
Practical Non-interactive Multi-signatures, and a
Multi-to-Aggregate Signatures Compiler

Matthieu Rambaud
Télécom Paris

Christophe Levrat
Inria Saclay

Abstract—In a fully non-interactive multi-signature, resp.
aggregate-signature scheme (fNIM, resp. fNIA), signatures issued
by many signers on the same message, resp. on different messages,
can be succinctly “combined”, resp. “aggregated”. fNIMs are used
in the Ethereum consensus protocol, to produce the certificates
of validity of blocks which are to be verified by billions of
clients. fNIAs are used in some PBFT-like consensus protocols,
such as the production version of Diem by Aptos, to replace the
forwarding of many signatures by a new leader. In this work
we address three complexity bottlenecks. (i) fNIAs are costlier
than fNIMs, e.g., we observe that verification time of a 3000-wise
aggregate signature of BGLS (Eurocrypt’03), takes 300x longer
verification time than verification of a 3000-wise pairing-based
multisignature. (ii) fNIMs impose that each verifier processes
the setup published by the group of potential signers. This
processing consists either in verifying proofs of possession (PoPs),
such as in Pixel (Usenix’20) and in the IETF’22 draft inherited
from Ristenpart-Yilek (Eurocrypt’07), which costs a product of
pairings over all published keys. Or, it consists in re-randomizing
the keys, such as in SMSKR (FC’24). (iii) Existing proven security
bounds on efficient fNIMs do not give any guarantee in practical
curves with 256bits-large groups, such as BLS12-381 (used in
Ethereum) or BLS12-377 (used in Zexe). Thus, computing in
much larger curves is required to have provable guarantees.

Our first contribution is a new fNIM called dms, it addresses
both (ii) and (iii). It is as simple as adding Schnorr PoPs to
the schoolbook pairing-based fNIM of Boldyreva (PKC’03). (ii)
For a group of 1000 signers, verification of these PoPs is: 5+
times faster than for the previous pairing-based PoPs; and 3+
times faster than the Verifier’s processing of the setup in SMSKR
(and contrary to the latter, needs not be re-started when a new
member joins the group). (iii) We prove a tight reduction to the
discrete logarithm (DL), in the algebraic group model (AGM).
Given the current estimation of roughly 128 bits of security
for the DL in both the curves BLS12-381 and BLS12-377, we
deduce a probability of forgery of dms no higher than about 2−93

for a time 280 adversary. This reduction is our main technical
contribution. The only related proof before was for an interactive
Schnorr-based multi-signature scheme, using Schnorr PoPs. Our
approach easily fills a gap in this proof, since we take into account
that the adversary has access to a signing oracle even before
publishing its PoPs. But in our context of pairing-based multi-
signatures, extraction of the keys of the adversary is significantly
more complicated, since the signing oracle produces a correlated
random string. We finally provide another application of dms,
which is that it can be plugged in recent threshold signatures
without setup (presented by Das et al at CCS’23, and Garg et al
at SP’24), since these schemes implicitly build on any arbitrary
BLS-based fNIM.

Our second contribution addresses (i), it is a very simple
compiler: MtoA (multi-to-aggregate). It turns any fNIM into an
fNIA, suitable for aggregation of signatures on messages with a
prefix in common, with the restriction that a signer must not sign

twice using the same prefix. The resulting fNIA is post-quantum
secure as soon as the fNIM is, such as Chipmunk (CCS’23). We
demonstrate the relevance for Diem by applying MtoA to dms:
the resulting fNIA enables to verify 39x faster an aggregate of
129 signatures, over messages with 7 bits-long variable parts,
than BGLS.

I Introduction 1

II Preliminaries 4

III New definitions 5

IV MtoA: Multi to Aggregate Compiler 7

V dms 7

VI Proof of Theorem 4 9

VII Evaluation and Comparison 11

VIII Acknowledgements 13

Appendix A: Further formalization and Optimization
of MtoA 16

Appendix B: Details for Applications of dms 16

Appendix C: Details for application of MtoA to
consensus 17

Appendix D: Further details on related works 19

I. INTRODUCTION

In an aggregate signature scheme [23, 15, 77, 37, 73, 59,
25, 63, 30, 45, 68, 80, 89], a single short string takes the place
of n individual signatures by n signers on n messages. Our
focus is what we call fully non-interactive aggregate signature
schemes (fNIAs) [23, 15, 37, 73, 63, 45, 68, 80, 89]. They
offer an aggregation algorithm Ag which, roughly, takes as
input any multiset of triples of public key - message - valid
individual signature: (pki,mi,Σi)i ∈ [n], and outputs a single

aggregate signature Σ. Finally, there is a public verification
algorithm Vf which takes as input a purported aggregate
signature Σ with respect to a multiset of pairs of public key -
message: (pki,mi)i ∈ [n], and outputs a bit denoting acceptance
or rejection. Such schemes have the unforgeability property,
that acception implies that for any pair (ṗk, ṁ) in the multiset
such that the key Ẋ was generated by some honest process,
then it must have signed the corresponding message ṁ. Fully
non-interactive multisignature schemes (fNIMs) enable ag-
gregation only over identical messages. We then denote N the
number of messages, instead of n, and dub aggregation the
combination algorithm: Cb : m, (pki,Σi)i ∈ [N]→Σ . Pairing-
based fNIMs are used in the consensus protocol of Ethereum
[48, 50], they enable clients to verify that a block was voted
by enough validators [3].

Goal (i): reducing the efficiency gap between the verifica-
tion times of fNIAs and of fNIMs. In all pairing-based fNIAs
[15, 37, 73, 68, 80], following BGLS [23], the complexity of
the Verifier is at least a product of n+1 pairings. By contrast, in
nearly all pairing-based fNIMs [20, 77, 85, 21][22, §6][47, 56,
9], the online verification complexity of the Verifier is mostly
two pairings. Our terminology “online” is to differentiate from
the other task of the Verifier, which we will call “processing of
the group setup” and discuss separately. Concretely, in Table 8
we observe that the online verification time of the verifier
in any existing pairing-based fNIA, for 3000 signatures over
different message contents, is at least 300× higher than the
online verification of any of the previous pairing-based fNIMs
over 3000 signatures on identical message contents. Turning
to lattice-based fNIMs, the state of the art called Chipmunk
[52, 51] enjoys a verification 6.5× faster for N = 8192 than
the naive verification of individual Falcon signatures. Whereas,
there exists no public evaluation, to our knowledge, of the
Verifier runtimes of the state of the art lattice-based fNIAs [89,
1]. They consist of SNARKs of signatures, using the system
called Labrador [19], which has linear Verifier complexity.
Apart from them, the fNIA [45] was recently broken [29].

This efficiency gap is best illustrated by blockchain con-
sensus algorithms, say, among nC processes. The fastest ones
are known as “leader-based”: [61, 71, 58, 44] (their liveness
requires partial synchrony). The most recent implementation
used in production is the one of Facebook’s Diem21 ([44])
by Aptos. It proceeds by iterations called “rounds”. Under
good conditions, the leader of a new round in Diem21 only
has to combine (2/3)nC identical votes with a fNIM, into a
multi-signature dubbed a “quorum certificate” (QC), which it
multicasts. But if the leader of the previous round was corrupt
or the network not synchronous, then the current leader must
aggregate (2/3)nC signatures over different so-called “timeout
messages”. It multicasts the aggregate signature, called a
“timeout certificate”. Aggregation is done by Aptos ([5]) with
BGLS. Hence, already for (2/3)nC = 129, we observe in
Table 8 that verification of a timeout certificate is 49× slower
than verification of a QC. For convenience we recall Diem21
in Figure 9, for simplicity with aggregation instead instantiated
as a naive concatenation of signatures.

Goal (ii): reducing the complexity of processing of the
group setup. All pairing-based fNIMs [85, 24, 47, 21, 56, 9]
require costly additional tasks from the Verifier. Namely, the
group of potential signers must initially publish the outcome

of their group setup, which we call generically the “keys of the
group” and denote KG. The Verifier must then process KG,
we call this task processing of the group setup.

In a first category of fNIMs (MSP-pop [85, 22, 24], Pixel
and ASMP-pop [85, 47, 22, 24]), each signer incorporates
a so-called proof of possession (PoP): π into its public key:
pk = (X,π). The purpose of the PoP is to enforce (possibly
with a loose reduction) that its issuer “knows” a secret key
corresponding to X . PoPs thus somehow emulate the model
called “knowledge-of-secret-key” (kosk). The kosk assumes
that the adversary gives to the reduction a secret key for every
public key appearing in its forgery (excepted the target one).
Interest of the kosk model is that the security of the two
fastest known fNIMs: [20, 77] is proven only in the kosk. The
fNIM of Boldyreva [20] has verification complexity of only
two pairings, but without the kosk it is vulnerable to so-called
“rogue key attacks” [21]. There, the adversary creates a forgery
involving public keys, other than the target one, for which
it does not know corresponding secret keys. In all previous
works, the PoP π is equal to a pairing-based signature (BLS
[26]) on the public key itself. The Verifier then has to verify
the PoPs of all the keys: KG of the group of signers. In Table 6
we estimate that their (batched & optimized) verification for
an 2702-sized group takes 1947ms on a laptop. As clear from
Table 8, this time is orders of magnitude longer than the online
verification of a multi-signature.

In a second category of fNIMs (ASMP /
ASMP-pop [22], SMSKR [9] and SIG1 [27]), the processing
of the group setup consists in (re-)computing a so-called
verification key for the group, out of the list of their
published keys: KG In ASMP and SIG1 this verification
key is of constant size (at the cost of an interactive setup).
While in SMSKR, each signer in the group re-randomizes
its secret signing key based on all other published keys:
KG. The Verifier then has to compute the re-randomized
public keys accordingly: these will be the ones used for
verifying signatures (both individual and combined). Again,
as evidenced in Tables 6 and 8, this task is the bottleneck of
the Verifier since it takes three orders of magnitude longer
than the online verification of signatures. Worse: unlike
verification of PoPs, the group key must be re-computed each
time there is a new group member, since re-randomization
depends on the list of published keys: KG.

A last category of fNIMs (the blog version MSP-blog
[21, 56]) does not require processing of the group setup tasks,
beyond verification of membership of the keys in the subgroup
G2. But its online verification requires to compute a combined
verification key, equal to the sum of the re-randomizations of
the public keys of the signers. We note that this computation
is comparatively faster than computing re-randomized keys
separately, since it can be done in one single N -sized multi-
exponentiation (plus N times Nκ-sized hashes).

Goal (iii): achieving provable security for use with the
curves used in practice. In Table 7 we observe that no existing
fNIM is proven safe to use with the curves used in practice:
BLS12-381, adopted by Ethereum, and BLS12-377, proposed
by Zexe [31]. Despite these curves having a discrete-log-in-
subgroup (DL) problem of estimated security close to 128 bits
[70, 6], when instantiating with them the fNIMMSP-pop [85,
22, 24] (IETF draft standard 2022), we find that the proven

2

bound on the probability of a forgery after 280 clock cycles
is higher than 2−13. This estimate is optimistic, since under
the assumption that co-cdh would be as hard as DL. Other
pairing-based fNIMs [47, 21, 56, 9] are not either proven
secure with such curves (the proven formulas would give an
upper-bound higher than 1). Finally, the lattice-based fNIMs
[52, 51] have public keys of logarithmic size in the number
of signatures allowed, since they are equal to commitments
to vectors of one-time public keys. A first exception is the
fNIA called AS-4 (long version of Bellare-Namprempre-
Neven [15], following a trick of Katz-Wang [72]). But its
verification complexity is prohibitive, since it is a product of
N + 1 pairings, as in all related fNIA schemes. The second
and last exception is the recent scheme SIG1 of [27], but which
has a quadratic Verifier’s processing of keys (see Sec. VII and
below). So this raises the natural question of finding a fNIM
with tight reduction to the discrete logarithm (DL), and thus
usable with practical curves. This has been achieved so far with
multisignatures [42, 13] requiring two rounds of interaction,
and thus which are not usable in consensus protocols such as
Diem21 [44].

A. An Efficient Multi-to-Aggregate Compiler

We address Goal (i) by introducingMtoA: it is a compiler
which transforms any fNIM into a special-purpose fNIA. The
resulting fNIA applies to messages divided into two parts: a
common prefix τ , called the tag, and the remaining message
vi, of bitlength denoted |v|. The resulting fNIA is particularly
efficient when the length |v| of the variable contents vi is only
of a few bits.MtoA operates as follows. Each signer prepares
and publishes 2|v| public verification keys. To sign a message
mi = (τ, vi), it signs τ |v| times: each time using the public
key indicated by the j-th bit of vi, for j ∈ [|v|]. As all the
signatures of all signers are on the same τ , the verification
cost is equal to verifying a combined multisignature. We see
that a signer should not sign two different messages: vi and
v′i that share the same tag τ (otherwise the adversary could
cherry-pick signed bits from both vi and v′i to forge another
signature). For this reason, the resulting fNIA is called “one-
time-tagged”.

1) Performance and Applications of MtoA; and related
works: We resume the example of the production implemen-
tation [5] of Diem21 [44] by Aptos. A timeout message of
a process Pj is formatted as the signed message: {r, rj}j.
The tag r is the current round number, while rj < r – 1 is
roughly the highest round number in which Pj saw a QC:
qchigh,j . Hence, rj can be advantageously encoded as the
difference vj := r − rj − 1 (this improves by −1 a nice
idea of [60]). Thus, after the network becomes synchronous
and assuming that each leader is honest with probability 2/3,
then the expected value of vj is only 0.5. Hence, the timeout
messages fall in the regime where MtoA is efficient. In
Table 8 we report on the Verifier’s runtime for an MtoA
aggregate over 129 signers, calibrated with a variable parts
of bitlength |v| = 7 (which is overkill for Diem21, by the
above considerations). Thus, verification consists of verifying a
N = 7n-wise multisignature. We used as input any of the three
BLS-based fNIMs:MSP-pop, SMSKR and our dms (below),
which have the same online verification complexity for a given
curve. We achieve an online verification runtime of 3.4ms. It

is close to the batch verification of a naive concatenation of
129 Schnorr signatures. This is 39× faster than the verification
time: 116.6ms of an 129-wise BGLS aggregate signature, as
used so far in the implementation of Diem21 [5].

One-time-tagged fNIA schemes were considered in [4,
69, 60], but all based on non-post-quantum assumptions (the
latter inspiredMtoA). By contrast,MtoA has post-quantum
security whenever applied to any post-quantum fNIM, e.g.
to [51]. Another use-case where MtoA is advantageous is
suggested by [4]: they consider connected devices signing short
measurements (such as the temperature, weight, speed), one-
time-tagged with the time of the measure.

B. A Faster and Tightly Secure fNIM

We introduce a fully non-interactive multisignature scheme
which achieves both goals (ii) and (iii), called Dynamic Multi-
signature with Schnorr proofs of possession (dms). It is as
simple as augmenting the pairing-based (BLS) multisignature
scheme of Boldyreva [20] with proofs of possession (PoP)
consisting of Schnorr signatures of processes on their public
keys. Since batch verifying N Schnorr signatures [14] is much
faster than computing N + 1 pairings, it is not surprising that
the verification of PoPs in dms achieves a > 5× speedup over
the most optimized verification of the ones ofMSP-pop [85,
22, 24]: see Table 6. As any PoP-based fNIM, dms comes with
the bonus of being dynamic, i.e., the signing algorithm needs
not taking as input a group of potential signers KG. In turn,
individual signatures can be combined without the restriction
that the signers agreed together on some common group KG.
Finally, as in any PoP-based fNIM, when new potential signers,
say, 14, publish their keys, the marginal cost of the Verifier is
only to verify 14 PoPs. In Table 6 we evaluated this task to be
> 500× faster than the Verifier’s processing in SMSKR when
new members join the group, since it must re-randomize all
published keys.

a) Proving tight reduction of dms to DL (in the AGM):
The proof does not follow from previous works, it is one
of our main contributions. The literature of the last 25 years
suggests that mere Schnorr ZK PoKs of secret keys might not
simply provably thwart rogue key attacks

(
[79] Micali-Ohta-

Reyzin “That is, for the simulator to be polynomial time, there
can be at most logarithmically many signers” and Bellare-
Neven [16] “one would require ZK PoKs extractable under
such concurrent conditions. This eliminates many standard
protocols, including standard POKs of discrete logarithms.”

)
.

Worse, the attempt [8] had its proof invalidated by [46], and
finally a proof attempt, on a related issue (CCA security from
Schnorr PoKs of randomness) [18], required a sophisticated
revisiting [54], despite being in the algebraic adversary model.
We consider the algebraic group model (AGM), in line with
[83, 2, 18, 54, 53, 11, 12, 13, 9, 7, 41]. Namely, our security
bounds hold against so-called algebraic adversaries. Heuristics
partly supporting the AGM are that, according to [70, §4][6],
no better attacks are known against DL in BLS12-377/381,
than the generic square-root algebraic one (see Sec. VII-2).

The main difficulty of our proof consists, upon being given
a forgery w.r.t. a set of public keys (Xi, πi)i ∈ [N], in extracting
from the forger all the secret keys, i.e., ξ s.t. Xi = ξ.G2 where
G2 is a public generator of the subgroup G2 (except the one

3

of the challenge public key Ẋ). The last step from there is
that the reduction builds a valid individual signature for Ẋ on
the challenge message, thus breaking unforgeability of BLS.
This last step is as in [20], with the minor twist that the set
(Xi)i ∈ [N] could well contain multiple copies of Ẋ , without
the forger giving ẋ to the reduction. The main difficulty is
singled-out in Sec. VI as an abstract extractability game, called
SSC (Schnorr straight-line extraction despite correlations). It
considers an adversary having access to a signing oracle for
the BLS signature of a given key X (playing the role of
Ẋ). Then it outputs one or several keys appended with valid
proofs of possession: (X∗, R∗, z∗),... (other than the one of the
challenge). It wins the game if the challenger fails to extract
in straight-line one of the corresponding secret keys x∗. The
game is not comparable to [53, §6], where the adversary had
instead to forge a BLS signature. In Theorem 4 we show that
the advantage of the adversary is bounded by the advantage in
the DL game. The proof is strictly more difficult than in [42,
§A], since their adversary does not have access to a signing
oracle for the target key Ẋ . Absence of this oracle in [42, §A]
invalidates the security proof of their multisignature (page 10,
step “key registration”), because in the unforgeability definition
([42, §5.1] and our Sec. III) the adversary has the power to
query such an oracle potentially before it chooses the set of
keys of its forgery. This power models that the adversary could,
in practice, engage in signing sessions with concurrent groups
containing the same target key Ẋ , before it registers the set of
keys (Xi)i ∈ [N] of its forgery. On the one hand, we observe
that [42, p10] can easily be fixed (we notified this on 01-23
2024 to the authors). Indeed, the proof of [42, §A] would
go unchanged after adding the necessary Schnorr-signing or-
acle, since it would return uniformly random group elements.
Whereas our signing oracle produces a correlated sequence
of group elements:

{(
H(mj), ẋ.H(mj)

)
j
, Ẋ = ẋ.G2, G2

}
,

j running over the signing queries. These correlations make
necessary for our reduction to DL to follow two alternative
behaviors (the second, called D, is designed to cope with the
event which we call “very bad”, defined in Eq. (16)), instead
of one single behavior in [42, §A].

b) Applications of dms: It enables to divide by N the
online storage size of certificates of validity for blocks [48,
50, 3], compared to a batch of Schnorr signatures. Although
fNIMs are already used in Ethereum for this purpose, Table 7
shows that previous fNIMs were proven secure only in curves
much larger than BLS12-381 or -377. This would imply non-
standard curves, larger storage size, and longer verification
time. Moreover the 5× processing of the group setup speedup
of dms (for equal curves) directly impacts billions of verifiers.
Contrary to a common belief, individual verification of signa-
tures of a fNIM can be made faster than the one of Schnorr
signatures. First, as observed in [38] and confirmed by Table 8,
batch verification of BLS individual signatures (as used in
MSP-pop, SMSKR, dms) is 3× faster than batch verification
of Schnorr signatures, for n = 3073 signatures. The Verifier
simply combines the signatures (the cost of these n additions
is negligible) then verifies the obtained multisignature. Batch
verification virtually always succeeds in use-cases such as
signatures published in blocks (otherwise, the validators of
the blocks would be severely punished). Second, for use-cases
where invalid signatures often occur, then it was observed
by [56, 34] that signers can add a Chaum-Pedersen proof of

equality of discrete logs to their BLS signatures, enabling an
individual verification time comparable to the one of a Schnorr
signature. We give further details in Sec. B. In Sec. B we
also explain how dms can be advantageously plugged in the
threshold signature schemes [43, 57], in place of MSP-pop.

II. PRELIMINARIES

We use the formalism of games [17], with the simplification
that we merge the finalization in the main body, as in [53], and
that we use the more mainstream meaning of the advantage
of an adversary A in a game g [12], denoted P(gA = 1),
to designate the probability that A wins the game, i.e., that g
sets the flag win← 1.

a) Bilinear groups: A bilinear group description ([55])
is a tuple G = (G1,G2, GT , e, φ, ψ, p) such that Gi is a cyclic
group of prime order p for i ∈ {1, 2, T}, in additive notation; e
is a non-degenerate bilinear map e : G1×G2→GT , i.e., for all
a, b ∈ Zp and all generators G1 of G1 and G2 of G2 we have
that GT := e(G1, G2) generates GT and e(a.G1, b.G2) =
ab.e(G1, G2) = ab.GT ; φ : G1→G2 is an isomorphism, and
ψ : G2→G1 is an isomorphism. All group operations and the
bilinear map e must be efficiently computable. G is of Type 1
if the maps φ and ψ are efficiently computable, in which case
we will consider without loss of generality that G1 = G2; G
is of Type 2 if there is no efficiently computable map φ; and
G is of Type 3 if there are no efficiently computable maps φ
and ψ.

In line with [37], all our assumptions and statements are
with respect to a choice of fixed public generators G1, G2.
Note that since we are in the random oracle model, we
have a fortiori a public uniform random string (URS). So
G1, G2 could be fixed by seeding any public uniform sampling
algorithm with the URS.

b) The algebraic group model (AGM): In line with [83,
2, 18, 54, 53, 11, 12, 13, 9, 7, 41], we consider provable
security against adversaries known as algebraic algorithms.
We recall the most recent model in the setting of bilinear
groups, from [11, Def 2]. An algorithm A executed in a se-
curity game ([17]) is called algebraic if for all group elements
Z ∈ Gi , i ∈ {1, 2, T} that A outputs to any oracle of the
game, it additionally provides a representation in terms of
received group elements in Gi and those from groups from
which there is an efficient mapping to Gi. In particular for
Z ∈ {G1,G2}: if U0, . . . , U` ∈ G1 and V0, . . . , Vm ∈ G2 denote
the group elements in G1 and G2 received so far by A, then
it provides a list of coefficients in Zp (µi)i ∈ [`], and possibly
(ζj)j ∈ [m], such that, depending on the case:

- Z ∈ G1 (Type 1 and 2): Z =
∑

i µiUi +
∑
ζjψ(Vj)

(Type 3): Z =
∑

i µiUi

- Z ∈ G2 (Type 1): Z =
∑

i µiUi +
∑
ζjVj

(Type 2 and 3): Z =
∑

j ζjVj

c) Signatures, example of BLS: We recall the standard
notion of a digital signature scheme with existential unforge-
ability under chosen message attacks (EUF-CMA, [62, 20]).
It is the data of algorithms for key generation Kg, signature
Sign and verification Vf , the latter returning a bit denoting
acceptance or rejection. They furthermore have the following
properties. Correctness requires that ∀(sk, pk) $←− Kg(), ∀m,

4

Vf (pk,m,Sign(sk,m)) = 1. Unforgeability requires that a
polynomial adversary B, dubbed forger, is unable to forge valid
a signature on a message m for which it did not query a sig-
nature. More formally it is defined by a game, which for con-
creteness we examplify in Figure 1 on the example of the well-
known BLS signature scheme [26, 37]. BLS is parametrized by
a bilinear group with public generators: G1 ∈ G1, G2 ∈ G2,
and by a hash-to-curve map m→H(m) ∈ G2 which we model
as a random oracle.

- BLS.Kg(): sample x $←− Zp, output (sk, pk) = (x, x.G2);
- BLS.Sign : m→sk.H(m);
- BLS.Vf : pk,m,Σ→e(Σ, G2) == e(H(m), X).

BLS-uf

x $←− Zp, X = x.G2

(m∗,Σ∗)← BSIGN,H(X)

return
(
m /∈ Qsig ∧ e(Σ∗, G2) == e(H(m∗), X)

)
oracle H(m)

return M ← H(m)

oracle SIGN(m)

Qsig ← Qsig ∪ {m}
return x.H(m)

Figure 1: EUF-CMA game for BLS

In the random oracle (RO) model, the security of BLS has
a loose reduction to the computational Diffie Hellman (CDH)
problem. More precisely, over bilinear groups of type I and
II it has a loose reduction [26] to the problem called co-cdh:
given

(
Q $←− G1, a.G2

)
for a $←− Zp, compute a.Q. Whereas

over bilinear groups of type III, it has a loose reduction [37] to
the problem called co-cdh∗: given

(
Q $←− G1, a.G1, a.G2

)
for

a $←− Zp, compute a.Q. Note that in BDN18 [22], co-cdh and
co-cdh∗ are respectively renamed ψ-co-cdh and co-cdh. In the
RO+AGM model, the security of BLS has a tight reduction [53,
§6] to the discrete logarithm (DL) in G1. We observe that over
type II groups, a minor adaptation of the proof shows a tight
reduction to the DL in G2 (use ψ to port the DL challenge in
G1). We observe that over type III groups, the same proof
shows a reduction to the type III variant of DL known as
(1, 1)-DL [11]: given (a.G1, a.G2), compute a.

III. NEW DEFINITIONS

We first define fully non-interactive multisignature schemes
(fNIM), then fully non-interactive one-time-tagged aggregate
signature schemes (fNIA), which are output by our compiler
MtoA. Our definitional choices aim at capturing most existing
non-interactive schemes, capturing the remaining ones would
require only straightforward adaptations. Our syntax is meant
to be safely used as such by the Combiner/Aggregator or
the Verifier, no hidden additional check is required from
them. In the last subsection we discuss our choices w.r.t.
related specifications. All algorithms take as additional input
a multiset of public keys denoted KG, called the keys of the
group (of potential signers). A scheme is called dynamic when
this input plays no role. In turn, all KG-dependent restrictions
in the specifications and security definitions are then removed.
For simplicity we formalize our definitions and results with
schemes in which the setup is non-interactive (provided im-
plicit coordination within the group KG for non-dynamic

schemes). Our compilerMtoA obviously extends to schemes
with interactive setup, of which the three existing ones are [77],
ASMP [22, §4] and ASMP-pop [22, §6]. Both n and N
denote arbitrary positive integers. The definitions involve only
n-(or N -)sized multisets of tuples, such as (pki,Σi)i ∈ [N] or
(pki, vi,Σi)i ∈ [n], i.e., without ordering between each other.
So our indices 1, i etc. are just here to name elements. The
numbers N and n of messages to be combined/aggregated are
variable inputs to the algorithms.

Fully Non-Interactive Multi-signatures

Definition 1 (fNIM). A fully non-interactive multisignature
scheme consists of the following local algorithms.

- Kg()→(sk, pk) (key generation)

- Sign(KG, ski,m)→Σi (signing)

- iVf(KG, pki,m,Σi)→0/1 (individual signature verification)

- Cb
(
KG,m, (pki,Σi)i ∈ [N]

)
→Σ (combination)

- Vf
(
KG, (pki)i ∈ [N],m,Σ

)
→0/1 (verification)

Moreover they should satisfy the following three properties.

Individual completeness states that for any message m,
then a correctly generated signature on m by any correctly gen-
erated key with respect to any group KG to which it belongs,
must pass individual verification. Formally:
(1)

P

(
0← iVf

(
KG, pk,m, Σ̇

) ṡk, ṗk← Kg()

∧ ṗk ∈KG
∧ Σ̇← Sign

(
KG,ṡk,m

)
)

= negl

Combination-robustness states that combination must re-
turn a valid multisignature whenever applied on any number
n of individual signatures on any message m, with respect to
a common group KG containing all signers, as soon as they
all pass individual verification. Formally, for any polynomial
adversary A:

(2) P
(

0← Vf
(
KG,(pki)i ∈ [n],m,Σ

)
KG, (pki,Σi)i ∈ [n] ← A
∧ (pki) i ∈ [N]⊂KG
∧ iVf

(
KG, pki,m,Σi

)
= 1∀i ∈ [N]

∧Σ← Cb
(
KG,m, (pki,Σi)i ∈ [N]

)
)

= negl

Unforgeability states that any polynomial forger F has
negligible advantage in the following game denoted m-uf . A
challenger exhibits to F an honestly generated key ṗk, then
F commits to a group of public keys KG, then it is granted
access to a ṗk-signing oracle with respect to KG. The forger
wins if it can create a valid multi-signature on behalf of some
subgroup of signers containing ṗk, on a message never queried
to the oracle.

Note that the definition in the non-dynamic case is weak,
because the forger can make signing queries only after it has
committed to its challenge group KG of keys. So this non-
dynamic restriction rules-out a forger which would concur-
rently interact with multiple groups. But this restriction appears

5

m-uf

(ṡk, ṗk)← Kg()

KG ← F(
(pki)i ∈ [N],m

∗,Σ∗
)
← F SIGN(ṗk)

return
(
m /∈ Qsig ∧ ṗk ∈ (pki)i ∈ [N]⊂ KG

∧ Vf (KG,(pki)i ∈ [N],m,Σ
∗) = 1

)
oracle SIGN(m)

if ṗk ∈ KG
Qsig ← Qsig ∪ {m}
return Σ̇← Sign(KG,ṡk,m)

Figure 2: Multi-signatures unforgeability game. Instructions
removed in dynamic schemes are shaded-out

only in [9] to our knowledge, it is absent from most security
definitions, even those of non-dynamic fNIMs (ASMP [22,
§4.1],[13]). As observed in the Introduction, the definition of
[42, §5.1] does not either make this restriction, although their
security proof implicitly makes it.

Fully Non-Interactive (One-time-tagged) Aggregate-signatures

The following definition applies to messages to be signed
which come as mi = (τi|vi) where the τi are called their tags
and vi their variable parts. Again, the number n of signatures
aggregated is a variable input. Compared to classical aggregate
signatures, aggregation is enabled only on messages with the
same tag τ , and unforgeability is guaranteed only if honest
signers do not sign two different messages with the same tag.

Definition 2 (fNIA). A fully non-interactive one-time-tagged
aggregate signature scheme consists of the following local
algorithms.

- Kg()→(sk, pk) (key generation)

- Sign(KG, ski, τi, vi)→Σi (signing)

- iVf(KG, pki, τi, vi,Σi)→0/1 (individual signature verifica-
tion)

- Ag
(
KG, τ, (pki,Σi, vi)i ∈ [n]

)
→Σ (aggregation)

- Vf
(
KG, τ, (pki, vi)i ∈ [n],Σ

)
→0/1 (verification)

Moreover they should satisfy the following three properties.

Individual completeness requires that for any
tagged message (τ |v), then a correctly generated
signature on (τ |v) by any correctly generated key
with respect to any group KG to which it belongs, must
pass individual verification. Formally:
(3)

P

(
0← iVf

(
KG,ṗk, τ, v, Σ̇

) ṡk, ṗk← Kg()

∧ ṗk ∈KG
Σ̇← Sign

(
KG,ṡk, τ, v

)
)

= negl

Aggregation-robustness requires that aggregation must re-
turn a valid aggregate signature whenever applied on any
number n of individual signatures on any identically tagged

messages mi = (τ, vi), with respect to a common group
KG containing all signers, as soon as they all pass individual
verification. Formally, for any polynomial adversary A:

(4) P
(

0← Vf
(
KG,τ, (pki, vi)i ∈ [n],m,Σ

)
KG,τ, (pki, vi,Σi)i ∈ [n] ← A
∧ (pki) i ∈ [n]⊂KG
∧ iVf

(
KG,pki, τ, vi,Σi

)
= 1 ∀i ∈ [n]

∧Σ← Ag
(
KG,τ, (pki, vi,Σi)i ∈ [n]

)
)

= negl

Unforgeability requires that any polynomial forger F has
negligible advantage in the following game denoted a-uf .
A challenger exhibits to F an honestly generated key ṗk,
then F commits on a group of public keys KG, then it
is granted access to a ṗk-signing oracle with respect to KG,
which however refuses to sign twice with the same tag. The
forger wins if it can create a valid aggregate signature on behalf
of some subgroup of signers on a list of key - messages pairs
containing some (ṗk, v∗), for some tag τ∗, such that the oracle
never delivered a signature on the tagged message (τ∗|v∗).
Formally:

a-uf

(ṡk, ṗk)← Kg()

KG ← F(
KG, τ∗, (pki, vi)i ∈ [n],Σ

∗)← F SIGN(ṗk)

return
(
∃v∗ s.t. (ṗk, v∗) ∈ (pki, vi)i ∈ [n] ∧ (τ∗, v∗) /∈ Qsig

∧ (pki)i ∈ [n] ⊂ KG ∧ Vf (KG, τ∗, (pki, vi)i ∈ [n],Σ
∗) = 1

)
oracle SIGN(τ, v)

1 : if ṗk ∈ KG ∧ @ (τ, v ′ 6= v) ∈Qsig:
2 : Qsig ← Qsig ∪ {(τ, v)}
3 : return Σ̇← Sign(KG, ṡk, τ, v)

Figure 3: Aggregate signatures unforgeability game. Instruc-
tions removed in dynamic schemes are shaded-out

Comments on Definitions and Related Works

Blob of signatures and messages. Virtually all existing fNIM
schemes allow the combiner to take as separate in-
puts a multiset of keys, and a multiset of messages:
Cb
(
KG,m, (pki)i ∈ [N], (Σi)i ∈ [N]

)
. The reason why our syn-

tax requires to regroup them in pairs: (pki,Σi)i ∈ [n] is because
it is necessary in the fNIA called AS-4 [16], which we observe
is a fortiori a fNIM.

Key-aggregation. In all existing fNIM schemes, the ver-
ification can be factored in a first step called key-
aggregation, which shrinks the multiset of the keys of the
subgroup of signers into a short aggregate key: KAg :(
KG, (pki)i ∈ [n]

)
→apk. Then, verification proceeds using

only apk: Vf-lazy(apk,m,Σ)→0/1. We purposedly did not
include this decomposition in the specifications, in line with
[56, 51], because we believe it to be bug-prone. Indeed, some
existing specifications only specify the last part Vf-lazy, but it
would be insecure to run such a Verifier algorithm without any

6

additional safe means of checking, in a way or another, that apk
was correctly output by KAg from the keys of the purported
signers. A more subtle example is the scheme RSMS-pop in
[56, §4.3]: its Verifier algorithm, VerifyMul, does not check
validity of the PoPs on the public keys, although it does
aggregate them with KAg. The problem is that its KAg does
not either check validity of the PoPs. In conclusion, it seems to
us that rogue-key attacks [21] invalidate the unforgeability of
RSMS-pop, in the sense of [56, def. 3.3]. Of course solving this
apparent issue would just require to specify that the RSMS-
pop.VerifyMul verifies PoPs, in a way or another.

Interactive setups. The issue of enabling verification of apk is
even clearer in the cases, not captured by our definitions, where
KAg would be an interactive protocol between the signers.
Fortunately the only such fNIM schemes to our knowledge
are MOR01 [79] and ASMP & ASMP-pop [22, §4 & §6],
and in all of them the protocol is publicly verifiable as long
as it is executed over a broadcast channel.

Concurrent groups. Although our unforgeability definitions in
Figures 2 and 3 follow the ones of [9], in which the adversary
must commit on a single group KG and has then access to a
signing oracle w.r.t. this group only, this limitation is relaxed
in the specifications of [22, §4]. More precisely, provided
interactive group setups, they show that the security of their
schemes ASMP /ASMP-pop decreases linearly only in the
total number of signers over all groups in which the target key
ṗk is involved. Of course all these issues disappear in dynamic
schemes.

Not fully non-interactive schemes. In the scheme MSP [22],
the Sign algorithm takes as input the exact list of the keys
which are meant to sign the message: (pki)i ∈ [N]. Upon
receiving N signatures on some message m generated by the
keys (pki)i ∈ [N], the combination Cb can combine them only if
they were all generated with input (pki)i ∈ [N]. Said in the other
way: Cb cannot combine any signature on m generated with
input (pki)i ∈ [N], unless receiving such signatures from all
the intended signers (pki)i ∈ [N]. Said otherwise: aggregation
fails as soon as one of the intended signers aborts (this issue is
lifted in the blog versionMSP-blog [21]). This limitation also
shows-up in the two-round schemes ([46, 42, 13]): although
they require interaction only in a first round which is message-
independent, the signatures produced in the second round can
be combined only if they are produced by all participants of
the first round.

Aggregation robustness. This is a property which we credit
to [56, 51]. Prior specifications guaranteed a successful
aggregation only over correctly generated signatures and keys.

IV. MtoA: MULTI TO AGGREGATE COMPILER

We convey all ideas of MtoA, further formalism and the
(obvious) proof can be found in Sec. A. We consider any
fNIM: M, and describe the resulting one-time-tagged fNIA,
called A. Each potential signer i generates then outputs a
list of 2|v| M-public keys: {pkj,bi , j ∈ |v|, b ∈ {0, 1}}. To sign
some (τ |vi), the signer i: parses vi = (v j

i)j ∈ [|v|] the bit
decomposition of the variable part, then outputs a signature
on τ under each public key pk

j,v j
i

i for j ∈ [|v|]. That is, the
data of the variable part vi of the message intended to be

signed is not encoded by the actual content signed, which is
just equal to the fixed part τ , but instead by the list of the keys
which signed τ . The Aggregator: upon receiving signatures
on n messages (vi)n from n signers, where we recall each
signature consists of a |v|-sized list of M-individual signatures,
applies the M-combination algorithm: M.Cb on all N = |v|n
signatures received. Finally, the verifier checks the multisig-
nature Σ received against the multiset of keys PK which it
reads from the messages (vi)i ∈ [n]. That is, for each message

vi = (v j
i)j ∈ [|v|] it appends PK ← PK ∪ {pkj,v

j
i

i }j ∈ [|v|],
then outputs M.Vf (PK,m,Σ).

V. dms

dms is specified over any bilinear group
(G1, G1,G2, G2,GT , e) and operates with any hash-to-
curve random oracle H : {0, 1}∗→G1 and random oracle
Hpop : {0, 1}∗→Zp. We will show that its security tightly
reduces to the one of BLS signatures (Figure 1). Themselves
tightly reduce to the hardness of the DL, in the AGM, by
[53, §6]. The syntax of dms does not contain any group KG,
hence, it is a dynamic fNIM. Note that in the description
below of dms, if one removes the PoP: π from the Kg, and
its verification: kVf from both the Cb and Vf algorithms, then
we are brought back to the schoolbook BLS fNIM [20] (also
recalled in Sec. D-2).

Kg(): sample x $←− Zp, set X ← x.G2; sample r $←− Zp, R←
r.G2, set c← Hpop(X,X,R) and z := r+c.x, let π ← (R, z)
(the PoP), output sk := x and pk := (X,π).

Since PoPs are to be verified by both the individual verification
algorithm (iVf) and the combination algorithm (Cb), we factor-
out their verification with the following helper function:

kVf(X): parse (X,π) ← pk and (R, z) ← π; c ←
Hpop(X,X,R), output (X ∈ G2 ∧ z.G2 == R+ c.X).

[leftmargin=0pt,topsep=0pt, label=] Noticeably, and unlike
pairing-based PoPs, no subgroup membership in G2 is to be
performed on the PoP π, since the verified relation R =
z.G2 − c.X automatically implies membership of R in G2.

Sign(sk,m) = sk.H(m);
iVf(pki,m,Σi): parse pki ← (Xi, πi),
return Σi ∈ G1 ∧ kVf(pki)==1 ∧ e(Σi, G2)== e(H(m), Xi)

Cb
(
m, (pki,Σi)i ∈ [N]

)
: if
{
iVf(pki,m,Σi)==1 ∀i ∈ [N]

}
,

then return
∑

i ∈ [N] Σi.

Vf
(
(pki)i ∈ [N],m,Σ

)
: parse (Xi, πi)← pki ∀i ∈ [N];

return Σ ∈ G1 ∧
{
kVf(pki) == 1∀i ∈ [N]

}
∧ e(Σ, G2) == e

(
H(m),

∑
i ∈ [N]Xi

)
.

Theorem 3. dms is a fNIM in the AGM. For all three types of
bilinear groups, its unforgeability tightly reduces to hardness
of the discrete logarithm (DL) problem.

The proofs of Individual completeness and aggregation-
robustness are identical to the ones of standalone BLS mul-
tisignatures [20] (plus correctness of Schnorr signatures used
as PoPs), so we skip them. In Sec. V-A we state the main
ingredient of unforgeability of dms. It states that whenever
an algebraic adversary A outputs a public key X∗along with

7

a Schnorr signature on itself: (R∗, z∗), then the discrete
logarithm of X∗, i.e., a secret key, can be efficiently computed
from the decomposition of X∗ given by the adversary. Then
in Sec. V-B we conclude the proof of unforgeability from this
ingredient.

A. Extracting Schnorr despite correlations

We formalize the game called SSC in Figure 4, which
stands for “Schnorr Straight-line extraction in presence of BLS
Correlations”. The game samples a public key X = x.G2,
which we dub the “honest key”, generates a Schnorr signature
on it: π = (R, z), and shows (X,π) to the adversary A. Then
the adversary is given access to hash-into-G1 and hash-into-Zp

random oracles: H : mi→Mi and Hpop; and to a BLS signing
oracle for the honest secret key SIGN : mi→Σi := x.H(mi).
All in all, up to delivering to A both replies from SIGN and
H for every queried m, we have that A is delivered a random
string with a hidden structure: (Mi, x.Mi)i ∈ [qH]

, in addition
to the Schnorr proof of knowledge π for the same exponent:
x of X . In the game SSC in Figure 4, the challenger tries
to extract in straight-line a discrete logarithm x∗ upon being
submitted some X∗ and some Schnorr signature (R∗, z∗) on
it, valid for X∗. The goal of the adversary is to defeat this
extraction: it wins as soon as one extraction attempt fails
over all its submissions. The extractor is defined as follows.
Upon submitting some (X∗, R∗, z∗), the adversary gives the
decompositions of X∗, R∗in terms of all group elements
received so far, of which all hashs Mi and signatures Σi

returned by the oracles so far:

X∗ = α.G+ β.X +
∑

i ∈ [qH]

γiΣi +
∑

i ∈ [qH]

δiMi(5)

R∗ = α′.G+ β′.X +
∑

i ∈ [qH]

γ′iΣi +
∑

i ∈ [qH]

δ′iMi(6)

Note that, without loss of generality, we assumed that R does
not appear in the decompositions, since R = z.G − c.X . As
will be precised in the proof, these decompositions are to be
understood as those which A gave when outputting X∗and
R∗for the first time. The extractor is then simply defined as
the function which returns α. So this extractor outputs a correct
discrete logarithm if X∗ == α.G2, else, this means that the
adversary wins. The following theorem states that escaping
this extractor is as hard as solving DL. The proof is done in
Sec. VI and is one of our main technical contributions.

Theorem 4. From any SSC-adversary A with advantage ε and
making qH RO queries, one can build an adversary E against
the discrete logarithm (DL) in G2 with advantage ε′ > (1 −
qH+1

p)
(
ε− qH/p

)
and with at most twice the running time.

B. Tight reduction of dms to DL.

The proof follows from the following chain of tight reduc-
tions:
(7)
m-uf(dms)

Lem. 5−−−−→ SSC∧BLS-uf
Thm. 4−−−−→ DL∧BLS-uf

[53]−−→ DL
We now outline each of the reductions. The game on the left
is the unforgeability of dms. The first reduction is stated more
precisely as follows, and will be proven below:

SSC

x $←− Zp, X = δ.G2

r $←− Zp, R← r G2, c← Hpop(X,X,R)

z ← r + cx, π ← (R, z)

foreach (X∗, R∗, z∗)← ASIGN,H,Hpop(X,π) . up to qH attempts

c∗ ← H(X∗, X∗, R∗)

if z∗.G2 = R∗ + c∗.X∗ ∧ (X∗, R∗, z∗) 6= (X,R, z)

receive the decomposition (5): X∗ = α.G2 + ...(see above)
if X∗ 6= α.G2 then win← 1

return win

oracle SIGN(m)

return Σ← x.H(m)

Figure 4: Schnorr Straight-line extraction in presence of Cor-
relations oracles. H and Hpop are random oracles: into G1 and
into Zp; SIGN is a BLS signing oracle.

Lemma 5. For any algebraic forger F in the unforgeability
game m-uf of dms, with advantage ε, running time t and
making at most qH RO queries; then there exists a forger B
in the unforgeability game BLS-uf of BLS signatures, which
has advantage ε′ > ε − qH/p − UBSSC(t) and at most twice
the running time t, where UBSSC(t) denotes the upper-bound
on the advantage of a time-t adversary in game SSC.

The third reduction, labelled by Thm. 4 is because Theo-
rem 4 shows a tight reduction from SSC to DL.

The last reduction, from BLS unforgeability to the hardness
of DL, is proven in [53, §6]. Note the their proof holds for type
I bilinear groups, and could be easily adapted to type II. On
the other hand, for their proof to carry over type III groups,
the DL problem to be considered is when the adversary is
given challenges in both groups: (`.G1, `.G2). This type III
DL problem is formalized in [11] as (1, 1)-DL. Note that in
the plain model (non-AGM), then BLS-uf in type III groups
reduces (non-tightly) to an analogous variant of computational
Diffie-Hellman, which is called co-cdh∗ in [37], and simply
“co-DH” in [22, Def. 2].

Now, all what remains to be proven is Lemma 5.

Proof of Lemma 5. The following proof holds for all three
types of bilinear groups. B receives the challenge honest
key X and simulates the required Schnorr PoP π on X
using the standard strategy. Namely: it samples (r, z) ← Z2

p,
programs the random oracle as c← Hpop(X,X,R), up to the
qH/p-probability event where A would already have queried
Hpop(X,X,R), then outputs π ← (R := r.G2, z). Then it
gives pk ← (X,π) as the challenge honest key to F . The
rest of the proof closely follows [20]. The only difference,
which is all the point of our work, is that instead of being
given for free all valid secret keys from F , B extracts them
(except those identical to X) thanks to an obvious reduction
to SSC. Whenever F makes an m-uf-SIGN signature query on
some message m, B simply makes the query on the same m
to its own BLS-uf-SIGN oracle, then forwards the result to F .
At some point, F outputs a dms forgery:

(
(pki)i ∈ [N],m,Σ

)
,

in particular such that m was not queried before to SIGN.

8

For simplicity, let us re-index the keys such that all those
different from X come first: (pki)i ∈ [N1], then the N − N1

ones identical to X come last. Note that by definition of a
forgery, N −N1 > 1.

Claim: Parse (Xi, πi)← pki ∀i ∈ [N]. Then, F is able to
extract the discrete logarithms (xi)i ∈ [N1] of the (Xi)i ∈ [N1]

from the queries of F to H and Hpop, except with probability
UBSSC(t), in at most twice the running time t of F .

proof of the Claim. Consider formally the adversary F⊥,
which is equal to F except that the last two outputs of its
forgery are removed:

(
(pki)i ∈ [N],⊥,⊥

)
. Then F⊥ is a game-

SSC adversary, which concludes the Claim.

End of the proof. Informally, the reduction B removes, from
the forgery Σ, the contributions of the individual signatures
from the non-X keys. Then, what remains is valid signature
on m for the key (N − N1).X , so it scales it down to a
valid signature for X . Formally, B computes the individual
signatures Σi ← xi.H(m), then outputs the forgery:

(8) ΣX ←
1

N −N1

(
Σ−

∑
i ∈ [N1]

Σi

)
.

Let us formally verify that ΣX is indeed a valid BLS signature
on m for the challenge key X , which will conclude the proof.
For readability we multiply everywhere by (N − N1). By
construction:
(9) (N −N1)e(ΣX , G2) = e

(
Σ−

∑
i ∈ [N1]

xi.H(m), G2

)
.

On the other hand, Σ being a valid dms multi-signature, we
have
(10) e(Σ, G2) = e

(
H(m) ,

∑
i ∈ [N1]

xi.G2+(N−N1)X.G2

)
.

Developping by linearity the RHS of Eq. (9), then replacing
e(Σ, G2) by Eq. (10), we obtain that this RHS is equal to
(11)
e
(

H(m),
∑

i ∈ [N1]

xi.G2+(N−N1)X.G2

)
−e
(∑
i ∈ [N1]

xi.H(m), G2

)
Finally, cancelling-out all equalities e(H(m), xi.G2) =
e(xi.H(m), G2), we obtain:

(12) (N −N1)e(ΣX , G2) = e
(

H(m), (N −N1)X
)
,

which, after dividing by (N −N1), proves the validity of ΣX .

VI. PROOF OF THEOREM 4

As in most works on BLS [53, 9, 7], we describe only the
proof in the case of type I bilinear groups, so in what follows
we identify G := G1 = G2 and G := G1 = G2, excepted in
the formal descriptions of Figures 4 and 5. We will explain in
the end why the proof is much simpler in the cases of type II
and III groups.

Simplifications w.l.o.g. Note that in the definition of the
game SSC, we could assume without loss of generality that
A submits at most one Schnorr signature to the game SSC,
instead of qH submissions. Indeed it can make submissions to
itself and run the extractor on itself to check if it won or not.
For this reason, without loss of generality (w.l.o.g.), we now
consider that A makes at most one submission to the game.
Also, w.l.o.g., consider that when the adversary makes a query

m to H then it immediately makes the same query m to SIGN,
and conversely.

The reduction E against DL receives a challenge L and its
goal is to output the exponent `, i.e., s.t. L = `.G. To this
end, it runs the SSC adversary A and simulates SSC to it, as
follows. We call E the master reduction because it tosses a
coin and, depending on its value 1 or 0, behaves towards A as
reduction C or D, both described in Figure 5. We now convey
their intuition. As will be clear from their description, both
are (almost) perfect simulations of game SSC, and furthermore
C and D are information-theoretically indistinguishable from
each other. The difference between them, hidden to A, is how
the challenge L is embedded. Both reductions use procedures,
denoted H̃, S̃IGN and H̃pop, to simulate to A the responses to
its queries to oracles H, Sign and Hpop respectively.

Reduction C embeds the DL challenge L as the honest
public key of SSC, i.e., sets X := L. It simulates the required
Schnorr PoP: π on X following the standard technique,
namely: samples (r, z) ← Z2

p, programs the random oracle
as c ← H̃pop(X,X,R), then outputs π ← (R := r.G2, z).
So its simulation of SSC is perfect, up to the qH/p-probability
event where F would have queried Hpop(X,X,R) before it
was programmed on c.

Reduction D honestly generates the public key X as
x $←− Zp, X ← x.G2. It embeds the DL challenge in the
simulated hash-to-curve oracle H̃, using the following trick
of [53, §6]. Upon queried a new message mi, H̃ samples
(ĥi, bi) $←− Z2

p then returns Mi ← bi.L + ĥi.G. In particular,
the output Mi varies uniformly in G, so H̃ perfectly simulates
a random oracle. In conclusion, it can perfectly simulate the
signing oracle, as: m← x.H̃(m). Note that since D knows the
secret key x, it could also honestly generate a Schnorr PoP as
r $←− Zp, R← r.G2, c← Hpop(X,X,R) then z ← r+c.x. So
it would not have to program Hpop, so its simulation of SSC
would be perfect. But we make the choice to specify that D
does instead generate a simulated Schnorr proof and programs
H̃, like C does. The reason for this choice is that this makes
the view of the adversary identically distributed against C and
D, so this will simplify the proof.

Strategy of C to win against DL. In what follows we con-
sider the event CA = 1 where A outputs a winning triple
(X∗, R∗, z∗) to C. Namely, it passes verification of Schnorr
proofs, i.e., s.t. for c∗ ← H̃pop(X∗, X∗, R∗) then z∗.G =
R∗+ c∗.X∗. Being algebraic, A also submits a linear decom-
position of X∗ and R∗ on all group elements which it was
delivered so far. We are now more precise, and specify that
the decompositions given in equations (5) (6) are those that
A submitted when it outputted X∗ and R∗ for the first time,
i.e., either to oracle H̃pop or directly to the main C procedure.
Since A won, then α cannot be the only nonzero coefficient
in X∗. With these notations, recall that the goal of C is
to find the exponent x := ` of X = L, i.e., s.t. x.G = X .
To explain how C tries to find it efficiently, start from the
relation z∗.G = R∗ + c∗X∗, substitute R∗ and X∗ by their
decompositions in Eq. (5), then we obtain:

(13) z∗G = c∗
(
α.G+ β.X +

∑
i

γi.Σi +
∑
i

δi.Mi

)

9

+ α′.G+ β′.X +
∑
i

γ′i.Σi +
∑
i

δ′i.Mi .

Replacing the oracle responses by their values: Σi = hi.X and
Mi = hi.G, and substituting X = x.G, we obtain:

(14) z∗G = x
(
c∗β + c∗

∑
i

γihi + β′ +
∑
i

γ′ihi

)
+c∗α+

c∗
∑
i

δihi + α′ +
∑
i

δ′ihi .

Thus C can efficiently recover ` = x by division by the scalar:

(15) f∗ := c∗
(
β +

∑
i

γihi
)

+ β′ +
∑
i

γ′ihi

... unless this scalar is zero.

To analyze this bad (f∗ = 0) event, the important ob-
servation is that in all games considered (both SSC and its
reductions C and D), the decompositions (5)(6) of X∗ and
R∗, were handed-out by the adversary A strictly before c∗

was sampled uniformly at random. Let us prove it on the
example of C. Either A queried (X∗, X∗, R∗) to H̃pop before
outputting (X∗, R∗, z∗) to the main C procedure, then c∗ was
sampled by H̃pop just after. Or, A gave (X∗, R∗, z∗) to the
main C procedure without having queried H̃pop(X∗, X∗, R∗)
before, then C makes the query to its internal procedure
H̃pop(X∗, X∗, R∗) just after, which then samples c∗.

Lemma 6. Consider, as before, the event (up to probability
qH /p) where

[
no query H̃pop(X,X,R) was made before

H̃pop was programmed as H̃pop(X,X,R)→c
]
. Consider any

query H̃pop(Ẋ, Ẋ, Ṙ) made for the first time. Denote the
decompositions of Ẋ and Ṙ as in (5) (6) (so we omit adding
a dot above the coefficients α, β, γ, . . .), and the response ċ.
Consider the indices i = 1, . . . , i0 of all queries mi to H̃ and
S̃IGN (responding Mi and Σi, respectively) which were made
before the query H̃pop(Ẋ, Ẋ, Ṙ), i.e., before ċ was sampled.
Then:

ċ is sampled independently from
(
α, β, (δi, δ

′
i, γi, γ

′
i, hi)i 6 i0

)
and, for all i> i0: δi = δ′i = γi = γ′i = 0.

The rest of the proof strategy is as follows. Let us con-
sider the event where the adversary wins against the master
reduction: (EA = 1) := (CA = 1∧E = C)∨ (DA = 1∧E =
D), where E = C and E = D denote the events where the
coin was 1 or 0, i.e., where E behaves as C or D. We are
going to consider the sub-event, denoted qV ⊂ (EA = 1),
defined as the non-vanishing of at least one of the coefficient
in f∗ (Eq. (15)), i.e., qV :=

(
β +

∑
i γihi 6= 0

)
∨(

β′ +
∑

i γ
′
ihi 6= 0

)
. An immediate consequence of Lemma 6

is that, under C, in the sub-event qV ∧ (CA = 1), then the bad
event (f∗ = 0) (almost) never happens, and thus C is (almost)
always able to find the DL challenge x = `. The “almost” will
be quantified later. So what remains to conclude the proof is to
show that, in the complementary event V ⊂ (EA = 1) which
we call “very bad”, then the reduction D will (almost always)
be able to find ` efficiently. Our first task is to formalize a
predicate equivalent to V and which is well-defined under D.
To do so, we multiply the relations defining qV by X then

take the negation, which yields:

(16) V :=
{
β.X+

∑
i

γiMi = 0 ∧ β′.X+
∑
i

γ′iMi = 0
}
.

This equivalent predicate being purely in terms of the view of
the adversary, it is also meaningful under D.

In order to conclude, we recall the fact that C and D are per-
fectly indistinguishable from the adversary A. A consequence
is that the coin tossed by the master-reduction E , i.e., its choice
of behavior C or D, is independent of which event V or qV
happens (otherwise the adversary could distinguish between
C and D). In conclusion, each time the adversary wins, i.e.,
(EA = 1), whatever V or qV is the most likely to happen, the
master-reduction E will have almost probability 1/2 to extract
the DL challenge `. We now formalize the above claims as
Lemma 7, then formalize the above conclusion of Theorem 4
from it, then prove Lemma 7.

Lemma 7. There exists reductions C and D from SSC to the
DL game, such that for any SSC-adversary A:

- both the views of A against C and D, are identically
distributed as in SSC, except with qH/p probability;

- the views of A against C and D are identically distributed;

- C and D enjoy the following probabilities of success, i.e., of
(CA = 1) and (DA = 1):

P
(

DLC = 1
)

= (1−
qH

p
).P
(
CA = 1∧qV

)
(17)

P
(

DLD = 1
)

= (1−
qH + 1

p
).P
(
DA = 1 ∧ V

)
(18)

Assuming Lemma 6, let us conclude Theorem 4. Since
the master reduction E behaves as C or D with probability
1/2 each, we have P

(
DLE = 1

)
= 1/2 P

(
DLC =

1
)

+ 1/2 P
(

DLD = 1
)
. By Equations (17) and (18), it is in

turn >
(
1 − qH+1

p

)[
P
(
CA = 1∧ qV

)
+ P

(
DA = 1 ∧ V

)]
.

Now, note that for any fixed A, we have P(CA = 1∧qV) =
P(DA = 1∧qV). Indeed if not, then an unlimited adversary A
could distinguish between C and D, a contraction. Substituting,
we obtain: P

(
(DL)E = 1

)
> 1/2

(
1 − qH+1

p

)
[P
(
CA = 1

)
].

By the first claim of Lemma 7, since the view of A
against C is qH /p-close to its view in SSC, we have that
P
(
CA = 1

)
> ε− qH/p. Replacing in the previous formula of

P
(
(DL)E = 1

)
yields the theorem.

a) Proof of Lemma 7: The first claim was already
argued along with the definitions of C and D, namely, the only
difference between the view against SSC is in the event where
the adversary had already queried H̃pop(X,X,R) before it was
programmed.

Proof of Eq. (17). Since the bound is to be proven under
reduction C only, we consider only the reduction C, i.e., we
condition on the event E = C. By Lemma 6, for each query
H̃pop(Ẋ, Ẋ, Ṙ) in the execution, and denoting ḟ as defined
in the formula (15) (here w.r.t. (Ẋ, Ẋ, Ṙ)), we have P(ḟ =
0|qV) = 1/p where the probability is taken over the sampling
of the answer c∗. Taking the union bound over all qH queries
in the execution, we thus have probability qH/p that none of

10

their ḟ is equal to 0. In particular, for the specific f∗ of the
winning triple, we thus have
(19) P(f∗ = 0|qV) 6 qH/p .

Since C is able to extract x = ` when f∗ 6= 0, this concludes
the proof.

Proof of Eq. (18). Since the bound is to be proven under
reduction D only , we consider only the reduction D, i.e.,
we condition on the event E = D. Let us start from Eq. (13)
and, since we assumed V , simplify by Eq. (16). Replacing
Mi = bi.L+ ĥi.G and L = `.G we obtain

(20) z∗G = c∗
(
α.G+

∑
i

δi(bi `.G+ ĥi.G)
)

+α′.G+∑
i

δ′i(bi `.G+ ĥi.G)

Thus D can efficiently recover ` by division by the scalar:

(21) λ := c∗
∑
i

δibi +
∑
i

δ′ibi

... unless this scalar λ is zero.

Let us assume that it is the case, then we cannot be in the
event W :=

{
(δi = 0 ∧ δ′i = 0)∀i ∧ V

}
. Indeed, substituting

in Eq. (5) those vanishings and those of Eq. (16), would yield
X∗ = α.G, contradicting that A wins. Hence, we must be
in the event qW ⊂ V where at least one of the coefficients
δi or δ′i is nonzero. To conclude, we apply the same kind of
reasoning as in the proof of Eq. (17). Let us consider one
query H̃pop(Ẋ, Ẋ, Ṙ) in the execution. By Lemma 6, P(ċ =
0|qW) = 1/p where the probability is taken over the sampling
of c∗ and on the coins of the adversary. Taking the union bound
over all qH queries in the execution, we thus have probability
qH/p that none of their ċ is equal to 0. In particular, for the
specific c∗ of the winning triple, we thus have
(22) P(c∗ = 0|qW) 6 qH/p .

In the event c∗ 6= 0, we Claim that:
(23) P(λ = 0|c∗ 6= 0∧qW) 6 1/p ,

which concludes the proof. The Claim follows from the fact
that, by construction, all (bi)i are information-theoretically
hidden from the adversary, hence they are independent of
(δi, δ

′
i)i, of which at least one is nonzero by definition of qW .

b) Comments on SSC and on the proof: Compared to
[54], which consider a forger against Schnorr signatures, the
goal of our adversary in game SSC is easier, and thus our proof
apparently harder. Indeed, their forger has to forge a Schnorr
signature for a given target key. Whereas, our forger succeeds
as long as it outputs any Schnorr proof, such that the discrete
logarithm cannot be extracted.

We credit to [54] the crucial observation that c∗ is sam-
pled after the adversary first returns the decomposition of
the Schnorr proof that it submits. Notice that it would be
fallacious to conclude that, for a given winning triple output
by the adversary: (X∗, R∗, z∗), then the c∗ ← H̃(X∗, X∗, R∗)
would be independent from the decompositions of X∗ and
R∗. Indeed, the adversary could well make a unique output to
the game: (X∗, R∗, z∗), chosen among possibly many winning
triples, as the one which maximizes the number of digits of c∗
in common with, e.g., the coefficient δ1 in the decomposition
of X∗. Such correlations are captured by the overhead qH in

reductions C and D against DL from SSC adversary A
receive the DL challenge L = `.G2 ∈ G2 with unknown `
X ← L (and thus X = x.G2 s.t. x = `)
(c, z) $←− Z2

p; R← z G2 − c.X; π ← (R, z)

Program H̃pop(X,X,R)→c
(X∗, R∗, z∗)← A(X,π)

c∗ ← H̃(X∗, X∗, R∗)

if z∗.G2 = R∗ + c∗.X∗ ∧ (X∗, R∗, z∗) 6= (X,R, z)

receive the decomposition of X∗(eq. (5))
if α.G2 6= X∗ . i.e., other coefficients than α are nonzero in (5)

set flag win← 1

C: if β.X +
∑

i γiΣi 6= 0 D: if = 0 . see eq. (16)

compute then return ` (see above)
. up to 1/p probability of failure

simulated H̃(mi)

1 if H[mi] = ⊥
2 C: hi

$←− Zp; Mi ← hi.G1;

3
D: (ĥi, bi) $←− Z2

p;

Mi ← bi.L+ ĥi.G1

4 H[mi]←Mi

5 return H[mi]

simulated S̃IGN(mi)

C: return Σi ← hi.X

D: return Σi ← x.H̃(mi)

simulated H̃pop(Ẋ, Ẋ, Ṙ)

if H̃pop was programmed on (X,X,R)

and (Ẋ, Ẋ, Ṙ) == (X,X,R)

return c

else return Hpop(Ẋ, Ẋ, Ṙ)

Figure 5

the probabilities of our bad events, i.e., they have probability
qH/p instead of just 1/p. This overhead captures all possible
queries (X∗, X∗, R∗) that could have been made to H̃pop in
order to find winning triples.

Although the proof immediately reduces to the case where
A submits at most one Schnorr signature to the game SSC, we
defined SSC with multi-submissions to make it easier to use
in the analysis of dms.

The proof can be much simplified in the case of Type
II or III bilinear groups. The DL challenge L is in G2, but
in type II and III groups the algebraic adversary is further
restricted to decompose G2 elements in G2 only. So all the
complicated terms in G1 in the decompositions Equations (5)
and (6) disappear (so the reduction needs not anymore program
the hash-to-curve).

VII. EVALUATION AND COMPARISON

Our implementations1 were run on a laptop with Core i5-
8265U (8 cores at 1.6GHz), 16GB of RAM, with the library
gnark-crypto on Go [28]. The curve used was BLS12-377,

1The code is available at https://anonymous.4open.science/r/MtoA-830A/.

11

offering a pairing of type III, for which the uncompressed size
of a point in G1 is 768 bits and of a point in G2 is 1536 bits.
Compressed points, i.e., their x-coordinate plus one bit, are
twice smaller. Each number is the mean over 10 executions.

1) Comparing processing of the group setup
runtimes: We dub “Verifier” the verification function
Vf
(
KG, (pki)i ∈ [N],m,Σ

)
→0/1 of a fNIM. We call

processing of the group setup the tasks of the Verifier
which can be done straight upon learning the group of
potential signers: KG; and online verification the remaining
tasks performed upon learning the actual subset of signers
(pki)i ∈ [N])⊂KG and the signed message (m,Σ). Of course,
in dynamic fNIMs such as MSP-pop [85][22, §6][24] and
dms, the Verifier does not take any group of public keys KG as
input. What we call processing of the group setup in dynamic
fNIMs is the task of verifying the proofs of possession (PoP)
of the published keys KG. Recall that in dms we formalized
this task as the key verification function kVf(pki),∀i ∈ [N].
In Table 6 we consider the three fNIMs which have the
fastest online verification: SMSKR [9], MSP-pop and dms.
The online verification is identical in all of them, i.e., returns
Σ ∈ G1 ∧ e(Σ, G2) == e

(
H(m),

∑
i ∈ [N]Xi

)
. On the other

hand, most of the runtime of the Verifiers in both MSP-pop
and SMSKR (recalled in Sections D-3 and D-4) is explained
by their processing of the group setups. As evidenced in
Table 6, dms removes this bottleneck. We now detail the
figures.

On the first line we measure the time of the processing of
the group setup of a group of |KG| = 2702 keys all-at-once. In
what follows we denote N = |KG| = 2702 for simplicity. This
number was chosen as 2702 = 2|v|.193, for |v| = 7. These
numbers illustrate the use-case of the compilerMtoA applied
to a group of nC = 193 potential signers and to messages of
|v| = 7-bits-long variable parts. We batched the verifications of
the N pairing-based PoPs as follows. First, we used the trick
of [35] for reducing batch verification of N BLS signatures
into a product of N pairings (recalled in Sec. D-4). Second,
we computed this product using the optimized algorithm of
gnark-crypto, inherited from [64]. Analogously, we batched
the verification of the N PoPs in dms, by using the method
of [14] for batch verification of Schnorr signatures (recalled
in Sec. D-5).

On the second line we consider the incremental processing
of the group setup in the scenario where: there is a group
KG of N = 2702 keys, over which processing of the group
setup was already performed, and then there are 14 new
keys (pk′i)i ∈ [14] which join the group, in place of the old
keys (pki)i ∈ [14]. Note that this corresponds to the same use-
case of MtoA, for messages of variable parts |v| = 7 bits,
when one of the n = 193 real group members leaves and
is replaced by a new member. This results in the new group
KG ′ =

(
KG\(pki)i ∈ [14]

)
∪ (pk′i)i ∈ [14]. Since the resulting

group KG ′ is different from KG, in SMSKR the Verifier needs
to compute again all the 2702 rerandomized keys relatively to
the new group KG ′, in addition to checking G1 membership of
the 14 new keys. Hence, we see that the incremental processing
of the group setup of SMSKR is nearly as costly as the
processing of the group setup of a whole new group of keys,
as evidenced by the first column of Table 6. Whereas in both
MSP-pop and dms, the incremental processing of the group

setup only consists in verifying the PoPs of the 14 new keys
(and the G1/G2-memberships).

in ms SMSKR [9] MSP-pop
[85][22, §6][24] dms

Batch |KG| keys 1134.9 1947.4 366.6
14 new keys 828.7 12.5 3.3

Table 6: processing of the group setup runtimes (in ms) for
each new group of |KG| = 2702 public keys, in three fNIMs.
First line: for a group KG of completely new keys. Second
line: incremental processing of the group setup when 14 new
keys join the group KG.

2) Comparison with previous provable securities: In Ta-
ble 7 we state proven upper-bounds: UBm-uf on the probability
to forge a multisignature, i.e., the advantage in the m-uf game.

- The first column states the formulas of UBm-uf , not
directly in terms of the running time t of the adversary, but
instead in terms of: qH the number of its random oracle requests
(hash-to-curve); qs the number of its signing requests; and
of the upper-bounds: UBDL, UBco-cdh, UBco-bdh and UBBLS-uf

on the advantage in the games of DL, co-cdh, co-bdh ([27])
and of forgery against standalone BLS signatures. The upper-
bounds are for any adversary with roughly the same running
time t as the forger, neglecting additive time overheads. In the
proofs, such additive overheads typically amount to roughly
+qH .τexp, where τexp is a scalar multiplication, also known
as exponentiation. In line with [22, Thm 5], we corrected the
bound for MSP-pop displayed in [85, Thm 4.1], in which
qH was replaced by the much smaller number qs of signature
queries. We also corrected a bug in the bounds of [9, Thms
1–4] (as confirmed by the authors on 26/1/2024).
- The second column states the models in which the formulas
are proven: RO stands for random oracle, and “RMSS” is, for
simplicity, the assumption that the “random modular subset
sum” [9, Def. 3] is at least as hard as DL ([9, §C.3]).
- The third column are numerical applications when assum-
ing furthermore the AGM. Concretely, under the AGM then
UBco-bdh = UBco-cdh = UBdl [11]. We took qH = 280; the
number of clock cycles t = 280τexp; qs = 230 (in line with
[13]); groups of size p ∼ 2253, and the hardness of DL esti-
mated as UBdl 6 t2/p. The latter formula is shown for generic
groups in [86] with t the number of group operations. Whereas,
we apply it more conservatively to t the number of clock
cycles. This estimate seems recently validated [70, 6] for both
the popular curves BLS12-377 (p ∼ 2253), used in Zexe [31],
and BLS12-381 (p ∼ 2255), used in Ethereum, since they
are both estimated to have close to 126 bits of security. It is
however estimated by Duquesne-Barbulescu and NCC group
[10, 65] that both those BLS12 curves, in order to match this
security, should be instantiated with a base prime q of size at
least 460bits.

3) Comparing verification times of MtoA + multi-BLS;
vs BGLS: In the first three lines of Table 8 we compare the
online verification times of three aggregate signature schemes,
for an aggregate signature over n messages. The messages are
of the form mi = (τ, vi) with have any arbitrary common
prefix τ and variable suffixes vi, all of size |v| = 7bits. On
the last column with display the size of signatures, including
the data of the public keys of the signers. Given a known

12

Proven security: UBm-uf Verifier’s efficiency Dynamic PoP
neededtheoretical Model log2(p)≈ 253 Group setup Online

[20, 77] if kosk model UBBLS-uf RO 2−93 (if AGM)

AS-4 [72, 16] UBco-cdh RO 2−93 (if AGM)

MSP-pop [85, Th 4.1][22, §6][24] &
ASMP-pop [22, §6] & Pixel [47]

qH .UBco-cdh RO 2−13 (if AGM) yes

MSP-blog [21, 56] qH
3/2.
√
UBco-cdh RO 1

ASM [22, §4.2] qH
3/2.
√
UBco-cdh RO 1

SMSKR [9] qH
3/2.
√
UBdl RO+AGM+RMSS 1

SIG1 [27] (Sec. D-6) qs .UBco-bdh RO 2−63 (if AGM)

Squirrel & Chipmunk [52, 51] (Lattice-based)

dms (this work) UBDL RO+AGM 2−93 yes

Table 7: fNIMs

group of public keys KG, the public keys of the subgroup
of n signers can be encoded as a |KG|-sized array of bits.
We approximated |KG| ∼= n, since |KG| = nC = (3/2)n
in Diem21-like consensus algorithms. On the last two lines,
in grey: we display the times for BLS multisignatures and
threshold signatures, which is of course not an apples-to-apples
comparison. In more detail:

First line: BGLS [23, 15, 37, 73, 22], of which the verifica-
tion takes n+1 pairings (recalled in Sec. D-1). More precisely,
we evaluated verification of the fastest variant of BGLS:
e(Σ,G2) ==

∑
i ∈ [n] e(H(mi), Xi). This variant, dubbed

AS-1 in [15], is restricted to pairwise different messages mi.
Hence, for a fair comparison with MtoA + dms, which is
unrestricted and has tight security, we should have instead
evaluated the costlier variant of BGLS called AS-4 in [15].
The verification would then have taken even more time. The
signature is a G1 element, which has uncompressed size equal
to 92bytes = 768bits.

Second line: MtoA instantiated with any BLS-based
fNIM with optimal online verification, i.e., either MSP-pop,
SMSKR or our dms. Namely, a MtoA signature comes as a
multisignature over N = |v|n = 7n keys, and its verification is
as in dms without verification of PoPs, i.e., as in [20], recalled
in Sec. D-2. As in consensus protocols, we considered that
the Verifier knows the tag τ in advance, and thus could pre-
compute H(τ).

Third line: naive concatenation of n Schnorr signatures.
Since no pairing is necessary, we used the faster curve
secp256k1. Each signature is of the form (R, z), where the G1

element R is now only of size 64bytes, and the Zp-element z
is of size 32bytes.

Fourth line: multisignature over n signers with any BLS-
based fNIM with optimal online verification, i.e., either
MSP-pop, SMSKR or our dms.

Fifth line: BLS threshold signature [20, 12]. The signature
output is a (standard, single-key) BLS signature.

VIII. ACKNOWLEDGEMENTS

We thank Zhuolun Xiang for informing of the use of aggre-
gate signatures in the production implementation of Diem21
by Aptos [5].

times in ms n = 129 n = 3073 size (bits)

BLS aggregate sig. 116.6 2661.6 768 + n

MtoA with BLS multisig. 3.4 35.9 768 + n

Batch Schnorr 1.9 22.4 768n + n

BLS multisig. 2.4 7.1 768 + n

BLS threshold sig. 1.9 1.9 768

Table 8: Online verification times over n messages (see above)

REFERENCES

[1] M. A. Aardal, D. F. Aranha, K. Boudgoust, S. Kolby,
and A. Takahashi. Aggregating Falcon Signatures with
LaBRADOR. ePrint 2024/311. 2024.

[2] M. Abdalla, F. Benhamouda, and P. MacKenzie. “Se-
curity of the J-PAKE Password-Authenticated Key Ex-
change Protocol”. In: IEEE SP. 2015.

[3] S. Agrawal, J. Neu, E. N. Tas, and D. Zindros. “Proofs
of Proof-Of-Stake with Sublinear Complexity”. In: AFT.
2023.

[4] J. H. Ahn, M. Green, and S. Hohenberger. “Synchro-
nized aggregate signatures: new definitions, construc-
tions and applications”. In: CCS. 2010.

[5] Aptos. Implementation of Aptos consensus, following
Diem. https://github.com/aptos- labs/aptos- core/blob/
main/consensus/consensus-types/src/timeout_2chain.rs
Retrieved on June 23, 2024. 2024.

[6] D. F. Aranha, Y. E. Housni, and A. Guillevic. A survey of
elliptic curves for proof systems. Des. Codes, Cryptogr.
2022.

[7] R. Bacho and J. Loss. “On the Adaptive Security of the
Threshold BLS Signature Scheme”. In: CCS. 2022.

[8] A. Bagherzandi, J.-H. Cheon, and S. Jarecki. “Multisig-
natures Secure under the Discrete Logarithm Assump-
tion and a Generalized Forking Lemma”. In: CCS. 2008.

[9] F. Baldimtsi, K. K. Chalkias, F. Garillot, J. Lindstrom,
B. Riva, A. Roy, A. Sonnino, P. Waiwitlikhit, and J.
Wang. “Subset-optimized BLS Multi-signature with Key
Aggregation”. In: FC. 2024.

[10] R. Barbulescu and S. Duquesne. Updating key size
estimations for pairings. JOC. 2018.

13

[11] B. Bauer, G. Fuchsbauer, and J. Loss. “A Classifica-
tion of Computational Assumptions in the Algebraic
Group Model”. In: CRYPTO. 2020.

[12] M. Bellare, E. Crites, C. Komlo, M. Maller, S. Tessaro,
and C. Zhu. “Better than Advertised Security for Non-
interactive Threshold Signatures”. In: CRYPTO. 2022.

[13] M. Bellare and W. Dai. “Chain Reductions for Multi-
Signatures and the HBMS Scheme”. In: ASIACRYPT.
2021.

[14] M. Bellare, J. A. Garay, and T. Rabin. “Fast batch
verification for modular exponentiation and digital sig-
natures”. In: EUROCRYPT. 1998.

[15] M. Bellare, C. Namprempre, and G. Neven. “Unre-
stricted Aggregate Signatures”. In: ICALP. long version.
2007.

[16] M. Bellare and G. Neven. “Multi-signatures in the plain
public-Key model and a general forking lemma”. In:
CCS. 2006.

[17] M. Bellare and P. Rogaway. “Code-Based Game-Playing
Proofs and the Security of Triple Encryption”. In: EU-
ROCRYPT. 2006.

[18] D. Bernhard, M. Fischlin, and B. Warinschi. “On the
Hardness of Proving CCA-security of Signed ElGamal”.
In: PKC (2016).

[19] W. Beullens and G. Seiler. “LaBRADOR: Compact
Proofs for R1CS from Module-SIS”. In: CRYPTO. 2023.

[20] A. Boldyreva. “Threshold Signatures, Multisignatures
and Blind Signatures Based on the Gap-Diffie-Hellman-
Group Signature Scheme”. In: PKC. Latest long version
at https://faculty.cc.gatech.edu/~aboldyre/papers/b.pdf.
2003.

[21] D. Boneh, M. Drijvers, and G. Neven. Bls multi-
signatures with public-key aggregation. https://crypto.
stanford . edu / ~dabo / pubs / papers / BLSmultisig . html.
2018.

[22] D. Boneh, M. Drijvers, and G. Neven. “Compact Multi-
signatures for Smaller Blockchains”. In: ASIACRYPT.
2018.

[23] D. Boneh, C. Gentry, B. Lynn, and H. Shacham. “Aggre-
gate and Verifiably Encrypted Signatures from Bilinear
Maps”. In: EUROCRYPT. 2003.

[24] D. Boneh, S. Gorbunov, R. S. Wahby, H. Wee, C. A.
Wood, and Z. Zhang. BLS Signatures draft-irtf-cfrg-bls-
signature-05. https://datatracker.ietf.org/doc/draft- irtf-
cfrg-bls-signature/. 2022.

[25] D. Boneh and S. Kim. One-Time and Interactive Aggre-
gate Signatures from Lattices. https://crypto.stanford.
edu/~skim13/agg_ots.pdf. 2020.

[26] D. Boneh, B. Lynn, and H. Shacham. “Short Signatures
from the Weil Pairing”. In: J. Cryptol. (2004).

[27] D. Boneh, A. Partap, and B. Waters. Accountable
Multi-Signatures with Constant Size Public Keys. ePrint
2023/1793. 2023.

[28] G. Botrel, T. Piellard, Y. E. Housni, A. Tabaie, and I.
Kubjas. ConsenSys/gnark-crypto: v0.6.1. 2022.

[29] K. Boudgoust, E. Gachon, and A. Pellet-Mary.
“Some Easy Instances of Ideal-SVP and Implications
on the Partial Vandermonde Knapsack Problem”. In:
CRYPTO. 2022.

[30] K. Boudgoust and A. Takahashi. Sequential Half-
Aggregation of Lattice-Based Signatures. ePrint
2023/159. 2023.

[31] S. Bowe, A. Chiesa, M. Green, I. Miers, P. Mishra,
and H. Wu. “ZEXE: Enabling Decentralized Private
Computation”. In: IEEE SP. 2020.

[32] M. Bravo, G. V. Chockler, and A. Gotsman. “Liveness
and Latency of Byzantine State-Machine Replication”.
In: DISC. 2022.

[33] M. Bravo, G. V. Chockler, and A. Gotsman. “Mak-
ing Byzantine consensus live”. In: Distributed Comput.
(2022).

[34] J. Burdges, O. Ciobotaru, S. Lavasani, and A. Stewart.
Efficient Aggregatable BLS Signatures with Chaum-
Pedersen Proofs. ePrint 2022/1611. 2022.

[35] J. Camenisch, S. Hohenberger, and M. Ø. Pedersen.
“Batch Verification of Short Signatures”. In: EURO-
CRYPT. 2007.

[36] B. Y. Chan and R. Pass. “Simplex Consensus: A Simple
and Fast Consensus Protocol”. In: TCC. 2023.

[37] S. Chatterjee, D. Hankerson, E. Knapp, and A. Menezes.
“Comparing Two Pairing-Based Aggregate Signature
Schemes”. In: Des. Codes, Cryptogr. (2010).

[38] H. Cheng, Y. Lu, Z. Lu, Q. Tang, Y. Zhang, and Z.
Zhang. JUMBO: Fully Asynchronous BFT Consensus
Made Truly Scalable. 2024.

[39] G. Chockler. Modular Construction of Live Byzantine
Consensus Protocols. an abstract appearing on https :
//lp.jetbrains.com/sptdc-2023/. 2023.

[40] S. Cohen, R. Gelashvili, E. Kokoris-Kogias, Z. Li, D.
Malkhi, A. Sonnino, and A. Spiegelman. “Be Aware of
Your Leaders”. In: FC. 2022.

[41] E. Crites, C. Komlo, and M. Maller. “Fully Adaptive
Schnorr Threshold Signatures”. In: CRYPTO. 2023.

[42] E. Crites, C. Komlo, and M. Maller. How to Prove
Schnorr Assuming Schnorr: Security of Multi- and
Threshold Signatures. ePrint 2021/1375. Merged into
CRYPTO’22 "Better than advertised security". 2021.

[43] S. Das, P. Camacho, Z. Xiang, J. Nieto, B. Bunz,
and L. Ren. “Threshold Signatures from Inner Product
Argument: Succinct, Weighted, and Multi-threshold”.
In: CCS. 2023.

[44] Diem. DiemBFT v4: State Machine
Replication in the Diem Blockchain.
https://developers.diem.com/papers/diem-consensus-
state-machine-replication-in-the-diem-blockchain/2021-
08-17.pdf. 2021.

[45] Y. Doröz, J. Hoffstein, J. H. Silverman, and B. Sunar.
MMSAT: A Scheme for Multimessage Multiuser Signa-
ture Aggregation. ePrint 2020/520. 2020.

[46] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss,
G. Neven, and I. Stepanovs. “On the Security of Two-
Round Multi-Signatures”. In: IEEE Security and Pri-
vacy. 2019.

[47] M. Drijvers, S. Gorbunov, G. Neven, and H. Wee.
“Pixel: Multi-signatures for Consensus”. In: USENIX
security. 2020.

[48] B. Edgington. Upgrading Ethereum. https://eth2book.
info/latest/book.pdf. 2023.

[49] M. F. Esgin, O. Ersoy, V. Kuchta, J. Loss, A. Sakzad,
R. Steinfeld, X. Yang, and R. K. Zhao. “A New Look
at Blockchain Leader Election: Simple, Efficient, Sus-
tainable and Post-Quantum”. In: AsiaCCS. 2023.

14

[50] Ethereum. Ethereum Altair upgrade. https://github.com/
ethereum/consensus-specs/blob/dev/specs/altair/bls.md.
2023.

[51] N. Fleischhacker, G. Herold, M. Simkin, and Z. Zhang.
“Chipmunk: Better Synchronized Multi-Signatures from
Lattices”. In: CCS. 2023.

[52] N. Fleischhacker, M. Simkin, and Z. Zhang. “Squirrel:
Efficient Synchronized Multi-Signatures from Lattices”.
In: CCS. 2022.

[53] G. Fuchsbauer, E. Kiltz, and J. Loss. “The Algebraic
Group Model and its Applications”. In: CRYPTO. 2018.

[54] G. Fuchsbauer, A. Plouviez, and Y. Seurin. “Blind
Schnorr Signatures and Signed ElGamal Encryption in
the Algebraic Group Model”. In: EUROCRYPT. 2020.

[55] S. D. Galbraith, K. G. Paterson, and N. P. Smart.
“Pairings for cryptographers”. In: Discret. Appl. Math.
(2008).

[56] D. Galindo and J. Liu. “Robust Subgroup Multi-
signatures for Consensus”. In: CT-RSA. 2022.

[57] S. Garg, A. Jain, P. Mukherjee, R. Sinha, M. Wang,
and Y. Zhang. “hinTS: Threshold Signatures with Silent
Setup”. In: IEEE SP. 2024.

[58] R. Gelashvili, L. Kokoris-Kogias, A. Sonnino, A.
Spiegelman, and Z. Xiang. “Jolteon and Ditto: Network-
Adaptive Efficient Consensus with Asynchronous Fall-
back”. In: version 2024-04-30, fixing the FC’22 version
and the 2023-12 version. 2024.

[59] C. Gentry, A. O’Neill, and L. Reyzin. A Unified Frame-
work for Trapdoor-Permutation-Based Sequential Ag-
gregate Signatures. ePrint 2018/070. 2018.

[60] N. Giridharan, H. Howard, I. Abraham, N. Crooks, and
A. Tomescu. No-commit proofs: Defeating livelock in
bft. eprint 2021/1308. 2021.

[61] G. Golan-Gueta, I. Abraham, S. Grossman, D. Malkhi,
B. Pinkas, M. K. Reiter, D. Seredinschi, O. Tamir,
and A. Tomescu. “SBFT: A Scalable and Decentralized
Trust Infrastructure”. In: DSN. 2019.

[62] S. Goldwasser, S. Micali, and R. L. Rivest. “A Digital
Signature Scheme Secure Against Adaptive Chosen-
Message Attacks”. In: SIAM J. Comput. (1988).

[63] B. Goodell and A. Feickert. Fusion One-Time Non-
Interactively-Aggregatable Digital Signatures From Lat-
tices. ePrint 2023/303. 2023.

[64] R. Granger and N. P. Smart. “On Computing Products
of Pairings”. In: eprint 2006/172 (2006).

[65] N. Group. Zcash Overwinter Consensus and
SaplingCryptography Review. https://research.nccgroup.
com / wp - content / uploads / 2020 / 07 / NCC _ Group _
Zcash2018_Public_Report_2019-01-30_v1.3.pdf. 2019.

[66] B. Guo, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang.
“Speeding Dumbo: Pushing Asynchronous BFT Closer
to Practice”. In: NDSS. 2022.

[67] K. Guo, K. Hu, and Z. Zhang. “Liveness Attacks on
HotStuff: The Vulnerability of Timer Doubling Mecha-
nism”. In: The Computer Journal (2024).

[68] C. Hébant and D. Pointcheval. “Traceable Constant-Size
Multi-Authority Credentials”. In: SCN. 2022.

[69] S. Hohenberger and B. Waters. “Synchronized Aggre-
gate Signatures from the RSA Assumption”. In: EURO-
CRYPT. 2018.

[70] Y. E. Housni and A. Guillevic. Optimized and secure
pairing-friendly elliptic curves suitable for one layer
proof composition. CANS. 2020.

[71] M. M. Jalalzai, J. Niu, C. Feng, and F. Gai. “Fast-
HotStuff: A Fast and Resilient HotStuff Protocol”. In:
IEEE Transactions on Dependable and Secure Comput-
ing (2023).

[72] J. Katz and N. Wang. “Efficiency improvements for
signature schemes with tight security reductions”. In:
CCS. 2003.

[73] M. Lacharité. “Security of BLS and BGLS signatures
in a multi-user setting”. In: Cryptogr. Commun. (2018).

[74] A. Lewis-Pye and I. Abraham. “Fever: OptiFmal Re-
sponsive View Synchronisation”. In: Opodis. 2023.

[75] A. Lewis-Pye, D. Malkhi, O. Naor, and K. Nayak.
“Lumiere: Making Optimal BFT for Partial Synchrony
Practical”. In: Podc. 2024.

[76] Z. Li, A. Sonnino, and P. Jovanovic. “Performance
of EdDSA and BLS Signatures in Committee-Based
Consensus”. In: ApPLIED at PODC. 2023.

[77] S. Lu, R. Ostrovsky, A. Sahai, H. Shacham, and B.
Waters. “Sequential Aggregate Signatures and Multisig-
natures Without Random Oracles”. In: EUROCRYPT.
2006.

[78] D. Malkhi, C. Stathakopoulou, and M. Yin. “BBCA-
CHAIN: One-Message, Low Latency BFT Consensus
on a DAG”. In: FC. 2024.

[79] S. Micali, K. Ohta, and L. Reyzin. “Accountable-
Subgroup Multisignatures: Extended Abstract”. In:
CCS. 2001.

[80] O. Mir, B. Bauer, S. Griffy, A. Lysyanskaya, and D. Sla-
manig. “Aggregate Signatures with Versatile Random-
ization and Issuer-Hiding Multi-Authority Anonymous
Credentials”. In: CCS. 2023.

[81] O. Naor, M. Baudet, D. Malkhi, and A. Spiegel-
man. “Cogsworth: Byzantine View Synchronization”.
In: arxiv 1909.05204 (2019).

[82] O. Naor and I. Keidar. “Expected Linear Round Syn-
chronization: The Missing Link for Linear Byzantine
SMR”. In: DISC. 2020.

[83] P. Paillier and D. Vergnaud. “Discrete-Log-Based Sig-
natures May Not Be Equivalent to Discrete Log”. In:
ASIACRYPT. 2005.

[84] M. Rambaud. “(Section 6 of version 2020-11-29) Ma-
licious Security Comes for Free in Consensus with
Leaders”. In: eprint 2020/1480 (2020).

[85] T. Ristenpart and S. Yilek. “The Power of Proofs-
of-Possession: Securing Multiparty Signatures against
Rogue-Key Attacks”. In: EUROCRYPT. 2007.

[86] V. Shoup. “Lower Bounds for Discrete Logarithms and
Related Problems”. In: EUROCRYPT. 1997.

[87] A. Spiegelman, N. Giridharan, A. Sonnino, and L.
Kokoris-Kogias. “Bullshark: DAG BFT Protocols Made
Practical”. In: CCS. 2022.

[88] X. Sui, S. Duan, and H. Zhang. “Marlin: Two-Phase
BFT with Linearity”. In: DSN. 2022.

[89] T. Tomita and J. Shikata. Compact Aggregate Signature
from Module-Lattices. ePrint 2023/471. 2023.

[90] M. Yin, D. Malkhi, M. K. Reiter, G. Golan-Gueta, and
I. Abraham. “HotStuff: BFT Consensus with Linearity
and Responsiveness”. In: PODC. we refer to the arxiv
v6 long version. 2019.

15

APPENDIX A
FURTHER FORMALIZATION AND OPTIMIZATION OFMtoA

All ideas were conveyed in Sec. IV, we now put them in
the formalism of Sec. III.

Theorem 8. Let M = (Kg,Sign, iVf,Cb,Vf) be any fNIM
and |v|> 0 an integer, then the following scheme A :=
(A.Kg,A.Sign, A.iVf,Ag,A.Vf) is a one-time-tagged fNIA
supporting messages with variable parts of bitlength |v|.

- A.Kg(): (skj,bi , pkj,bi)← Kg() ∀
(
j ∈ [|v|], b ∈ {0, 1}

)
;

ski ← (skj,bi)j ∈ [|v|],b ∈ {0,1}; pki ← (pkj,bi)j ∈ [|v|],b ∈ {0,1}
output (ski, pki)

- A.Sign(KG, ski, τi, vi): decompose in bits vi = (v j
i)j ∈ [|v|];

output Σi ←
(
Sign(KG, skj,v

j
i

i , τi
))

j ∈ [|v|]

- A.iVf(KG, pki, τi, vi,Σi): decompose in bits
vi = (v j

i)j ∈ [|v|];

output
∧

j ∈ [|v|] iVf
(
KG, pkj,v

j
i

i , τi, Σj
i

)
- Ag

(
KG, τ, (pki,Σi, vi)i ∈ [n]

)
:

decompose in bits vi = (v j
i)j ∈ [|v|] ∀i ∈ [n];

output Cb
(
KG, τ,

(
pk

j,v j
i

i ,Σj
i

)
j ∈ [|v|],i ∈ [n]

)
- A.Vf

(
KG, τ, (pki, vi)i ∈ [n],Σ

)
:

decompose in bits vi = (v j
i)j ∈ [|v|] ∀i ∈ [n];

output Vf
(
KG, (pk

j,v j
i

i)i ∈ [n],j ∈ [|v|], τ, Σ
)

Proof: Both individual completeness and robustness fol-
low straightforwardly from the ones of M, let us prove
unforgeability. Consider a forger F in the game a-uf of
Figure 3, and the event where it wins the game. Namely, it
outputs

(
KG, τ∗, (pki, vi)i ∈ [n],Σ

∗), such that there exists
(ṗk, v∗) ∈ (pki, vi)i ∈ [n] such that no query on (τ∗, v∗) was
ever responded by the oracle SIGN. By assumption, SIGN
responded to at most one query prefixed by τ∗. Without
loss of generality, we can assume that exactly one such
query was made and responded to: Σ ← (τ∗, v ′). By the
above v ′ 6= v∗, thus there is a bit index j0 ∈ [|v|] at which
b0 := (v∗)j0 6= (v ′)j0 , thus no signature of ṗk

j0,b0 on τ
was ever delivered by SIGN. Since the other keys of the
honest signer: (ṗk

j,b
)(j,b)6=(j0,b0) are generated independently

from ṗk
j0,b0 , the intuitive conclusion is that Σ constitutes

a M-forgery on the message τ with respect to the signers
(pk

j,v j
i

i)i ∈ [n],j ∈ [|v|] and target key ṗk
j0,b0 .

Of course the indices (j0, b0) are not known in advance.
So to make this argument rigorous and build from F a forger
against M, the reduction must choose at random an index
(j0, b0) ∈ [|v|] × {0, 1}, and embed its target key in ṗk

j0,b0 .
Thus we have at most 2|v| loss compared to the (2|v|n)-
unforgeability of M.

a) Optimization for variable parts of variable lengths:
In the case of messages with shorter variable bitlengths than
the maximum: |v′| < |v|, is very easy to enable multisignatures
with respect to the shorter set of keys (pkj,bi)j ∈ [|v′|],b ∈ {0,1})
for each signer. A global adjustment consists in encoding |v′|

in the tag for all messages. It is possible to achieve further
flexibility and let each signer i adjust the length of its signature
depending on the length of its variable part vi. To this end,
add to each public key a list of |v| keys, where the j-th key
is used for signing the end-of-string at position j ∈ [|v|].

APPENDIX B
DETAILS FOR APPLICATIONS OF dms

a) To Blockchain Consensus: The main elementary
operation in all such protocols, e.g., [58, 87, 66, 78, 36], is:
one (or several) designated Combiner(s) wait(s) to receive a
sufficiently large number of signatures, say N , on the same
message content: m, then combine the signatures into Σ.
Then it multicasts Σ to all the participants to the consensus,
dubbed the processes. Moreover, Σ is often meant and verified
by billions of external clients, since in most cases Σ attests
validity of a block. Since in addition Σ is stored on-chain, it is
therefore a first-class requirement that Σ be both small and fast
to verify. As shown in Table 8, pairing-based multisignatures
schemes are the most advantageous instantiation of Σ with this
respect, since they take close to N× less storage space than
a naive concatenation of Schnorr signatures. Furthermore, at
least for N > 3073, they have 3× smaller Verifier runtime.
The last hurdle to their adoption, as stressed in [88], was
the runtime of O(n) pairings required to verify pairing-based
PoPs. This hurdle is now removed by dms. Still, surprisingly, a
number of implementations of consensus protocols instantiate
fNIMs as mere concatenations of signatures [58, 87, 66, 38],
instead of BLS-based multisignatures. The reason invoked [76,
38] is the verification time of an individual BLS signature
[26, 37](algorithm iVf), which takes 2 pairings. We observe
that there exists known ways around this potential runtime
gap. First, in case the Combiner would receive individual BLS
signatures faster than it can verify individually, then it can
simply combine them and check them as a multisignature: this
was empirically confirmed by [38]. In the rare events where
one ill-formed signature would make this batch verification
fail, the cheater which issued it would be publicly identified
so this is a strong deterrence. Second, there is a more or less
known method enabling a faster iVf, which is proposed in [56,
34]. The signer, in addition to its signature: σi = ski.H(m),
appends to it a “Chaum-Pedersen” proof: π, of knowledge of
a common discrete logarithm: ski between σi and the public
key Xi := ski.G2. Then the verification algorithm: iVfDLEQ

verifies only π against σi and Xi, not anymore σi against Xi.
Our implementation of iVfDLEQ, with the same configuration
as in Sec. VII (same machine, gnark-crypto, BLS-377 curve),
shows a runtime of 0.785ms, down from 1.9ms for the iVf of a
standard BLS signature (Table 8). So this reduces the gap w.r.t.
our verification time of a Schnorr signature on secp256k1,
which is of 0.220ms.

b) To Threshold Signatures: The recent weighted
threshold signature schemes [43, 57] are constructed on the
top of BLS multisignatures, they both operate as follows. The
list of published keys is denoted (Xi)i ∈ [N] and their weights
(wi)i ∈ [N]. The Combiner collects valid individual BLS sig-
natures: (Σi)i ∈ I one some message m, issued by a subset
I⊂ [N], totalizing some desired weight: w :=

∑
i ∈ I wi. It

outputs the public multisignature Σ :=
∑

i ∈ I Σi and the
public weight w. It also outputs a proof of knowledge π of

16

I⊂ [N], encoded as a N -sized binary vector (bi)i ∈ [N], veri-
fying the following (bi)linear relations: (i) w =

∑
i ∈ [N] biwi

and (ii) e
(
Σ , G2

)
== e

(
H(m),

∑
i ∈ [N] biXi

)
. Note that (i)

and (ii) together ensure that Σ passes the BLS multisignature
verification (m-blsVf∗) against the public keys (Xi)i ∈ [N], and
that they totalize weight w. However, the sole passing of
(m-blsVf∗) does not guarantee unforgeability: as the reader
knows well, some processing of the group setup must be
done on the group of keys. In [43] the authors suggest using
MSP-pop [85, 22], where the Verifier verifies pairing-based
PoPs appended to the published keys (Xi)i ∈ [N]. Using instead
dms, i.e., Schnorr-based PoPs, divides by > 5× this latter
runtime, as demonstrated in Table 6.

APPENDIX C
DETAILS FOR APPLICATION OFMtoA TO CONSENSUS

In Figure 9 we further recall the consensus Diem21 [44]
among nC = 3f+1 processes, of which f are corrupt. Diem21
was used in production by Meta, today by Aptos, and should
not be confused with previous versions of Diem, as presented
in [58, Fig. 1], which instead followed Hotstuff [90]. Then in
Figure 10 we formalize how MtoA can be straightforwardly
plugged: either in place of naive concatenation of (2/3)nC
signatures (in [44]) or in place of the BGLS [23] aggregate
signature (in the production version [5]).

Diem21 proceeds by iterations called rounds, each with a
designated process called the leader. We borrow freely from
the terminology of [58, 36]. Although our presentation follows
Jolteon (of which the timeout certificates where very recently
fixed in [58]), we stick to the unusual specification of a new-
round appearing in Diem21 [44]. We highlight it (in red)
in Figure 9. The reason for not choosing the mainstream
specification ([61, 58, 78]) of a new-round message, is that
the latter mainly consists of a signature on a quorum certificate
(QC). Since a QC is typically a multisignature, these objects
are not efficiently aggregatable.

We however depart from Diem21 in that our model
abstracts-out the view-synchronizer. Let us recall in more
detail that a view-synchronizer [74] is a protocol enabling
players to advance their local round numbers: rnew ← r in
two ways. Either (i) upon receiving a round-(rnew-1)-QC from
the consensus protocol, which we left explicit in the protocol;
or, (ii) upon outputting, from the view-synchronizer protocol,
a signal of the form: (NEWROUND, rnew) for rnew > r. A view-
synchronizer protocol should guarantee that, eventually, honest
players are in the same round for a sufficiently long time, and
that this happens infinitely often. Liveness of a consensus pro-
tocol is then conditioned to this guarantee. Hence, we consider
the hybrid model, where a process goes to a round rnew either
upon receiving a rnew-QC, or a signal (NEWROUND, rnew)
from a black box view-synchronizer. In this hybrid model,
Diem21 enjoys a linear number of messages per round since
communications are star-shaped around leaders.

a) Why abstracting-out view-synchronization ?: Since
the main claim of the Hotstuff consensus [90], i.e., lin-
ear communication complexity and responsiveness, is stated
in the hybrid model of an abstract view-synchronizer, we
choose the same model in order to make an apples-to-
apples comparison. Even though an unproven implemen-
tation of view-synchronizer was suggested in [90], under

the name “Pacemaker”, an attack breaking its liveness was
recently shown in [67]. Our choice is also motivated by
readability, since our contributions are orthogonal from view-
synchronization. Last, even though the protocol Diem21 [44],
which we use as baseline, innovated with a nice “Bracha”
view-synchronizer, it is now advocated by specialists ([39]) to
instead abstract-out view synchronizers, and delegate their im-
plementation to recent dedicated papers with thorough proofs
and tight performances [81, 75, 33, 82, 32, 74, 75]. The one
of [75] has communication complexity in nf ′, where f ′ is the
actual number of faults in the execution. As a side-remark, it
is actually not hard to imagine how to divide the complexity
of the view-synchronizer of Diem21 [44] as follows. Instead
of appending their highest QC to the new-view message which
they multicast, processes need only appending it to one which
they send to the next leader. Thus, provided an implementa-
tion of QCs with mere concatenation of signatures, the total
communication complexity and verification complexity would
both drop from O(n3) down to O(n2).

1) Terminology: Multicast is the instruction to send a
message to all, so nothing prevents processes from receiving
different messages if the sender is corrupt. We denote 〈m〉 i
a standalone signature of Pi on the message m, we then say
that Pi is the signer of the “signed message 〈m〉i”. We denote
{m}i an individual signature of Pi on the message m, and
{m} a (2f+1)-multisignature on m. It is a triple consisting
of: m, a (2f+1)-sized subset J⊂ [n], and a multisignature Σ
on m which is valid w.r.t. the public keys of J .

• Round Number. The protocol runs in sequential iterations
called rounds r = 1, 2, 3, . . . where each player starts in
round r = 1. Note that each player may advance through
rounds at a different speed, and at any given time, two
players may be in two different rounds due to network
delay (since we are in the partially synchronous setting). As
local state, each player P ∈ (Pi)i ∈ [n] keeps track of which
round r it is currently in (formerly denoted rcur in [58]). It
also stores all of the certified blocks that it has seen thus
far, to be defined below. Additionally, we assume that each
round r has a pre-determined block proposer called leader:
lead(r) ∈ (Pi)i ∈ [n]. It may be randomly or deterministically
chosen ahead of time, e.g., [40, 49]; this is referred to as a
leader election oracle.

• Block format. A block is formatted as b = [id, qc, rc, r, txn]
where:

- id = H(qc, r, v, txn) is the unique hash digest of
(qc, r, v, txn);

- qc is a quorum certificate (QC: defined below) of the
parent block of b;

- r is the round number of b ;
- rc is either (1) a round-(r−1) new-round (see below), or

(2) rc = ⊥ if qc is a round-(r− 1)-QC, i.e., qc.r = r− 1;
- txn is a batch of new transactions;

Note that when describing the protocol, it suffices to specify
qc and r for a new block, since txn and id follow the
definitions. We will use b.x to denote the element x of b.

• Quorum certificate (QC). A QC: qc for a block b is a multi
(or threshold) signature for the message (b.id , b.r), produced
by combining the individual signatures {b.id , b.r} from any
set of 2f+1 players. The round number of a QC: qc for a
block b is denoted by qc .r which is equal to b.r. QCs are

17

ranked by their round numbers, hence, we abuse notation
and shorten as qc > qc′ the relation qc.r > qc′ .r. Since
the QC contained in a block determines its unique parent
block, and since the genesis block is the common ancestor
of all blocks, the total data structure forms a tree of blocks.
A branch is called a “blockchain”. We use b← b′ to denote
a 2-chain, i.e., a block b′ of which the parent is the block
b, i.e., such that b′.qc is a QC of b. Each player stores the
highest QC: qchigh, which is the QC with the highest round
number, which it ever received or formed. For convenience
we denote rhigh := qchigh.r its round number.

• New-round message and New-round certificate (RC).
Jolteon & Diem21, [58, 44] make use of data structures
called a Timeout Message (tmo) and a Timeout Certifi-
cate (TC). We present their definitions as appearing in
Diem21 [44] . We rename them a new-round message and
a new-round certificate RC), for at least two reasons.
- First, for compatibility with the syntax of view-

synchronizers, we specify that players send their round-r
new-round message just after entering the new round r,
instead of, in [58, 44], sending their round-(r− 1) timeout
message upon timing-out in the old round r − 1. This
difference is merely syntactical, processes take the same
actions. Namely: both in [58, 44] and in our presentation,
players do not either cast anymore round-(r−1) votes after
sending their timeout message.

- Second, because these data structures do not play anymore
a role in the implementation of the view-synchronizer,
as they did in [58, 44], since in our model the view-
synchronizer is abstracted-out.

A round-r new-round message by a player i consists of
the players’s qchigh, and of its individual signature on the
pair (r, rhigh): 〈r, rhigh〉i, where we recall rhigh := qchigh.r. A
round-r RC is meant to be formed out of 2f+1 new-rounds.
In the written specifications [44] (recalled in Figure 9), a
round-r RC consists of the naive concatenation of 2f + 1

signed pairs from distinct issuers: rc ←
[
〈r , rj〉j : j ∈ J

]
,

where J⊂ [n] is a (2f + 1)-sized subset: we follow this .
Whereas in the production version [5], the RC is the BGLS
aggregate signature rc← BGLS.Ag

[
〈r , rj〉j : j ∈ J

]
. Note

that this presentation simplifies the slightly more compact
encoding in [44], where the common prefix r is factored out
of the 2f + 1 signed messages. Following [84], note that
rc plays the role of a proof of non-supermajority because it
guarantees that no set of f+1 honest players, upon entering
round r, could have previously voted for a block containing
a QC of round strictly higher than rmax := max(rj , j ∈ J).

Diem21 with black-box view-synchronizer

Instructions for each player Pi, i ∈ [n] in (local) round r (denoted
rcurr in Jolteon). It keeps the highest voted round rvote, the highest
QC: qchigh and the highest locked round rhigh := qchigh.r. Players
initialize rvote = 0, rhigh = 0, qchigh as the QC of the genesis
block of round 0, and enter round r = 1. The leader of round r
is denoted lead(r).
Propose Upon entering round r, if Pi is the leader lead(r), then

it waits until the first of the following two events happens:

- receiving or forming a round-(r−1) QC, i.e., qchigh.r = r−1
. e.g., if it entered round r upon receiving qchigh
Then it sets rc← ⊥; or

- receiving 2f + 1 valid round-r new-round messages:[(
〈r , rj〉 j , qchigh,j

)
: j ∈ J

]
, where J⊂ [n] is of size

2f+1. In this case it sets:
rc←

[
〈r , rj〉j : j ∈ J

]
. proof of non-supermajority

. In the production version [5], rc is instead the BGLS aggregate.

Then it multicasts a block b = [id, qchigh, rc, r, txn].

Vote Upon receiving the first proposal b = [id, qc, rc, r, txn]
from lead(r) while in round r execute Lock, and Advance
Round, and then Commit, as instructed below. If r> rvote and{

either (1): r = qc.r + 1; or (2) rc =
[
〈r , rj〉j : j ∈ J

]
with

|J | = 2f+1 and qc.r > max
{

rj | j ∈ J
}}

then it votes for b by sending the individual signature
〈id, r〉 to lead(r + 1), and updates rvote ← r.

Lock Upon receiving or forming a QC: qc , update qchigh ←
max(qchigh, qc) (and thus rhigh ← max(rhigh, qc.r)).

Commit (2-chain commit rule) Whenever there exists two ad-
jacent certified blocks b ← b′ in the chain with consecutive
round numbers, i.e., b′ .r = b.r + 1, commit b and all its
ancestors.

Advance Round . Dotted box = the view-synchronizer model
∀ rnew > r, update the current round number r← rnew:
. implying that it stops voting for round- 6 (rnew – 1) proposals

-either upon receiving or forming a round-(rnew – 1) QC: qc
-or, upon a (NEWROUND, rnew) signal

in this latter case, i.e., (NEWROUND, rnew), it then
sends to lead(r) a round-r new-round message:(

〈r, rhigh〉i , qchigh

)
. where 〈r , rhigh〉i is a (standalone) signature of Pi on (r , rhigh),
. and where we recall rhigh := qchigh.r.

Timer and Timeout (Implemented (NEWROUND) signals)

Figure 9: Differences with Jolteon: new-round messages and
RCs (highlighted). Differences with both Jolteon & Diem21:
the black-box view-synchronizer (dotted-boxed), which re-
places the explicit implementation of (NEWROUND) from
timeout certificates in Diem21/Jolteon.

18

Diem21 +MtoA
Instructions for each process Pi. Same initialization as in Diem.
We consider A := (Kg, Sign, iVf,Ag,Vf) a one-time-tagged
aggregate signature scheme, e.g., obtained from MtoA.
Propose Upon entering round r, if Pi is the leader lead(r), then

it waits until the first of the following two events happens:

- receiving or forming a round-(r – 1) QC: qchigh. Then
rc← ⊥;

- or, receiving 2f+1 round-r new-round messages:[(
〈r , rj〉 j , qchigh,j

)
: j ∈ J

]
. Then it aggregates the

signatures w.r.t. the fixed tag r :
rc←

[
r, (rj)j ∈ J , J, A.Ag

(
r , 〈 rj〉j ∈ J

)]
. proof of non-supermajority

Then it multicasts a block b = [id, qchigh, rc, r, txn].

Vote Upon receiving the first proposal b = [id, qc, rc, r, txn]
from lead(r) while in round r, Lock, and Advance Round,
and then Commit. If r> rvote and

{
either (1): r = qc.r + 1; or

(2) r = rc.r+1 and rc =
[
r , (rj)j ∈ J , J, Σ

]
with |J | = 2f+1

and Σ a valid A-signature on the tagged messages
(
r, rj

)
j ∈ J

w.r.t. the public keys of J and qc.r > max{rj | j ∈ J}
}

then it votes for b by sending the individual signature
〈id, r〉 to lead(r + 1), and updates rvote ← r.

Lock, Advance round, Commit Same as in Diem21.

New-round Upon receiving a signal (NEWROUND, rnew) from
the view-synchronization mechanism, advance the current
round number r← rnew. Send to lead(r) a new-round message:(

{r , rhigh}i , qchigh

)
where {r , rhigh} i ← A.Sign(ski, r , rhigh) is an individual
signature of player Pi , and where we recall rhigh := qchigh.r.

Figure 10: Differences with Figure 9 are highlighted.

APPENDIX D
FURTHER DETAILS ON RELATED WORKS

1) AS-3 ([15]): We recall below the verification algo-
rithm, tagged (AS-3.Vf), of the fNIA called AS-3 in [15].
AS-3 is a verifier-unrestricted variant of the seminal BGLS
[23]. AS-3 is defined over a bilinear group (e,G1,G2,GT)
with public generators G1, G2, and for a given hash-to-curve
H. The Xi are the public keys.

(AS-3.Vf)
(

(Xi,mi)i ∈ [n], Σ
)
−→

e
(
Σ , G2

)
==
∑
i ∈ [n]

e
(

H(Xi|mi) , Xi

)
∧
(
Σ ∈ G1

)
2) Pairing-based fNIM of Boldyreva [20]: We recall below

its verification formula, tagged (m-blsVf∗). Recall that this
fNIM is secure only in the kosk model. The formula is the
same as the one of dms (Sec. V), without the checks of PoPs
on public keys (the function which we called kVf).

(m-blsVf∗)
(

(Xi)i ∈ [N], m , Σ
)
−→

e
(
Σ , G2

)
== e

(
H(m) ,

∑
i ∈ [N]

Xi

)
∧ Σ ∈ G1

3) SMSKR ([9]): The key published by each member of the
group of potential signers, consists of a raw G2 element: pk =

X ← x.G2. Once all keys of the group have been published:
KG, each signer re-randomizes its secret key:
(24) x← H(KG|X).x .

Hence, the individual signatures which it will generate with
its re-randomized secret key x, will be valid w.r.t. the re-
randomized public key:
(25) X ← H(KG|X).X ∀X ∈KG .
Likewise, combined signatures will be verified against the
sum of the re-randomized keys of the subgroup of signers.
Hence, the Verifier must compute the rerandomized public
keys. Namely, the processing of the group setup consists of
computing Eq. (25) for each X ∈KG.

4)MSP-pop [85, 24][22, §6], and batch verification of
group setup: Each key pki = (Xi, πi) comes appended with a
PoP equal to a BLS signature on Xi: Πi ← xi.Xi, where Xi ←
xi.G2. Their verification cost is dominated by two pairings for
each key:

(26) kVf(pki)→
(
e(Πi, G2) == e(H(Xi), Xi)

)
∧

Xi ∈ G2 ∧ Πi ∈ G1 .

In our benchmarks (Table 6), we first used the 2× speedup
of [35] for batch verification of BLS signatures: the Verifier
samples random numbers (ei)i ∈ [N]

$←− Z[N]
p , then checks

(27) e
(∑
i ∈ [N]

ei.Πi , G2

)
==

∑
i ∈ [N]

e
(
ei.H(Xi) , Xi

)
.

Second, we sped-up the right-hand sum with the optimized im-
plementation of products of pairings in gnark-crypto, inherited
from [64].

5) dms: Batch verification of group setup: In our bench-
marks (Table 6) we sped-up the verification of the PoPs of dms,
i.e., kVf(pki) ∀i ∈ [N], using the method of [14] for batch ver-
ification of Schnorr signatures. Namely: parse (Xi, πi)← pki
and (Ri, zi) ← πi ∀i ∈ [N]; ci ← Hpop(Xi, Xi, Ri); sample
(ei)i ∈ [N]

$←− Z[N]
p ; output

(28) Xi ∈ G2 ∀i ∈ [N]∧(∑
i ∈ [N]

ei zi
)
G2 ==

∑
i ∈ [N]

eiRi +
∑

i ∈ [N]

(ei ci).Xi .

6) SIG1 [27]: The recent (non-dynamic) fNIM called SIG1

[27] has a processing of the group setup runtime which is one
order of magnitude higher than the three previous fNIMs, i.e.,
SMSKR,MSP-pop and dms. Verification of N keys (each N -
sized) requires O(N2) pairings and O(N2) group membership
tests, instead of N + 1 pairings inMSP-pop and O(N) group
membership tests in all three previous fNIMs. Then, computing
the verification key of a group KG of N keys takes N multi-
additions, each with N terms.

19

