asymmetric Anamorphic Encryption security game.

Definition 4 (Weak Asymmetric Anamorphic Encryption). An Anamor-
phic Encryption scheme Π equipped with an anamorphic triplet Σ is a Weak
Asymmetric Anamorphic Encryption scheme if for every PPT distinguisher D

AdvWeak-Asy-Anam
D,Σ (λ) ≤ negl(λ).

2.4 Other flavors of AE

Robustness of Anamorphic Encryption Robustness for receiver anamor-
phic encryption has been introduced in [BGH+24]. Informally, it requires that it
should be difficult to find a message m that, when encrypted normally (i.e., using
E.Enc) and then anamorphically decrypted (i.e. using AT.Dec) results in some
m̂ ̸=⊥. Later, in [WCHY23], the notion has been extended to sender anamorphic
encryption, requiring in addition to the previous property, also that there exists
a negligible probability of decrypting m̂ ̸=⊥ using a different secret key from the
one corresponding to the public key used to anamorphically encrypt m̂. A formal
definition of robustness for (receiver) Anamorphic Encryption can be found in
Appendix B.2. One can verify that Robust AE implies AE.

Fully Asymmetric AE Fully Asymmetric (receiver) AE (fasy-AE, for short)
has been introduced in [CGM24], it is a notion reminiscent of Single-Receiver
AE from [KPP+23b], indeed it takes the latter notion and makes one step fur-
ther. Informally, a fasy-AE guarantees the privacy of both the regular and the
anamorphic messages with respect to users having access also to dk (but not to
ask and tk of course). In [CGM24] the relation between this notions has been
explored. A formal definition of fasy-AE can be found in Appendix B.3. One can
verify that fasy-AE implies Weak Asymmetric AE.
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3 Anamorphic Encryption from Black-Box PKE

3.1 Ideal PKE

In this section we model an idealized (and inefficient) PKE scheme, inspired by
the one presented in [GKM+00, ZZ20], accessible through three oracles E.Gen,
E.Enc,E.Dec. Internally the scheme is defined by two random functions ϕ and
ψ tracking respectively the relation between public/secret keys, and the one
between messages/ciphertexts. More in detail SK,PK are the secret and public
keys sets while {0, 1}µ, {0, 1}ρ, {0, 1}ℓ are respectively the messages, randomness
(for encryption) and ciphertexts spaces. Then ϕ, ψ are sampled so that
– ϕ : SK→ PK is a uniformly random bijection.
– ψ : PK×{0, 1}µ×{0, 1}ρ → {0, 1}ℓ random function s.t. ψ(pk, ·, ·) is injective.

Note that at this stage we do not constrain µ, ρ, ℓ, that are respectively the bit-
size of messages, randomness and ciphertexts. Some later results will however
only apply for certain parameters choice.

E.Gen(λ; sk)

1 : pk← ϕ(sk)

2 : return (pk, sk)

E.Enc(pk,m; r)

1 : c← ψ(pk,m, r)

2 : return c

E.Dec(sk, c)

1 : pk← ϕ(sk)

2 : for (m, r) ∈ {0, 1}µ × {0, 1}ρ

3 : if ψ(pk,m, r) = c: return m

4 : return ⊥.

Fig. 4. Ideal PKE with ϕ : SK→ PK and ψ : PK×{0, 1}µ×{0, 1}ρ → {0, 1}ℓ as above.

It is easy to observe that this scheme achieves semantic security (IND-CPA) if
ρ = Ω(λ) and |SK| = Ω(2λ) as ciphertexts are random strings, and distinguishing
the encryptions of two different messages requires a number of queries to E.Enc
exponential in ρ. For completeness a proof appears in the Appendix, Section C.1.

3.2 Black-Box Anamorphic Encryption

Definition 5 (Black-Box Anamorphic Triplet). A triplet Σ = (AT.Gen,
AT.Enc,AT.Dec) is said to be a black-box anamorphic triplet (for any PKE Π) if
every algorithm in Σ can access the procedures in Π only through oracle access,
i.e. providing input and random coins to these procedures and obtaining only
the output of such procedures call in return.

We remark that we may occasionally and informally refer to an Black-Box
Anamorphic Triplet as a Black-Box Anamorphic Encryption.
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3.3 General Properties

Assume there exists a generic compiler Σ = (AT.Gen,AT.Enc,AT.Dec) turn-
ing any IND-CPA secure PKE into an anamorphic encryption scheme, access-
ing the underlying PKE algorithms only through oracle queries. We can then
study the behavior of such construction when applied to the ideal PKE Π =
(E.Gen,E.Enc,E.Dec) defined in Figure 4. A first property it has to satisfy is
that, up to negligible probability, the public and secret anamorphic keys have to
be a valid key pair for the underlying PKE.

Lemma 1. If Σ = (AT.Gen,AT.Enc,AT.Dec) is an anamorphic triplet for the
ideal PKE Π, then there exists a negligible ε such that

(apk, ask, dk, tk)←$ AT.Gen(λ) ⇒ Pr [ϕ(ask) ̸= apk] ≤ ε(λ).

Proof. Let A be a PPT adversary playing the game in Definition 2 which on
input pk, sk, runs the key generation algorithm (pk′, sk) ← E.Gen(λ; sk) and
returns 1 if pk = pk′ and 0 otherwise. From the definition of E.Gen in Figure 4,
the secret key coincides with the random tape of E.Gen. Thus in the real game
pk′ = pk occurs always. Conversely in the anamorphic game, the adversary
receives apk, ask generated through AT.Gen. Again by construction pk′ = ϕ(ask),
meaning A returns 1 if and only if apk = ϕ(ask). In conclusion

Adv(A) = |1− Pr [ϕ(ask) = apk]| = Pr [ϕ(ask) ̸= apk]

which is negligible as we assumed Σ to be an anamorphic triplet for the ideal
PKE.

The next property we study informally states that ciphertexts have to be
unpredictable enough. While this could be stated in terms of (pseudo) min-
entropy, for our purpose the following less general formulation will suffice.

Lemma 2. Given Σ = (AT.Gen,AT.Enc,AT.Dec) a black-box anamorphic triplet
and uniformly sampled s, r and messages m, m̂, let

(apk, ask, dk, tk)← AT.Gen(λ; s), c← AT.Enc(apk, dk,m, m̂; r).

For any set S independent from r, with |S| ≤ poly(λ) then Pr [c ∈ S] ≤ negl(λ).

Proof. Consider the following adversary A against the anamorphic security game
in Definition 2 instantiated when Σ is combined with the ideal PKE with ρ =
Ω(2λ). Its attack consists in encrypting twice a random message pair, and check-
ing if the resulting ciphertexts are the same, see Figure 5.

If c ∈ S with significant probability, as this set has polynomially bounded
size, two ciphertexts sampled independently from it will collide with noticeable
probability, allowing A to distinguish the two games.

More formally, in the real game c1 = c2 only if the random coins used to
produce both ciphertexts are the same, which occurs with probability 2−ρ. To
analyze the anamorphic game let

Vδ = {(m0, m̂0, s0) : Pr [c ∈ S |m = m0, m̂ = m̂0, s = s0] ≥ δ}.

Using a variant of Markov inequality we can then prove that
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AO(apk, ask) :

1 : Sample m←${0, 1}µ and m̂←$ M̂

2 : c1 ← O(m, m̂)

3 : c2 ← O(m, m̂)

4 : return c1 == c2

Fig. 5. Adversary against the security game in Figure 1. O is the encryption oracle
provided in both RealG and AnamorphicG.

Claim 1. δ = 1/2 · Pr [c ∈ S] implies that Pr [(m, m̂, s) ∈ Vδ] ≥ δ.

A proof appear in the Appendix, Section C.2. Calling for notational simplicity
v = (m, m̂, s), it can now be shown that for all v0 ∈ Vδ, Pr [c1 = c2 |v = v0] =

= Pr [c1 = c2 | c1, c2 ∈ S, v = v0] · Pr [c1 ∈ S, c2 ∈ S |v = v0]

≥ |S|−1 · Pr [c1 ∈ S, c2 ∈ S |v = v0]

= |S|−1 · Pr [c1 ∈ S |v = v0] · Pr [c2 ∈ S |v = v0]

≥ |S|−1 · δ2

where the second equality follows as c1, c2 are mutually independent conditioned
on v = v0, as in that case they are only a function of the (independently sampled)
random coins used to compute them, and the random subset S is distributed in-
dependently from them. As a consequence Pr [c1 = c2 |v ∈ Vδ] ≥ |S|−1 ·δ2, which
allow us to lower bound the probability A finds a collision in the anamorphic
game as, fixing δ = 1/2 · Pr [c ∈ S],

Pr [c1 = c2] ≥ Pr [c1 = c2 |v ∈ Vδ] · Pr [v ∈ Vδ] ≥ δ3 · |S|−1.

Combining this with the bound on the collision probability in the real game,
the advantage of A is then bounded by Adv(A) ≥ δ3 · |S|−1 − 2−ρ. Having
set δ = 1/2 · Pr [c ∈ S] we conclude the proof as we assumed ρ = Ω(λ), |S|
polynomially bounded and the black-box anamorphic triplet to be secure.

A consequence of the above result is that AT.Enc almost never returns a
ciphertext that was observed by AT.Gen. To formally state this, we first define
this set of ciphertexts.

Definition 6. Given a black-box anamorphic triplet Σ we define EGen
in , EEnc

in the
sets of tuples (pk,m, r, c) such that respectively AT.Gen and AT.Enc on input in
eventually query c = E.Enc(pk,m; r). Analogously, DGen

in , DEnc
in are the sets of

tuples (sk, c,m) such that respectively AT.Gen and AT.Enc on input in computes
m = E.Dec(sk, c).

Definition 7. Given a black-box anamorphic triplet Σ we define the set of ci-
phertexts observed by AT.Gen on input s as

CGen
s := {c : (·, ·, ·, c) ∈ EGen

s ∨ (·, c, ·) ∈ DGen
s }.
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Corollary 1. With the same notation of Lemma 2, Pr
[
c ∈ CGen

s

]
≤ negl(λ).

3.4 Ciphertext Selection Lemma

The core technical result of this section is a characterization of the encryption
procedure for a black-box anamorphic triplet. Informally, our result states that
such procedure can only obtain valid ciphertexts through encryption queries to
E.Enc and then return one of them. This is perhaps not surprising as there is no
assumption on the underlying PKE scheme. Thus, no meaningful manipulation
of ciphertexts after their generation is possible. This intuition is captured by the
following ciphertext selection lemma. First, we formally define the set of valid
ciphertexts queried by AT.Enc.

Definition 8. Given input in = (apk, ask,m, m̂, r) the set of valid ciphertexts
queried by AT.Enc is CEnc

in = {c : (apk,m, · , c) ∈ EEnc
in }.

We recall that our ideal PKE is parametrized by µ, ρ, ℓ, respectively the
message, random coins and ciphertext bit-length. Notably, the following result
requires ℓ − ρ = Ω(λ) to hold. This means the lemma cannot be specialized to
black-box anamorphic schemes where the underlying PKE is assumed to have
small message space µ = O(log λ) and dense ciphertext space ℓ = ρ + µ +
O(log λ), i.e. such that a noticeable fraction of strings with length ℓ are valid
ciphertexts. We will later prove in Section 6 this to be no coincidence as in this
case efficient “semi-generic” constructions do exist.

Lemma 3. Given Σ = (AT.Gen,AT.Enc,AT.Dec) a black-box anamorphic triplet,
let r, s be uniform random coins and m, m̂ uniformly sampled messages. Setting

(apk, ask, dk, tk) ← AT.Gen(λ; s), in = (apk, dk,m, m̂, r), c← AT.Enc(in),

if ρ = Ω(λ) and ℓ− ρ = Ω(λ), then Pr
[
c /∈ CEnc

in

]
≤ negl(λ).

Proof. To prove the lemma let A be an adversary against the anamorphic secu-
rity definition as described in Figure 6. Given (apk, ask) it requests the encryption
c of a random message m and locally decrypts it computing m′ = E.Dec(ask, c).
It returns 1 if and only if m ̸= m′.

AO(apk, ask) :

1 : Sample m←${0, 1}µ and m̂←$ M̂

2 : c← O(m, m̂)

3 : m′ ← E.Dec(ask, c)

4 : return 1 if m ̸= m′

Fig. 6. Adversary for the anamorphism game (Fig. 1). O is the encryption oracle.
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Since the ideal PKE scheme achieves perfect correctness A never returns 1
when executed in the real game. To study the anamorphic game, let s be the
random tape of AT.Gen, so that (apk, ask, dk, tk)← AT.Gen(λ; s), and r the one
of AT.Enc when executed to answer A’s only query. For notational convenience
in = (apk, dk,m, m̂, r) so that c = AT.Enc(in). We then define the two events

Bad : ϕ(ask) ̸= apk ∨ c ∈ CGen
s Good : c ∈ CEnc

in .

Lemma 1 and Corollary 1 together imply that Pr [Bad] ≤ negl(λ). Next we claim
that the following probability is also negligible.

Claim 2. Pr [m = m′,¬Bad,¬Good] ≤ negl(λ).

These two inequalities immediately imply the thesis as, through a union
bound

Pr [m = m′] ≤ Pr [m = m′,¬Bad,¬Good] + Pr [Bad] + Pr [Good]

≤ Pr [Good] + negl(λ).

By our initial observation Advanam(A) = Pr [m ̸= m′] with m′ distributed as in
the anamorphic game. As a consequence Pr [¬Good] ≤ Advanam(A) + negl(λ),
that is negligible.

Proof of Claim 2. Let C = CGen
s ∪ CEnc

in . We denote Vm the set of ciphertexts
encrypting m under apk, that is Vm = {ψ(apk,m, r) : r ∈ {0, 1}ρ}. The claim
can then be translated in terms of C and Vm. Indeed, if the studied event occurs
then c /∈ C. Similarly m = m′ and ¬Bad both implies that m = E.Dec(ask, c) ⇒
ψ(ϕ(ask),m, r) = c ⇒ ψ(apk,m, r) = c for some r, which means c ∈ Vm.
Therefore

(m = m′,¬Bad,¬Good) ⇒ c ∈ Vm \ C ⇒
⇒ Pr [m = m′,¬Bad,¬Good] ≤ Pr [c ∈ Vm \ C] .

To prove the latter probability to be negligible, let q be a bound on the to-
tal queries of AT.Gen and AT.Enc. Let c1, . . . , cd be the (ordered) ciphertexts
AT.Enc queries to E.Dec(ask, ·) and for notational convenience we name cd+1 := c.
Let Ci be the set of ciphertext either returned by E.Enc(apk, ·, ·) or queried
to E.Dec(ask, ·) by either AT.Gen(λ; s) or AT.Enc(in) before the latter queries
E.Dec(apk, ci). Note this means Ci ⊆ C ∪ {c1, . . . , ci−1}. Crucially, given only
this information, the set of ciphertexts Vm \ Ci is uniformly distributed over
{0, 1}ℓ \ Ci. Once again the event above can be decomposed through a chain of
implications:

c ∈ Vm \ C ⇒
∨d+1

i=1
(ci ∈ Vm \ C ∧ {c1, . . . , ci−1} ∩ Vm \ C = ∅)

⇒
∨d+1

i=1
(ci ∈ Vm \ (C ∪ {c1, . . . , ci−1}))

⇒
∨d+1

i=1
(ci ∈ Vm \ Ci) .
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Using a union bound, along with the fact that Vm \Ci is a uniformly distributed
subset of {0, 1}ℓ \ Ci and independent from ci, we can conclude that

Pr [c ∈ Vm \ C] ≤
∑d+1

i=1
Pr [ci ∈ Vm \ Ci]

≤
∑d+1

i=1

|Vm \ Ci|
|{0, 1}ℓ \ Ci|

≤ (d+ 1) · 2ρ

2ℓ − q

with the last quantity being negligible as we assumed ℓ − ρ = Ω(λ) while d, q
are polynomially bounded.

Remark 1. Lemma 3 holds only for stateless anamorphic triplets. If stateful en-
cryption/decryption is allowed, then we can only prove a slightly weaker result.
Specifically c has to lie, with overwhelming probability, in the set of valid cipher-
texts observed by AT.Enc and AT.Gen (as opposed to only AT.Enc). We stress
this to be sufficient for a slightly weaker version of Theorem 2 (See Remark 2)
to hold true. The proof is analogous up to the fact that Corollary 1 cannot be
applied anymore.

3.5 Symmetric Choice Functions

Thanks to the Ciphertext Selection Lemma, the encryption procedure of any
black-box anamorphic triplet can be abstracted as a process observing a list of
ciphertexts and eventually choosing one of them. We will call such a function
returning one of its arguments a choice function. In this section we show this class
of functions satisfies interesting properties, which will be useful in the proof of
Theorem 3, Section 5.2. First we provide a formal definition of choice functions
and in particular symmetric ones, which do not depend on the order of their
arguments.

Definition 9. Given a finite set X, a random function f ∼ {g : Xk → X} is a
choice function if f(x1, . . . , xk) ∈ {x1, . . . , xk} for all x1, . . . , xk ∈ X. Further-
more, a choice function is called symmetric if for any permutation π we have
f(x1, . . . , xk) = f(xπ(1), . . . , xπ(k)).

A rather non-trivial property of symmetric choice functions is that they are
consistent with their choices. More specifically, assume that on random inputs
u1, . . . , uk the function f(u1, . . . , uk) chose z among them. Then given more
random inputs v2, . . . , vk, the function f(z, v2, . . . , vk) will chose z again with
probability at least ≈ 1/k. At first sight this might seem trivial, as z could
appear to be random and f unable to distinguish it from the other elements.
However this reasoning is incorrect. Indeed, although z is chosen from uniformly
sampled variables, this choice can bias its distribution. The above intuition is
therefore wrong, but we nevertheless prove this lower bound with the following
Lemma. A full proof appears in the Appendix, Section C.3.
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Lemma 4. Let f ∼ {g : Xk → X} be a symmetric choice function. Given
u ∼ U(Xk), v ∼ U(Xk−1) uniformly distributed, let z = f(u). Then

Pr [f(z,v) = z] ≥ 1

k
−O

(
1

|X|

)
.

4 Random Oracle Channels

4.1 Definition

In order to provide lower bounds for black-box Anamorphic Encryption, we first
study a simpler scenario where a sender S has to communicate a messagem ∈M
to a receiver R under some constraints. In particular, both parties have access to
a random oracle H and S, which obtains values y1, . . . , yk during its interaction
with H, can only chose one of them and send it to R, who eventually has to
recover the original message. We will call this setting a Random Oracle Channel.

Definition 10. A RO-channel is a tuple (S,R,M, k, h) with S,R Probabilistic
Turing Machines (not necessarily PPT), M ⊆ {0, 1}∗ and k, h = poly(λ) such
that

1. S,R make respectively at most k and h queries to H.
2. ∀m ∈M , calling yj = H(xj) with j ∈ {1, . . . , k} the queries SH(m) performs,

then SH(m)→ yi for some i ∈ {1, . . . , k}.
3. There exists a negligible ε(λ) such that ∀m ∈ M and uniformly sampled

common random tape s

Pr
[
m ̸= m′ ∣∣ y ← SH(m; s), m′ ← RH(y; s)

]
≤ ε(λ).

The main problem about RO channels is determining how large can |M |
be as a function of k, h. Intuitively, due to the high limitations imposed on
S,R, we expect |M | to be small, and indeed our results eventually implies that
|M | = poly(λ) or that, equivalently, in this setting it is possible to communicate
at most O(log λ) bits.

4.2 Bound for RO-Channel

Theorem 1. For any RO-Channel (S,R,M, k, h) we have that asymptotically
|M | ≤ 2(h+ k)2. In particular |M | = poly(λ).

Proof. The result is proven by showing that any RO-channel can be compiled
into two unbounded S∗, R∗ with shared randomness that reliably communicate
a message m ∈ M by only sending ℓ = O(log λ) bits. More specifically the
shared randomness is of the form (F,G, s) with F : {0, 1}poly(λ) → {0, 1}ℓ and
G : {0, 1}ℓ → {0, 1}λ random functions, and s the random tape used by S,R.
S∗ on input m executes S(m; s) and simulates the RO through the function

G◦F . More formally, when S queries the RO on input xi, it returns yi = G(F (xi))
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S∗(m;F,G, s) :

1 : Run S(m; s)

2 : when S queries xi:
3 : zi ← F (xi), yi ← G(zi)

4 : reply with S ← yi

5 : when S returns yi:
6 : return zi

R∗(z;F,G, s) :

1 : Run R(G(z); s)

2 : when R queries xi:
3 : yi ← G(F (xi))

4 : reply with R← yi

5 : when R returns m:
6 : return m

Fig. 7. Unbounded S∗,R∗ using (S,R) to communicate m by only sending ℓ bits.

and locally stores zi = F (xi). Finally, once S chooses its output yi, S∗ returns
zi ∈ {0, 1}ℓ. In order to recover m, R∗ internally executes R simulating the RO
as before. A full description of S∗,R∗ is provided in Figure 7.

Let δ be the probability that S∗ and R∗ fail to communicate correctly, i.e.

δ := Pr [m ̸= m′ |m′ ← R∗(z;F,G, s), z ← S∗(m;F,G, s)] .

Then, the success probability 1 − δ is bounded by the conditional min-entropy
of m given z. This implies that

H∞(m | z) ≥ H∞(m)− ℓ = log2 |M | − ℓ ⇒ (1− δ) ≤ 2−H∞(m | z) =
2ℓ

|M |

⇒ |M | ≤ 2ℓ

1− δ
.

Where the first inequality follows from the fact that z ∈ {0, 1}ℓ [DRS04, Lemma
2.2]. Next we study the success probability for the specific case of S∗,R∗ and a
suitable choice of ℓ. Let X be the set of queries that, given m ∼ U(M) and a
random tape s, the initial algorithms S, R jointly performs to the RO. Calling
Coll the event that two such points collides with respect to F , since |X| ≤ h+ k

Pr [Coll] ≤ (h+ k)2

2
· 1
2ℓ
.

Next we observe that, asG : {0, 1}ℓ → {0, 1}λ is a random function, if ¬Coll, then
S∗, R∗ perfectly simulate the RO. In particular, calling ε the error probability
of the given RO-channel, i.e., Pr [m ̸= m′ | ¬Coll], we have that

δ = Pr [m ̸= m′ |Coll] Pr [Coll] + Pr [m ̸= m′ | ¬Coll] Pr [¬Coll]
≤ Pr [Coll] + Pr [m ̸= m′ | ¬Coll]

≤ (h+ k)2

2 · 2ℓ
+ ε.

Setting ℓ = 2 log(h+ k) we obtain 1− δ ≥ 1/2− ε and in particular

|M | ≤ 22 log(h+k)

1/2− ε
= 2 · (h+ k)2 + negl(λ) ⇒ |M | ≤ 2 · (h+ k)2
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where the equality holds because 1
1−2ε = 1 + negl(λ) and last inequality holds

asymptotically in λ as |M | is an integer and negl(λ) is eventually less than 1.

5 Lower bounds and Impossibility

5.1 Communication Rate Bound

In this section we answer our question on black-box anamorphic encryption
proving that its anamorphic message space must be polynomially bounded, or
equivalently that it is impossible to communicate more than O(log λ) bits per ci-
phertext. The main technique, as described in the introduction, is to combine the
information-theoretic lower bound for RO-channel with the ciphertext-selection
lemma. The latter indeed informally implies that communication using black-box
anamorphic encryption scheme happens almost as in a RO-channel: the sender
can only perform certain queries to E.Enc(apk,m, ·) and eventually return one of
the replies. Similarly, the receiver is allowed to query E.Enc(apk,m, ·) to extract
information about the sender’s hidden message. We can thus present our first
result.

Theorem 2. Let Σ = (AT.Gen,AT.Enc,AT.Dec) be a black-box anamorphic triplet
with anamorphic message space M̂ . Then |M̂ | = poly(λ). More precisely, calling
qe and qd the queries performed to E.Enc respectively by AT.Enc and AT.Dec,
then |M̂ | ≤ 2(qe + qd)

2.

Proof. Applying the above black-box anamorphic triplet scheme to the ideal
PKE Π = (E.Gen,E.Enc,E.Dec) defined in Section 3.1, we describe a RO-channel
with anamorphic message space M̂ . A detailed presentation of S,R appears in
Figure 8. Initially both procedures hold shared randomness used to setup the
anamorphic encryption parameters, and later simulate the ideal PKE. This is of
the form (s∗, r∗,m∗, ϕ∗, ψ∗, ξ∗) with

– (s∗, r∗): random tapes for AT.Gen and AT.Enc.
– m∗: random regular (i.e. non anamorphic) message in M = {0, 1}µ.
– ϕ∗: random bijection from SK to PK, as in the ideal PKE.
– ψ∗: random function mapping (pk,m, r) to ciphertexts in {0, 1}ℓ.
– ξ∗: biased random function mapping SK × {0, 1}ℓ to M ∪ {⊥}, such that
ξ∗(sk, c) = m0 with probability 2ℓ−ρ for all m0 ∈M .

Given the above shared randomness S, R proceed as follows:

1. Key Generation. Initially they both setup the Anamorphic Encryption param-
eters (apk, ask, dk, tk) running AT.Gen(λ; s∗) (lines 1-6). In this phase, each time
the key generation queries E.Gen(λ; sk), they use ϕ∗ to reply with (ϕ∗(sk), sk).
When it queries an encryption E.Enc(pk,m; r) they both reply with ψ∗(pk,m, r).
When it queries a decryption E.Dec(sk, c), if c was previously obtained as the
encryption of some m they reply with m. Else, they reply with ξ∗(sk, c).
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2. Encryption. SH(m̂) proceeds computing c∗, the anamorphic encryption of
(m∗, m̂) with keys (apk, dk) and randomness r∗ (lines 9-14). During this compu-
tation, each time AT.Enc queries E.Gen(λ; sk) it replies as above using ϕ∗. When
it queries an encryption E.Enc(pk,m; r), if the same request was performed by
AT.Gen it replies consistently, i.e. with ψ∗(pk,m; r). Otherwise it invokes its RO,
replying with c = H(pk,m, r). Decryption queries are handled as before. Finally
it returns c∗.

3. Decryption. R on input c∗ finally computes m̃← AT.Dec(ask, tk, c∗) (lines 9-
14, right procedure). During this execution, each time AT.Dec queries E.Gen(λ; sk),
it replies as above using ϕ∗. When it queries E.Enc(pk,m; r) it replies with
ψ∗(pk,m, r) if the same query was performed by AT.Gen, or with H(pk,m, r)
otherwise. Finally, queries to E.Dec(sk, c) are handled as before, with the excep-
tion that to E.Dec(ask, c∗) it always replies with m∗ (see line 7). Eventually it
returns m̃.

SH(m̂ ; (s∗, r∗,m∗, ϕ∗, ψ∗, ξ∗)) :

1 : (apk, ask, dk, tk)← AT.Gen(λ; s∗)

2 : when queried E.Enc(pk,m; r):
3 : Get c← ψ∗(pk,m, r)

4 : Set ξ∗(sk, c)← m : pk = ϕ∗(sk)

5 : Set H(pk,m, r)← c

6 : reply c

7 :

8 : // Get the Anamorphic Encryption

9 : Run c∗ ← AT.Enc(apk,m; r)

10 : when queried E.Enc(pk,m, r):
11 : Get c← H(pk,m, r)

12 : Set ξ∗(sk, c)← m : pk = ϕ∗(sk)

13 : reply c

14 : return c∗

15 : // Key Gen. and Decryption query

16 : when queried E.Gen(λ; sk):
17 : reply (ϕ∗(sk), sk)

18 : when queried E.Dec(sk, c):
19 : reply ξ∗(sk, c)

RH(c∗ ; (s∗, r∗,m∗, ϕ∗, ψ∗, ξ∗)) :

1 : (apk, ask, dk, tk)← AT.Gen(λ; s∗)

2 : when queried E.Enc(pk,m; r):
3 : Get c← ψ∗(pk,m, r)

4 : Set ξ∗(sk, c)← m : pk = ϕ∗(sk)

5 : Set H(pk,m, r)← c

6 : reply c

7 : Set ξ∗(ask, c∗)← m∗

8 : // Decrypt the Anamorphic Ciphertext

9 : Run m̃← AT.Dec(ask, tk, c∗)

10 : when queried E.Enc(pk,m, r):
11 : Get c← H(pk,m, r)

12 : Set ξ∗(sk, c)← m : pk = ϕ∗(sk)

13 : reply c

14 : return m̃

15 : // Key Gen. and Decryption query

16 : when queried E.Gen(λ; sk):
17 : reply (ϕ∗(sk), sk)

18 : when queried E.Dec(sk, c):
19 : reply ξ∗(sk, c)

Fig. 8. RO-Channel based on black-box Anamorphic Encryption. The notation
H(pk,m, r)← c denotes that future calls to H on (pk,m, r) return c without calling H.
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Given the above description of S,R we proceed illustrating immediate prop-
erties they satisfy. First of all S returns up to negligible probability a value
it received from the RO. This follows from the Ciphertext Selection Lemma
(Lemma 3) and Lemma 1. Indeed, they imply AT.Enc will almost always return
a ciphertext c it obtained from E.Enc and which was not observed by AT.Gen,
meaning that c is evaluated from H (as opposed to ψ∗ to keep consistency with
AT.Gen’s view). Another immediate observation is that S and R respectively
performs qe and qd RO calls, i.e. the number of queries to E.Enc respectively
from AT.Enc and AT.Dec. This follows as the RO may be called at most once for
each such query.

To conclude that (S,R, M̂ , qe, qd) is a RO-Channel we only need to establish
correctness. To do so we rely on the anamorphic encryption scheme’s correctness,
Section 2.2: given correctly generated keys and messages (m, m̂)

Pr
[
m̃ ̸= m̂

∣∣∣ m̃← AT.Dec(ask, tk, c), c←$ AT.Enc(apk, dk,m, m̂)
]
≤ negl(λ).

Note this holds only when all queries the anamorphic encryption scheme per-
forms to the underlying PKE are answered correctly. Our last step is then to
prove S,R simulate the ideal PKE correctly. Let Viewreal be the sequence of ora-
cle replies AT.Gen,AT.Enc,AT.Dec (in this order) would observe when executed
with the correct PKE, and Viewsim the sequence of values they get with S,R.
We claim them to be statistically close, implying that Pr [m̃ ̸= m̂] ≤ negl(λ).

Claim 3. ∆(Viewreal,Viewsim) ≤ negl(λ).

A proof of this Claim is presented in the Appendix, Section C.4. Finally,
applying Theorem 1, we conclude that |M̂ | ≤ 2(qe + qd)

2.

Remark 2. Again, this lower bound holds for stateless black-box triplets. If state-
ful anamorphic encryption/decryption is allowed, Lemma 3 only guarantees that
c is a valid ciphertext observed by AT.Enc or AT.Gen (see Remark 1). This worsen
the final bound to M̂ ≤ 2(qe + qd + 2qg)

2 with qg the total queries of AT.Gen.
The proof is readily adapted by replacing ψ∗ with H calls both in S and R.

5.2 Impossibility of Asymmetric AE

The bounds provided in the previous section applies to any black-box anamor-
phic triplet. Although our bound can be achieved asymptotically, see [PPY22],
the only known constructions encrypt anamorphic messages in a symmetric fash-
ion. That is, sender and receiver must have exchanged a secret key in advance.
The lack of black-box asymmetric anamorphic scheme is however no coincidence.
In this section we will indeed prove that such constructions are impossible.

More precisely, we will prove that any black-box anamorphic triplet scheme
satisfying Definition 5, must be insecure with respect to the Weak Asymmetric
security notion (Definition 4) when instantiated for the ideal PKE scheme.
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Theorem 3. For any black-box anamorphic triplet Σ = (AT.Gen,AT.Enc,AT.Dec),
when applied to the ideal PKE Π = (E.Gen,E.Enc,E.Dec) (Section 3.1) there ex-
ists A PPT such that,

AdvWeak-Asy-Anam
A,Σ (λ) ≥ 1

poly(λ)
.

Proof. At a high level the strategy of A, fully described in Figure 9, is as follows.
First it gets a challenge ciphertext c∗ encrypting either (m∗, m̂0) or (m∗, m̂1)
random messages of its choice. Next it locally runs AT.Enc to encrypt m̂0 and
during its execution replaces the response of a randomly chosen query to E.Enc
with c∗. If c∗ encrypts m̂0, AT.Enc should return it with significant probability,
whereas if it encrypts m̂1, this should only happen with negligible probability.

This simple approach however faces a number of technical challenges. First,
we need to ensure A is unlikely to overwrite an encryption query that was
previously performed by AT.Gen, as this will create detectable inconsistencies.
Next, the query c∗ may not follow the expected distribution given dk. This may
be the case since anamorphic security only guarantees c∗ to be indistinguishable
from any other ciphertext given ask, apk but not dk. Thus c∗ is not hard to
distinguish and creates a non-negligible change in the view of AT.Enc.

To address the first issue we rely on a preprocessing phase (Lines 1-5): A
initially runs AT.Enc for ϑ many times (we fix ϑ later) and stores the random-
ness used in encryption queries of the form E.Enc(apk,m∗; r). The idea is that if
AT.Gen performs a query of this kind, either it is easily observed in the prepro-
cessing or AT.Enc queries it with sufficiently low probability for our argument
to go through. After this phase, the attack is executed as mentioned above
(lines 6-13), choosing the query to program randomly among those of the form
E.Enc(apk,m∗; r) where r was not observed in the preprocessing phase.

Regarding the second issue, we will use the fact that AT.Enc can be roughly
treated as a symmetric choice function (see Section 3.5). This will help us con-
clude that, when c∗ is the encryption of m̂0, the probability of choosing it again
is significant.

Let q = poly(λ) be the number of queries made by AT.Enc to E.Enc. Our
first step is to show that although c∗ is biased, this can only increase the prob-
ability of certain (bad) events by a factor of ≈ q, plus a non-negligible term
accounting for the probability that A overwrites a query previously asked by
AT.Gen. To be more precise we call Bias the joint view of AT.Gen, which gen-
erates (apk, ask, dk, tk), AT.Enc executed as in line 9, and AT.Dec(ask, tk, c′).
Similarly, let Real be the same view, with the exception that at line 11 A returns
the correct ciphertext E.Enc(apk,m∗; r). Then we can claim the following bound.

Claim 4. For any predicate p

Pr [ p(Bias) = 1] ≤ q · Pr [ p(Real) = 1] +
q2

ϑ+ 1
+ negl(λ).

The proof of this claim appears in the Appendix, Section C.5. Next we pro-
ceed studying the probability that A returns 1 when c∗ is an encryption of m̂b

for b ∈ {0, 1} separately.
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A(apk, dk) :

1 : // Preprocessing phase

2 : Set R← ∅, sample m∗←$M and m̂0, m̂1←$ M̂

3 : for ϑ times:
4 : Run AT.Enc(apk, dk,m∗, m̂0)

5 : when it queries E.Enc(apk,m∗; r): Store R← R ∪ {r}
6 : // Attack phase

7 : Sample a random i←${1, . . . , q}
8 : Give (m∗, m̂0, m̂1) to the challenger and obtain c∗

9 : Run AT.Enc(apk, dk,m∗, m̂0)

10 : when it queries the i-th time a new E.Enc(apk,m∗; r) with r /∈ R:
11 : reply with c∗

12 : when it returns c′:
13 : return c∗ == c′

Fig. 9. Adversary for the Weak Asymmetric AE game, where ϑ = poly(λ) and q =
poly(λ) is the number of queries made by AT.Enc to E.Enc.

Encryption of m̂1. In this case let Err be the event AT.Dec(ask, tk, c′) ̸= m̂0.
From correctness of the anamorphic encryption scheme, if A replies with the
correct ciphertext at line 11, this event occurs only with negligible probability.
Using Claim 4 we have then that

Pr [c′ = c∗ | b = 1] ≤ Pr [Err] + negl(λ) ≤ q · negl(λ) + q2

ϑ+ 1
+ negl(λ)

=
q2

ϑ+ 1
+ negl(λ)

where the first inequality follows as c∗ is the encryption of m̂1, and therefore,
up to negligible probability AT.Dec(ask, tk, c∗) = m̂1 ̸= m̂0.

Encryption of m̂0. We start by fixing some notation. We will call S∗, S the sets
of randomness r so that the query E.Enc(apk,m∗; r) was respectively performed
by AT.Enc inside the challenger call in line 8 or AT.Enc executed in line 9. As
a direct consequence of the Ciphertext Selection Lemma and Lemma 2 we then
claim that

Claim 5. Calling BadChoice : (∄r′ ∈ S \R : c′ = E.Enc(apk,m∗; r′)) and anal-
ogously BadChoice∗ : (∄r∗ ∈ S∗ \R : c∗ = E.Enc(apk,m∗; r∗)) then

Pr [BadChoice∗] ≤ negl(λ), Pr [BadChoice] ≤ q2

ϑ+ 1
+ negl(λ).

A proof appears in the Appendix, Section C.5. Next, our goal is to argue
that AT.Enc(apk, dk,m∗, m̂0) is close to a symmetric choice function, taking as
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input the ciphertexts it requests through encryption calls and returning one of
them. Conditioning on ¬BadChoice guarantees that this is a choice function.
To argue it is also almost symmetric we use a sequence of hybrid adversaries
where we replace E.Enc with an actual symmetric choice function F , described
in Figure 10.

– A1: The adversary described in Figure 9, when the challenger encrypts m̂0.

– A2: As A1, but to compute c∗ it samples c1, . . . , cq←${0, 1}ℓ and evaluates
the function F , described in Figure 10, setting c∗ = F(c1, . . . , cq).

– A3: As A2, but to compute c′ it samples c2, . . . , cq←${0, 1}ℓ and evaluates
the function F , described in Figure 10, setting c′ = F(c∗, c2, . . . , cq).

F(c1, . . . , cq) :

1 : Sample a random permutation π : {1, . . . , q} → {1, . . . , q}.
2 : Run AT.Enc(apk, dk,m∗, m̂0)

3 : when it queries a new E.Enc(apk,m∗; r) with r /∈ R the i-th time:
4 : reply cπ(i)

5 : when it queries E.Dec(ask, c) with c ∈ {c1, . . . , cq}:
6 : reply m∗.
7 : when it returns cout
8 : if cout ∈ {c1, . . . , cq}: return cout

9 : else : return a random cout←${c1, . . . , cq}

Fig. 10. Symmetric choice function used to replace E.Enc in A1,A2. Note this is im-
plicitly parametrized by apk, dk and R. Equality to ask can be checked querying E.Gen.

For notational convenience we will call c∗i , c′i the ciphertexts generated by Ai.
Then we can claim that F is a symmetric choice function and that the statistical
distance between the ciphertexts generated by these adversaries is small.

Claim 6. F is a symmetric choice function (see Definition 9).

Claim 7. ∆((c∗1, c
′
1), (c

∗
2, c

′
2)) ≤ negl(λ).

Claim 8. ∆((c∗2, c
′
2), (c

∗
3, c

′
3)) ≤

2q2

1+ϑ + negl(λ).

All three Claims are proven in the Appendix, Section C.5. Combining them
with Lemma 4 we have that Pr [c∗3 = c′3] ≥ q−1 − negl(λ) and in particular

Pr [c∗ = c′ | b = 0] = Pr [c∗1 = c′1] ≥ Pr [c∗3 = c′3]−
2q2

ϑ+ 1
− negl(λ)

≥ 1

q
− 2q2

ϑ+ 1
− negl(λ).
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Advantage Bound. Combining both intermediate results, a bound on the advan-
tage of A can be derived as

Adv(A) = |Pr [c∗ = c′ | b = 0]− Pr [c∗ = c′ | b = 1]|

≥
(
1

q
− 2q2

ϑ+ 1
− negl(λ)

)
−
(

q2

ϑ+ 1
+ negl(λ)

)
≥ 1

q
− 3q2

ϑ+ 1
− negl(λ).

Setting ϑ = 6q3 − 1 we get that the advantage is negligibly close to 1/2q. As
q = poly(λ) the Theorem is proven.

Remark 3. As done previously, the Theorem only refers to a stateless anamor-
phic triplet. In this case however we choose not to discuss about stateful variants
as, even in anamorphic mode, the scheme is asymmetric, with potentially many
senders holding the same dk. Thus keeping state in such case does not appear
meaningful.

6 Dual Construction

As stated in Section 3.4, the Ciphertext Selection Lemma holds only for a cer-
tain parameters choice of the ideal PKE. Thus it would not apply to black-box
AE for the specific class of PKE with small message space and dense ciphertext
space. In this section we prove the above restriction13 to be necessary. We do so
by showing that for this class of PKE (further satisfying a technical condition
explained below) there exists a simple compiler to a black-box asymmetric AE
with exponential anamorphic message space. We call this the "Dual Construc-
tion" as it is reminiscent of the black-box solution in [PPY22], but swapping
the role of regular and anamorphic messages. Let Π = (E.Gen,E.Enc,E.Dec) be
the PKE with small message space and dense ciphertext space, having (apk, ask)
as a pair of keys. At high level the idea is to have another PKE scheme, call it
Πpr = (Πpr.Gen,Πpr.Enc,Πpr.Dec), with a corresponding pair of keys (dpk, dsk),
and to set dk = (dpk, ask). In order to encrypt a normal message m and a covert
message m̂ in a normal looking ciphertext c, m̂ is encrypted with Πpr.Enc(dpk, m̂)
until it obtains through rejection sampling a c such that E.Dec(ask, c) = m. A
detailed description of the anamorphic triplet Σ = (AT.Gen,AT.Enc,AT.Dec) for
Π appears in Figure 11.

For this to work we need the PKE Πpr to produce ciphertexts that look “uni-
formly distributed” over the ciphertext space of Π. This can be achieved through
a (weak) pseudorandom ciphertexts PKE scheme [vH04, Möl04], see Appendix,
Section A.1. Next we formalize the conditions that Π = (E.Gen,E.Enc,E.Dec)
has to satisfy, in order to apply this generic compiler to it and obtain an AE
scheme. Those are
13 Which does not affect the generality our result, but only prevents it to be extended

to such specific case.
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1. Given (pk, sk)←$ E.Gen(λ), there exists p = 1/poly(λ) such that, for all
m ∈M and c uniform over the ciphertext space Pr [E.Dec(sk, c) = m] ≥ p.

2. Given (pk, sk)←$ E.Gen(λ), and m ∈M , then c←$ E.Enc(pk,m) implies that
c is uniformly distributed over the ciphertexts that decrypt to m, i.e.

c ∼ U({c0 : E.Dec(sk, c0) = m}) .

The first means at the same time that the plaintext space is polynomially small
and the ciphertext space dense. The second one instead is introduced for tech-
nical reasons, to ensure that a ciphertext for Π obtained through rejection sam-
pling has the same distribution of a fresh encryption computed with E.Enc,
which is needed to prove the final construction to be anamorphic. Finally, note
that the ideal PKE scheme defined in Section 3.1 satisfies both conditions when
ℓ− ρ = O(log λ).

AT.Gen(λ)

1 : (pk, sk)←$ E.Gen(λ)

2 : (dpk, dsk)←$ Πpr.Gen(λ)

3 : apk← pk, ask← sk

4 : dk← (dpk, ask), tk← dsk

5 : return (apk, ask, dk, tk)

AT.Dec(ask, tk, c)

1 : return Πpr.Dec(tk, c)

AT.Enc(apk, dk,m, m̂)

1 : Parse dk as (dpk, sk)

2 : do // Rejection Sampling

3 : c←$ Πpr.Enc(dpk, m̂)

4 : while m ̸= E.Dec(sk, c)

5 : return c

Fig. 11. Black-Box Anamorphic Triplet Σbb. Note AT.Enc runs in expected polynomial
time O(1/p) = poly(λ). This can be turned into PPT by limiting the while loop to λ/p
iterations, making however AT.Enc’s usage of Π non-uniform.

6.1 Anamorphism

Theorem 4. If Πpr is a PKE with weak pseudorandom ciphertext (see Appendix,
Section A.1) and Π is an IND-CPA secure PKE satisfying the two conditions
in Section 6, then Π equppied with Σbb defined in Figure 11 is a Black-Box
Anamorphic Encryption scheme.

Proof. Let D be an adversary distinguishing RealGΠ from AnamorphicGΣbb . We
reduce it to an adversary A against the weak pseudorandom-ciphertext property
of Πpr, described in Figure 12. Precisely, A plays the game W-PRCtGb

Πpr,A with
access to O which, on input m̂, returns either a random string s when b = 0 or
the result of Πpr.Enc(pk, m̂), with pk chosen by the challenger, when b = 1. Its
strategy is to run D, answering its encryption queries via O. It does so through
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rejection sampling as done in AT.Enc, performing ϑ attempts each time before
giving up (we specify a suitable ϑ later in the proof).

AO(λ) :

1 : Sample (pk, sk)←$ E.Gen(λ) and run D(pk, sk)
2 : when D queries (mi, m̂i) the i-th time:
3 : for ϑ times: // Rejection Sampling with ϑ attempts

4 : Get c← O(m̂i) from the PRC encryption oracle
5 : if mi = E.Dec(sk, c): reply c to D and break
6 : if no reply was given to D in the previous loop:
7 : return ⊥ // i.e. abort

8 : when D returns b′: return b′

Fig. 12. Adversary A parametrized by ϑ reducing D for Anamorphism to W-PRCtG.

Formally let q be an upper bound on the total queries performed by D and
recall p to be a lower bound on the probability that a random ciphertext for Π de-
crypts to a given message (by the hypothesis on Π, p ≥ 1/poly(λ)). We call Aborti
the event where A aborts after the i-th query of D, and Abort =

∨q
i=1 Aborti.

First we claim that for a sufficiently large ϑ, this occurs with negligible proba-
bility.

Claim 9. If ϑ ≥ log2(q) · λ/p then Pr [Abort] ≤ negl(λ).

Then, up to negligible probability, it suffices to study the advantage of A
conditioning on ¬Abort. If b = 0, then A obtains random strings from O in
the ciphertext space. In particular its replies to the i-th query (mi, m̂i) is replied
with c uniformly distributed over the ciphertext such that E.Dec(sk, c) = mi. Our
second condition on Π implies follows the same distribution of E.Enc(pk,mi), and
so A perfectly simulates the real game in Figure 1.

Conversely if b = 1, its behavior is identical to AT.Enc(apk, dk,mi, m̂i) (up
to the negligible failing probability). Thus conditioning on ¬Abort it perfectly
simulates the view of D in the anamorphic game. We thus conclude that

AdvAnamD,Π,Σbb(λ) ≤ AdvW-PRCtG
A,Πpr (λ) + negl(λ).

Proof of Claim 9. Let Aborti,j be the event in which, while replying to the i-th
query, A gets a ciphertext c such that E.Dec(sk, c) ̸= mi in the j-th repetition of
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the loop.14 As these events are all mutually independent, though a union bound

Pr [Abort] ≤
∑q

i=1
Pr [Aborti] =

∑q

i=1

∏ϑ

j=1
Pr [Aborti,j ]

≤ q(1− p)ϑ ≤ q · 2−ϑp ≤ 2−λ

where the first inequality follows as Pr [Aborti,j ] is smaller than 1− p, while the
second one follows as (1− p)1/p ≤ 1/2 for all p ∈ [0, 1].

6.2 Weak Asymmetric

Theorem 5. If Πpr is an IND-CPA secure PKE and Π is a PKE satisfying the
two conditions in Section 6, then, Π equipped with Σbb defined in Figure 11 is a
Weak Asymmetric Anamorphic Encryption scheme.

Proof. Let D be a distinguisher for the weak asymmetric anamorphic security
game (See Section 2.3). We use it to construct an adversary A for the IND-CPA
security of Πpr fully described in Figure 13. The reduction simply generates the
public parameters of Π and runs D. To reply to D’s encryption query, A adopts
the same strategy as in the proof of Theorem 4, i.e. it performs rejection sampling
on the ciphertexts generated by the IND-CPA oracle for Πpr.

A(dpk) :

1 : Get (pk, sk)←$ E.Gen(λ) and set the double key dk← (dpk, sk)

2 : Run D(pk, dk) until it queries (m, m̂0, m̂1)

3 : for λ/p times: // Rejection sampling as AT.Enc

4 : Send (m̂0, m̂1) to the encryption oracle and get c
5 : if m = E.Dec(sk, c): reply c to D and break
6 : if no reply was given to D in the previous loop:
7 : reply ⊥ to D
8 : when D returns b′: return b′

Fig. 13. A reducing weak asymmetric anamorphic security of Σbb to IND-CPA of Πpr.

Calling b the challenge bit for A, it is immediate to observe that A per-
fectly emulates the behavior of AT.Enc(apk, dk,m, m̂b), including the (small)
error probability. We can thus conclude that

AdvWeak-Asy-Anam
D,Σbb (λ) ≤ AdvIND-CPA

A,Πpr (λ) + negl(λ).

14 This is technically not well-defined as A may break the loop before the j-th iteration.
This can be fixed re-defining A∗ to (pointlessly) continue the loop execution ϑ times
and observe A and A∗ are functionally equivalent. We nevertheless omit such details.
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Remark 4. One can verify that both properties of weak pseudorandom cipher-
texts and IND-CPA security are implied by the regular pseudorandom cipher-
texts property. So, if Πpr has pseudorandom ciphertexts it satisfies both condi-
tions for anamorphism and weak asymmetric anamorphism.
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A Primitives

A.1 Asymmetric Encryption with pseudorandom ciphertexts

We recall the notion of asymmetric encryption pseudorandom ciphertext from
[vH04, Möl04]. Let Π = (E.Gen,E.Enc,E.Dec) be an asymmetric encryption
scheme with message space M and ciphertext space C. We define the game
PRCtGb

Π,D(λ), for b ∈ {0, 1}, as in Fig. 14 and call, for any PPT adversary D its
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advantage in distinguish between the two as

AdvPRCtGD,Π (λ) :=
∣∣Pr [PRCtG0

Π,D(λ) = 1
]
− Pr

[
PRCtG1

Π,D(λ) = 1
]∣∣ .

PRCtGb
Π,D(λ)

1 : (pk, sk)←$ E.Gen(λ)

2 : return DOb
pr(pk,·)(λ, pk) where

3 : O0
pr(pk,m) returns a random string in C

4 : O1
pr(pk,m) = E.Enc(pk,m)

Fig. 14. The pseudorandom ciphertext game for asymmetric encryption Π.

Definition 11. Let Π be an asymmetric encryption scheme. Π has pseudoran-
dom ciphertexts if for every PPT adversary D we have

AdvPRCtGD,Π (λ) ≤ negl(λ).

We also define a weak variant of an asymmetric encryption with pseudoran-
dom ciphertexts in which the distinguisher is not provided with the public key of
the scheme. As above, let Π = (E.Gen,E.Enc,E.Dec) be an asymmetric encryp-
tion scheme with message space M and ciphertext space C We define the game
W-PRCtGb

Π,D(λ), for b ∈ {0, 1}, as in Figure A.1. Then, as above, we define the
advantage of any adversary D distinguishing between the two as

AdvW-PRCtG
D,Π (λ) :=

∣∣Pr [W-PRCtG0
Π,D(λ) = 1

]
− Pr

[
W-PRCtG1

Π,D(λ) = 1
]∣∣ .

W-PRCtGb
Π,D(λ)

1 : (pk, sk)←$ E.Gen(λ)

2 : return DOb
pr(pk,·)(λ) where

3 : O0
pr(pk,m) returns a random string in C

4 : O1
pr(pk,m) = E.Enc(pk,m)

Fig. 15. The weak pseudorandom-ciphertext game for asymmetric encryption Π.

Definition 12. Let Π be an asymmetric encryption scheme. Π has weak pseu-
dorandom ciphertexts if for every PPT adversary D

AdvW-PRCtG
D,Π (λ) ≤ negl(λ).
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It is easy to observe that the property of asymmetric pseudorandom cipher-
texts implies the weak variant defined above.

Next, we give a generic compiler to turn any PKE scheme Π = (E.Gen,
E.Enc,E.Dec) with message and ciphertext space respectively M and C, into a
PKE Π′ = (E.Gen′,E.Enc′,E.Dec′) with the same message and ciphertext space
that has weak pseudorandom ciphertexts. The idea is to shuffle the ciphertexts
produced by the encryption algorithm of Π using a pseudorandom permutation
(PRP) F : K × C → C, which key k ∈ K is stored in the public key pk′ of Π′.
Note that as the adversary in W-PRCtG game is not allowed to see pk′, then
he can’t see k. Since F is a PRP, for the adversary is computationally hard to
distinguish between ciphertexts produced with the "tweaked" PKE Π′ from the
output of a random permutation, i.e., truly-random strings in C.
The construction of Π′ is given in Figure A.1.

E.Gen′(λ)

1 : (pk, sk)←$ E.Gen(λ)

2 : k←$K
3 : pk′ = (pk, k), sk′ = sk

4 : return (pk′, sk′)

E.Dec′(sk′, c′)

1 : c = F−1(k, c)

2 : return E.Dec(sk′, c)

E.Enc′(pk′,m)

1 : Parse pk′ as (pk, k)

2 : c←$ E.Enc(pk,m)

3 : c′ = F (k, c)

4 : return c′

Fig. 16. PKE Π′ with weak pseudorandom ciphertexts.

Theorem 6. If F is a PRP and Π is an asymmetric encryption scheme, then
Π′ defined in Figure A.1 is a PKE with weak pseudorandom ciphertexts.

Proof. Let D be a distinguisher for W-PRCtG0
Π′,D from W-PRCtG1

Π′,D, then we
can construct a distinguisher A for the PRP game of F . The pseudocode of A
is given in Figure A.1.

Namely, if A is playing the game PRP0, then the oracle O given to A is
a truly random permutation f , while if it is playing the game PRP1, then O
answer the query of A with the output of a keyed function F . The strategy
of A consists in answer the queries of D using O and emulating E.Enc′. Now,
if A is playing the game PRP0 then the answers which is giving to D are the
outputs of a random permutation applied on ciphertexts produced by E.Enc, i.e.,
a random string in C, like in W-PRCtG0

Π′,D. If A is playing the game PRP1 then
the answers which is giving to D are the outputs of a keyed function F applied
on ciphertexts produced by E.Enc, i.e., its behavior is exactly the one of E.Enc′,
like in W-PRCtG1

Π′,D. We can conclude that

AdvW-PRCtG
D,Π′ (λ) ≤ AdvPRPA (λ).
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AO(λ)

1 : (pk, sk)←$ E.Gen(λ)

2 : Run D
3 : when D queries mi:
4 : c←$ E.Enc(pk,mi)

5 : c′ = O(c)
6 : reply to D with c′

7 : when D returns b′: return b′

Fig. 17. Distinguher A for PRP reducing a distinguisher D for W-PRCtG.

B Supplementary Definitions

B.1 Correctness of Anamorphic Encryption

Let Π be a PKE scheme equipped with an Anamorphic Triplet Σ = (AT.Gen,
AT.Enc,AT.Dec). The correctness game, for b ∈ {0, 1} and A a PPT adversary,
is defined in Figure 18.

CorbΠ,Σ,m(A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : return AOb(apk,ask,dk,tk,·)(apk, ask) where

3 : O0(apk, ask, dk, tk, m̂) = AT.Dec(ask, tk,AT.Enc(apk, dk,m, m̂))

4 : O1(apk, ask, dk, tk, m̂) = m̂

Fig. 18. Anamorphic Encryption correctness game.

And we define the advantage of an adversary A in breaking the correctness
property as

AdvcorA,Π,Σ,m(λ) =
∣∣Pr [Cor0Π,Σ,m(A) = 1

]
− Pr

[
Cor1Π,Σ,m(A) = 1

]∣∣ .
Definition 13 (δ-Correctness). An Anamorphic Encryption scheme Π equipped
with Anamorphic Triplet Σ is said to be δ-correct for a negligible δ(λ) if for an
arbitrary m ∈M and for all PPT adversary A it holds that

AdvcorA,Π,Σ,m(λ) ≤ δ(λ).

B.2 Robustness of Anamorphic Encryption

Let Π = (E.Gen,E.Enc,E.Dec) be a PKE scheme equipped with an Anamorphic
Triplet Σ = (AT.Gen,AT.Enc,AT.Dec). The robustness game, for b ∈ {0, 1} and
A a PPT adversary, is defined in Figure 19.
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RobustbΠ,Σ(A)

1 : ((apk, ask), dk, tk)←$ AT.Gen(λ)

2 : return AOb(apk,ask,tk,·)(apk, ask) where

3 : O0(apk, ask, tk,m) = AT.Dec(ask, tk,E.Enc(apk,m))

4 : O1(apk, ask, tk,m) =⊥

Fig. 19. Anamorphic Encryption robustness game.

And we define the advantage of an adversary A in breaking the robustness
property as

AdvrobA,Π,Σ(λ) =
∣∣Pr [Robust0Π,Σ(A) = 1

]
− Pr

[
Robust1Π,Σ(A) = 1

]∣∣ .
Definition 14 (Robustness). An Anamorphic Encryption scheme Π equppied
with Anamorphic Triplet Σ is said to be robust if for all PPT adversary A it
holds that

AdvrobA,Π,Σ(λ) ≤ negl(λ).

B.3 Fully Asymmetric Anamorphic Encryption

Let Π be a PKE scheme equipped with an Anamorphic Triplet Σ = (AT.Gen,
AT.Enc,AT.Dec). The Fully Asymmetric game, for b ∈ {0, 1} and A a PPT
adversary, is defined in Figure 20.

FAsyAnam-IND-CPAb
Σ(A)

1 : (apk, ask, dk, tk)←$ AT.Gen(λ)

2 : (m0,m1, m̂0, m̂1)←$A(apk, dk)

3 : c←$ AT.Enc(apk, dk,mb, m̂b)

4 : return A(c)

Fig. 20. Fully Asymmetric Anamorphic Encryption game.

We define the advantage of an adversary A in breaking the Fully Asymmetric
property as

AdvFAsy-AnamA,Σ (λ) =
∣∣Pr [FAsyAnam-IND-CPA0

Σ(A) = 1
]

−Pr
[
FAsyAnam-IND-CPA1

Σ(A) = 1
]∣∣ .

Notice that the adversary does not receive any (additional) encryption oracle
as having both apk and dk it can create both regular and anamorphic ciphertexts
on its own.
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Definition 15 (Fully Asymmetric AE). An Anamorphic Encryption scheme
Π equppied with Anamorphic Triplet Σ is said to be Fully Asymmetric if for every
PPT adversary A it holds that

AdvFAsy-AnamA,Σ (λ) ≤ negl(λ).

C Postponed Proofs

C.1 IND-CPA of Ideal PKE

In this section we prove that the ideal PKE of Section 3.1 is IND-CPA secure.

Theorem 7. If ρ = Ω(λ) and |SK| = Ω(2λ) then the ideal PKE scheme in
Fig. 4 is IND-CPA secure.

Proof. Given a PPT adversary A, let pk be the chosen public key, m0,m1 the
plaintexts A sends to the challenger, and c∗ be the challenge ciphertext, i.e. such
that c∗ = ψ(pk,mb, r

∗) for b ∼ U({0, 1}) and r∗ ∼ U({0, 1}ρ). Recall A can only
access the ideal PKE through oracle queries. We define two bad events. BadSK
in which A queries at any point E.Dec(sk, ·) or E.Gen(λ; sk), i.e. it guesses the
secret key correctly. BadRnd in which A queries at any point E.Enc(pk, · ; r∗),
i.e. it guesses the randomness correctly. Calling q the (polynomially bounded)
number of total PKE queries performed by A, the following bounds hold for the
events above:

Claim 10. With the previous notation

Pr [BadSK] ≤ q

|SK| − q
= negl(λ), Pr [BadRnd] ≤ q

2ρ − q
= negl(λ).

Conditioning on those events not occurring, we show A has almost no infor-
mation on b, i.e., conditioning on ¬BadSK∧¬BadRnd then b is almost uniformly
distributed from the point of view of A. The idea is that it might still have
queried many encryptions of one messages, and if none of those collided with
c∗ then he may guess the encrypted message to be the other one. Formally, let
View be the view15 of A when it halts and ¬BadSK and ¬BadRnd occur (ex-
cluding c∗ from the view). Further call R0 the set of random coins such that
E.Enc(pk,m0; r) was not queried by A and R1 the same set but with respect to
m1. Finally, for ease of notation, let us call fb(·) = ψ(pk,mb; ·) for b ∈ {0, 1}.
Then conditioning on the view, c∗ is uniform over f0(R0) ∪ f1(R1) and b = 0 iff
c∗ ∈ f0(R0). Thus

Pr [b = 0 |View] = Pr [c∗ ∈ f0(R0) |View] =
|f0(R0)|

|f0(R0) ∪ f1(R1)|
=

|R0|
|R0|+ |R1|

15 i.e. the joint distribution of A’s input, random coins and oracle replies. Note, oracle
queries are a deterministic function of the view, and thus need not to be included.
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Finally, as 2ρ ≥ |Rb| ≥ 2ρ − q, we have that

1

2
− q

2ρ+1
≤ |R0|
|R0|+ |R1|

≤ 1

2
+

q

2ρ+2 − 2q
.

The same bounds then applies to the conditional probability that b = 1. We can
thus conclude that, calling b′ the final bit guessed by A

1

2
· Adv(A) =

∣∣∣∣Pr [b = b′]− 1

2

∣∣∣∣
≤

∣∣∣∣Pr [b = b′,¬BadSK,¬BadRnd]− 1

2

∣∣∣∣+ Pr [BadSK] + Pr [BadRnd]

≤ negl(λ) + negl(λ) + negl(λ).

C.2 Markov Lower Bound

Proof of Claim 1. We first show a Markov-type lower bound, that is, given a
discrete variable X with support Ω ⊆ [0, 1] and expectation µ, then for all
δ ∈ [0, 1] we have

Pr [X ≥ δ] ≥ µ− δ.

Indeed, dividing Ω in Ω− = {x : x < δ} and Ω+ = Ω \ Ω−, by definition of
expectation

µ =
∑
x0∈Ω

x0 Pr [X = x0] =
∑

x0∈Ω−

x0 Pr [X = x0] +
∑

x0∈Ω+

x0 Pr [X = x0]

≤ δ Pr [X < δ] + Pr [X ≥ δ] ≤ δ + Pr [X ≥ δ]

where the first inequality follows upper bounding x0 ∈ Ω− with δ and x0 ∈ Ω+

with 1.
Next we use this Markov-type inequality to prove the claim. In our case

the random variable X is such that X = Pr [c ∈ S |m = m0, m̂ = m̂0, s = s0]
with probability Pr [m = m0, m̂ = m̂0, s = s0] for all m0, m̂0, s0. Then is easy to
see that X has average Pr [c ∈ S] and that it is contained in [0, 1]. Moreover
Pr [(m, m̂, s) ∈ Vδ] = Pr [X ≥ δ]. We thus conclude that

Pr [(m, m̂, s) ∈ Vδ] = Pr [X ≥ δ] ≥ µ− δ =
1

2
· Pr [c ∈ S] .

C.3 Symmetric Choice Functions

Proof of Lemma 4. Let n = |X| and P (x1, . . . , xk) = Pr [f(x1, . . . , xk) = x1].
By definition of choice function f has to return one of its arguments, meaning
that for x1, . . . , xk all distinct

P (x1, . . . , xk) + P (x2, . . . , xk, x1) + . . .+ P (xk, x1, . . . , xk−1) = 1.

As a first step we state some properties of P .
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Claim 11. The following bounds for the sum of P over Xk holds:∑
x
P (x) ≤ nk,

∑
x
P (x) ≥ nk

k
− knk−1.

Next we study the distribution of z = f(u).

Claim 12. For all a ∈ X, Pr [z = a] ≥
(

k
nk

∑
x P (a,x)

)
− k3

n2 .

Using both claim, the theorem’s proof follows as

Pr [f(z,v) = z] =
∑

y

1

nk−1
· Pr [f(z,y) = z]

=
1

nk−1

∑
a,y

Pr [z = a] Pr [f(a,y) = a]

≥ 1

nk−1

∑
a,y

(∑
x

k

nk
P (a,x)− k3

n2

)
P (a,y)

=
k

n2k−1

∑
a,y,x

P (a,x)P (a,y)− k3

nk+1

∑
a,y

P (a,y)

≥ k

n2k−1

∑
a

(∑
x
P (a,x)

)2

− k3

n

≥ k

n2k−1
· 1
n

(
nk

k
− k · nk−1

)2

−O(n−1)

=
k

n2k
·
(
n2k

k2
+ (nk−1k)2 − 2n2k−1

)
−O(n−1)

=
k

n2k
· n

2k

k2
−O(n−1) =

1

k
−O(n−1).

Where the first inequality follows by Claim 12, the second one applying Claim 11
on the second term. The third inequality follows from AM-QM where, calling
s(a) =

∑
x P (a,x), the sum of s(a) coincides with the sum of P over Xk, and is

therefore lower bounded as per Claim 11.

Proof of Claim 11. The first part is trivial as P (x) ≤ 1. For the second part
let S = {(x1, . . . , xk) ∈ Xk : ∀i, j(xi ̸= xj)}. The size of Xk \ S is smaller
than

(
k
2

)
· nk−1, as it is a union of the

(
k
2

)
sets Di,j containing all vectors x with

xi = xj (so that |Di,j | = nk−1). As a consequence then |S| ≥ nk −
(
k
2

)
nk−1.

Next we can partition S into a collection P of |S|/k classes of size k, each
containing the cyclic shift of a vector x ∈ S. Formally

[(x1, . . . , xk)] := {(x1+i, . . . , xk+i) : i ∈ Z/kZ}

note that the vectors in S have entries that are all distinct, so each such cyclic
shift produces a different vector. Moreover, as observed previously, the sum of
P (x) for x ∈ [x] equals 1, as the choice function must return one of its entries.
We thus conclude that∑

x∈Xk
P (x) ≥

∑
x∈S

P (x) =
|S|
k
≥ nk

k
−

(
k

2

)
nk−1

k
≥ nk

k
− knk−1.
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Proof of Claim 12. Let S = {(x2, . . . , xk) ∈ Xk−1 : ∀i, j(xi ̸= a, xi ̸= xj)}. To
lower bound its size let Di the set of points in Xk−1 with i-th coordinate equal
to a and Di,j the subset of Xk−1 with xi = xj . Then16

|Xk−1 \ S| =
∣∣∣∣⋃k

i=2
Di ∪

⋃
i<j

Di,j

∣∣∣∣ ≤ knk−2 +

(
k − 1

2

)
nk−2 ≤ k2nk−2.

Thus |S| ≥ nk−1−k2nk−2. We can finally lower bound the probability that z = a
as

Pr [z = a] ≥ k
∑
x∈S

P (a,x)
1

nk
≥ k

nk

∑
x∈Xk−1

P (a,x) − k3

nk

∑
x∈Xk−1\S

P (a,x)

≥ k

nk

∑
x∈Xk−1

P (a,x) − k3

n2
.

The first bound follows by restricting all components of u to be different, lower
bounding the probability of this not happening with 0, and later, as z = a ⇒
a ∈ {u1, . . . , uk}, grouping all vectors shifting the (only) entry equal to a in the
first position (meaning that each term P (a,x) is repeated k times).

C.4 Communication Bound Proof

Proof of Claim 3. We prove the claim through a sequence of hybrid distributions
V0, . . . , V4. Recall ξ∗ : SK × {0, 1}ℓ → M ∪ {⊥} is a biased random function
such that ξ∗(sk, c) = m0 with probability 2ρ−ℓ for all m0 ∈ M . Moreover ψ∗ :
PK×M × {0, 1}ρ → {0, 1}ℓ is a truly random function.

V0: The real view Viewreal.
V1: As V0 but queries to E.Dec(sk, c) are replied withm if c = E.Enc(pk,m; r) was

previously obtained where pk = ϕ(sk), or with ξ∗(sk, c) otherwise. Moreover
queries to E.Enc(pk,m; r) are replied with ψ∗(pk,m, r).

V2: As V1, but during the execution of AT.Dec, the query E.Dec(ask, c∗) always
returns m∗.

V3: As V2, but while executing AT.Dec, the query E.Dec(sk, c) is answered with
• c∗ if (sk, c) = (ask, c∗).
• m if AT.Gen or AT.Dec already got c = E.Enc(pk,m; r) with pk = ϕ(sk).
• ξ∗(sk, c) otherwise.

V4: The simulated view Viewsim.

The proof will follow showing the statistical distance between every two con-
secutive distributions is negligible (denoted with Vi ≈ Vi+1). To fix notation Vi,n
represents the first n replies observed in Vi while q denote the maximum number
of queries, so that Vi = Vi,q.
16 Here we assume

(
n
m

)
= 0 when n < m.
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V0 ≈ V1. We prove by induction that

∆(V0,n, V1,n) ≤ 2n · q
2ρ
.

The base case is trivial. Assuming this to hold for n, we study the (n + 1)-th
query in both distributions, conditioning on V0,n = v = V1,n a given view. If this
query is E.Gen(λ; sk), the reply is identically distributed in both executions.

If next query is E.Enc(pk,m; r) and this was already asked the reply remains
consistent. Else, let C be the set of ciphertexts either obtained through encryp-
tion queries or appearing in decryption ones with E.Dec(sk, c) ̸= m. D is the set
of ciphertexts such that E.Dec(sk, c) = m was previously observed. R is the set
of randomness r such that E.Enc(pk,m, r) was ask before. Let c, c′ be the replies
in V0, V1 respectively. We study the probability of Pr [c = c0 |V0,n = v]:

– If c0 ∈ C then Pr [c = c0] = 0, as we assumed the query to be different from
previous ones.

– If c0 ∈ D then c = c0 if the queried randomness matches the one such
that c0 = ψ(pk,m, r0). Due to the distribution of ψ, such r0 is uniform over
{0, 1}ρ \R, therefore

Pr [c = c0 |V0,n = v] =
1

|{0, 1}ρ \R|
≤ 1

2ρ − q
.

Where the inequality follows as |R| ≤ q, as each query increases the size of
R by at most one.

– If c0 /∈ (C ∪D), since conditioning on c /∈ D implies that c is uniform over
{0, 1}ℓ \ (D ∪ C), we have that

Pr [c = c0 |V0,n = v] = Pr [c = c0 | c /∈ D, V0,n = v] · Pr [c /∈ D, V0,n = v]

=
1

|{0, 1}ℓ \ (C ∪D)|
·
(
1− |D|
|{0, 1}ρ \R|

)

Using again the fact that the size of (C ∪D) and R is at most q it can then
be easily shown that

Pr [c = c0 |V0,n = v] ≤ 1

2ℓ − q
=

1

2ℓ
+

q

2ℓ(2ℓ − q)

Pr [c = c0 |V0,n = v] ≥ 1

2ℓ
·
(
1− q

2ρ − q

)
=

1

2ℓ
− q

2ℓ(2ρ − q)
.
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Finally, c′ = ψ∗(pk,m, r) is uniform over {0, 1}ℓ. Thus the statistical distance of
c, c′ conditioning on V0,n = v = V1,n can be bounded as:

∆(c|V0,n=v, c
′
|V1,n=v) =

1

2

∑
c0

|Pr [c = c0 |V0,n = v]− Pr [c′ = c0 |V1,n = v]|

=
1

2

∑
c0

∣∣∣∣Pr [c = c0 |V0,n = v]− 1

2ℓ

∣∣∣∣
≤ 1

2

∑
c0∈C

1

2ℓ
+

1

2

∑
c0∈D

1

2ρ − q
+

1

2

∑
c0 /∈C∪D

q

2ℓ(2ρ − q)

≤ 1

2

(
q

2ℓ
+

q

2ρ − q
+

q

2ρ − q

)
≤ 2 · q

2ρ
.

Where the first inequality follows as c /∈ C for the first term, because 1/(2ρ− q)
is always greater than 2−ℓ for the second term, and as the distance between the
conditional probability of c = c0 from 2−ℓ when c0 /∈ C was previously upper-
bounded by 1/(2ℓ(2ρ − q)) for the third term. The second inequality again uses
the fact that C ∪ D has size at most q, and the last one holds asymptotically
given q polynomially bounded, and ℓ − ρ = Ω(λ). This suffices to prove the
inductive step for the encryption query case.

Lastly, if next query is E.Dec(sk, c), if this was previously queried or c =
E.Enc(pk,m; r) was previously observed, the reply is identical in both distribu-
tions. Otherwise, let m,m′ be the replies in V0, V1 respectively. By the definition
of ξ∗(sk, c), for all m0 ∈M

Pr [m′ = m0] =
2ρ

2ℓ
.

Regarding m, for each m0 let Cpk be the set of ciphertext computed with pk or
involved in a decryption query with sk = ϕ−1(pk). Further let C(m0) the set
of valid encryption of m0 under pk, i.e. C(m0) = {ψ(pk,m0, r) : r ∈ {0, 1}ρ}.
Conditioning on previous queries, C(m0)\Cpk is uniform over {0, 1}ℓ \Cpk, thus

Pr [m = m0 |V0,n = v] = Pr [c ∈ C(m0)] =
|C(m0) \ Cpk|
|{0, 1}ℓ \ Cpk|

.

From this expression, using the fact that Cpk has size smaller than q and |C(m0)| =
2ρ, we can bound the distance of the above probability from 2ℓ−ρ in absolute
value:

Pr [m = m0 |V0,n = n] ≤ 2ρ

2ℓ − q
≤ 2ρ

2ℓ
+

2ρ

2ℓ − q
· q
2ℓ

Pr [m = m0 |V0,n = n] ≥ 2ρ − q
2ℓ

≥ 2ρ

2ℓ
− q

2ℓ
.

This implies as noted that the distance from the same event in V1 is bounded
by q/2ℓ, i.e.

|Pr [m = m0 |V0,n = v]− Pr [m′ = m0 |V1,n = v]| ≤ q

2ℓ
.
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where the inequality hold asymptotically if q is polynomially bounded and ℓ−ρ =
Ω(λ). The same bound can be shown for the remaining case m =⊥. Indeed V1
returns a decryption error with probability 1− 2ρ+µ−ℓ. In V0 instead, let Cpk be
as before and C(⊥) be the set of invalid ciphertext under key pk. Then as before
C(⊥) \ Cpk is uniform over {0, 1}ℓ \ Cpk. Therefore

Pr [m =⊥ |V0,n = v] =
|C(⊥) \ Cpk|
|{0, 1}ℓ \ Cpk|

.

Using the fact that |C(⊥)| = 2ℓ − 2ρ+µ, the distance of the probability above
from the one measured in V1 we can bound as

Pr [m =⊥ |V0,n = v] ≤ 2ℓ − 2ρ+µ

2ℓ − q
≤

(
1− 2ρ+µ

2ℓ

)
+

q

2ℓ
· 2

ℓ − 2ρ+µ

2ℓ − q

Pr [m =⊥ |V0,n = v] ≥ 2ℓ − 2ρ+µ − q
2ℓ

=

(
1− 2ρ+µ

2ℓ

)
+

q

2ℓ
.

Hence the probability of the events m =⊥ and m′ =⊥ given the previous queries
have distance smaller that q · 2ℓ. Combining the provided inequalities yields a
bound on the conditional statistical distance

∆(m|V0,n=v,m
′
|V1,n=v) =

=
1

2

∑
m0∈M∪{⊥}

|Pr [m = m0 |V0,n = v]− Pr [m′ = m0 |V1,n = v]|

≤ 1

2

∑
m0∈M∪{⊥}

q

2ℓ
=

1

2
· (2

µ + 1)q

2ℓ
≤ q

2ρ
.

where the last inequality holds asymptotically as ℓ ≥ µ + ρ, q is polynomially
bounded. This suffices to imply the inductive case and, as we exhausted the
three query types, it also conclude the proof for ∆(V0, V1) ≤ negl(λ).

V1 ≈ V2: The only difference in the two worlds is the reply to E.Dec(ask, c∗)
provided during the execution of AT.Dec. To prove V1, V2 have low statistical
distance, it suffices to show that the event E.Dec(ask, c∗) ̸= m∗ occurs only with
negligible probability. This is true due in V0, where queries to the underlying
PKE are answered correctly, due to the security notion for anamorphic encryp-
tion.

Indeed, one can define an adversary A(apk, ask) which initially samples a
random messages pair (m′, m̂), queries its encryption c′ ← O(m′, m̂) and checks
that m′ = E.Dec(ask, c′). If O produced c′ with E.Enc then the condition A
checks is always verified. Hence in V0

Pr [E.Dec(ask, c′) ̸= m′] = Advanam(A) = ε(λ)
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for a negligible ε(λ). Calling Bad the event E.Dec(ask, c∗) ̸= m∗, then Pr [Bad] ≤
ε(λ) +∆(V0, V1) and in particular

∆(V1, V2) ≤ Pr [Bad]∆(V1|Bad, V2|Bad) + Pr [¬Bad]∆(V1|¬Bad, V2|¬Bad)

≤ Pr [Bad] +∆(V1|¬Bad, V2|¬Bad)

≤ ε(λ) +∆(V0, V1).

Where in the last inequality we used the fact that, conditioning on ¬Bad the
two distributions are identical.

V2 ≈ V3: . The main difference between V2 and V3 is that in the latter, decryption
call E.Dec(sk, c) do not depends on encryption queries of AT.Enc. In particular, if
AT.Dec were to query the decryption of a ciphertext only computed by AT.Enc,
the reply in V2 would by construction return the encrypted message, while in
V3 it would be ξ∗(sk, c). To show V2 ≈ V3 we prove the above event occurs with
negligible probability in both distributions.

Let c1, . . . , ch be the ciphertext obtained by AT.Enc, Wi the replies to PKE
queries performed only by AT.Gen and AT.Dec in Vi (for i ∈ {1, ..., 4}), and Wi,n

the same subsequence of V1,n. Finally let Colln the event that in the n-th query,
AT.Dec queries E.Dec(·, c) such that c ∈ {c1, . . . , ch} \ {c∗}.

First we determine the random variables c is a function of AT.Dec’s query
only depend on its input (ask, tk, c∗) and its view, and in turns (ask, tk) is a
deterministic function of s∗, i.e. AT.Gen’s random tape, and AT.Gen’s view. Thus
c is a function of Wi,n, s

∗, c∗.
Next, for all j such that cj ̸= c∗, we study the min-entropy of c∗. Both in V2

and V3, as cj was by definition not obtained from encryption queries performed
by AT.Gen and AT.Dec, cj is uniformly random and independent from Wn, s

∗.
It may however share mutual information with c∗, which by the Ciphertext
Selection Lemma (Lemma 3), is chosen among c1, . . . , ch. Let I ∼ {1, . . . , h} be
a random variable denoting the index of such choice, i.e. such that c∗ = cI . Then
the min-entropy of cj ̸= c∗ given AT.Dec’s information can be bounded as

H∞(cj |Wi,n, s
∗, c∗) = H∞(cj |Wi,n, s

∗, cI)

= H∞(cj |Wi,n, s
∗, (c1, . . . , cj−1, cj+1, . . . , cn), I)

≥ H∞(cj |Wi,n, s
∗, (c1, . . . , cj−1, cj+1, . . . , cn))− log2 h

≥ H∞(cj)− log2 q = ℓ− log2 q.

Where the first inequality follows as I ∈ {1, . . . , h} and the second one as h ≤ q.
Hence Pr [c = cj ] ≤ q ·2−ℓ, and, by a union bound, Pr [Colln] ≤ hq ·2−ℓ ≤ q2 ·2−ℓ.

Finally, as AT.Gen performs at most q decryption queries, the probability that
∃n : Colln is, again from a union bound, smaller than q3 ·2−ℓ. This concludes the
proof as, conditioning on ∄n : Colln, the two distributions V2, V3 are identical.

V3 = V4: Follows by inspection as:
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– Encryption queries for AT.Gen are replied with ψ∗, while for AT.Enc,AT.Dec,
the RO H is used, keeping however consistency with previous queries per-
formed by AT.Gen. Hence every new query is always uniformly distributed
over {0, 1}ℓ – as specified in V1.

– R programs ξ∗(ask, c∗) = m∗, see Line 7 of Figure 8. In particular for AT.Dec,
the query E.Dec(ask, c∗) always returns m∗, as specified in V2.

– When AT.Gen queries E.Dec(sk, c), with (sk, c) ̸= (ask, c∗), then the output is
m if E.Enc(ϕ∗(sk),m, r) = c was previously obtained by AT.Gen or AT.Dec,
and the unprogrammed value of ξ∗(sk, c) otherwise. In particular the output
does not depend on E.Enc’s queries, as specified in V3.

The proof of Claim 3 is therefore completed.

C.5 Impossibility of Weak Asymmetric AE Proof

Proof of Claim 4. The proof is divided in two parts. First we show that "pro-
gramming" a ciphertext previously queried by AT.Gen is unlikely, and then prove
the bound studying the distribution of c∗ and c̃, with c̃ being the correct cipher-
text returned in Real.

Rewriting Probability. To fix some notation let r1, . . . , rq be the randomness
used by AT.Gen in queries of the form E.Enc(apk,m∗; ri). Sj is the same set
relative to the queries of AT.Enc(apk, dk,m∗, m̂0) in the preprocessing phase,
while S is again the same set for the last execution of AT.Enc(apk, dk,m∗, m̂0)
(assuming though that A replies with the correct ciphertext instead of c∗). With
this notation then R = S1 ∪ . . . ∪ Sϑ, as in the definition of A. The bad event
we wish to bound the probability of is Rew = ∃ri ∈ S \ R. Note that upon
conditioning on the input in = (apk, dk,m∗, m̂0) = in0 we have that S1, . . . , Sϑ, S
are independent and equally distributed. Finally, for each ri we call pi(in0) =
Pr [ri ∈ Si|in = in0]. Then

Pr [Rew] =
∑

in0
Pr [Rew | in = in0] Pr [in = in0]

=
∑

in0
Pr [∃ri ∈ S \ (S1 ∪ . . . ∪ Sϑ) | in = in0] Pr [in = in0]

≤
∑

in0

∑q

i=1
Pr [ri ∈ S \ (S1 ∪ . . . ∪ Sϑ) | in = in0] Pr [in = in0]

=
∑

in0

∑q

i=1
pi(in0) (1− pi(in0))ϑ Pr [in = in0]

≤
∑

in0

∑q

i=1

1

ϑ+ 1
Pr [in = in0] ≤

q

ϑ+ 1
.

Where the first inequality is a union bound and the second one follows as
pi(in0) ∈ [0, 1].

Predicate Probability. Let c̃ be the correct reply A should have given to AT.Enc
on Figure 9, line 11, i.e. c̃ = E.Enc(apk,m∗; r). Further call vb and vr be the
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vectors obtained removing c∗ and c̃ respectively from Bias and Real. Then, up
to rearranging, Bias = (vb, c∗) and Real = (vr, c̃).

We begin studying c̃. For any (partial) view rv = v, let us call Cv the set of
ciphertext observed in the given view. Then, calling E.Enc(pk,m; r) the query
AT.Enc performed to get c̃, either r was queried by AT.Gen or the query is
performed for the first time (or else A would not "try" to program this query).
Note that conditioning on ¬Rew the first events never occurs. In the second case
instead, we can prove as in the proof of Claim 3 that Pr [c ∈ Cv | rv = v, ¬Rew] ≤
q/(2ρ− q). Furthermore, conditioning again on rv = v and ¬Rew, the ciphertext
c̃ ∼ U({0, 1}ℓ \ Cv). Thus, for all c0 /∈ Cv

Pr [c̃ = c0 | ¬Rew, rv = v] =

= Pr [c̃ = c0 | c̃ /∈ C,¬Rew, rv = v] · Pr [c̃ /∈ C | ¬Rew, rv = v]

≥ 1

2ℓ
·
(
1− q

2ρ − q

)
≥ 1

2ℓ
− q

2ℓ(2ρ − q)
.

In particular then the probability of getting c̃ = c0 given view v is larger than

Pr [c̃ = c0 | rv = v] ≥ Pr [c̃ = c0 | rv = v,¬Rew]− Pr [c̃ = c0,Rew | rv = v]

≥ 1

2ℓ
− q

2ℓ(2ρ − q)
− Pr [c̃ = c0,Rew | rv = v] .

Next we focus on c∗. To study its distribution, let c1, . . . , cq be the cipher-
text queried by AT.Enc whose output is c∗. Then by the ciphertext selection
lemma, the event c∗ /∈ {c1, . . . , cq} occurs with negligible probability. Hence
Pr [p(Bias)] =

=
∑
v0

∑
c0

Pr [p(v0, c0)] Pr [c
∗ = c0, bv = v0]

≤
∑
v0

∑
c0 /∈Cv0

Pr [p(v0, c0)] Pr [c
∗ = c0, bv = v0] + Pr [c∗ ∈ Cv0 ]

≤
∑
v0

∑
c0 /∈Cv0

Pr [p(v0, c0)] Pr

[
c∗ = c0, bv = v0
c∗ ∈ {ci}qi=1

]
+ Pr [c∗ /∈ {ci}qi=1] + negl(λ)

≤
∑
v0

∑
c0 /∈Cv0

Pr [p(v0, c0)] Pr [c0 ∈ {ci}qi=1, bv = v0] + negl(λ)

Where the first inequality follows removing the terms with c0 ∈ Cv0 , the second
one as Pr [c∗ /∈ Cv0 ] is negligible by Lemma 2, the third follows from the Cipher-
text Selection Lemma for the second term and because c∗ = c0 and c∗ ∈ {ci}qi=1

implies c0 ∈ {ci}qi=1 for the first term. We then continue the chain of inequalities
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with a union bound:

≤
∑
v0

∑
c0 /∈Cv0

q∑
i=1

Pr [p(v0, c0)] Pr [ci = c0 | bv = v0] Pr [bv = v0] + negl(λ)

≤ q
∑
v0

∑
c0 /∈Cv0

Pr [p(v0, c0)]
1

2ℓ − q
Pr [bv = v0] + negl(λ)

≤ q
∑
v0

∑
c0 /∈Cv0

Pr [p(v0, c0)]
1

2ℓ
Pr [bv = v0] +

q

2ℓ − q
+ negl(λ)

≤ q
∑
v0

∑
c0 /∈Cv0

Pr [p(v0, c0)] Pr [c̃ = c0, rv = v0] +
q2

2ρ − q
+ qPr [Rew] + negl(λ)

≤ q
∑
v0

∑
c0

Pr [p(v0, c0)] Pr [c̃ = c0, rv = v0] + qPr [Rew] + negl(λ)

≤ qPr [p(Real)] +
q2

ϑ+ 1
+ negl(λ)

Where the second inequality follows as, conditioning on ci /∈ Cv0 we have that
ci ∼ U({0, 1}ℓ \Cv0) given the view, where |Cv0 | ≤ q. The fourth follows observ-
ing that bv and rv are identically distributed, and from the bound we previously
found on Pr [c̃ = c0 | rv = v0] applied on 2−ℓ. The fifth by summing over a domain
non-negative terms. The claim is therefore proven.

Proof of Claim 5. The event ∄r∗ ∈ S \ R : c∗ = E.Enc(apk,m∗; r′) is equiva-
lent to requiring that either c∗ /∈ CEnc

in , with in being AT.Enc’s input, or c∗ ∈
{E.Enc(apk,m∗; r) : r ∈ R} = CR. Note CR has polynomially bounded size (in
particular |CR| ≤ qϑ) and its distribution is independent from the random coins
used to generate c∗. We can thus use Lemma 3 and Lemma 2 we conclude that

Pr [BadChoice∗] ≤ Pr
[
c′ /∈ CEnc

in

]
+ Pr [c′ ∈ CR] ≤ negl(λ).

The result is analogous for c′ up to using Claim 4.

Proof of Claim 6. F , described in Figure 10 is a choice function since, if cout ∈
{c1, . . . , cq} it returns cout while otherwise its output is a random element from
its input.

It is also symmetric since its execution of AT.Enc(apk, dk,m∗, m̂0) depends
on a random permutation of its input. Thus for any η : {1, . . . , q} → {1, . . . , q}
permutation we have that

(
cπ(η(i))

)q
i=1

follows the same distribution of
(
cπ(i)

)q
i=1

,
meaning that cout also does not depend on the input order.

Proof of Claim 7. Since c′1 and c′2 are computed in the same way given c∗1, c
∗
2,

it suffice two prove ∆(c∗1, c
∗
2) ≤ negl(λ). Let v1, v2 be the view of AT.Gen and

AT.Enc(apk, dk,m∗, m̂0) executed by A1,A2 and computing c∗1 and c∗2 respec-
tively. Then we have that, using notation from figure 10, c∗ and cout are deter-
ministic functions of v1 and v2 respectively. Thus ∆(c∗1, cout) ≤ ∆(v1, v2). Note
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however that cout may differ from the actual output of F . In particular cout = c∗2
only when ¬BadChoince∗. We can therefore bound, using Claim 5

∆(c∗1, c
∗
2) ≤ ∆(c∗1, c

∗
2|¬BadChoice∗ ) + Pr [BadChoice∗]

= ∆(c∗1, cout|¬BadChoice∗) + Pr [BadChoice∗]

≤ 1

1− Pr [BadChoice∗]
·∆(c∗1, cout) + Pr [BadChoice∗]

≤ ∆(c∗1, cout) + 2Pr [BadChoice∗]

≤ ∆(v1, v2) + negl(λ).

To prove the latter statistical distance is also negligible, let vb,n be the vector
consisting of the first n queries in vb. Then we will show by induction that
∆(v0,n, v1,n) ≤ n · 2q2ρ .

The base step is trivial. Moreover for n smaller than the first query of AT.Enc,
the two distributions are identical by construction. Assuming the thesis for n,
we study the (n + 1)-th query of AT.Enc according to its type, conditioning on
v1,n = v = v2,n.

Key Generation: Queries to E.Gen are answered identically in both worlds, thus
the statistical distance does not increase after performing such queries.

Encryption: When querying E.Enc(pk,m; r) this query is answered identically
in both worlds, except when pk = apk and m = m∗. In this case, if the query
was already performed before, the answer is consistent. Otherwise, let c1, c2 be
the replies returned by A1 and A2. By construction c2 ∼ U({0, 1}ℓ) is uniformly
random, even upon conditioning on the view so far.

Conversely to study c1, let C the set of ciphertext observed so far. Then it
can be shown as done in the proof of Claim 3 that

Pr [c1 ∈ C | v1,n = v] ≤ q

2ρ − q

and that, conditioning on c1 /∈ C, then c1 ∼ U({0, 1}ℓ \ C). Then for all c0 /∈ C

Pr [c1 = c0 | v1,n = v] = Pr [c1 = c0 | c1 /∈ C, v1,n = v] · Pr [c1 /∈ C | v1,n = v]

∈
[
1

2ℓ
− q

2ℓ(2ρ − ρ)
;

1

2ℓ
+

q

2ℓ(2ℓ − q)

]
.

where the lower bound follows lower-bounding the first factor with 1/2ℓ and the
second one with (1 − q/(2ρ − q)). Conversely the upper bound follows upper-
bounding the first factor with 1/(2ℓ−q) and the second one with 1. We eventually
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get that

∆(c1|v1,n=v, c2|v2,n) =
1

2

∑
c0

|Pr [c1 = c0 | v1,n = v]− Pr [c2 = c0 | v2,n = v]|

≤ 1

2
Pr [c1 ∈ C] +

1

2
Pr [c2 ∈ C] +

1

2

∑
c0 /∈C

q

2ℓ(2ρ − q)

≤ 1

2

(
q

2ρ − q
+

q

2ℓ
+

q

2ρ − q

)
≤ 2q

2ρ
.

where the second inequality follows as the distance between the two probability
for c0 /∈ C is smaller than q/(2ℓ(2ρ − q)), and the last one holds asymptoti-
cally as q is polynomially bounded and ρ = Ω(λ). It immediately follows that
∆(v1,n+1, v2,n+1) ≤ (n+ 1) · 2q · 2−ρ from the inductive hypothesis.

Decryption: If the (n + 1)-th query is E.Dec(sk, c), let C be the set of cipher-
text observed so far (which a function of the current view v). If this query was
performed before or either sk ̸= ask or c /∈ {c1, . . . , cq} \ C then the query is
replied identically in the two distributions. To conclude it thus suffices to show
that in the second view the event Bad : sk = ask ∧ c ∈ {c1, . . . , cq} \ C oc-
curs only with negligible probability. This is true as each ci ∈ {c1, . . . , cq} \ C,
even conditioned on the view, is uniform over {0, 1}ℓ. Thus, by a union bound
Pr [Bad | v2,n = v] ≤ 2−ℓ. Calling m1,m2 the replies in the two distributions we
thus get

∆(m1|v1,n=v, m2|v2,n=v) ≤ ∆(m1|v1,n=v, m2|¬Bad, v2,n=v) + Pr [Bad]

≤ Pr [Bad] ≤ q

2ℓ
.

Given this, the inductive step easily follows as before.

Proof of Claim 8. Analogous to proof of Claim 7, up to noticing that this time it
suffices to prove the bound for ∆(c′2, c

′
3). The proof is identical up to the fact that

in this case Pr [BadChoice] ≤ q2

ϑ+1 + negl(λ), which introduces the non-negligible
term in the final result.
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