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Abstract. Bootstrapping is a key operation in fully homomorphic encryption schemes that en-
ables the evaluation of arbitrary multiplicative depth circuits. In the BFV scheme, bootstrapping
corresponds to reducing the size of accumulated noise in lower bits while preserving the plaintext
in the upper bits. The previous instantiation of BFV bootstrapping is achieved through the digit
extraction procedure. However, its performance is highly dependent on the plaintext modulus, so
only a limited form of the plaintext modulus, a power of a small prime number, was used for the
efficiency of bootstrapping.

In this paper, we present a novel approach to instantiate BFV bootstrapping, distinct from the
previous digit extraction-based method. The core idea of our bootstrapping is to utilize CKKS
bootstrapping as a subroutine, so the performance of our method mainly depends on the underlying
CKKS bootstrapping rather than the plaintext modulus.

We implement our method at a proof-of-concept level to provide concrete benchmark results. When
performing the bootstrapping operation for a 51-bits plaintext modulus, our method improves the
previous digit extraction-based method by a factor of 37.9 in latency and 29.4 in throughput.
Additionally, we achieve viable bootstrapping performance for large plaintext moduli, such as 144-
bits and 234-bits, which has never been measured before.
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1 Introduction

Homomorphic encryption is a cryptosystem that enables computation on encrypted data without decryp-
tion. Since Gentry’s seminal work |Gen09), its performance and functionality have continuously improved,
and it now offers viable performance for real-world applications. The most widely used HE schemes to
date [BGV14, Bral2, [FV12, |(CKKS17,|CGGI20, DM15| are all based on lattice-based assumptions, Learn-
ing With Errors (LWE), or its ring-variant, Ring Learning With Errors (RLWE). Among them, RLWE-
based schemes such as BFV [Bral2, [FV12] and CKKS [CKKS17| are popularly deployed due to their
high throughput in homomorphic operations, working in a SIMD-like manner. Let R = Z[X]/®P (X ) and
R, = R/qR, where ®/(X) is the M-th cyclotomic polynomial. Then, both BFV and CKKS ciphertexts
are in the form of pairs of polynomials in R,, but they support different types of homomorphic operations.
For BFV, it supports modular arithmetic over integers, while CKKS provides approximate arithmetic
over complex numbers. Both the BFV and CKKS schemes inherently share a common limitation: the
number of possible homomorphic operations is bounded. Hence, to support the evaluation of arbitrary
circuits, one needs a special operation called bootstrapping that refreshes the remaining number of pos-
sible operations. However, while the goal of bootstrapping is common, its precise functionality differs for
each scheme due to variations in encryption structure. Thus, bootstrapping for BFV and CKKS has been
studied individually so far.

For the BFV scheme, its plaintext space is Ry = R/tR for a plaintext modulus ¢, and a BE'V ciphertext
is of the form (a,b = —as+ Am+e) € Rﬁ, where a is a random polynomial in Ry, s € R is a secret key,
e € Risnoise, A = |g/t], and m € R; is a plaintext. The decryption is obtained by first computing b+as =
Am + e (mod ¢) and then scaled by 1/A. It basically supports homomorphic operations over R, which
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can emulate arithmetic over Z; in a SIMD-like manner, and the size of the noise e gradually increases after
each homomorphic operation. If the size of the noise e exceeds a certain threshold, it can spoil the plaintext
m in the upper bits, leading to decryption failure. Thus, to keep performing homomorphic operations,
one needs to decrease the size of the noise while preserving the plaintext in the upper bits. This is the
exact functionality of BFV bootstrapping. In the previous literature [HS21, |CH1§|, BFV bootstrapping
is achieved through a digit extraction procedure, which corresponds to homomorphically evaluating the
rounding function on coefficients of plaintext. However, its performance is notably influenced by the
number-theoretic properties of ¢. Specifically, it provides efficient performance only when the plaintext
modulus ¢ is in the form of a power of small primes. Thus, the choice of the plaintext modulus is limited
for the efficiency of BFV bootstrapping.

On the other hand, the plaintext space of the CKKS scheme is R, and a CKKS ciphertext is of the
form (a,b=—as+m+e) € Rﬁ, where m € R is a plaintext encoding a vector of complex numbers. The
decryption is obtained simply by b4+as = m+e (mod ¢). It supports approximate arithmetic over complex
numbers C in a SIMD-like manner. The key distinction from BFV is that the size of the ciphertext modulus
q keeps decreasing after each homomorphic operation. If the size of ¢ becomes smaller than the plaintext
m, it results in decryption failure. Thus, in CKKS, one needs to increase the ciphertext modulus while
approximately preserving the plaintext in lower bits for evaluating arbitrary-depth circuits, which is the
functionality of CKKS bootstrapping. CKKS bootstrapping is performed by homomorphically evaluating
the approximated modular reduction function on coefficients of the plaintext |[CHK™18a). In contrast
to BFV bootstrapping, the performance of CKKS bootstrapping is primarily influenced by precision,
indicating how many upper bits of the plaintext m are preserved during bootstrapping.

1.1 Owur Contributions

In this paper, we propose a novel BFV bootstrapping method that utilizes CKKS bootstrapping as a
subroutine, departing from the previous digit extraction-based approach.

Incorporating CKKS Bootstrapping. Our key observation is that the noise part e of a BFV cipher-
text can be extracted in the form of a CKKS ciphertext by changing the ciphertext modulus from ¢ to
A, resulting in a CKKS ciphertext encrypting the plaintext e under modulus A. We recall that the func-
tionality of CKKS bootstrapping involves raising the ciphertext modulus while approximately preserving
the plaintext. Thus, by applying CKKS bootstrapping to the ciphertext encrypting the extracted noise,
we can obtain a CKKS ciphertext that encrypts ¢ under modulus ¢, where ¢’ &~ e. Finally, subtracting
the bootstrapped ciphertext from the original ciphertext results in noise reduction from e to e — e’. We
note that the performance of our bootstrapping method relies on the efficiency of CKKS bootstrapping,
which is used as a subroutine. Thus, improvements in CKKS bootstrapping, such as algorithmic opti-
mization |[LLL™21, LLK™22, |JM22, [BCCT22], or hardware acceleration |[JKAT21, KKK™'22|, directly
lead to the enhancement of BFV bootstrapping, bridged by our method.

Flexible Plaintext Modulus. The performance dependency on CKKS bootstrapping in our method
also provides flexibility in the choice of the plaintext modulus. We note that the plaintext modulus
t corresponds to the modulus gap between the input and output ciphertext modulus in the CKKS
bootstrapping subroutine, and only its scale affects the performance rather than the number-theoretic
property. Thus, in our method, one can use the plaintext modulus as needed without considering its effect
on bootstrapping performance. For example, our bootstrapping provides viable performance with a large
prime plaintext modulus, which yields the worst bootstrapping performance with the previous approach.
This helps in constructing BF'V applications, where using a large prime plaintext modulus is crucial, such
as in HE-based private set intersection protocols [CLR17, |CHLR18|, |CMdG™21].

Optimized Circuit Evaluation. Another unique property of our bootstrapping method is its tunable
performance, a capability not present in the previous method. In our approach, we can adjust the amount



Simpler and Faster BFV Bootstrapping for Arbitrary Plaintext Modulus from CKKS 3

of reduced noise, which directly translates into the precision of the underlying CKKS bootstrapping. This
leads to variations in bootstrapping performance, as CKKS bootstrapping is primarily affected by preci-
sion. Thus, with our method, we can optimize circuit evaluation by employing appropriate bootstrapping
depending on circumstances, varying the amount of noise reduction.

Concrete Efficiency. We implemented our algorithm at a proof-of-concept level, and it outperforms
the digit extraction-based bootstrapping method in terms of both latency and throughput. To achieve
practical performance, we utilized the recent optimization in CKKS bootstrapping |[BCCT22|, called
META-BTS, which supports efficient arbitrary-precision CKKS bootstrapping. When benchmarking the
performance of bootstrapping with 51-bits plaintext moduli, our method outperformed the previous state-
of-the-art BFV bootstrapping method |[GIKV23| by a factor of 37.9 in latency and 29.4 in throughput
(see Table . We attribute this result to the high throughput in SIMD operations over C in the CKKS
scheme, as our method utilizes CKKS bootstrapping, whereas digit extraction is performed in SIMD
operations over Z; in the BFV scheme, and it has relatively low throughput when ¢ is a power of a small
prime.

Table 1. Bootstrapping performance comparison. Amortized bootstrapping time denotes the bootstrapping time
divided by the number of coefficients.

Plaintext Ring Boot Amortized boot

modulus | dimension | time (sec) | time (ms/coeff)
lGIKv23] | 2! 42336 | 1344+ 31.7+
Ours ~ 251 32768 35.5 1.08

1.2 Related Works

BFV Bootstrapping. Since the initial idea of digit extraction was proposed by Halevi and Shoup [HS21],
a line of studies has been conducted to optimize its efficiency. Chen and Han |CH18| presented improved
digit extraction when the plaintext modulus is a power of small primes, and its performance has been
enhanced in subsequent work [GIKV23, |OPP23|. The most relevant study that shares the same goal as
ours in breaking performance dependency on the plaintext modulus is by Kim et al. KDE"23|. They
presented another way of BFV bootstrapping that leverages the bootstrapping procedure of the TFHE
scheme|CGGI20]. However, since TFHE bootstrapping does not support SIMD-style operations, their
method suffers from low throughput.

CKKS Bootstrapping. As our BFV bootstrapping method employs CKKS bootstrapping as a subrou-
tine, development on the CKKS bootstrapping method greatly affects the performance of our method.
Since the first instantiation of CKKS bootstrapping was accomplished by approximate homomorphic
evaluation of the sine function by Cheon et al.|[CHK™18a, a series of studies|LLL"21} LLK™22, |JM22]
have been conducted targeting HE-friendly approximation of the modular reduction function to improve
precision metrics. Apart from these approaches, Bae et al. [BCC™22] recently presented a novel method
called META-BTS, which achieves arbitrary precision CKKS bootstrapping by iteratively using low pre-
cision CKKS bootstrapping. Since our bootstrapping internally utilizes CKKS bootstrapping, and the
required precision is larger than ordinary CKKS use cases, our bootstrapping method benefits from the
META-BTS bootstrapping technique.
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2 Preliminaries

2.1 Notations

For an integer M > 0, we denote by @,;(X) the M-th cyclotomic polynomial, and write N = ¢(M).
When M is a power of two, we have N = M/2 and ®,/(X) = X + 1. We denote by R = Z[X]/(®a (X))
and write R, = R/qR to represent the residue ring of R modulo an integer ¢. An element a = Zi\;l a; X*
of R (or R,) is often identified with the vector of its coefficients (a, ...,an—1) in ZY (or ZY). We use
ZN(—q/2,q/2] as a representative of Z, for an integer ¢ and denote [a], as the reduction of each coefficient
of @ € R modulo ¢. For a € R, we define ||al|, as the ¢P-norm of its coefficient vector.

For a real number 7, |r]| denotes the nearest integer to r, rounding upwards in case of a tie. For a
distribution D, we use x < D to denote sampling x according to D. For a finite set .S, we denote the
uniform distribution over S as U(S).

2.2 Ring Learning With Errors

Let x and ¢ be distributions over R. The ring learning with errors (RLWE) assumption with respect to
the parameter (R, ¢, x, %) is that given polynomially many samples of either (b,a) or (—a-s+e,a), where
a,b<U(R,), s < X, e < 1, it is computationally hard to distinguish which is the case. The security of
lattice-based homomorphic encryption (HE) schemes such as BFV [Bral2l [FV12], and CKKS [CKKS17]
relies on the hardness of the RLWE assumption.

2.3 The BFV Scheme

Below, we provide a brief description of the BFV homomorphic encryption scheme [Bral2, [FV12], which
supports arithmetic over R; for some integer t.

e BFV.Setup(1*): Given a security parameter A\, outputs a parameter set pp = (R, q,t,x,v) where x,
are distributions over R, and ¢, ¢ are integers such that ¢ | g.

We note that the parameters t, ¢ do not need to satisfy ¢ | ¢ in general, but our new bootstrapping
method requires such an assumption. The scaling factor will be denoted by A := ¢/t € Z.

e BFV.KeyGen(pp): Given a public parameter pp = (R, q,t, x,?), sample s < x, a < U(R,) and e < 9.
Return a secret key sk = (1,s) € R? and a public key pk = (b,a) € R2 where b = —a - s+ e (mod g).

® BFV.Encpi(m): Given a public key pk € Rg, and a plaintext m € Ry, sample z < x, eg, e1 < . Return
a ciphertext ct = z - pk+ (eg + A-m,e1) (mod q).

e BFV.Decg(ct): Given a secret key sk = (1,5) € R? and a ciphertext ct = (co, 1) € R7, output a plaintext
m=|%(co+ci-s)] (modt).

e BFV.Add(cty, cty): Given two ciphertexts cty, cty € Rg, it outputs a ciphertext ct,qq = ct; +cty (mod q).

The BFV scheme supports other non-linear homomorphic operations such as multiplications or auto-
morphisms over the plaintext space R;. For details, we refer to [Bral2, FV12|.

SIMD operations over Z;. There have been a number of studies on encoding several elements in Z;
into the plaintext space R; to instantiate SIMD-like operations over Z;, often referred to as a packing
method. Roughly speaking, a packing method is a mapping from Z¢ to R; that emulates arithmetic over
Z$ through ring arithmetic over R;. In this context, d is referred to as the number of slots, and the ratio
d/N determines the throughput efficiency of the packing method. One widely used packing method is
the HElib packing method proposed in |[HS21, |GHS12], which provides a packing method in the case
of t = p" for some prime p coprime to M. To be precise, suppose @;(X) is factored into d irreducible
polynomials f;(X),..., f¢(X) modulo ¢, with each irreducible factor having the same degree. If we set
E = Z4[X]/(f1(X)), there exists a ring isomorphism between R; and E?. Thus, by embedding Z, into E,
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one can instantiate vectorized operations over Z¢ using arithmetic over R;. As a special case, when p is
a prime satisfying p = 1 (mod M), &y (X) splits in Z;[X], and E = Z,. Consequently, R; is isomorphic
to Z¥, providing the maximum number of slots d = N. However, for a small prime p, it results in small
slot sizes. Thus, another packing method was introduced by Aung et al. [ALS™22| to support more slots
in cases with small primes, but their methods require a costly recoding process after a fixed number of
multiplications. Cheon and Lee |[CL22| actually prove that, in the case of packing elements of Z,» without
a recoding process, the HElib packing method provides the optimal number of slots. There is also another
research direction [CIV18| that dealt with encoding Laurent polynomials into the plaintext Ry.

2.4 The CKKS scheme

The CKKS scheme [CKKS17] is a homomorphic encryption scheme that supports approximate arithmetic
over the complex numbers C. Compared to the BFV scheme, its plaintext space is R where the cyclo-
tomic index M. Below, we present its setup, encryption, and decryption procedures. For further details
on the CKKS scheme, such as homomorphic multiplication or automorphism, we refer to the original
paper |[CKKS17].

e CKKS.Setup(1*): Given a security parameter ), outputs a parameter set pp = (R, q, x,v) where x,
are distributions over R, and ¢ is a positive integer.

o CKKS.Encpi(m): Given a public key pk € Rg, and a plaintext m € R, sample z < ¥, eg, e1 < ¥. Return
a ciphertext ct = z - pk + (eg + m, e1) (mod g).

o CKKS.Decg(ct): Given a secret key sk = (1,s) € R? and a ciphertext ct = (co,c1) € Rﬁu output a
plaintext m’ = ¢y + ¢1 - s (mod ¢').

We note that the plaintext m’, obtained from the decryption, may deviate from the initial plaintext
m used for encryption, but with similar values, i.e., m’ &~ m. Since the aim of the CKKS scheme is to
support approximate arithmetic, this small gap is considered admissible. Additionally, the input ciphertext
modulus ¢ and the output ciphertext modulus ¢’ may differ, as homomorphic evaluations in the CKKS
scheme involve rescaling procedures to control the growth of the plaintext size.

SIMD operations over C. Similar to the BFV scheme, the CKKS scheme also supports SIMD-style
arithmetic over C. In a nutshell, a message vector in C"/? can always be encoded into a plaintext in
R by leveraging the property that @,;(X) splits over C, so the number of slots is determined as N/2.
Then, arithmetic over R emulates arithmetic over CN/2. For more details on the packing method, we
refer to |[CKKS17].

3 Review on BFV Bootstrapping

In this section, we present the basic functionality of BFV bootstrapping and review the previous instan-
tiation methods for comparison with our method.

3.1 Basic Functionality

In the decryption procedure for a BFV ciphertext ct = (co,c1) € R2, we first compute the following

q7
formula for a secret key sk = (1, s).
co+cr-s=A-m+e (modq)

Then, the result can be represented as two terms: the one that contains the plaintext m multiplied by
the scaling factor A, and the other term e, which we call the noise or error of the ciphertext. In BFV, the
size of the noise gradually increases after each homomorphic operation, However, for correct decryption,
it is required that the size of the noise should be smaller than certain bound, i.e., |||, < A/2. Thus,
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to support the evaluation of an arbitrary circuit, one needs an apparatus that reduces the size of noise,
which corresponds to the BF'V bootstrapping procedure. Below, we describe its functionality together
with an illustration in Fig. [I}

e BFV.Boot(ct): Given a ciphertext ct € R2 with plaintext m and the noise e where |le[| ,, < Bix, it outputs
a ciphertext ct’ € Rg with plaintext m and the noise €’ where ||€/|| ., < Bout < Bin.

ct

l BFV. Boot

q

Fig. 1. Functionality of BFV Bootstrapping

The functionality of the BFV bootstrapping algorithm can be represented by the tuple (g, t, Bin, Bout),
where ¢ denotes the ciphertext modulus, ¢t denotes the plaintext modulus, and B;j, and B,y denote the
upper bounds for the noise of the input and output ciphertexts, respectively. We define the quantity
logy(Bin/Bout) as the denoising factor of BFV bootstrapping since it indicates how many upper bits of
noise are removed through bootstrapping. In practice, Bj, determines the maximum multiplicative depth
from initial encryption, and the denoising factor determines the maximum multiplicative depth after
bootstrapping.

3.2 Digit Extraction Framework

In this subsection, we review previous approaches to BFV bootstrapping [HS21}, |(CH18, |GIK V23|, OPP23].
All these studies basically follow the so-called digit extraction framework by Halevi and Shoup [HS21],
which operates on a plaintext modulus ¢ = p” for some prime p. We illustrate its overall pipeline in Fig.

Let (cp,c1) € Rg be a BFV ciphertext with a plaintext m € R, and noise e bounded by Bj,
so that ¢p + ¢ - s = p% -m + e (mod q). Then, the bootstrapping procedure begins by performing
a modulus switching operation on (co,c1), which yields a new BFV ciphertext (cy,¢;) € R; with a
plaintext p*~"m + m’ € R,» and a small noise ¢’. Note that the plaintext now resides in R,v, where v
is the minimum value that makes ||m/|| . < p"~"/2 after modulus switching. Then, digit extraction is
performed on this ciphertext, which homomorphically removes the v — r least significant digits m’ of the
plaintext of p*~"m+m’ in base p representation. The resulting ciphertext (cfj,c}) € R(QJ of digit extraction
encrypts the plaintext p*~"m € R,» with some noise e’ bounded by By so that cfj+cf-s = ﬁ " "m+e”

v—T

(mod ¢). However, since 1% SpvTT

m = I%m, it can be regarded as a BFV ciphertext, encrypting m € R~
with the noise €”. Since Byt is usually smaller than By, this completes a BFV bootstrapping with

functionality (g, t, Bin, Bout)-

Digit Extraction. In the previous approach, digit extraction is the most critical factor in overall
bootstrapping performance, making its optimization the central focus of BFV bootstrapping research.
The digit extraction procedure is accomplished by evaluating a polynomial function over Z,», which
maps z to |x/p¥~ "] for all x € Z,v, and this polynomial is referred to as a digit extraction polynomial. In
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(cosc1) ™ e
o’
ModSwitch
q
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(chch) G mem) ;
P
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(cef) ™
~—_~—
o’

Fig. 2. Previous BFV Bootstrapping Pipeline

[HS21], Halevi and Shoup show the existence of a digit extraction polynomial and provide an algorithm
for its evaluation, essentially resulting in the evaluation of a polynomial of degree p~!. The subsequent
work by Han and Chen [HS1§| found that a digit extraction polynomial can be represented with a
polynomial of relatively low degree rp?~", significantly improving performance, especially when p is a small
prime number. We refer to a more detailed analysis of the digit extraction polynomial in |[GV23]. Until
recently, several studies have focused on improving the performance of the digit extraction procedure,
such as finding an efficient polynomial representation |[GIKV23| or optimizing the polynomial evaluation
algorithm |[OPP23].

However, there is a caveat for the digit extraction procedure: the number of slots d. During digit
extraction, we use the HElib packing method to instantiate SIMD operations over Z,. since the evaluation
of the digit extraction polynomial requires large depth. We recall that in the case of a small prime p,
the HEIlib packing method provides a small number of slots. Thus, to complete the digit extraction
procedure, we need to iterate the evaluation of the digit extraction polynomial N/d times since we can
process at most d elements of Z,. at a time. To overcome this issue, an optimization technique called
slim bootstrapping was proposed in |[CH1§|, which assumes the original plaintext R; also uses the HElib
packing method. Then, the plaintext has only d non-zero coefficients, so bootstrapping can be completed
by a single evaluation of the digit extraction polynomial. Although this significantly reduces latency, the
throughput in terms of slots remains almost invariant. Also, slim bootstrapping cannot be applied when
the plaintext R; uses another packing method such as [ALST22] or packing Galois field or Galois ring
elements.

Functionality Analysis. In the perspective of BFV bootstrapping functionality, the digit extraction-
based approach produces a constant size of output noise bound B, once t is fixed, as it is determined
by the degree of the underlying digit extraction polynomial. Also, its performance is independent of the
input noise bound Bjy since the noise e’ after modulus switching is not affected by the input noise bound.
Therefore, to achieve the maximum denoising factor, it is usually set to the maximum value that supports
the correctness of modulus switching. To sum up, in the previous method, once ¢ and t are determined,
Bin, and B,y are automatically decided. Since the choice of g only affects the security level, the choice of
t, especially its number-theoretic properties, determines the overall performance of bootstrapping after
all.
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4 Review on CKKS Bootstrapping

In this section, we present the basic functionality of CKKS bootstrapping and revisit the current state-
of-the-art method for instantiating it, especially the META-BTS [BCC™22] method, which is the core
building block in our BFV bootstrapping method.

4.1 Basic Functionality.

In the decryption procedure for a CKKS ciphertext ct = (cg,c1) € Ri,, we first compute the following
formula for a secret key sk = (1, s).

co+ecr-s=m (mod q)

As observed in the above decryption procedure, there is no strict distinction between plaintext and noise
for CKKS ciphertexts, unlike BF'V ciphertexts. Therefore, for correct decryption, the only requirement
is that the size of the plaintext is smaller than the ciphertext modulus, i.e., |[moutll,, < ¢'. However,
in CKKS, the ciphertext modulus decreases after each homomorphic evaluation due to the rescaling
procedures. Thus, to support the evaluation of arbitrary circuits, an apparatus is required that increases
the ciphertext modulus while keeping the plaintext to a similar value, which is the exact functionality of
CKKS bootstrapping. Below, we describe this functionality more precisely together with an illustration

in Fig. Bl
e CKKS.Boot(ct): Given a ciphertext ct € R with a plaintext m whose size is bounded by ||m|| , < Bin,

it outputs a ciphertext ct’ € Riut with a plaintext m' such that ||m’ —m| < Bou and the ciphertext
modulus gout > Gin-

ct m ‘

l CKKS. Boot

Qout

ct

m' ‘

Fig. 3. Functionality of CKKS Bootstrapping

The functionality of CKKS bootstrapping can be parameterized as the tuple (¢in, out, Bin, Bout), where
¢in and ¢out denote the modulus of the input and output ciphertexts respectively, Bj, denotes the up-
per bound for the plaintext of the input ciphertext, and By, denotes the upper bound for differences
between input and output plaintexts. We also refer to the quantity log,(Bin/Bout) as the precision of
CKKS bootstrapping since it indicates how many upper bits of the input plaintext are preserved during
bootstrapping.

4.2 The Base CKKS Bootstrapping

The first instantiation of CKKS bootstrapping is accomplished by Cheon et al.[CHK™18a]. The key idea
of their work is homomorphically evaluating the modular reduction function « — [x],, on coefficients of
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(co,1) m

l ModRaise

q

(cor¢1) m+ gl ‘

l ModReduction

out

(e 1) m' ‘

Fig. 4. The Base CKKS Bootstrapping

the plaintext in an approximate manner, where ¢;, is the modulus of input ciphertexts. We illustrate its
pipeline in Fig. [4]

Given a CKKS ciphertext (cg,c1) € RZin encrypting a plaintext m € R satisfying ||m||, < Bin, it
first performs a modulus raising operation, which yields a CKKS ciphertext (cj,c}) € R§ encrypting a
plaintext m + ginI for some polynomial I. Then, it homomorphically evaluates an approximation of the
modular reduction function resulting in a ciphertext (cf,c{) € RZ  encrypting a plaintext m’ satisfying
[lm —m/|| o < Bout- Since the output ciphertext modulus gy is set to be greater than the input ciphertext
modulus @iy, it provides CKKS bootstrapping functionality (gin, gout, Bin, Bout)-

As the modular reduction function is not a polynomial function, finding a precise polynomial approx-
imation of it has been the main research topic. Since the initial instantiation by Cheon et al.|[CHK ™ 18a]
is done by evaluating a polynomial approximation of the sine function, a series of studies|LLL™ 21}, |[JM22}
LLK™22| has aimed at enhancing its precision by finding HE-friendly polynomial approximations of the
modular reduction function. We refer to this type of bootstrapping instantiation as a base bootstrap-
ping, CKKS.BaseBoot. Given a base CKKS bootstrapping algorithm CKKS.BaseBoot with functionality
(¢in, Qouts Bin, Bout ), its time complexity is dominated by the precision factor log,(Bin/Bout ). To be pre-
cise, for achieving x-bits precision, it evaluates a polynomial approximation of the modular reduction
function whose degree follows O(y/z) and its time complexity roughly follows some super-linear function
T(z) according to the analysis in [BCCT22|. We also note that it suffices to evaluate the approximated
modular reduction function twice since the number of slots in the CKKS scheme is N/2, compared to
the evaluation of the digit extraction polynomial in BFV bootstrapping.

4.3 META-BTS: Bootstrapping for Arbitrary Precision

In this subsection, we review the META-BTS bootstrapping method, which we utilize as a core building
block for our BFV bootstrapping method. Apart from the previous approaches on CKKS bootstrapping,
Bae et al. [BCCT22] presented a novel method called META-BTS. Its core idea is to iteratively employ
a low-precision base bootstrapping algorithm to attain a high-precision bootstrapping algorithm. Their
main result is as follows[]

Theorem 1 (Thm.3.2 [BCC"22|). Given a base CKKS bootstrapping algorithm CKKS.BaseBoot with
functionality (qin, Gout, Bin, Bout) and n = 1ogq(By,/Boyt)-bits precision, one can construct a new boot-

3 We modified the original statement, excluding the concept of the scaling factor.
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strapping algorithm CKKS.Boot®) with functionality (g, - 2(k_1)",qout7Bm . 2(k_1)",Bout) and kn-bits
precision by repeating CKKS.BaseBoot k times.

The advantage of the META-BTS algorithm is twofold: firstly, it provides asymptotically faster time com-
plexity when achieving the same bootstrapping functionality. To be precise, suppose that the target CKKS
bootstrapping functionality (gin, gout, Bin, Bout) requires kn-bits precision. If we directly instantiate it with
the CKKS.BaseBoot so that it supports the designated functionality and precision, it takes asymptotically
T(kn) time complexity. In contrast, for the META-BTS bootstrapping, it can run k iterations of n-bits
precision CKKS.BaseBoot, which supports the functionality (gin /2%~ 1™, gout, Bin/2* "™, Boyt). Then, it
yields k- T'(n) time complexity, which is reduced from T'(kn) since T is a super-linear function. Thus, the
META-BTS method reduces asymptotic complexity for attaining the same bootstrapping functionality.
Secondly, it provides convenience in adjusting precision. With the base bootstrapping algorithm, one
needs to recalculate all the parameters for CKKS.BaseBoot if precision changes. In contrast, the META-
BTS algorithm CKKS.Boot(*) can adjust precision by simply modifying the iteration number k without
altering parameters for the base bootstrapping. For a more detailed analysis, we refer to |[BCCT22].

5 New BFV Bootstrapping

In this section, we present our new bootstrapping method for the BFV scheme. We recall that the
performance of the previous digit extraction base-approach is greatly affected by the choice of plain-
text modulus ¢. Specifically, it provides efficient performance only when ¢ is a power of a small prime.
Thus, it yields impractical performance when ¢ is a large prime number, although some applications of
BFV |CLR17, CHLR18, CMdG™21| require such a plaintext modulus. To overcome the current limita-
tions of BFV bootstrapping, we completely redesign the overall pipeline, distinct from the digit extraction
framework. The core idea of our BFV bootstrapping method is to incorporate CKKS bootstrapping as a
subroutine. Our bootstrapping procedure consists of three steps: noise extraction, approximated lifting,
and subtraction. The overall pipeline is illustrated in Fig.

We first assume that the scaling factor A = ¢/t is an integer, and an input ciphertext is ct = (¢g,¢1) €
Rg, which satisfies the following relation:

co+cr-s=A-m+e (modq) (1)

Here, sk = (1,s) is a secret key, m € Ry is the plaintext, and e € R is the noise bound by |le|| ., < Bin.

Noise Extraction. We observe that if A is an integer, the noise part e from the input ciphertext can be
extracted using modulo operations. Precisely, from Eq. , we can derive the following fact by changing
the modulus from ¢ to A:

[co]a +[c1]a-s=e (mod A) (2)

Note that the extracted noise e now resides in modulo A.

Approximated Lifting. We then come up with the idea that if we somehow approximately lift the
extracted noise e from the modulo A to the modulo ¢, we can achieve BF'V bootstrapping since subtracting
the lifted noise from the original ciphertext in modulo ¢ results in the reduction of noise. We observe
that this can be done by exploiting CKKS bootstrapping. More precisely, we leverage the functionality
of CKKS bootstrapping, where it increases ciphertext modulus while almost preserving the underlying
plaintext. To achieve this, we treat the ciphertext ([co]a, [c1]a) € R as a CKKS ciphertext, interpreting
its plaintext as e. Then, we perform a CKKS bootstrapping whose functionality is (4, ¢, Bin, Bout) 00
the ciphertext ([co]a, [c1]a) € R . This results in the CKKS ciphertext (cf,¢}) € R2 whose plaintext is
e/, satisfying |le — €|, < Bout-
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Fig. 5. Our BFV Bootstrapping Pipeline

Subtraction. After obtaining the CKKS ciphertext (cf,¢}) € R2 which encrypts the plaintext ¢/ modulo
q, we reinterpret it as a BF'V ciphertext. This results in a BFV ciphertext with a plaintext of 0 and noise
of ¢’. Finally, subtracting this from the original ciphertext (cg,c;) yields a new BFV ciphertext with
the plaintext m and noise e — ¢’, where the upper bound for the output noise, Bgys, is smaller than the
original noise bound Bj,. This completes our new BFV bootstrapping.

Correctness. Below, we summarize our bootstrapping method in Alg. [1| and prove its correctness in
Thm. Pl

Algorithm 1 BFV.Boot

Input: A BFV ciphertext (cg,c1) € R(Q]
Output: A BFV ciphertext (cf,c/) € R2

1: ([co]la,[c1]a) < (co,c1) (mod A) > Noise Extraction
2: (cp, ¢}) < CKKS.Boot([co]a, [c1]a) (mod q) > Approximated Lifting
3: (ef,cf) + (co—cpy,e1 — ) (mod q) > Subtraction
4: return (cj,cf)

Theorem 2. Suppose the algorithm CKKS.Boot in Line[d of Alg[d] is a CKKS bootstrapping algorithm with
functionality (A, q, Bin, Bout). Then, the algorithm BFV.Boot of Alg is a BF'V bootstrapping algorithm
with functionality (q,t, Bin, Bout)-

Proof. Let (cg,c1) € R3 be a BFV ciphertext encrypted under a secret key sk = (1,s) with plaintext
m € R and noise e € R bound by |||, < Bin, ie., co+c1-s=A-m+e (mod q). Since we assume
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A = g/t is an integer, it holds that ¢ 4+ ¢; - s = [co]a + [c1]a - s = e (mod A). Note that if we regard
the ciphertext ([co]a, [c1]a) € R? as a CKKS ciphertext, then e becomes the plaintext. Now, we perform
the CKKS bootstrapping algorithm CKKS.Boot of functionality (A, ¢, Bin, Bout) on ([co]a, [c1]a). Then,
it results in a CKKS ciphertext (cp,¢}) € RZ with a plaintext ¢’ satisfying [le — ¢’|| ., < Boyt. Finally,
subtracting (co, ¢1) from (cf, ¢}) yields a BEV ciphertext (cf, ¢/) with plaintext m and noise e — ¢’ since
we can regard (c(,c;) as a BFV ciphertext with plaintext 0 and noise e’. Therefore, our algorithm in
Alg. 1] instantiates BFV bootstrapping with functionality (¢, t, Bin, Bout)- a

5.1 Effect of META-BTS.

In this subsection, we discuss the effect of the META-BTS algorithm when instantiating the approximated
lifting functionality with it.

Improved Performance. As we described before, the key step of our bootstrapping method is approx-
imated lifting, which is equivalent to the CKKS bootstrapping with functionality (4, ¢, Bin, Bout)- Thus,
efficient instantiation of the given CKKS bootstrapping functionality dominates overall performance.
However, since the size of the extracted noise is larger than an ordinary CKKS plaintext which is usually
hundreds of bits, it cannot be easily handled by the base CKKS bootstrapping algorithm |[CHK™18al
LLL™21}, [LLK ™22, |JM22|. Thus, we leverage the META-BTS bootstrapping method [BCC'22|, which
efficiently supports bootstrapping of arbitrary precision, to achieve practical performance for our BF'V
bootstrapping method.

To be precise, let the denoising factor be kn = logy(Bin/Bout) in our target BFV bootstrapping
functionality (g, t, Bin, Bout). To achieve the given BFV bootstrapping functionality, we run a CKKS
bootstrapping with the functionality (4, ¢, Bin, Bout). We note that the denoising factor directly translates
into the precision of the CKKS bootstrapping. Thus, we need to instantiate a CKKS bootstrapping with
kn-bits precision. If we apply the META-BTS method, which iterates the n-bits base CKKS bootstrapping
CKKS.BaseBoot k times, the functionality of CKKS.BaseBoot is determined as (A/2( =17 ¢ By, /2(k=1n,
Bout), and the time complexity is reduced from T'(kn) to k- T'(n). Therefore, employing the META-BTS
method is critical to the performance of our BFV bootstrapping method since our method requires a
CKKS bootstrapping with very large precision.

Adjustable Functionality. We recall that another important aspect of META-BTS is its ability to
adjust precision. We show how this affects our BFV bootstrapping, resulting in the ability to adjust
bootstrapping functionality. Before stating it more clearly, we provide some useful properties of CKKS
bootstrapping below.

Lemma 1. Given a CKKS bootstrapping algorithm CKKS.Boot with functionality (qin, qout, Bin, Bout)-
Then for any positive integer q', one can instantiate the CKKS bootstrapping algorithms with the following
functionalities:

1. (q, * Qiny Qouty Bin7 Bout)
2- (qinv QOut/qlv Bin: Bout) Zf q/|Q()ut
3. (q/ * Qin, q/ : QOutaq/ * Bin, q/ : (Bout + ”SHTIH)) if ||5H1 < Bin

by running CKKS.Boot a single time.

Proof. The first and second functionalities can be easily instantiated by taking modulo ¢ and ¢/¢
operations on input and output ciphertexts of CKKS.Boot respectively. For the last functionality, let
(co,1) € Rg,qin be an input ciphertext. Then, we can instantiate the last functionality as follows:

Step 1. Run CKKS.Boot on (|co/q'], [c1/q']) € RZ, and obtain the result (cj,c}) € R2

Gout "
Step 2. OutPUt (q/ ! [C{)](Iout’ q/ ! [Cll](Iout) € RS/QOut'
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If we set co+c1s = m (mod ¢'qin), then [co/q' |+|c1/q'] s = m/¢'+e (mod giy) holds where e is a rounding
noise satisfying [le[| . < ”SHTIH Since we assume ||s||; < Biy, running CKKS.Boot with (|co/q’], [c1/4])
yields the ciphertext (c(,c}) € RZM such that ¢j + ¢js =m/q + e+ e’ (mod gout) with a bootstrapping
noise €’ satisfying ||e’|| ., < Bout. Finally, multiplying ¢’ results in ¢'[c{]q,.. + ¢'[c1]gous =m + ¢ (e +€')
(mod ¢'gout)- Since ||¢'(e +€')||.. < ¢ - (Bout + ”SHTlﬂ), we instantiate the last functionality. O

Applying the above lemma to the base CKKS bootstrapping of the functionality (A/2¢-=17 ¢ B, /2(k=1n,
Byyt) results in the following theorem.

Theorem 3. Let (A/2=D7 g By, /2D B_..) be the functionality of the base CKKS bootstrapping
CKKS.BaseBoot. If||s||1 < Bin, one can instantiate CKKS bootstrapping with functionality (4, q, Bin/2°",
(Bout + HSHTHFI) -207) by iterating CKKS.BaseBoot with k —a—b times where a,b are non-negative integers
satisfying a + b < k.

Proof. Firstly, one can instantiate a CKKS bootstrapping with functionality (A/2(¢+0)" ¢, By, /2(etb)n,
Bgyt) by iteratively running CKKS.BaseBoot k — a — b times by Theorem |1} Next, we apply the third
property in Lem|l| with ¢’ = 2", then it yields a CKKS bootstrapping with functionality (A/2%", ¢- 2",
Bin /29", (Bout + #) -2} assuming h < Boy:. Finally, applying the first and the second property in
Lem. results in a CKKS bootstrapping with functionality (4, ¢, Bin/2*", (Bout + ”‘(’HTVH) - 2bm), O

The above theorem directly implies that given the base CKKS boostrapping, we can also instantiate
another BFV bootstarpping with the functionality (g, t, Bin /2", (Bout + ”SHTH'l) -207) "and the iteration
count is determined by the denoising factor &~ 2(+%)" which reduces overall time complexity by a factor
k/(k —a —b). Hence, in our bootstrapping, the META-BTS method provides the ability to decrease the
input noise bound or increase the output noise bounds, and in that case, the performance of bootstrapping
gets improved according to the reduced denoising factor.

5.2 Overall Analysis

We provide an overall analysis of our bootstrapping method for achieving the target BF'V bootstrap-
ping functionality (g, t, Bin, Bout) in comparison with the previous digit extraction based approaches. In
our bootstrapping method, the most critical factor influencing the performance is the denoising factor
log, (Bin/Bout). Recall that to achieve the given BFV bootstrapping functionality, we require CKKS
bootstrapping with the functionality (A, q, Bin, Bout), and the performance of CKKS bootstrapping is
typically determined by its precision. Since the denoising factor of BFV bootstrapping directly trans-
lates into the precision parameter for the CKKS bootstrapping, the performance of our bootstrapping
method highly dependent on the denoising factor, which is determined by the input and output noise
upper bounds. In contrast, in the previous method, the bootstrapping performance is dominated by the
number-theoretic property of the plaintext modulus ¢. Assuming ¢ = p” for some prime number p, it
homomorphically evaluates the digit extraction polynomial, and it provides both viable performance and
output noise upper bounds only when p is a small prime number. However, in our method, the plaintext
modulus ¢ primarily affects the maximum input noise bound and is relatively independent of bootstrap-
ping performance. Hence, one can set an arbitrary plaintext modulus ¢ as needed without considering
its effect on bootstrapping. This flexibility may lead to the adoption of our technique in a wide range of
BFV applications.

Another distinctive feature of our method is its ability to adjust bootstrapping functionality. Lever-
aging the property of META-BTS, one can decrease the input noise bound or increase the output noise
bound, leading to performance enhancement based on the reduced denoising factor. This offers further
optimization in circuit evaluation. For example, when evaluating circuits where the required depth after
bootstrapping is small, one can benefit by setting B,y large, resulting in enhanced bootstrapping perfor-
mance proportional to the reduced denoising factor. However, such an optimization strategy is impossible
with the previous method since the evaluation of the digit extraction polynomial provides a fixed out-
put noise bound, and there is no performance gain in adjusting the input noise bound. Therefore, our
bootstrapping method provides room for further optimization in BFV applications by offering tunable
bootstrapping functionality.
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6 Experimental Results

We present a proof-of-concept level implementation to demonstrate the performance of our bootstrapping
method. Our code is developed using the C++ HEaaN library [Cry]. The experiments were conducted on
an Intel Xeon Gold 6242 at 2.8GHz with 503GiB of RAM running Linux in a single-threaded environment.
In our implementation, we set the key distribution x to be a sparse ternary distribution with a hamming
weight h, and the error distribution ¢ as a discrete Gaussian distribution with a standard deviation of
3.2. The security level of each bootstrapping parameter is measured by the lattice estimator [APS15] and
set to achieve a 128-bit security level.

In the rest of this section, we first describe the optimization techniques employed in our implemen-
tation. Subsequently, we present the concrete performance of our method along with benchmark results.
The benchmark results cover three aspects: firstly, we compare the bootstrapping performance between
our method and the digit extraction-based one to illustrate the performance improvement of our method
in achieving similar BFV bootstrapping functionality. Next, we provide timing results for various plain-
text modulus sizes to demonstrate the flexibility in choosing the plaintext modulus. Finally, we measure
timing results for various input and output noise bounds to highlight another unique property of our
bootstrapping method, where we can adjust bootstrapping functionality depending on the scenarios.

6.1 Optimization Techniques

RNS Represetation. When implementing RLWE-based homomorphic encryption schemes such as
CKKS and BFV, one needs to instantiate arithmetic over R, with a large modulus ¢. Introducing big
integer operations yields additional computational overheads; therefore, the Residue Number System
(RNS)-based instantiation |[CHK™18b, [HPS19] has been popularly deployed due to its efficiency. In a
nutshell, RNS representation exploits the algebraic isomorphism between R, and R4, X --- x R4, when
g = q1 X -+ x q¢ and ¢;’s are pairwise coprime. Then, operations over R, can be instantiated with
operations over R,,’s, and since ¢;’s are usually set to be word-size, it can be efficiently implemented
without introducing big integer arithmetic. The HEaaN library we used is also implemented in a full
RNS manner, i.e., no external big integer library is used.

Sparse-secret Encapsulation. When other parameters are fixed, the performance of CKKS boot-
strapping is affected by the Hamming weight h of the secret key distribution. Previously, there existed
a trade-off relation between the performance of bootstrapping and the security level. Specifically, a low
Hamming weight h provides efficient bootstrapping performance but a low security level, and vice versa.
Hence, it was usually set to a middle ground that yields both fair performance and an acceptable security
level. Recently, Bossuat et al. [BTPH22] introduced an optimization called sparse-secret encapsulation
technique, which resolves this trade-off relation. At a high level, it leverages the nature of the CKKS
scheme where the ciphertext modulus keeps decreasing until bootstrapping is applied. Initially, cipher-
texts are encrypted with a dense secret key at a large ciphertext modulus, providing a high-security
level. However, for input ciphertexts for bootstrapping, their modulus is usually smaller than that of
fresh ciphertexts due to homomorphic evaluations, and a sparse secret key provides a good security level
at this reduced ciphertext modulus. Thus, the proposed optimization technique first changes the input
ciphertext’s secret key with a sparse secret key before the modulus raising step and switches the output
ciphertext’s secret key back to the original dense one, and then it performs the remaining bootstrapping
procedure. This results in accelerating bootstrapping performance without compromising security level.
Our implementation of CKKS bootstrapping also incorporates this optimization for better performance.

6.2 Benchmark Results

Before presenting benchmark results, we share the basic parameter-setting strategy for our bootstrapping
method. We first fix the target BFV bootstrapping functionality (g, t, Bin, Bout )- Then, the required CKKS
bootstrapping functionality is derived as (4, ¢, Bin, Bout)- As we instantiate this CKKS bootstrapping
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with the META-BTS algorithm CKKS.Boot(*), parameter setting boils down to deciding the precision
parameter n of the base CKKS bootstrapping CKKS.BaseBoot. After fixing the precision parameter n,
the iteration count k is set to [logy(Bin/Bout)/n], and the functionality of the base CKKS bootstrapping
CKKS.BaseBoot is determined as (A/2F=D7 ¢, By, /2=1n B ). In the case of the redundant base
CKKS bootstrapping functionality, where B,y is large, we instantiate it by the CKKS bootstrapping
with functionality (A/(q-2%=Y"), ¢/¢', Bin/(q'-2F~™), Bou/q') for some proper integer ¢’ leveraging
the property in Lemmall] This results in faster boostrapping performance since overall ciphertext modulus
is decreased by a factor of ¢’. Finally, the bootstrapping key, precomputed data required for performing
bootstrapping, is generated according to the base CKKS bootstrapping functionality.

Performance Comparison with Digit Extraction. We first compare the performance of our boot-
strapping with the state-of-the-art digit extraction-based bootstrapping [GIKV23]. We set the function-
ality parameters of our method at a similar level to the benchmark results in [GIKV23] to provide a fair
comparison. The detailed BFV bootstrapping functionality parameters are presented in Table

Table 2. BFV bootstrapping functionality used in the benchmark in Table

q t Bin Bout
|GIKV23| | 1200 bits | 51 bits | 1137 bits | 1006 bits
Ours 1200 bits | 51 bits | 1077 bits | 949 bits

To achieve the given BFV bootstrapping functionality, we utilized the 16-bits base CKKS bootstrap-
ping CKKS.BaseBoot with the iteration count 8. Also, to provide a fair comparison in latency, we set
the ring dimension as 2'6 = 32768, which is similar to the ring dimension 42336 in the previous bench-
mark |GIKV23|. Under these parameter settings, we measured the elapsed time for bootstrapping, and
its results are presented in Table [3| along with the benchmark result in |GIKV23]E

Table 3. Bootstrapping performance comparison between ours and |[GIKV23]

|GIKV23| | Ours
Cyclotomic index M 42799 65536
=127-337 | =216
Ring dimension N 42336 32768
Security level (bits) 80 128
Plaintext modulus ¢ (bits) 51
Denoising factor (bits) 131 128
Boot time (sec) 1344+4F] | 35.5
Amortized boot time (ms/coefficient) | 31.7+ 1.08

While offering similar bootstrapping functionality, our method outperforms the previous approach by
a factor of 37.9 in latency. Additionally, our method improves the throughput by a factor of 29.4 when
comparing the elapsed time per each coefficient of the plaintext. We attribute this result to the large
number of slots in CKKS since our method utilizes CKKS bootstrapping as a key step. To be precise,

4 The timing in |GIKV23] is measured on an Intel Core i7-6700HQ CPU, which is comparable to our hardware
specifications.

5 We estimated it from Table 7 in [GTKV23] by multiplying 21 = 42336/2016 since it only measured elapsed time
for a single iteration of digit extraction polynomial evaluation.
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we recall that the digit extraction utilizes the HElib packing method, and it provides a small number of
slots when p is small. Actually, in the benchmark result in |[GIKV23], it can only utilize 2016 slots, so
it needs to evaluate the digit extraction polynomial 42336/2016 = 21 times, whereas the CKKS packing
method supports 32768/2 = 16384 slots.

We also note that the plaintext modulus in [GIKV23] is set to 2°! for the efficiency of digit extraction-
based bootstrapping, while our method uses a similarly scaled prime number to leverage the efficiency
of RNS representation. If the plaintext modulus of [GIKV23] is changed to ours, its performance will
be greatly degraded since the digit extraction method performs its worst in such a case. Conversely,
our method would still yield similar latency even if we use the plaintext modulus 2°!, since, in the
asymptotic scale, the performance of our algorithm mainly depends on the denoising factor, not the
number-theoretic properties of the plaintext modulus, as discussed in the previous section. We also note
that the benchmark in [GIKV23] only measured elapsed time for digit extraction due to technical issues,
excluding other operations such as homomorphic linear transformations. Furthermore, our bootstrapping
parameters provide a higher security level. Hence, the actual performance improvement of our method
yields even better results.

Arbitrary Plaintext Modulus. In this benchmark, we highlight the flexibility of our bootstrapping
method in choosing the plaintext modulus. The performance of our method is primarily influenced by the
denoising factor log,(Bin/Bout) rather than the number-theoretic properties of the plaintext modulus t.
Therefore, in our benchmark, we maintain fixed functionality parameters B;, and Boyt while varying the
plaintext modulus ¢. The results are presented in Table

Table 4. Bootstrapping performance for various plaintext moduli.

q t By, Bouws | Boot time
54 bits
791 bits | 144 bits | 376 bits | 16 bits | 392 sec
234 bits

In our benchmark, we maintain a fixed denoising factor of 360 bits. To achieve this, we employ the
META-BTS method with a 30-bit precision base for CKKS bootstrapping and 12 iteration counts. Ad-
ditionally, we set the ring dimension to 2'7 to support large precision CKKS bootstrapping. A notable
observation is that the elapsed time for bootstrapping remains constant, even with changes in the plain-
text modulus. This constancy arises because the plaintext modulus only impacts the input ciphertext
modulus of CKKS bootstrapping for homomorphic lifting when other parameters are fixed. The input
ciphertext modulus, however, does not affect the CKKS bootstrapping performance if it exceeds a certain
bound. Consequently, all experiments internally utilize the same CKKS bootstrapping for approximated
lifting. This result directly illustrates the unique properties of our bootstrapping method, where the de-
noising factor plays a crucial role in performance, whereas the performance of the digit extraction-based
method varies significantly depending on the plaintext modulus. In addition, our method achieves viable
bootstrapping performance for large plaintext moduli, such as 144 and 234 bits, which, to the best of our
knowledge, has not been presented before. Therefore, our method significantly overcomes the previous
limitations on plaintext modulus in BFV bootstrapping.

Adjustable Functionality. We discuss another distinctive property of our bootstrapping method: the
ability to adjust the bootstrapping functionality depending on the situation. As mentioned earlier, our
bootstrapping method allows adjusting the input and output noise bounds by leveraging the properties
of CKKS bootstrapping and the META-BTS method. Additionally, the performance of the adjusted
bootstrapping is determined by the denoising factor (kK — a — b)n bits. To demonstrate this effect more
concretely, we measure the bootstrapping performance for various input and output noise bounds in
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Table [5] We also plot the bootstrapping time with respect to the denoising factor in Fig. [f} We note that
the benchmark is performed with the same parameters as the benchmark in Table [

Table 5. Bootstrapping performance for various input and output noise bounds.

q t Bin Bout Boot time
16 bits 615 sec
556 bits | 106 bits | 510 sec
196 bits | 392 sec
16 bits 510 sec
106 bits | 392 sec
376 bits | 16 bits 392 sec

791 bits | 54 bits

466 bits

Fig. 6. Bootstrapping time with respect to the denoising factor.
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As indicated in Table [5| the elapsed time is identical when the denoising factor is the same, as it
internally runs the same CKKS bootstrapping. Additionally, the bootstrapping time is proportional to
the denoising factor since the iteration number of META-BTS is determined by the denoising factor, as
presented in Fig. [0} Consequently, our method facilitates a more adaptive evaluation strategy depending
on the scenarios. For instance, when performing bootstrapping for ciphertexts with small noise, setting a
smaller input noise bound yields faster bootstrapping while maintaining the same output noise bounds.
Conversely, if the required multiplicative depth is small after bootstrapping, setting a larger output noise
bound results in better performance.

7 Conclusion

In this work, we have presented a novel BF'V bootstrapping method that incorporates CKKS bootstrap-
ping as a subroutine. Since our bootstrapping follows a completely different pipeline, it does not inherit
the previous limitation of digit extraction-based bootstrapping, where the plaintext modulus should be a
power of a small prime. This not only provides flexibility in choosing the plaintext modulus but also en-
hances bootstrapping performance since our method utilizes high-throughput SIMD operations in CKKS,
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whereas digit extraction can utilize a relatively small number of slots due to limitations on the plaintext
modulus. Additionally, our method allows for the adjustment of bootstrapping performance by varying
bootstrapping functionality, which is intractable with the previous method. This property enables the
evaluation of complex circuits in a more optimized way.

We expect that our bootstrapping method will integrate various subdivided research areas in homo-
morphic encryption. For instance, as our method utilizes CKKS bootstrapping, improvements in CKKS
bootstrapping, such as algorithmic optimization [LLLT21} [LLK™22, |[JM22, BCC™22|, or hardware ac-
celeration |JKAT21, KKK™22|, directly contribute to enhancing BFV bootstrapping. Simultaneously,
our method broadens the range of potential applications for BFV. In some BFV applications, such as
private machine learning [GBDL™16|, the significance lies in the size of the plaintext modulus rather
than its number-theoretic properties for achieving sufficient precision. Additionally, these applications
often require bootstrapping, as they typically involve evaluating large-depth arithmetic circuits. Con-
versely, for other applications like private database queries [KLLW16, TLW 20| or private set intersec-
tion [CLR17,|CHLR18,|(CMdG™ 21|, having a prime plaintext modulus is crucial for efficient homomorphic
comparison or equality tests, leveraging number-theoretic properties. The previous method faced chal-
lenges in covering all these BF'V use cases, especially when the plaintext modulus is a large prime number.
This limitation hindered the convergence of various applications of BFV. Our method resolves this issue
by providing viable performance regardless of the number-theoretic properties of the plaintext modulus.
This flexibility potentially expands the range of applications for BFV.
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