
MatcHEd: Privacy-Preserving Set Similarity based on MinHash

Rostin Shokri, Charles Gouert, and Nektarios Georgios Tsoutsos

University of Delaware
{rostinsh, cgouert, tsoutsos}@udel.edu

Abstract. Fully homomorphic encryption (FHE) enables arbitrary computation on encrypted data,
but certain applications remain prohibitively expensive in the encrypted domain. As a case in point,
comparing two encrypted sets of data is extremely computationally expensive due to the large number
of comparison operators required. In this work, we propose a novel methodology for encrypted set
similarity inspired by the MinHash algorithm and the CGGI FHE scheme. Doing comparisons in FHE
requires comparators and multiplexers or an expensive approximation, which further increases the la-
tency, especially when the goal is to compare two sets of data. The MinHash algorithm can significantly
reduce the number of comparisons required by employing a special Carter-Wegman (CW) hash function
as a key building block. However, the modulus operation in the CW hash becomes another key bottle-
neck because the encrypted sub-circuits required to perform the modular reduction are very large and
inefficient in an FHE setting. Towards that end, we introduce an efficient bitwise FHE-friendly digest
function (FFD) to employ as the cornerstone of our proposed encrypted set-similarity. In a Boolean
FHE scheme like CGGI, the bitwise operations can be implemented efficiently with Boolean gates,
which allows for faster evaluation times relative to standard Carter-Wegman constructions. Overall,
our approach drastically reduces the number of comparisons required relative to the baseline approach
of directly computing the Jaccard similarity coefficients, and is inherently parallelizable, allowing for
efficient encrypted computation on multi-CPU and GPU-based cloud servers. We validate our approach
by performing a privacy-preserving plagiarism detection across encrypted documents.

Keywords: Secure computation · Fully homomorphic encryption · Privacy-preserving set similarity.

1 Introduction

With the growth of third-party cloud providers, the privacy of the outsourced data stored in these servers
becomes a large concern for clients and must be promptly addressed. As a motivating example, a curious cloud
provider can plausibly see the data stored on their servers to support targeted advertisement. Additionally,
cloud servers have drawn the attention of attackers because sensitive information from several clients can
reside on the same server. Existing threats such as cache-based side channel attacks [42, 43], RowHammer
attacks, as well as other DRAM-based attacks [28,29] can potentially affect and leak private data on multi-
tenant machines, which include most cloud services today.

One possible way to address this challenge is to use symmetric encryption schemes such as AES [13],
as these encryption algorithms can help us secure the sensitive data stored in a cloud provider’s server [1].
Although symmetric encryption algorithms like AES provide strong security guarantees and relatively fast
encryption and decryption overheads, they do not allow computation over encrypted data. Therefore, to
apply meaningful operations on encrypted data that is stored on the cloud server, we need to retrieve the
data from the cloud provider, decrypt the data, compute on the plaintext, and then re-encrypt it and upload
it back to the cloud service, which is time-consuming and inefficient.

Fortunately, a more versatile form of cryptography, dubbed homomorphic encryption (HE), allows us to
do computation directly on encrypted data. More concretely, HE allows a user to encrypt modular integers,
bits, or floating point numbers and the resulting ciphertexts are malleable by design. Notably, modern HE
schemes, called fully homomorphic encryption (FHE), allow for any arbitrary computation on encrypted data
by supporting both addition and multiplication or a set of functionally complete Boolean operators.

Even though arbitrary encrypted computation is possible using this method, some algorithms that require
knowledge of the underlying data, such as many sorting algorithms like QuickSort, are infeasible or at least
very expensive due to the termination problem [20,33]. In particular, the termination problem states that the
computing party (e.g., a cloud server) is unable to make a branching decision based on encrypted data, as
any information related to the underlying plaintext can not be deduced without the client’s decryption key
(which is not shared). Likewise, algorithms that rely heavily on computing comparisons between encrypted
values are largely impractical due to the computational overhead of approximating or exactly computing
comparison operators in the encrypted domain. Unfortunately, comparing two encrypted values is non-
trivial; for homomorphic encryption schemes over the integers, one can utilize a polynomial interpolation,
such as the one proposed by Iliashenko and Zucca [25] for an encrypted less-than operation, which grows
significantly more expensive as the plaintext modulus increases, rendering this approach infeasible for many
applications that require high data precision. On the other hand, for FHE schemes where individual bits are
encrypted as independent ciphertexts, one can utilize a Boolean comparator circuit to perform the equivalent
computation. Regardless, the comparator circuits are quite large and exhibit high latency for Boolean FHE
schemes.

Nevertheless, one of the major challenges in modern privacy-preserving methods like homomorphic en-
cryption is the ability to compute similarities between sets of encrypted data without leaking any infor-
mation about the underlying plaintext. In many privacy-aware applications, such as finding similar DNA
sequences [35], finding similarities over proprietary or sensitive images [31], as well as detecting plagiarism
across private documents [34], the confidentiality of the plaintext is a major goal.

A simple solution to finding similarities between two datasets is to compare each element of the first set
with all the elements of the second set. This approach requires O(n ∗m) time complexity, where n and m
are the sizes of the two sets. As a result, the computation time will massively increase when the sets scale
to larger sizes. Conversely, locality sensitive hashing (LSH) offers a more efficient, heuristic-based approach
for finding similarities between datasets [16, 30] and can result in computing altogether fewer comparison
operations. In more detail, LSH is a hashing-based technique that can efficiently approximate the similarity
between datasets based on some metric, such as the Jaccard similarity index [2]. LSH algorithms apply hash
functions on the input data so that similar data points will hash to the same or nearby hash codes with
high probability; this can significantly accelerate the computation costs compared to simpler, brute-force
methods. Moreover, LSH algorithms offer high accuracy and high-performance if parameterized correctly.

In this paper, we propose a technique inspired by the MinHash LSH algorithm [6] to find similar datasets
in a privacy preserving way using FHE. The MinHash set-similarity algorithm focuses on estimating the
Jaccard similarity index between two sets, and the core operations required are computing hash digests and
finding the minimum digest. The construction utilized to produce the digests is required to provide different
mappings over the dataset, while the minimum operation finds the minimum digest (i.e., the signature) of
a set. In this approach, we only need to compare the signatures generated for each set instead of comparing
all elements with each other.

The function typically used for MinHash is a linear universal hash function such as the Carter-Wegman
(CW) hash [9]. While this is one of the simplest forms of hashing, it is very fast compared to other hash
functions and offers sufficiently-random mapping when used in an LSH algorithm. However, when generating
a digest in the encrypted domain using Boolean-based FHE, this approach becomes prohibitively expensive
because of the modular reductions in the CW construction, and the need for large multi-bit arithmetic
circuits. Likewise, due to the nature of the MinHash algorithm, the modular reduction operation is used
extensively. Therefore, to address this challenge and to introduce a MinHash variant specifically optimized
for FHE, we introduce a judiciously designed (FFD) construction that is tailored for FHE performance. Our
key observation is that arithmetic-based operations that include non-linear operations (such as the modulo
operator) are not well-suited for FHE. On the other hand, bitwise operations can be directly translated to
logical gates and yield relatively small Boolean circuits, which can be evaluated efficiently using FHE.

Overall, our contributions can be summarized as follows:

– Design of efficient and accurate digest generation techniques that are tailored for encrypted evaluation
of LSH algorithms.

2

– A novel methodology for set-similarity in the encrypted domain using FHE.

– New strategies for efficient and parallelizable comparison operations with Boolean-based FHE on CPU
and GPU targets.

Roadmap: The rest of the paper is organized as follows: Section 2 provides necessary background on FHE
and the MinHash algorithm, while Section 3 highlights challenges for implementing MinHash in the encrypted
domain. Section 4 presents our proposed methodology and considerations of implementing MinHash in the
encrypted domain, as well as possible trade-offs for increasing the efficiency and accuracy of the encrypted
set-similarity algorithm, while Section 5 discusses our experimental evaluation using plagiarism detection
benchmarks as the target application. Finally, Section 6 discusses relevant related work, and our concluding
remarks are presented in Section 7.

2 Background

2.1 Homomorphic Encryption Primer

An encryption scheme with malleable ciphertexts that enable some form of computation directly on ciphertext
data falls under the umbrella of homomorphic encryption. However, not all homomorphic cryptosystems
exhibit the same properties; the HE schemes can be sub-divided into three distinct categories that indicate
the computational power of the homomorphism: partial HE (PHE), leveled HE (LHE), and fully HE (FHE).
PHE is the oldest form of HE but is limited in its computational abilities. In more detail, a PHE scheme allows
for unbounded addition or multiplication, but not both. This makes it well-suited for specific applications
like data aggregation but is not suitable for complex algorithms like the set-similarity techniques proposed
in this paper.

Unlike PHE, LHE allows for both addition and multiplication and is therefore capable of performing
arbitrary computation as these two operations form a functionally complete set. LHE ciphertexts in all
popular schemes, such as BGV [5] and CKKS [11], take the form of tuples of high-degree polynomials where
each coefficient is an integer modulo a large composite number (i.e., a product of primes) called the ciphertext
modulus (typically several hundred bits in length). Notably, the security of LHE schemes typically relies on
the LWE problem [36] or its ring variant [32], which entails adding a small amount of random noise to the
coefficients of the ciphertext polynomials during encryption. An important consequence of the presence of
noise in the ciphertexts is that the magnitude of the noise grows as the ciphertexts are computed upon;
in simple terms, the noise increases slightly when adding ciphertexts, and significantly when multiplying
ciphertexts. If the computation requires many subsequent multiplications to be computed over ciphertext
data, the noise will start to corrupt the underlying message with high probability, and the final decrypted
result will be non-deterministic.

FHE solves the noise growth problem and is the most powerful form of HE in terms of computational
abilities: FHE schemes allow for unlimited operations on ciphertext data for a fixed parameter set. In partic-
ular, any LHE scheme can be transformed into an FHE scheme through the introduction of a bootstrapping
mechanism [17]. Nevertheless, bootstrapping incurs a large computational overhead with respect to other
HE operations and constitutes the core bottleneck of FHE evaluation. For instance, for the BGV and CKKS
cryptosystems, a single bootstrapping operation can take several seconds to several minutes on a CPU,
depending on the choice of parameters [21]. The FHEW cryptosystem [15] was introduced to address the la-
tency problems in bootstrapping and was the first Boolean FHE scheme. This class of FHE schemes encrypts
individual bits, as opposed to integers or floating point numbers, and allows for the evaluation of encrypted
logic gate operations. The bootstrapping procedure in FHEW can be evaluated in less than a second on a
CPU and serves a key computational role in the evaluation of each logic gate, so it must be invoked for each
gate operation. Likewise, the CGGI cryptosystem [12] builds upon FHEW and is capable of achieving even
faster bootstrapping speeds of less than 10 milliseconds per bootstrap on a CPU. For this reason, we opt to
utilize the CGGI cryptosystem in this work.

3

2.2 Locality-sensitive Hashing

The premise of locality-sensitive hashing (LSH) is that similar items tend to have the same or nearby hash
values with high probability. When the size of the data is large, the complexity of finding similar items
using brute force methods (i.e., comparing all entities one by one) becomes impractical. LSH reduces the
complexity by using special hash functions that map similar items to the same “bucket”. Therefore, instead
of comparing the items directly, one can compare the hash values and items that have similar hash values
are considered similar. Typical LSH algorithms are able to compute the similarity of two sets using metrics,
such as the Jaccard similarity of these sets. Specifically, the Jaccard similarity J between two sets A and B
is defined as:

J(A,B) =
|A ∩B|
|A ∪B|

(1)

By definition, we note that 0 ≤ J(A,B) ≤ 1 for any A and B, and in this paper, we define A and B to be
the set of positive integers. An important consideration about Jaccard similarity is its poor scalability in
terms of time and space required as the size and number of the datasets increase.

This challenge is addressed by MinHash, which is a probabilistic algorithm that relies on special hash
functions to compute signatures for each set and then compares them to assess the level of similarity between
the two sets. Notably, MinHash is a high-accuracy estimation of Jaccard similarity, so instead of using the
Jaccard function directly to find similarity between each pair of data sets, MinHash generates hash signatures
for each set and then compares the signatures pair-wise to find similar datasets. Therefore, even if the size
and number of the datasets grow, MinHash becomes increasingly more efficient than the Jaccard similarity.

Minhash has two major components: the computation of primitive hash functions (used to generate
mappings of the input set), and finding the minimum hash value of each hash function by comparing all
generated hash values. We remark that in our implementation of the MinHash algorithm, instead of storing
each hash digest and sorting a list of digests to find the minimum, we generate each digest on the fly and
compare hash values as we go and always save the minimum value. The MinHash algorithm that computes
hash signatures for each set is presented in Algorithm 1:

Algorithm 1 MinHash Algorithm

Input: List of sets S; Number of hash functions k
Output: List of MinHash signatures for each set
1: procedure MinHash(S, k)
2: Initialize matrix M of size k × |S| to ∞
3: for i← 1 to k do
4: for each set s in S do
5: for each element x in s do
6: hashV alue← hashi(x)
7: M [i, s]← min(M [i, s], hashV alue))

8: return M

In sum, Algorithm 1 uses k different hash functions and a list of sets S. For each set s ∈ S, it computes a
list of hash signatures of length k, stores them in matrix M , and returns it. Now, to estimate the similarity
between two sets we compare the signatures; the number of equal signatures divided by the number of hashes
constitutes the final similarity result. If the hash functions chosen have low collision probabilities and k is
sufficiently large, then our output will be an accurate approximation of the exact Jaccard similarity of the two
sets [8]. The time complexity of generating hash signatures for a set of size n and k different hash functions is
O(k ·n). Then to compare the two sets we only compare the hash signatures which will be of complexity O(k).
In almost all cases, the number of hash functions k will be small so that the complexity of the comparison
of the MinHash signatures of two sets will be close to constant time. Conversely, the time complexity of the
Jaccard similarity of two sets with sizes n and m when implemented efficiently is O(min(n,m)). Thus, if we

4

Input Data

Encoding

List of Sets

Homomorphic programs

Cloud

Encrypted results

Preprocessing

FHE Framework

Constructions
FFD CW

Minimum Hash

User User

Fig. 1. Framework Overview: The user encodes data into sets, encrypts them, and then sends them to the cloud,
which can run MinHash in the encrypted domain with either the CW or FFD construction. Finally, the encrypted
set similarity measure is returned to the user for decryption.

only have one pair of datasets, the Jaccard similarity will likely be faster, but when scaling to thousands or
millions of pairs, then MinHash has a significant performance advantage. This is because MinHash generates
the hash signatures for each dataset only once, and reuses those signatures to find similarity between each
pair of datasets in roughly constant time. Conversely, Jaccard similarity requires linear time to compute the
similarity between a pair of sets, so as the number of pairs grows, Jaccard becomes very expensive.

2.3 Threat Model

In this work, we assume an honest but curious cloud service provider that is incentivized to view sensitive
data uploaded by a client, but will not deviate in any way from the protocol (i.e., the prescribed MinHash
algorithm). From a confidentiality perspective, the only information the computing party can gather is the
size of the underlying plaintext since each ciphertext encrypts a single bit of information. Overall, our threat
model is stronger than approaches involving more than one server (e.g., secure multiparty computation),
where colluding servers could potentially leak sensitive data.

Note that our security guarantees come from the FHE scheme itself. Therefore, the MinHash algorithm
and the digest generation functions utilized in the algorithm have no impact on data confidentiality. All
digests and intermediate values are homomorphically encrypted and rely on the security of the LWE problem
mentioned previously. Parameterizing MinHash and the constituent functions solely relates to the correctness
of the plagiarism detection.

3 Privacy-Preserving Set Similarity with MinHash

Adopting MinHash in the encrypted domain comes with a set of challenges that need to be addressed. To
run MinHash homomorphically, we need to be able to compute the digests and find the minimum values
in the encrypted domain. Another challenge is defining the size of the input datasets, which cannot change
dynamically due to the nature of underlying Boolean FHE circuits, which are synthesized using logic synthesis
frameworks to leverage their rigorous logic optimizations. In more detail, a Boolean 4-bit adder can not be
used to directly compute the addition of 16-bit operands. Instead, the 4-bit adder can be utilized as a building
block to construct the much larger circuit for a 16-bit adder. Therefore, the size of each set must be initialized
at compile time, resulting in multiple circuits for evaluating sets with different sizes. As a consequence, one
must re-run the logic synthesis process each time the structure and sizes of the input sets change, but we
remark that this is a one-time cost for a specific set size configuration and the synthesized circuit can be
re-used an arbitrary number of times in this case.

5

A general methodology for implementing MinHash in the encrypted domain is illustrated in Figure 1.
As discussed earlier, the input can be any type of data that can be interpreted as sets, such as images,
documents, and DNA samples. Since the MinHash algorithm operates on sets of integers as input, the data
must be processed and encoded accordingly (our encoding process for documents is elaborated in Section
5). After the input pre-processing phase, the encoded sets are processed by our proposed framework that
implements MinHash in FHE and generates equivalent homomorphic programs, which take the form of
Boolean circuits due to our use of the CGGI cryptosystem [12]. As elaborated in the next subsections, we
employ FFD and the Carter-Wegman hash homomorphically, along with efficient FHE comparison modules
that process all encrypted digests and return the minimum digests without leaking any information about
the underlying plaintext. Subsequently, our homomorphic programs (i.e., digest computation, comparators)
and the encrypted user data are sent to the cloud for homomorphic evaluation and the encrypted results will
be sent back to the user for final decryption.

3.1 LSH over Encrypted Data

As mentioned earlier, one key motivation for focusing on locality sensitive hashing algorithms, like MinHash,
is the efficiency and scalability limitations of precise approaches like Jaccard similarity. Since the FHE
programming model of CGGI expresses algorithms as Boolean circuits (with FHE logic gates), we can
leverage electronic design automation (EDA) techniques to generate and optimize the gate netlists.

In our methodology, we construct the FHE-friendly MinHash algorithm in C++ and leverage the Google
XLS compiler [14] to generate a Verilog program. Next, the XLS Verilog code is optimized by the Yosys
RTL synthesis suite [38] and serves as input to the HELM framework that generates an optimized fully
homomorphic circuit [19]. We remark that the generic synthesis flows will typically yield gates not directly
compatible with the HELM FHE backend. To compensate for this, we perform the logic synthesis process and
then insert an extra technology mapping step to force the cells to be standard 2:1 logic gates, instead of the
larger compound gates that may be inserted during the standard flow. We further insert another optimization
pass before finalizing the netlist. The encrypted programs (along with the FHE-protected datasets of the
client) are uploaded to a cloud server that employs HELM’s FHE evaluation engine so that all computations
involving the sensitive datasets are end-to-end encrypted and the cloud service has no knowledge of the
underlying plaintext. As soon as the encrypted result is computed and returned, the client can decrypt it
using their secret key. All FHE computations occur completely offline, with the client only incurring the cost
of key generation and the minor costs of encryption and decryption.

3.2 Choice of Primitive Constructions

The functions that compute digests are needed in MinHash to generate different mappings of the input
datasets to compute their unique signatures. In this work, we employ two distinct constructions: the first is
a Carter-Wegman (CW) hash, while the second is a bespoke FHE-Friendly Digest (FFD) construction. In
more detail, the CW hash of input x is defined as:

h(x) = (ax+ b) mod p, (2)

where p is a sufficiently large prime number, a, b ∈ Zp are parameters, and Zp is a finite group based on
prime p.

The standard CW construction offers a simple design with low collision probability that allows generating
unique digests over the input x and can be implemented in FHE since all operations of Eq. 2 can be directly
translated into Boolean circuits. Nevertheless, our analysis shows that generating a homomorphic program
from the CW construction results in significantly oversized sub-circuits due to the inclusion of the modular
reduction operator that grows quickly with the word size.

Therefore, we observe that the key to implementing a digest function that runs efficiently in FHE is to
minimize the size of the generated Boolean circuits for homomorphic evaluation (and thus improve FHE
run-time performance), necessitating a simple construction that can be configurable in order to generate

6

different mappings with a different initialization parameter (to generate k unique digest mappings). To
this end, we introduce an FHE-friendly digest (FFD) function based on bit-wise operators, where instead of
modular reduction we mask the digests using the AND operation. Indeed, this masking behaves like a modular
reduction by a power of 2d, as long as the masking value is a Mersenne number 2d−1, where d is the bitsize of
the input. In the FHE domain, computing the bitwise AND is significantly cheaper than performing a modular
reduction circuit by a factor of potentially hundreds or thousands of gates depending on the wordsize.

To successfully construct a suitable FFD function that works well with the MinHash algorithm, it needs
to be injective and uniform to achieve optimal accuracy [18]. In this context, injective means that each digest
maps to only one input, with no collisions for bounded input sizes. In addition, the uniformity requirement
means that each input has an equal chance of being chosen as the minimum element. Therefore, to enable
our performance optimizations, we choose an FFD function as described in Eq. 3, and show its uniformity
and injective properties. In particular, to enable uniformity, we apply a fixed permutation on the input,
which shuffles the input bits. Moreover, to support the ability to create a family of digests, we apply a bias
term, similar to the constant term of the CW hash; in effect, this approach yields different permutations of
the input. To mitigate any overflows caused by the bias, we mask the output using the Boolean AND (&)
operator. Indeed, the permutation operation has almost negligible cost in CGGI, as it translates to simply
copying the encrypted bits to the permuted order. Similarly, the addition and the AND (&) operations directly
translate to a Boolean adder and encrypted AND gates. Our FFD-based digest is defined as follows:

h(x) = (Π(x) + b) & p, (3)

where Π(·) is a permutation mapping d bits to d bits, b is a constant parameter and p is our masking value,
which is not necessarily a prime. Without loss of generality, we can instantiate Π(·) as a rotation operation
≪ by d/2 bits, where d is the number of bits in the input. Specifically, our FFD construction rotates the
input to the left by half of the bit size (effectively swapping the left half bits of the input with the right
half), then adds the rotated input to the constant parameter b, and finally applies the AND operator to limit
the size of the output. Likewise, our choice for the masking value as p = 2d − 1, where d is the number of
bits in the output digest, ensures that the bitsize of the input of h(·) equals the bitsize of the output digest.
Unlike the CW construction, the value of p does not have to be a prime, as any bits of p that are set to 0

can skew the output digests to a smaller range, which can create collisions; in this case, the form p = 2d − 1
is an optimal choice.

As expected, the output of the FFD construction (Eq. 3) is a permutation (i.e., it is bijective) of the input
x, and the different mappings depend on the value of parameter b, as visualized in the example of Figure 2.
For a visual example of the family of permutations, we can assume p = 15, d = 4, Π(x) = x ≪ 2, and an
input set x ∈ {0, 1, 2, . . . , 15}, and parameters b = 1 and b=12. For b = 1, After a left rotation by 2 and a
bias of 1, our output set will look like {1, 5, 9, . . . , 0}. The minimum digest 0 corresponds to the last element
of the input set which is 15. However, if we choose b = 12, our output set will look like {12, 0, 4, . . . , 11}.
Here, the second element of the input set which is 1 corresponds to the minimum digest 0. Therefore, by
varying the b parameter value, a different element will be mapped to the minimum digest. In the context
of MinHash, if a different dataset includes the same element at that index, then their minimum digests can
become equal. At the same time, we observe that the size of the b parameter value needs to be commensurate
to the size of p, to have a substantial impact on the output digest. Therefore, without loss of generality, in
this work we choose our b parameter to be in the range [p/2, 3p/2].

In the general case, we can also show that our FFD construction is uniform. As each input gets mapped
to a different value after the initial permutation, and then it is added to a constant, each digest will only
have one pre-image. To demonstrate the uniformity of our function, it is sufficient to show that each digest
appears with an equal probability. As shown in Eqs. 4-7, if we assume two inputs x and y, for the minimum to
be equal, the outputs of the FFD function have to be equal. In this case, we can show that the corresponding
permutations Π should also be equal, which is only possible if inputs x and y are equal. Therefore, the
number of different digests equals the number of inputs, and for 2d inputs, the frequency of each digest is
1
2d
.

7

Fig. 2. Minimal example of how an FFD function maps inputs to digests, assuming Π(x) = x ≪ 2. Different b
parameters result in different mappings over the input set, which means that a different element of the input set will
correspond to the minimum digest.

h(x) ≡ h(y) (mod 2d) (4)

Π(x) + b ≡ Π(x) + b (mod 2d) (5)

Π(x) = 2d · k +Π(y) (for some k ∈ N) (6)

Π(x) = Π(y) (since |Π(x)| < 2d for any x) (7)

The FFD construction used in these equations uses the modulus 2d as its reduction. However, in Eq. 3
the FFD construction uses an AND mask of 2d−1. We remark these are equivalent, so the same conclusions
hold. The modulus-based equation is more convenient for showing the uniformity of the construction, so it
is preferred for Eqs. 4-7.

3.3 Verification of our FFD Construction

The FFD function introduced in Eq. 3 is a simple, yet surprisingly powerful construction that enables
an FHE-friendly MinHash implementation. Indeed, more complex constructions result in larger Boolean
circuits for FHE evaluation and therefore slower evaluation times. To further verify the effectiveness of the
FFD construction for LSH, we empirically confirm that its impact on the accuracy of the set-similarity is
minimal, compared to the CW-based MinHash and Jaccard-based LSH. Our empirical analysis is based on
an input text document, which we generate 100 different variants of for set similarity. Each document is then
converted to a set of integers using t-shingling [7]. In particular, our t-shingling technique converts every
substring of size t of the input text to a 32-bit integer token by applying Python’s built-in hash reduced by
modulus 232. In our analysis, we also opt for a large modulus p for both the FFD and the CW construction,
so that it becomes very unlikely for two 32-bit tokens to map to the same hash digest, and we compare
MinHash (Alg. 1) based on the CW hash and FFD function (Eqs. 2 and 3). Specifically, the masking value
for the FFD-MinHash is p = 232 − 1, and the modulus for the CW-MinHash is prime p = 232 + 15. We then
compute the average MinHash accuracy across one hundred different input pairs and compare it with the

8

Jaccard similarity. Our findings indicate that the average accuracy of FFD-MinHash and CW-MinHash is
very close (within 5% on average) to the result of the exact Jaccard similarity across different input sets.
Overall, our empirical analysis shows that our FFD construction is a viable alternative to the CW hash, and
closely approximates the Jaccard similarity.

3.4 Computing the Minimum of a Set of Digests

In MinHash, we need to return the smallest value in a set of digests as a signature, for each one of the k digest
generation functions and for each input data set. Therefore, to find the minimum digest we need to compare
all of them; however, as mentioned prior, comparisons in the encrypted domain are a challenge. In the CGGI
cryptosystem, our observation is that this challenge can be addressed by translating the comparison operation
directly into a Boolean circuit and using the encrypted output of the comparison as the select signals of a
series of encrypted multiplexers (which are natively supported by CGGI). As this circuit is non-trivial and
quite large, we apply rigorous circuit-level optimizations during an RTL synthesis step, to reduce the overall
circuit size as we observe that this constitutes a key bottleneck of the entire MinHash evaluation. In the naive
approach, set similarity requires N × M comparisons where N and M are the sizes of the two sets, while
MinHash requires k comparisons where k is the number of digest generation functions employed (Alg. 1).

3.5 Input Size Considerations

With our chosen HLS framework, Google XLS, we remark that input size cannot be arbitrarily large, as it
has an upper bound on the number of loop iterations that can be unrolled for synthesis. One potential way
around this is to manually unroll loop iterations progressively until the total remaining iterations in the loop
header is less than the strict threshold imposed by Google XLS. Likewise, performing logic optimizations
with the Yosys synthesis suite is resource-intensive as the circuit size increases. It is possible to balance
this somewhat by employing less rigorous synthesis and optimization flows for lower latency. In this case,
however, the performance of the final FHE netlist is expected to be worse than a netlist generated with more
optimization passes. Nevertheless, we remark that both HLS and RTL synthesis overheads only constitute a
one-time cost ; the resulting circuit can be evaluated an unlimited number of times on different input values.

4 Our MinHash Methodology for FHE

In this paper, we evaluate MinHash homomorphically by adopting an FHE-based framework (HELM), along
with two EDA frameworks (Google-XLS and Yosys). The high-level steps outlining our methodology for
running MinHash homomorphically are as follows:

– Expressing our HE-friendly variant of MinHash in C++,
– Translating the C++ program to a Verilog program using Google-XLS,
– Using the Yosys library to synthesize the Verilog program into an FHE-compatible netlist and perform

rigorous logic optimizations,
– Processing the generated netlists with HELM to create and run the homomorphic program with CGGI.

4.1 Minhash in C++

The MinHash algorithm must be implemented in a way that can be converted to an equivalent synthesizable
combinational Verilog program in order to render a Boolean circuit that can be executed with FHE. As
discussed, the input given to the program must have static size; therefore, the MinHash algorithm of Alg. 1
cannot be directly utilized for homomorphic evaluation as the input to that function is dynamic. To address
this challenge, we need to define all variables and inputs as static. As a result, the bitsize of variables S, k,
M and hashV alue need to be fixed.

9

In more detail, we define a function called MinHash that takes as input two equal, constant-sized sets S1
and S2. We remark that the user doesn’t necessarily need to choose two identically sized sets, but we opt
for this approach without loss of generality. M is encoded as two signature arrays sig1 and sig2 of constant
size k, which are initialized with zero, while the local variable k is a constant integer. The minimum value
of each digest generation function for set S1 is stored in sig1 and for set S2 is stored in sig2. Next, the
program compares the two signature arrays of constant size k, so that the number of equal signatures of the
two sets is returned as the MinHash result. The program also stores the minimum digest for each set in the
respective signature array, while the hashi operation is initialized with either the prime modulus (CW case)
or the masking value (FFD case). Next, we discuss the implementations of the two digest generation families
employed in our MinHash framework.

Carter-Wegman Hash The Carter-Wegman universal hash is the standard function used traditionally by
MinHash for most applications. While this hash is a good candidate for MinHash over plaintext data, in
the encrypted domain the CW hash becomes a major bottleneck. Specifically, a large part of the resulting
Boolean circuit is allocated to the modular reduction to prime p, which creates big sub-circuits that make
evaluating the overall CW hash in FHE very slow. Nevertheless, to adopt the CW hash for our encrypted
MinHash, we store the different a values and b values (for each CW variant) in two local arrays of constant
size k, while the prime number p is fixed. This way we can directly implement the hash with simple arithmetic
operators in C++ based on Eq. 2.

FFD Construction Our key insight is that a digest derived from strictly Boolean operations is a more
efficient alternative to the CW hash for implementing MinHash in CGGI. Indeed, our FFD construction
can be evaluated much faster than the CW hash, as we report in our experiments. Like the CW case, we
store the different b values in a local array and fix the masking value p based on the form 2d − 1 where d is
the bitsize of the input. The rotation can be accomplished by circularly shifting the elements of the input
(represented as a ciphertext vector) by d

2 .
An important consideration in optimizing the runtime of the MinHash algorithm in the encrypted domain

is to use the smallest wordsize necessary to represent the input data and intermediate computations. For our
experimental evaluation in FHE, we use a word size of 16 bits, which strikes a balance between latency and
precision. Additionally, the digest generation function parameters are set in a way that satisfies the constraints
mentioned before. A further discussion about our setup is provided in our experimental evaluation.

4.2 Converting C++ to Verilog Using Google-XLS

The next step in our methodology is to convert the high-level C++ code into a Verilog module so that the
circuit can be run homomorphically with CGGI. Notably, for certain application types, writing Verilog by
hand can be tedious and error-prone, particularly when working with relatively large arrays. As a result, we
use High-Level Synthesis (HLS) to automatically generate synthesizable Verilog code based on the program-
mer’s intent expressed as a C++ program. An automated process like this allows us to rapidly generate and
compare multiple implementations of MinHash for different digest generation functions and input sizes in a
matter of seconds. One potential limitation of HLS is that there are constraints on the supported high-level
programming language operations and some of their constructs are not synthesizable; for example, pointers
and dynamic memory allocation in C++ are not supported by HLS tools. Another possible limitation is
that HLS might generate sub-optimal Verilog (compared to hand-optimized Verilog); we remark that the
rigorous logic optimizations performed during the subsequent RTL synthesis step result in efficient circuits
nonetheless.

To use our chosen HLS framework, Google-XLS [14], we annotate our MinHash function in C++ with
simple pragmas that indicate what loops to unroll as well as which function is the top-level module. The
Google-XLS first generates an intermediate representation (IR) of the C++ source code which is a data-flow
oriented representation; a data structure used internally by the XLS compiler to do some optimizations so

10

the generated circuitry is efficient. The IR has the static-single-assignment (SSA) property, which means
each variable is assigned once and it must be defined before it is used. This property leads to the XLS not
supporting some of the C++ primitives mentioned above. Then the Google-XLS can generate the equivalent
combinational Verilog from the optimized IR using the codegen function. The IR itself is directly used in
the Google Transpiler but in this paper, we only care about the generated Verilog.

4.3 Logic Synthesis Using Yosys

The Verilog code generated from the HLS tool cannot be directly used for homomorphic evaluation as
it only describes the behavior of the circuit and does not indicate the particular logic gates needed to
evaluate the algorithm. Therefore, structural Verilog with a gate-level abstraction is suitable for the Boolean-
based programming model of CGGI. Towards that end, we employ the logic synthesis functionality of Yosys
[38], which is an automated toolchain that converts high-level hardware description language code such as
behavioral Verilog to gate-level netlists. Concurrently, Yosys also performs logic optimizations that aim to
reduce the total number of gates in the circuit.

We utilize the following custom flow to generate optimized FHE circuits with the following operations:

– proc: Yosys synthesizes the blocks and converts sequential processes to multiplexers and flip flops.
– flatten: This collapses all modules in the design into a single module.
– synth: A generic synthesis script that performs several optimizations, such as wordsize reduction and

redundant logic elimination, as well as generic technology mapping.
– abc -g simple, -MUX: This instructs the underlying ABC tool to perform a more specific technology

mapping that results in cells that can be evaluated readily with the FHE backend. simple identifies
common 2:1 logic gates, and the -MUX indicates the removal of the 2:1 MUX cell.

– splitnets: Changes wire naming conventions to align more closely with the format that the HELM parser
expects.

– write verilog: After the gates are generated, this operation writes them into an output Verilog netlist.

In conclusion, the netlists generated from Yosys will serve as a public input for FHE computation (i.e.,
the circuit to be evaluated).

4.4 Generating Homomorphic Programs Using HELM

To generate and run the final homomorphic programs, we use an open-source framework called HELM [19],
which uses the CGGI scheme and serves as an execution environment to run netlists on parallel devices in
the encrypted domain. HELM starts by finding all connections between each gate and cells in the netlists
and maps the gates described in the netlist to FHE equivalent computations. It also incorporates a scheduler
that identifies gates that can be executed concurrently, which are flagged for parallel execution.

After generating the homomorphic programs, we process our raw inputs (i.e., user data), encrypt them,
and feed them to the input wires of the FHE circuits. The circuits can then be evaluated by a third-party
cloud without gaining knowledge about the underlying data. Then, after the encrypted computation, the
cloud will return the encrypted similarity result which is an integer between 0 and k. Lastly, the user can
decrypt and see the result of the similarity between the provided sets.

5 Experimental Evaluation

In this section, we provide a comprehensive evaluation of our proposed framework by comparing the perfor-
mance of the FFD and the CW families in the MinHash algorithm. For good measure, we also provide a naive
method of set similarity with O(n2) time complexity (assuming both sets are of size n) which compares each
element of the first set with each element of the second set. We perform all CPU-based experiments on an

11

r5.12xlarge AWS EC2 instance, which has 48 vCPUs and 384 GB of RAM. Additionally, we further utilize
an NVIDIA A100 GPU with 80 GB of memory for GPU-based experiments. Lastly, we adopt the default
cryptographic parameters for CGGI that are supported by HELM, which correspond to approximately 128
bits of security.

5.1 Methodology for Plagiarism Detection

For our privacy-preserving plagiarism detection, we assume that the client has an input document that they
want to keep private and it is compared against a document owned by the third party cloud server (who
also wants to preserve the privacy of their document). To ensure the privacy of both inputs, a privacy-
enhancing technology must be utilized; for our case, HE protects the client input and the cloud server’s
document is implicitly protected as it never leaves the cloud server (and thus can be kept in plaintext form).
By implementing MinHash in FHE, we can efficiently compute the similarity between input datasets that
should remain private. For our experiments, we employ our encrypted MinHash to detect plagiarism between
private text documents. The two main steps to achieve this are to encode the documents so they can serve
as input to the homomorphic circuits and parameterize the homomorphic circuits for the specific document
size.

Preprocessing/Encoding Input Data First, the documents must be encoded so that the contents of
each one map to a set of integers. The size of the set and the range of each element in the set must be
compatible with a homomorphic circuit of matching input size. We also note that there are many ways to
encode text into a set of integer tokens, and in this work, we opt to use t-shingling [7]. Using this approach,
we hash each substring of length t = 9 into an integer token, resulting in a set of hash digests. The size of
the hash sets is directly correlated with the number of substrings of length t. The range of each integer token
depends on the digest generation function utilized in the FHE circuit (i.e., FFD or CW). We note that each
digest is reduced by the prime modulus p when using the CW hash function in Eq. 2, or the masking value
p when using the FFD function in Eq. 3. Finally, the preprocessing phase is done in plaintext and when
the documents are encoded to sets of integer tokens, we encrypt them and feed them to the homomorphic
circuits for evaluation.

Parameterizing Homomorphic Circuits Next, we need to set the constant parameters for our homo-
morphic programs to run the encrypted sets correctly. Specifically, the parameters required for the MinHash
circuits include the number of digest generation functions k (in this work we use k = 5 unless noted oth-
erwise), the bitsize of our variables, and the parameters of our digest generation functions. As soon as the
number of digest generation functions k is fixed, we can select the parameters for each to generate k unique
digest generation functions. Regarding our C++ implementation, we use the 16-bit unsigned short type
for the elements of each input set, as well as other intermediate variables. In the preprocessing stage, we set
the digests to be d = 14 bits in size (we apply modulus 16384 to the digests) so the intermediate values can
fit in 16 bits.

For CW hash functions, the required parameters are the coefficients a and b and the prime modulus p,
as given in Eq. 2. The choice of p must strike a balance between collision probability and computational
overhead; a large p will yield a lower probability of collisions in the reduced hash values but will result in
exponentially larger computational overheads in the encrypted domain as the supported word size must be
increased to accommodate values modulo p. We chose p = 16381 as our modulus, which allows for 16-bit word
sizes and results in worst-case accuracy degradations of approximately 10% (relative to the exact Jaccard
similarity). Regarding the a and the b parameters, we chose them in a way so that the term ax+ b exceeds
the modulus p with high probability, but it is smaller than the value 65535, which is the maximum value
supported by our 16-bit wordsize. This way, all intermediate values (i.e., ax+ b) will very likely wrap around
p and the digest generation functions can work as intended.

12

For the FFD functions, we use Eq. 3, where the required parameters are the coefficient b, the number of
bits, and the masking value p, which acts like the reduction modulus in the CW hash. The p value, unlike
in the CW hash, should be of form 2n − 1, so we choose the value n = 14 and p = 16383 as our reduction
value. The rotation when applied on the digests won’t affect the bitsize and The b values are chosen to be
close to the masking value, mostly in the range [p/2, 3p/2].

Now that we have successfully encoded our raw input data and parameterized our homomorphic programs,
we can encrypt the encoded data sets and correctly evaluate them. The encrypted result is then sent to the
user which is an integer in the range [0, k] where 0 means no similarity between the documents and k means
equality. The user then decrypts the result with their private key.

Finally, we remark that the “naive” circuits discussed later in our experiments implement an exhaustive
approach to search all pairs of similar elements, so they require no specific parameters.

5.2 Comparing MinHash Variants with the Naive Approach

For each digest generation family, we create 3 circuits of input sizes 10, 20, and 30. Due to the extreme size
increase of the modular reduction circuits in the CW MinHash circuits, Yosys could not synthesize circuits
corresponding to set sizes of more than 30. On the other hand, the FFD-MinHash circuits were way smaller
than the CW counterparts and Yosys could synthesize them in a matter of seconds. Figure 3 shows that as
the set size increases, the MinHash-CW circuits increase their runtime overhead at a faster rate than the
MinHash-FFD circuits. This means that the MinHash algorithm with the FFD function is way more efficient
than the standard CW-based MinHash using Boolean FHE so it is more scalable and can be used with larger
sets as inputs and higher values of k.

10 20 30
Set size

100

101

102

Ru
nt

im
e

(s
ec

.)

30.9

111
164

13.2

43.6
63.9

11.1

23.5

35.3

5.4

10.9

16.4

MinHash-CW (CPU)
MinHash-CW (GPU)

MinHash-FFD (CPU)
MinHash-FFD (GPU)

Fig. 3. Comparison between FFD and CW in MinHash.

Due to the graceful scalability of the MinHash-FFD circuits, we created additional circuits corresponding
to set sizes of 50, 75, and 100 for the FFD variant. Next, we compare our MinHash-FFD circuits against a
“naive” approach to further motivate the use of MinHash as a viable alternative for set similarity computation
in the encrypted domain. Notably, we selected the naive method because implementing the Jaccard similarity
from Eq. 1 remains inefficient in the encrypted domain, as it requires the use of hashset data structures. In
particular, assuming both input datasets are of equal size, the time complexity of Jaccard similarity when
implemented with hashsets is O(n) where n is the size of the sets. However, dynamic data structures like hash
sets where an operation such as a “lookup” depends on encrypted data cannot be implemented efficiently in
FHE. That is why we select a naive O(n2) approach to assess the viability of our framework.

13

10 20 30 50 75 100
Set size

100

101

102

Ru
nt

im
e

(s
ec

.)

4.6

18.8

41.9

118

264
484

3.6

13.5

29.5

82.2

184
344

11.1

23.5
35.3

61.3
87.5 116

5.4
10.9

16.4
28.1

40.5 53.1

Naive (CPU)
Naive (GPU)

MinHash-FFD (CPU)
MinHash-FFD (GPU)

Fig. 4. Comparison between the MinHash-FFD circuits and the naive method with different set sizes. The naive
method compares each digest of the first set with every digest of the second set.

For the naive method, we create circuits of size 10, 20, 30, 50, 75, and 100 to compare with the MinHash-
FFD circuits of identical set sizes. As we can see in Figure 4, at smaller set sizes the naive method is faster,
which is expected. But as the set size grows, the naive method scales significantly worse than the MinHash-
FFD circuits and it becomes far less efficient. As mentioned previously, one of the major bottlenecks of
implementing MinHash in FHE is the number of comparisons. This and the results of Figure 4 show that
MinHash-FFD performs markedly better than the naive method for moderate and large set sizes.

Table 1 showcases the complete operational make-up of the FHE circuits for all three set similarity
techniques. The overall gate composition of the circuit has an impact on computational overhead as NOT,
BUF, and CONST gates exhibit very low latency, while AND, OR, and XOR gates are over an order of magnitude
more costly. In this context, BUF gates constitute simple copy propagations from an input wire to an output
wire, while the CONST gates load an “empty” wire (i.e., a wire that is not loaded with a valid encryption
of 1 or 0) with an encoding of a public bit. Additionally, the table demonstrates how the circuit size scales
with larger set sizes; even though the naive technique exhibits the smallest circuit using set sizes of 10, both
the FFD and CW techniques exhibit larger set sizes. In particular, the proposed FFD technique exhibits the
best overall scalability.

Table 1. Characterization of Private Set Similarity Circuits

Circuit AND OR NOT XOR BUF CONST

FFD-10 7005 9132 1427 1874 320 27
FFD-20 15001 18991 3322 3734 640 27
FFD-30 22367 28562 5039 5689 960 27
CW-10 19150 28087 9361 10437 320 27
CW-20 77369 97935 27977 41111 640 27
CW-30 115053 145391 42092 61080 960 27
Naive-10 459 4115 312 1983 320 0
Naive-20 2188 17501 1575 8379 640 0
Naive-30 5078 40079 3756 19098 960 0

However, the total gate composition alone is not a good predictor of performance as it gives no intuition
regarding the parallelization opportunities in the circuit as well as the critical path. Figure 5 shows the
number of gates at each level of the Boolean circuits for the naive method. The circuit starts out extremely
wide, with over 10000 gates in the earliest levels, and quickly levels off to tens of gates per level. Thus, the
naive method exhibits limited parallelism as most of the levels in the circuit are quite shallow. Additionally,
as the set size increases by 10 elements, the critical path, which is akin to the number of levels in the overall
circuit, more than doubles.

14

Fig. 5. Circuit characterization of the naive method for private set-similarity across different set sizes. The critical
path more than doubles for each increase in set size.

Fig. 6. Overall circuit topology of the MinHash approach utilizing the Carter-Wegman hash construction. The circuits
are quite wide, with a long critical path. However, this approach exhibits better scalability in terms of the critical
path length compared to the naive approach.

Figure 6 showcases the circuit topologies of privacy-preserving MinHash with the Carter-Wegman hash
construction. These circuits are very wide compared to the naive approach, mostly due to the multi-bit
arithmetic operations and modular reduction circuitry. For sets with 10 and 20 elements, the MinHash-CW
circuits exhibit a longer critical path than the naive approach but have better scalability for larger set sizes
(as evidenced by the critical path for set similarity between sets of size 30).

The MinHash-FFD approach is the optimal choice of the three techniques for increasingly large set sizes,
as evidenced in Figure 4. From the topology graph shown in Figure 7, we observe that the critical path is
shorter than the other variants and the circuit width remains moderately wide, which is conducive to efficient
parallelism with the HELM backend.

5.3 Time-Accuracy Trade-off

All experiments above were conducted using k = 5 digest generation functions for the MinHash circuits.
Although five digest generation functions still give acceptable accuracy in many scenarios, some applications
may require higher accuracy guarantees in the set similarity measure. As the results of the previous experi-
ments show, the MinHash-FFD circuits are the fastest and most scalable. Therefore, we use the MinHash-
FFD circuit of input size 30 and implement it using both 25 and 50 digest generation functions. The circuit
evaluations are shown in Figure 8, and we observe that as the number of digests grows, the runtime increases
linearly. Interestingly, the runtime of the MinHash-CW circuit of size 30 with five digest generation functions

15

Fig. 7. Circuit overview of the MinHash approach utilizing the bespoke FFD methodology. The circuits exhibit
moderate width, with shorter critical paths than the CW-MinHash variant.

is around the same as the MinHash-FFD circuit of size 30 with 25 digest generation functions. This further
solidifies MinHash-FFD as the superior alternative and even with an increase in digest generation functions,
it is still viable and scalable.

5 25 50
Number of Hashes

100

101

102

Ru
nt

im
e

(s
ec

.)

35.3

162

284

16.4

61.2

105

MinHash-FFD (CPU) MinHash-FFD (GPU)

Fig. 8. Comparison between MinHash-FFD circuits of set size 30 with different numbers of digest generation functions.

5.4 CPU vs GPU Evaluation Comparison

All experiments were done with both a CPU-based cryptographic backend and a GPU-based backend. We
observe that the GPU outperforms the multi-threaded CPU as most FHE operations are highly parallel
in nature and can greatly benefit from the massive levels of parallelism that GPUs can provide. However,
we observe that the speedup acquired from the GPU backend is highly dependent on the structure of the
circuit being executed. As a case in point, the naive implementation depicted in Figure 4 is less than 2×
faster when running on the GPU for all set sizes. This is primarily due to the fact that the circuit has a
very long critical path (with up to several thousand levels for the largest set size). Additionally, most of the
levels in the circuit are thin and consist of a limited number of gates, limiting the number of gates that can
be evaluated concurrently. As a result, these circuits can only achieve modest utilization of the A100 GPU
and result in limited speedups (i.e., < 2×. However, circuits such as the MinHash-CW variants shown in

16

Figure 3 are very wide due to the large and wide Boolean subcircuits needed to evaluate operations such
as modular reduction and multiplication. In these cases, where the levels of the circuit are very wide, we
observe speedups of nearly 3× for the GPU backend versus the CPU.

6 Related Works

In this section, we expound upon works that tackle both private set intersection (PSI) and private set
similarity, which is closest to our work.

6.1 Private Set Intersection

The problem of private set intersection involves computing a subset consisting of elements present in two
or more private sets. Kerschbaum [27] introduced a PSI protocol based on Bloom filters and the BGN
homomorphic cryptosystem [4] and incorporates an additional computing party (independent from the client
and server). Chen et al. [10] introduced a hash-based protocol tuned for computing the similarity between a
large and small set. The protocol utilizes the BFV cryptosystem [5] and incorporates a technique to reduce
communication overhead by making the ciphertexts smaller through modulus switching. A maliciously secure
protocol based on HE was proposed by Jiang et al. [26] that also incorporates verifiable computation and
oblivious pseudo-random functions, targeting BFV. Additionally, other works have solved this problem using
secure multiparty computation. Hazay and Venkitasubramaniam proposed an approach that mimics a star
topology where every party communicates with a designated party and avoids the need to perform broadcasts
in favor of point-to-point communications [22]. Falk et al. propose another multi-party approach based on
Bloom filters and is optimized for sets of unbalanced sizes [24].

Instead of returning the intersection of sets to clients, our work focuses on computing a similarity mea-
surement between two sets. Compared to the HE-based works, our solution utilizes FHE instead of LHE
and can allow for arbitrary computation after the set similarity is computed or otherwise used as a build-
ing block of a more complex application. Additionally, the MPC solutions incur a higher communication
overhead relative to our work in order to perform the computation and have a weaker threat model in the
multi-party setting due to the threat of colluding parties. We note that this threat model can be strengthened
in a two-party computation scenario between a single cloud server and the client. However, the client must
actively participate in the computation, which is infeasible for resource-constrained devices. On the other
hand, our methodology only involves a single computing party and the client can remain offline during the
computation of the set similarity.

6.2 Hash-Based Private Set Similarity Measurements

Other works focus on computing a similarity measure in a fashion similar to the proposed approach. Yan [41]
estimates the Jaccard similarity using differential privacy, while Wong [39] proposed a private protocol
to compute Jaccard similarity using both differential privacy and homomorphic encryption. Compared to
our work, both of these works are interactive and require the user to actively participate in the protocol
during computation. Purely FHE-based solutions like ours, only require the client to only perform encryption,
decryption, and key generation. PrivMin [40] computes a privacy-preserving MinHash variant to approximate
the Jaccard similarity with differential privacy. However, this work requires a trusted third party which results
in a weaker threat model. Our work assumes a single semi-honest computing party and the only assumption
we make is that the computing party correctly executes the prescribed encrypted algorithm (which is a
realistic assumption in the context of cloud computing).

He et al. [23] propose a differential privacy construction that incorporates locality sensitive hashing
for computing record linkage between two databases and achieves low latency relative to previous works.
However, in this context, both parties (the owners of each database) learn which specific records match;

17

this constitutes a different threat model than MatcHEd, where only the client/querying party learns any
information about the similarity between his set and the cloud’s set. Similarly, Wei and Kerschbaum [37]
compute private record linkage and improve upon He et al. [23] by providing stronger security guarantees.
Both approaches require joint computation between the database owners while MatcHEd performs a set
similarity computation completely offline and requires no computation on the querying party’s side other
than the trivial overheads of encryption and decryption.

Lastly, the EsPRESSo [3] framework introduces two protocols, one for computing the exact Jaccard
similarity and another that approximates it using MinHash. Both protocols are based on a custom MPC
protocol with two computational parties. However, the security level of the instantiation of the scheme is 80
bits, which is lower than our approach that complies with the standard 128 bits of security.

7 Conclusion

In this paper, we present the MatcHEd framework for encrypted set-similarity based on MinHash. We
introduce a new FFD function to use instead of the standard Carter and Wegman hash function used in the
MinHash algorithm to improve evaluation speeds by a large margin in Boolean FHE. Further, we leverage
EDA methodologies to synthesize and optimize our bespoke MinHash variants to allow for efficient execution
in the encrypted domain. Lastly, we evaluate the first fully homomorphic plagiarism detection application
using our proposed techniques and report that the MinHash variant based on our proposed FFD hash family
significantly outperforms the standard MinHash algorithm in the encrypted domain as well as a baseline
approach that computes the exact set similarity.

Acknowledgments

This work has been supported by NSF Award #2239334.

References

1. Rachna Arora, Anshu Parashar, and Cloud Computing Is Transforming. Secure user data in cloud computing
using encryption algorithms. International journal of engineering research and applications, 3(4):1922–1926, 2013.

2. Sujoy Bag, Sri Krishna Kumar, and Manoj Kumar Tiwari. An efficient recommendation generation using relevant
jaccard similarity. Information Sciences, 483:53–64, 2019.

3. Carlo Blundo, Emiliano De Cristofaro, and Paolo Gasti. Espresso: efficient privacy-preserving evaluation of
sample set similarity. Journal of Computer Security, 22(3):355–381, 2014.

4. Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-dnf formulas on ciphertexts. In Joe Kilian, editor,
Theory of Cryptography, pages 325–341, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

5. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully homomorphic encryption without
bootstrapping. ACM Transactions on Computation Theory (TOCT), 6(3):1–36, 2014.

6. A. Broder. On the resemblance and containment of documents. In Proceedings of the Compression and Complexity
of Sequences 1997, SEQUENCES ’97, page 21, USA, 1997. IEEE Computer Society.

7. Andrei Z. Broder. Identifying and filtering near-duplicate documents. In Proceedings of the 11th Annual Sympo-
sium on Combinatorial Pattern Matching, COM ’00, page 1–10, Berlin, Heidelberg, 2000. Springer-Verlag.

8. Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher. Min-wise independent permu-
tations (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing,
STOC ’98, page 327–336, New York, NY, USA, 1998. Association for Computing Machinery.

9. J. Lawrence Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract). In Proceedings
of the Ninth Annual ACM Symposium on Theory of Computing, STOC ’77, page 106–112, New York, NY, USA,
1977. Association for Computing Machinery.

10. Hao Chen, Kim Laine, and Peter Rindal. Fast private set intersection from homomorphic encryption. In Pro-
ceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, CCS ’17, page
1243–1255, New York, NY, USA, 2017. Association for Computing Machinery.

18

11. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for arithmetic of
approximate numbers. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in Cryptology – ASIACRYPT
2017, pages 409–437, Cham, 2017. Springer International Publishing.

12. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. Faster fully homomorphic encryption:
Bootstrapping in less than 0.1 seconds. In Jung Hee Cheon and Tsuyoshi Takagi, editors, Advances in Cryptology
– ASIACRYPT 2016, pages 3–33, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

13. Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael, 1999.
14. Wei Dai and Berk Sunar. XLS: Accelerated HW Synthesis. https://github.com/google/xls, 2020.
15. Léo Ducas and Daniele Micciancio. Fhew: Bootstrapping homomorphic encryption in less than a second. In

Elisabeth Oswald and Marc Fischlin, editors, Advances in Cryptology – EUROCRYPT 2015, pages 617–640,
Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

16. Osman Durmaz and Hasan Sakir Bilge. Fast image similarity search by distributed locality sensitive hashing.
Pattern Recognition Letters, 128:361–369, 2019.

17. Craig Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of the Forty-First Annual
ACM Symposium on Theory of Computing, STOC ’09, page 169–178, New York, NY, USA, 2009. Association
for Computing Machinery.

18. Sreenivas Gollapudi and Rina Panigrahy. Exploiting asymmetry in hierarchical topic extraction. In Proceedings of
the 15th ACM International Conference on Information and Knowledge Management, CIKM ’06, page 475–482,
New York, NY, USA, 2006. Association for Computing Machinery.

19. Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. HELM: Navigating Homomorphic Encryption
through Gates and Lookup Tables. Cryptology ePrint Archive, Paper 2023/1382, 2023. https://eprint.iacr.
org/2023/1382.

20. Charles Gouert, Dimitris Mouris, and Nektarios Georgios Tsoutsos. SoK: New Insights into Fully Homo-
morphic Encryption Libraries via Standardized Benchmarks. Proceedings on Privacy Enhancing Technologies,
2023(3):154–172, July 2023.

21. Shai Halevi and Victor Shoup. Bootstrapping for helib. Journal of Cryptology, 34(1):7, 2021.
22. Carmit Hazay and Muthuramakrishnan Venkitasubramaniam. Scalable multi-party private set-intersection. In

Serge Fehr, editor, Public-Key Cryptography – PKC 2017, pages 175–203, Berlin, Heidelberg, 2017. Springer
Berlin Heidelberg.

23. Xi He, Ashwin Machanavajjhala, Cheryl Flynn, and Divesh Srivastava. Composing differential privacy and secure
computation: A case study on scaling private record linkage. In Proceedings of the 2017 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’17, page 1389–1406, New York, NY, USA, 2017. Association
for Computing Machinery.

24. Brett Hemenway Falk, Daniel Noble, and Rafail Ostrovsky. Private set intersection with linear communication
from general assumptions. In Proceedings of the 18th ACM Workshop on Privacy in the Electronic Society,
WPES’19, page 14–25, New York, NY, USA, 2019. Association for Computing Machinery.

25. Ilia Iliashenko and Vincent Zucca. Faster homomorphic comparison operations for BGV and BFV. Proceedings
on Privacy Enhancing Technologies, 2021(3):246–264, 2021.

26. Yuting Jiang, Jianghong Wei, and Jing Pan. Publicly verifiable private set intersection from homomorphic
encryption. In International Symposium on Security and Privacy in Social Networks and Big Data, pages 117–
137, Singapore, 2022. Springer Nature.

27. Florian Kerschbaum. Outsourced private set intersection using homomorphic encryption. In Proceedings of the
7th ACM Symposium on Information, Computer and Communications Security, ASIACCS ’12, page 85–86, New
York, NY, USA, 2012. Association for Computing Machinery.

28. Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee, Chris Wilkerson, Konrad Lai,
and Onur Mutlu. Flipping bits in memory without accessing them: An experimental study of dram disturbance
errors. ACM SIGARCH Computer Architecture News, 42(3):361–372, 2014.

29. Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. Rambleed: Reading bits in memory without
accessing them. In 2020 IEEE Symposium on Security and Privacy (SP), pages 695–711, New York, NY, 2020.
IEEE Computer Society and IEEE Reliability Society.

30. Kyung Mi Lee and Keon Myung Lee. Similar pair identification using locality-sensitive hashing technique. In The
6th International Conference on Soft Computing and Intelligent Systems, and The 13th International Symposium
on Advanced Intelligence Systems, pages 2117–2119, New York, NY, 2012. IEEE.

31. Wenjun Lu, Avinash L Varna, and Min Wu. Confidentiality-preserving image search: A comparative study
between homomorphic encryption and distance-preserving randomization. IEEE Access, 2:125–141, 2014.

32. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings.
In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT 2010, pages 1–23, Berlin, Heidelberg, 2010.
Springer Berlin Heidelberg.

19

https://github.com/google/xls
https://eprint.iacr.org/2023/1382
https://eprint.iacr.org/2023/1382

33. Dimitris Mouris, Nektarios Georgios Tsoutsos, and Michail Maniatakos. Terminator suite: Benchmarking privacy-
preserving architectures. IEEE Computer Architecture Letters, 17(2):122–125, 2018.

34. Mummoorthy Murugesan, Wei Jiang, Chris Clifton, Luo Si, and Jaideep Vaidya. Efficient privacy-preserving
similar document detection. The VLDB Journal, 19(4):457–475, 2010.

35. Brian D Ondov, Todd J Treangen, Páll Melsted, Adam B Mallonee, Nicholas H Bergman, Sergey Koren, and
Adam M Phillippy. Mash: fast genome and metagenome distance estimation using minhash. Genome biology,
17(1):1–14, 2016.

36. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. Journal of the ACM
(JACM), 56(6):1–40, 2009.

37. Ruidi Wei and Florian Kerschbaum. Cryptographically secure private record linkage using locality-sensitive
hashing. Proc. VLDB Endow., 17(2):79–91, oct 2023.

38. Clifford Wolf. Yosys open synthesis suite. http://www.clifford.at/yosys/, 2013.
39. Kok-Seng Wong, Myung Ho Kim, et al. Preserving differential privacy for similarity measurement in smart

environments. The Scientific World Journal, 2014(9):1–9, 2014.
40. Ziqi Yan, Jiqiang Liu, Gang Li, Zhen Han, and Shuo Qiu. Privmin: Differentially private minhash for jaccard

similarity computation. arXiv preprint arXiv:1705.07258, 2017.
41. Ziqi Yan, Qiong Wu, Meng Ren, Jiqiang Liu, Shaowu Liu, and Shuo Qiu. Locally private jaccard similarity

estimation. Concurrency and Computation: Practice and Experience, 31(24):e4889, 2019.
42. Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-vm side channels and their use to

extract private keys. In Proceedings of the 2012 ACM Conference on Computer and Communications Security,
CCS ’12, page 305–316, New York, NY, USA, 2012. Association for Computing Machinery.

43. Yinqian Zhang, Ari Juels, Michael K. Reiter, and Thomas Ristenpart. Cross-tenant side-channel attacks in paas
clouds. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communications Security, CCS
’14, page 990–1003, New York, NY, USA, 2014. Association for Computing Machinery.

20

http://www.clifford.at/yosys/

	MatcHEd: Privacy-Preserving Set Similarity based on MinHash

