
Tyche: Probabilistic Selection over Encrypted
Data for Generative Language Models

Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

University of Delaware
{folkerts, tsoutsos}@udel.edu

Abstract. Generative AI, a significant technological disruptor in re-
cent years, has impacted domains like augmented reality, coding assis-
tance, and text generation. However, use of these models requires users
to trust the model owners with their sensitive data given as input to the
model. Fully Homomorphic Encryption (FHE) offers a promising solu-
tion, and many earlier works have investigated the use this technology for
machine learning as a service (MLaaS) applications. Still, these efforts
do not cater to generative models that operate probabilistically, allow-
ing for diverse and creative outputs. In this work, we introduce three
novel probabilistic selection algorithms for autoregressive generative AI:
multiplication-scaled cumulative sum, heuristic cumulative sum, and the
random-multiplication argmax. Each of these approaches presents dis-
tinctive challenges in optimizing the trade-off between precision and tim-
ing performance, a balance intricately tied to the specific characteristics
of the data under consideration. Our results show that the random mul-
tiplication argmax-based method is more scalable than the cumulative
sum methods and can accurately mimic the plaintext selection curve.

Keywords: Fully Homomorphic Encryption · Private Language Models
· Generative AI.

1 Introduction

Over the past decade, generative AI has become a significant disruptor for mod-
ern technology, offering automated solutions for content generation and data
processing. Generative AI operates probabilistically, employing statistical mod-
els to generate new data that loosely resemble a given training dataset. At its
core, an autoregressive generative model functions by iteratively generating out-
put tokens one at a time [8]. Given an input prompt, the model generates a set of
probabilities corresponding to the next possible output token. It then randomly
selects the next token based on these probabilities and appends it to the input
for the subsequent iteration. The generative AI model gradually constructs a
coherent and realistic output sequence by repeating this iterative process. This
inherent probabilistic nature of generative AI is a key factor contributing to its
ability to produce diverse and creative outputs.



2 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

Fig. 1: Generative Language Models: In generative models, the process of
selecting the most likely next token can be simplified into the four steps shown
in this figure. The entire model is run encrypted, but our research focuses the
latter two phases: Final Activation/Normalization and Probabilistic Selection.
A discussion on how generative models work is presented in Section 2.1, and the
associated steps are numbered in this figure.

Nevertheless, the privacy of generative AI systems remains a significant bar-
rier to their widespread adoption. Several prominent companies, including Ama-
zon, Apple, Northrop Grumman, Samsung, Verizon, and various major banks,
have banned the use of ChatGPT due to concerns regarding the security and
confidentiality of code and customer data [9, 31, 13].

Fully Homomorphic Encryption (FHE) offers a promising solution for pre-
serving privacy in machine learning applications through its ability to perform
computations directly on encrypted data. This exceptional capability allows
users to securely delegate computations to a cloud service provider by sending
encrypted ciphertexts, which prevents the provider from accessing any informa-
tion about the original plaintext. The cloud performs the computations on the
encrypted data and returns the encrypted result to the users, who can ultimately
decrypt it to obtain the plaintext outcome.

Interest in building FHE-GPTs have been encouraged by the improvements
in FHE performance. Zama AI’s Concrete ML library has a working encrypted
transformer module. The current demo showcases encrypting a single layer of
a GPT-2 model, which is a significant milestone in FHE-ML, and researchers
are working to improve on this state-of-the-art contribution to deliver complete,
efficient, and cutting-edge private AI models.

This work marks an initial stride towards realizing practical generative ma-
chine learning models by assessing multiple techniques for cloud-based encrypted
value selection from a set of neural network (NN) outputs. This endeavor tackles
two unresolved challenges in the realm of machine learning: (a) the normaliza-
tion of neural network outputs and (b) the retrieval of probabilistic informa-
tion. The first challenge entails finding an efficient encrypted counterpart to the
softmax function, facilitating the normalization of inputs into probability distri-
butions that sum to 1. The second challenge involves probabilistic information



Tyche: Encrypted Probabilistic Selection 3

retrieval, where given probabilities p1 to pn, token1 is selected p1 percent of the
time, and so forth. Finally, we combine our contributions with several multi-layer
perception-based networks to demonstrate the possibility of achieving encrypted
generative AI.

Our contributions extend to a diverse set of innovative methodologies aimed
at enhancing the probabilistic selection process within encrypted generative ma-
chine learning. For each of these techniques, we conduct a comprehensive analysis
to evaluate their scalability with respect to algorithmic complexity and the re-
quired integer precision, a significant factor influencing the timing performance
of FHE. Furthermore, we assess the potential bias introduced from precision lim-
itations and optimizations in FHE. To validate the efficacy of these approaches,
we perform empirical evaluations employing text-based generative models that
operate on letters. These evaluations encompass measurements of timing and
the assessment of loss degradation across various character sets.

2 Background

2.1 Generative AI

At the core of generative ML is the concept of probability. The goal is to model
the probability distribution of the training data, allowing the algorithm to gen-
erate new samples that are likely to occur in the real world. These models can be
used to create realistic images, text, audio, and even entire virtual environments.
There are several techniques and architectures used in generative ML, each with
its own strengths and limitations. Some of the popular approaches include Vari-
ational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and
Autoregressive models [8].

In this work, we focus on autoregressive generative inference, which is widely
used in various applications, including text generation, image synthesis, hand-
writing generation, and speech synthesis. It encompasses various approaches such
as Google’s PixelCNN [24] for images, as well as Bidirectional Encoder Represen-
tations from Transformers (BERT) [10] and Generative Pretrained Transformers
(GPTs) [26] for large language models. Autoregressive models involve utilizing
neural networks to predict the next token (such as a pixel, word, or letter) based
on previous inputs. The autoregressive approach leverages the sequential na-
ture of the data, allowing the neural network model to capture dependencies
and generate coherent and contextually appropriate predictions. The inference
server can then select the token based on these probabilities and iterate the pro-
cess by feeding the selected token back into the model for generating subsequent
predictions.

We show an overview of generative language models in Figure 1. There are
four major steps:

1. Token Embedding: A token embedding table is employed to transform a
one-hot vocabulary vector into a lower-dimensional token embedding vector.



4 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

2. ML Model Processing: In the second step, the data is processed using a
machine learning model, which could be a transformer-based architecture or
a simpler neural network, depending on the application. Here we assume the
output of this step is encoded as a vector v, with each value corresponding
to a unique output token k.

3. Final Activation/Normalization: The third step involves converting the
neural network’s output (denoted as v) into an intermediate post-activation
value (donated as a) and finally into a normalized probability vector (de-
noted as p). This is achieved by first applying an activation function, before
ensuring that the sum of the outputs equals one, creating a valid probability
distribution. In the plaintext domain, softmax, which combines the exponen-
tial activation and normalization steps, is typically used for this step, and
for FHE-PPML, this step is generally left to the user.

4. Probabilistic Selection In the final step, a token, denoted as kout is chosen
based on the encrypted probabilities. The selected token can then be fed back
into the network for subsequent iterations.

2.2 Fully Homomorphic Encryption (FHE)

Overview. Fully Homomorphic Encryption (FHE) is a class of cryptographic
techniques that enables a cloud server to perform computations on encrypted
data without the need to decrypt. Lattice-based FHE schemes usually have four
key components: key generation, encryption and decryption algorithms, a set
of homomorphic operations, and a bootstrapping operation. The key generation
process includes the creation of three types of keys: public keys, secret keys, and
bootstrapping keys. This key generation step is typically performed by the client
and is a one-time computationally intensive setup [18, 5, 15].

During encryption, the public key is used to transform a plaintext message
into a many-dimensional ciphertext. In particular, the security of the FHE trans-
formation often relies on hard problems such as LWE [27, 28] and Ring-LWE [20].
Some noise is added to the ciphertext to make it cryptographically hard for an
attacker to reverse the plaintext-ciphertext mapping. Only a user with a secret
key should be able to decrypt the message.

During homomorphic operations, ciphertexts can be manipulated to preserve
the meaningfulness of the underlying plaintext. In particular, homomorphic addi-
tion and multiplication directly operate on the encrypted data, generating a new
output ciphertext; when decrypted using the secret key, the resulting plaintext
corresponds to the desired addition or multiplication computation. This property
is what makes the encryption scheme “homomorphic.” However, each homomor-
phic operation contributes to noise accumulation in the resulting ciphertexts. If
a large number of operations are performed sequentially, the accumulated noise
in the ciphertexts may hinder the successful decryption of the data [5].

The bootstrapping operation offers a noise reduction that mitigates this prob-
lem. Here, the bootstrapping key can be viewed by the cloud server as the
encryption of the secret key. Therefore, the cloud can perform homomorphic
decryption and re-encryption, resulting in a new ciphertext with significantly



Tyche: Encrypted Probabilistic Selection 5

reduced noise. Bootstrapping can be applied repeatedly to facilitate limitless
computational depth. However, bootstrapping is computationally expensive and
remains the bottleneck for FHE implementations [5, 6].

TFHE Cryptosystem and Concrete Library. TFHE is a cryptographic
scheme that builds upon the foundations of GSW and its ring variants [4]. It
has undergone further advancements and enhancements to become the Concrete
Library [32]. TFHE operates on either bits or integers and has an efficient boot-
strapping process that can be performed on a scale of milliseconds, which allows
for deeper neural networks to be implemented. Our work evaluates the proposed
probabilistic selection methods using the TFHE scheme.

3 Threat Model

Our work addresses the most prevalent scenario in privacy preserving machine
learning, where a cloud service provider possesses a model, and users pay to
upload their individual inputs and receive generated results from the cloud. An
additional layer of complexity arises from the autoregressive generative model
paradigm, which requires the cloud to iteratively return model outputs as inputs
to the neural network for subsequent iterations.

The central focus of our approach revolves around the protection of user
data privacy at the outset, as well as the safeguarding of proprietary network
characteristics within the cloud, including model weights and biases. To establish
a clear threat model, we operate under the assumption of an honest-but-curious
cloud provider that faithfully executes operations on encrypted data but has an
incentive to eavesdrop on user data; we also defend against external adversaries
to attempt to steal the user data through cyberattacks on the server or the
network links.

4 Our Proposed Approaches for Cumulative Sum

In this section we introduce two methods for probabilistic selection based on
the cumulative sum operation, while our third method based on the argmax
operation is discussed on Section 5. For each proposed algorithm, we address
the issues of normalization, precision, and bias.

The cumulative sum method enables normalization of output values since
there is no efficient division by an encrypted value operation in TFHE. The
basic steps of the cumulative sum are as follows, using the example of Fig. 2a:

1. Activation: This step assumes all values are non-negative, although not
necessarily normalized. Typically, this is done with the softmax function in
neural networks, which is a normalized exponential function y = ex. Unfor-
tunately, there is limited support for parallelization in the Concrete Library
version 2.5. We therefore use a positive x2 approximation, y = max(0, x+1)2,
which maintains the desired non-negative characteristic and can be done with
reasonable efficiency.



6 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

(a) Cumulative Sum Plaintext
Probabilistic Selection

(b) Multiplication Cumulative Sum
Method Scaling

Fig. 2: Cumulative Sum: To select elements with probabilities proportional to
their values, we use cumulative sums. In a plaintext implementation (top), we
generate a random number within the range of 0 to the sum of the original vector.
In an encrypted domain, where we do not know the sum of the original vector,
we employ a multiplication method (bottom) with a fixed value, Randmax, to
generate a range of random numbers spanning the array.

2. Cumulative Sum: This step calculates the cumulative sum of the post-
activation neural network output values. While this operation is sequential,
addition is very efficient in FHE.

3. Random Number Generation: The plaintext version of this algorithm
would generate a random number between 0 and the sum of neural network
output values, which can be taken from the previous step. However, using
FHE, this sum is encrypted, bringing a new challenge on how to approximate
the random number generation.

4. Comparison: In this step, we run an encrypted comparison of the random
number with each index in the cumulative sum array. If the cumulative sum
is less than the random number, we return 1; otherwise, 0. Since cumSum is
increasing, the 1s are always left justified. This operation is vectorized.

5. Result: Finally, we conclude the process by summing the comparison out-
put, yielding the (encrypted) index of the token ki, which can subsequently
be reintroduced into the neural network.
Alternatively, we obtain a one-hot vector and perform a simple private in-
formation retrieval (PIR) for the result. This is achieved by subtracting the
less-than-comparison output from itself shifted by one position. To retrieve
a single token value, a dot product can be done with the one-hot vector and
list of indexes {0, 1,... N-1}, where N is the number of possible tokens, also
corresponding to the length of the input x.

In theory, this methodology would provide an unbiased way for encrypted
probabilistic selection. However, three main issues prevent this algorithm’s suc-
cess in the encrypted domain. First, some form of normalization is needed. In
the plaintext algorithm, this manifests in selecting a random number between 0
and the sum of these values, which is already calculated as the last index of the
cumulative sum. However, when the value of the sum is encrypted, generating a
random number from 0 to this encrypted sum is no longer possible. Therefore,



Tyche: Encrypted Probabilistic Selection 7

our two proposed cumulative sum methods differ in the way this is achieved.
Second, a bias may be introduced from approximation, rounding, and precision
errors, and for each method, we evaluate this bias. Lastly, FHE computation
suffers from precision problems, requiring users to choose between accuracy
and computational complexity. Therefore, careful tuning is required to obtain
the optimal balance of these two constraints.

4.1 Multiplication-Scaled Cumulative Sum

Methodology: The main challenge in the cumulative sum method is generating
a random number between 0 and the encrypted cumulative sum array maximum,
which we denote as Rideal = rand(0, cumSummax). In the multiplication-scaled
method, we first select a fixed range for the random number, where Rfixed =
rand(0, Randmax). In the encrypted domain, we can then enforce the scale to
be the product of the maximum possible random value and the maximum value
of the array, Cumsummax · Randmax. This is done by multiplying each value
of the cumsum array by Randmax, and by multiplying our random number by
Rscaled = Rfixed · Cumsummax. We show this method in Algorithm 1.

Normalization: Normalization is achieved by adjusting the scale as de-
scribed above. This normalizes the output and random number to Cumsummax ·
Randmax.

Bias: In a plaintext version of this algorithm with floating point precision
or significantly large values of Randmax, there is little bias since the cumulative
sum operates a normalization alternative. However, in the encrypted domain
with a small, low precision value of Randmax, the heavy discretization of the
random variables introduces a bias.

Figure 2b illustrates an example of such bias. The possible values for Rscaled

are {0, 10, 20, 30...150}. This leads to probabilities of { 2
16 , 8

16 , 3
16 , 3

16}, which
are slightly skewed from the original { 1

10 , 5
10 , 2

10 , 2
10}. Such patterns in the data

will cause consistent skew toward certain indexes, and will always increase the
likelihood of the first index. To prevent these patterns in the data, we propose
shuffling the order of the array before applying the cumulative sum. Then, to
unshuffle and obtain the result, the PIR approach can be modified by replacing
the sequential indexes in the arrange assignment in Algorithm 1 with the non-
sequential permutation indexes of the cumSum shuffling. This PIR method runs
in O(n) time.

Finally, a natural smoothing effect comes from a combination of rounding
and our approximate activation function, y = max(0, x + 1)2, which unlike ex,
sets large negative values to 0. This creates a long tail effect that does not scale
for large datasets, as each 0 value has a smoothing value of 1/(N ·Randmax).

Precision and Complexity: This method has O(n) multiplications, O(n)
additions and O(n) comparisons, where n is the vocabulary size (i.e., the number
of possible tokens). However, the cumulative sum operation requires high preci-
sion to begin with, and multiplying by Randmax only increases this need. Fur-
thermore, Randmax cannot be a static value. To prevent bias, Randmax should
increase with cumulative sum. The precision, representing the number of bits



8 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

(a) Multiplication Cumulative Sum
Divergence

(b) Heuristic Cumulative Sum
Divergence

(c) Random Multiplier Argmax
Divergence

(d) Randmult Approximation and loss
scores

Fig. 3: Divergence from Plaintext: This figure highlights the constraints im-
posed by our approximation techniques and precision errors. In the case of cumu-
lative sums, precision accumulates, and the enforcement of low precision results
in only several discretized output values. This can also lead to scenarios where
the output vectors ai are rounded to all zeros, which the algorithm interprets as
uniform random selection. On the other hand, the RandMult method exhibits
a greater capacity to accommodate higher precision levels and circumvents the
biases stemming from random number generation. In the bottom of Figure 3d,
we can see the differences affect loss for the three algorithms. Due to the long tail
caused by low precision rounding errors, the cumulative sum has an increasing
loss as the vocabulary size grows. Conversely, the random multiplier preserves
the low model loss as the vocabulary size grows.

required to represent the largest number, is O(log(Randmax) + log(n)) bits, so
the evaluation times using FHE are less scalable to larger datasets.

Experimental Characterization: In Figure 3a, we present two examples
of probability distributions for the encrypted cumulative sum multiplication-



Tyche: Encrypted Probabilistic Selection 9

scaled method vs. its plaintext counterparts. For the plaintext case, we sorted
the output tokens by their selection frequency and compared them with the cu-
mulative sum equivalent distribution for the same ordering. In the average case,
we observe that our model could not achieve a very high selection probability;
specifically, we observe a shelf (around 0.16) indicating discretization (i.e., ML
outputs rounded to the same value). For the worst case, all neural network out-
puts are discretized to 0, creating a uniform distribution instead of the desired
distribution.

Both of these test cases could potentially be enhanced as the Concrete li-
brary’s proficiency in handling higher-precision inputs improves. Nevertheless,
it’s crucial to note that this approach exhibits a substantial appetite for preci-
sion, making it less favorable in comparison to other algorithms that demand
fewer precision-intensive resources.

4.2 Heuristic Cumulative-Sum

Methodology: This method avoids scaling the random multiplier but instead
approximates Randmax based on data set heuristics. We assume that the dataset
is randomly shuffled, as described in the multiplication-scaled cumulative sum
method. The full algorithm is shown in Algorithm 2.

Normalization: Our pseudo-norm is based on heuristics and is not exactly
normalized. If the Randmax constant is too small in this method, it will only
select the few values at the front of the shuffled array. If the Randmax constant
is too large, then the system is biased heavily toward the last single element in
the shuffled array. Since selecting a Randmax constant that is too small spreads
the bias out on multiple values instead of a single value, it is best to choose a
Randmax constant closer to the minimum. In our methodology, the Randmax

constant is the cumulative sum value in our dataset’s 10th percentile.
Bias: The introduced bias depends on the standard deviation of the sum

of post-activation ML outputs in the dataset. With higher standard deviations,
the Randmax constant deviates further from the cumulative sum output, caus-
ing larger biases. Unfortunately, this was the typical case for our target neural
networks, so that, combined with the low precision, it set some test set cases
to all 0s. Moreover, this approach still incurs smoothing and long tail biases for
small values of Randmax, which causes increased bias for larger dataset sizes.

Precision and Complexity: This algorithm uses O(n) additions and O(n)
comparisons. Here, the maximum precision required is reduced due to the lack
of multiplication-scaling but is still dependent on the sum of neural network
outputs, which is O(log(n)) bits.

Experimental Characterization: As shown in Figure 3b, this method
still encounters many of the same issues reported for the multiplication-scaled
cumulative sum method. Moreover, precision is impacted as the vocabulary size
grew; however, there is still room to increase precision at the cost of slowing
down execution time. Our analysis shows that the output of the ML model had
high variability, which caused outputs where the entire vector was discretized to
0s.



10 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

5 Our Proposed Approach for Argmax

While argmax can be useful for ML tasks like classification, its deterministic
nature is less useful for generative AI. Nevertheless, if some randomness can be
added to the output, achieving the desired stochastic result is possible. This is
the core idea behind our proposed argmax method, as we also aim to lower the
precision required. Towards that end, our methodology leverages the argmax
tournament method, which can be interpreted as a derivative of batcher sort.

In our approach, we attempted to use a batcher-sort network to achieve an
argkmax function. Here, pairs of elements are compared and swapped until the
max and argmax are found. This has computational complexity O(n), but can
be vectorized to run in O(log(n)). This argmax is the same as the works dis-
cussed, but we implemented ours in the Concrete library instead of TFHE-rust,
a lower-level version. Unfortunately, implementing a full batcher-sort argkmax
using Concrete causes all loops to unroll and be evaluated during compilation
time. This significantly impacts the compilation time for any algorithm that uses
double loops, which limits the scalability of this approach despite its potential
runtime speedups. Given this challenge, we utilized Concrete’s built-in maximum
function to achieve a speedup.

Methodology: In the random multiplication method, multiplying the post-
activation ML outputs with a random vector can be used as the input to the
argmax function. This will generate a different answer every time, although it
produces some skew for probabilistic selection for the plaintext variant. This
method is shown in Algorithm 3.

Normalization: The normalization constraint is mitigated when using argmax
methodology. Specifically, we no longer need to normalize the outputs when only
seeking the maximum.

Bias: Unlike the cumulative sum generator, this approach introduces a dis-
tortion that sharpens the probability distribution. More concretely, suppose we
multiply encrypted output distributions {p1, p2} by uniform random variables
{X̂1, X̂2}, respectively. It is important to note that in this context, the variables
p1 and p2 represent “probabilities” but do not necessarily need to be normal-
ized to one. We wish to find the probability that p1 · X̂1 is larger than p2 · X̂2,
represented by

P(D1,2 > 0) = P(p1 · X̂1 − p2 · X̂2 > 0), (1)

where D1,2 = (p1 · X̂1 − p2 · X̂2). To calculate this probability, we can first find
the expected value

E(D1,2) =

∫ 1

0

(p1 · X̂1)dX̂1 −
∫ 1

0

(p2 · X̂2)dX̂2 =
p1 − p2

2
(2)

and variance

V(D1,2) =

∫ 1

0

∫ 1

0

(p1 · X̂1 − p2 · X̂2)
2dX̂1dX̂2 =

2 · p21 + 2 · p22 − 3 · p1 · p2
6

. (3)



Tyche: Encrypted Probabilistic Selection 11

With the mean and variance, we can use the normal cumulative distribution
function (cdf) N

(
0−E(D1,2)
V(D1,2)

)
to find the probabilities for different values of p1.

This gets harder to extrapolate with more variables since the probabilities
are not independent, and several constraints between pairs of variables need to
be met (i.e., p1 > p2, p2 > p3, p3 > p1 is a contradiction). During algorithmic
development, we utilize the bayesian form where contradicted states are removed
(the denominator does not sum to 1 when N > 2). Thus, the probability token
k1 is selected given probability p1 is:

ΠN
i=1N

(
0−E(D1,i)
V(D1,i)

)
∑N

j=1 Π
N
i=1,i̸=jN

(
0−E(Dj,i)
V(Dj,i)

) . (4)

To illustrate this skew, the top of Figure 3d shows the boolean case, de-
fined as p1 and p2 = 1 − p1. The figure shows both the ideal and the distorted
probabilities. A slight distortion makes these variables sharper; however, this
works in our favor as it reintroduces a similar softmax “S” curve lost through
FHE-friendly activation approximation. This is a surprising result that helps
our RandMax algorithm to cancel out the bias introduced through the activation
function approximation and achieve a result close to plaintext evaluation.

Precision and Complexity: The computational complexity of argmax in-
volves O(n) comparisons. The multiplication step adds O(n) multiplications.
The highest value is the maximum value of the neural network output times
Randmax bits. Therefore, the precision is O(log(Randmax) + log(max(v)) bits,
as no values are accumulated in the argmax computation. This is much more
scalable than the cumulative sum methods, since max(v) << sum(v), and this
bitsize does not grow with the vocabulary size.

Experimental Characterization: This method performs significantly bet-
ter on larger datasets, which is attributed to the lack of precision bitsize growth;
this allows our methodology to achieve a higher precision overall. Even with this
method’s sharpening bias, the model may still not be able to meet the steep prob-
abilities expected from the outputs, as seen in Figure 3c. However, the argmax
curve approximates the expected distribution more accurately than cumulative
sum methods and achieves a more accurate result with FHE.

6 Experimental Evaluation

6.1 Description of our Datasets

Our generative AI focused on generating letter tokens. This enables us to im-
plement a small encrypted multilayer perceptron (MLP) network, illustrated in
Figure 4. This network architecture was kept consistent across all of our datasets
and tests to ensure a fair comparison. The network was run encrypted using
TFHE, and the results were utilized for our probabilistic selection experiments.
Our experiments comprise five different datasets, characterized below:



12 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

Fig. 4: Our neural network architechture: We use a simple mult-layer per-
ception (MLP) model with an embedding table of size 10 and a hidden layer
consisting of 100 hidden neurons. We use 3-ngram characters as inputs and the
output is the number of possible tokens (i.e., vocabulary size). This output is fed
through our probabilistic selection methodology to select an encrypted output.

SSA Names Dataset [17]: This dataset comprises 32K of the most common
names taken from ssa.gov for the year 2018. It contains very short phrases (a
single name), and has much less training data and higher entropy than our other
datasets. This leads to a higher loss score. There are 27 tokens in this dataset,
one for each letter of the English alphabet (all lowercase) and one stop character.

Shakespeare Dataset [16] (Lowercase): This dataset consists of all of the
works of Shakespeare. We modify this dataset to turn all letters to lowercase. In
total, there are 39 tokens in this dataset including the 26 letters of the English
alphabet and miscellaneous punctuation.

Shakespeare Dataset [16] (All Case): This dataset is the same as above
but regular uppercase and lowercase letters are used for 65 tokens in total. Up-
percase letters have a higher level of predictability, leading to lower entropy in
this dataset than its lowercase counterpart.

German Parliament (Lowercase): We created this dataset to test the
scalability of our algorithms. It consists of proceedings of the German parlia-
ment, in the German language. Numbers, umlauts, and characters used in formal
government writing such as “§” and parenthesis expand this lowercase dataset to
74 characters. The German language is more predictable than English for length
3 n-grams [30], which leads to more predictable results and less of a long-tail
effect than the other datasets.

German Parliament (All Case): This dataset is the same as above, but
with 29 extra uppercase characters, bringing the dataset size to 103 tokens.

Synthetic Datasets: In our results, the timing varied based on the mag-
nitude and precision of the neural network outputs, which is related to dataset
entropy. We, therefore, created a synthetic dataset to understand how vocabu-
lary size impacts timing performance. We used the names dataset as a baseline
for the synthetic dataset but concatenated multiples of outputs to get different
size vectors. These synthetic datasets contain 27, 54, 81, and 108 tokens.



Tyche: Encrypted Probabilistic Selection 13

6.2 Concrete Library for TFHE

For our experiments, we utilized the Concrete library, which implements the
TFHE scheme. While Concrete offers a mature interface and compiler, the cur-
rent version has two major limitations related to parallelism. First, the library
only supports vector-level CPU parallelization using a curated list of numpy
primitives. Outside of these numpy library functions, there is little parallelization
support, and calculations are limited to one CPU core. This includes for-loops
and homomorphic operations not being parallelized, even though there is plenty
of opportunity to do so and has been done in prior work [7, 23, 11].

Second, the Concrete compiler does not scale well when using for-loops, which
must be unrolled and evaluated sequentially. This means the Concrete implemen-
tation of batchersort was unable to support larger vectors and we needed to go
with a slower algorithm instead. Consequently, our results are focused on argmax
instead of argkmax, as evaluation of argkmax was not feasible.

6.3 Hardware Platform for Evaluations

For our experimental evaluation, we use a 12th Gen Intel(R) Core(TM) i9-
12900K 24-core server. To ensure our results are comparable across datasets,
we calculate the amortized cost across 10 iterations run in parallel. This allows
small vocabulary-size datasets to utilize all 24 cores during vector operations,
ensuring a fair comparison, but only 10 cores were used in the sequential parts
of our algorithms.

6.4 Latency Performance

Runtime performance, as summarized in Table 1, using FHE depends on algo-
rithm complexity and required precision. In this case, three different factors need
to be taken into consideration for our experiments.

Precision and Dataset Characteristics: The output characteristics of the
dataset play a key role in runtime performance. In particular, Concrete tunes the
TFHE parameters based on the worst-case precision in the plaintext test cases,
and uses these parameters for both evaluation and encryption. For the German
dataset specifically, the sum of the outputs was significantly lower, dropping the
required precision for the cumulative sum operation from 7-bits to 5-bits. This
caused a dramatic decrease in runtime for the multiplication cumulative sum
method, whose biggest limitation was precision constraints. The cumulative sum
heuristic also benefited from this characteristic, causing a decrease in latency.

Computational Complexity: As the vocabulary size grows, the cumula-
tive sum methods are expected to grow faster than the argmax method due
to the inherent computational and precision-related complexity. However, the
cumulative sum methods are more influenced by the output characteristics of
the dataset, particularly the largest sum of the post-activation ML output vec-
tor across test cases. Randmax growth is much more predictably since it does



14 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

Table 1: Timing Results (seconds): This table summarizes the timing of
probablistic selection for the three techniques. The Cumulative Sum (labeled
CSum) methods scale more rapidly, and seem very dependent on the worst-case
CumSum magnitude (labeled Max CSum). The RandMult method, albeit longer,
scales much more linearly and predictably. We show some basic statistics about
the datasets including the vocabulary size, the maximum cumlative sum in our
test set, the post-softmax entropy, and the post-softmax KL divergence with a
uniform random vector.

Timing Results
Vocab Max Avg Multiplication Heuristic RandMult

Dataset Size CSum Entropy KLDiv CSum CSum Argmax

Names 27 41 2.21 1.08 136s 4.0s 191s
Lower Shakespeare 39 84 2.1 1.57 265s 21.8s 224s

Shakespeare 65 78 1.88 2.28 379s 107s 348s
Lower German 74 19 1.69 2.61 228s 119s 386s

German 103 10 1.72 2.91 294s 151s 400s

Synthetic A 27 41 2.21 1.08 136s 4.0s 191s
Synthetic B 54 10 2.78 1.21 256s 64s 365s
Synthetic C 81 10 3.10 1.27 509s 92s 546s
Synthetic D 108 10 3.37 1.31 n/a1 124s 721s

1 Did not fit inside the maximum precision bounds of the Concrete framework.

not rely on this dependency. Still, looking at how size influences runtime per-
formance, the cumulative sum methods start out really efficient and grow to
increased runtime overheads. Therefore, the randmax algorithm is a better fit as
dataset sizes grow, and for higher entropy datasets that have many high-valued
outputs.

Parallelism: The cumulative sum methods have the best parallelism; only
FHE-friendly additions are sequential. Conversely, the random multiplication
argmax approach requires comparisons to be run sequentially or using a tourna-
ment-based method. With the current implementation of the Concrete library,
which only performs well on vectorized operations, the random multiplication
method has the lowest CPU resource utilization among our results. Improve-
ments to the library, such as a built-in argmax function and homomorphic level
parallelism, would further reduce the timing overhead of our methods.

6.5 Model Performance

Finally, we consider the tradeoff in model performance in Figure 3d. The cu-
mulative sum methods showed increasing loss with the dataset size, due to the
smoothing effect creating a long tail. Thus, as the dataset grows, more precision
is needed to distinguish between probable and improbable values. There was also
a higher occurrence of all zero values with the German datasets, resulting from
the dataset characteristics and vector size.



Tyche: Encrypted Probabilistic Selection 15

The random multiplier argmax method does not suffer from this long tail
limitation and can offer higher precision that does not grow with the vector size,
resulting in better performance from larger datasets. In addition, the random
multiplier dataset is able to support higher input precision, since the max pre-
cision is capped to Randmax · max(activation(x)), unlike the cumulative sum
methods that can grow and have a theoretical upper bound equal to the vocab-
ulary size n.

7 Discussion of Related Works

To the best of our knowledge, this is the first work to perform probabilistic
selection for language models. To give additional context to our approach, we
look at two categories of related works. The first is encrypted language models,
which gives some context into the orthogonal work and latencies of the upstream
ML algorithms. The second category of related work is enhanced LLMs, which
primarily use forms of obfuscation to hide query data.

7.1 Encrypted Language Models

Zama, the designers of the Concrete library, have developed two text-based mod-
els. The first one involves sentiment analysis classification [22]. Since this is a
classification problem, they do not invoke probabilistic selection, unlike our work,
and they use a simple XGBoost to classify the data. They attempt two method-
ologies for unencrypted text preprocessing, one based on term frequency-inverse
document frequency (tfidf) and a second using the RoBERTa transformer ex-
cluding the final layer.

Zama has also developed a transformer model [21]. Their first implemen-
tation is a single transformer block with a single-head GPT2 variant, where
layers 2 through 11, over 90% of their model, are run in plaintext. Their sec-
ond implementation is a multi-head variant with 12 attention heads. This is still
implemented as a single layer and with lower precision. The embedding table,
layer normalization and probabilistic selection of the words is also performed in
plaintext. This is in contrast to our techniques, which allow running every part
of the generative AI encrypted.

THE-X is another work that attempts to build a homomorphic transformer,
but they remove much of the homomorphic work from the server, including
activations, and instead ask the user perform these in the plaintext domain.
This defeats the purpose of using homomorphic encryption; here an approach
such as multi-party computation (MPC), which allows for multiple computing
parties, would be a better choice [3].

7.2 Privacy of Cloud Language Models

There are several techniques that can be used to assist model privacy. The first
is differential privacy, which consists of obfuscating the inputs of an input query.



16 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

For word tokens, this involves processing the text by replacing synonyms and
redacting any sensitive information [2, 29, 19]. However, this technique can harm
accuracy, and while the users’ direct text may be altered, an attacker can still
distill the meaning behind the original query [1].

A second approach entails projecting the inputs into a related subspace. A
common technique includes sending a compressed token embedding instead of
raw words, which is a lower-dimensional version of the inputs [25]. This work
also recommends obfuscation by the rounding of plaintext floating point numbers
(which TFHE is very good at in the encrypted domain). These techniques may
make the input unreadable to a human attacker, but the meaning of these inputs
can still be extracted.

8 Future Work

This work utilizes the new Concrete THFE-based library, which is still rapidly
evolving. There are several Concrete features that are still under development
that would be of great interest to this work.

The first is an efficient implementation of the maximum, argmax and argk-
max functions. In our methodology, we opted to not implement state-of-the-art
argkmax techniques due to inefficiencies in the Concrete compiler that led to
days-long compile times. These techniques have been proven in THFE-rust, but
have not yet migrated to Concrete.

Second, each TFHE operation, such as a single addition, is a complex lattice-
based computation that can be parallelized. There are many TFHE research
works that accelerate homomorphic operations, such as cuFHE [7], nuFHE [23],
REDcuFHE [11], and ArctyrEX [12] that parallelize the lower level operations
of TFHE on GPUs, but Concrete does not yet offer this functionality. There are
also several works of TFHE hardware accelerators, with MATCHA [14] being the
most recent work in the FPGA/ASIC space. We look forward to obtain a greater
speedup and utilize more CPU bandwidth through this greater parallelization
effort.

9 Concluding Remarks

In this work, we introduce a novel methodology for encrypted probabilistic selec-
tion in TFHE. Our approach, we compare two possible methods, the cumulative
sum and the argmax, and provide three algorithms for probabilistic selection op-
timized for generative language models over encrypted data. Our findings show
that the argmax-based random multiplication method outperforms the cumula-
tive sum methods in terms of loss stability and precision required, despite offering
some bias in the plaintext domain. This result opens new applications into pri-
vate generative ML, and complements much of the existing work on adapting
ML algorithms for TFHE. With many new TFHE developments on the horizon,
this work is among the first address one of the main challenges toward encrypted
generative AI.



Tyche: Encrypted Probabilistic Selection 17

Acknowledgments

This work has been supported by NSF Award #2239334.

References

1. Brown, H., Lee, K., Mireshghallah, F., Shokri, R., Tramèr, F.: What does it mean
for a language model to preserve privacy? In: Proceedings of the 2022 ACM Con-
ference on Fairness, Accountability, and Transparency. pp. 2280–2292 (2022)

2. Carranza, A.G., Farahani, R., Ponomareva, N., Kurakin, A., Jagielski, M., Nasr,
M.: Privacy-preserving recommender systems with synthetic query generation us-
ing differentially private large language models. arXiv preprint arXiv:2305.05973
(2023)

3. Chen, T., Bao, H., Huang, S., Dong, L., Jiao, B., Jiang, D., Zhou, H., Li, J., Wei,
F.: The-x: Privacy-preserving transformer inference with homomorphic encryption.
arXiv preprint arXiv:2206.00216 (2022)

4. Chillotti, I., Gama, N., Georgieva, M., Izabachène, M.: Tfhe: fast fully homomor-
phic encryption over the torus. Journal of Cryptology 33(1), 34–91 (2020)

5. Chillotti, I., Joye, M., Ligier, D., Orfila, J.B., Tap, S.: Concrete: Concrete oper-
ates on ciphertexts rapidly by extending tfhe. In: WAHC 2020-8th Workshop on
Encrypted Computing & Applied Homomorphic Cryptography (2020)

6. Chillotti, I., Joye, M., Paillier, P.: Programmable bootstrapping enables efficient
homomorphic inference of deep neural networks. In: Cyber Security Cryptography
and Machine Learning: 5th International Symposium, CSCML 2021, Be’er Sheva,
Israel, July 8–9, 2021, Proceedings 5. pp. 1–19. Springer (2021)

7. Dai, W., Sunar, B.: cuFHE (v1.0). https://github.com/vernamlab/cuFHE (2018)
8. De, S., Bermudez-Edo, M., Xu, H., Cai, Z.: Deep generative models in the industrial

internet of things: a survey. IEEE Transactions on Industrial Informatics 18(9),
5728–5737 (2022)

9. Derose, A.: These companies have banned or limited ChatGPT at work. Morning
Brew (May 2023)

10. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirec-
tional transformers for language understanding. arXiv preprint arXiv:1810.04805
(2018)

11. Folkerts, L., Gouert, C., Tsoutsos, N.G.: REDsec: Running Encrypted Discretized
Neural Networks in Seconds. In: Network and Distributed System Security Sym-
posium (NDSS). pp. 1–17 (2023)

12. Gouert, C., Joseph, V., Dalton, S., Augonnet, C., Garland, M., Tsoutsos, N.G.:
Arctyrex: Accelerated encrypted execution of general-purpose applications. arXiv
preprint arXiv:2306.11006 (2023)

13. JaxonAI: Companies that have banned ChatGPT (Jun 2023), https://jaxon.ai/list-
of-companies-that-have-banned-chatgpt/

14. Jiang, L., Lou, Q., Joshi, N.: Matcha: A fast and energy-efficient accelerator
for fully homomorphic encryption over the torus. In: Proceedings of the 59th
ACM/IEEE Design Automation Conference. pp. 235–240 (2022)

15. Joye, M.: Tfhe public-key encryption revisited. Cryptology ePrint Archive (2023)
16. Karpathy, A.: char-rnn. https://github.com/karpathy/char-rnn (2015)
17. Karpathy, A.: Makemore Dataset and Network (2022),

https://github.com/karpathy/makemore



18 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

18. Lee, C., Min, S., Seo, J., Song, Y.: Faster tfhe bootstrapping with block binary
keys. Cryptology ePrint Archive (2023)

19. Li, Y., Tan, Z., Liu, Y.: Privacy-preserving prompt tuning for large language model
services. arXiv preprint arXiv:2305.06212 (2023)

20. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. In: Annual International Conference on the Theory and Applications of
Cryptographic Techniques. pp. 1–23. Springer (2010)

21. Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bredehoft, R.,
Montero, L., Kherfallah, C.: Secure large language models using fully
homomorphic encryption (fhe). https://github.com/zama-ai/concrete-
ml/blob/release/1.1.x/use_case_examples/llm (2023)

22. Meyre, A., Chevallier-Mames, B., Frery, J., Stoian, A., Bredehoft, R., Montero,
L., Kherfallah, C.: Sentiment analysis with fhe. https //github.com/zama-
ai/concrete-ml/blob/release/1.1.x/use_case_examples/ senti-
ment_analysis_with_transformer/SentimentClassification.ipynb (2023)

23. NuCypher: nuFHE (v0.0.3). https://github.com/nucypher/nufhe (2019)
24. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.:

Conditional image generation with pixelcnn decoders. Advances in neural informa-
tion processing systems 29 (2016)

25. Pan, X., Zhang, M., Ji, S., Yang, M.: Privacy risks of general-purpose language
models. In: 2020 IEEE Symposium on Security and Privacy (SP). pp. 1314–1331.
IEEE (2020)

26. Radford, A., Narasimhan, K., Salimans, T., Sutskever, I., et al.: Improving lan-
guage understanding by generative pre-training (2018)

27. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. Journal of the ACM (JACM) 56(6), 1–40 (2009)

28. Regev, O.: The learning with errors problem. Invited survey in CCC 7(30), 11
(2010)

29. Shi, W., Cui, A., Li, E., Jia, R., Yu, Z.: Selective differential privacy for language
modeling. arXiv preprint arXiv:2108.12944 (2021)

30. Smith, R.: Distinct word length frequencies: distributions and symbol entropies.
Glottometrics 23 p. 7 (2012)

31. Telford, T., Verma, P.: Employees want ChatGPT at work. Bosses
worry they’ll spill secrets. The Washington Post (Jul 2023),
https://www.washingtonpost.com/business/2023/07/10/chatgpt-safe-company-
work-ban-lawyers-code/

32. Zama: Concrete: TFHE Compiler that converts python programs into FHE equiv-
alent (2022), https://github.com/zama-ai/concrete



Tyche: Encrypted Probabilistic Selection 19

A Algorithms

Algorithm 1 Multiplication Scaled Cumulative Sum

Inputs:
x: array of pre-softmax output of NN predicting next token
Rfixed: scalar random number between 0 and Randmax

Outputs
result: integer corresponding to selected next token

x = activation(x)
N = len(x)
cumSum0 = x0

for i← 1, . . . , N − 1 do
cumSumi ← xi + cumSumi−1 ▷ Perform Cumsum

end for
▷ Adjust random number for normalization. Note cumSum is always

increasing i.e. cumSummax is equivalent to cumSumN−1

Rscaled ← cumSummax ·Rfixed

▷ Scale and compare cumSum vector to scalar random.
cumSumScaled = cumSum ∗Randmax

lessThan← cumSumScaled < Rscaled

▷ Get one hot result index by subtracting lessThan by lessThan shifted one
oneHot← lessThan1::N−1 − lessThan0:N−2

▷ Recover lost index in the case lessThan is all 0s
oneHot← concatenate(1− lessThan0, oneHot)

▷ Can use dot product to recover the index
arrange← 0, . . . , N − 1
result← arrange · oneHot



20 Lars Wolfgang Folkerts and Nektarios Georgios Tsoutsos

Algorithm 2 Heuristic Cumulative Sum

Inputs:
x: array of pre-softmax output of NN predicting next token
Rheuristic: scalar random number between 0 and heuristic cumSumheuristicMax,

which is determined by the training data
Outputs

result: integer corresponding to selected next token

x = activation(x)
N = len(x)
cumSum0 = x0

for i← 1, . . . , N − 1 do
cumSumi ← xi + cumSumi−1 ▷ Perform Cumsum

end for
▷ No scaling; Rheuristic depends on cumSumheuristicMax

Rscaled = Rheuristic

cumSumScaled = cumSum
lessThan← cumSumScaled < Rscaled

▷ Get one hot result index by subtracting lessThan by lessThan shifted one
oneHot← lessThan1::N−1 − lessThan0:N−2

lessThan← cumSumScaled < Rscaled

▷ Recover lost index in the case lessThan is all 0s
oneHot← concatenate(1− lessThan0, oneHot)

▷ Can use dot product to recover the index
arrange← 0, . . . , N − 1
result← arrange · oneHot

Algorithm 3 Random Multiplication Argmax

Inputs:
x: array of pre-softmax output of NN predicting next token
Rarray: array of random numbers between 0 and Randmax

Outputs
result: integer corresponding to selected next token

x = activation(x)
N = len(x)

▷ Element wise multiplication with random array
x = x ∗Rarray

valueMax← x0

argmax← 0
for i← 1, . . . , N − 1 do

▷ Find the argument maximum
argmax← (xi > valueMax) ? i : argmax

▷ Track the value maximum
valueMax← (xi > valueMax) ? xi : valueMax

end for
result← argmax


