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Abstract—As large language models (LLMs) continue to gain
popularity, concerns about user privacy are amplified, given that
the data submitted by users for inference may contain sensitive
information. Therefore, running LLMs through secure two-party
computation (a.k.a. secure LLM inference) has emerged as a
prominent topic. However, many operations in LLMs, such as
Softmax and GELU, cannot be computed using conventional gates
in secure computation; instead, lookup tables (LUTs) have to be
utilized, which makes LUT to be an essential primitive in secure
LLM inference.

In this paper, we propose ROTL, a secure two-party protocol
for LUT evaluations. Compared with FLUTE (the state-of-the-
art LUT presented at Oakland ’23), it achieves upto 11.6×
speedup in terms of overall performance and 155× speedup in
terms of online performance. Furthermore, ROTL can support
arithmetic shares (which is required by secure LLM inference),
whereas FLUTE can only support boolean shares. At the heart
of ROTL is a novel protocol for secret-shared rotation, which
allows two parties to generate additive shares of the rotated table
without revealing the rotation offset. We believe this protocol
is of independent interest. Based on ROTL, we design a novel
secure comparison protocol; compared with the state-of-the-
art, it achieves a 2.4× bandwidth reduction in terms of online
performance.

To support boolean shares, we further provide an optimization
for FLUTE, by reducing its computational complexity from O(l ·
n2) to O(n logn+ l · n) and shifting O(n logn) computation to
the preprocessing phase. As a result, compared with FLUTE, it
achieves upto 10.8× speedup in terms of overall performance
and 962× speedup in terms of online performance.

I. INTRODUCTION

With the increasing popularity of large language models
(LLMs), there is an amplified concern about user privacy,
given that the data provided by users for inference may contain
sensitive information. Hence, Secure inference [10], [21], [20],
[23], [30], [28], [17], [14] has emerged as a prominent topic,
which runs the inference stage in a way such that the server
(S) learns nothing about clients’ input and a client (C) learns
nothing about the model except the inference results. Roughly,
it can be considered as a secure two-party computation (2PC)
protocol that is customized for model inference.

However, many operations in LLMs, such as softmax and
GELU, cannot be computed using conventional gates in 2PC;
instead, lookup tables (LUTs) have to be utilized, which makes
LUT to be an essential primitive in secure LLM inference. A
LUT protocol allows two parties, holding a secret-shared index
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i, to learn xi from a public table x ∈ Zn
2l . A preprocessing

phase is usually introduced to prepare some expensive and
input-independent work so that the online phase can be done
efficiently.

The most common way for LUT evaluation is based on 1-
out-of-n OT. Specifically, S generates a LUT output for each
of C’s n possible input shares, and masks these outputs with
a single random number, which is S’s output share. Then,
C uses 1-out-of-n OT to get its own output share. Although
this protocol is computationally efficient, it has to transfer the
whole table during online phase.

The state-of-the-art LUT protocol (named FLUTE) avoids
transferring the whole table by converting the LUT description
into boolean expressions, the circuit of which is then evalu-
ated as a multi-fan-in inner product [4]. However, FLUTE
involves expensive computations in the online phase, due to the
evaluation of the multi-fan-in AND gates. Moreover, FLUTE
can only support boolean shares for its input and output,
whereas secure LLM inference desires arithmetic shares as
it involves massive matrix multiplications. To be used in
secure LLM inference, FLUTE has to be augmented with both
boolean-to-arithmetic (B2A) and arithmetic-to-boolean (A2B)
conversions, and the A2B conversion is particularly expensive.

Our contribution. In this paper, we propose ROTL, a LUT
protocol that is significantly faster than FLUTE and can
support arithmetic shares. The rough idea of ROTL is to have
C and S jointly right-rotate the table x for s elements in
the preprocessing phase, with both the rotated table and s
being secret-shared between C and S. Then, in the online
phase, C and S can simply recover (i + s) and output the
(i + s)-th element in the rotated table. This idea aligns with
the approaches presented by OTTT [19] and OP-LUT [9].
However, both OTTT and OP-LUT require expensive circuit
evaluations to rotate the table: OTTT evaluates a boolean
circuit representing the table for every possible input, and
OP-LUT can be considered as a natural generalization of the
GMW protocol. In contrast, we propose a novel protocol for
table rotation that is significantly more lightweight. Recogniz-
ing that rotation is a special kind of permutation, we leverage
the secret-shared permutation protocol proposed by Chase et
al. [5], which is already quite lightweight, demanding only
n log n random-OTs. By harnessing the inherent characteristics
of rotation, we achieve a significant reduction in the number
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of necessary random-OTs, cutting it down to a mere log n.
Furthermore, we come up with a way allowing C and S to
rotate a selection vector b ∈ Zn

2 rather than rotating the table
x ∈ Zn

2l . As a result, we make the communication overhead
independent of l.

While boolean shares are less commonly employed for
LUTs, they find application in the evaluation of boolean
circuits. For completeness, we introduce another LUT solution
for boolean shares named FLUTE+. It can be considered as
an optimization of FLUTE, by reducing the computational
complexity of FLUTE from O(l · n2) to O(n log n+ l · n) and
shifting O(n log n) computation to the preprocessing phase.

In addition to LUTs, secure comparison is another critical
primitive for secure LLM inference, extensively employed in
operations such as truncation, softmax, and GELU. Based
on ROTL, we introduce a novel secure comparison protocol,
strategically shifting the main overhead to the preprocessing
phase. Compared with the state-of-the-art [?], it achieves a
xxx speedup in terms of online performance.

We summarize our contributions as follows:

• A novel protocol for secret-shared rotation (Section III);

• A novel LUT protocol (named ROTL), which is upto
155× faster than FLUTE and supports arithmetic shares
(Section IV);

• An optimization of FLUTE (named FLUTE+), achieving
upto 962× speedup (Section V);

• A novel secure comparison protocol, which achieves a
2.4× bandwidth reduction over the state-of-the-art [30].

• An application of ROTL to secure LLM inference (Sec-
tion VII-E);

• A full-fledged implementation and comprehensive bench-
mark (Section VII).

TABLE I: A table of frequent notations.

Notation Description

C client

S server

λ security parameter

n table length

l bit-length of each element in the table

s rotation offset

⟨x⟩l (⟨x⟩lS , ⟨x⟩lC) s.t. x = ⟨x⟩lS + ⟨x⟩lC mod 2l

FLUT ideal functionality for lookup table evaluation

FRotate ideal functionality for secret-shared rotation

FMult ideal functionality for secret-shared multiplication

FAND ideal functionality for secret-shared AND

FCMP ideal functionality for comparison b← CMP(x, y):
b = 1 if x ≥ y; b = 0 otherwise

FMUX ideal functionality for multiplexer y ← MUX(x, b):
y = x if b = 1; y = 0 if b = 0

II. BACKGROUND AND PRELIMINARIES

In this section, we present the necessary background and
preliminaries for this paper.

A. Notations

We use ⟨x⟩l = (⟨x⟩lS , ⟨x⟩lC) to denote 2-out-of-2 additive
secret-sharing over Z2l . Namely, x = ⟨x⟩lS + ⟨x⟩lC mod 2l.
For simplicity, we omit the l notation of ⟨x⟩l when it is not
contextually relevant. We denote vectors with bold fonts and
elements inside a vector with indices. For example, v is a
vector of n elements and vi is the i-th element in v. As our
target scenario – secure LLM inference – proceeds in a client-
server setting, we use C and S to denote the two parties in all
protocols. We use Π to denote a protocol and use F to denote
the ideal functionality of a protocol. We use viewC

Π/viewS
Π to

denote the view of C/S when they run the protocol Π.
Table I provides a summary of the frequently used notations

in this paper.

B. Lookup table

The ideal functionality of a lookup table (LUT) protocol
FLUT takes a public table x ∈ Zn

2l and a secret-shared index
i ∈ Zn as inputs, and returns the secret-shared xi. Figure 1
describes this functionality. In this paper, our primary focus
is on LUT with arithmetic shares, as this configuration is
pertinent to secure LLM inference. The discussion on LUTs
with boolean shares will be presented in Section V.

Parameter: x ∈ Zn
2l

Input:
• C: ⟨i⟩C ∈ Zn

• S: ⟨i⟩S ∈ Zn

Output:
• C: ⟨xi⟩C ∈ Z2l

• S: ⟨xi⟩S ∈ Z2l

Functionality FLUT

Fig. 1: Ideal functionality for LUT.

C. Puncturable pseudorandom function (PPRF)

A puncturable pseudorandom function (PPRF) allows one
with a master key to evaluate a PRF at all points of its domain;
allows one with a punctured key to evaluate the PRF at all
points except a punctured point. A PPRF can be used to
efficiently achieve (n − 1)-out-of-n random OT, which, on
input i ∈ Zn from S, allows S and C to jointly generate
a vector v with random-looking elements, s.t., S obtains all
elements in v except for vi (denoted by vS ), and C obtains the
whole vector v (denoted by vC) without learning the index i.
Specifically, it has the following properties:

• Correctness: vCj = vSj ∀ j ̸= i.
• Position hiding: a compromised C, who, in addition to

its view in the protocol execution, receives two distinct
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indices i, i′ ∈ Zn, cannot differentiate between the
following two executions:

– where S uses i as its input;
– where S uses i′ as its input.

• Value hiding. a compromised S, who, in addition to its
view in the protocol execution, receives the vector vC ,
cannot differentiate between the following two execu-
tions:

– where vC is generated according to PPRF;
– where vC is generated according to PPRF, but vCi is

replaced with a random element from the domain.
The PPRF-based (n−1)-out-of-n random OT only requires

log n parallel executions of 1-out-of-2 OTs. In this paper, we
abuse the notion and use PPRF to denote the PPRF-based
(n− 1)-out-of-n random OT.

D. Secret-shared permutation

Chase et al. [5] propose a protocol for secret-shared per-
mutation, which allows two parties to learn secret-shares of a
permutated array x ∈ Zn

2l . Figure 2 shows the ideal functional-
ity for this protocol: it takes an array from C and a permutation
π from S , and returns secret-shares of a permutated array. By
π(x), we denote the permuted vector (x[π(1)], ..., x[π(N)]).
Their protocol also works for the case when x was secret-
shared between two parties (instead of being an input of one
party).

Input:
• C: x ∈ Zn

2l

• S: a permutation π

Output:
• C: r
• S: r⊕ π(x), where r ∈$ Zn

2l

Functionality FPermut

Fig. 2: Ideal functionality for secret-shared permutation.

The protocol is described in Figure 3. After Step 1, C
learns a matrix [u0, ...,un−1], and S learns the same matrix
except for elements corresponding to the permutation, i.e.,
S learns nothing about

[
u0,π(0), ..., un−1,π(n−1)

]
. Figure 4

visualizes these two matrices. In Step 2, C sets r, a to be row-
and column-wise sums of the matrix elements. In Step 3, S
computes each ci by taking the sum of row i and adding the
sum of column π(i). Notice that ci = aπ(i) ⊕ ri. Then, S’s
output in Step 5 is:

π(x⊕ a)⊕ c = π(x)⊕ π(a)⊕ π(a)⊕ r = π(x)⊕ r.

That means S and C secret-share π(x) at the end of the
protocol. In [5], they use a Benes permutation network to
optimize the computational complexity of Step-2 and 3 when
n is large. We omit this optimization as n ≤ 256 in our target
scenario (cf. Section II-E).

1) C and S run n executions of PPRF in parallel,
where S uses π(i) as its input in execution i,
for i ∈ Zn. Let ui and vi be the outputs of the
i-th execution, for C and S respectively (S fills
the punctured positions in vi with 0s).

2) For i ∈ Zn, C sets ri :=
⊕
j

ui,j , ai :=
⊕
j

uj,i.

3) For i ∈ Zn, S sets ci := (
⊕
j

vi,j)⊕ (
⊕
j

vj,π(i)).

4) C sends x⊕ a to S and outputs r.
5) S outputs π(x⊕ a)⊕ c.

Protocol ΠPermut

Fig. 3: The secret-shared permutation protocol.

(a) C receives the full matrix. (b) S receives a “punctured” matrix,
where the missing elements are at po-
sitions (i, π(i)).

Fig. 4: Visualization of the two matrices received by C and S
after Step 1 of ΠPermut (taken from [5]).

We remark that the data in Step 4 can be transferred together
with PPRF in Step 1, to save one round of communication.
The total communication cost of this protocol is (2λn log n+
nl) bits and only requires symmetric-key operations.

E. Secure LLM Inference

Suppose S holds a model and C holds an input x. Secure
inference [10], [21], [20], [23], [30], [28], [17], [14] runs the
inference stage in a way such that S learns nothing about
C’s input and a C learns nothing about the model except
the inference results. The input x to the model is typically
undergone a left-shift by L bits (from floating-point to fixed-
point), leading to l bits in total.
FLUT has been used extensively in secure LLM inference.

As reported by [16], softmax and GELU occupy 43% com-
putational cost and 54.8% communication cost of a secure
GPT-2 inference, and FLUT is the main component of these
operations.
Softmax. Softmax takes a secret-shared vector ⟨x⟩ (with x ∈
Zm
2l ) as input and normalizes each element xi as follows:

Softmax(xi) =
exi∑n

j=1 exj .

The outputs add up to 1 and form a probability distribution.
Hou et al. [16] provide a way to securely compute softmax as
follows:
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Fig. 5: GELU transformation (taken from [16]).

1) Each xj is transformed to: x′
j := xj −max(x).

2) Compute the exponential ex
′
j for each x′

j :

a) assume x′
j ∈

[
−16 · 2L, 0

]
and use FLUT to com-

pute ex
′
j ;

b) use FCMP to compare x′
j with −16 × 2l and use

FMUX to set ex
′
j to 0 if x′

j < −16× 2l.

3) Compute sum :=
∑n

j=1 e
xj .

4) Use FLUT to compute the reciprocal: 1
sum .

5) Use FMult to compute e
x′
j

sum .

The LUT for computing exponential and reciprocal are with
216 and 28 entries respectively. In particular, to compute the
exponential, they use two LUTs where the first processes the
upper 8 bits and the second processes the lower 8 bits; the final
result is computed by multiplying the two looked up values
from the two LUTs.

GELU. The most commonly used activation function in a
LLM is GELU:

GELU(x) = 0.5x(1 + Tanh
[√

2/π(x+ 0.044715x3)
]
),

where Tanh(x) = 2Sigmoid(2x) − 1 and Sigmoid(x) =
1

1+e−x . Figure 5 (left) depicts the original curve of y =
GELU(x). It begins at zero for small values of x, and starts
deviating from zero when x is around −α. As x increases fur-
ther, GELU(x) progressively approximates the linear function
y = x.

Hou et al. [16] divide the curve into three large intervals:

• y = 0 when x < −α;
• y = GELU(x) when −α ≤ x ≤ α;
• y = x when x > α.

The computation of the first and third intervals is straight-
forward. For the second interval, they divide the second
interval into several small intervals and use a linear function
(y = ax + d) to approximate the curve within each small
interval, s depicted in Figure 5 (middle). Then, they right-shift
the entire curve by α as shown in Figure 5 (right), after which
the second interval becomes [0, 2α] and can be computed with
a single LUT of 28 entries.

Since all such functions within a LLM involve lookup
tables of sizes no larger than 256, our primary focus is on
designing LUT protocols with n ≤ 256.

III. SECRET-SHARED ROTATION

In this section, we provide a protocol for secret-shared
rotation, the ideal functionality of which is shown in Figure 6.

Input:
• C: x ∈ Zn

2l

• S: s ∈ Zn

Output:
• C: ⟨x′⟩C ∈ Zn

2l

• S: ⟨x′⟩S ∈ Zn
2l , s.t., x′ = (x ≫ s) =

[xn−s, xn−s+1, ..., xn−1, x0, x1, ..., xn−s−1]

Functionality FRotate

Fig. 6: Ideal functionality for secret-shared rotation.

As rotation is special kind of permutation, we can directly
employ the secret-shared permutation protocol described in
Section II-D, with S using

π(i) = (i+ s) mod n

as the input permutation. However, this is an overkill given
that rotation is much simpler than permutation.

Fig. 7: The matrix that replaces Figure 4(b) when rotation is
applied with s = 2.

In Figure 7, a matrix is depicted as a replacement for
Figure 4(b) when permutation is substituted with rotation. We
use s = 2 as an example, i.e., each row was right-rotated
for two positions. In the i-th row, the (i + 2)-th position is
punctured. Clearly, this matrix is more regular.

Recall that in secret-shared permutation, S uses n PPRFs to
obtain the elements that are not punctured. This time, we aim
to obtain all such elements with a single PPRF. To this end,
we transform the matrix in Figure 7 into a rhombus shape that
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is shown in Figure 8. For each slant column of the rhombus,
we have C uses a single seed to generate all elements in that
column. Then, all the punctured elements are generated by the
same seed. To this end, we could have S use a single PPRF to
get all seeds except for the seed that generates the punctured
elements.

Fig. 8: Transformation of Figure 7 such that the punctured
elements can be generated by a single seed.

C and S could locally expand the seeds to recover the matrix
in Figure 7, and then calculate the row- and column-wise sums
of this matrix. However, the row- and column-wise sums can
be calculated even without recovering that matrix. Denote di

as a column of elements generated by C from expanding the
i-th seed. The row-wise sums can simply be calculated as⊕
i

di,1 as our transformation in Figure 8 does not change the

elements in each row. To compute the column-wise sums of
the matrix in Figure 7, C right-rotate each di by i elements,
i.e., ∀i ∈ Zn,d

′
i := (di ≫ i). Then, the rhombus in Figure 8

becomes a new rhombus shown in Figure 9. The row-wise
sums of this new rhombus (i.e.,

⊕
i

d′
i) are exactly the column-

wise sums of the matrix in Figure 7.

Fig. 9: Transformation of Figure 8 such that its row-wise sums
are exactly the column-wise sums of the matrix in Figure 7.

The detailed protocol is shown in Figure 10.

Theorem 1. The protocol in Figure 10 realizes the ideal
functionality FRotate in presence of a semi-honest adversary.

Proof. (sketch)
Correctness. Notice that ci = ri ⊕ ai≫s ∀i ∈ Zn. Then, S’s
output in Step 5 is:

((x⊕ a) ≫ s)⊕ c = (x ≫ s)⊕ (a ≫ s)⊕ c

= (x ≫ s)⊕ (a ≫ s)⊕ r⊕ (a ≫ s)

= (x ≫ s)⊕ r.

That means S and C secret-share (x ≫ s) at the end of the
protocol.

1We use
⊕

to denote the element-wise addition between two vectors.

1) C and S run one execution of PPRF, where S
uses s as its input. Let seedC and seedS be
the output for C and S respectively.

2) C runs as follows:
a) ∀i ∈ Zn,di ← PRG(seedC

i ), where
di ∈ Zn

2l ;
b) r :=

⊕
i

di;

c) ∀i ∈ Zn,d
′
i := (di ≫ i);

d) a :=
⊕
i

d′
i;

3) S runs as follows:
a) ∀i ∈ Zn and i ̸= s, ti ← PRG(seedS

i ),
where ti ∈ Zn

2l ;
b) ts := [0...0];
c) r∗ :=

⊕
i

ti;

d) ∀i ∈ Zn, t
′
i := (ti ≫ i);

e) a∗ :=
⊕
i

t′i;

f) ∀i ∈ Zn, sets ci := r∗i ⊕ a∗i≫s.
4) C sends x⊕ a to S and outputs r.
5) S outputs ((x⊕ a) ≫ s)⊕ c.

Protocol ΠRotate

Fig. 10: The secret-shared rotation protocol.

Security. We first consider the case where C is corrupt. We
have C participate in two executions of the protocol, with S
inputting s and s′ respectively. Suppose C can tell the two
executions apart. Then, we use C as a subroutine to build a
distinguisher A that breaks the position hiding property of
PPRF as follows:

1) A receives (1λ, n, i, i′, viewC
PPRF), where viewC

PPRF con-
tains vC ;

2) A runs Steps 2.a-2.d of ΠRotate using vC as seedC , and
obtains r and a;

3) A constructs viewC
Rotate, which is viewC

PPRF augmented
with r and a;

4) A forwards (1λ, n, i, i′, viewC
Rotate) to C, treating (i, i′)

as (s, s′);
5) A outputs what C outputs.

Then, if C can tell the two executions apart, A can break the
position hiding property of PPRF.

Next, we consider the case where S is corrupt. We have S
participate in two executions of the protocol, with C inputting
x and x′ respectively. We show the indistinguishability in a
sequence of hybrids:

• H0 = (1λ, n,x, viewS
Rotate), where viewS

Rotate includes
viewS

PPRF and x⊕ a.
• H1 = (1λ, n,x, ṽiew

S
Rotate), where ṽiew

S
Rotate is identical

to viewS
Rotate except for replacing a with a′ ∈$ Zn

2l .
By the value hiding property of PPRF, C could replace
seedC

s with a random seed from the domain. Then, by
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the pseudorandom property of PRG, C could replace ds

with d′
s ∈$ Zn

2l in Step 2.a, which leads to a random a
in Step 2.d. Therefore, H1 ≈ H0.

• H2 = (1λ, n,x′, ṽiew
S
Rotate). As a′ is an array of ran-

dom numbers, x ⊕ a′ and x′ ⊕ a′ are indistinguishable.
Therefore, H2 ≈ H1.

IV. LOOKUP TABLE WITH ARITHMETIC SHARES

In this section, we present ROTL: our LUT protocol for
arithmetic shares.

A. Strawman solution

The basic idea of ROTL is to have C and S jointly right-
rotate the table x for s ∈$ Zn elements in the preprocessing
phase, with both the rotated table and s being secret-shared
between C and S. Then, in the online phase, C and S can
simply recover i′ := (i+ s) mod n and output the (i+ s)-th
element in the rotated table. To make FRotate support a secret-
shared input s, we first have C locally samples ⟨s⟩C ∈$ Zn

and rotates x for ⟨s⟩C elements:

y := (x ≫ ⟨s⟩C).

Then, we have C and S run

(⟨y′⟩C , ⟨y′⟩S)← FRotate(y, ⟨s⟩S),

where ⟨s⟩S ∈$ Zn is sampled by S.
This strawman solution is almost free in the online phase

and only requires one call to FRotate in the preprocessing
phase. However, C has to input the whole table to FRotate.
We aim to replace the table with a bit-vector to reduce the
communication cost from (2λ log n+nl) bits to (2λ log n+n)
bits.

B. ROTL

We have C replace y := (x ≫ ⟨s⟩C) with a bit-vector b,
where the ⟨s⟩C-th bit is 1 and other bits are 0s. Then, C and
S run

(⟨b′⟩C , ⟨b′⟩S)← FRotate(b, ⟨s⟩S).

Notice that the s-th bit in b′ is 1 and other bits are 0s.
In the online phase, C and S recover s′ := (i− s) mod n.

Then, they locally right-rotate ⟨b′⟩C and ⟨b′⟩S by s′ elements,
resulting in ⟨b′′⟩C and ⟨b′′⟩S . The element to be chosen is the
dot-product between b′′ and x, the secret-shares of which can
be computed locally by C and S given that x is public.

However, to compute the dot-product, the elements in b′′

need to be in the same domain (i.e., Zn
2l ) with the elements in

x. A naive solution is to use 2l as the modulus for the elements
in b at first hand, but this would negate the advantage of using
a bit vector, resulting in the same complexity as the strawman
solution. Instead, we maintain a modulus of 2 for the elements
in b and aim to expand the modulus for the elements in b′

from 2 to 2l. To this end, we make the following observations:
• If b′i = 0, the shares (⟨b′i⟩1C , ⟨b′i⟩1S) can be either (0, 0) or

(1, 1), meaning that

Preprocessing:
1) C locally samples ⟨s⟩C ∈$ Zn and generates a

bit-vector b, where the ⟨s⟩C-th bit is 1 and
other bits are 0s.

2) S locally samples ⟨s⟩S ∈$ Zn.
3) C and S run (⟨b′⟩C , ⟨b′⟩S)← FRotate(b, ⟨s⟩S).
4) C locally computes ⟨sum⟩lC :=

∑
j

⟨b′j⟩lC .

5) S locally computes ⟨sum⟩lS :=
∑
j

−⟨b′j⟩lC .

Online:
1) C and S recover s′ := (i− s).
2) C locally right-rotates ⟨b′⟩C by s′ elements,

resulting in ⟨b′′⟩C , and computes
⟨z⟩lC :=

∑
j

(⟨b′′j ⟩lC · xj).

3) S locally right-rotates ⟨b′⟩S by s′ elements,
resulting in ⟨b′′⟩S , and computes
⟨z⟩lS :=

∑
j

(−⟨b′′j ⟩lS · xj).

4) C and S run (⟨z′⟩lC , ⟨z′⟩lS)← FMult(sum, z).
5) C outputs ⟨z′⟩lC and S outputs ⟨z′⟩lS .

Protocol ΠLUT

Fig. 11: The ROTL protocol.

⟨b′i⟩1C = ⟨b′i⟩1S when b′i = 0.
In this case, we could directly extend the modulus of b′i
from 2 to 2l, with one party changing the sign of its share
to produce (⟨b′i⟩lC ,−⟨b′i⟩lS):

b′i = ⟨b′i⟩lC + (−⟨b′i⟩lS) mod 2l = 0.

• If b′i = 1, the shares (⟨b′i⟩1C , ⟨b′i⟩1S) can be either (1, 0) or
(0, 1). The above procedure for case “b′i = 0” may result
in an error:

– if (⟨b′i⟩1C , ⟨b′i⟩1S) = (1, 0), b′i = ⟨b′i⟩lC + (−⟨b′i⟩lS)
mod 2l = 1, which leads to a correct final output;

– if (⟨b′i⟩1C , ⟨b′i⟩1S) = (0, 1), b′i = ⟨b′i⟩lC + (−⟨b′i⟩lS)
mod 2l = −1, which flips the sign of the final
output.

To get rid of this error, we have C and S locally com-
pute ⟨sum⟩lC :=

∑
j

⟨b′j⟩lC and ⟨sum⟩lS :=
∑
j

(−⟨b′j⟩lC)

respectively:
– if (⟨b′i⟩1C , ⟨b′i⟩1S) = (1, 0), sum = 1;
– if (⟨b′i⟩1C , ⟨b′i⟩1S) = (0, 1), sum = −1.

Then, we only need to multiply sum to the dot-product.
The detailed protocol is shown in Figure 11.

Theorem 2. The protocol in Figure 11 realizes the ideal
functionality FLUT in presence of a semi-honest adversary.

Proof. (sketch)
Correctness. After right-rotating b′ by s′, C and S get a
secret-shared bit vector b′′, with b′′i = 1 and b′′j ̸=i = 0. After

6



computing the doc-product, z = xi · sum with sum = 1 or
−1. Then, z′ = xi.
Security. Clearly, all computations are local except one call to
FRotate and one call to FMult. Therefore, the security of ΠLUT

is directly implied by the security of ΠRotate and ΠMult.

An optimization is that, instead of having S locally sample
⟨s⟩S ∈$ Zn at Step 2 (in the preprocessing phase), we could
rely on PPRF to “sample” ⟨s⟩S . Namely, we replace OTs
with random-OTs in PPRF, resulting in a random punctured
position, which could be treated as ⟨s⟩S . As a result, we
reduce the communication of ΠRotate from (2λ log n+n) bits
to ((0.6 + λ) log n+ n) bits.

Another optimization is to replace FMult with FMUX at
Step 4 (in the online phase), as FMUX can be realized with
two executions of 1-out-of-2 OT, much cheaper than FMult.
The fundamental idea of this optimization is:

z′ ← FMUX(2z, β)− z,

where β is a bit indicating the sign of sum, i.e., β ←
FCMP(sum, 0).

Given that sum = 1 or −1, we could even get β for free
(without invoking FCMP). This is based on the observation that
β is equal to the inverse of any but the least-significant bit
(LSB) of sum, (notice that LSB(sum) is always 1 no matter
whether sum = 1 or −1). Let αC

i be the i-th bit of ⟨sum⟩lC
and αS

i be the i-th bit of ⟨sum⟩lS , with i = 0 denoting the
least-significant bit. Then,

β = 1⊕ αC
i ⊕ αS

i ⊕ ci−1 ∀ i > 0,

where ci−1 is the carry-bit from i− 1. Given that c0 = 0, we
could directly use

⟨β⟩C := 1⊕ αC
1 ,

⟨β⟩S := αS
1

as the input shares of β for FMUX.

C. Comparison

Table II provides a theoretical comparison between ROTL
and existing LUT protocols that support arithmetic shares.

In fact, OTTT [19] and FLUTE [4] respectively involve
a communication of (|MT| + 4) · (log n − 1)nl bits and
(|MT|+ 4) · (n− log n− 1) bits during preprocessing, where
|MT| denotes the communication cost for generating a boolean
multiplication triplet. Notice that we assume a different |MT|
with those in [9] and [4]:

• [9] assumed a relatively large |MT| (i.e., 138 bits), as
they use IKNP [18], [1] for oblivious transfer extensions.

• [4] replaced IKNP with silent OT extension [3], which
reduces |MT| to 0.236 bits, but requires more computa-
tion.

• We use Ferret-OT [31], which achieves a better trade-off
between communication and computation. The commu-
nication cost per random-OT is 0.6 bits and |MT| is 1.2
bits.

Table III summarizes the improvement of ROTL over SP-
LUT in terms of total communication (ROTL is clearly better
than OTTT and OP-LUT, hence we focus on comparing with
SP-LUT).

In terms of computation, ROTL requires log n ·ROT+(n+
n2/λ)AES + 3n · XOR during preprocessing and n · XOR +
1Mult during online computation:

• It requires n · AES for PPRF and n2/λ · AES for
generating the rhombus of Figure 8.

• Recall that n ≤ 256, hence we can put the bits in each di

(same for d′
i, ti, t

′
i) in Figure 10 into a single uint256 and

computes n ·XOR with a single CPU instruction (same as
one XOR). Consequently, it requires 2n·XOR+n·Shift to
compute the row- and column-wise sums of the rhombus.
Given that shifting an uint256 also requires a single CPU
instruction, it requires 3n · XOR in total.

• During online computation, it requires n plaintext multi-
plications to compute a dot-product, which is equivalent
to 2n · XOR, as a plaintext multiplication/addition also
requires a single CPU instruction. Additionally, it requires
a MUX operation, which equals to OTs.

We refer to Section VII for a detailed empirical comparison.

V. LOOKUP TABLE WITH BOOLEAN INPUTS

Arguably, ROTL achieves the best tradeoff between com-
putation and communication, but it necessitates augmentation
with A2B conversions to support boolean inputs. Although
boolean inputs are less commonly employed for LUTs, they
find application in the evaluation of boolean circuits. For com-
pleteness, we introduce another LUT solution named FLUTE+
for boolean inputs. It can be considered as an optimization of
FLUTE [4], with a reduction of the computational complexity
from O(l·n2) to O(n log n+l·n), and a shift of the O(n log n)
computation to the preprocessing phase.

The fundamental idea of FLUTE lies in the conversion of
LUT description into boolean expressions. For example, let
log n = 2, x0, x1 be the two input bits, and y1 · · · yl be the l
output bits, the lookup table is:

x0 x1 y1 · · · yl
0 0 a1 · · · al
0 1 b1 · · · bl
1 0 c1 · · · cl
1 1 d1 · · · dl

They represent each output bit as:

yi = (x0∧x1∧ai)⊕(x0∧x1∧bi)⊕(x0∧x1∧ci)⊕(x0∧x1∧di).

In the preprocessing phase, C and S generate secret-shares of
two random bits α0 and α1, and use FAND to compute the
secret-share of β := α0 ∧ α1. In the online phase, they reveal
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TABLE II: Comparison with existing LUT protocols that support arithmetic inputs. A table has n l-bit elements. We use Ferret-
OT [31] for OT instances, which roughly requires 0.6 bits per random-OT. When calculating the computational overhead, we
only consider one party, as the two parties can run in parallel.

Protocol Communication (bits) Computation
preprocessing online preprocessing online

OTTT [19] 5.2(log n− 1)nl 2 log n (log n− 1)nl · ROT+ nl · XOR 1XOR
OP-LUT [9] n2l − 0.4 log n 2 log n log n · ROT+ n2 log n · XOR 1XOR
SP-LUT [9] 0.6 log n nl + log n log n · ROT+ n log n · XOR n · XOR
ROTL (0.6 + λ) log n+ n 2 log n log n · ROT+ (n+ n2/λ)AES+ 3n · XOR 2n · XOR+ 1MUX

TABLE III: Improvement factor of total communication of
ROTL over SP-LUT.

n
l

8 16 32 64 128

4 0.12 0.20 0.33 0.50 0.66
8 0.16 0.29 0.50 0.79 1.13
16 0.24 0.45 0.79 1.32 1.98
32 0.38 0.72 1.32 2.25 3.51
64 0.64 1.21 2.25 3.94 6.31
128 1.09 2.10 3.93 6.99 11.5
256 1.91 3.69 6.98 12.6 21.0

m0 := α0 ⊕ x0 and m1 := α1 ⊕ x1. Then, for example,

x0 ∧ x1 ∧ ai

= (m0 ⊕ α0) ∧ (m1 ⊕ α1) ∧ ai

= (m0 ∧m1 ⊕m0 ∧ α1 ⊕m1 ∧ α0 ⊕ α0α1) ∧ ai

= (m0 ∧m1 ⊕m0 ∧ ⟨α1⟩C ⊕m1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C) ∧ ai

⊕ (0⊕m0 ∧ ⟨α1⟩S ⊕m1 ∧ ⟨α0⟩S ⊕ ⟨β⟩S) ∧ ai,

the secret-share of which can be computed locally by S and
C. For the public values such as m0 ∧m1, C holds m0 ∧m1

and S holds 0. FLUTE [4] runs the above process for all n
possible inputs (n = 4 in our example) and l output bits, which
involves O(l · n2) online computation in total.

Our first observation reveals that (x0 ∧ x1, x0 ∧ x1, x0 ∧
x1, x0 ∧ x1) are consistent across all output bits, hence we
can compute them once and reuse the results uniformly. This
optimization reduces the online computation of FLUTE from
O(l · n2) to O(n2 + l · n). We further observe that the online
computation for each party (e.g., C) to compute an output bit
is:

(m0 ∧m1 ⊕m0 ∧ ⟨α1⟩C ⊕m1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C) ∧ ai⊕
(m0 ∧m1 ⊕m0 ∧ ⟨α1⟩C ⊕m1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C) ∧ bi⊕
(m0 ∧m1 ⊕m0 ∧ ⟨α1⟩C ⊕m1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C) ∧ ci⊕
(m0 ∧m1 ⊕m0 ∧ ⟨α1⟩C ⊕m1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C) ∧ di.

Although C knows m0 and m1 only in the online phase, it
could enumerate the possible values of m0 and m1 in the

preprocessing phase and compute:

⟨s0⟩C := 0 ∧ 0⊕ 0 ∧ ⟨α1⟩C ⊕ 0 ∧ ⟨α0⟩C ⊕ ⟨β⟩C ,
⟨s1⟩C := 0 ∧ 1⊕ 0 ∧ ⟨α1⟩C ⊕ 1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C ,
⟨s2⟩C := 1 ∧ 0⊕ 1 ∧ ⟨α1⟩C ⊕ 0 ∧ ⟨α0⟩C ⊕ ⟨β⟩C ,
⟨s3⟩C := 1 ∧ 1⊕ 1 ∧ ⟨α1⟩C ⊕ 1 ∧ ⟨α0⟩C ⊕ ⟨β⟩C .

After knowing m0 and m1 in the online phase, they could
locally re-arrange the order of (s0, s1, s2, s3). This transition
shifts the O(n2) computation to the preprocessing phase,
leaving only O(l · n) local computation online.

We further reduce the preprocessing computation from
O(n2) to O(n log n) by leveraging the butterfly diagram
optimization [6]. In more detail, we transform (s0, s1, s2, s3)
to:

⟨s0⟩C = (0⊕ ⟨α1⟩C) ∧ (0⊕ ⟨α0⟩C)
= ⟨α1⟩C ∧ ⟨α0⟩C ,

⟨s1⟩C = (0⊕ ⟨α1⟩C) ∧ (1⊕ ⟨α0⟩C)
= ⟨α1⟩C ∧ (1⊕ ⟨α0⟩C),
= ⟨α1⟩C ⊕ ⟨α1⟩C ∧ ⟨α0⟩C ,

⟨s2⟩C = (1⊕ ⟨α1⟩C) ∧ (0⊕ ⟨α0⟩C),
= (1⊕ ⟨α1⟩C) ∧ ⟨α0⟩C ,
= ⟨α0⟩C ⊕ ⟨α1⟩C ∧ ⟨α0⟩C ,

⟨s3⟩C = (1⊕ ⟨α1⟩C) ∧ (1⊕ ⟨α0⟩C),
= 1⊕ ⟨α0⟩C ⊕ ⟨α1⟩C ⊕ ⟨α1⟩C ∧ ⟨α0⟩C .

To compute (⟨s0⟩C , ⟨s1⟩C , ⟨s2⟩C , ⟨s3⟩C) efficiently, C first sets:

⟨s0⟩C := ⟨α0⟩C ∧ ⟨α1⟩C ,
⟨s1⟩C := ⟨α1⟩C ,
⟨s2⟩C := ⟨α0⟩C ,
⟨s3⟩C := 1.
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TABLE IV: Comparison with FLUTE. A table has n l-bit elements. We use Ferret-OT [31] for OT instances, which roughly
requires 0.6 bits per random-OT. When calculating the computational overhead, we only consider one party, as the two parties
can run in parallel.

Protocol Communication (bits) Computation
preprocessing online preprocessing online

FLUTE [4] 5.2(n− log n− 1) 2 log n (n− log n− 1)(ROT+ XOR) (ln2 + ln)XOR
FLUTE+ 5.2(n− log n− 1) 2 log n (n− log n− 1)(ROT+ XOR) + n log nXOR (ln+ n log n)XOR

Then, C computes:

⟨s3⟩C := ⟨s3⟩C ⊕ ⟨s2⟩C ,
= 1⊕ ⟨α0⟩C .

⟨s1⟩C := ⟨s1⟩C ⊕ ⟨s0⟩C ,
= ⟨α1⟩C ⊕ ⟨α0⟩C ∧ ⟨α1⟩C

Next, C computes:

⟨s2⟩C := ⟨s2⟩C ⊕ ⟨s0⟩C ,
= ⟨α0⟩C ⊕ ⟨α1⟩C ∧ ⟨α0⟩C ,

⟨s3⟩C := ⟨s3⟩C ⊕ ⟨s1⟩C ,
= 1⊕ ⟨α0⟩C ⊕ ⟨α1⟩C ⊕ ⟨α0⟩C ∧ ⟨α1⟩C .

For log n input bits, the process for generating (⟨s0⟩C , ⟨s1⟩C ,
⟨s2⟩C , · · · ⟨sn−1⟩C) is as follows:

1) ∀ i ∈ [0, n− 1]: Qi ← {j|j-th bit of i is 0}
• if Qi = ∅, ⟨si⟩C := 1;
• otherwise, ⟨si⟩C := ∧j∈Qi

⟨αj⟩C .
This step requires (n− log n− 1) invocations of FAND.

2) ∀ j ∈ [0, log n− 1] and ∀ i ∈ [0, n− 1]: if the j-th bit
of i is 1, ⟨si⟩C := ⟨si⟩C ⊕ ⟨si+2j ⟩C .

S runs symmetrically as C, except that, in Step 1, S sets
⟨si⟩S := 0 when Qi = ∅ to have si = 1.

This optimization effectively reduces the preprocessing
computation from O(n2) to O(n log n).

Table IV shows the theoretical comparison between FLUTE
and FLUTE+. Their communication costs are identical as
we focus on optimizing computation. In the online phase,
FLUTE+ involves a slight additional effort in re-arranging the
order of (s0, s1, s2, s3), amounting to approximately n log n
XOR operations.

VI. SECURE COMPARISON

In this section, we provide a protocol for secure comparison.
Recall that the ideal functionality of secure comparison is:

b← CMP(x, y): b = 1 if x ≥ y, b = 0 otherwise;

where x and y are two signed integers in Z2l . To compute a
secret-shared b, we could have S and C compute an arithmetic
share of a := x− y. Then, b is the most-significant bit (MSB)
of a:

b = 1⊕MSB(a).

Let ⟨a⟩C = msbC ||⟨a′⟩C and ⟨a⟩S = msbS ||⟨a′⟩S , then

MSB(a) = msbC ⊕msbS ⊕ carry,

where carry = 1{⟨a′⟩C + ⟨a′⟩S ≥ 2l−1}. If S and C can
compute the secret-share of carry, they can obtain the secret-
share of MSB(a).

Let c = ⟨a′⟩C and d = 2l−1 − ⟨a′⟩S , then

carry = 1{c ≥ d} = 1⊕ 1{c < d},

where c and d are two unsigned integers in Z2l−1 . Notice that
the computation of 1{c < d} is a millionaires’ problem, the
ideal functionality of which is shown in Figure 12.

Input:
• C: c ∈ Z2l−1

• S: d ∈ Z2l−1

Output:
• C: ⟨β⟩C ∈ Z2

• S: ⟨β⟩S ∈ Z2, s.t., β = 1{c < d}

Functionality FMILL

Fig. 12: Ideal functionality for secure comparison.

The insight of our millionaires’ protocol is to have S and C
compute: e = c−d mod 2l, and (arithmetically) secret-share
the result. Then, they invoke FLUT(⟨e⟩C , ⟨e⟩S) with a public
table:

[0, ..., 0︸ ︷︷ ︸
2l−1

, 1, ..., 1︸ ︷︷ ︸
2l−1

].

It is noteworthy that the modular for e is 2l (instead of 2l−1),
because c and d are unsigned integers. 2

With ROTL (cf. Section IV), all the expensive operations
are shifted to the preprocessing phase, leaving merely one
FMUX in the online phase. However, this is feasible only when
n = 2l is not enough. Recall that ROTL necessitates O(n)
communication and O(n2) computation in the preprocessing
phase. To this end, we reduce the size of LUT by partitioning
the inputs into smaller blocks. Figure 13 shows the details
of our millionaires’ protocol. Its security is straightforward as

2If the modular is 2l−1, the table would be t = [1, ..., 1︸ ︷︷ ︸
2l−2

, 0, ..., 0︸ ︷︷ ︸
2l−2

]. Take

c = 2l−2 + 2 and d = 1 as an example, e = 2l−2 + 1 should return 1, but
it will return 0.
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all operations are local except some invocations of FLUT and
FAND.

1) C and S parse c and d as smaller blocks of l′

bits, with m = ⌈ l−1
l′ ⌉:

c = cm−1||...||c0,
d = dm−1||...||d0.

2) For i = 0 to m− 1, C and S compute
ei = ci − di mod 2m+1, and invoke
FLUT(⟨ei⟩C , ⟨ei⟩S) with two public tables:

[0, ..., 0︸ ︷︷ ︸
2m

, 1, ..., 1︸ ︷︷ ︸
2m

], [1, 0, ..., 0︸ ︷︷ ︸
2m+1−1

]

and get the secret-shares of
lti = 1{ci < di} and eqi = 1{ci = di}

respectively. Notice that, since the inputs to
both tables are identical (i.e., ei), a single
ROTL invocation is enough.

3) C and S output:

ltm−1 ⊕ (eqm−1 ∧ ltm−2)⊕
(eqm−1 ∧ eqm−2 ∧ ltm−3)⊕ ...⊕
(eqm−1 ∧ ... ∧ eq1 ∧ lt0)

Protocol ΠMILL

Fig. 13: The millionaires’ protocol.

VII. EVALUATION

In this section, we empirically compare ROTL and FLUTE+
with existing LUT protocols. We also compare our secure
comparison protocol with the state-of-the-art. We also imple-
ment Softmax and GELU based on ROTL, and systematically
evaluate them with the real parameters in GPT-2 [25].

A. Implementation
We fully implemented ROTL and FLUTE+ in C++. We

use AES for length-doubling PRG [11] and use Ferret-
OT [31] from EMP-toolkit3 for OT instances. For PPRF, we
incorporated the half-tree [12] optimization to reduce both
communication and computation. We use AXV2 (Advanced
Vector Extensions) to accelerate the operations for 256-bit-
width integers (i.e., uint256).

We also re-implemented FLUTE [4] in C++, for two rea-
sons: 1) the original FLUTE implementation4 uses Silver [7]
for OT instances, which has been proved to be insecure [26],
and we replaced it with Ferret-OT; 2) to have a fair com-
parison, we adopt the same library (i.e., EMP-toolkit) for
the cryptographic operations used in all LUT protocols to be
benchmarked.

We set the security parameter λ as 128 for all implementa-
tions.

3https://github.com/emp-toolkit/emp-ot
4https://github.com/encryptogroup/FLUTE

B. Experimental setup

We consider both LAN and WAN in our benchmark: in
LAN, the bandwidth is 3000 Mbps and RTT is 0.8ms; in WAN,
the bandwidth is 100 Mbps and RTT is 50ms. All experiments
were performed on AWS c5.9xlarge instances with Intel Xeon
8000 series CPUs at 3.6GHz, and they were conducted using
a single thread.

Since FLUTE has been proved to be better than OTTT and
OP-LUT [4] in almost all aspects, we omit OTTT and OP-LUT
in our benchmarks and focus on comparing with FLUTE and
SP-LUT.

If we measure the performance of a single LUT instance,
the error could be substantial as a single LUT instance runs in
µs. To avoid this, we sequentially run 100 000 LUT instances
and report the average communication and runtime for all
benchmarks.

C. LUT evaluation

We initially configure the output bit-length l to be 64 and
evaluate the LUT protocols across various table lengths n.

In Figure 14(a), the comparison is presented in terms of total
communication. SP-LUT exhibits the poorest performance in
this regard as it incurs O(l · n) communication, while the
others operate at O(n). Consequently, when n = 256, SP-
LUT is approximately 11.6× expensive than others. ROTL’s
communication is roughly 2× that of FLUTE and FLUTE+
when n is small, due to its communication dependency
on the security parameter λ. However, as n increases, this
discrepancy diminishes. Indeed, when n = 256, ROTL’s
communication closely matches FLUTE and FLUTE+.

Concerning total runtime, ROTL and FLUTE+ align closely
in both LAN (Figure 14(b)) and WAN settings (Figure 14(c)).
FLUTE significantly lags behind others, primarily due to its
O(l·n2) local computation. When n = 256, it is approximately
11.6× and 7.2× slower than ROTL in LAN and WAN
respectively. SP-LUT exhibits slightly faster performance in
LAN, as its communication weakness is less pronounced in
this setting. Conversely, in a WAN setting, it is 2.7× slower
than ROTL when n = 256.

The online communication and runtime (Figure 14(d)-14(f))
of these protocols demonstrate similar trends as observed in
the total communication and runtime. Figure 14(g)-14(i) show
the preprocessing communication and runtime. SP-LUT and
FLUTE achieve better performance in the preprocessing phase
as their primary overhead is in the online phase.

Figure 15 shows the evaluation results with the same table
length and various output-bit lengths. The total and online
overheads are roughly in similar trends with those in Figure 14.
The preprocessing overheads for these protocols are stable, as
the preprocessing phases of these protocols are independent
of l.

In summary, ROTL and FLUTE+ achieve a commendable
equilibrium between communication and computation in both
online and total performance aspects. When n = 256 and
l = 64,
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(a) Total Communication. (b) Total time (LAN). (c) Total time (WAN).

(d) Online communication. (e) Online time (LAN). (f) Online time (WAN).

(g) Preprocessing communication. (h) Preprocessing time (LAN). (i) Preprocessing time (WAN).

Fig. 14: LUT evaluation with various table lengths n.

• ROTL involves 0.23KB total communication (0.03KB
during online), 41.8µs runtime in LAN (3.1µs during
online), and 68.9µs runtime in WAN (8.7µs during on-
line), achieving upto 155× speedup in online runtime and
11.6× speedup in total runtime over FLUTE;

• FLUTE+ involves 0.17KB total communication
(0.002KB during online), 44.6µs runtime in LAN
(0.5µs during online), and 61.7µs runtime in WAN (
1.5µs during online), achieving upto 962× speedup in
online runtime and 10.8× speedup in total runtime over
FLUTE.

D. Evaluation of the secure comparison protocols

E. Secure LLM inference

We implemented the protocols for securely computing
Softmax and GELU following the specifications in [16]. We
first employ SP-LUT as the underlying LUT protocol and
measure the performance as a baseline. Notice that SP-LUT

is the most prevalent LUT used in secure inference (FLUTE
cannot support arithmetic shares). Then, we replace SP-LUT
with ROTL and assess the improvements.

Following Cheetah [17] and CrypTFlow2 [30], we left-shift
the floating point numbers for L = 12 bits and drop the
fractional part. During the inference, we use secure truncation
to make sure the largest value is smaller than 2l − 1 with
l = 37.

Table VI presents the comparison results, showcasing sig-
nificant improvements over the baseline. There is a 4.8×
reduction in total communication for Softmax and a 4.1×
reduction for GELU. The improvements become even more
pronounced when considering online communication, with a
1.5× reduction for Softmax and a 1.9× reduction for GELU.
The improvements in LAN time are neutral, given the fast
communication in LAN environments and the lightweight
computation of SP-LUT. However, the improvements become
pronounced again when considering WAN time, resulting in
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(a) Total Communication. (b) Total time (LAN). (c) Total time (WAN).

(d) Online communication. (e) Online time (LAN). (f) Online time (WAN).

(g) Preprocessing communication. (h) Preprocessing time (LAN). (i) Preprocessing time (WAN).

Fig. 15: LUT evaluation with various output-bit lengths.

TABLE V: CMP

CMP (Z237)
Communication (MB) LAN time (s) WAN time (s)
total online prepr. total online prepr. total online prepr.

[17] 8.12 4.72 3.40 1.79 0.08 1.71 4.86 2.25 2.61
ROTL based CMP 75.61 1.93 73.68 3.78 0.07 3.71 13.12 2.11 11.01

savings of 35 seconds for Softmax and 1.7 minutes for GELU.

VIII. RELATED WORK

In this section, we provide a succinct overview of related
work.
Garbled LUTs. Yao’s garbled circuits (GC) [32] is a generic
protocol for secure two-party computation. In Yao’s GC
setting, earlier studies observed that 2-input/1-output gates
can be extended into multi-input/multi-output gates, thereby
reducing the overhead associated with circuit evaluation [22],
[15], [24]. This could be considered as a general solution for
LUT evaluations. Fairplay [22] supports garbled gates with up

to 3-inputs, with their approach generalizing to an arbitrary
number of inputs. TASTY [15] supports multi-input garbled
gates, incorporating garbled-row reduction. More recently, [24]
introduced garbled circuits featuring multi-input/multi-output
gates.

LUTs w/wo preprocessing. The preprocessing model is
widely used in secure multiparty computation (MPC) [2], [8].
It splits the computation into an input-independent preprocess-
ing phase and an input-dependent online phase. In more detail,
it enables the parties to generate correlated randomness in
the preprocessing phase, subsequently expediting the online
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TABLE VI: Softmax and GELU

Softmax
(
(Z256×256

237 ← Z256×256
237

)
× 12)

Communication (MB) LAN time (s) WAN time (s)
total online prepr. total online prepr. total online prepr.

SP-LUT solution 1191.78 1133.62 58.16 24.78 8.59 16.187 139.53 115.05 24.48
ROTL based solution 247.2 189.56 57.64 19.87 3.42 16.45 53.61 29.79 23.82

GELU
(
Z256×3072
237 ← Z256×3072

237

) Communication (MB) LAN time (s) WAN time (s)
total online prepr. total online prepr. total online prepr.

SP-LUT based solution 1837.05 1775.72 61.33 31.24 10.37 20.87 199.44 169.93 29.51
ROTL based solution 446.89 264.66 182.23 42.04 4.08 37.96 88.99 33.50 55.49

phase in terms of communication, interactive rounds, as well
as overall runtime.

Ishai et al. [19] proposed a LUT protocol named OTTT
based on the preprocessing model. It generates secret-shares
of a rotated table in the preprocessing phase, by evaluating a
Boolean circuit prepresenting the table once for every possible
input. Dessouky et al. [9] proposed OP-LUT, which further
reduces the cost of OTTT’s preprocessing phase by leveraging
OT instances. However, it still requires expensive circuit eval-
uations. In contrast, our proposed protocol for secret-shared
rotations (cf. Figure 10) is significantly more lightweight.

In the same paper, Dessouky et al. [9] proposed another
LUT protocol named SP-LUT, which operates without relying
on the preprocessing model. Indeed, it only prepares log n
random OTs during the preprocessing phase. SP-LUT is ar-
guably the most lightweight protocol in terms of computation,
but it incurs the highest communication cost as it necessitates
transferring the entire table, unlike other LUT protocols that
operate on a bit vector. Compounding this, such expensive
communication occurs during the online phase.

Before our work, FLUTE achieved the optimal balance
between overall and online performance. Indeed, the authors
of FLUTE claimed that “FLUTE matches or even outperforms
the online performance of all prior approaches, while being
competitive in terms of overall performance with the best
prior LUT protocols [4]”. In this paper, we take a substantial
leap forward, achieving a remarkable 962× speedup in online
performance and a 10.8× speedup in overall performance.
Additionally, we overcome FLUTE’s limitation by enabling
support for arithmetic shares.
LUT for secure inference. LUT is an important building
block for computing non-linear functions in secure inference.
CrypTFlow2 [30] employs LUT to realize the state-of-the-art
ΠCMP, which is subsequently utilized to implement the ReLU
activation function. SecFloat [27] leverages LUT for floating-
point computation, striking a commendable balance between
efficiency and accuracy. SIRNN [29] pioneers the exploration
of employing LUT for computing complex functions such
as sigmoid and softmax. Iron [14] applies them to LLM
inference, but it exhibits high costs in communication and
computation. CipherGPT [16] introduces an innovative method
for computing GELU and softmax, optimizing the utilization
LUT. Nevertheless, LUT evaluation remains a bottleneck. All
these works use SP-LUT as the underlying LUT protocol, and

ROTL could serve as a better alternative. SIGMA [13] uses
function secret-sharing (FSS) to achieve a similar goal with
LUT, but this solution relies on a trusted dealer.

IX. CONCLUSION

In response to the privacy concerns raised by LLM, we
propose ROTL, a LUT protocol that is designed for secure
LLM inference. It achieves upto 11.6× speedup in terms of
overall performance and 155× speedup in terms of online
performance over the state-of-the-art. Central to ROTL is a
novel protocol for secret-shared rotation that is of indepen-
dent interest. Furthermore, we propose another LUT protocol
named FLUTE+ for boolean shares. It achieves upto 10.8×
speedup in terms of overall performance and 962× speedup
in terms of online performance over the state-of-the-art.
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