
Quantum Implementation of LSH

Yujin Oh, Kyungbae Jang, and Hwajeong Seo

Hansung University, Seoul (02876), South Korea

oyj0922@gmail.com, starj1023@gmail.com, hwajeong84@gmail.com

Abstract. As quantum computing progresses, the assessment of cryp-
tographic algorithm resilience against quantum attack gains significance
interests in the field of cryptanalysis. Consequently, this paper imple-
ments the depth-optimized quantum circuit of Korean hash function
(i.e., LSH) and estimates its quantum attack cost in quantum circuits.
By utilizing an optimized quantum adder and employing parallelization
techniques, the proposed quantum circuit achieves a 78.8% improvement
in full depth and a 79.1% improvement in Toffoli depth compared to
previous the-state-of art works. In conclusion, based on the implemented
quantum circuit, we estimate the resources required for a Grover collision
attack and evaluate the post-quantum security of LSH algorithms.

Keywords: Quantum Circuit · Quantum Collision Attack · LSH.

1 Introduction

The advancement of quantum computing presents new challenges and opportu-
nities in cryptography. The parallel processing capability of quantum computers
can exponentially enhance the speed of breaking many traditional cryptographic
systems. Particularly, it enables finding solutions to classical hard problems such
as large-scale factorization and discrete logarithm problems at a much faster rate.

Moreover, the development in quantum computing allows for the discovery
and application of new quantum algorithms. These algorithms can be employed
to uncover vulnerabilities in currently used classical cryptographic systems. For
instance, Shor’s algorithm [14] demonstrated the ability to factorize large num-
bers efficiently, leading to the collapse of security in public-key cryptography
schemes such as RSA. Grover’s algorithm [7], on the other hand, reduces the
time complexity of cryptographic functions such as symmetric key encryption
and hash functions.

As quantum computing technology progresses further, there is numerous re-
search underway to assess the security of current cryptographic systems. These
studies involve implementing cryptographic systems as quantum circuits and
estimating quantum attack costs to assess security strength.

In this paper, we propose a depth-optimized quantum circuit of LSH [11],
which is a hash function included as validation subjects in the Korean Cryp-
tographic Module Validation Program (KCMVP). Additionally, based on the
quantum circuit, we estimate the cost of collision attack using Grover algorithm
for LSH.

2 Yujin Oh, Kyungbae Jang, and Hwajeong Seo

2 Background

2.1 Quantum Gates

In this section, we explain the quantum gates to implement our quantum circuit.
The Hadamard gate creates superposition states of qubits. The X gate, also
known as the Pauli-X gate, operates on a single qubit. It can invert the state of a
qubit, transforming |0⟩ state to |1⟩ and |1⟩ state to |0⟩. This operation is similar
to the classical NOT gate in traditional computing. The CNOT (Controlled-
NOT) gate uses two-qubit gate and performs a NOT operation on the target
qubit if the control qubit is in the state|1⟩. If the control qubit is in the |0⟩
state, the target qubit remains unchanged. The Toffoli gate, also known as the
CCNOT gate (Controlled-Controlled-NOT), uses two control qubits and one
target qubit. The Toffoli gate performs a NOT operation on the target qubit
only if both control qubits are in the state |1⟩. Thus, it is similar to the classical
AND operation. The Toffoli gate can be decomposed into a combination of gates
such as H, CNOT and T gates.

|0⟩ H
1√
2
(|0⟩+ |1⟩)

(a) H gate

|x⟩ X |∼ x⟩
(b) X gate

|x⟩ • |x⟩

|y⟩ |x⊕ y⟩
(c) CNOT gate

|x⟩ • |x⟩

|y⟩ • |y⟩

|z⟩ |z ⊕ (x · y)⟩
(d) Toffoli gate

Fig. 1: Quantum gates

2.2 The Grover algorithm

The Grover algorithm can find a solution for the n-qubit data (in a superposi-
tion state) with a complexity of O(

√
2n) (i.e., a square root speedup compared to

classical search of O(2n)). As such, Grover’s algorithm has an advantage in solv-
ing problems with high search complexity. Notably, extensive research has been
conducted on Grover’s algorithm for block ciphers and hash functions [8,10,13].
Grover’s algorithm consists of three major processes; Input setting, Oracle, Dif-
fusion operator.

Input setting. H gates are used to prepare an n-qubit in a superposition state
(|ψ⟩). As a result, an n-qubit input with a superposition state can represents 2n
cases as probabilities.

Quantum Implementation of LSH 3

H⊗n |0⟩⊗n
= |ψ⟩ =

(|0⟩+ |1⟩√
2

)
=

1

2n/2

2n−1∑
x=0

|x⟩ (1)

Oracle The target function (e.g., block ciphers or hash functions) is placed in
the oracle and returns the solution using the superposition state of input. To
accomplish this, the target function should be implemented using quantum gates
(i.e., a quantum circuit). If the quantum circuit finds a solution for the target
function (i.e., if f(x) = 1), the amplitude of the specific input in a superposition
state changes negatively (see Equation 3).

f(x) =

{
1 if Hash(x) = target output
0 if Hash(x) ̸= target output

(2)

Uf (|ψ⟩ |−⟩) =
1

2n/2

2n−1∑
x=0

(−1)f(x) |x⟩ |−⟩ (3)

Diffusion operator The diffusion operator enhance the probability for measuring
the solution returned by the oracle. Due to the fixed design of the diffusion oper-
ator and relatively low complexity compared to the oracle, it is often neglected
for the cost estimation in Grover’s search [6,10,8,12].

2.3 Quantum Collision Search

Grover’s search for an n-bit key of block ciphers or a pre-image of an n-bit hash
output for hash functions can be approached straightforwardly, as the complexity
of O(n) in classical computing is reduced to O(

√
n) in quantum computing.

However, quantum collision search for hash functions is more complicated and
can be approached in various ways.

There are various quantum collision attack algorithms using Grover’s algo-
rithm. Among them, the BHT algorithm [2] has a query complexity of O(2n/3).
However, this algorithm demands a notably large quantum memory, O(22n/3).
Also, Bernstein pointed out in [1] that this algorithm is controversial. Consid-
ering these aspects, we employ the CNS algorithm [3], which has a query com-
plexity of O(22n/5) and requires only O(2n/5) classical memory. Note that the
CNS algorithm can be parallelized to reduce the search complexity of O(2n/5).
By utilizing 2s quantum instances in parallel, the search complexity for finding
collisions is reduced to O(2

2n
5 − 3s

5), with s ≤ n
4 . In [9], the authors defined a

parallelization strength of s = n/6 to estimate the required quantum resources
for finding a collision in the SHA-2 and SHA-3 hash functions. Following this ap-
proach, we also define a parallelization strength of s = n/6 for finding a collision
in the LSH hash functions.

4 Yujin Oh, Kyungbae Jang, and Hwajeong Seo

2.4 Description of LSH Hash Function

LSH is a Korean cryptographic hash algorithm included among the valida-
tion subjects of the KCMVP. The LSH consists of LSH-256-224, LSH-256-256,
LSH-512-224, LSH-512-256. LSH-512-384 and LSH-512-512. LSH-256-n operates
based on a 32-word and LSH-512-n operates based on a 64-word. LSH operates
in three stages: Initialization, Compression, and Finalization.

Initaillization During the initialization process, a given input message un-
dergoes one-zero padding. Following this, the padded input message is divided
into 32-word array messages. Additionally, in the initialization, the 16-word array
hash chaining variables (CV (i)) are set as an initialization vector.

Compression The compression function consists of MsgExp and Step (Ms-
gAdd, Mix, and WordPerm) functions. The MsgExp function converts a 32-bit
word array message into a 16-word array. The MsgExp function process is as
follows in Equation 5.

M(i)
0 ← (M (i)[0], ...,M (i)[15]), M(i)

1 ← (M (i)[16], ...,M (i)[31])

M(i)
j ← (M

(i)
j [0], ...,M

(i)
j [15])Ns

j=2

M
(i)
j [l]←M

(i)
j−1[l]⊞M

(i)
j−2[τ(l)] for 0 ≤ l ≤ 16

(4)

Step function The step function is composed of MsgAdd, Mix, and Word-
Perm functions. The MsgAdd inputs are CV (i) = T [0], ..., T [15] and M

(i)
j =

(M
(i)
j [0], ...,M

(i)
j [15])Ns

j=2. The MsgAdd process is MSGADD(T,M) ← (T [0] ⊕
M [0], ..., T [15]⊕M [15]). The Mix function updates the 16-word T = T [0], ..., T [15].
In this function, the 16-word array T is split into upper eight words and lower
eight words, which are then used as input. The operation of the Mix func-
tion involves modular addition, XOR, and left rotation. The process of the
Mix function is shown in Figure 2. The WordPerm function is defined by X =
(X[0], ...X[15])← (X[σ(0)], ...X[σ(15)]).

Quantum Implementation of LSH 5

𝑆𝐶![0] ⊕

𝑻[𝟎] 𝑻[𝟖]

𝑻[𝒍] 𝑻[𝒍 + 𝟖]

⊞

⊞

⊞

⋘𝜶𝒋

⋘𝜷𝒋

⋘ 𝜸𝟎

Fig. 2: Mix function

Finallization The finalization function produces an n-bit hash value, denoted
as h, obtained from the final chaining variable. The finalization process is as
follows:

h← (CV t[0]⊕ CV t[8], ..., CV t[7]⊕ CV t[15]),
h← (h[0] || ... ||h[w − 1])[0:n−1]

(5)

3 Quantum Circuit Implementation of LSH

This section describe our quantum circuit implementation of LSH. Our main
focus is to optimize the circuit depth for the efficiency of the Grover collision
attack. For the sake of simplicity, we primarily focus on explaining LSH-256-256.
We set the input length to be equal to the hash length for implementation.

3.1 Quantum adder for Optimizing the Depth

To implement the MsgExp function and Mix function, we use a quantum adder.
Quantum adders can indeed be designed in various ways, and the choice depends
on optimization techniques. Commonly used types of quantum adders include
the ripple-carry adder (RCA) and the carry-lookahead (CLA) adder.

The RCA adder operates in a sequential manner, where it calculates the
carry-out from the previous stage before proceeding with the addition in the
next stage. This sequential operation leads to a high depth of the adder, as each
stage depends on the carry-out from the previous stage.

On the contrary, the CLA adder accelerates addition by pre-computing carry
values for each stage. It adds extra circuits to calculate carry values in advance,
determining whether a carry will occur at each stage. This pre-calculation is

6 Yujin Oh, Kyungbae Jang, and Hwajeong Seo

processed in parallel, speeding up the overall addition process and reducing the
depth of the quantum circuit.

A previous work used a Cuccaro adder [4], an improved ripple-carry adder.
This adder is implemented in-place operation and requires only one ancilla qubit,
(2n − 3) Toffoli gates, (5n − 7) CNOT gates, and achieves a circuit depth of
(2n+ 2).

In our case, we utilize a Draper adder [5], which is a carry-lookahead adder.
This adder can be implemented both in-place and out-of-place. Table 1 compares
the resource estimation for 32-bit adders used in LSH-256-n application. In Table
1, the out-of-place Draper adder requires approximately twice the depth com-
pared to the in-place adder, necessitating 32-bit output qubits for each addition.
With a total of 544 adders, 17,408 (544 × 32) qubits are garbage qubits. Hence,
we opt for the in-place Draper adder. By using Draper in-place adders, we can
reuse all ancilla qubits (53 qubits) except for the input and output qubits in
other operations. Although it entails a higher depth than the out-of-place adder,
we employ adders in parallel within each function (described in Section 3.2 and
Section 3.3). This allows us to conserve 17,408 qubits instead of allowing for a
higher depth of about 400.

Table 1: Comparison of quantum resources required for adder (32-bit).
Adder Operation #CNOT #Toffoli Toffoli depth #Qubit (reuse) Depth

Cuccaro [4] in-place 153 61 61 65 (1) 66

Draper [5]
in-place 123 254 22 117 (53) 28

out-of-place 94 127 11 118 (22) 14
※: Estimation of undecomposed resources

3.2 Parallel addition of MsgExp and Mix Functions

In the MsgExp function, 16 adders are needed to update M(i)
j . According to

Section 3.1, we can initially allocate 53 ancilla qubits and reuse them throughout.
However, in this scenario, the adders are executed sequentially, increasing the
depth of the circuit. To optimize the circuit depth which is our purpose, we
employ addition in parallel by allocating more ancilla qubits. To process 16
adders in parallel in the MsgExp function, 848 (16 × 53) ancilla qubits are
required.

Similarly, in the Mix function, 24 (8 × 3) adders are used and 8 out of
the 24 adders can be operated simultaneously. In other words, 8 adders can be
processed in parallel, and this parallel addition is repeated a total of 3 times.
In this scenario, the ancilla qubits used in the MsgExp function can be reused.
Therefore, there is no need to allocate additional ancilla qubits for the adders in
the Mix function. As a result, 848 ancilla qubits are initially allocated at once.

Quantum Implementation of LSH 7

However, due to the reuse of qubits, the depth may increase (the description
continues in Section 3.3).

Table 2 shows the comparison of quantum resources required for MsgExp
and Mix function. The parallel operations greatly reduce the toffoli depth and
full detph compared to the sequential operations.

Table 2: Comparison of quantum resources required for each component.
Function Operation #CNOT #Toffoli Toffoli depth #Qubit Depth

MsgExp
Sequential 1,968 4,064 352 1,077 433
Parallel 1,968 4,064 22 1,872 28

Mix
Sequential 2,952 6,096 528 565 649
Parallel 2,952 6,096 66 936 84
※: Estimation of undecomposed resources

3.3 Combined Architecture of Compress Function

Within the Compression function, the MsgExp function, and the Mix function
can operate independently. However, due to the ancilla qubit reuse in the Mix
function, these functions cannot operate independently. While this architecture
can reduce the number of qubits, it increases the circuit depth due to the se-
quential operations of high complexity (as shown in Figure 3). To optimize the
circuit depth, we execute the MsgExp function and Mix function in parallel by
allocating additional ancilla qubits as shown in Figure 4. This parallel execu-
tion method allows us to effectively reduce the overall circuit depth, improving
efficiency.

ancilla0 • • • • · · · • • ancilla0

Message • • MsgExp2 • · · · • MsgExpn • Message

CV ADD Mix&Perm0 ADD Mix&Perm1 ADD Mix&Perm2 · · · ADD Mix&Permn−1 ADD CV

Fig. 3: Compression function in [15]

ancilla0 • • · · · • ancilla0

Message • • MsgExp2 • MsgExp3 · · · • MsgExpn • Message

CV ADD Mix&Perm0 ADD Mix&Perm1 ADD Mix&Perm · · · ADD Mix&Permn−1 ADD CV

ancilla1 • • • · · · • ancilla1

Fig. 4: Proposed Compression Function Architecture

Figure 5 shows our proposed Compression function. Specifically, the i-th Mix
function in Mix function and the i+1-th Message Expansion function can execute

8 Yujin Oh, Kyungbae Jang, and Hwajeong Seo

in parallel, effectively reducing the circuit depth. To enable this parallel process,
we additionally allocate 424 (8 × 53) ancilla qubits for Mix function. Thus,
we initially allocate 1,272 ancilla qubits at once and reuse them each round.
Algorithm 1 represents the overall process of Compress function. By allocating
two sets of ancilla qubits, we can parallelize the even-round Mix function with
the odd-round MsgExp function, and the odd-round Mix function with the even-
round MsgExp function.

𝐶𝑉 !

𝑀𝑠𝑔𝐸𝑥𝑝"

𝑀#
(!)

𝐴𝐷𝐷! 𝑀𝐼𝑋! 𝑃𝑒𝑟𝑚! 𝐴𝐷𝐷" 𝑀𝐼𝑋" 𝑃𝑒𝑟𝑚"

𝑀&
(!)

𝑀𝑠𝑔𝐸𝑥𝑝&

𝐴𝐷𝐷#!"# 𝑀𝐼𝑋#!"# 𝑃𝑒𝑟𝑚!!"# 𝐴𝐷𝐷

𝑀𝑠𝑔𝐸𝑥𝑝'#	

𝑀'#
(!)𝑀'#$%

(!)𝑀)
(!)

𝐴𝐷𝐷$ 𝑀𝐼𝑋$ 𝑃𝑒𝑟𝑚&

	𝑀(!) ⋯

⋯

⋯

parallel parallel parallel

𝐶𝑉 !*#

Fig. 5: Proposed Compression function Architecture

Table 3 shows the comparision of quantum resources required for Compres-
sion function. In parallel process, only the depth of the Mix functions is estimated
because it has a higher depth compared to the MsgExp function. Consequently,
the process of the Compression and the Mix functions in parallel demonstrates
lower depth compared to processing them sequentially.

Table 3: Comparison of quantum resources required for the Compression func-
tion.

Function Operation #CNOT #Toffoli Toffoli depth #Qubit Depth

Compression
Sequential 139,776 260,096 2,266 2,384 2,873
Parallel 139,776 260,096 1,716 2,808 2,198

※: Estimation of undecomposed resources

4 Performance & Evaluation

In this section, we provide an estimated quantum resources and the costs of
Grover collision attack of our LSH quantum circuit implementation comparing
the previous work. For LSH-256-n, the only differences lie in the constant value
and the hash length, while the overall operation remains identical. Therefore,

Quantum Implementation of LSH 9

Algorithm 1: Quantum circuit implementation of Compress function.
Input: Meven, Modd CV , α, β, SC, ancilla0, ancilla1

Output: Meven, Modd, CV , 424 qubit array-ancilla0, 848 qubit array-ancilla1

1: CV ← MsgAdd(Meven, CV)
2: CV ← Mix(CV , αeven, βeven, SC, ancilla0)
3: CV ← WordPerm(CV)

4: CV ← MsgAdd(Modd, CV)
5: CV ← Mix(CV , αodd, βodd, SC, ancilla0) ▷ Parallelization 1
6: CV ← WordPerm(CV)

7: for 1 ≤ i ≤ 13 do
8: Meven ← MsgExp(Meven, Modd, ancilla1) ▷ Parallelization 1
9: CV ← MsgAdd(Meven, CV)

10: CV ← Mix(CV , αeven, βeven, SC, ancilla0) ▷ Parallelization 2
11: CV ← WordPerm(CV)

12: Modd ← MsgExp(Meven, Modd, ancilla1) ▷ Parallelization 2
13: CV ← MsgAdd(Modd, CV)
14: CV ← Mix(CV , αodd, βodd, SC, ancilla0) ▷ Parallelization 1
15: CV ← WordPerm(CV)
16: end for

17: Meven ← MsgExp(Meven, Modd, ancilla1) ▷ Parallelization 1
18: CV ← MsgAdd(Meven, CV)

19: return CV

all estimated resources, excluding X gates, remain the identical. Similarly, the
same applies to LSH-512-n. Therefore, we will only compare LSH-256-256 and
LSH-512-512.

Table 4 shows the comparison of the decomposed quantum resources required
for implementations of LSH. In [15], the decomposed quantum resources were
not provided, so we estimate the quantum resources based on the undecomposed
resources provided in the paper.

As shown in Table 4, we can observe that our implementation, which applies
Cuccaro adders (the same adder as [15]) and parallelization method utilizes 8
more qubits compared to [15]. However, it reduces the full depth by approx-
imately 12,000. Additionally, applying the Draper adder further increases the
qubit usage, but it significantly reduces the full depth. To assess the trade-off
between qubits and depth, we provide metrics TD-M , FD-M , TD2-M and
FD2-M . As a result, our proposed quantum circuit achieves the optimized per-
formance across all trade-off metrics.

Based on the estimated resources of the LSH quantum circuit, we can esti-
mate the cost of collision attacks on LSH. To estimate the collision attack cost

10 Yujin Oh, Kyungbae Jang, and Hwajeong Seo

for LSH, we adopt the CNS algorithm described in Section 2.3. The CNS algo-
rithm has the complexity of 2n

5 −
3s
5 (s ≤ n

4). According to [9], they set s = n
6

to define suitable criteria for NIST post-quantum security levels, and we follow
that approach. Furthermore, since most of the quantum resources are used in
implementing the target cipher in the quantum circuit, the overhead of the diffu-
sion operator can be considered negligible compared to the oracle. Additionally,
the Grover oracle consists of LSH quantum circuit twice consecutively. The first
constructs the encryption circuit, and the second operates the encryption circuit
in reverse to return to the state before encryption. As a result, the oracle ne-
cessitates twice the cost of implementing the quantum circuit, excluding qubits.
Consequently, the cost of Grover’s search for LSH is approximately 2 × 2(

2n
5 − 3s

5)

× Table 4, as shown in Table 5. Since the cost of collision attacks varies depend-
ing on the input and output lengths, we present the resource costs for all LSH
parameters.

Table 4: Quantum resources required for implementations of LSH.
Cipher Source #CNOT #1qCliff #T

Toffoli depth #Qubit Full depth
TD-M FD-M TD2-M FD2-M

(TD) (M) (FD)

LSH-256-256
[15] 545,536 187,813 437,248 6,283 1,552 50,758 1.16 · 223 1.17 · 226 1.78 · 235 1.82 · 241

Ours-CDKM 545,536 187813 437,248 4,758 1,560 38,483 1.77 · 222 1.79 · 225 1.03 · 235 1.05 · 241

Ours-Draper 1,700,608 306,947 1,820,672 1,716 2,808 13,647 1.15 · 222 1.14 · 225 1.93 · 232 1.90 · 238

LSH-512-512
[15] 1,203,760 418,369 966,000 13,875 3,088 111,532 1.28 · 225 1.28 · 228 1.08 · 239 1.09 · 245

Ours-CDKM 1,203,760 418,369 966,000 10,500 3,096 84,451 1.94 · 224 1.95 · 227 1.24 · 238 1.26 · 244

Ours-Draper 4,030,000 736,569 2,614,473 2,028 5,832 17,385 1.41 · 223 1.51 · 226 1.40 · 234 1.60 · 240

Table 5: Costs of the Grover’s collision search for LSH.
Cipher

#Gate Full depth T -depth #Qubit
G-FD FD-M Td-M FD2-M Td2-M

(G) (FD) (Td) (M)

LSH-256-224 1.65 · 289 1.5 · 281 1.51 · 280 1.72 · 248 1.23 · 2171 1.29 · 2130 1.3 · 2129 1.95 · 2211 1.97 · 2209

LSH-256-256 1.25 · 299 1.13 · 291 1.14 · 290 1.08 · 254 1.42 · 2190 1.23 · 2145 1.24 · 2144 1.41 · 2236 1.42 · 2234

LSH-512-224 1.96 · 290 1.91 · 281 1.78 · 280 1.79 · 249 1.87 · 2172 1.71 · 2131 1.6 · 2130 1.64 · 2213 1.43 · 2211

LSH-512-256 1.49 · 2100 1.45 · 291 1.35 · 290 1.13 · 255 1.07 · 2192 1.64 · 2146 1.53 · 2145 1.18 · 2238 1.03 · 2236

LSH-512-384 1.96 · 2138 1.91 · 2129 1.78 · 2128 1.42 · 276 1.87 · 2268 1.36 · 2206 1.27 · 2205 1.3 · 2336 1.13 · 2334

LSH-512-512 1.96 · 2138 1.91 · 2129 1.78 · 2128 1.42 · 276 1.87 · 2268 1.36 · 2206 1.27 · 2205 1.3 · 2336 1.13 · 2334

5 Conclusion

In this work, we focused on optimizing the depth of quantum circuits for the
Korean cryptographic hash function LSH. To optimize the depth, we use opti-
mized quantum adders and parallelization. Our quantum circuit implementation
of LSH achieves a significant improvement in depth over 78.8% compared to the
approach presented in [15]. Additionally, the Toffoli depth sees an enhancement
of more than 79.1%.

Quantum Implementation of LSH 11

Through the depth-optimized implementation, we also obtain the optimized
quantum resources of Grover collision attack for LSH. Although NIST provide
the post-quantum security level and quantum attack costs for symmetric key
ciphers, they do not provide the specific quantum cost for hash functions. If
NIST defines criteria for hash functions, we will compare our results with those
criteria.

References

1. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
sharcs obsolete. SHARCS 9, 105 (2009) 3

2. Brassard, G., Hoyer, P., Tapp, A.: Quantum algorithm for the collision problem.
arXiv preprint quant-ph/9705002 (1997) 3

3. Chailloux, A., Naya-Plasencia, M., Schrottenloher, A.: An efficient quantum colli-
sion search algorithm and implications on symmetric cryptography. In: Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory
and Applications of Cryptology and Information Security, Hong Kong, China, De-
cember 3-7, 2017, Proceedings, Part II 23. pp. 211–240. Springer (2017) 3

4. Cuccaro, S., Draper, T., Kutin, S., Moulton, D.: A new quantum ripple-carry
addition circuit. arXiv (2008), https://arxiv.org/pdf/quant-ph/0410184.pdf 6

5. Draper, T.G., Kutin, S.A., Rains, E.M., Svore, K.M.: A logarithmic-depth quantum
carry-lookahead adder. arXiv preprint quant-ph/0406142 (2004) 6

6. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s al-
gorithm to AES: Quantum resource estimates. In: Takagi, T. (ed.) Post-Quantum
Cryptography. pp. 29–43. Springer International Publishing, Cham (2016) 3

7. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Pro-
ceedings of the twenty-eighth annual ACM symposium on Theory of computing.
pp. 212–219 (1996) 1

8. Jang, K., Baksi, A., Kim, H., Song, G., Seo, H., Chattopadhyay, A.: Quantum
analysis of AES. Cryptology ePrint Archive, Paper 2022/683 (2022), https://
eprint.iacr.org/2022/683, https://eprint.iacr.org/2022/683 2, 3

9. Jang, K., Lim, S., Oh, Y., Kim, H., Baksi, A., Chakraborty, S., Seo, H.: Quantum
implementation and analysis of sha-2 and sha-3. Cryptology ePrint Archive (2024)
3, 10

10. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover Ora-
cles for quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y.
(eds.) Advances in Cryptology - EUROCRYPT 2020 - 39th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Za-
greb, Croatia, May 10-14, 2020, Proceedings, Part II. Lecture Notes in Computer
Science, vol. 12106, pp. 280–310. Springer (2020). https://doi.org/10.1007/
978-3-030-45724-2_10, https://doi.org/10.1007/978-3-030-45724-2_10 2, 3

11. Kim, D.C., Hong, D., Lee, J.K., Kim, W.H., Kwon, D.: Lsh: A new fast secure hash
function family. In: Information Security and Cryptology-ICISC 2014: 17th Inter-
national Conference, Seoul, South Korea, December 3-5, 2014, Revised Selected
Papers 17. pp. 286–313. Springer (2015) 1

12. Liu, Q., Preneel, B., Zhao, Z., Wang, M.: Improved quantum circuits for AES:
Reducing the depth and the number of qubits. Cryptology ePrint Archive, Paper
2023/1417 (2023), https://eprint.iacr.org/2023/1417, https://eprint.iacr.
org/2023/1417 3

https://arxiv.org/pdf/quant-ph/0410184.pdf
https://eprint.iacr.org/2022/683
https://eprint.iacr.org/2022/683
https://eprint.iacr.org/2022/683
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://eprint.iacr.org/2023/1417
https://eprint.iacr.org/2023/1417
https://eprint.iacr.org/2023/1417

12 Yujin Oh, Kyungbae Jang, and Hwajeong Seo

13. Rahman, M., Paul, G.: Grover on katan: Quantum resource estimation. IEEE
Transactions on Quantum Engineering 3, 1–9 (2022) 2

14. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factor-
ing. In: Proceedings 35th annual symposium on foundations of computer science.
pp. 124–134. IEEE (1994) 1

15. Song, G., Jang, K., Kim, H., Seo, H.: A parallel quantum circuit implementations
of lsh hash function for use with grover’s algorithm. Applied Sciences 12(21), 10891
(2022) 7, 9, 10

	Quantum Implementation of LSH

