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Abstract. As the field of genomics continues to expand and more se-
quencing data is gathered, genome analysis becomes increasingly relevant
for many users. For example, a common scenario entails users trying to
determine if their DNA samples are similar to DNA sequences hosted
in a larger remote repository. Nevertheless, end users may be reluctant
to upload their DNA sequences, while the owners of remote genomics
repositories are unwilling to openly share their database. To address
this challenge, we propose two distinct approaches based on fully ho-
momorphic encryption to preserve the privacy of the genomic data and
enable queries directly on ciphertexts. The first is based on the ubiqui-
tous MinHash algorithm and can determine if similar matches exist in
the database, while the second involves a bespoke bloom filter construc-
tion for determining exact matches. We validate both approaches across
various database sizes using both GPU and CPU-based cloud servers.

Keywords: Homomorphic encryption · Private genome association · MinHash
· Bloom filters.

1 Introduction

Data privacy has become a great concern as cloud computing usage keeps grow-
ing, and both end users and cloud providers strive to preserve the confidentiality
of their data. In many scenarios, both parties would like to have a computation
performed across their joint inputs without leaking any information about their
respective data. Doing so in the clear (on plaintexts) exposes at least one of the
parties’ data (i.e., the computing party can see all the data). A common sce-
nario to consider is one where the end-user (client) wants to check if their data
exists in a cloud provider’s database (server); for example, in genome analysis
applications, a doctor wants to verify if a patient’s DNA sample is present in
existing databases [38]. Additional use cases include image matching, where the
server has a list of illegal images and checks if a target user image is in that list
[1], or plagiarism detection in the context of academic institutions [34]. Many
different privacy-preserving solutions, such as secure multi-party computation
(MPC) [20], utilize advanced cryptographic primitives to help secure the data
while processing. However, in our assumed client-server model, MPC is not a
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well-suited solution because it requires the client to be involved in the computa-
tion process, and this is often infeasible for resource-constrained clients. To get
around this, the data can be divided across multiple servers, but in this case, a
critical assumption is that the servers are non-colluding. In some cases, a trusted
third party [22] is used to carry out the correct computations while maintaining
the privacy of the data.

With all this in mind, a promising solution to address all these challenges
with a stronger threat model (in a semi-honest setting) is a cryptographic primi-
tive called fully homomorphic encryption (FHE) [27], which allows an unlimited
amount of arbitrary computations directly on encrypted data. FHE guarantees
that the computations on the encrypted data will not leak any information about
the plaintext, and the results always remain decryptable with the secret key. De-
pending on the FHE scheme, the user can encrypt integers, bits, or floating point
numbers and the resulting ciphertexts are malleable by design.

What makes FHE an excellent candidate is that all the computation required
is offloaded to the cloud server, and it does not require any online communication
and computation from the client. An important application of FHE and other
privacy-preserving techniques is to find similar items or the amount of similarity
between two items while maintaining the privacy of the data [16]. For example,
in genome analysis, very large data samples, such as DNA and RNA, exist in
public databases and a lot of research has been conducted [45, 32, 14] towards
finding similarities between samples so we can gain information and find patterns
between different organisms. A simple example is ancestry, which aims to find
the closest match to an input DNA sample from variations in DNA sequences
(such as single nucleotide polymorphisms).

With the large increase in genomic data and analysis in recent years, resource-
restricted clients face significant challenges in downloading large databases and
performing genome analysis due to the sheer size of DNA data. Many genome
analysis applications have therefore been moved to the cloud, which introduces
two primary challenges: the confidentiality of the public database and the privacy
of the users uploading DNA samples. With public databases and untrusted third-
party cloud providers, there have been several attacks on public DNA samples,
including identity tracing, attribute disclosure, and completion attacks [3].

To address these challenges, FHE emerges as a robust solution to preserve
the privacy of both the database and user data. To find similar DNA samples
while encrypted, however, we must employ innovative approaches. Many efficient
string-matching algorithms have been proposed and utilized in genome analysis
to find and cluster similar DNA sequences. Even though some dynamic pro-
gramming algorithms have linear time complexities, very long DNA sequences
(in the order of millions of characters), and very large databases with thousands
of DNA sequences remain inefficient, and are impossible to implement in FHE
due to existing algorithms having to make runtime decisions over encrypted data
(which not feasible). This motivates the use of hashing-based techniques such
as locality-sensitive hashing (LSH) [21] and approximate membership queries
(AMQ) [26], which can help find similar data with high accuracy.
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In this work, we employ MinHash, a heuristic LSH algorithm, which hashes
the data to identify the amount of similarity with high probability based on
comparable hashes [10]. Additionally, bloom filters, a type of approximate set
membership data structure, can enhance the efficiency of database queries [6]
by using hash functions to test for membership with a high probability. Both
MinHash and bloom filters have sublinear time complexities and can help us
accurately and efficiently find similar DNA samples in the database while they
are encrypted with FHE. Overall, our contributions are as follows:

– Investigating the use of MinHash in FHE to massively reduce the size of the
DNA samples and find similarities accurately and efficiently.

– A batched bloom filter variation for FHE, which can handle multiple queries
at the same time, resulting in fewer encrypted operations.

– Investigating parallelization and parameterization strategies to further opti-
mize the runtime performance of the encrypted MinHash and batched bloom
filter constructions.

Roadmap: The rest of the paper is organized as follows: Section 2 provides the
necessary background on FHE and our probabilistic algorithms, namely Min-
Hash and bloom filters, while Section 3 highlights challenges for implementing
them efficiently in the encrypted domain, and investigates optimizations. Sec-
tion 4 presents our proposed methodology and considerations of implementing
both MinHash and bloom filter in the encrypted domain, as well as parameteriz-
ing them to increase the efficiency and accuracy of the probabilistic algorithms,
while Section 5 discusses our experimental evaluation using DNA matching and
genome analysis as the target application. Finally, Section 6 discusses relevant
related work, and our concluding remarks are presented in Section 7.

2 Background

2.1 Homomorphic encryption

In 2009, Gentry proposed the first fully homomorphic encryption scheme (FHE)
that supports both addition and multiplication over ciphertexts [27], deriving
its security from the Learning with Errors problem (LWE) [39]. A small amount
of noise is added to each ciphertext to hinder cryptanalysis; unfortunately, as
operations are conducted on the ciphertexts, this noise grows in magnitude.
A bootstrapping mechanism can be utilized to homomorphically evaluate the
decryption circuit and refresh the noise in the ciphertext to allow for arbitrary
computation.

Although FHE gives us a lot of freedom in implementing different applica-
tions, the latency can be prohibitively high. Bootstrapping is a major bottleneck
in modern FHE schemes, for example in the BGV [9] and the CKKS [15] schemes,
a single bootstrapping operation can take several seconds to minutes to execute
on a CPU, depending on the cryptographic parameters. On the other hand, a
boolean-based FHE scheme called FHEW [23] was introduced, with significantly
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faster bootstrapping times (less than a second). Unlike CKKS and BGV, FHEW
encrypts bits rather than integers. The CGGI cryptosystem [17], which builds
upon FHEW, boasts even faster bootstrapping speeds of less than 10 millisec-
onds on a CPU; for this reason, we opt to use CGGI as the target FHE scheme
in this work.

2.2 String Matching

There are two types of string-matching algorithms: exact and approximate string-
matching. For the former, the algorithm finds all occurrences of the pattern string
P in the text string S. The most popular and efficient algorithms of this type are
the KMP [33] and Boyer Moore [8] algorithms. Both have an average time com-
plexity of O(n), where n is the length of S. In approximate string matching [35],
also known as fuzzy string searching, the algorithm searches for all substrings in
the text string S whose edit distance from the pattern string P is at most k. Edit
distance [35] is a measurement of the similarity between two strings. The shorter
the distance, the more similar the two strings are; examples of edit distances are
hamming distance and Levenshtein distance.

2.3 Locality Sensitive Hashing (LSH)

This class of hashes consists of probabilistic algorithms, where similar items are
hashed to similar buckets with high probability [31]. Different LSH algorithms
are based on different similarity metrics; for example, some LSH algorithms are
based on the cosine similarity metric [36], which measures the angle between
vectors in a high-dimensional space. There is also the MinHash LSH heuristic
algorithm [10] that approximates the Jaccard similarity metric between two sets
[5]. The Jaccard similarity metric is given below:

J(A,B) =
|A ∩B|
|A ∪B|

, (1)

where A and B are sets of integers. While the Jaccard similarity requires linear
time and space complexity to find the exact similarity between two sets, the
MinHash algorithm can efficiently approximate the Jaccard metric, as shown
in Algorithm 1. It consumes a set of positive integers and uses k different hash
functions to find the minimum hash value, and stores each in the signature array
M .

The computation of the approximate similarity is presented in Algorithm 2,
which compares signature arrays of the two sets pairwise. The number of equal
pairs divided by the number of hash functions k is the similarity measurement,
which is a number between 0 and 1. Generating the signature array requires
O(kn) time complexity, where k is the number of hash functions, and n is the
size of the input set. However, comparing the two signature arrays requires O(k)
time complexity, which is close to constant time since k is much smaller than n in
real applications. Therefore, after incurring a linear pre-computation overhead
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Algorithm 1 MinHash Algorithm

Input: Set of positive integers S
Input: Number of hash functions k
Output: Signature Array M
1: procedure MinHash(S, k)
2: Initialize array M of size k to +∞
3: for i← 1 to k do
4: for each element x in S do
5: hashV alue← hashi(x)
6: M [i]← min(M [i], hashV alue))

7: return M

of generating the signature hashes, MinHash requires constant space to store
them and constant time to compare them, making it much more efficient than
computing the Jaccard similarity.

Algorithm 2 Similarity Measurement

Input: Signature arrays M1 and M2 of length k
Output: Similarity score Sim/k
1: procedure Similarity(M1, M2)
2: Sim← 0
3: for i← 1 to k do
4: if M1[i] = M2[i] then
5: Sim← Sim+ 1

6: return Sim/k

2.4 Probabilistic Filters

To efficiently check if an element exists in a database, a bloom filter [6] can
be used. This space-efficient probabilistic data structure guarantees with high
probability that an element exists in a database in O(1) time. Specifically, a
bloom filter is an array of size m, where each cell is initialized to the bit 0; then,
an input is hashed into k different indices in the array (using k hash functions).
When inserting an element into the array, we set the k cells generated by the
hash functions to 1. To query an element for membership, we hash the element
using the same hash functions and if all the k indices in the array are equal to
1, the element exists in the database. Figure 1 shows the insertion process using
two hash functions to insert elements A, B, and C in the array and set the bits
in the corresponding indices to 1.

Due to hash collisions and the fixed size of the bloom filter array, there is
always a chance for false positives. In Figure 1, element D is queried to check
if it exists in the filter and the bits in the computed indices are set to 1, so the
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Fig. 1. Insertion of elements A, B, and C into the bloom filter with two hash functions.
D represents a false positive, since it hashes to two different cells that are set to 1, but
are set to 1 by two different elements.

filter will return a match. However, the two bits are set by two different elements
B, and C, which means a false positive has occurred. Intuitively, increasing the
size of the bloom filter decreases the false positive rate since the chance of hash
collisions decreases. Theoretical analysis of bloom filters [6] can give us a good
estimation of proper parameters to use for a desired false positive probability p;

The optimal array size m can be derived as m = −n·ln(p)
ln(2)2 .

The size of the filter depends on the number of inputs to be inserted into the
filter n and the false positive probability p. Next, the optimal number of hash

functions k only depends on p and can be calculated as k = − ln(p)
ln(2) .

2.5 Threat Model

Our methodology utilizes the CGGI scheme [18] as an FHE backend. We assume
an honest-but-curious cloud provider that will correctly evaluate the protocol
but has an incentive to eavesdrop on the private data. We note that a malicious
server might not carry out the intended operations and send incorrect results
back to the user. In this scenario, the results are corrupted but no data can be
learned about the plaintext corresponding to the encrypted data supplied by the
client as inputs.

3 Overview of our Methodology

In our framework, we assume a client-server model where the server has access
to the plaintext database, while the client has a DNA sample and wants to check
if a similar sample exists in the database. To accomplish this, the client encrypts
the DNA sample using their public FHE key and sends it to the server. The
server has a noiseless FHE encoding of the database precomputed, so when a
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client sends their encrypted input it performs the necessary computations on the
encrypted data and sends the encrypted result back to the user.1

A DNA sample consists of four nucleotide bases: adenine (A), cytosine (C),
guanine (G), and thymine (T), and can be represented as a string, where the
alphabet is Σ = {A,C,G, T}. Therefore, each character of a DNA string can be
represented using two bits, yet the total length of a DNA string can be thou-
sands to millions of characters long. Public databases used in genome analysis
have millions of DNA records stored. The sheer amount of data makes DNA
sequencing and analysis challenging to implement efficiently. A naive method in
DNA similarity matching is to compare the query DNA string with each of the
DNA records in a database. Then, an exact string-matching algorithm such as
the KMP [40] or approximate matching like the bitap algorithm [4] is employed
to find similar samples. The main limitation of these algorithms is that since
the size of the DNA sequences is very large, the search is not scalable. While
there are methods that leverage CPU caches and other heuristics to improve the
efficiency of string matching [11], these algorithms do not translate to FHE.

3.1 Challenges in FHE

The most optimal exact string matching algorithms have linear time and space
complexity, such as the KMP and BM [8] algorithms, while the most optimal
approximate string matching algorithms have quadratic time complexity, such
as the Levenshtein distance algorithm and bitap algorithm. There are two main
challenges when applying these algorithms using FHE: size expansion resulting
due to encryption, and branching decisions on encrypted data.

Size expansion: As mentioned, each nucleotide in a DNA string can be encoded
using 2 bits. Depending on the FHE scheme and its parameterization, a size ex-
pansion of at least three orders of magnitude will occur when encrypting a DNA
sequence. As a result, a DNA sequence that has 1 million nucleotides (i.e., base
pairs) will expand to at least 2 gigabits in size. One way to reduce the commu-
nication associated with uploading encrypted DNA sequences is transciphering
[19]; briefly, transciphering involves encrypting the input data with a traditional
cryptographic algorithm that results in little to no size expansion (such as AES).
Then, when the server receives the data, it performs a homomorphic decryption
(e.g., applies the AES decryption circuit homomorphically) to yield a purely
FHE ciphertext. Nevertheless, the reduced communication overhead is traded
for additional time complexity incurred for computing the decryption circuit to
facilitate conversion to FHE ciphertexts. While transciphering can be a good
solution in some applications such as medical diagnostics and private security
log analysis [12, 7], the increase in execution time might hinder the practicality
of some applications. For instance, a state-of-the-art transciphering framework

1 We remark that the noiseless encoding is valid for all users under the assumption
that the same cryptographic parameters are utilized, such as the default parameter
set in TFHE-rs corresponding to 128 bits of security.
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requires nearly 30 seconds to evaluate the AES decryption circuit of a single
block on a cloud server [43].

Branching and Early Termination: Another challenge with string-matching
or database searches is that most algorithms include some sort of branching
based on the input data or early termination. When applying these algorithms
in FHE, the server cannot do any branching on the encrypted data as it does not
have any knowledge about the underlying plaintext data. Most algorithms like
the KMP algorithm leverage dynamic programming or a pre-computed lookup
table to increase efficiency. However, operations such as dynamic indexing that
are used in these dynamic programming approaches are not feasible in FHE: the
server cannot access the right element of the array, since the index is encrypted.
Therefore, there is no way for the server to continue with the execution without
asking for hints from the client. The same logic applies to early termination; the
server cannot terminate early when executing a search algorithm (e.g., binary
search or trie) over the database. Enabling early termination will leak informa-
tion about the underlying plaintext. For example, when searching for a similar
string in a plaintext database, when a match is found with a similarity score
that’s higher than a certain threshold, the program exits. In FHE, accomplish-
ing this functionality would leak information about the underlying plaintext in
the encrypted input.

3.2 FHE-Friendly MinHash Construction

LSH constructions present a promising solution that can mitigate the challenges
outlined above. The nature of LSH algorithms is hash-based, and to compute
the similarity, we only need to compare the hashes instead of the input data
directly. The key benefit of LSH over alternative solutions is the significantly
lower memory and latency overheads. Indeed, working over hashes instead of
raw DNA sequences results in a substantial size reduction as the size of the hash
digests does not depend on the length of the DNA sequence. Therefore, even with
DNA sequences with millions of nucleotides, we can generate a fixed number of
hashes (the same number for each DNA sequence depending on the parameters
used in the LSH algorithm). This translates well to FHE as the client no longer
needs to encrypt a DNA sequence of very long length, instead they only need to
encrypt a small number of hashes. In this case, the server generates the hashes
of each DNA sequence in the database as a one-time preprocessing step. When
working with hashes, the number of homomorphic operations needed to compute
the similarity between two DNA sequences significantly decreases compared to
other approaches that work over much larger DNA sequences.

A variation of MinHash used in Mash [38] is the k bottom-sketch approach,
which uses only one hash function and saves the smallest k hashes to store them
in a sorted order. Next, computing the similarity score between two different bot-
tom sketches requires a merge sort to find the number of equal hashes between
the two bottom sketches. Unfortunately, the algorithm requires dynamic index-
ing, which is not possible in FHE as discussed. Therefore, we use the classical
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MinHash approach that requires k permutations using a uniform and indepen-
dent hash family as mentioned in Algorithm 1. To apply this algorithm to DNA
strings, we first convert each string into a list of all substrings of length s, also
known as k-mers [37]. Thus, a DNA string of length n will have n− s+1 differ-
ent k-mers. A uniform hash function converts each k-mer into a positive 32-bit
integer before we apply the MinHash algorithm to compute the signature hash
array for each DNA sequence.

Next, the client encrypts their signature array and sends it to the server,
which has an encoding of each signature array of its database and uses encrypted
multiplexers and adders to compute the similarity between each signature array
of the database and the client’s signature array. The server returns the max-
imum similarity value by returning the integer Sim in Algorithm 2, which is
the number of equal signature hashes. Since the client knows k, they can derive
the approximate Jaccard similarity of the most similar entry of the database to
their DNA sequence by dividing by k after decryption. Therefore, with a one-
time cost of encoding the server’s database, multiple clients with different FHE
keys can query the database and get the closest match in constant time and
space, compared to the size of the DNA sequences.

3.3 Efficient Encrypted Bloom Filter Evaluation

When querying a database, a straw-man approach is to check all the elements
of the database. This is done in O(n) time and will be very inefficient as the
number of elements grows. More efficient algorithms and data structures, such as
binary search and tries, can be leveraged to do this efficiently in O(log(n)) time
complexity. However, these algorithms require branching on the input data, but
in our case all the inputs are FHE encrypted. Therefore the computing party is
unable to make a decision based on the underlying plaintext data of a ciphertext.

With the help of probabilistic data structures like bloom filters, we can scale
the database in constant time and O(m) space with a probability p of false pos-
itives, where m is the size of the bloom filter. According to equations in Section
2.4, m scales linearly with the size of the database n. Bloom filters are very ef-
ficient in the plaintext domain; moreover, even more efficient probabilistic data
structures, such as the Xor filter [28] and binary fuse filter [29], have been pro-
posed. Nevertheless, translating these structures to FHE is not straightforward:
as shown in Figure 1, bloom filters require dynamic indexing to query an element
in constant time which is not immediately possible in FHE. Therefore, to be able
to query a server’s bloom filter, we propose a query bloom filter (Qbf), using
the same construction as the server bloom filter (Sbf). Both must be the same
size m, and use the same k hash functions. The query bloom filter only has one
element inserted. To see if that element exists in the Sbf we apply the following
computations:

bf = (Qbf ∧ (¬Sbf)) (2)
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bit =

n∨
i=1

bf [i] (3)

Using Equation 2, we first negate all bits in Sbf , and then pairwise AND each
bit with the Qbf . The resulting bloom filter (bf) should be all zeros if the element
exists. If one cell in bf is 1, it means that the corresponding cell in the Qbf was
1 and the Sbf cell was 0 (indicating that the element does not exist). Now we
use Equation 3 and OR all the bits of bf . If the resulting bit is 0, the element
exists. The bitwise operators can be efficiently converted to boolean gates in our
target CGGI FHE scheme.

To encode our DNA sequences to bloom filters, we generate a list of k-mers
for each DNA sequence. For each DNA in the database, we create a separate
Sbf , use k different uniform hash functions for each k-mer, and set the computed
indices in the filter to 1. Next, to query a client’s DNA sequence, we create a
bloom filter for each k-mer in the client’s DNA sequence. This way, we can know
how many k-mers of the client’s DNA exist in the database. The server does
all the outlined computations for each Qbf and Sbf , aggregates the resulting
bits, and returns an array that shows how many k-mers each DNA entry has in
common with the client.

Batched query optimization The previous approach may become less effi-
cient for large client DNA samples since we need to generate a Qbf for every
k-mer of the client’s DNA. Since every bit is encrypted, evaluating each Qbf
separately becomes more time-consuming. To overcome this challenge, we intro-
duce a new batching technique that stores multiple bits instead of single bits in
the Qbf . We optimize our bloom filter methodology by storing multiple k-mers
of batch size d in a single Qbf . For example, if our batch size is 32, we insert 32
k-mers into the Qbf . This would mean that every cell is a 32 bit integer, and
the ith bit in each cell corresponds to the ith k-mer inserted. Equations 2 and
3 remain the same and apply the bitwise operators to integers of bit length d.
The result is an integer instead of a bit and the number of 0 bits in the integer
represents how many of the d k-mers exist in each Sbf . This optimization yields
significantly faster execution times since the bitwise operations can be computed
in parallel across the bits of integer ciphertexts, which is further elaborated in
Section 4.

4 Implementation Details

Our methodology is implemented with TFHE-rs [47] as the FHE backend, which
corresponds to the CGGI cryptosystem [18]. Notably, the CGGI cryptosystem
is commonly used to encrypt single bits or very low-precision integers; however,
TFHE-rs can encrypt inputs with arbitrary precision by treating large inputs as
vectors of individual ciphertexts. In this case, each encryption encodes a digit of
the plaintext value (where each digit is 2 bits in size for the default parameter
set). We leverage this encoding to optimize our batched bloom filter approach
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by computing bitwise operations across the digits of the input ciphertext vectors
in parallel.

4.1 Client-side Operations

The client has a sample DNA sequence and wants to check if a similar sample
exists in the database. First, the client needs to pre-process the DNA string,
then apply either the MinHash or the batched bloom filter methodology, and
then encrypt the resulting input using their secret homomorphic key to send to
the server.

Pre-processing DNA Samples: For the first step, the client splits each DNA
sequence into k-mers of length s. Choosing the value of s is important, as it
directly affects the analysis of the similarity results [25]. For our MinHash ap-
proach, we opt for value s = 16, since it fits in 32 bits.

For the second step, we hash each k-mer using a popular hash function well-
suited for hashing substrings into integers called MurmurHash [2]. This is a
non-cryptographic hash function that generates a 32-bit, 64-bit, or 128-bit di-
gest depending on the variant utilized. In our implementation, we use the 32-bit
MurmurHash3 hash function to convert each k-mer to a 32-bit unsigned integer.
This hash offers a good statistical distribution and therefore has a low hash colli-
sion probability [46]. After processing our input, we use the MinHash algorithm
to generate the hash signatures, and the bloom filter approach to generate query
bloom filters, then encrypt them homomorphically and send them to the server
for evaluation.

MinHash Preprocessing: As mentioned previously, we use the k-minwise
hashing approach of MinHash [10], where k is the number of hash functions used
to generate the k different permutations of the input set. To generate different
permutations, we employ the Carter-Wegman linear universal hash function [13],
which is defined as h(x) = a·x+b (mod p), where x is a 32-bit unsigned integer
of our input set, p is a prime number, and a and b are parameters that are in the
field of Zp (i.e., positive integers smaller than the prime). We choose the prime
number p = 232 − 5, so the hash digest fits in 32 bits. We also choose a and b to
be random integers in the range of [0, p−1]. Note that the same k hash functions
must be used on the server side for the algorithm to work properly. Next, we
apply Algorithm 1 to generate a signature array of k hash digests, where each
digest is 32 bits in size. We encrypt each 32-bit integer as an FheUint32 (i.e.,
the TFHE-rs data type consisting of a vector of ciphertexts encoding a total of
32 bits of information) and send the encrypted signature array to the server.

Bloom Filter Preprocessing: In this case, we use k different 32-bit Mur-
murHash3 hash functions and seed them with different random numbers. Both
the client and server must use the same seeded hash functions, and we apply
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a modulus m to the result of each hash function so it fits in our bloom filters
of size m. The client also needs to set a batch size d, to generate the batched
query bloom filters (Qbf). In Section 5, we show that a batch size of d = 128 is
the most efficient. Therefore, we batch each 128 k-mers of the client’s DNA and
generate a Qbf , encrypt each 128-bit integer as a FheUint128, and send it to
the server to evaluation.

4.2 Server-side Computations

Before the server receives the client’s encrypted input, it must initialize the
encoded database by pre-computing the signature hash array and bloom filter
for each DNA entry. For the MinHash approach, we encode the signatures using
FHE, but the bloom filters remain in plaintext. Then we apply the evaluation
steps and send the encrypted result back to the user for decryption.

Initialization and Setup: The FHE parameters for both the client and server
should be the same (i.e., the same ciphertext polynomial degree and coefficient
size), so the server can do homomorphic evaluations between the client’s FHE
encrypted data and its encoded database. Note that the server does not need
to actually encrypt the database; instead, the server generates trivial LWE en-
codings without injecting noise or using a secret key. We note that generating
trivial/noiseless encodings results in negligible latencies with TFHE-rs and we
further remark that the encoding of the database is a one-time cost, since any
client using the same FHE parameters as the server can send their encrypted
inputs for evaluation. We also emphasize that the result of a computation be-
tween a trivial encryption and a secure, client-encrypted ciphertext will result in
a secure ciphertext encrypted under the same client key. Additionally, the server
also needs the client’s bootstrapping key to perform most HE operations.

Computing Encrypted MinHash Queries: Like the method discussed for
the client side, the server generates the hash signatures of each DNA sequence in
the database in the plaintext domain. However, the server only needs to generate
LWE encodings of the signatures, resulting in an array of s LWE ciphertexts
without noise, each representing a 32-bit unsigned integer. Now, to compute
the best similarity score, the server compares the encrypted hash signatures
of the client with each encoded hash signature of the database, computes the
similarity score with each database entry, and saves the maximum result. To
avoid information leakage, the similarity score is encrypted. If the similarity
score was in the clear, the server would know what hashes of the client are equal
to its own, allowing it to potentially recover the original k-mer of the client
(given the MurmurHash3 used is non-cryptographic). Even if the hash function
used was cryptographically secure, the server could still gain information about
the client’s input and might be able to brute force it.

To implement Algorithm 2 in FHE, we use encrypted comparators, multi-
plexers, and adders, and initialize an encrypted similarity value to 0. First, we
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use an encrypted comparator to compare two 32-bit ciphertexts. The result is an
encrypted bit whose plaintext value corresponds to an encrypted Boolean value
depending on whether or not the inputs have the same underlying plaintext. This
encrypted bit serves as the control bit of an encrypted multiplexer (MUX) that
adds 1 to the encrypted similarity value if they’re equal and adds 0 otherwise.
Since the MUX is encrypted, the server will not know if the similarity value was
added by 1 or by 0.

Batched Bloom Filter approach: The server bloom filters (Sbf) are gener-
ated for each DNA sample of the database, but it does not need to be encoded.
When the server receives the query batched bloom filters (Qbf), we apply Equa-
tions 2,3 with some additional optimizations. First, the server can negate every
Sbf before receiving the data from the client. If we assume the client uses a
batch size of 128, the server receives multiple Qbf , each having m 128-bit FHE
encrypted integers. Looking closely at Equation 2, when the bit in the negated
Sbf is set to 1, the corresponding bit in the resulting bloom filter will be equal
to the bit of the Qbf . And if it’s 0, the resulting bit will be 0 regardless. Thus,
instead of applying expensive bitwise & operation, we save the integers that the
corresponding bit in the Sbf is set to 1, and OR all the integers together. In
this case, we initialize a 128-bit encrypted integer to 0, then we check each bit
of the Sbf and if it is set to 1, we OR the corresponding integer of the Qbf to
our initialized variable. The number of 0s in the resulting integer represents how
many k-mers of the 128 exist in that Sbf . Computing the number of 0s in an
FHE integer would be very expensive since we need to shift every bit and apply
an encrypted multiplexer. As a result, we send the resulting integers of each Qbf
and Sbf back to the user, and the user can decrypt the integers and easily count
the number of 0s of every integer in plaintext, then aggregate the results to find
the number of common k-mers with every entry.

5 Experimental Evaluation

We perform a series of experiments to showcase the efficacy of both our MinHash
and bloom filter approaches. All CPU-based experiments were performed on an
r5.12xlarge AWS EC2 instance with 48 vCPUs and 384 GB of RAM. For
GPU experiments, we utilize an NVIDIA GeForce RTX 4080. Both approaches
are implemented using the high-level API provided by the TFHE-rs library [47],
which is a Rust implementation of the TFHE (CGGI) scheme [18]. We use the
default cryptographic parameters provided by the API, which corresponds to
128 bits of security.

5.1 Encrypted MinHash Query Evaluation

The two main parameters that affect the execution times in our MinHash ap-
proach are the number of hash functions k, and the size of the database n. Each
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Fig. 2. CPU evaluation of our MinHash approach by varying the k parameter (left
bars) and the n parameter (right bars).

5 10 20 50 100
Database Size

100

101

102

103

Ru
nt

im
e 

(s
)

21.4
36.8

67.8
160

317

14.5
22.4

37.3
97.1

191
Minhash_CPU Minhash_GPU

Fig. 3. CPU and GPU evaluations of our MinHash approach with k = 100.

database entry will have k integers, therefore every query needs to do k compar-
isons for each entry in the database. For all experiments, we use k-mers of size 16,
and 32 bit encrypted integers. We expect linear growth in execution times as the
size of the database or the number of hash functions grows. As shown in Figure
2, we observe a linear increase in latency when increasing the number of hash
functions and the database size. Also, we can see very similar execution times
for both evaluations, since n = 100 and k = 100 for the MinHash hashes and
MinHash database evaluations respectively. The number of comparisons needed
for both is n × k, so their execution times should intuitively be very similar,
as shown in Figure 2. Next, we compare the CPU implementation of MinHash
with its GPU counterpart, which is implemented utilizing the CUDA-accelerated
FHE operations implemented in TFHE-rs. As shown in Figure 3, we report that
the GPU implementation outperforms the CPU by roughly 2×.

5.2 Bloom Filter Evaluation

The three parameters that affect execution times in our batched bloom filter
approach are the batch size, the size of the bloom filter, and the size of the
database. Note that the number of hash functions has no effect since the whole
bloom filter is encrypted by the client and evaluated by the server. For all ex-
periments, we use DNA sequences of length 143 and divide them to k-mers of
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length 16, which results in 128 k-mers. According to the equations in Section
2.4, with a desired false positive probability of p = 0.01, the bloom filter size is
m = 1227 and the number of hash functions is 7.
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Fig. 4. CPU and GPU evaluations of our batched bloom filter approach with different
database sizes.
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Fig. 5. GPU evaluation of our batched bloom filter approach with different batch sizes.
Here n represents the size of the database.

We compare the CPU and GPU implementations for our approach by using
a batch size of 8 since it is highly parallelizable. Figure 4 shows a linear increase
in execution time on both the CPU and GPU, with the GPU outperforming the
CPU by roughly 3×. To determine the best batch size, we evaluate our approach
with different batch sizes using the GPU implementation and compare it with
the default Boolean bloom filter. Figure 5 shows that a batch size of 128 has
the fastest speed, and is close to an order of magnitude faster than the baseline
approach of batch size 1. The batch sizes have similar execution times since each
FHE integer consists of a vector of ciphertexts that encrypts 2 bits of information
and their operations are highly parallelized. Therefore, for larger FHE integers,
there are more ciphertexts in the vector, which results in more parallelism for
bitwise operations.

6 Related Works

A class of earlier works explores the problem of private string search in the con-
text of DNA matching using related cryptographic techniques. Shimizu et al. [41]
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propose using searchable encryption (SE) in conjunction with additive homomor-
phic encryption and oblivious transfer (OT) to do string search and efficiently
query a DNA database. Another cryptographic primitive, namely predicate en-
cryption, is used by Wang et al. [44]; predicate encryption is a generalization
of identity-based encryption where an attribute or a policy is attached to the
ciphertext and the user can decrypt only when the policy is met. The authors
utilize this property to apply private string matching to identify similar DNA
samples and only allow decryption if the DNA samples are similar. Compared to
these works, our proposed methodology with FHE provides strong security guar-
antees (128 bits of security under known lattice attack models) and only requires
the client to perform inexpensive encryption and decryption operations.

There are multiple works on privacy-preserving bloom filters. Feng et al. [24]
employ bloom filters with homomorphic encryption to find similar locations pri-
vately between two users. Specifically, both users need to generate their own
bloom filters, encrypt them, and then the computation is handled by a cloud
server. Notably, for the bit-wise bloom filter proposed in [24], the authors utilize
encryption parameters that correspond to negligible security, whereas our work
corresponds to the current security standard of 128 bits of security. Chielle et
al. [16] uses FHE and bloom filters to check if an element exists in a private
database in O(1) time complexity. This is achieved through the introduction of
a random permutation of the server’s bloom filter that is only known to the
client; during a query, it is the client who computes the hash of the input and
then derives the positions of the ciphertexts to be returned, which requires no
FHE computation on the server-side. We remark that this approach requires N
copies of the database (in encrypted form) for N clients, while our approach only
requires a single encoded database. Lastly, Stanciu et al. [42] propose using par-
tial homomorphic encryption and bloom filters to do privacy-preserving crowd
monitoring. Unlike our solution, their protocol requires the server to build a new
bloom filter for each new query response from a client.

Finally, several works have employed leveled homomorphic encryption to do
secure genome analysis. Ziegeldorf et al. [48] utilizes the BGV scheme to encrypt
and evaluate default bloom filters to match single nucleotide polymorphisms
(SNP) of a query in a patient database for genetic disease testing. While they
exhibit low latency, they only use 80 bits of security, while 128 bits is the current
standard. Gursoy et al. [30] also use the BGV scheme, but their work focuses on
genotype imputations to find missing genomic data using a p-impute algorithm
similar to the k-nearest-neighbor approaches.

7 Conclusion

In this work, we propose two distinct approaches for privacy-preserving DNA
matching designed specifically for efficient evaluation with fully homomorphic
encryption. The first approach, based on MinHash, scales linearly with both the
size of the database and the number of hashes utilized in the construction. With
our GPU-accelerated implementation, we are able to perform an encrypted query
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in approximately three minutes across a database consisting of one hundred
DNA samples. Our second approach consists of a custom batched bloom filter
algorithm, which significantly outperforms the baseline bloom filter approach for
larger batch sizes.
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40. Régnier, M.: Knuth-morris-pratt algorithm: an analysis. In: International Sympo-
sium on Mathematical Foundations of Computer Science. pp. 431–444. Springer
(1989)
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