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Abstract
Assuming the hardness of LWE and the existence of IO, we construct a public-key encryption scheme

that is IND-CCA secure but fails to satisfy even a weak notion of indistinguishability security with
respect to selective opening attacks. Prior to our work, such a separation was known only from stronger
assumptions such as differing inputs obfuscation (Hofheinz, Rao, and Wichs, PKC 2016).

Central to our separation is a new hash family, which may be of independent interest. Specifically,
for any 𝑆(𝜆) = 𝜆𝑂(1), any 𝑛(𝜆) = 𝜆𝑂(1), and any 𝑚(𝜆) = 𝜆Θ(1), we construct a hash family mapping
𝑛(𝜆) bits to 𝑚(𝜆) bits that is somewhere statistically correlation intractable (SS-CI) for all relations
𝑅𝜆 ⊆ {0, 1}𝑛(𝜆) × {0, 1}𝑚(𝜆) that are enumerable by circuits of size 𝑆(𝜆).

We give two constructions of such a hash family. Our first construction uses IO, and generically
“boosts” any hash family that is SS-CI for the smaller class of functions that are computable by circuits
of size 𝑆(𝜆). This weaker hash variant can be constructed based solely on LWE (Peikert and Shiehian,
CRYPTO 2019). Our second construction is based on the existence of a circular secure FHE scheme,
and follows the construction of Canetti et al. (STOC 2019).

1 Introduction
Defining the necessary security properties for public-key encryption is a subtle affair. While the standard
notion of IND-CCA [RS91] (or sometimes the simpler and weaker notion of IND-CPA security [GM84])
is broadly accepted as the gold standard, there are situations in which it is clearly insufficient. One such
scenario is implementing secure channels in the presence of adaptive corruptions, for example in a multi-
party computation protocol [CFGN96]. In this scenario, the encryption scheme can be subjected to what is
known as a selective opening attack (SOA).

In a selective opening attack, an adversary is given a public key pk along with 𝑛 ciphertexts ct1, . . . , ct𝑛,
and can then choose a subset 𝐼 ⊆ [𝑛]. Then for each 𝑖 ∈ 𝐼, the adversary is given the message 𝑚𝑖 and
randomness 𝑟𝑖 such that ct𝑖 is an encryption of 𝑚𝑖 using randomness 𝑟𝑖. The surprisingly difficult question
is: what does such an adversary learn about (𝑚𝑖)𝑖/∈𝐼?

Perhaps surprisingly, for many encryption schemes satisfying the standard IND-CCA notion of security,
the answer is not “nothing”! Before we can explain the details and nuances of this claim, we must first define
security against selective opening attacks. This is itself non-trivial, and there are two main definitional
variants.

Simulation-Based SOA Security The more stringent notion is a simulation-based notion in the style of
semantic security style [GM84], and was first described by Dwork, Naor, Reingold, and Stockmeyer [DNRS99]
in the setting of commitment schemes. Later, this definition was adapted to public-key encryption by Bellare,
Hofheinz, and Yilik [BHY09]. Loosely speaking, this definition requires that for every adversary, there is an
efficient simulator that produces indistinguishable output, while only interacting with an idealized “black
box” model of the encryption scheme. Specifically, the simulator chooses the set 𝐼 without seeing any
ciphertexts, and in response is given only the messages (𝑚𝑖)𝑖∈𝐼 .
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Indistinguishability-Based SOA Security The second notion, which is strictly weaker than the for-
mer, is a game-based definition, called “indistinguishability under selective opening attacks with respect
to conditionally resampleable distributions” (abbreviated IND-SOA-CRS). This notion requires that any
computationally bounded adversary can only win the following game (played against a “challenger”) with
probability negligibly close to 1/2.

The adversary first specifies a distribution ℳ on vectors of messages, and the challenger samples
m = (𝑚1, . . . , 𝑚𝑛) from this distribution. ℳ is required to be efficiently sampleable, and also efficiently
“conditionally re-sampleable” — we elaborate more on the latter requirement later. The challenger then
generates encryptions ct𝑖 := Enc(𝑚𝑖; 𝑟𝑖), where 𝑟𝑖 denotes the randomness used in the encryption process,
and sends (ct1, . . . , ct𝑛) to the adversary. After the adversary specifies a set 𝐼 ⊆ [𝑛] and receives

(︀
(𝑚𝑖, 𝑟𝑖)

)︀
𝑖∈𝐼

,
the challenger samples m′ from the distribution ℳ conditioned on 𝑚′

𝑖 = 𝑚𝑖 for all 𝑖 ∈ 𝐼. The challenger
finally sends either m′ or m to the adversary, and the adversary wins if he can guess which of the two he
received.

Relation To Other Assumptions In Cryptography A long line of work has sought to clarify how both
variants of SOA security relate to IND-CPA and IND-CCA security, as well as to other standard assumptions
in cryptography.

We briefly summarize the history of what is now known. It was first shown by [BHY09] that any “lossy”
encryption scheme must be IND-SOA-CRS secure, and if the lossy encryption scheme additionally satisfies
an “efficient openability” requirement, then it must also satisfy the stronger notion of SS-SOA security. On
the other hand, [BDWY12] proved that if an encryption scheme satisfies a binding property antithetical to
lossiness, then the encryption scheme cannot satisfy SS-SOA security.

A major gap in our understanding, and the focus of this work, is whether an encryption scheme satisfying
IND-CPA (or even IND-CCA) security must also satisfy IND-SOA-CRS security. The most salient prior
works on this are those of Hofheinz and Rupp [HR14] and Hofheinz, Rao, and Wichs [HRW16].

The work of [HR14] showed that IND-CCA security does not imply a strengthening of IND-SOA-CRS
security, in which the adversary is allowed to make decryption queries analogous to those in the IND-CCA
security game. At a high level, they add extra functionality to the decryption algorithm that, when made
available to the adversary as an oracle, preserves IND-CCA security while destroying selective opening
security.

Subsequently, the work of [HRW16] adapted these ideas to the plain notion of IND-SOA-CRS security
— at a high level, they replace the oracle by an obfuscated program that comprises part of the public key.
They thus obtain a conditional separation that relies on strong and non-standard assumptions. Specifically,
they assumed the existence of:

• a hash family that is correlation intractable for a specific class ℛ of binary relations (more in the
technical overview). That is, for all relations 𝑅 ∈ ℛ, it must be difficult given a random hash function
𝐻, to find an input 𝑥 such that (𝑥, 𝐻(𝑥)) ∈ 𝑅.

• an encryption scheme PKE that is puncturable (a strong form of IND-CCA security). Such an encryp-
tion scheme was constructed from IO and one-way functions in [CHV15].

• public-coin differing inputs obfuscation (pc-diO) [IPS15]. This is a strong notion of security for a
circuit obfuscator 𝒪, stipulating that if it is hard to find an input on which a randomly sampled pair of
circuits (𝐶0, 𝐶1) differ, even given the coins used to sample those circuits, then

(︀
𝐶0, 𝐶1,𝒪(𝐶0)

)︀
should

be indistinguishable from
(︀
𝐶0, 𝐶1,𝒪(𝐶1)

)︀
.

After long lines of research on both correlation intractability ([KRR17, CCRR18, HL18, CCH+19, PS19,
HLR21]) and indistinguishability obfuscation (too many papers to list, culminating in the seminal break-
through of [JLS21, JLS22]), we now know how to construct both from well-studied cryptographic assump-
tions.
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On the other hand, there is significant evidence against the existence of differing inputs obfuscation [BP15,
GGHW17, BSW16]. While this evidence does not apply to the public-coin flavor of differing inputs obfus-
cation used in [HRW16], pc-diO still stands out as a qualitatively stronger assumption than the others, and
one which is unlikely to be instantiable from a falsifiable assumption [Nao03, GK16].

In this work, we show how to reduce the assumptions of the separation to only indistinguishability
obfuscation and LWE.

Correlation Intractable Hashing As an important tool in our separation, we construct hash families
satisfying a strong form of correlation intractability, which we believe is the right “iO-friendly” notion —
somewhere statistical [CCH+19] correlation intractability for any “efficiently enumerable” relation 𝑅.

By “somewhere statistical” correlation intractability, we mean that the hash 𝐻 is indistinguishable from
a hash 𝐻 ′ for which there does not exist any 𝑥 satisfying

(︀
𝑥, 𝐻 ′(𝑥)

)︀
∈ 𝑅. This is clearly important in the

context of an iO, where two programs need to be perfectly functionally equivalent for their obfuscations to
indistinguishable.

By an “efficiently enumerable” relation 𝑅, we mean that there exists an efficient algorithm that on
input 𝑥, outputs a small set containing all 𝑦 for which (𝑥, 𝑦) ∈ 𝑅. While this may seem to be a limited
class of relations, the work of [HLR21] demonstrated that by using powerful tools from coding theory, any
form of correlation intractability for efficiently enumerable relations can be boosted to a much larger class
of relations. In particular, this larger class includes a relation that was already identified in [HRW16] as
relevant to separating IND-SOA-CRS from IND-CPA security.

The use of iO for building cryptographic applications has been driven by the interplay between iO itself
with “iO friendly” primitives such as puncturable PRFs [SW21]. We expect that our results on correlation
intractability will similarly find other future applications.

2 Technical Overview
We first explain the counterexample of [HRW16] and their analysis.

2.1 The Counterexample of Hofheinz, Rao, and Wichs
The encryption scheme extends a puncturable encryption scheme by appending to the public key pk the
following auxiliary values, which are not used by an honest encryptor or decryptor.

• a hash function ℎ, and

• an obfuscated program ˜SOAHelper ← 𝒪(SOAHelper[ℎ, sk]) (here SOAHelper is a circuit that has ℎ
embedded, as well as the secret key sk corresponding to pk, and is described in more detail below).

For technical reasons that we elaborate on below, their encryption scheme needs to be limited to a message
space of size 𝜆𝑂(1), where 𝜆 denotes the security parameter.

Another central ingredient in the circuit SOAHelper[ℎ, sk] is an error-correcting code 𝒞 with constant rate
𝑅, constant relative distance, block length 𝑛 = Θ(𝜆), and a polynomial-time algorithm for correcting 𝒞 from
a constant fraction 𝛿 of errors ([HRW16] describe their scheme in terms of polynomials, but we find the
more abstract coding terminology to be more compelling for this overview).

SOAHelper[ℎ, sk] takes as input a ciphertext vector ct = (ct1, . . . , ct𝑛) and a vector of openings o =(︀
(𝜇1, 𝑟1), . . . , (𝜇𝑅𝑛/2, 𝑟𝑅𝑛/2)

)︀
, and computes in two main steps.

1. Use sk to decrypt ct, resulting in a message vector m, and use the error-correction algorithm for 𝒞 to
find c ∈ 𝒞 that is 𝛿-close to m. If there is no such c then output ⊥.

2. Compute (𝑖1, . . . , 𝑖𝑅𝑛/2) := ℎ(ct), and check that

ct𝑖𝑗
= Enc

(︀
pk, 𝜇𝑗 ; 𝑟𝑗

)︀
for all 𝑗 ∈ [𝑅𝑛/2], (1)

If so, output c; otherwise, output ⊥.
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The Scheme Is Not IND-SOA-CRS Secure The attack on IND-SOA-CRS security for this scheme
is fairly straight-forward. The adversary requests encryptions ct of a random codeword c ∈ 𝒞, computes
i := ℎ(ct) and asks the challenger for a vector o of openings, where each 𝑜𝑗 is an opening of ct𝑖𝑗

.
Evaluating ˜SOAHelper on input (ct, o) yields c with probability 1. For the adversary to be able to

distinguish c from a “re-sampled” c̃ that is sampled from 𝒞 conditioned on 𝑐𝑖𝑗
= 𝑐𝑖𝑗

, we just need to show
that with high probability c̃ ̸= c.

This follows from the fact that 𝒞 has high rate compared to the fraction of indices that are opened.
There are with high probability many other codewords c′ with 𝑐𝑖𝑗 = 𝑐′

𝑖𝑗
for all 𝑗 ∈ [𝜆]. This means that

a “re-sampled” message c̃ will with high probability be different from c, enabling the adversary to easily
distinguish.

The Scheme Is IND-CPA Secure The challenge is to prove that this scheme satisfies IND-CCA (or even
IND-CPA) security, despite the inclusion of sk in the public key via 𝒪

(︀
SOAHelper[ℎ, sk]

)︀
. In this overview,

we will focus for simplicity on IND-CPA security. Additionally, we will suppose that the challenge messages
are sampled uniformly at random rather than being chosen adversarially as a function of the public key.
This modification is without loss of generality because the message space is polynomially sized.

The main idea in proving security is to show that ˜SOAHelper is indistinguishable from a program
˜SOAHelper

′
that only uses a punctured secret key sk{ct⋆} that is useless for decrypting the challenge ci-

phertext ct⋆. That such a key exists is part of the definition of puncturable encryption.
Intuitively, the main reason for this indistinguishability is the error correction in Step 1. Suppose we

replace sk by a punctured key sk{ct⋆} that cannot help with decrypting ct⋆. Then ˜SOAHelper
′

instead
computes a message vector m′ differing from m in at most one coordinate 𝑖, with 𝑚′

𝑖 = ⊥. On one hand, if
m is far from 𝒞 then so is m′, so both programs output ⊥. On the other hand, if m is very close to 𝒞, then
m and m′ correct to the same codeword c, which again implies that both programs output the same value.

However, these two cases do not cover all possibilities. There exists a third “boundary” case in which m
is just close enough to 𝒞 for the error correction algorithm to succeed, but m′ (having one entry changed to
⊥) is not. In this case, ˜SOAHelper

′
outputs ⊥ in Step 1. Step 2 is intended to ensure that ˜SOAHelper also

outputs ⊥.
Specifically, suppose ct decrypts to such a “boundary” message vector m, whose closest codeword is c.

Since the error correction algorithm corrects up to a 𝛿 fraction of errors, the set 𝐼 = {𝑖 : 𝑐𝑖 = 𝑚𝑖} has size(︀
1− 𝛿

)︀
· 𝑛. The only way that Step 2 might not output ⊥ is if when computing i := ℎ(ct), every 𝑖𝑗 is in 𝐼.

Define 𝑅sk to be the relation consisting of all such “bad” pairs (ct, i).
The authors of [HRW16] observed that 𝑅sk is evasive, i.e. for any ct, a random choice of i is unlikely

to satisfy (ct, i) ∈ 𝑅. Motivated by this, they assume the existence of a hash function 𝐻 that is correlation
intractable for 𝑅sk, i.e. it is computationally infeasible to find any ct with

(︀
ct, 𝐻(ct)

)︀
∈ 𝑅sk, even if given

the random coins used to sample 𝐻. Indeed any reasonable cryptographic hash function (with a random
salt) can be conjectured to satisfy this correlation intractability.

It follows immediately that if pcdiO is an obfuscator satisfying the strong notion of public-coin differ-
ing inputs obfuscation, then pcdiO(SOAHelper[ℎ, sk]) and pcdiO(SOAHelper[ℎ, sk{𝑐⋆}]) are computationally
indistinguishable.

2.2 This Work
We observe that if SOAHelper[𝐻, sk] and SOAHelper[𝐻, sk{𝑐⋆}] were functionally equivalent, then for any
indistinguishability obfuscator i𝒪, it would hold that i𝒪(SOAHelper[𝐻, sk]) ≈𝑐 i𝒪(SOAHelper[𝐻, sk{𝑐⋆}]).
In particular, this would hold if 𝐻 were to perfectly avoid 𝑅sk, i.e. for all ciphertext vectors ct, satisfy(︀
ct, 𝐻(ct)

)︀
/∈ 𝑅sk. However, this seems difficult to achieve becauses 𝐻 should not depend on sk.

Instead, we construct a hash family that is somewhere statistically correlation intractable [CCH+19] for
all 𝑅sk, and sample 𝐻 from this family. That is, given any sk, it is possible to sample a hash function �̃�sk
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that perfectly avoids 𝑅sk, and yet is is computationally indistinguishable from 𝐻 even to a distinguisher who
knows sk.

We thus have

i𝒪(SOAHelper[𝐻, sk]) ≈𝑐 i𝒪(SOAHelper[�̃�sk, sk])
≈𝑐 i𝒪(SOAHelper[�̃�sk, sk{𝑐⋆}])
≈𝑐 i𝒪(SOAHelper[𝐻, sk{𝑐⋆}]).

2.2.1 SS-CI Hashing for Enumerable Relations

By now, we have reduced our goal to constructing an SS-CI hash for all 𝑅sk. Our first step is to invoke a
lemma of Holmgren, Lombardi, and Rothblum [HLR21] to further reduce to constructing an SS-CI hash for
all efficiently enumerable relations — relations 𝑅 with a polynomial-size circuit that on input 𝑥, outputs all
𝑦 for which (𝑥, 𝑦) ∈ 𝑅.

For this, we build on Peikert and Shiehian’s LWE-based construction of a hash family that is SS-CI for
the strictly smaller class of polynomial-size computable functions [PS19]. We prove that that obfuscating this
family with IO (and sufficient padding) yields a hash family that is SS-CI for all polynomial-size enumerable
relations. More specifically, if 𝑅 is an enumerable relation, we prove that an IO obfuscation of the PS hash
function 𝐻 is indistinguishable from an IO-obfuscated circuit that, on input 𝑥, performs the following steps:

1. Enumerate the possible “bad” outputs 𝑦 (those for which for which (𝑥, 𝑦) ∈ 𝑅), and choose a 𝑦⋆ that
is not bad.

2. If 𝐻(𝑥) is bad, output 𝑦⋆; otherwise, output 𝐻(𝑥).

We remark that without the “somewhere statistical” requirement, it was observed already in [CCH+19]
that any hash family that is CI for efficiently computable functions is also CI for efficiently enumerable
relations.

Finally, we present a more direct construction that may also be of interest. This construction is based
on the existence of a circular secure FHE scheme, and is similar to a construction in [CCH+19] of an SS-CI
hash family for efficiently enumerable relations.

This hash family is most easily described in terms of its indistinguishable mode for avoiding a relation
𝑅 that is enumerated by a circuit 𝐸. In this mode, the hash key is an FHE encryption of (sk, 𝐸), where
sk is the FHE secret key. To evaluate the hash function on input 𝑥, one uses homomorphic evaluation on
the hash key to compute a ciphertext 𝑦⋆ whose corresponding plaintext is not equal to any Dec(sk, 𝑦𝑖) for
(𝑦1, . . . , 𝑦ℓ) := 𝐸(𝑥). This implies that 𝑦⋆ /∈ {𝑦1, . . . , 𝑦ℓ} as desired. In the “honest” mode for this hash
family, the hash key instead is an encryption of (sk, 0), where 0 is an all-0 string of the same length as 𝐸.

We leave it as an interesting open question whether one can construct an SS-CI hash family for efficiently
enumerable relations based only on the LWE assumption.

3 Preliminaries
We write 𝑓 : 𝑋

$→ 𝑌 to denote a probabilistic function that on input 𝑥 ∈ 𝑋, uses randomness to sample a
value in 𝑌 .

3.1 Ensembles and Asymptotics
Definition 3.1. If 𝒳 = {𝒳𝜆}𝜆∈N and 𝒴 = {𝒴𝜆}𝜆∈N are ensembles of random variables, 𝒳 and 𝒴 are said to
be computationally indistinguishable (denoted 𝒳 ≈𝑐 𝒴) if for all polynomial-size circuit ensembles {𝐷𝜆}𝜆∈Λ,
we have ⃒⃒

Pr[𝐷𝜆(𝒳𝜆) = 1]− Pr[𝐷𝜆(𝒴𝜆) = 1
⃒⃒
≤ 𝜆−𝜔(1). (2)

The left-hand side of Eq. (2) is called the advantage of 𝐷𝜆 in distinguishing 𝒳𝜆 from 𝒴𝜆.
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Lemma 3.2. Computational indistinguishability (≈𝑐) is an equivalence relation. That is, for any random
variable ensembles 𝒳 , 𝒴, and 𝒵, we have:

1. (Reflexivity) 𝒳 ≈𝑐 𝒳 .

2. (Symmetry) If 𝒳 ≈𝑐 𝒴 then 𝒴 ≈𝑐 𝒳 .

3. (Transitivity) If 𝒳 ≈𝑐 𝒴 and 𝒴 ≈𝑐 𝒵 then 𝒳 ≈𝑐 𝒵.

Lemma 3.3 (Hybrid arguments). Let 𝑝 : N → N be polynomially bounded, and let {𝒳𝜆,𝑖}𝜆∈N,𝑖∈[𝑝(𝑖)] be a
random variable ensemble such that for every

{︀
𝑖𝜆 ∈ [𝑝(𝜆)−1]

}︀
𝜆∈N, it holds that {𝒳𝜆,𝑖𝜆

}𝜆∈N ≈𝑐 {𝒳𝜆,𝑖𝜆+1}𝜆∈N.
Then

{𝒳𝜆,1}𝜆 ≈𝑐 {𝒳𝜆,𝑝(𝜆)}𝜆.

Proof. Suppose otherwise for contradiction. That is, suppose that there is a polynomial-size circuit ensemble
{𝐷𝜆}𝜆∈N, a function 𝜖(𝜆) ≥ 𝜆−𝑂(1), and an infinite set Λ ⊆ N such that for all 𝜆 ∈ Λ, 𝐷𝜆 distinguishes 𝒳𝜆,1
from 𝒳𝜆,𝑝(𝜆) with advantage at least 𝜖(𝜆).

Then by the triangle inequality, there must exist {𝑖𝜆 ∈ [𝑝(𝜆) − 1]}𝜆∈Λ such that for all 𝜆 ∈ Λ, 𝐷𝜆

distinguishes 𝒳𝜆,𝑖𝜆
from 𝒳𝜆,𝑖𝜆+1 with advantage at least 𝜖(𝜆)/𝑝(𝜆) ≥ 𝜆−𝑂(1), which is a contradiction.

3.2 Relations
Definition 3.4. A relation 𝑅 is a subset 𝑅 ⊆ 𝑋 × 𝑌 , where the sets 𝑋 and 𝑌 are respectively called the
domain and codomain of 𝑅.

Relations are a generalization of functions. A function 𝑓 : 𝑋 → 𝑌 is just a relation with domain 𝑋 and
codomain 𝑌 with the property that for each 𝑥, there is exactly one 𝑦 (denoted 𝑓(𝑥))) for which (𝑥, 𝑦) ∈ 𝑓 .
Generalizing function evaluation notation, we write 𝑅(𝑥) to denote the set

{︀
𝑦 ∈ 𝑌 : (𝑥, 𝑦) ∈ 𝑅

}︀
.

Definition 3.5 (Relational Inverses and Compositions). Let 𝑄 and 𝑅 be relations with

𝑄 ⊆ 𝑋 × 𝑌 𝑅 ⊆ 𝑌 × 𝑍.

• The inverse of 𝑅, denoted 𝑅−1, is defined as

𝑅−1 ⊆ 𝑍 × 𝑌

𝑅−1 def=
{︀

(𝑧, 𝑦) : (𝑦, 𝑧) ∈ 𝑅
}︀

.

• The composition of 𝑅 with 𝑄, denoted 𝑅 ∘𝑄, is defined as

𝑅 ∘𝑄 ⊆ 𝑋 × 𝑍

𝑅 ∘𝑄
def=

{︀
(𝑥, 𝑧) : ∃𝑦 s.t. (𝑥, 𝑦) ∈ 𝑄 and (𝑦, 𝑧) ∈ 𝑅

}︀
.

3.3 Public-Key Encryption
Definition 3.6 (PKE Syntax). A public-key encryption scheme with message space ℳ = {ℳ𝜆}𝜆∈N syntac-
tically consists of a tuple of algorithms PKE = (Gen, Enc, Dec) such that:

• Perfect Correctness. For all 𝜆 ∈ N and all 𝑚 ∈ℳ𝜆, when sampling

sk← {0, 1}𝜆, pk := Gen(sk)
ct← Enc(pk, 𝑚)
𝑚′ ← Dec(sk, ct),

it holds with probability 1 that 𝑚 = 𝑚′.

A PKE scheme is also generally required to satisfy one of several possible security properties. We define
these properties separately.
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3.3.1 Puncturable Encryption

As in [HRW16], we rely on the notion and existence of “puncturable encryption”, which is defined and
constructed from iO and one-way functions in [CHV15]. Loosely speaking, while CCA security preserves the
security of a ciphertext 𝑐 even when the adversary is given oracle access to an “all-but-𝑐” decryption oracle,
in a puncturable encryption scheme the adversary is instead given an actual key that allows the adversary
to simulate this decryption oracle on his own.

Definition 3.7 (Puncturable Encryption). A puncturable encryption scheme with message space ℳ =
{ℳ𝜆}𝜆∈N is a public-key encryption scheme (Gen, Enc, Dec) along with supplemental algorithms ̃︂Enc and
Puncture satisfying the following properties:

• Puncturability. Let ℓ(𝜆) denote the length of ciphertexts Enc(Gen(sk), 𝑚), for sk ∈ {0, 1}𝜆 and
𝑚 ∈ℳ𝜆.
Then, for all sk ∈ {0, 1}𝜆 and 𝑐0, 𝑐1 ∈ {0, 1}ℓ(𝜆), the output of Puncture(sk, {𝑐0, 𝑐1}) is a circuit sk∖{𝑐0,𝑐1}
such that for all 𝑐 ∈ {0, 1}ℓ(𝜆),

sk∖{𝑐0,𝑐1}(𝑐) =
{︃

Dec(sk, 𝑐) if 𝑐 /∈ {𝑐0, 𝑐1}
⊥ otherwise.

• Security. For every polynomial-size circuit 𝒜 = {𝒜𝜆}𝜆∈N, it holds that⃒⃒⃒
Pr

[︀
Exppunc-ind-cca(1𝜆, PKE,𝒜𝜆) = 1

]︀
− 1

2

⃒⃒⃒
≤ 𝜆−𝜔(1),

where Exppunc-ind-cca is defined in Fig. 1.

• Ciphertext Sparseness. When sampling sk ← {0, 1}𝜆, pk := Gen(1𝜆), ct ← ̃︂Enc(pk), and 𝑚 ←
Dec(sk, ct), it holds with overwhelming probability that 𝑚 = ⊥.

Exppunc-ind-cca(1𝜆, PKE,𝒜)

1. sk← {0, 1}𝜆, pk := Gen(sk)

2. 𝑚← 𝒜(1𝜆)

3. 𝑐0 ← Enc(pk, 𝑚), 𝑐1 ← ̃︂Enc(pk),

4. sk{𝑐0, 𝑐1} ← Puncture(sk, {𝑐0, 𝑐1})

5. 𝑏← {0, 1}

6. return 1 if 𝒜(pk, 𝑐𝑏, 𝑐1−𝑏, sk{𝑐0, 𝑐1}) = 𝑏, and 0 otherwise.

Figure 1: The security experiment to determine whether an adversary𝒜 violates the security of a puncturable
encryption scheme PKE = (Gen, Enc, ̃︂Enc, Dec, Puncture).

Imported Theorem 3.8 ([CHV15]). If indistinguishability obfuscation and one-way functions exist, then
puncturable encryption exists.
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3.3.2 Fully Homomorphic Encryption

Definition 3.9 (Fully Homomorphic Encryption). A (secret-key) fully homomorphic encryption (FHE) scheme
for a class {C𝜆}𝜆∈N of circuits is a triple of polynomial-time algorithms (Enc, Dec, Eval), where Enc is prob-
abilistic, such that:

• (Perfect Evaluation Correctness) For all 𝜆, 𝑛 ∈ N, all circuits 𝐶 ∈ C𝜆 with 𝑛 inputs, and all 𝑥 ∈ {0, 1}𝑛,
when computing

sk← {0, 1}𝜆

ct𝑥 ← Enc(sk, 𝑥)
ct𝑦 := Eval(𝐶, ct𝑥)
𝑦 := Dec(sk, ct𝑦)

(3)

it holds with probability 1 that 𝑦 = 𝐶(𝑥).

• (Compactness) There exists a polynomially bounded function 𝐵 : N→ N such that for all 𝜆, 𝑛, 𝑚 ∈ N,
all circuits 𝐶 ∈ C𝜆 with 𝑛 inputs and 𝑚 outputs, and all strings 𝑥 ∈ {0, 1}𝑛, the ciphertext ct𝑦 sampled
in Eq. (3) has length 𝑚 ·𝐵(𝜆).

The notion of FHE is due to Rivest, Adleman, and Dertouzos [RAD+78], and the first candidate con-
struction (for all circuits of any fixed polynomial size) is due to Gentry [Gen09] based on ideal lattices. Later,
Brakerski and Vaikuntanathan [BV11] constructed FHE based only on the hardness of learning with errors
(LWE), which is a more standard cryptographic assumption with a host of desirable properties.

One of our hash family constructions will rely on FHE with an additional circular security property.

Definition 3.10 (Circular Security). We say that an FHE scheme as in Definition 3.9 is circular secure if
for any polynomial-length message ensembles {𝑚(0)

𝜆 ∈ {0, 1}ℓ𝜆}𝜆∈N and {𝑚(1)
𝜆 ∈ {0, 1}ℓ𝜆}𝜆∈N, we have{︀

Enc(sk, sk‖𝑚(0)
𝜆 )

⃒⃒
sk← {0, 1}𝜆

}︀
≈𝑐

{︀
Enc(sk, sk‖𝑚(1)

𝜆 )
⃒⃒
sk← {0, 1}𝜆

}︀
.

It is not known how to construct circular-secure FHE based on indistinguishability obfuscation and LWE,
but natural constructions such as that of [BV11] are conjectured to be circular secure.

3.4 Circuit Obfuscation
Definition 3.11 (Circuit Equivalence). Let 𝐶0 and 𝐶1 be circuits with 𝑛 input bits. We say that 𝐶0 and
𝐶1 are functionally equivalent (denoted 𝐶0 ≡ 𝐶1) if for all 𝑥 ∈ {0, 1}𝑛, 𝐶0(𝑥) = 𝐶1(𝑥).

Definition 3.12 (Indistinguishability Obfuscation). An indistinguishability obfuscator is a p.p.t. algorithm
i𝒪 : {0, 1}* $→ {0, 1}* such that:

Correctness If 𝐶 is any boolean circuit, then every 𝐶 in the support of i𝒪(𝐶) is a circuit that is
functionally equivalent to 𝐶.

Security If {𝐶0
𝜆}𝜆∈N and {𝐶1

𝜆}𝜆∈N are ensembles of circuits with |𝐶0
𝜆| = |𝐶1

𝜆| = 𝜆Θ(1) and 𝐶0
𝜆 ≡ 𝐶1

𝜆,
then

{i𝒪(𝐶0
𝜆)}𝜆 ≈𝑐 {i𝒪(𝐶1

𝜆)}𝜆.

Applications of indistinguishability obfuscation generally rely on the simple fact that given any circuit,
one can efficiently find a functionally equivalent circuit of any polynomially larger size.

Fact 3.13 (Padding). There is a polynomial-time algorithm that takes as input a circuit 𝐶 and an integer
𝑝 ≥ |𝐶|, and outputs a circuit 𝐶 ′ satisfying 𝐶 ≡ 𝐶 ′ and |𝐶 ′| = 𝑝. We denote this circuit by Pad𝑝(𝐶).

8



4 Notions of Security for Public-Key Encryption
4.1 Chosen-Ciphertext Attacks
In chosen-ciphertext attacks, the adversary is given the ability to make decryption queries to any string
other than the challenge ciphertext 𝑐. To define this formally, we write Dec(sk, ·)−𝑐 to denote the function
that agrees with Dec(sk, ·) on all inputs except for 𝑐; on input 𝑐 the Dec(sk, ·)−𝑐 returns ⊥.

4.1.1 IND-CCA and $-IND-CCA Security

Definition 4.1. A public-key encryption scheme PKE = (Gen, Enc, Dec) is said to be IND-CCA secure if for all
polynomial-size adversaries 𝒜 = {𝒜𝜆}𝜆∈N, the probability that Expind-cca(1𝜆, PKE,𝒜𝜆) outputs is 1

2 + 𝜆−𝜔(1).

Definition 4.2. A public-key encryption scheme PKE = (Gen, Enc, Dec) with message spacesℳ = {ℳ𝜆}𝜆∈N
is said to be $-IND-CCA secure if for all polynomial-size adversaries 𝒜 = {𝒜𝜆}𝜆∈N, the probability that
Exp$-ind-cca(1𝜆, PKE,𝒜𝜆) outputs is 1

2 + 𝜆−𝜔(1).

Experiment Expind-cca(1𝜆, PKE,𝒜)

1. sk← {0, 1}𝜆; pk := Gen(sk)

2. 𝑚0, 𝑚1 ← 𝒜Dec(sk,·)(pk)

3. 𝑏← {0, 1}

4. 𝑐← Enc(pk, 𝑚𝑏)

5. 𝑏′ := 𝒜Dec(sk,·)−𝑐(pk, (𝑚0, 𝑚1), 𝑐)

6. Return 1 if 𝑏 = 𝑏′; otherwise return 0.

Experiment Exp$-ind-cca(1𝜆, PKE,𝒜)

1. sk← {0, 1}𝜆; pk := Gen(sk)

2. 𝑚0, 𝑚1 ←ℳ𝜆

3. 𝑏← {0, 1}

4. 𝑐← Enc(pk, 𝑚𝑏)

5. 𝑏′ := 𝒜Dec(sk,·)−𝑐(pk, (𝑚0, 𝑚1), 𝑐)

6. Return 1 if 𝑏 = 𝑏′; otherwise return 0.

Figure 2: The experiments for determining whether an adversary 𝒜 violates the IND-CCA or $-IND-CCA
security of a public-key encryption scheme PKE = (Gen, Enc, Dec).

Theorem 4.3 ([HRW16, Theorem A.2]). Let PKE be a public-key encryption scheme with a polynomial-size
message space ℳ = {ℳ𝜆}𝜆∈N. If PKE is $-IND-CCA secure, then PKE is IND-CCA secure.

4.2 Selective Opening Attacks and IND-SOA-CRS Security
IND-SOA-CRS security requires that the adversary should be unable to distinguish (𝑚𝑖)𝑖/∈𝐼 from (𝑚′

𝑖)𝑖/∈𝐼 ,
where (𝑚′

1, . . . , 𝑚′
𝑛) are sampled from the same distribution as (𝑚1, . . . , 𝑚𝑛), conditioned on 𝑚𝑖 = 𝑚′

𝑖 for
all 𝑖 ∈ 𝐼, as long as these distributions are always efficiently sampleable. To help with formalizing the
definition, we will introduce the following notation. If 𝐴 is an algorithm, then we write Coins𝐴(𝑥) to denote
the distribution on {0, 1}* of random coins used by 𝐴 on input 𝑥.

Definition 4.4. A public-key encryption scheme PKE = (Gen, Enc, Dec) with message spaceℳ = {ℳ𝜆}𝜆∈N
is said to satisfy IND-SOA-CRS security if it holds that

Pr
[︀
Expind-soa-crs(1𝜆, PKE,𝒜𝜆) = 1

]︀
≤ 1

2 + 𝜆−𝜔(1),

where Expind-soa-crs is described in Fig. 3.
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Experiment Expind-soa-crs(1𝜆, PKE,𝒜)

Key Generation The challenger first samples sk← {0, 1}𝜆 and computes pk := Gen(sk)

Choosing a Message Distribution The adversary 𝒜, given the public key pk, outputs 𝑛 ∈ N and
a distribution 𝒟 on 𝑛-tuples of messages, represented by a (polynomial-size) sampling circuit and a
“conditional resampling” circuit ℛ for 𝒟. Given 𝐼 ⊆ [𝑛] and (𝑚𝑖)𝑖∈𝐼 , ℛ samples (𝑚′

1, . . . , 𝑚′
𝑛) from 𝒟

conditioned on 𝑚′
𝑖 = 𝑚𝑖 for all 𝑖 ∈ 𝐼.

If the adversary outputs ℛ that is not a conditional resampling circuit for 𝒟, then the experiment
outputs 0, representing a loss for the adversary.

Sampling “True” Messages and Corresponding Ciphertexts Let 𝜌(𝜆) denote the number of
random bits used by Enc input (pk, 𝑚) when pk is in the support of Gen(sk) for sk ∈ {0, 1}𝜆.
The challenger samples a tuple of messages (𝑚(0)

1 , . . . , 𝑚
(0)
𝑛 ) ← 𝒟, samples independent encryption

randomnesses 𝑟1, . . . , 𝑟𝑛 ← {0, 1}𝜌(𝜆), and computes encryptions 𝑐𝑖 = Enc(pk, 𝑚𝑖; 𝑟𝑖) for all 𝑖 ∈ [𝑛].

Selective Opening 𝒜 is given all of these ciphertexts (𝑐1, . . . , 𝑐𝑛), outputs a subset 𝐼 ⊆ [𝑛], and for
each 𝑖 ∈ 𝐼 is given the “opening” (𝑚𝑖, 𝑟𝑖).

Sampling Consistent Alternative Messages The challenger samples (𝑚(1)
1 , . . . , 𝑚

(1)
𝑛 ) ← 𝒟 con-

ditioned on the constraint that 𝑚
(1)
𝑖 = 𝑚

(0)
𝑖 for all 𝑖 ∈ 𝐼.

The Distinguishing Test The challenger samples 𝑏 ← {0, 1} uniformly at random, 𝒜 is given
𝑚

(𝑏)
1 , . . . , 𝑚

(𝑏)
𝑛 , and 𝒜 is finally asked to guess 𝑏. If 𝒜 guesses correctly, the experiment returns 1,

representing a win for the adversary; otherwise, the experiment returns 0.

Figure 3: The experiment determining whether an adversary 𝒜 violates IND-SOA-CRS security for a public-
key encryption scheme PKE = (Gen, Enc, Dec).

Although the notion of IND-SOA-CRS security is natural, it will be simpler for us to work with a simpler,
more specialized security notion that is implied by IND-SOA-CRS security.

Shamir Secret Sharing (SSS-) SOA security, which was introduced1 in [HRW16], is a special case of
IND-SOA-CRS security focusing on a particular rather than adversarial choice of message distribution.
Specifically, SSS-SOA security focuses on public-key encryption schemes whose message space is a sufficiently
large field F𝜆, and uses message distributions given by Shamir secret sharing. That is, the 𝑖𝑡ℎ message is
𝐹 (𝑖), where 𝐹 is a random degree-𝜆 univariate polynomial over F𝜆. The security requirement is that the
adversary must be unable to guess 𝐹 (0) with probability noticeably larger than 1/|F𝜆|.

Definition 4.5. Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme whose message space (for
security parameter 𝜆) is a finite field F𝜆. PKE is said to satisfy SSS-SOA security if for all polynomial-
size adversaries 𝒜 = {𝒜𝜆}𝜆∈N, the experiment Expsss-soa(1𝜆, PKE,𝒜𝜆), depicted in Fig. 4, outputs 1 with
probability 1

|F𝜆| + negl(𝜆).

1Actually, our notion is even more specialized than the notion in [HRW16], which they called SecShare-SOA security; their
notion allowed for more general choices of degree, field size, and number of polynomial evaluation points, but is otherwise the
same.
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Experiment Expsss-soa(1𝜆, PKE,𝒜)

1. sk← {0, 1}𝜆, pk := Gen(sk).

2. Let 𝐹 be a uniformly random degree-𝜆 univariate polynomial over F𝜆.

3. For 𝑖 ∈ {1, . . . , 3𝜆}, sample 𝑟𝑖 ← CoinsEnc(pk, 𝐹 (𝑖)), and define 𝑐𝑖 := Enc
(︀
pk, 𝐹 (𝑖); 𝑟𝑖

)︀
.

4. (𝑖1, . . . , 𝑖𝜆)← 𝒜(pk, 𝑐1, . . . , 𝑐3𝜆). The 𝑖𝑗 need not be distinct, but must be in the range {1, . . . , 3𝜆};
if any are outside this range, return 0.

5. 𝑚⋆ ← 𝒜
(︁(︀

𝐹 (𝑖1), 𝑟𝑖1

)︀
, . . . ,

(︀
𝐹 (𝑖𝜆), 𝑟𝑖𝜆

)︀)︁
.

6. If 𝑚⋆ = 𝐹 (0), then return 1; otherwise return 0.

Figure 4: The experiment determining whether an adversary 𝒜 violates the SSS-SOA security of a public-key
encryption scheme PKE = (Gen, Enc, Dec) whose message space is a finite field F𝜆 satisfying |F𝜆| ≥ 3𝜆.

Theorem 4.6 ([HRW16, Theorem 3.2]). If a public-key encryption scheme satisfies IND-SOA-CRS security,
then it satisfies SSS-SOA security.

5 Somewhere Statistical Correlation Intractability
In this section we construct hash families that are somewhere statistically correlation intractable (SS-CI) for
efficiently enumerable relations. Previously SS-CI hash families were known only for efficiently computable
functions.

Definition 5.1 (Enumerable Relations). We say that a relation 𝑅 ⊆ 𝑋×𝑌 is (𝑆, ℓ)-enumerable if there is a
size-𝑆 circuit 𝐸 that on input 𝑥 ∈ 𝑋, outputs (𝑦1, . . . , 𝑦ℓ′) ∈ 𝑌 ≤ℓ such that for all 𝑦 ∈ 𝑌 , if (𝑥, 𝑦) ∈ 𝑅 then
𝑦 ∈ {𝑦1, . . . , 𝑦ℓ′}. In increasing levels of specificity, we can say that 𝐸 is an enumerator, an ℓ-enumerator, or
an (𝑆, ℓ)-enumerator for 𝑅.

We say that 𝑅 is size-𝑆 enumerable if it is (𝑆,∞)-enumerable (or equivalently, (𝑆, 𝑆)-enumerable), and
we say that 𝑅 is ℓ-enumerable if it is (∞, ℓ)-enumerable.

Definition 5.2. We say that a function ℎ : 𝑋 → 𝑌 perfectly avoids a binary relation 𝑅 if for all 𝑥 ∈ 𝑋,
ℎ(𝑥) /∈ 𝑅(𝑥). We say that a hash family ensemble ℋ = {ℋ𝜆}𝜆∈N statistically avoids a relation ensemble
𝑅 = {𝑅𝜆}𝜆∈N if when sampling 𝐻 ← ℋ𝜆, it holds with all but 𝜆−𝜔(1) probability that 𝐻 perfectly avoids 𝑅𝜆.

Definition 5.3 (Somewhere Statistical Correlation Intractability [CCH+19]). Let 𝑅 = {𝑅𝜆}𝜆∈N be a binary
relation ensemble. An hash family ensemble ℋ = {ℋ𝜆}𝜆∈N is said to be somewhere statistically correlation in-
tractable (SS-CI) for 𝑅 if there exists a computationally indistinguishable hash family ensemble ℱ = {ℱ𝜆}𝜆∈N
that statistically avoids 𝑅. We say that such a family ℱ is an 𝑅-avoiding mode of ℋ.

5.1 Boosting SS-CI: From Functions to Enumerable Relations
Our first construction relies on indistinguishability obfuscation (IO), and as such is inherently a private-coin
construction. The computational assumptions besides IO are minimal: we start with any SS-CI hash family
for polynomial-size computable functions, and we boost this to an SS-CI hash family for polynomial-size
enumerable relations, which is a strictly larger class.

Construction 5.4. For any integers 𝑛, 𝑚, any hash family ℋ : {0, 1}𝑛 → {0, 1}𝑚, any obfuscator 𝒪, and
any integer 𝑝 upper bounding the circuit size of hash functions in ℋ, we define a “boosted” hash family
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Boost𝒪(ℋ, 𝑝), that is sampled as follows:

𝐻 ← ℋ
�̃� ← 𝒪

(︀
Pad𝑝(𝐻)

)︀
return �̃�

Theorem 5.5. Let 𝑛, 𝑚, 𝑆 : N → N be polynomially bounded functions, let i𝒪 be an indistinguishability
obfuscator, and let ℋ = {ℋ𝜆 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}𝜆∈N be a p.p.t.-sampleable hash family ensemble that
is SS-CI for size-𝑆 computable functions.

There exists a polynomially-bounded function 𝑝 : N→ N such that the (p.p.t.-sampleable) hash family en-
semble 𝒢 =

{︁
Boosti𝒪(︀

ℋ𝜆, 𝑝(𝜆)
)︀}︁

𝜆∈N
is SS-CI for every (𝑆, 𝑆)-enumerable relation ensemble 𝑅 = {𝑅𝜆}𝜆∈N.

Moreover, there exists a p.p.t. algorithm S̃amp such that if 𝐸𝜆 is a size-𝑆(𝜆) circuit that enumerates 𝑅𝜆,
then

{︀
S̃amp(𝐸𝜆)

}︀
𝜆∈N is an 𝑅-avoiding mode of ℋ.

Proof. Define 𝑝(𝜆) as the maximum possible size of the circuit Avoidℎ,𝐸
𝑖 , described in Fig. 5, for ℎ in the

support of ℋ𝜆, 𝑖 ∈ [𝑆(𝜆)], and 𝐸 a size-𝑆(𝜆) circuit. The size of Avoidℎ,𝐸
𝑖 is |ℎ|+ |𝐸|+ 𝜆𝑂(1) = |ℎ|+ 𝜆𝑂(1).

Each ℎ in the support of ℋ𝜆 has size 𝜆𝑂(1) by the p.p.t.-sampleability of ℋ, so 𝑝(𝜆) is also 𝜆𝑂(1). Let i𝒪𝜆

denote the probabilistic function i𝒪𝜆(·) = i𝒪
(︀
Pad𝑝(𝜆)(·)

)︀
.

Let 𝑅 = {𝑅𝜆 ⊆ {0, 1}𝑛(𝜆)×{0, 1}𝑚(𝜆)}𝜆∈N be an arbitrary (𝑆, 𝑆)-enumerable relation ensemble, with 𝐸𝜆

denoting a corresponding enumerator circuit of size 𝑆(𝜆) for 𝑅𝜆. We define a related hash family ensemble
𝒢𝑅 = {𝒢𝑅

𝜆 }𝜆∈N, via the following sampling procedure for 𝒢𝑅
𝜆 , and claim that 𝒢𝑅 is an 𝑅-avoiding mode for

𝒢:
𝐻 ← ℋ𝜆

�̃� ← i𝒪𝜆

(︁
Avoid𝐻,𝐸𝜆

𝑆(𝜆)

)︁
(see Fig. 5)

return �̃�.

It is clear from the definition that 𝒢𝑅 does in fact statistically avoid 𝑅, and moreover that 𝒢𝑅 is p.p.t.-
sampleable given 𝐸𝜆 as input.

It remains to establish that 𝒢𝑅 is computationally indistinguishable from 𝒢. We prove this via a hybrid
argument. For 𝜆 ∈ N and 𝑖 ∈ {0, 1, . . . , 𝑆(𝜆)}, define 𝒢𝑅

𝜆,𝑖 as the hash family with the following sampling
procedure:

𝐻 ← ℋ𝜆

�̃� ← i𝒪𝜆

(︁
Avoid𝐻,𝐸𝜆

𝑖

)︁
(see Fig. 5)

return �̃�.

Theorem 5.5 follows from applying Lemma 3.3 to Lemmas 5.6 and 5.7 below.

Lemma 5.6. 𝒢 ≈𝑐 {𝒢𝑅
𝜆,0}𝜆∈N.

Lemma 5.7. For any
{︀

𝑖𝜆 ∈ [𝑆(𝜆)]
}︀

𝜆∈N, it holds that
{︀
𝒢𝑅

𝜆,𝑖𝜆−1
}︀

𝜆∈N ≈𝑐

{︀
𝒢𝑅

𝜆,𝑖𝜆

}︀
𝜆∈N.

Proof of Lemma 5.6. Observe that for any ℎ and 𝐸, Avoidℎ,𝐸
0 is functionally equivalent to ℎ. For ℎ in the

support of ℋ𝜆, and 𝐸 being the size-𝑆(𝜆) circuit 𝐸𝜆, it also holds by the definition of 𝑝(𝜆) that |ℎ| ≤⃒⃒
Avoidℎ,𝐸𝜆

0
⃒⃒
≤ 𝑝(𝜆). Thus the claim follows directly from the security of i𝒪.

Proof of Lemma 5.7. Fix {𝑖𝜆 ∈ [𝑆(𝜆)]}𝜆∈N, and for 𝜆 ∈ N, let 𝑈𝜆 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) be the function
(“unique relation”) that on input 𝑥, outputs the 𝑖𝑡ℎ

𝜆 output of 𝐸𝜆(𝑥). The ensemble 𝑈 = {𝑈𝜆}𝜆∈N is
size-𝑆 computable, inheriting that property from {𝐸𝜆}. This implies the existence of a 𝑈 -avoiding mode
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ℋ𝑈 = {ℋ𝑈
𝜆 }𝜆∈N of ℋ. Then {︀

𝒢𝜆,𝑖𝜆−1
}︀

=
{︁

i𝒪𝜆

(︁
Avoid𝐻,𝐸

𝑖𝜆−1

)︁⃒⃒⃒
𝐻 ← ℋ𝜆

}︁
≈𝑐

{︁
i𝒪𝜆

(︁
Avoid𝐻,𝐸

𝑖𝜆−1

)︁⃒⃒⃒
𝐻 ← ℋ𝑈

𝜆

}︁
(4)

≈𝑐

{︁
i𝒪𝜆

(︁
Avoid𝐻,𝐸

𝑖𝜆

)︁⃒⃒⃒
𝐻 ← ℋ𝑈

𝜆

}︁
(5)

≈𝑐

{︁
i𝒪𝜆

(︁
Avoid𝐻,𝐸

𝑖𝜆

)︁⃒⃒⃒
𝐻 ← ℋ𝜆

}︁
(6)

= {𝒢𝜆,𝑖𝜆
},

where Eqs. (4) and (6) are by the computational indistinguishability of ℋ𝑈
𝜆 from ℋ, and Eq. (5) is by IO

security (Avoid𝐻,𝐸
𝑖𝜆−1 and Avoid𝐻,𝐸

𝑖𝜆
are functionally equivalent with high probability when sampling 𝐻 ← ℋ𝑈

𝜆

because ℋ𝑈
𝜆 statistically avoids 𝑈 , i.e. there is usually no 𝑥 ∈ {0, 1}𝑛(𝜆) for which 𝐻(𝑥) = 𝑦𝑖𝜆

, where
(𝑦1, . . . , 𝑦ℓ) := 𝐸𝜆(𝑥)).

Hard-wired subroutines:

• Circuits 𝐸 and ℎ, both taking 𝑛-bit inputs.

On input 𝑥 ∈ {0, 1}𝑛:

1. Compute (𝑦1, . . . , 𝑦ℓ)← 𝐸(𝑥).

2. Let 𝑧 be a canonical (e.g. lexicographically smallest) element of {0, 1}𝑚(𝜆) ∖ {𝑦1, . . . , 𝑦ℓ}.

3. If ℎ(𝑥) ∈ {𝑦1, . . . , 𝑦min(𝑖,ℓ)}, then output 𝑧. Else, output ℎ(𝑥).

Figure 5: The circuit Avoidℎ,𝐸
𝑖

Corollary 5.8. Assuming the existence of an indistinguishability obfuscator and the hardness of LWE.
Then for every 𝑐 > 0, there exists a p.p.t.-sampleable hash family ensemble ℋ that is SS-CI for every

𝜆𝑐-size enumerable relation ensemble 𝑅 = {𝑅𝜆}𝜆∈N.
Moreover, there exists a p.p.t. algorithm S̃amp such that if 𝐸𝜆 is a size-𝜆𝑐-enumerator for 𝑅𝜆, then{︀

S̃amp(𝐸𝜆)
}︀

𝜆∈N is an 𝑅-avoiding mode of ℋ.

Proof. Assuming the hardness of LWE, Peikert and Shiehian [PS19] proved that for all 𝑛, 𝑚 : N → N with
𝑚(𝜆) = 𝜆Θ(1), and all constants 𝑐 > 0, there exists a hash family ℋ = {ℋ𝜆 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆)}
that is somewhere statistically correlation intractable for all functions 𝑓 : {0, 1}𝑛(𝜆) → {0, 1}𝑚(𝜆) that are
computable by circuits of size-𝜆𝑐.

The corollary follows by applying Theorem 5.5 to this hash family.

5.2 SS-CI for Enumerable Relations, Directly
Next, we prove that a mild generalization of the construction of Canetti et al. [CCH+19] yields, for every
constant 𝑐 > 0, a hash family that achieves somewhere statistical correlation intractability for SIZE(𝜆𝑐)-
enumerable relations. Besides relying on a computational assumptions (circular-secure FHE) that is formally
incomparable to IO and LWE, this construction has the advantage that it can yield a public-coin hash family
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(e.g. if the FHE scheme has pseudorandom ciphertexts). As this advantage is not relevant to the present
work, we do not elaborate on it further.

There are several parameters in the construction; we overview them now. First, the parameters describing
what we want out of hash family (which all depend on a security parameter 𝜆):

• Output length �̂� = �̂�(𝜆). This needs to satisfy �̂�(𝜆) ≥ 𝜆Ω(1) for correlation intractability to be
plausible2, and also needs to satisfy �̂�(𝜆) ≤ 𝜆𝑂(1) for the hash family to be efficient. Altogether
�̂�(𝜆) = 𝜆Θ(1).

• Input length 𝑛 = 𝑛(𝜆). This just needs to satisfy 𝑛(𝜆) ≤ 𝜆𝑂(1) so that the hash family can be efficient.

• Circuit size 𝑆 such that the hash family achieves SS-CI for all size-𝑆 enumerable relations 𝑅𝜆 ⊆
{0, 1}𝑛(𝜆) × {0, 1}�̂�(𝜆).

A central idea in the construction is to interpret hash function’s outputs (evaluated) FHE ciphertexts. This
introduces a couple more parameters:

• We will need to interpret the hash function outputs as encryptions of 𝑚-bit messages, where 2𝑚 is
greater than the number of outputs given by the enumerator for 𝑅. In particular it suffices to set
𝑚 > log2(𝑆).

• The FHE scheme will be used not with security parameter 𝜆, but with a security parameter 𝜆′ that
is more closely related to �̂�(𝜆). We will want 𝜆′ to be as large as possible, while still permitting the
interpretation of the hash output as an encryption of an 𝑚-bit message.

Theorem 5.9. Let ℱℋℰ = (Enc, Dec, Eval) be a circular secure secret-key FHE scheme as in Definitions 3.9
and 3.10. Let 𝑛, �̂�, 𝑆 : N→ N be polynomially bounded functionswith �̂�(𝜆) = 𝜆Θ(1).

Then the hash family ℋ =
{︀
ℋ𝜆

}︀
𝜆∈N depicted in Fig. 6 is polynomial-time sampleable and SS-CI for the

class of size-𝑆 enumerable relations.

The directly constructed hash family ℋ𝜆 = {𝐻ct}
Key Sampling: A hash key consists of an ℱℋℰ ciphertext ct sampled as

1. sk← {0, 1}𝜆′ , where 𝜆′ is an FHE security parameter defined as follows. Let 𝐵(·) denote the ratio
of ciphertext length to message length as a function of security parameter as in Definition 3.9,
define 𝑚 := ⌈log(𝑆(𝜆))⌉+ 1. and define 𝜆′ as the largest integer for which 𝑚 ·𝐵(𝜆′) ≤ �̂�(𝜆).

2. ct ← Enc
(︀
sk, (sk, 0𝑆)

)︀
, where 𝑆 = �̃�(𝑆) is the maximum number of bits required to represent a

circuit of size 𝑆 = 𝑆
(︀
𝑛(𝜆)

)︀
.

Evaluation of 𝐻ct on input 𝑥 ∈ {0, 1}𝑛(𝜆)

1. Let 𝐶𝑥 denote a circuit that on input (sk, 𝐸) ∈ {0, 1}𝜆′ × {0, 1}𝑆 , computes as follows:

(a) (𝑦1, . . . , 𝑦ℓ) := 𝐸(𝑥), where 𝐸 is interpreted as a size-𝑆 circuit, and each 𝑦𝑖 is truncated or
padded to a length of 𝑚 ·𝐵(𝜆′) bits.

(b) 𝑦𝑖 := Dec(sk, 𝑦𝑖) for 𝑖 ∈ {1, . . . , ℓ}.
(c) Output some canonical (e.g. the lexicographically first) 𝑧 ∈ {0, 1}𝑚 ∖ {𝑦1, . . . , 𝑦ℓ}. (Such a 𝑧

exists because ℓ ≤ 𝑆 < 2𝑚).

2. Compute and output 𝑦 := Eval(𝐶𝑥, ct) padded to length �̂�(𝜆).

Figure 6: The hash family construction for Theorem 5.9.
2Indeed, it may be helpful to think of �̂�(𝜆) as the “true” security parameter for the hash family. We do not take this

approach because we find our theorem statement to be more easily applied.
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Proof of Theorem 5.9. We first prove that the FHE security parameter 𝜆′, computed in the key sampling
procedure, satisfies 𝜆′ ≥ 𝜆Ω(1), where 𝜆 is the hash family security parameter. First note that by assumption
�̂�(𝜆) = 𝜆Ω(1) and 𝑚 ≤ 𝑂

(︁
log

(︀
𝑆(𝜆)

)︀)︁
≤ 𝑂(log 𝜆) ≤ 𝜆𝑜(1), which implies that �̂�(𝜆)/𝑚 ≥ 𝜆Ω(1). Since

𝜆′ is the largest integer for which 𝐵(𝜆′) ≤ �̂�(𝜆)/𝑚, and 𝐵(·) is polynomially bounded, we have 𝐵(𝜆′) ≥
Ω(�̂�(𝜆)/𝑚) ≥ 𝜆Ω(1), which implies (again because 𝐵(·) is polynomially bounded) that 𝜆′ ≥ 𝜆Ω(1).

If 𝑅 is a size-𝑆 enumerable relation, then the statistical mode ℋ𝑅 = {ℋ𝑅
𝜆 }𝜆∈N for 𝑅 is nearly the same as

ℋ, with the sole difference between ℋ𝑅
𝜆 and ℋ𝜆 being in the key sampling process. In ℋ𝑅

𝜆 , the ciphertext ct is
sampled as ct← Enc

(︀
sk, (sk, 𝐸)

)︀
, where 𝐸 is a size-𝑆(𝜆) circuit enumerating 𝑅|𝑛(𝜆). The indistinguishability

of ℋ𝑅 from ℋ follows immediately from the circular security of ℱℋℰ .
We next show that all functions in the support of ℋ𝑅

𝜆 avoid 𝑅. Let sk ∈ {0, 1}𝜆′ be arbitrary and
let ct be arbitrary in the support of Enc

(︀
sk, (sk, 𝐸)

)︀
. Suppose for the sake of contradiction that for some

𝑥 ∈ {0, 1}𝑛(𝜆), it holds that 𝐻ct(𝑥) ∈ 𝑅(𝑥) ⊆ 𝐸(𝑥). Then applying Dec(sk, ·) to both sides, we would have
for some 𝑦 ∈ 𝐸(𝑥),

Dec(sk, 𝑦) = Dec
(︀
sk, 𝐻ct(𝑥)

)︀
= Dec

(︁
sk, Eval

(︁
𝐶𝑥, Enc

(︀
sk, (sk, 𝐸)

)︀)︁)︁
= 𝐶𝑥(sk, 𝐸),

which contradicts the construction of 𝐶𝑥.

6 From Enumerable to Projection-Enumerable Relations
In this section we re-cast the results of Holmgren, Lombardi, and Rothblum [HLR21] in a form more amenable
to our use. Loosely speaking, [HLR21] proved that any hash family that is correlation intractable for all
efficiently enumerable relations can be used to build a hash family that is correlation intractable for the
broader class of relations 𝑅 ⊆ 𝑋×𝑌 𝑡 whose composition with any projection is efficiently enumerable. That
is, given any 𝑥 and 𝑖, one can efficiently enumerate the set {𝜋𝑖(𝑦) : (𝑥, 𝑦) ∈ 𝑅}, where 𝜋𝑖(𝑦1, . . . , 𝑦𝑡) = 𝑦𝑖.
We call this latter class of relations efficiently projection-enumerable.

Definition 6.1 (Projection-Enumerable Relations). We say that a relation 𝑅 ⊆ 𝑋× [𝑞]𝑡 is (𝑆, ℓ)-projection-
enumerable if there is a size-𝑆 circuit 𝑒 such that for all 𝑖 ∈ [𝑡], 𝑒(𝑖, ·) is an ℓ-enumerator (as in Definition 5.1)
for the composition 𝜋𝑖 ∘𝑅, where 𝜋𝑖 : [𝑞]𝑡 → [𝑞] denotes the projection 𝜋𝑖(𝑦1, . . . , 𝑦𝑡) := 𝑦𝑖.

More concretely, if (𝑥, y) ∈ 𝑅, then 𝑦𝑖 ∈ 𝑒(𝑖, 𝑥) for all 𝑖 ∈ [𝑡]. We say that such a circuit 𝑒 is an
ℓ-projection-enumerator for 𝑅.

The main idea of [HLR21] is the following. To construct a CI hash for an efficiently ℓ-projection-
enumerable relation

𝑅 ⊆ 𝑋 × [𝑞]𝑡,
first construct a hash 𝐻 ′ that outputs a short seed, then compose 𝐻 ′ with an error-correcting code Enc that
“expands” this seed to a value in [𝑞]𝑡.

It suffices for 𝐻 ′ to be correlation intractable for Enc−1 ∘𝑅 — if (𝑥, Enc(𝐻 ′(𝑥))) ∈ 𝑅, then by definition
(𝑥, 𝐻 ′(𝑥)) ∈ Enc−1∘𝑅. As long as 𝑡 is sufficiently large, [HLR21] show how to choose Enc such that Enc−1∘𝑅
is (efficiently) 𝜆𝑂(1)-enumerable.

Lemma 6.2 (Implicit in the proof of [HLR21, Theorem 5.1]). Let 𝑛, 𝑞, 𝑡, 𝑆, ℓ ∈ N denote integers that are
polynomially bounded functions of a security parameter 𝜆, satisfying ℓ < 𝑞 and 𝑡 ≥ 𝜆Ω(1)/ log(𝑞/ℓ).

Then there exists a function Enc : {0, 1}𝑘 → [𝑞]𝑡 (with 𝑘 ≥ 𝜆Ω(1)) such that if 𝑅 ⊆ {0, 1}𝑛 × [𝑞]𝑡 is any
(𝑆, ℓ)-projection-enumerable relation, then the composition Enc−1 ∘𝑅 is (𝐿, 𝐿)-enumerable for 𝐿 = 𝜆𝑂(1).

Moreover, such a (circuit computing) Enc can be sampled in 𝜆𝑂(1) time along with an oracle circuit
Enum(·) such that with all but 𝜆−𝜔(1) probability, if 𝑃 is any ℓ-projection-enumerator for 𝑅 ⊆ {0, 1}𝑛 × [𝑞]𝑡,
then Enum𝑃 is an 𝐿-enumerator for Enc−1 ∘𝑅.
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Formalizing the discussion above, Lemma 6.2 in conjunction with the results of Section 5 implies the
following corollary.

Proposition 6.3. Let 𝑛, 𝑞, 𝑡, 𝑆, ℓ ∈ N be as in the hypotheses of Lemma 6.2, and assume either:

• the existence of indistinguishability obfuscation and the hardness of learning with errors; or

• the existence of circular-secure FHE.

Then there exists a p.p.t. sampleable hash family ℋ that is somewhere statistically correlation intractable for
the set of (𝑆, ℓ)-projection-enumerable relations 𝑅 ⊆ {0, 1}𝑛 × [𝑞]𝑡.

Proof. Fix 𝑘 ≥ 𝜆Ω(1) and 𝐿 ≤ 𝜆𝑂(1) as in Lemma 6.2.
Let ℋ′ = {ℋ′

𝜆} be a p.p.t.-sampleable hash family, consisting of functions mapping {0, 1}𝑛 → {0, 1}𝑘,
such that:

• ℋ′ is SS-CI for any (𝐿, 𝐿)-enumerable relation 𝑅′, and

• An 𝑅′-avoiding mode for ℋ′ is efficiently sampleable given an (𝐿, 𝐿)-enumerator for 𝑅′.

Such a hash family is guaranteed to exist by either Theorem 5.5 or Theorem 5.9.
We define ℋ = Enc ∘ ℋ′, where Enc is a circuit sampled from the distribution given by Lemma 6.2. Let

𝑅 be any relation that is (𝑆, ℓ)-projection-enumerable by 𝑃 . We claim that ℋ is SS-CI for 𝑅, and moreover
that an 𝑅-avoiding mode for ℋ is efficiently sampleable given 𝑃 .

Sampling (Enc, Enum(·)) as in Lemma 6.2, it holds with high probability that 𝑅′ := Enc−1 ∘𝑅 is (𝐿, 𝐿)-
enumerable by Enum𝑃 and hence there is an 𝑅′-avoiding mode ℱ ′

Enc of ℋ′ that is efficiently sampleable
jointly with Enc given 𝑃 .

Finally, we claim that Enc ∘ ℱ ′
Enc is a p.p.t.-sampleable 𝑅-avoiding mode of ℋ. Indeed, Enc ∘ ℱ ′

Enc:

• is indistinguishable from ℋ because every ℱ ′
Enc is indistinguishable from ℋ′,

• avoids 𝑅 because if
(︁

𝑥, Enc
(︀
𝑓 ′(𝑥)

)︀)︁
∈ 𝑅 for some 𝑥, then

(︀
𝑥, 𝑓 ′(𝑥)

)︀
∈ Enc−1 ∘𝑅.

• is p.p.t.-sampleable given 𝑃 because (Enc, Enum(·)) is p.p.t.-sampleable and ℱ ′
Enc is p.p.t.-sampleable

given Enum𝑃 .

7 Separating IND-SOA from IND-CCA
This section closely follows that of Hofheinz, Rao, and Wichs [HRW16]; the difference is that we do not
require as strong security properties from the underlying obfuscator 𝒪 and the hash family ℋ. Specifically,
our separation relies only on the existence of IO and the hardness of LWE.

Theorem 7.1. Assume the hardness of learning with errors (LWE), and the existence of an indistinguisha-
bility obfuscator i𝒪. Then there exists a public-key encryption scheme that is IND-CCA secure but not
IND-SOA secure.

7.1 An SOA Helper Circuit
The idea of the separation of [HRW16], which we follow, is to augment the public key of a public-key
encryption scheme with an obfuscated “helper” circuit that makes the scheme insecure against selective
opening attacks, while preserving IND-CPA (and even IND-CCA) security. This circuit is depicted in Fig. 7
below.
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Embedded Values: encryption public key pk, decryption circuit 𝐷, and hash circuit 𝐻
Inputs: a ciphertext tuple c = (𝑐1, . . . , 𝑐3𝜆) and openings (𝜇1, 𝑟1), . . . , (𝜇𝜆, 𝑟𝜆).

1. Compute (𝑖1, . . . , 𝑖𝜆) := 𝐻(c).

2. Check that 𝑐1, . . . , 𝑐3𝜆 are all distinct, and that for each 𝑗 ∈ [𝜆], 𝑐𝑖𝑗 = Enc(pk, 𝜇𝑗 ; 𝑟𝑗). If not, then
output ⊥.

3. For 𝑗 ∈ [𝜆], set 𝑚𝑖𝑗
:= 𝜇𝑗 ; for all 𝑖 ∈ [3𝜆] ∖ {𝑖1, . . . , 𝑖𝜆}, set 𝑚𝑖 := 𝐷(𝑐𝑖) ∈ F ∪ {⊥}.

4. Use Reed-Solomon decoding to find a degree-𝜆 polynomial 𝐹 : F → F with a maximally sized
“agreement set” 𝐼𝐹 = {𝑖 : 𝐹 (𝑖) = 𝑚𝑖}. If |𝐼𝑓 | ≤ 2𝜆 for all degree-𝜆 polynomials 𝑓 , then output ⊥.

5. If 𝐹 (𝑖𝑗) = 𝜇𝑗 for all 𝑗 ∈ [𝜆], then output 𝐹 (0).

6. Otherwise output ⊥.

Figure 7: The circuit SOAHelper(pk, 𝐷, 𝐻).

While it is straight-forward to see that this augmentation makes the encryption scheme not IND-SOA
secure, the bulk of the work is to ensure that the scheme still satisfies $-IND-CCA security. We will prove
this when PKE is a puncturable encryption scheme, and 𝐻 is sampled from a hash family satisfying a notion
of correlation intractability that we can instantiate either from IO and LWE, or from circular-secure fully
homomorphic encryption.

We will need somewhere statistical correlation intractability for a specific class of relations, which was
also defined in [HRW16].

Definition 7.2. Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme with message space F = {F𝜆}
and ciphertext space 𝒞𝜆. Then for sk ∈ {0, 1}𝜆, we define the relation 𝑅PKE

sk ⊆ 𝒞3𝜆
𝜆 × [3𝜆]𝜆 such that(︀

(𝑐𝑖)𝑖∈[3𝜆], (𝑖𝑗)𝑗∈[𝜆]
)︀
∈ 𝑅PKE

sk iff 𝑖𝑗 ∈ 𝐼 for all 𝑗 ∈ [𝜆], where the set 𝐼 is defined as follows.

Compute 𝑚𝑖 := Dec(sk, 𝑐𝑖) for all 𝑖 ∈ [3𝜆], and let 𝐹 : F → F be a degree-𝜆 polynomial that
maximizes the size of the set 𝐼𝐹 =

{︀
𝑖 : 𝐹 (𝑖) = 𝑚𝑖

}︀
.

If |𝐼𝐹 | = 2𝜆 + 1, then define 𝐼 = 𝐼𝐹 . Otherwise, define 𝐼 = ∅.

The point of defining 𝑅PKE
sk is that if 𝐻 is a function that perfectly avoids 𝑅PKE

sk , then it does not
affect the functionality of SOAHelper if we change the decryption subroutine 𝐷 in SOAHelper to one that
returns ⊥ when given the challenge ciphertext 𝑐⋆. In particular, this modified decryption subroutine can
be implemented with a punctured secret key, and we can then argue that ˜SOAHelper does not allow the
adversary to learn anything about its challenge ciphertext.

We will use the following notation. For a function 𝑓 , we write 𝑓∖𝑆 to denote the function that agrees
with 𝑓 on all inputs not in 𝑆, but outputs ⊥ for all inputs in 𝑆.

Lemma 7.3. Let PKE = (Gen, Enc, Dec) be a public-key encryption scheme, and let pk = Gen(sk). If ℎ
is a function that perfectly avoids 𝑅PKE

sk and 𝑐 is any string, then 𝒮 := SOAHelper(pk, Dec(sk, ·), ℎ) and
𝒮 ′ := SOAHelper(pk, Dec(sk, ·)∖{𝑐}, ℎ) are functionally equivalent.

Proof. Let ((𝑐𝑖)𝑖∈[3𝜆], (𝜇𝑗 , 𝑟𝑗)𝑗∈[𝜆]
)︀

be an arbitrary input. When 𝒮 is executed on this input, let (𝑚𝑖)𝑖∈[3𝜆],
𝐹 , and 𝐼𝑓 (for all degree-𝜆 polynomials 𝑓) denote the local variables of the same name that are computed
as part of this execution. Define (𝑚′

𝑖)𝑖∈[3𝜆], 𝐹 ′, and 𝐼 ′
𝑓 (for all degree-𝜆 polynomials 𝑓) analogously for the

execution of 𝒮 ′.
We prove that 𝒮 and 𝒮 ′ produce the same output by casework:

• If 𝑚𝑖 = 𝑚′
𝑖 for all 𝑖 ∈ [3𝜆], then clearly 𝒮 and 𝒮 ′ produce the same output.
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• Otherwise, there exists some 𝑖⋆ ∈ [3𝜆] such that

𝑚′
𝑖 =

{︃
⊥ if 𝑖 = 𝑖⋆

𝑚𝑖 otherwise.
(7)

This implies for all 𝑓 that
|𝐼𝑓 | − 1 ≤ |𝐼 ′

𝑓 | ≤ |𝐼𝑓 |. (8)

Consider which line of 𝒮 returns the output (the possibilities are 2, 4, 5, or 6).

– If line 2, then the output is determined before 𝒮 and 𝒮 ′ differ, so the outputs must be the same.
– If line 4, then 𝒮 outputs ⊥ because |𝐼𝑓 | ≤ 2𝜆 for all degree-𝜆 polynomials 𝑓 . But |𝐼 ′

𝑓 | ≤ |𝐼𝑓 | by
Eq. (8), so 𝒮 ′ outputs ⊥ too.

– If line 5 or 6, we consider |𝐼𝐹 | (which must be at least 2𝜆 + 1).
∗ If there is some 𝑓 ′ satisfying |𝐼 ′

𝑓 ′ | ≥ 2𝜆+1 (which in particular follows if |𝐼𝐹 | ≥ 2𝜆+2 because
|𝐼 ′

𝐹 | ≥ |𝐼𝐹 | − 1), then 𝒮 ′ produces its output in line 5 or 6. We have 𝐹 = 𝐹 ′ because distinct
degree-𝜆 univariate polynomials can agree on at most 𝜆 points.
Hence 𝒮 and 𝒮 ′ produce the same output.

∗ If |𝐼 ′
𝑓 ′ | ≤ 2𝜆 for all 𝑓 ′ (which as above implies that |𝐼𝐹 | = 2𝜆 + 1), then 𝒮 ′ outputs ⊥ in line

4. 𝒮 also outputs ⊥ on line 5, because 𝐻 avoids 𝑅PKE
sk , meaning that there is some 𝑗 such

that 𝐹 (𝑖𝑗) ̸= 𝜇𝑗 .

We observe that 𝑅PKE
sk is projection-enumerable, which loosely speaking implies the existence of a hash

family that is SS-CI for 𝑅PKE
sk .

Claim 7.4. For any public-key encryption scheme PKE, there exists a polynomially bounded function 𝑆 :
N→ N such that for any 𝜆 ∈ N and sk ∈ {0, 1}𝜆, the relation 𝑅PKE

sk is (𝑆, 2𝜆 + 1)-projection enumerable.

Proof. Given 𝜆 ∈ N, sk ∈ {0, 1}𝜆, c ∈ 𝒞3𝜆
𝜆 ,and 𝑗 ∈ [𝜆], the definition of 𝑅PKE

sk describes how to either:

• compute a set 𝐼 of size 2𝜆 + 1 such that 𝑅PKE
sk (c) ⊆ 𝐼𝜆; or

• determine that 𝑅PKE
sk (c) = ∅, which is a strictly stronger conclusion — in this case, we can define 𝐼 to

be an arbitrary set of size 2𝜆 + 1 and it will still vacuously hold that 𝑅PKE
sk (c) ⊆ 𝐼𝜆.

The only computationally non-trivial step in the definition of 𝑅PKE
sk is the computation of the degree-𝜆 polyno-

mial 𝐹 : F→ F. This task is equivalent to decoding Reed-Solomon codes with errors in the unique-decoding
regime, and is well-known to have polynomial-time algorithms, e.g.3 that of Welch and Berlekamp [WB86].

Given an algorithm for decoding Reed-Solomon codes, the definition of 𝑅PKE
sk clearly implies that it is(︀

poly(𝜆), 2𝜆 + 1
)︀
-projection-enumerable, and moreover a (2𝜆 + 1)-projection-enumerator is efficiently com-

putable given sk.

Corollary 7.5. Assume the existence of an indistinguishability obfuscator and the hardness of LWE.
Then there exists a p.p.t. sampleable hash family ℋ that is somewhere statistically correlation intractable

for all {𝑅PKE
sk }𝜆∈N,sk∈{0,1}𝜆 , and moreover an 𝑅PKE

sk -avoiding mode of ℋ is efficiently sampleable given sk.
3We refer the reader to the notes of Mary Wootters [Woo] for a more detailed history of Reed-Solomon decoding, including the

more efficient but complicated algorithms of Peterson [Pet60] and Berlekamp-Massey [Mas69] that preceded Berlekamp-Welch.
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7.2 The Separating Encryption Scheme
Construction 7.6. Let PKE = (Gen, Enc, Dec) be a puncturable encryption scheme with auxiliary algorithms
(̃︂Enc, Puncture). Then our construction PKE′ = (Gen′, Enc′, Dec′) is defined such that:

• On input sk ∈ {0, 1}𝜆, Gen′ outputs pk′ = (pk, 𝐻, ˜SOAHelper), where:

1. pk := Gen(sk);
2. 𝐻 is sampled from a hash family ℋ = {ℋ𝜆}𝜆∈N that is SS-CI for all relations {ℛPKE

sk }sk∈{0,1}𝜆 as
defined in Definition 7.2; and

3. ˜SOAHelper is sampled as

˜SOAHelper← i𝒪
(︁

Pad𝑝

(︀
SOAHelper(pk, 𝐷, 𝐻)

)︀)︁
,

where:
– 𝐷 is a circuit mapping 𝑐 ↦→ Dec(sk, 𝑐);
– SOAHelper(pk, 𝐷, 𝐻) is a circuit defined in Fig. 7; and
– 𝑝 = 𝑝(𝜆) is a polynomially-bounded integer such that 𝑝(𝜆) ≥ |SOAHelper(pk, 𝐷, ℎ)| for any

hash family H and circuit 𝐷 listed in Fig. 9, and any ℎ in the support of H.

• Enc′(︀(pk, 𝐻, ˜SOAHelper), 𝑚
)︀

outputs Enc(pk, 𝑚)

• Dec′(sk, 𝑐) outputs Dec(sk, 𝑐).

Proposition 7.7. Construction 7.6 is not SSS-SOA secure.

Proof. The following is a polynomial-time strategy for winning the SSS-SOA game with probability 1.

1. Given pk′ = (pk, ℎ, ˜SOAHelper) and ciphertexts c = (𝑐1, . . . , 𝑐3𝜆) from the SSS-SOA challenger, com-
pute (𝑖1, . . . , 𝑖𝜆)← ℎ(c), and respond with (𝑖1, . . . , 𝑖𝜆).

2. When the challenger responds with openings o =
(︀
(𝜇1, 𝑟1), . . . , (𝜇𝜆, 𝑟𝜆)

)︀
such that 𝑐𝑖𝑗

= Enc(pk, 𝜇𝑗 ; 𝑟𝑗)
for all 𝑗 ∈ [𝜆], compute 𝑚⋆ := ˜SOAHelper(c, o) and output 𝑚⋆.

Proposition 7.8. Construction 7.6 is $-IND-CCA secure.

Proof. Let 𝒜 = {𝒜𝜆}𝜆∈N be any polynomial-size circuit ensemble, and suppose for contradiction that the
Bernoulli random variable Exp$-ind-cca(1𝜆, PKE′,𝒜), is equal to 1 with probability noticeably larger than
1/2. We will show a contradiction by constructing “hybrid” random variables Hyb0, . . . , Hyb8 such that
Exp$-ind-cca(1𝜆, PKE′,𝒜) ≡ Hyb0 ≈ · · · ≈ Hyb8 ≡ Ber(1/2). Each of these hybrids shares a similar structure,
depicted in Fig. 8. The hybrids differ only in that the following parameters are instantiated differently, as
specified in Fig. 9.

• what “decryption oracle” 𝒪 is given to the adversary;

• what “embedded decrypter” circuit 𝐷 is hard-wired in SOAHelper);

• what hash family H the hash function 𝐻 is sampled from; and

• what “challenge ciphertext” 𝑐⋆ is given to the adversary.
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1. sk← {0, 1}𝜆; pk := Gen(sk);

2. 𝐻 ← H ;

3. 𝑚0, 𝑚1 ←ℳ𝜆;

4. 𝑏← {0, 1};

5. 𝑐𝑏 ← Enc(pk, 𝑚𝑏);

6. 𝑐← ̃︂Enc(pk);

7. sk∖{𝑐,𝑐𝑏} ← Puncture
(︀
sk, {𝑐, 𝑐𝑏}

)︀
;

8. ˜SOAHelper← i𝒪
(︁

1𝜆, Pad𝑝

(︀
SOAHelper(pk, 𝐷 , 𝐻)

)︀)︁
9. 𝑏′ ← 𝒜 𝒪 (pk, 𝑚0, 𝑚1, 𝑐⋆ , ˜SOAHelper, 𝐻)

10. Return 1 if 𝑏 = 𝑏′, and 0 otherwise.

Figure 8: The hybrid experiments for the proof of Proposition 7.8, parameterized by 𝒪, 𝐷, H, and 𝑐⋆ (all of
which are outlined in a box to visually emphasize the parts of the experiment that vary between hybrids)

Hybrid Decryption Oracle 𝒪 Embedded Decrypter 𝐷 Hash Family H Challenge 𝑐⋆

0 Dec(sk, ·)∖{𝑐𝑏} Dec(sk, ·) ℋ𝜆 𝑐𝑏

1 sk∖{𝑐,𝑐𝑏}

2 ℋ̃𝑅PKE
sk

𝜆

3 sk∖{𝑐,𝑐𝑏}
4 ℋ𝜆

5 𝑐

6 ℋ̃𝑅PKE
sk

𝜆

7 Dec(sk, ·)
8 Dec(sk, ·)

Figure 9: The choice of parameters 𝒪, 𝐷, H, and 𝑐⋆ used in each hybrid experiment. Each blank space
means “same as above.” ℋ̃𝑅PKE

sk denotes an 𝑅PKE
sk -avoiding mode of ℋ.

Lemma 7.9. Hyb0 is identical to Exp$-ind-cca(1𝜆, PKE′,𝒜𝜆).

Proof. Hyb0 describes the same process as Exp$-ind-cca(1𝜆, PKE′,𝒜𝜆), with only superficial changes in presen-
tation.

Lemma 7.10. Hyb0 ≈ Hyb1

Proof. The ciphertext sparseness property of PKE implies that with high probability, Dec(sk, 𝑐) = ⊥. Thus
the “modification” from Hyb0 to Hyb1 wherein the oracle 𝐷 is changed from Dec(sk, ·) to Dec(sk, ·)∖{𝑐} with
high probability changes nothing.

Lemma 7.11. Hyb1 ≈ Hyb2.

Proof. Follows from the indistinguishability of ℋ̃𝑅PKE
sk

𝜆 from ℋ𝜆.
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Lemma 7.12. Hyb2 ≈ Hyb3.

Proof. By Lemma 7.3, it holds with high probability when sampling

sk← {0, 1}𝜆

pk := Gen(sk)
𝐻 ← ℋ̃𝑅PKE

sk

that for all 𝑐, SOAHelper(pk, Dec(sk, ·), 𝐻) is functionally equivalent to SOAHelper(pk, Dec(sk, ·)∖{𝑐}, 𝐻),
which is in turn (w.h.p.) functionally equivalent to SOAHelper(pk, Dec(sk, ·)∖{𝑐,𝑐}, 𝐻) because Dec(sk, 𝑐) = ⊥
w.h.p. when sampling 𝑐 ← ̃︂Enc(pk). Finally, Dec(sk, ·)∖{𝑐,𝑐} is functionally equivalent to the punctured key
sk{𝑐, 𝑐}. The indistinguishability of Hyb2 and Hyb3 then follows from the security of i𝒪.

Lemma 7.13. Hyb3 ≈ Hyb4.

Proof. Analogous to Lemma 7.11

Lemma 7.14. Hyb4 ≈ Hyb5.

Proof. Follows directly from the punctured security property of PKE.

Lemma 7.15. Hyb5 ≈ Hyb6.

Proof. Analogous to Lemma 7.11.

Lemma 7.16. Hyb6 ≈ Hyb7.

Proof. Analogous to Lemma 7.12.

Lemma 7.17. Hyb7 ≈ Hyb8.

Proof. Hyb7 and Hyb8 differ only when 𝒜manages to query 𝒪 on 𝑐𝑏. However, conditioned on the adversary’s
view, the min-entropy of 𝑐𝑏 is super-logarithmic in 𝜆. This implies that 𝒜 can only query 𝒪 on 𝑐𝑏 with
probability that is negligible in 𝜆.
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