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Abstract—Cross-chain Decentralized Applications (dApps) are
increasingly popular for their ability to handle complex tasks
across various blockchains, extending beyond simple asset trans-
fers or swaps. However, ensuring all dependent transactions
execute correctly together, known as complete atomicity, remains a
challenge. Existing works provide financial atomicity, protecting
against monetary loss, but lack the ability to ensure correct-
ness for complex tasks. In this paper, we introduce Avalon,
a transaction execution framework for cross-chain dApps that
guarantees complete atomicity for the first time. Avalon achieves
this by introducing multiple state layers above the native one
to cache state transitions, allowing for efficient management of
these state transitions. Most notably, for concurrent cross-chain
transactions, Avalon resolves not only intra-chain conflicts but
also addresses potential inconsistencies between blockchains via
a novel state synchronization protocol, enabling serializable cross-
chain execution. We implement Avalon using smart contracts in
Cosmos ecosystem and evaluate its commitment performance,
demonstrating acceptable latency and gas consumption even
under conflict cases.

Index Terms—blockchain interoperability, atomicity, decen-
tralized application

I. INTRODUCTION

The rising popularity of cross-chain Decentralized Appli-
cations (dApps) [1], [2] is fueling the demand for blockchain
interoperability [3], which aims to facilitate interactions across
diverse and heterogeneous blockchains. These cross-chain
dApps leverage blockchain smart contracts initially to facil-
itate simple asset transfers within financial contexts [4], and
subsequently extend their functionality to encompass complex
application logic via state transitions [2]. This expansion
broadens the application scenarios to include domains such as
supply chains [5], metaverse environments [6], and Computing
Power Networks (CPNs) [7].

In popular cross-chain dApps, the application logic typically
comprises multiple dependent transactions distributed across
distinct blockchains. As stated in the pioneer work Hyper-
service [2], the successful execution of the entire application
logic necessitates these dependent transactions to be executed
sequentially so that the subsequent transaction can obtain
inputs from the transactions it depends on, ensuring proper
state transitions. For instance, consider a cross-chain dApp
applied in a CPN scenario, as depicted in Fig. 1. CPN involves
multiple clusters each running an underlying blockchain. The
computing task submitted to CPN is decomposed into several
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Fig. 1. Complete atomicity in cross-chain computing power networks

dependent subtasks, each representing a blockchain transaction
(e.g., tx1, tx2, and tx3), and the execution of a transaction
relies on the execution result of the transaction preceding it.
These dependent subtasks are then allocated to clusters with
appropriate computing resources for execution. To maintain
this dependency, a transaction in a blockchain is not executed
until it receives the execution result of its preceding transaction
via cross-chain communication [8].

Atomicity is a critical property in cross-chain transaction
execution to ensure the correctness of application logic. Tra-
ditionally, atomicity emphasizes the correctness of cross-chain
asset transfers or swaps [4], ensuring that these events are
either fully completed or all involving parties suffer nearly
no financial losses, a concept known as financial atomicity
[2], [4]. However, for popular cross-chain dApps involving
multiple dependent transactions performing state transitions,
financial atomicity is inadequate and requires an extension. As
depicted in Fig. 1, to ensure the correctness of the execution,
all dependent transactions must either successfully complete
state transitions on their respective blockchains (the successful
state transitions S → S′), or no state transitions occur even
if errors arise (maintaining the initial state S). We refer to
this property as complete atomicity. However, if one of the
dependent transactions is aborted midway due to a semantic
error or timeouts (e.g., tx3), transactions preceding the aborted
one have already executed on their respective blockchains to
complete state transitions, compromising complete atomicity.
Therefore, the key to achieving complete atomicity is ensuring
that committed state transitions can be reverted when subse-



quent transactions fail to execute.
Efforts in blockchain interoperability have centered around

cross-chain asset transfers, achieving financial atomicity by
initiating compensatory transactions to refund spent assets [2].
However, complete atomicity poses new challenges to cross-
chain executions as complex state transitions across multiple
blockchains require efficiently reverting invalid state tran-
sitions without compromising the correctness of concurrent
transactions. The simple refund approach that compensates
transferred assets cannot undo the update effects of complex
transitions on the contract states. Another recent approach [9]
is to roll back to the checkpointed state [10] established before
state transitions and can revert the effects of invalid contract
state transitions regardless of how complex the state transitions
are. However, the checkpoint-based approach presents two
potential drawbacks: i) it requires initiating a new transaction
to trigger the rollback of states, which incurs an additional con-
sensus round for the transaction to commit; ii) in the presence
of concurrent transactions, rolling back to the checkpoint state
compromises the correctness of other concurrent transactions
that have read the updated states.

In this paper, we present Avalon, a cross-chain execution
framework that achieves complete atomicity while maintaining
seamless integration with existing blockchain infrastructures.
Avalon operates under the foundational assumption of correct
and interoperable underlying blockchains, interconnected via
robust cross-chain communication protocols. The core of
Avalon framework is a layered state commitment structure
facilitated by smart contracts. We introduce an initial cache
layer, namely the dirty state layer for newly generated state
transitions, allowing for efficient management of these transi-
tions before their eventual commitment to persistent storage.
This design empowers Avalon to handle state transitions with
agility, enabling seamless reverting or committing operations
as required. Upon the successful commitment of all pertinent
transactions associated with a given state transition, the corre-
sponding state transitions are seamlessly migrated to the native
persistent state layer for permanent storage.

In practical scenarios, processing numerous concurrent
transactions across multiple blockchains can lead to conflicts
when accessing and modifying identical states cached in the
dirty layer. Specifically, assuming concurrent state transitions
are organized into an ordered queue in the dirty state layer,
committing a state transition directly upon receiving all com-
mitments can lead to potential conflicts. This occurs when a
state transition is overwritten by another state transition in the
queue that precedes it, thereby compromising complete atom-
icity. To address this issue, we draw inspiration from the con-
cept of Optimistic Concurrency Control (OCC) [11] to handle
conflicts in each blockchain. Furthermore, to ensure no execu-
tion conflicts arise on any blockchain, we introduce a conflict-
free state synchronization protocol, namely the prepared state
layer that enables serializable atomic state transition across
the underlying blockchains. Upon receiving all commitments
in the dirty state layer, a vote on whether the transaction is
at the top of the dirty state queue is broadcast during the

state synchronization phase to notify other blockchains about
potential conflicts. If all votes from underlying blockchains
confirm a non-conflicting case, the state transition can be
safely committed. Cross-chain executions are processed in a
serializable order, prioritizing consistency across chains rather
than solely focusing on intra-chain transactions.

To illustrate the feasibility and efficiency of Avalon, we
implement its prototype as cross-chain smart contracts within
the Cosmos ecosystem [12]. We evaluate the commitment
performance and overhead of Avalon, along with its robustness
under increased transaction conflict rates. To sum up, we make
the following contributions in this paper.

• We elucidate the distinction between financial atomicity
and complete atomicity, as well as the necessity of achiev-
ing complete atomicity in modern cross-chain dApps.

• We devise an efficient cross-chain execution framework
Avalon. Avalon utilizes the layered state structure to
efficiently commit valid state transitions and revert invalid
ones to achieve complete atomicity even in the case of
concurrent transactions.

• We implement Avalon within smart contract logic using
the Cosmos SDK. The evaluation of Avalon demonstrates
that it yields acceptable latency and gas consumption in
conflict-free and conflict scenarios.

II. PRELIMINARIES

To better understand the requirements to achieve complete
atomicity of complex cross-chain execution, we present rel-
evant knowledge of blockchain basics and blockchain inter-
operability schemes. Besides, we extend the classic generic
definition of atomicity.

A. State Machine Replication

State Machine Replication (SMR) [13] constructs fault-
tolerant services by replicating states among a set of replicas.
Each replica receives requests as input and outputs an ever-
increasing sequence of requests. Our research focuses on
Byzantine SMR tolerating Byzantine faults. Byzantine SMR
consists of honest replicas that follow the protocol and Byzan-
tine replicas that deviate arbitrarily and satisfy the following
properties.

• Safety. If two honest replicas output v and v′ at the same
sequence number, then v = v′.

• Liveness. If a client submits a request m, all honest
replicas will output m eventually.

A blockchain protocol implements SMR in the form of
chained blocks [14], [15]. A typical block contains a set of
transactions with application logic, as well as the metadata
of consensus and execution. Specifically, once a transaction
is included in the block and executed, the state transition it
triggers will be recorded in the execution metadata (e.g., struc-
tured modified states in each block [16]). Together with the
consensus metadata [17], an external operator can efficiently
verify the existence of the transaction and the state transition
it triggers.
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B. Cross-chain Communication

Cross-chain communication [18]–[21] delivers authenti-
cated state transitions between any pair of blockchains, crucial
for cross-chain dApps. The main component of cross-chain
communication is the generation and verification of finality
proof [22], which indicates the inclusion of a specific trans-
action in a block. Meanwhile, the communication eventually
terminates assuming underlying blockchains are live. Cross-
chain communication satisfies the following properties:

• Authenticity (verifiability of finality proof). If and only if
a transaction tx is finalized on the source blockchain, any
replica on the destination blockchain can verify the state
transitions corresponding to the committed transaction on
the source blockchain.

• Reliability (delivery of finality proof). If tx is finalized
on the source blockchain, all honest replicas in the
destination blockchain will commit the state transition
of tx eventually.

Cross-chain communication provides the following inter-
faces for routing and delivering data across blockchains:

• Routing: any process can submit arbitrary data finalized
on the source blockchain to the destination blockchain by
calling CCC.route(src, dst, data).

• Delivery: any process can verify the existence and au-
thenticity of the routed data by calling CCC.deliver(src,
dst, data).

C. Atomicity

Classic atomicity [23] ensures either all dependent trans-
actions are executed, or none are applied. If any transaction
fails, the system should undo the execution effects of already
committed transactions. For cross-chain dApps with complex
application logic triggered by smart contracts, the classic atom-
icity property should encompass a broader range of contract
state transitions beyond simple cross-chain asset transfer logic.
Financial atomicity. Prior efforts focus on achieving weaker
financial atomicity [4], [24], [25] by reverting all token
transfers, regardless of state changes. As shown in Fig. 2(a),
financial atomicity indicates that all involved parties of cross-
chain execution suffer nearly no financial loss. However, this
results in an incomplete execution trace if some transactions
within the entire task have triggered state transitions and
are then financially aborted. Cross-chain executions satisfying
financial atomicity guarantee the following properties:

• Financial atomicity. All involved parties experience
nearly no financial loss during the execution, regardless
of state transitions.

• Termination. All involved parties receive the cross-chain
execution results eventually.

Complete atomicity. To achieve a more advanced complete
atomicity property, a blockchain interoperability scheme is
expected to trigger no state transitions in the abort case, as
depicted in Fig. 2(b). Intuitively, this is impractical since cross-
chain communication relies on the inclusion of transactions
in consensus to provide verifiability, which inevitably triggers
state transitions. We circumvent the state transition on native
states through layered state commitments and achieve com-
plete atomicity as below:

• Complete atomicity. If the application is successfully
executed, the state transitions on underlying blockchains
are applied. Otherwise, all state transitions are reverted
or in other words, aborted.

• Termination. All involved parties receive the cross-chain
execution results eventually.

Goal. In this paper, we aim to achieve complete atomicity for
cross-chain dApp executions and maintain this property even
under the existence of concurrent cross-chain executions.

III. SYSTEM MODEL

We assume a finite collection of m blockchains denoted as
Π1, Π2, ...,Πm, each operating as a replicated state machine
with a fault-tolerant consensus protocol tolerating Byzantine
faults. To model blockchains with certificate-based consen-
sus protocols, we assume the existence of a Public Key
Infrastructure (PKI) and a secure signature scheme. Note
that PKI and cryptography are not strictly required in our
design. We assume an adversary can corrupt replicas, coor-
dinate their states, and be either adaptive, strong adaptive, or
static according to the underlying consensus. We assume that
a network adversary can drop, omit, and reorder messages
arbitrarily. Our network timing assumption depends on the
underlying consensus protocol and can be synchronous, partial
synchronous, or asynchronous [26]. Thanks to our loose as-
sumption on the underlying consensus protocols, a wide range
of consensus protocols [14], [15], [27]–[30] can be integrated
into our design. The blockchains are heterogeneous, either
permissionless or permissioned and each satisfies the formal
definition of Byzantine SMR.

A cross-chain application execution E is indexed by an
identification number id, consisting of k dependent transac-
tions, i.e., Eid = {txid

i | i = 1, 2, ..., k}. Execution does not
necessarily cover all underlying m blockchains. For ease of
presentation, we assume each transaction txid

i is submitted to
a distinct blockchain Πi, while our design can be adjusted to
the situation where multiple transactions are submitted to one
blockchain with slight modifications. We model the transaction
dependencies as a Directed Acyclic Graph (DAG) denoted as
G = (V,E), where the set of nodes V represents transactions
and the set of edges E characterizes the preconditioning
requirements among transactions.
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To model conflicting concurrent executions, we assume the
set of concurrent executions accesses an identical state, i.e.,
some value of a specific smart contract. We use the notation τ ji
to represent the specific state on blockchain Πi with its initial
state denoted as τ0i , where j is a sequence number representing
the current state that j previous transactions have modified.
Moreover, we define the state transition triggered by txid

i of
an execution Eid as τ ji

id−→ τ j+1
i .

To facilitate cross-chain executions with complete atom-
icity, we consider all underlying blockchains to be correct,
interoperable, and connected via authenticated network links.
These connections allow blockchains to securely exchange the
data committed locally within its local consensus with other
blockchains. We assume asynchronous network links, ensur-
ing all messages from the source blockchain are eventually
delivered. Any secure cross-chain communication scheme can
be integrated to construct network links.

IV. STRAWMAN DESIGN

Before diving into the complete design of Avalon, we
propose a strawman design called Avalon-Lite in this section
to illustrate the basic idea of achieving complete atomicity in
cross-chain application execution.

The fundamental challenge in attaining complete atomicity
in blockchain is to ensure “all-or-nothing” given an append-
only ledger. Specifically, consider a cross-chain execution
consisting of multiple transactions. In ideal cases, transactions
are executed in line according to their dependencies. However,
if any transaction aborts, its state transition is not triggered on
the corresponding blockchain, while committed transactions
on other blockchains are irreversible. Therefore, our core
design principle of Avalon-Lite is to add a dirty state layer
to cache the state transitions before commitment. Dirty states
in this layer can be deleted if any transaction is aborted on
other blockchains. Only those agreed upon by all participating
blockchains can be committed to persistent storage.

We present an overview of Avalon-Lite in Fig. 3, which
consists of two key components: cross-chain communication
for data exchange and a dirty state layer for state caching. To
better demonstrate our idea, we keep the illustration at a high
level and defer concrete implementation to Section VII. With
cross-chain communication, finality proof π of transactions is
exchanged between any pair of blockchains. After all transac-
tions are committed or any transaction is dropped according to
the abortion rule, the execution successfully terminates. The
execution of all transactions is conducted within the dirty state

Algorithm 1: Avalon-Lite protocol (for blockchain Πi)

1 Init:
2 dirty ← τ0i ;
3 committed← τ0i ;
4 txV otes← ∅;

5 function execute(txid
i , ID):

6 id← ID.eid;
// transition represents the original contract logic

7 dirty, πtxid
i
← transition(dirty, txid

i );
8 for dst in ID.chains do
9 emit CCC.route(Πi, dst, (πtxid

i
, ID));

10 upon event CCC.deliver(src,Πi, (πtxid
src

, ID))do:
11 id← ID.eid;
12 txV otes[id]← txV otes[id] ∪ {src};
13 if |txV otes[id]| == |ID.chains| then
14 committed← dirty;

15 function abort(ID, πabort):
16 if verify(ID, πabort) == true then
17 id← ID.eid;
18 txV otes[id]← ∅;
19 dirty ← τ0i ;

layer, and after the execution terminates, state transitions are
either committed or aborted due to timeout or semantic errors.

We demonstrate the instantiation of Avalon-Lite with CCC
primitive in smart contract logic in Alg. 1. For simplicity,
we omit the details of transaction logic and abortion rule,
focusing on the design to ensure complete atomicity. The
protocol begins with an initial state τ0i and an empty map
txV otes storing finality proofs. Transactions are confirmed
through SMR and executed by calling the execute interface,
which accepts ID storing the list of participating blockchains
ID.chains and the execution index ID.eid for execution Eid.
After the state transition (line 7), CCC is emitted with the
finality proof πtxid

i
to all participating blockchains (lines 8-

9). Upon delivering all finality proofs, the state transition is
committed (lines 11-14). If the abort interface is called with
a valid proof, the dirty state is reverted, and txV otes storing
commitments of executed transactions is cleared (lines 16-19).

A major concern is that isolated abortion operations on each
blockchain can potentially lead to inconsistency, as timeouts
triggered according to the local timestamps of replicas may
differ, causing some blockchains to commit an execution while
others abort. To address this, we borrow the idea in [31] of
introducing a synchronized clock that can be constructed by
building a secure upper blockchain (e.g., NSB blockchain
in [2]) over m underlying blockchains. Each transaction is
submitted to its corresponding blockchain with a timestamp
acquired through the upper-layer blockchain. A timeout is
triggered when the number of blocks generated on the upper
blockchain exceeds a pre-determined value. An abortion is ver-
ified true if proof shows that not all transactions are published
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Fig. 4. Architecture of Avalon

on the upper blockchain, using the Merkle nil proof stated
in [32] to prove the nonexistence of specific transactions.

V. AVALON DESIGN

In this section, we elaborate on an enhanced variant, Avalon,
based on our strawman design to support concurrent execu-
tions across multiple blockchains. The overall architecture of
Avalon is depicted in Fig. 4.

A. Overview

In real-world scenarios, multiple concurrent transactions can
access an identical state. The strawman design fails in such
cases due to its lack of concurrency control. Specifically, the
state transition of committed states is likely to be rewritten by
a subsequently committed transaction. We borrow the idea of
OCC to resolve conflicts that may occur in the dirty state layer.
Upon receiving all finality proofs of a specific transaction,
given a state queue outputted by concurrent executions, the
state transition of the transaction is aborted if any state
transition previous to it in the queue remains uncommitted.

Although it has been widely studied to ensure the correct-
ness of concurrent execution within a single blockchain [33]–
[35], it is non-trivial to enable concurrent execution in a multi-
chain ecosystem. As blockchains exhibit different concurrency
levels, the state transition of a specific cross-chain execution
may not consistently commit or abort, resulting in a violation
of atomicity. As such, our main challenge is to coordinate the
state transitions among all underlying blockchains. We propose
a state synchronization protocol that requires blockchains to
exchange their votes on whether to commit or abort within
a single round of communication, namely the prepared state
layer, as shown in Fig. 4. Moreover, we introduce and fulfill
the serializability property in cross-chain concurrent execution
with consistent state synchronization. This property focuses on
ensuring that concurrent executions across distinct blockchains
can be completed in a serializable order rather than merely
concurrent executions in a single blockchain.

B. Intra-chain Concurrent Execution

To clarify the problem raised by concurrent executions,
we consider a scenario of Avalon-Lite handling a list of
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n concurrent uncommitted transactions tx1
i , tx

2
i , ..., tx

n
i that

trigger multiple state transitions in the dirty state layer on
Πi. These uncommitted transactions read the same initial
state denoted as τ0i , leading to concurrent conflicts, i.e., the
successfully committed state transition of a transaction would
cause stale reads of other concurrent transactions. To ensure
the correctness of execution in the dirty state layer, we inherit
the idea of OCC to resolve conflicts. Specifically, we only
commit the first state transition and abort all subsequent state
transitions in the dirty layer. However, OCC leads to a high
abort rate that limits the performance of cross-chain execution.
To reduce such aborts, we make an optimization that permits
uncommitted states to be visible to all concurrent transactions
and commits them according to the order in which they are
executed. Note that the transactions are executed and appear in
the dirty state layer in the consensus order as SMR guarantees
total order implicitly in its safety property.

Specifically, we utilize a queue to cache concurrent state
transitions in the dirty state layer (i.e., τ0i , τ1i , ..., τni ). A new
state transition is added to the tail of the queue. Given an
initial state τ0i and n concurrent transactions, τ ji is based on
τ j−1
i (for j in 1, ..., n) and the resulting state transitions are
τ1i , τ

2
i , ..., τ

n
i . If dirty states are committed in the order of

their executions, they can all be committed with a trace of
τ1i , τ

2
i , ..., τ

n
i . To maintain this commitment order, we stipulate

that one state transition can be successfully committed only if
it receives sufficient finality proofs and is located at the top of
the dirty state queue. Otherwise, it is aborted, thereby ensuring
that this state transition cannot be rewritten by a previous
transaction that commits after it.

C. Consistent State Synchronization

Inter-chain conflict resolution. Intra-chain concurrency con-
trol ensures transactions are aborted in case there exists any
potential conflict in each blockchain. However, inter-chain
conflicts still arise since transactions are executed in an iso-
lated manner. Specifically, the state transitions belonging to a
specific execution may be committed on some blockchains and
aborted on others, violating complete atomicity. We present an
example of inter-chain conflicts in Fig. 5, where execution
E2 can be committed on Π2 but is aborted on Π1. Upon
blockchain Π1 receiving sufficient finality proofs for state
transition τ21 of E2, τ21 is not the top element of the dirty
state queue and is thus aborted, maintaining a persistent state
τ11 triggered by execution E1, which is inconsistent with the
state τ12 triggered by execution E2 in Π2.
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To resolve inter-chain conflicts, we introduce an inter-
mediate prepared state layer to coordinate commitments by
synchronizing the intra-chain execution results. Specifically,
after receiving sufficient finality proofs, rather than directly
committing, each blockchain broadcasts a vote on whether the
intra-chain execution is correct (i.e., confirmed at the top of
the queue) via CCC. The state transition can be successfully
committed upon receiving sufficient votes for correct execution
and is aborted if any vote indicating the intra-chain execution
fails is received.

Fig. 6 presents commitment and abortion cases of state
synchronization. Executions E1 and E2 are modeled as con-
current executions, where E1 involves Π1 and some other
blockchains not included in this figure while E2 involves both
blockchains. Upon receiving sufficient finality proofs π, a vote
on the correct execution of E1 formalized as an OK message
is broadcast to other blockchains. Upon receiving all OK mes-
sages from underlying blockchains, the states are committed
to persistent storage on each blockchain. For the abortion case
illustrated in Fig. 6(b), if E2 gathers sufficient finality proofs
before E1, a vote indicating incorrect commitment order of E2
formalized as an Abort message on Π1 is broadcast to Π2.
Upon receiving an Abort message from any blockchain, the
transaction corresponding to the message is aborted, thereby
ensuring E2 is aborted on both blockchains.

We present a detailed description of the state synchroniza-
tion protocol in Alg. 2. We assume there exist no concurrent
uncommitted state transitions in the prepared state layer and
defer the discussion of the concurrent case to Alg. 3. To enable

Algorithm 2: Inter-chain conflict resolution

1 Init:
2 dQueue← [τ0i ];
3 txV otes(dirty), txV otes(prep)← ∅;
4 sMap← ∅;
5 prepared, committed← τ0i ;

6 function execute(txid
i , ID):

7 basestate← dQueue.rear();
8 s← transition(basestate, txid

i );
9 dQueue.enqueue(s);

10 sMap[s]← ID;
// same as lines 8-9 in Alg. 1

11 upon event CCC.deliver(src,Πi, (πtxid
src

, ID))do:
12 id← ID.eid;
13 txV otes(dirty)[id] ← txV otes(dirty)[id] ∪

{src};
14 if |txV otes(dirty)[id]| == |ID.chains| then
15 if sMap[dQueue.peek()]! = ID then

// remove s and subsequent queue elements
16 for dst in ID.chains do
17 emit

CCC.route(Πi, dst, (Abort, ID));
18 else
19 s← dQueue.dequeue();
20 prepared← s;
21 for dst in ID.chains do
22 emit CCC.route(Πi, dst, (OK, ID));

23 upon event CCC.deliver(src,Πi, (OK, ID))do:
24 id← ID.eid;
25 txV otes(prep)[id]← txV otes(prep)[id] ∪ {src};
26 if |txV otes(prep)[id]| == |ID.chains| then
27 committed← prepared;

28 upon event CCC.deliver(src,Πi, (Abort, ID))do:
29 while dQueue.isEmpty() == false:
30 s← dQueue.dequeue();
31 for dst in sMap[s].chains do
32 emit

CCC.route(Πi, dst, (Abort, sMap[s]));
33 dQueue← ∅;

reading from uncommitted states, we modify the state queue
to provide a rear interface that retrieves the tail element. The
protocol is set up with a dirty state queue and two empty
maps storing commitment votes in the dirty and prepared state
layer. The prepared and committed state is initialized as τ0i . We
maintain a mapping structure sMap that maps state transition
in the state queue to the execution Eid. A state transition based
on the latest updated state is added to the tail of the queue
(lines 8-10). After gathering all commitments in the dirty state
layer, the state transition is checked to be aborted or promoted
to the prepared state layer (lines 13-22). By checking the top



element of the dirty state queue is not triggered by Eid, the
state transition is aborted. All subsequent state transitions in
the queue are also removed since they are executed based
on the state transition of Eid (lines 15-17). Otherwise, the
state transition is deleted from the queue and promoted to the
prepared state (lines 19-22). Upon delivering all OK messages
for Eid, the state transition becomes persistent (lines 25-27). If
any Abort message is received, the prepared state is reverted,
and the dirty state queue is cleared with corresponding Abort
messages sent to other chains (lines 29-33).
Serializable commitment. For ease of presentation, the state
synchronization stage discussed above focuses on solely re-
solving inter-chain conflicts arising from the dirty state layer.
Similarly, concurrent state transitions in the prepared state
layer also lead to cascading inter-chain conflicts, akin to the
case illustrated in Fig. 6(b). A naive solution to completely
eliminating inter-chain conflicts is introducing another settle-
ment layer, yet this results in an infinite exchange of messages.
To solve this problem, we introduce serializable commitment
to tackle cascading inter-chain conflicts with slight modifi-
cations in the state synchronization stage. Specifically, we
stipulate a serial commitment manner in the prepared state
layer to ensure no conflicts arise. We also utilize a state queue
to organize the caching of concurrent state transitions in the
prepared state layer. Upon the correct execution of the intra-
chain execution phase, rather than directly broadcasting an
OK message, the state transition is pushed to the tail of
the prepared state queue. The OK message is broadcast only
when the corresponding state transition reaches the top of the
prepared state queue, i.e., given concurrent states in the queue,
their OK messages are broadcast in a serial order.

Alg. 3 outlines the design for serially emitting OK mes-
sages to other blockchains to avoid cascading conflicts. We
set up the prepared state with a pQueue to store all con-
current state transitions. After a state transition is promoted
to the prepared state layer, an OK message is routed to
other blockchains if the state is at the peak of the pQueue
(lines 3-6). Upon delivering all OK messages for Eid from
other blockchains, the corresponding state is committed to the
persistent storage by calling the dequeue interface (line 10).
After commitment, the OK message for the next element is
routed to other blockchains (lines 11-15). If an Abort message
is received, all elements in both queues are aborted since those
state transitions are based on the aborted state (line 16).

Another problem incurred by serial execution in the pre-
pared state layer is deadlock. Considering two concurrent
executions denoted as E1 and E2 executed in a different
order in distinct blockchains, some blockchains first lock on
E1 while others first lock on E2, leading to infinite waiting
since no Abort message will be emitted. To resolve the
deadlock, blockchains exchange the information of the top
elements in their prepared state queue. Upon receiving an OK
message, blockchains first check whether its corresponding
state transition exists in the prepared state queue but is not
the top element. If so, a tentative abortion message t-Abort
with the top element is sent back to the source of the OK

Algorithm 3: Serializable commitment

1 Init:
2 pQueue← [τ0i ];

// same as lines 2-5 in Alg. 2

//same as lines 6-19 in Alg. 2
3 pQueue.enqueue(s);
4 if pQueue.peek() == s then
5 for dst in ID.chains do
6 emit CCC.route(Πi, dst, (OK, ID));

7 upon event CCC.deliver(src,Πi, (OK, ID))do:
8 id← ID.eid;
9 txV otes(prep)[id] ← txV otes(prep)[id] ∪ {src};

10 if |txV otes(prep)[id]| == |ID.chains| then
11 committed← pQueue.dequeue();
12 if pQueue.isEmpty() == false then
13 ID ← sMap[pQueue.peek()];
14 for dst in ID.chains do
15 emit CCC.route(Πi, dst, (OK, ID));

16 upon event CCC.deliver(src,Πi, (Abort, ID))do:
// abort all elements in dQueue and pQueue as
lines 29-33 in Alg. 2

message. If the element in the t-Abort message is also not the
top element in the source blockchain, indicating a deadlock,
Abort messages are broadcast by the source chain to abort
both transactions.

Avalon achieves the serializability property in terms of
concurrent cross-chain executions, referred to as serializable
atomic state transition. Informally, given multiple concurrent
executions, the property ensures all participating blockchains
commit the state transitions in an identical serializable order.
We expect to formalize this property in Section VI to enrich
the research of classic serializability [36], [37] that mainly
focuses on a single replicated state machine.

VI. CORRECTNESS ANALYSIS

Correctness analysis covers two main aspects: complete
atomicity and termination. To better demonstrate atomicity, we
define atomic state transition for any pair of states.

• Atomic state transition. Given any pair of states τ ji and
τ j

′

i′ accessed by execution Eid, if either both state transi-
tion τ ji

id−→ τ j+1
i and τ j

′

i′
id−→ τ j

′+1
i′ are eventually applied

or neither of them is applied, atomic state transition is
triggered by Eid.

The above definition closely resembles our informal defini-
tion of complete atomicity in Section II-C. Moreover, with the
above definition that focuses on one single execution, we can
extend it to serializable atomic state transition where multiple
concurrent executions exist.

• Serializable atomic state transition. Given any pair of
states τ ji and τ j

′

i′ accessed by concurrent executions
E ← {Ea, Ea+1, ..., Ea′}, if all concurrent executions



eventually trigger atomic state transition in identical order
as if they are executed sequentially, serializable atomic
state transition is triggered by E .

The complete atomicity property states that with a finite
input set of executions, all participating blockchains trigger
serializable atomic state transition. Informally, a subset E ′ ⊂ E
of concurrent executions modify the states in identical order
and the rest E ∩ (¬E ′) is aborted. The termination property
ensures all possible state transitions end within a predefined
finite time. To ensure the above properties, we assume each
blockchain is a correct replicated state machine. The CCC
primitive enables interoperability among blockchains and sat-
isfies authenticity and reliability. We defer detailed proofs to
Section A of the Appendix.
Theorem 1 (Complete atomicity). Given a finite set of
concurrent executions E ← {Ea, Ea+1, ..., Ea′} on m distinct
blockchains Π1, Π1, ...,Πm input in arbitrary orders, for the
states of any pair of blockchains, E eventually triggers serial-
izable atomic state transition.
Theorem 2 (Termination). Given a finite set of concurrent
executions E ← {Ea, Ea+1, ..., Ea′} on m distinct blockchains
Π1, Π2, ...,Πm input in arbitrary orders, all transactions in E
are committed or aborted within a finite time period.

VII. IMPLEMENTATION

We implement Avalon within Cosmos ecosystem [12] that
instantiates multiple interoperable blockchains natively. The
Avalon protocol is implemented within smart contract logic
written in Rust with CosmWasm [38]. We use IBC [21] of the
Cosmos-SDK to enable cross-chain communication.

Before diving into the details, we first briefly discuss the
feasibility of facilitating Avalon with Cosmos. Cosmos-SDK
enables developers to build interoperable blockchains without
implementing basic blockchain functionalities like a fault-
tolerant consensus protocol or transaction execution logic,
which motivates us to deploy cross-chain execution logic upon
multiple Cosmos blockchains (i.e., zones). Smart contract
logic is implemented with the CosmWasm library that allows
developers to define arbitrary functions. The IBC module
consists of a network transport layer maintained by IBC clients
that enables authenticated connections between blockchains to
exchange data and an application layer that defines the sending
and receiving logic on the server and receiver sides.

We deploy m interoperable blockchains in the ecosystem to
instantiate Avalon. On each blockchain, the protocol consists
of an Avalon smart contract as the proxy module and dApp
contracts as the execution module, as shown in Fig. 7. The
proxy module implements the Avalon protocol, while the
execution module handles application-specific logic for cross-
chain execution. We consider m transactions, each executed on
a different blockchain. Note that Avalon can hold any number
of transactions and an execution does not necessarily cover all
blockchains. During execution, each transaction is submitted to
the proxy module of each underlying blockchain. The proxy
module first calls the application contract for execution and
triggers state transitions in the dirty state layer. After that,
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the state transition is relayed to other blockchains along with
its proof. If a state transition is committed, the application
contract is called by the Avalon contract to modify its state.

VIII. EVALUATION

In this section, we evaluate the prototype of Avalon in terms
of its performance scalability and its resilience to conflicts.
Our experimental results answer the following questions:
(1) How is the system scalability in terms of the number of

underlying blockchains?
(2) How is the gas cost and latency performance of Avalon?
(3) What is the impact of the increased concurrency level on

the performance of the system?
Experimental setup. We evaluate Avalon through experiments
on AWS. We deploy the testbed on the ECS.m5d.xlarge
instance with 4vCPUs and 16 GB memory. Concretely, we
deploy a varying number of Cosmos blockchains using the
wasmd1 library which is implemented with Tendermint [39]
for consensus and Leveldb2 for persistent storage. Each pair
of blockchains is connected via a relayer instantiated with
the relayer3 library. As for the experimental settings, we set
the number of blockchains as 3, 6, and 9 to evaluate system
scalability. Each blockchain is equipped with a client that
continuously submits transactions to initiate executions.
Metrics and benchmark. We evaluate the performance of
Avalon in terms of latency, gas cost with and without conflicts,
and abortion rate under conflicts. To remove noise from the
execution dependency graph, we set the dependency in a
simple sequential manner where an execution result is only
routed to one subsequent blockchain until the blockchain with
the largest index number is reached. Our benchmark without
conflicts consists of a single execution initiated by sending
a transaction to the head of the dependency. As for the
benchmark with conflicts, we increase the input concurrency
level by steadily shortening the input interval of transactions.
Moreover, our interest also includes the abortion rate of the
system when the orders of concurrent execution input to the

1https://github.com/CosmWasm/wasmd
2https://github.com/google/leveldb
3https://github.com/cosmos/relayer



TABLE I
PERFORMANCE OF Avalon WITHOUT CONFLICTS

m # of IBC Gas cost Latency

3 28 5.57M 15.1s
6 130 26.23M 34.7s
9 304 59.67M 59.2s

underlying blockchains are arbitrary and inconsistent. Inspired
by a recent work [40], we inject delays equally distributed
from 0 to 5 seconds of the client submitting transactions
to generate inconsistent input orders. The latency of Avalon
indicates the time elapsed from the execution of the first
transaction in the dirty state layer to the commitment of all
transactions involved. To reduce the impact of experimental
errors, each set of experiments is repeated three times. To il-
lustrate the average performance and the deviation of multiple
runs, we equip each point in the figure with an error bar.

A. System Performance Without Conflicts

In this experiment, we evaluate the performance of Avalon
in terms of gas cost, number of IBC messages, and latency
without conflicts. As illustrated in Table I, the gas cost and
the number of IBC messages of the prototype exhibit quadratic
complexity with respect to the number of blockchains, which
corresponds to our design. The gas cost of the protocol mainly
originates from the exchange of IBC messages since they
demonstrate a similar trend as the number of blockchains in-
creases. Based on the gas price [41] of the Cosmos blockchain
at the time of writing, the prototype can commit a message
with 60M gas usage that approximately costs $2.8 USD.

The protocol delivers a latency of tens of seconds, which
stems from two rounds to exchange the dirty and prepared
votes among all participating blockchains. Specifically, during
each round, the IBC clients spend one round trip to relay
messages and several additional round trips to update their
status and broadcast acknowledgments, with each round trip
normally taking 2 seconds. Moreover, the latency scales almost
linearly as the number of blockchains increases. This linearity
is due to the fact that relayers take a longer time to update
their status and broadcast acknowledgments under a more
extensive workload, resulting in increased latency. Notably, if
equipped with a more efficient relayer, which is of independent
interest to our approach, Avalon is expected to deliver sub-
linear latency as the number of rounds needed for commitment
is constant according to the protocol design.

B. Performance With Conflicts

In this set of experiments, we evaluate performance with
conflicts. Our experimental metrics include the latency, gas
cost, and abortion rate as concurrency and disorder arise. To
model concurrency, we consider a set of concurrent executions
with clients continuously submitting transactions. We vary the
time interval of submitting a transaction to model different
concurrency levels. To model disorders, we inject delays to
the clients submitting transactions. Note that the maximum
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delay is larger than two round trips of the IBC clients and is
sufficient to simulate input disorders. For latency, we focus on
executions that are successfully committed. Therefore, disor-
ders have little impact on latency performance as disorders are
expected only to introduce concurrency chaos but not impact
any single execution. We evaluate the gas cost and abortion
rate with and without disorders.

Fig. 8 demonstrates the latency of Avalon under various
concurrency levels. When the time interval is large enough to
cover multiple IBC round trips, indicating a low concurrency
level, transactions hardly conflict with each other, and the
latency is almost identical to that without conflicts. Under
a high concurrency level, the latency rises significantly. We
investigate that this is due to the weak ability of the relay-
ers to handle concurrent transactions. Specifically, a relayer
can only update its state after receiving an acknowledgment
message corresponding to a previously relayed message. By
progressively reducing the time interval, the latency eventually
saturates, indicating the system has reached its peak load.

Fig. 9 depicts the system performance in terms of gas
cost per successful execution and the abortion rate of exe-
cutions. We vary the levels of concurrency and disorders and
evaluate the robustness of the system. Similar to the latency
performance, if the time interval is large enough to cover
several IBC round trips and no delay injection is applied to
the clients, the system delivers comparable performance to
that without conflicts. With the level of either concurrency or
disorders increases, the gas cost per successful execution and
abortion rate increase but the system still delivers acceptable
performance under both high concurrency and disorders, with
at most 50% degradation.

IX. RELATED WORK

Blockchain interoperability technology [3] plays a crucial
role in breaking down barriers between distinct blockchains
and facilitates seamless integration. Current blockchain inter-
operability efforts focus on the following two aspects: i) cross-
chain bridge, which enables arbitrary data to be efficiently
transmitted across blockchains, and ii) atomicity of cross-
chain transaction execution, which ensures the correctness and
completeness of the entire cross-chain dApp logic. Below, we
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TABLE II
COMPARISON OF Avalon WITH STATE-OF-THE-ART PROTOCOLS

System
Financial
atomicity

Complete
atomicity

Conflict
resolution

Serializability Security

He-HTLC [24] ✓ × N/A N/A ✓
HyperService [2] ✓ × N/A N/A ✓
Lu et al. [9] ✓ △ Serial locks ✓ DoS

Avalon (our work) ✓ ✓
OCC +

state sync
✓ ✓

“✓”: fully meet this property; “×”: cannot meet this property; “△”:
meet this property at the cost of security

illustrate relevant works on these two aspects and detail the
comparison of Avalon with approaches on atomicity.

A. Cross-chain Bridges

Cross-chain bridges can be classified into two categories
based on their trust assumptions: committee-based bridges and
client-based bridges. Committee-based bridges [19], [20], [42]
assume a static committee eligible to vote for the transmitted
data, and data with a majority of votes are considered valid.
Client-based bridges [21], [25], [43], [44] eliminate the trusted
committee and take the approach of seamlessly verifying the
transmitted data with consensus metadata forwarded by cross-
chain clients. A recent work [18] leverages the security of light
clients and the simplicity of intermediate committees via an
ultra-light node mode.

Several works [2], [9], [45], [46] have attempted to employ
cross-chain bridges to construct a multi-chain world, of which
two very recent works [45], [46] secure the states of one
blockchain on multiple blockchains through replication. To
sum up, cross-chain bridges provide the basis for trusted cross-
chain communication in blockchain interoperability, which is
orthogonal to our work.

B. Atomicity

Table II compares Avalon with relevant works on atomicity.
Prior efforts [2], [24], [47]–[50] ensure financial atomicity with
a refund mechanism. For example, HyperService [2] constructs
an insurance contract containing sufficient funds to refund
the coins spent by executed transactions financially. However,
these works fail to fulfill complete atomicity as they cannot roll
back contract state updates. In terms of concurrency control
that covers the aspects of conflict resolution and execution

serializability, He-HTLC [24] focuses on secure pairwise token
transfers, and Hyperservice assumes the execution of a single
set of dependent transactions. Both works are proven secure
in their respective models.

The closest work to ours recently proposed by Lu et al. [9]
attempts to achieve complete atomicity with cached check-
points to revert invalid state transitions, adding one additional
round of consensus to perform state reverting. Besides, it
relies on a two-phase commit protocol orchestrated by a
coordinator to avoid conflicts, which requires locking states on
the respective blockchains before state commitment. However,
the overhead of serial locks is unclear, and the system can
only process one transaction at a time, performing poorly
with concurrent transactions. In contrast, our serial paradigm
within the prepared state layer limits concurrency but allows
concurrent transactions to be committed.

In contrast, Avalon fulfills complete atomicity with efficient
state commitment based on a layered state structure, removing
invalid state transitions on the top state layers before commit-
ment. Besides, instead of using the pessimistic lock, Avalon
follows the spirit of OCC and devises a state synchronization
protocol to efficiently coordinate executions on underlying
blockchains for execution serializability.

X. CONCLUSION

In this paper, we address the limitations of classic financial
atomicity in cross-chain dApps by introducing the concept
of complete atomicity. Our proposed Avalon, is a transaction
execution framework tailored for cross-chain interoperability,
ensuring no state transitions occur in case of failed executions.
Leveraging a multi-tier state layer and a state synchronization
protocol, Avalon guarantees complete atomicity and correct-
ness in concurrent cross-chain executions. Our formalization
and proof of Avalon’s layered commitments provide robust
assurances of its reliability. Avalon’s adaptability to different
consensus protocols further enhances its practicality. Evalua-
tion results underscore Avalon’s practical viability and efficacy
in handling complex cross-chain scenarios.
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APPENDIX

A. Proof of Theorems in Section VI

Theorem 1 (Complete atomicity). Given a finite set of
concurrent executions E ← {Ea, Ea+1, ..., Ea′} on m distinct
blockchains Π1, Π2, ...,Πm, for the states of any pair of
blockchains, E eventually triggers serializable atomic state
transition.

Proof. We model the case where E contains one single exe-
cution Ek as Case 1 and the case where E contains multiple
concurrent executions as Case 2. For Case 1 as a special case,
we prove Ea triggers atomic state transition. For Case 2, we
prove E triggers serializable atomic state transition.
Case 1: We prove atomic state transition in this case by
contradiction. Let τ ji and τ j

′

i′ denote the state of any pair
of blockchains Πi and Πi′ accessed by Ea but eventually
only one state is modified. Without loss of generality, we
consider the state transition τ ji

a−→ τ j+1
i is applied and the

state transition τ j
′

i′
a−→ τ j

′+1
i′ is aborted.

As the state is eventually committed and modified as τ j+1
i

permanently in blockchain Πi by Ea, sufficient dirty state
votes and prepare state votes must have been received by
replicas in Πi via the CCC primitive. Since the state transition
τ j

′

i′
a−→ τ j

′+1
i′ is aborted, at least one abortion message has

been broadcast via the CCC primitive either from the dirty
state layer or the prepared state layer. Combining both facts, at
least one corrupted blockchain has equivocated in either of the
two layers, conflicting with our assumption that all underlying
blockchains are correctly coordinated by SMR. Specifically,
equivocation in the dirty state layer indicates both a Merkle
inclusion proof and a Merkle nil proof have been generated for
the transaction on the corrupted blockchain, and equivocation
in the prepared state layer indicates both an OK message and
an Abort message are broadcast by a corrupted blockchain.
Case 2: We further divide this case into two contradictory
subcases and prove serializable atomic state transition each
by contradiction.

The first subcase depicts that the underlying blockchains
commit an inconsistent set of executions. Consider the states
τ ji and τ j

′

i′ of any pair of blockchains Πi and Πi′ accessed by
E ← {Ea, Ea+1, ..., Ea′}.

Let E i and E i′ denote the set of executions that modify the
blockchain states of blockchain Πi and Πi′ , respectively. If the
equation E i = E i′ does not meet, without loss of generality,
we consider an element Eb with Eb ∈ E i and Eb /∈ E i′ .
Similar to proofs in Case 1, the commitment of execution

Eb on blockchain Πi and abortion on blockchain Πi′ indicate
equivocation of at least one blockchain, a contradiction.

The second subcase depicts that the underlying blockchains
commit a consistent set of executions but not in identical order.
Consider the states τ ji and τ j

′

i′ of any pair of blockchains Πi

and Πi′ accessed by E ← {Ea, Ea+1, ..., Ea′}. Let Ee denote
the set of executions that truly modify the blockchain states
on Πi and Πi′ . Consider there exists two executions Ea and
Eb in Ee. Without loss of generality, Ea is committed before
Eb in Πi and the executions are committed in a reverse order
in Πi′ . The successful commitment of execution Ea in Πi

indicates that sufficient prepared votes are received by Πi

via CCC, including the vote from Πi′ , indicating Πi′ has
broadcast a prepared vote for Ea even though Ea is surely
not the top element in the prepared state queue. According
to our sequential commitment paradigm of the prepared state
layer, Πi′ has deviated from the protocol, contradicting our
assumption that all underlying blockchains are secure.

Theorem 2 (Termination). Given a finite set of concurrent
executions E ← {Ea, Ea+1, ..., Ea′} on m distinct blockchains
Π1, Π2, ...,Πm input in arbitrary orders, all transactions in E
are committed or aborted within a finite time period.

Proof. The proof for termination is straightforward and relies
on the correctness of the underlying blockchains and the
reliability of the CCC primitive. The key insight lies in that
any transaction that stays in either the dirty state layer or the
prepared state layer will be promoted to the next layer or
aborted within a finite time.

Considering transactions in the dirty state layer, the ter-
mination of transactions is ensured by a predefined timeout
parameter. After execution, the finality proof is broadcast
and forwarded to all blockchains eventually since the CCC
primitive satisfies reliability. If all involved transactions are
committed within the predefined time, the execution terminates
and promotes all state transitions to the prepared state layer. If
any transaction is not published on the blockchain, a motivated
counterparty can trigger the abortion phase by calling the abort
interface to all underlying blockchains.

For a transaction belonging to execution Eid, if it has
already been promoted to the prepared state layer, all un-
derlying blockchains must have successfully executed their
corresponding transactions in the dirty state layer. Given the
reliability of CCC, finality proofs of the transactions are
eventually delivered and broadcast and underlying blockchains
will generate an OK or Abort message according to the
rule of the dirty state layer. Moreover, the OK or Abort
message will eventually be delivered and processed by the
commitment policy in the prepared state layer. Within a finite
time, sufficient OK messages to commit the execution or
any Abort message will be delivered, thus guaranteeing the
termination property.


