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Abstract—Proving the security of a Multiparty Computa-
tion (MPC) protocol is a difficult task. Under the current
simulation-based definition of MPC, a security proof consists
of a simulator, which is usually specific to the concrete protocol
and requires to be manually constructed, together with a
theoretical analysis of the output distribution of the simulator
and corrupted parties’ views in the real world. This presents
an obstacle in verifying the security of a given MPC protocol.
Moreover, an instance of a secure MPC protocol can easily
lose its security guarantee due to careless implementation, and
such a security issue is hard to detect in practice.

In this work, we propose a general automated framework
to verify the perfect security of instances of MPC protocols
against the semi-honest adversary. Our framework has perfect
soundness: any protocol that is proven secure under our frame-
work is also secure under the simulation-based definition of
MPC. We demonstrate the completeness of our framework by
showing that for any instance of the well-known BGW protocol,
our framework can prove its security for every corrupted party
set with polynomial time. Unlike prior work that only focuses
on black-box privacy which requires the outputs of corrupted
parties to contain no information about the inputs of the honest
parties, our framework may potentially be used to prove the
security of arbitrary MPC protocols.

We implement our framework as a prototype. The evalua-
tion shows that our prototype automatically proves the perfect
semi-honest security of BGW protocols and B2A (binary to
arithmetic) conversion protocols in reasonable durations.

Index Terms—MPC protocol, perfect semi-honest security, au-
tomated verification, graph transformation

1. Introduction

The design and implementation of cryptographic mech-
anisms are difficult to get correct. The security proofs are
often complicated and error-prone; the bugs hidden in op-
timized implementations are often hard to catch by code
testing or auditing [1]. For instance, there had been a se-
curity issue unnoticed for 17 years, in Needham–Schroeder
public-key protocol, before Lowe revealed it [2].
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For higher assurance, computer-aided verification is
adopted to guarantee the security properties with machine-
checkable proofs. To analyze security, two different models
have been developed: the symbolic model and the compu-
tational model.

In the symbolic model [3], cryptographic primitives such
as Enc and Dec are treated as black-box functions from
which no information is leaked. The symbolic model is a
suitable foundation for automated analysis [4]–[6]. Unfor-
tunately, it drops the probabilistic nature due to abstraction,
and considers a limited adversary that can only derive ac-
cording to several inference rules and perform one of several
possible actions.

The computational model is closer to the reality than the
symbolic model. In the computational model, adversaries are
regarded as probabilistic polynomial-time (PPT) algorithms.
Generally, reasoning in the computational model requires
writing machine-checkable proofs [7]. However, it needs
significant efforts and expertise, and often costs time that is
measured in person-years [8], [9]. Recent studies [10]–[14]
make it possible to automatically reason in the computa-
tional model, but they all focus on game-based proofs. In
general, simulation-based proofs are more complicated than
game-based proofs [1]. A typical example of simulation-
based security is multiparty computation (MPC).

Over the last few years, the technique of MPC has drawn
a lot of attention from both academia and industry [15], [16].
In MPC, we consider n parties P1, · · · , Pn. Each party Pi

provides input xi, receives output yi and jointly computes
a function f , where (y1, · · · , yn) = f(x1, · · · , xn). The
function f is usually called the “ideal functionality”. In the
computation, the parties keep their inputs private: each party
Pi must not learn anything about the inputs of the other
parties except for what can be deduced from xi and yi.

Loosely speaking, the security of MPC is defined as
the existence of an algorithm S (called “simulator”), which
can simulate the messages received by the corrupted parties
given only the corrupted parties’ inputs and outputs. The
messages received by the corrupted parties from the honest
parties are called the “view”. We require that the simulated
view should be indistinguishable from the view in a real
execution, which roughly means that they almost obey the
same distribution.

Pettai and Laud [17] proposed the first method to prove
the security of MPC automatically. They focus on a strong



form of security: black-box privacy. For black-box privacy,
the simulator generates the view only given the inputs of
corrupted parties. In particular, the simulator is not given the
outputs of the corrupted parties. This implies that any black-
box private protocol needs to guarantee that the outputs
of corrupted parties contain no information about honest
parties’ inputs, which is not the case for general MPC.

1.1. Contributions

In this work, we focus on automated verification for
secure multiparty computation with perfect semi-honest se-
curity. At a high level, the perfect semi-honest security
requires there exists an algorithm that can simulate the view
of corrupted parties. The automated verification needs to
automatically find such an algorithm given an instance of a
multiparty computation protocol.

We propose GAuV, an automated verification framework
for perfect semi-honest security of instances of MPC proto-
cols. Given a protocol represented as a data-flow graph (cir-
cuit), the framework can automatically find an algorithm
together with a proof that shows the algorithm is indeed a
simulator for the given protocol.

Compared with the prior art of Pettai and Laud [17], we
focus on the standard security of MPC rather than black-
box privacy, where the latter indicates that the outputs of
corrupted parties should contain no information about honest
parties’ inputs. Thus, GAuV can potentially apply to general
MPC protocols.

In this work, we assume that:
• The number of parties, n, is a constant, as in the

previous work [17]. This might be inherent because
an automated verification needs to check all possible
corrupted party sets, which can be exponential in the
number of parties.

• The protocol instance is correct, i.e., given the same
inputs, its outputs equal the outputs of the ideal func-
tionality f , and f is deterministic. This makes us draw
out the functional correctness from the task of security
analysis. From the community of probabilistic program
verification, there have been works [10], [18] aiming
to verify this functional correctness.

We prove the perfect soundness of our framework:

Theorem 1.1 (soundness). Given an acyclic data-flow graph
G describing an n-party protocol π that correctly com-
putes an ideal functionality, if for each corrupted party set
I ⊆ {1, · · · , n} of cardinality at most t, GAuV returns t-
SECURE FOR I , then π is t-perfect-secure.

This follows from Theorem 5.1.
We prove the completeness of our framework for the

well-known BGW protocol:

Theorem 1.2 (completeness for BGW protocols). Given a
data-flow graph G describing an n-party BGW protocol,
for any corrupted party set I ⊆ {1, · · · , n} of cardinality
at most t, GAuV can prove the t-perfect-security for I in

polynomial time, if it is instantiated with operable vintage
transformations and a suitable heuristic evaluation function.

This follows from Theorem 6.1.
To show the applicability and practical potential of our

theoretical framework, we implement it as a prototype tool 1,
and apply our tool to BGW protocols and a B2A (binary to
arithmetic) secret sharing conversion protocol. The evalua-
tion shows that our tool can automatically prove the perfect
semi-honest security of protocols in reasonable durations.
Specifically, it handles protocols with graph sizes containing
up to 4,500 edges in less than 1,500 s.

1.2. Our Techniques

Our starting point is the method by Pettai and Laud [17].
They represent an MPC protocol as a circuit and try to
search a series of circuit transformations as proof. However,
when extending it from black-box privacy to perfect security,
we encounter the following difficulties.

1. How to represent a transformed protocol?
The difficulty comes from the fact that we want to

recompute the values deduced by the corrupted parties from
their inputs and outputs, which reverses the computation
direction to some extent. During the transformation, it is
possible that some value can be computed in two ways, one
from the inputs of all parties, and the other from the outputs
of corrupted parties. For example, in the initial protocol, the
outputs of corrupted parties are clearly given while they can
also be computed from the inputs of all parties. Thus, we
have to represent the transformed protocol in a way that it
can tolerate a value being computed in multiple ways while
capturing the correctness of the underlying protocol.

To address this issue, we extend the data-flow graph (cir-
cuit) to quasi-data-flow graph (QDFG) by allowing a node
to be pointed to by multiple edges, i.e., allowing a variable
to be computed by multiple operations (Definition 3.2). We
further analyze QDFG from the perspective of the value
assignment of the nodes (Definitions 4.1 and 4.2).

In a QDFG, the correctness of MPC can be captured
as follows. For each combination of inputs and outputs
computed by the ideal functionality f , and each assignment
of random nodes, there is an assignment of all nodes (Def-
inition 4.3). We point out that, this correctness intuitively
guarantees that a QDFG represents a protocol. This correct-
ness should always be preserved during the transformation.

2. How to transform a QDFG?
The goal of the transformations is to remove the de-

pendency on the inputs and outputs of honest parties while
preserving the values known to the corrupted parties (i.e.,
the view of corrupted parties). We refer to the final graph
as a witness graph. Note that the witness graph can be
transformed into an algorithm that consumes the inputs
and outputs of corrupted parties and computes the view of
corrupted parties.

The challenge is to ensure that the algorithm we find is
indeed a simulator of the protocol, i.e., the original graph.

1. https://doi.org/10.5281/zenodo.10277758



This requires that the graph transformation preserves the
distribution of the view of corrupted parties. To address
this issue, we introduce the concept of vintage transforma-
tion (Definition 4.4). At a high level, a vintage transforma-
tion preserves: (1) the correctness, and (2) the distribution
of the view of corrupted parties. We assure the second
condition by requiring that there exists a k-surjection from
the set of assignments before the transformation to the set
of assignments after the transformation. To see why this is
sufficient, observe that the probability of each assignment δ
of the view is a fraction between the sizes of two sets of
assignments, i.e., the number of assignments in which the
view equals δ, over the number of all assignments. After
a transformation, dividing both the denominator and the
numerator by the same constant k, the fraction is preserved.

3. How to find a transformation series?
Regarding QDFGs as states and vintage transformations

as transitions, we use a search algorithm to find a transfor-
mation series with the aid of a heuristic evaluation function.
The task of automated verification is generally hard to be
complete and efficient. But by carefully designing the op-
erable vintage transformations and the evaluation function,
we can verify BGW protocol instances in polynomial time.

1.3. Worked Example

To illustrate how graphs are transformed, we present a
worked example of a transformation series as depicted in
Figures 1 to 4. Figure 1 shows an instance of BGW protocol
which will be detailed in Section 6.1 and Figure 4 shows a
witness QDFG.
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Figure 1. A BGW protocol as (quasi-)data-flow graph

In this example, we consider t = 1, which means
all the polynomials are of degree 1. Here, we have three
types of operations: i&e (polynomial interpolation and then
evaluation at some point), arithmetic (addition and multipli-
cation), and mt (message transit between two parties). See
Section B.1 for their precise definitions.

The red nodes are bubbles that violate the expectations
for a witness graph. Thus, our primary goal of transforma-
tion searching is to resolve all bubbles. Since y (the output

of corrupted parties) is provided to the simulator, if the in-
degree of the node representing y is not zero, we should
recognize it as a bubble. Since x2 and x3 (the inputs of
honest parties) are unknown to the simulator, they are also
bubbles.

The ideal functionality of this instance of BGW protocol
is f(x1, x2, x3) = (x1+x2+2x3,⊥,⊥), where ⊥ means no
output. As preparation, there are 3 publicly known distinct
numbers α1, α2, α3. As shown in Figure 1, the protocol runs
as follows.

1) Each party Pi randomly samples a polynomial qi(x)
of degree t, computes shares βi,j = qi(αj), and sends
βi,j to Pj as β′

i,j .
2) Each party Pi simultaneously computes x1 +x2 +2x3

with its own shares.
3) Each party Pi sends the computed share κ1,i to P1, and

P1 interpolates a polynomial from the received shares
and evaluates at zero to reveal y.
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Figure 2. Applying reconstruction production for equivalent rewriting.

In this work, we propose two kinds of operable vintage
transformations: equivalent rewriting and tail node elimina-
tion.

Equivalent rewriting means reversing the direction of an
edge. It is enabled by production. If the left side of the
production matches a subgraph of the QDFG, we could
substitute the subgraph with the right side of the production.
This is what happens in Figure 2 and Figure 3. The provided
productions are based on the following two facts:

• a polynomial of degree t can be exactly determined by
any t+ 1 points;

• message transit does not change the value.
See Section B.2 for the definitions of reconstruction pro-
duction (Definition B.2) and sharing production (Defini-
tion B.1).

In addition, note that in Figure 3, the nodes providing
randomness are changed. This is because we define zero-in-
degree nodes as random nodes.
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Figure 3. Applying sharing production for equivalent rewriting (twice).
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Figure 4. Eliminating tail nodes as many as possible.

Tail node elimination means removing a zero-out-degree
node of honest parties. Since we always consider acyclic
graphs, the value of a zero-out-degree node can be deter-
mined by the other nodes, which indicates it is actually
redundant. Note that the view consists of the nodes of
corrupted parties, which is our goal in a witness graph. Thus,
the nodes of corrupted parties cannot be eliminated. Keep
eliminating tail nodes as many as possible: from κ1,2 and
κ1,3, then ϵ12, ϵ22, ϵ13, ϵ23, etc. Finally, we can eliminate the
nodes representing x2 and x3. Now, in Figure 4, we resolve
all bubbles and find a witness graph, where the input and
output nodes of corrupted parties all have zero in-degree.

2. Preliminary: Perfect Security of MPC

The secure multiparty computation is modeled as an n-
ary functionality f : X1×· · ·×Xn → Y1×· · ·×Yn, which
maps the private input of each party to its desired function
output. Specifically, the i-th party provides the i-th input to

f and receives the i-th output. An adversary is an attacker
to the secure multiparty computation protocol.

In this work, we focus on threshold and semi-honest
adversaries, who can corrupt at most t parties for a given
t < n. The semi-honest security requires that parties cor-
rupted by an adversary should still follow the protocol
execution. But the adversary may try to learn additional
information about honest parties’ inputs from the view of
corrupted parties. We consider non-adaptive adversaries who
should specify the parties they want to corrupt at the begin-
ning of the computation. For each pair of parties, a secure
(private and authentic) synchronous channel is assumed to
exist so that they can directly send messages to each other.
We follow [19] to define t-perfect-security as follows.

Definition 2.1 (t-perfect-security). Let f : X1×· · ·×Xn →
Y1 × · · · × Yn be a deterministic n-ary functionality where
X1, · · · , Xn, Y1, · · · , Yn are finite sets, and fi(x1, . . . , xn)
denotes the functionality output for the i-th party.

Let π be an n-ary protocol for computing f . During
an execution of π on inputs x⃗ = (x1, . . . , xn), the view
of the i-th party is the tuple containing the random tape
of the i-th party, intermediate computed results and re-
ceived messages of party i when all parties follow the
protocol to execute, denoted as VIEWπ

i (x⃗). For the set of
corrupted parties I = {i1, . . . , il} ⊆ [n] := {1, . . . , n},
let fI(x⃗) denote the subsequence (fi1(x⃗), . . . , fil(x⃗)). Let
VIEWπ

I (x⃗) :=
(
I, VIEWπ

i1
(x⃗), . . . , VIEWπ

il
(x⃗)

)
.

We say that π computes f with t-perfect-security if
there exists a probabilistic polynomial-time (PPT) algorithm,
denoted S, such that for every I ⊂ [n] of cardinality |I| ≤ t,
and for all x1 ∈ X1, . . . , xn ∈ Xn, it holds that

{S (I, x⃗I , fI(x⃗))}x⃗∈X1×···×Xn
≡ {VIEWπ

I (x⃗)}x⃗∈X1×···×Xn
,

(2.1)

where ≡ means two probability ensembles are identically
distributed.

The PPT algorithm S is also known as the simulator
and the term simulation-based proof refers to the proof
technique by constructing such simulators.

Note that this definition is equivalent to the one that de-
fines the view as received messages only, since the simulator
knows x⃗I and could simply follow the corrupted parties’
parts of the protocol to compute the intermediate results.
Here we regard the corrupted parties’ intermediate computed
results as a part of the view to facilitate automated analysis.

3. Protocols as Quasi-Data-Flow Graphs

At a high level, our verification framework starts with
a data-flow graph (DFG) representing the underlying MPC
protocol. DFG describes how the values are computed and
transmitted. Our idea is to apply a series of graph trans-
formations to gradually remove the dependency on honest
parties’ inputs while keeping the distribution of the views of
corrupted parties unchanged. If we finally obtain a “witness”
graph without any dependency on honest parties’ inputs,



then such a graph would correspond to a simulator that
satisfies Definition 2.1.

However, vanilla DFG is not sufficient since some nodes
may be computable in multiple ways. For example, the
outputs of corrupted parties can either be received from the
ideal functionality or computed following the protocol. To
address this issue, we extend the notion of DFG to quasi-
data-flow graph (QDFG). In this section, we first review the
concept of DFG, and then define QDFG.

3.1. Data-Flow Graph

A data-flow graph (DFG) is a graphical representation
of a program. In cryptographic terms, it can be viewed as a
circuit with nodes as gates and edges as wires. Taking the
party into account, DFG can represent an MPC protocol.

In classic DFGs [20], nodes denote operations and their
results, and arcs denote data dependencies between opera-
tions. To enable later analysis, we choose a slightly different
but conceptually equivalent design: nodes denote variables
and edges denote operations. In other words, both operands
and results are nodes, and the operation is an edge linking
operand nodes to the result node. Note that operator could
be non-unary — each of our edges is actually a hyper-edge,
grouping arcs of an operation.

Operators in this paper are formally defined as a partial
function as follows. Here we consider the types in the
programs as finite sets, which are the value domains of the
variables. Let T be the set of all types in our scope.

Definition 3.1 (operator). An m-ary operator op : X1 ×
· · · × Xm ⇀ Y is a partial function, that can be com-
puted by a deterministic polynomial-time algorithm, where
X1, · · · , Xm, Y ∈ T .

Remark 3.1. We use partial functions to accommodate
operators that require inputs to have certain structures.
For example, for polynomial interpolations, the operator
requires the inputs to lie on a polynomial.

In MPC, there is an elementary operator, “message tran-
sit” (mt). mt transfers a variable from one party to another
party. With the help of mt, we can always represent a
protocol as a DFG so that any edge other than mt only con-
nects nodes within the same party, as shown in Section 1.3.
This reflects the practical requirement that computations are
carried out by individual parties. If an operation involves
different parties, mt can be used to link inter-party nodes by
introducing intermediary nodes at the executing party, e.g.,
β2,1 and β′

2,1 in Figure 1. In this way, we can always convert
such an edge into an edge only connecting nodes at the
same party and several mt edges. In high-level words, we
explicitly separate computation and communication when
representing an MPC protocol as a DFG. This will benefit
the convenience of recognizing views: in DFG, a party’s
view is the values of the nodes at that party.

In our context, the in-degree of a node in a DFG means
the number of hyper-edges pointing to that node rather
than the number of arcs. In a proper DFG, each node

with a non-zero in-degree results from a single operation,
i.e., its in-degree should be exactly one. This guarantees
DFG’s consistency, allowing unique determination of all
node values in a topological order based on zero-in-degree
nodes.

In such DFGs, input nodes representing protocol inputs
and random nodes representing random values2 are both of
zero in-degree. Thus as per the nature of the DFG, values
of all the other nodes, including output nodes representing
protocol outputs and other intermediate nodes representing
intermediate variables produced during the protocol execu-
tion, can be uniquely computed in a topological order given
values of inputs and random nodes.

3.2. Quasi-Data-Flow Graph

DFG is not sufficient for automated verification based
on graph transformations, because:

1) in the beginning, the outputs of corrupted parties are
given to the simulator, which means that the output
nodes of the DFG are also provided with initial values;

2) after some transformations, it is possible that a node vi-
olates the consistency requirement for DFG, becoming
the destination of multiple hyper-edges.

To address this issue, we introduce the quasi-data-flow
graph (QDFG), which retains all vanilla DFG properties
except consistency. All DFGs are inherently QDFGs.

Definition 3.2 (quasi-data-flow graph, QDFG). A positive
integer n denotes the number of parties. An n-party quasi-
data-flow-graph G is defined as (V, V const, E, ρ).

• V is the set of nodes, among which const nodes,
denoted V const ⊆ V , referring to nodes corresponding
to the original inputs and outputs.

• E is the set of hyper-edges, where each e ∈ E is
a tuple (ope, (srce1, . . . , src

e
me

), dste) representing the
operation of e, among which the operator ope takes
me operands; and for convenience we also use −→srce to
denote the tuple (srce1, . . . , src

e
me

).
• Γ : V → T is a typing context, which maps a node to

its value domain;
• ρ : V → [n] is a label mapping such that ρ(v) is the

party to which v ∈ V belongs.

Let us make it clearer about so-called const nodes. In the
simulation-based proof technique, correctness and security
are defined over any possible inputs and corresponding
outputs computed by the ideal functionality. Thus in terms
of QDFG, we should analyze correctness and security given
any predetermined set of proper values of input and output
nodes. That is why we call them const nodes.

Remark 3.2. When referring to a certain component of
QDFG G, we may use G as the subscript of this component
to avoid ambiguity. For example, we use V const

G to denote
the const nodes of the QDFG G.

2. A non-trivial cryptographic protocol should contain some randomness,
and we use random nodes to represent random values sampled from random
tapes in the execution of the protocol.



When there is a need to further restrict nodes to belong
to some parties, we add the party set as a left superscript
onto the notation. For example, IV const

G ⊆ V const
G denotes

the subset of G’s const nodes located at a party set I .

The concepts of in-degree, out-degree, and acyclicity in
DFGs are extended onto QDFGs as follows.

Definition 3.3 (in-degree and out-degree). Given a QDFG
G and a node u ∈ VG:

• the in-degree of u is deg−G(u) := |{e
∣∣ u = dste}|;

• the out-degree of u is deg+G(u) := |{e
∣∣ u ∈ srce}|.

Definition 3.4 (acyclicity). We say that a QDFG G is
acyclic, if there is NO node sequence v1, · · · , vl in G such
that:

• for each 1 ≤ i < l, there exists e ∈ EG, vi ∈ srce and
vi+1 = dste; and

• there exists e ∈ EG s.t. vl ∈ srce and v1 = dste.

Let us focus on the zero-in-degree nodes. In the QDFG
of the original protocol, the zero-in-degree nodes represent
the variables that are not intermediate computed results,
whose values should either come from the inputs or the
random tapes. When analyzing simulation-based security,
the ideal functionality can also provide the outputs. Thus, in
a QDFG, we recognize the non-const zero-in-degree nodes
as random nodes.

Definition 3.5 (random node). Given a QDFG G, the set of
its random nodes is V rand

G := {u
∣∣ deg−G(u) = 0} \ V const

G .

4. Transformation of QDFG

This section establishes the theoretical foundation for
transforming QDFG to prove perfect security in semi-honest
MPC protocols using simulation-based proof and QDFG
transformations. We demonstrate that an algorithm gener-
ating the view of corrupted parties in a transformed QDFG
can also replicate this view in the original QDFG. The
verification process involves a series of transformations to
construct a “witness” QDFG representing a simulator.

We will introduce key definitions (Section 4.1), propose
the “vintage transformation” concept (Section 4.2), prove
our Main Theorem for framework soundness (Section 4.3),
and present two specific vintage transformation classes (Sec-
tions 4.4.1 and 4.4.2).

4.1. Preparative Concepts

Since the simulator will receive inputs and outputs of
corrupted parties, even in the initial QDFG corresponding
to the original MPC protocol, we can consider the values
of the corrupted parties’ input and output nodes as given
values. To formally describe this, we define the notion of
(partial) assignment of nodes in QDFG as follows.

Definition 4.1 (assignment). Given a node set V , an as-
signment on V is a function that maps each node v ∈ V to
a value in Γ(v).

In QDFGs, a proper set of node values must meet the
operators’ semantics implied by their connecting hyper-
edges. Generally, given any assignment on a subset of nodes
in a QDFG, a complementary assignment on the other nodes
such that the semantics of all edges are satisfied may not
exist. However, given an assignment on const (input and
output) nodes that align the outputs computed by the ideal
functionality from the inputs, a QDFG representing an MPC
protocol should allow a proper assignment on the whole
graph. This leads to importing MPC “correctness” into the
QDFG context.

The correctness of an MPC protocol is defined over all
possible inputs and corresponding outputs calculated by the
ideal functionality. The correctness says that, given any valid
inputs, the outputs produced by a protocol are aligned with
the outputs produced by the ideal functionality.

To formally define the correctness of QDFG, we first
present the definition of total assignment, which is intu-
itively an assignment on all nodes, obeying the semantic
requirements of all edges, based on a valid set of const
node values.

Definition 4.2 (total assignment). Given a QDFG G and
an assignment γ on V const

G , we say that an assignment α
on VG is a total assignment of G w.r.t. γ, if

• for every e ∈ EG, α(−→srce) ∈ dom(ope) and α(dste) =
ope(α(−→srce)); and

• α|V const
G

= γ.

We use TASγ
G to denote the set of all total assignments of

G w.r.t. γ.

For an MPC protocol of a deterministic ideal function-
ality, correctness means that for each input, the output pro-
duced by the execution of the protocol is exactly the same as
the output calculated by the ideal functionality. In terms of
QDFG, we adapt this definition of correctness by capturing
the execution of the protocol with a total assignment that
takes the inputs and outputs (i.e., an assignment on const
nodes) as parameters.

Definition 4.3 (correctness of QDFG). Given a QDFG G,
we say that G is correct w.r.t. assignment γ on V const

G , if for
all assignment α on V rand

G , there exists a total assignment
β of G w.r.t. γ s.t. β|V rand

G
= α.

Since we consider an acyclic QDFG G, given an assign-
ment on V rand

G and V const
G , the assignment on all the other

nodes can be calculated in topological order, which imme-
diately indicates the uniqueness of the total assignment.

Fact 4.1 (uniqueness implied by correctness). If an acyclic
QDFG G is correct w.r.t. assignment γ on V const

G , for
each assignment α on V rand

G , there exists only one total
assignment β of G s.t. β|V rand

G
= α and β|V const

G
= γ.

This uniqueness provides a mechanized way to compute
the number of total assignments, indicating the following
fact.



Fact 4.2 (amount of total assignments). Let G be an acyclic
QDFG that is correct w.r.t. assignment γ on V const

G , then
|TASγ

G| =
∏

r∈V rand
G

|Γ(r)|.

4.2. Vintage Transformation

Now that we have defined assignments and correctness,
we can discuss the graph transformation. Each transforma-
tion should preserve the distribution of the view of corrupted
parties as well as the correctness.

We assure the distribution preservation by requiring that
there exists a k-surjection from the set of total assignments
before the transformation to the set of total assignments after
the transformation. This is sufficient because we observe that
the probability of each assignment δ of the view of corrupted
parties is a fraction between two amounts of assignments,
i.e., the number of total assignments where the view of
corrupted parties equals δ, over the number of all total
assignments. If the denominator and numerator are divided
by the same constant k after a transformation, the fraction
remains equal.

To characterize all requirements for a graph transforma-
tion, we propose the vintage transformation. To be men-
tioned, when verifying the security, the corrupted party set
I should always be taken into account, so our vintage
transformation is defined on a fixed set I ⊆ [n].

Definition 4.4 (vintage transformation). Given a positive
integer n denoting the number of parties with a fixed cor-
rupted party set I ⊆ [n], let G and H be two acyclic n-party
QDFGs. We say that the transformation from G to H is a
vintage transformation w.r.t. I , denoted by G I

⇝ H , if there
exists an injection hv : VH → VG , so that the following
conditions are satisfied for every assignment γ on V const

G
s.t. G is correct w.r.t. γ:

(i) all nodes of G belonging to corrupted parties fall in
the range of hv, i.e., ρ−1

G (I) ⊆ range(hv);
(ii) hv preserves the typing context, i.e., ΓH = ΓG ◦ hv;

(iii) hv preserves the party label, i.e., ρH = ρG ◦ hv;
(iv) each const node of H is mapped onto a const node of

G via hv, i.e., hv(V const
H ) ⊆ V const

G ;
(v)

ψ : TASγ
G → TASγ

H

α 7→ α ◦ hv
is a k-surjection, i.e., there is a positive integer k s.t.
for each β ∈ TASγ

H , |ψ−1(β)| = k;
(vi) H is correct w.r.t. γ ◦ hv.

Intuitively, we can recognize each pair of nodes mapped
by hv as the same node. The requirement “hv is an injection
from VH to VG” means the nodes cannot be inserted or
merged, but only be removed during vintage transformation.

Now we explain the intuitive necessity of conditions (i-
vi). (i): The aim of transformation is to build a simulator that
produces the view of corrupted parties, which are all nodes
of corrupted parties in the initial DFG. Thus, those nodes
should not be removed during vintage transformation. (ii-iv):

These three conditions mean that hv preserves the type of
a node, to which party a node belongs, and whether a node
is const. We need these two conditions because we wish to
recognize each pair of nodes mapped by hv as the same
node. (v): As explained before. (vi): With the premise that
the initial QDFG (actually a DFG) is correct, the correctness
should be preserved during vintage transformations. The
corollary of this correctness, Fact 4.2, will be used later
to prove the perfect security in Theorem 4.1.

4.3. Main Theorem for Soundness

Now, we are going to prove the main theorem of this
paper, which ensures the soundness of our framework.

The target of our graph transformation is a witness
QDFG representing a simulator of the MPC protocol, where
the set of zero-in-degree nodes exactly contains random
nodes, input nodes, and output nodes of corrupted parties.
The input and output nodes of corrupted parties would be
inputs of the simulator, and the random nodes would provide
randomness for the simulator (a.k.a. the random tapes in
the simulator). All input and output nodes of honest parties
would have been removed, and all non-zero-in-degree nodes
can be computed in topological order, describing a simulator
of the witness QDFG. The simulator would be able to
produce an assignment of the nodes of the corrupted parties,
i.e., the messages received by the corrupted parties.

To better describe how far away a QDFG is from the
final witness, some nodes are worth special concerns, called
bubbles, which can guide searching transformations by set-
ting the goal of resolving (removing) all bubbles. Bubbles
contain the nodes that violate the expectations above for
a witness QDFG. Thus, when all bubbles are resolved, we
have found a witness QDFG and the search could terminate.

Definition 4.5 (bubble). Given an n-party QDFG G with a
corrupted party set I ⊆ [n], the bubbles of a QDFG G is a
subset of VG, denoted IBG, which consists of the following
two types of nodes:

(i) the input and output nodes of honest parties, i.e.,
[n]\IV const

G ;
(ii) the input and output nodes of corrupted parties whose

in-degree is not 0, i.e.,
IV const

G \
{
u ∈ VG | deg−(u) = 0

}
.

As Definition 4.5 has provided the rigorous condition
for the expected termination, we can now prove our main
theorem, indicating the soundness of our verification algo-
rithm.

Theorem 4.1 (soundness). Let G0 be an n-party acyclic
QDFG, which describes a protocol π that computes an ideal
functionality f . The correctness of π is premised, that is, for
each assignment γ on V const

G0
s.t. f(γ(

−−→
V in
G0

)) = γ(
−−→
V out
G0

), G0

is correct w.r.t. γ, where
−−→
V in
G0

denotes the tuple consisting

of the nodes in V in
G0

, and
−−→
V out
G0

denotes the tuple consisting
of the nodes in V out

G0
.



If for each corrupted party set I ⊂ [n] of cardinality at
most t, there exists a vintage transformaion series G0

I
⇝

G1
I
⇝ · · · I

⇝ Gm s.t. Gm has no bubble, i.e., IBGm
= ∅,

then π is t-perfectly-secure.

Proof. This proof can be roughly divided into two parts: (1)
to construct a probabilistic polynomial-time algorithm S ′;
(2) to prove that S ′ can simulate the view with the help of
the vintage transformation series G0

I
⇝ G1

I
⇝ · · · I

⇝ Gm.
Throughout the proof, we consider an arbitrary corrupted
party set I ⊂ [n] of cardinality at most t. Let hiv denote the
vintage node injection of Gi−1

I
⇝ Gi (1 ≤ i ≤ m).

To describe the distribution of the nodes of corrupted
parties, consider random variables Xi : β 7→ β|IVGi

of type

TAS
γ◦h1

v◦···◦h
i
v

Gi
→

{
β|IVGi

: β ∈ TAS
γ◦h1

v◦···◦h
i
v

Gi

}
.

The randomness in QDFG is totally provided by the
unique sampling assignment of random nodes. And, Fact 4.1
tells us each sample belongs to exactly one total assignment.
Thus, the probability of the random variable on an assign-
ment δ is a fraction of two amounts of total assignments, i.e.,
the number of total assignments where the view of corrupted
parties equals δ, over the number of all total assignments.

First, we will prove that we can construct a probabilistic
polynomial-time algorithm that computes Xm, from the
edge structure of Gm. For each assignment γ on V const

G0
s.t.

f(γ(
−−→
V in
G0

)) = γ(
−−→
V out
G0

), we know that G0 is correct w.r.t. γ,
so according to the condition (vi) of vintage transformation
(Definition 4.4), G0

I
⇝ G1 indicates that G1 is correct w.r.t.

γ ◦ h1v, and G2 is correct w.r.t. γ ◦ h1v ◦ h2v, etc. Finally, we
have that Gm is correct w.r.t. γ ◦ h1v ◦ · · · ◦ hmv .

Since Gm has no bubble, we have:

• [n]\I−−→V in
Gm

∪ [n]\I−−→V out
Gm

= ∅, and

• {u|deg−(u) = 0} = I
−−→
V in
Gm

∪ I
−−→
V out
Gm

∪ V rand
Gm

,

which indicates V const
Gm

= I
−−→
V in
Gm

∪ I
−−→
V out
Gm

. Let γ be an

arbitrary assignment on V const
G0

s.t. f(γ(I
−−→
V in
G0

)) = γ(I
−−→
V out
G0

),
and let α be an arbitrary assignment on V rand

Gm
. As Gm is

correct w.r.t γ ◦ h1v ◦ · · ·hmv , there exists a total assignment
β of Gm w.r.t. γ ◦h1v ◦ · · ·hmv s.t. β|V rand

Gm
= α. Thus, since

Gm is acyclic, we can calculate this total assignment β in
topological order. As each operator can be calculated by a
deterministic polynomial-time algorithm (Definition 3.1), all
operations in a topological order compose a deterministic
polynomial-time algorithm S ′′ of the whole QDFG. Note
that the algorithm is constructed according to the edges of
Gm, which is independent of the assignment on Gconst

m and
Grand

m , i.e., independent of the choice of γ and α.
By uniformly sampling the assignment on V rand

Gm
for S ′′,

we construct a probabilistic polynomial-time algorithm S ′,
which computes Xm.

Second, we will prove that the distribution of the nodes
of corrupted parties in G0 is equal to the distribution of cor-
responding nodes in G1, and then equal to the distribution
in G2, . . . , until Gm.

Consider arbitrary i and assignment γ on V const
G0

s.t.

f(γ(
−−→
V in
G0

)) = γ(
−−→
V out
G0

). To prove the equality between two
discrete distribution of random variables Xi−1 and Xi, we
can enumerate all their values. A value of Xi−1 is an
assignment on IVGi−1 , while a value of Xi is an assignment
on IVGi

. By condition (i) and (iii) of vintage transformation
Gi−1

I
⇝ Gi, hiv(

IVGi
) = IVGi−1

. Thus, to prove the
equality between the distributions of Xi−1 and Xi, it is
sufficient to show that for all assignment δ on IVGi−1

,
Pr [Xi−1 = δ] = Pr

[
Xi = δ ◦ hiv

]
.

Recall that the probability of the random variable is the
fraction between two amounts of total assignments. This
turns equation (4.1) to (4.2), and (4.3) to (4.4). Equation
(4.2) is deduced to (4.3) by the condition (v) of vintage
transformation Gi−1

I
⇝ Gi, which divides both the denom-

inator and numerator by the same constant k.

Pr [Xi−1 = δ] (4.1)

=

∣∣∣{βi−1 ∈ TAS
γ◦h1

v◦···◦h
i−1
v

Gi−1

∣∣ βi−1|IVGi−1
= δ

}∣∣∣∣∣∣TASγ◦h1
v◦···◦h

i−1
v

Gi−1

∣∣∣
(4.2)

=

∣∣∣{βi ∈ TAS
γ◦h1

v◦···◦h
i
v

Gi

∣∣ βi|IVGi
= δ ◦ hiv

}∣∣∣∣∣∣TASγ◦h1
v◦···◦hi

v

Gi

∣∣∣ (4.3)

=Pr
[
Xi = δ ◦ hiv

]
(4.4)

This holds for all i, so for each assignment δ on IVG0 ,
we have Pr [X0 = δ] = Pr

[
Xm = δ ◦ h1v ◦ · · · ◦ hmv

]
. That

is to say, the distributions of X0 and Xm are equal up to
h1v ◦ · · · ◦ hvm. Eventually, we can construct a probabilistic
polynomial-time algorithm S, which

1) accepts assignment γ on V const
G0

,
2) calls sub-procedure S ′ that computes Xm with γ ◦h1v ◦

· · · ◦ hmv (recall that S ′ is a probabilistic polynomial-
time algorithm that computes Xm),

3) receives an assignment ϵ on IVGm
from S ′, and

4) produces ϵ ◦ (hmv |IVGm
)−1 ◦ · · · ◦ (h1v|IVG1

)−1 (note
that hiv|IVGm

is invertible because of the condition (i)
of Definition 4.4).

We have shown what S produces is equivalent to X0,
but why does X0 represent the corrupted parties’ view in
the real world? Note that γ is an assignment on V const

G s.t.
f(γ(

−−→
V in
G0

)) = γ(
−−→
V out
G0

), adhering the ideal functionality f ,
and G0 is correct w.r.t. this γ. For these two reasons, by
sampling values for random nodes, we can calculate a total
assignment for all nodes in G0 in topological order. This
calculation can be regarded as “executing” the protocol π,
which indicates that the distribution of X0 equals that of
the view of corrupted parties in the real world. Therefore, S
indeed simulates the distribution of the view of the corrupted
parties in the real world.

Since the argument above works for all assignment γ,
we have that, for all possible input, the distribution produced
by S is equivalent to the distribution of the real view of the



corrupted parties. Finally, since I is arbitrarily chosen of
cardinality at most t at the very beginning of this proof,
we have proved that the protocol π described by G0 is t-
perfectly-secure (Definition 2.1).

4.4. Operable Vintage Transformation

In this subsection, we construct two classes of operable
vintage transformation which will be used in the automated
verification algorithm. More operable vintage transforma-
tions could be constructed, but these two are sufficient
for BGW protocols. For each class of operable vintage
transformation, we will first give its intuition and definition,
and then show that it is indeed a vintage transformation.

4.4.1. Equivalent Rewriting. Recall that when a simulator
accepts the inputs and outputs of corrupted parties and
produces some intermediate results, the direction of compu-
tation needs to be somehow changed. In terms of QDFG, we
need to “reverse” the direction of some edges from output
nodes, without modifying the overall requirements of the
edge set.

Here we give an example to make this intuition clearer.
Considering an equation with three variables c = a+ b, we
can transform it into another equivalent a = c− b. In terms
of QDFG, we transform a three-node and one-edge QDFG
where node c is the destination, into another QDFG where
node a is the destination.

To formalize and generalize this idea, inspired by the
graph rewriting system [21], we propose a production-
based method. A production is a rewriting rule specifying
a subgraph substitution that can be performed to generate
new graphs. We give the formal definition of equivlent
production as follows, which intuitively means that in any
graph, L can be substituted with R, while the semantic
requirements of edges remain.

Definition 4.6 (equivalent production). We say that a QDFG
pair p = (L,R) is an equivalent production, if

• VL = VR, V
const
L = V const

R , and ρL = ρR; and
• for any assignment γ on V const

L = V const
R , TASγ

L =
TASγ

R.

Remark 4.1. Note that the only component of R which may
differ from that of L is the edge set.

The substitution can be performed on G when L matches
a subgraph of G. To rigorously describe what a match is,
we borrow the concept of morphism into the context of
QDFG as QDFG morphism, which is a function preserves
the structure of QDFG.

Definition 4.7 (QDFG morphism). Given two QDFGs G1

and G2, a QDFG morphism f : G1 → G2, f = (fv, fe)
consists of two injective functions fv : VG1

→ VG2
and

fe : EG1
→ EG2

preserving the structure of QDFG. To be
precise, fv and fe

(i) preserve the source and destination structure of hyper-
edges, i.e., for any e ∈ EG1 ,

• dstfe(e) = fv(dst
e),

• |−→srce| = |−→srcfe(e)|, and
• for each srcei ∈

−→srce, srcfe(e)i = fv(src
e
i );

(ii) preserve operations3, i.e., for any e ∈ EG1
, opfe(e) =

ope;
(iii) preserve whether a node is const, i.e., for any v ∈ VG1 ,

[v ∈ V const
G1

] = [fv(v) ∈ V const
G2

]; and
(iv) preserve party label, i.e., for any v ∈ VG1

,
ρG2

(fv(v)) = ρG1
(v).

Now we are ready to define the equivalent rewriting:
when the pattern L matches a subgraph of G, we can
substitute that subgraph with R. To keep the correctness,
we further check two conditions after the substitution.

Definition 4.8 (equivalent rewriting). Given an equiva-
lent production p = (L,R), a QDFG G, and a QDFG
morphism f : L → G called the match, we can apply
the equivalent production p to construct a QDFG H :=
(VG, V

const
G , EH , ρG), where

EH :=(EG \ fe(EL)) ∪
{(ope, (fv(srce1), · · · , fv(srceme

)), fv(dst
e)) | e ∈ ER}.

We say H is constructed from G by equivalent rewriting
with equivalent production p on match morphism m, if

• both G and H are acyclic; and
• for any t ∈ T , the number of random nodes of type t

is preserved, i.e.,∑
r∈V rand

G

[ΓG(r) = t] =
∑

r∈V rand
H

[ΓH(r) = t].

To better understand equivalent rewriting, we point out
that it is naturally symmetric, which means that we can also
substitute R with L to generate G from H .

Fact 4.3 (symmetry). Given an equivalent production p =
(L,R), a QDFG G, a QDFG morphism f , and a QDFG H
constructed from G by equivalent rewriting with equivalent
production p on match f , there exists g : R → H (where
gv = fv) s.t. G is constructed from H by equivalent
rewriting with equivalent production p′ = (R,L) on match
g. In other words,

EG = (EH \ ge(ER)) ∪ fe(EL), and
EH = (EG \ fe(EL)) ∪ ge(ER).

Observing this symmetry, with the help of the two sym-
metric morphisms f and g, we can build a bijection between
the total assignments of G and H from the bijection between
the total assignment of L and R. This means that the
semantic requirements of EG and EH are the same, and that
the equivalent rewriting is indeed a vintage transformation.

Theorem 4.2. Given the number of parties n and a cor-
rupted party set I ⊆ [n], considering an equivalent produc-
tion p, a QDFG G, a QDFG morphism f , and a QDFG H

3. Note that condition (i) also implies opfe(e) takes as many source
operands as ope, and the order of operands is also preserved.



constructed from G by equivalent rewriting with equivalent
production p on match f , the equivalent rewriting is a
vintage transformation w.r.t. I .

The full proof is given in Appendix A.1.

4.4.2. Tail Node Elimination. The correctness of QDFG
guarantees that we can choose an arbitrary topological order
to compute a total assignment. Considering a zero-out-
degree node at honest parties, there is a topological order
where the node is placed at the tail. If we compute a
total assignment along this topological order, we can simply
ignore this tail node, keeping the computation of the other
nodes unaffected. To formalize this idea, we define the tail
node elimination and state that it is a vintage transformation
as follows, with Figure 4 as an example.

Definition 4.9 (tail node elimination). Given a QDFG G
and a node u ∈ VG s.t. deg+G(u) = 0, we can construct a
QDFG H by eliminating u and in-edges of u from G, i.e.,

H := (VG\{u}, V const
G \{u}, {e ∈ EG|dste ̸= u}, ρG|VG\{u}).

We say that H is constructed from G by tail node elimination
of node u.

Theorem 4.3. Given the number of parties n and a cor-
rupted party set I ⊆ [n], considering a QDFG G, a node
u ∈ VG \ IVG, and a QDFG H constructed from G by tail
node elimination of node u, the tail node elimination is a
vintage transformation w.r.t. I .

The proof is given in Appendix A.2.

5. Automated Verification Algorithm

Based on Theorem 4.1, the problem of proving the
perfect security can be reduced to looking for a series of
vintage transformations. This makes it possible to design an
automated verification algorithm.

Recall that a bubble consists of nodes violating the
expectations, the goal of our algorithm is to resolve all
bubbles by a series of vintage transformations. This goal can
be considered as a search problem: the QDFGs are states,
and vintage transformations between QDFGs are transitions.
From this perspective, we can design a search algorithm
guided by a heuristic evaluation function.

Algorithm 1 shows the details. Given an n-party QDFG
G0 representing a correct MPC protocol, a corrupted party
set I ⊆ [n] of cardinality at most t, and a heuristic evaluation
function Φ, the algorithm can tell whether the protocol is
t-perfectly-secure for I or it does not know if the protocol
is secure. To fully prove the t-perfect-security of a protocol,
we need to enumerate all possible corrupted party I ⊆ [n]
of cardinality at most t to call this algorithm. Let ∆ be the
states (QDFGs) to visit (line 2), and, let ∆visited be the
states (QDFGs) visited (line 3). In each step of the search
loop (line 4-17), we choose the most promising state G in
∆, i.e., the state that is minimum evaluated by Φ (line 5).
We try all possible vintage transformations on it to discover

Algorithm 1 Automated verification algorithm
1: procedure TRYPROVING(G0: n-party QDFG, I ⊆ [n]: cor-

rupted party set, Φ: heuristic evaluation function)
2: ∆← {G0}
3: ∆visited ← ∅
4: while ∆ ̸= ∅ do
5: G← argmin∆ Φ
6: if IBG = ∅ then
7: return SECURE FOR I ▷ witness is found
8: end if
9: ∆← ∆ \ {G}

10: ∆visited ← ∆visited ∪ {G}
11: H ← {H | G I

⇝ H}
12: for all H ∈ H do
13: if H ̸∈ ∆visited then
14: ∆← ∆ ∪ {H}
15: end if
16: end for
17: end while
18: return UNKNOWN ▷ unsure if secure for I
19: end procedure

more states to visit (line 11-16). Line 9-10 are necessary
maintenance for ∆ and ∆visited. If G is a witness QDFG,
we know that there is a simulator for I and the searching
can stop (line 6-8). If the searching is exhausted and has
never been stopped by a witness, we report UNKNOWN –
we are unsure if the protocol is secure for I (line 18).

Generally, the time complexity of this searching algo-
rithm is exponential. However, by smartly and precisely
evaluate how promising a state (QDFG) is, it is possible
to prove a class of protocols in polynomial time, as we will
show in Section 6.1.

If the algorithm returns SECURE for I , we have found
a witness graph and a vintage transformation series starting
at G0 and ending at the witness graph, which can be proved
by induction on the number of iterations of the while-loop.
Thus, Theorem 4.1 ensures the soundness of Algorithm 1.

Theorem 5.1 (soundness of the algorithm). Let G0 be an
n-party acyclic QDFG, which describes a protocol π that
correctly computes an ideal functionality.

If for each corrupted party set I ⊂ [n] of cardinality
at most t, Algorithm 1 returns t-SECURE FOR I , then π is
t-perfectly-secure.

6. Applications of Our Framework

In this section, we will demonstrate how to apply our
verification framework, GAuV, to two types of protocols:
the BGW protocol [22], which is a classic representative
to compute any functionality consisting of addition and
multiplication with perfect security, and the B2A (binary
domain to arithmetic domain) sharing conversion protocol
via daBit [23], which is a typical ingredient in the protocols
computed in several different domains.

For each case, we will first show how the protocol runs.
Then, we will illustrate how to verify its perfect security by
vintage transformations. To utilize equivalent rewriting, an



equivalent production set P is needed. We will show how
to mechanize the intuitive insight of the protocol security
into equivalent productions.

Finally, we will further discuss the generalization of our
framework beyond these two applications in Section 6.3.

6.1. The BGW Protocol

6.1.1. Protocol Design. Now we briefly introduce the BGW
protocol [24]. For simpler presentation, let us assume here
the input of each party Pi is only one number xi. The ideal
functionality f can be described by an arithmetic circuit C,
consisting of three types of gates: addition, multiplication,
and multiplication-by-a-constant. Let F be a finite field of
size greater than n, which accommodates all computations.
Shamir secret sharing. Shamir secret sharing scheme is a
basic tool in the BGW protocol. A secret sharing scheme
takes a secret number s and produces n shares, with the
property that it is possible to reconstruct s from all shares,
but any t shares reveal nothing about s. Shamir’s secret
sharing scheme works as follows. For sharing, a polynomial
q(x) of degree t is randomly selected such that its constant
term is s. The shares are defined as q(αi) for every i ∈ [n],
where α1, · · · , αn are n distinct non-zero predetermined
values. For reconstructing, the n shares are collected to inter-
polate the polynomial q(x) =

∑n
j=1 ℓ

x
αj
(α1, · · · , αn)q(αj),

where ℓδ
′

δ (β1, · · · , βp) :=
∏

1≤j≤p
δ′−βj

δ−βj
is the Lagrange

interpolating base. Then, the secret s can be computed as
q(0). In the following text, we use [s] to denote a polynomial
q where q(0) = s, and [s][1], · · · , [s][n] to denote the shares
q(α1), · · · , q(αn).
Phases. The BGW protocol works by having the parties si-
multaneously emulate the circuit upon Shamir shares rather
than the private secrets. The protocol has three phases:

1) Input sharing stage: Each party Pi randomly gener-
ates a Shamir sharing [xi] and sends [xi]

[j] to Pj .
2) Circuit emulation stage: The parties jointly emulate

the circuit gate by gate in topological order. Each gate
has one or two input wires and an output wire.
• Addition gate: Let [x][i] and [y][i] be the shares of

input wires held by party Pi. Pi defines its share of
the output wire to be [z][i] := [x][i] + [y][i].

• Multiplication-by-a-constant gate with a constant c:
Let [x][i] be the shares of input wires held by party
Pi. Pi defines its share of the output wire to be
[z][i] := c · [x][i].

• Multiplication gate: Let [x][i] and [y][i] be the shares
of input wires held by party Pi. Pi computes
([z]′)[i] := [x][i] · [y][i], where [z]′ can be seen as
a degree-2t polynomial which is a multiplication of
two degree-t polynomial [x] and [y].
To reduce the degree of [z]′ from 2t to t, Pi

randomly generates a Shamir sharing [([z]′)[i]] and
sends [([z]′)[i]][j] to party Pj , as in the input sharing
stage. Upon receiving [([z]′)[1]][i], · · · , [([z]′)[n]][i],
Pi defines its share of the output wire to be [z][i] :=∑n

j=1[([z]
′)[j]][i]ℓ0αj

(α1, · · · , αj−1, αj+1, · · · , αn).

3) Output reconstruction stage: Each Pi sends Pk the
share [yk]

[i] for the output wire ok of party Pk. Upon
receiving all shares [yk]

[1], · · · , [yk][n], Pk reconstructs
the whole Shamir sharing [yk] and outputs yk.

6.1.2. Automated Verification. We first give an intuition
of the key to the security of BGW protocols, and then we
describe how to mechanize the intuitive insight to provide
equivalent productions for GAuV.

Let us analyze how to simulate the views of the cor-
rupted parties, which consists of two parts:

1) the corrupted parties’ shares sent from the honest par-
ties at the input sharing stage and the multiplication
gates of the circuit emulation stage, and

2) the honest parties’ shares sent from the honest parties
at the output reconstruction stage.

These two parts of the views of the corrupted parties
can be simulated essentially due to the properties of Shamir
secret sharing scheme, respectively:

1) any at most t shares can be seen as uniformly random,
which indicates that the first part can be regarded as
uniformly random;

2) the whole secret sharing can be reconstructed from the
secret and any t shares, which indicates that the second
part needs to consider the information provided by the
corrupted parties’ outputs.

The two properties above can be mechanized as two
kinds of equivalent productions (see Section B.2 for formal
definitions):

1) sharing production (see Figure 3): the subgraph that
describes a sharing generation procedure can be rewrit-
ten as determining the Shamir sharing by the secret
and t shares, including the corrupted parties’ shares.
After rewriting by this production, due to the demand
of t random nodes for generating a secret sharing and
the randomness amount preservation condition (Defi-
nition 4.8), the chosen t shares will become random
nodes.

2) reconstruction production (see Figure 2): the sub-
graph that describes a secret reconstruction procedure
can be rewritten as determining the Shamir sharing by
the secret and t shares, including the corrupted parties’
shares.

With the help of the two kinds of equivalent productions
above, we can automatically verify the security of all BGW
protocols for any functionality. Also, using a well-designed
heuristic evaluation function, the search of Algorithm 1
degenerates into a greedy procedure: in each iteration, we
go to the next state from the current state through the
best vintage transformation until a witness graph is found.
Also, the upper bound of the heuristic evaluation function
is polynomial size, which indicates the completeness in
polynomial time, as formalized in the following theorem.

Theorem 6.1 (completeness for BGW protocols). Let
QDFG G be an n-party BGW protocol as constructed
in Figure 7. Consider vintage transformations containing



equivalent rewriting of equivalent production set P and tail
node elimination. For any corrupted party set I ⊆ [n] of
cardinality at most t, there exists a heuristic evaluation
function so that Algorithm 1 can prove the t-perfect-security
for I in polynomial time.

Theorem 6.1 is a direct corollary of Theorem B.2, whose
full proof will be present in Appendix B.

6.2. B2A Conversion via daBit

6.2.1. Protocol Design. This protocol computes an ideal
functionality that accepts a secret sharing [b]2 and out-
puts [b]M . Here, we also consider Shamir secret sharing
as the underlying secret sharing scheme, which has been
introduced in Section 6.1.1. [b]2 is a Shamir sharing in an
extension field of Z2, and [b]M is a sharing in a field ZM ,
where the sizes of these two fields are both larger than n.

The high-level idea of this protocol is as follows. Let
P1 reconstruct the binary sharing and share in the arithmetic
domain. To prevent P1 from knowing b, we prepare a pair of
random sharing in both domains as a mask, add the random
mask in the binary domain, and subtract the mask in the
arithmetic domain. This mask is called daBit, a random bit
r shared as ([r]2, [r]M ).

Protocol 5 shows the details. Additionally, we explain
the notation “⊕”: x ⊕ y means x xor y, where x and y
are two bits. Since x⊕ y = x+ y − 2xy, we can compute
[x ⊕ y]M as [x]M + [y]M − 2[xy]M , in a way same as the
circuit emulation stage of BGW protocols in Section 6.1.1.

Note that the original ideal functionality is randomized
since the output is a random Shamir secret sharing [b]M . Un-
fortunately, randomized functionalities are out of the reach
of GAuV. However, we can force the first t parties to provide
their desired shares for [b]M . Together with the secret b,
these t shares uniquely determine a secret sharing [b]M via
Lagrange interpolation. Also, b can be reconstructed from
any [b]M via Lagrange interpolation. Since the secret should
be kept private, we can let all parties perform this linear
combination wrapped in the secret sharing scheme. This is
what Protocol 5 does in steps 5-8. In this way, we provide
a general strategy to adapt the protocols, that output secret
sharings, into a deterministic functionality version.

6.2.2. Automated Verification. The security the secret
sharing scheme provides is essentially the same as analyzed
in Section 6.1.2. Besides, the key to the security is that the
reconstructed secret of P1, c = b ⊕ r, is fairly random for
the adversary, which results from the fact that r is fairly
random. To mechanize this insight, we need to provide
another equivalent production to rewrite the equation as
r = c ⊕ b. After applying this production, due to the
randomness amount preservation condition (Definition 4.8),
c will become a random node.

6.3. Discussion on Generalization

Intuitively, our framework is tied with the hybrid ar-
gument [25], a common proof technique in cryptography to

show the indistinguishability between two distributions. The
hybrid argument gives a sequence of intermediate distribu-
tions, called hybrids, and builds up the indistinguishability
between the first and last from a chain of indistinguishability
between every two adjacent hybrids. In MPC, hybrid argu-
ments are widely applied to show the indistinguishability
between the real and ideal worlds.

The search for vintage transformation series is to find a
sequence of hybrids that generate the views of corrupted
parties and gradually remove the dependency on honest
parties’ inputs. Therefore, if such a sequence is found, then
this sequence can be directly translated to a hybrid argument,
showing the security of the protocol. The set of vintage
transformations defines a set of possible new hybrids we
can move to from the current hybrid. From this perspective,
what this work does is to manually provide equivalence
rules (how a hybrid can be transformed while preserving
the distribution) and automatically search for an equivalence
chain of hybrids.

Furthermore, for most MPC protocols with perfect and
semi-honest security, which includes the BGW protocol
[22], DN protocol [26], or recent new process such as [27]
and [28], the transformation between two adjacent hybrids is
either an equivalent computation of the same set of values or
removing values that are not needed to generate the views of
corrupted parties. Thus, such a transformation corresponds
to a vintage transformation defined in our framework. Once
the needed operable vintage transformations have been iden-
tified, our framework is able to find such a proof with
sufficient (possibly exponential) running time.
Limitations. a) Our framework cannot handle a protocol
whose security cannot be proved by any hybrid sequence
where the transformation between every two adjacent hy-
brids corresponds to a vintage transformation. That being
said, we do not know whether this kind of protocols exist or
not. b) Although two protocols are analyzed as references,
finding the operable vintage transformations and heuristic
evaluation functions for new protocols may still require
manual work.

7. Implementation and Evaluation

To show the applicability and scalability of our frame-
work, we implement it as a prototype tool and apply it to
the protocols in Section 6. The overall workload involved
in the implementation can be approximately gauged by
the amount of code: over 2,700 lines of C++ code. To
improve efficiency, we employ thread parallelism, with each
searching task for every corrupted party set assigned to a
separate thread.

Our evaluation assesses all possible settings of the num-
ber of parties, n less than 10, and the threshold of corrupted
parties, t no more than ⌊n/2⌋, imposing a 1,500 s time limit.
Specifically, for the BGW protocols, we generate random
circuits of various sizes up to 50 gates. The evaluation is
conducted on a workstation with AMD EPYC 7H12 CPU
@ 3.3 GHz with 64 cores .



Input: Each party Pi provides a Shamir share [b]
[i]
2 . P1, · · · , Pt also provide t values β1, · · · , βt, respectively, to determine the first

t shares of the converted Shamir sharing [b]M .
Output: Pt+1, · · · , Pn outputs βt+1, · · · , βn, respectively, where β1, · · · , βn constitutes a Shamir sharing [b]M . where for the first
t shares of [b]M we have [b]

[1]
M = β1, · · · , [b][t]M = βt.

1. Each party Pi chooses a random bit ri and shares [ri]2 and [ri]M .
2. Each party Pi computes [r]

[i]
2 =

∑n
j=1[rj ]

[i]
2 , [b⊕ r]

[i]
2 = [r]

[i]
2 + [b]

[i]
2 and sends it to P1.

3. P1 reconstructs c = b⊕ r from [b⊕ r]2 and shares [c]M .
4. All parties compute [r]M =

[⊕n
j=1 rj

]
M

and [b]M = [c⊕ r]M .

5. Each party Pi shares [b]
[i]
M , i.e., randomly generates a Shamir sharing [[b]

[i]
M ]M and sends [[b]

[i]
M ]

[j]
M to party Pj .

6. Each party Pi (1 ≤ i ≤ t) shares βi.
7. Each party Pi computes

[βk]
[i]
M =

∑t
j=1 ℓ

αk
αj (0, α1, · · · , αj−1, αj+1, · · · , αt)[βj ]

[i]
M+ℓ

αk
0 (α1, · · · , αt)

∑n
j=1 ℓ

0
αj

(α1, · · · , αj−1, αj+1, · · · , αn)[[b]
[j]
M ]

[i]
M

and sends it to Pk for each t < k ≤ n.
8. Each party Pi (t < i ≤ n) reconstructs βi from [βi]M and outputs βi.

Protocol 5. Binary to arithmetic sharing conversion via the daBit (deterministic functionality version)

Figure 6. Time cost over data-flow graph size (the number of edges) of
multiparty computation protocols, fitted by a quadratic curve.

The evaluation results, as depicted in Figure 6, show that
within 1,500 s time limit, our tool can prove the security of
protocols cantaining 4,500 edges. Figure 6 also illustrates
that the runtime of our tool approximates a quadratic func-
tion of the protocol size, aligning with the prediction in
Theorem 6.1. This data-flow graph size can be construed
as an approximation of the actual execution time of the
protocol, under the assumption that all operations could be
efficiently carried out. Our evaluation enumerates various
configurations across three dimensions: n, the number of
parties; t, the threshold of corrupted parties; and C, specif-
ically for BGW protocols, the circuit size. Both n and C
are captured by the graph size, which approximately scales
as O(n2C) for the protocols analyzed. On the other hand,
t generally has little influence on the time cost due to the
thread parallelism, as long as sufficient processor cores are
provided.

8. Related Works

We mainly focus on related work in the field of
computer-aided verification of the security of MPC proto-
cols. As far as we know, Pettai and Laud [17] propose the
first method to automatically verify the security of MPC
protocols. However, as discussed in Section 1, they only
focus on black-box privacy, a stronger form of security,
while our work focuses on perfect security.

There are attempts to build machine-checkable proofs of
MPC protocols with interactive provers. Most of them use
EASYCRYPT [7]: Stoughton and Varia [29] prove Private
Count Retrieval protocol; Almeida et al. [30] prove Yao’s
protocol; Haagh et al. [31] prove Maurer’s protocol; Elde-
frawy and Pereira [32] prove the BGW protocol. Besides,
Butler et al. [33] prove Oblivious Transfer in CRYPTHOL
[34]. Apart from EASYCRYPT and CRYPTHOL, a simpler
prover, IPDL [35], is developed atop Coq [36].

9. Conclusion

We propose a sound framework for automated verifi-
cation of the perfect security of instances of MPC proto-
cols against semi-honest adversaries. We demonstrate the
completeness of our framework for BGW protocols. We
implement our theoretical framework as a prototype tool,
GAuV, and evaluate it on BGW protocols and a B2A
conversion protocol. One direction for future work is to
evaluate our framework on more protocols and extend it to
weaker forms of security. Another direction is to formalize
our approach in logic and produce proofs checkable in an
interactive prover, e.g., EASYCRYPT. It seems interesting to
embed our technique into EASYCRYPT to further improve
its automation and ability for simulation-based proofs.
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Appendix A.
Proofs for Operable Vintage Transformation

A.1. Equivalent Rewriting

Theorem A.1. Given the number of parties n and a cor-
rupted party set I ⊆ [n], considering an equivalent produc-
tion p, a QDFG G, a QDFG morphism f and a QDFG H
constructed from G by equivalent rewriting with equivalent
production p on match m, the equivalent rewriting is a
vintage transformation w.r.t. I .

Proof. G and H are acyclic by definition of equivalent
rewriting.

Define hv := idVG
= idVH

. We will prove that hv
satisfies the conditions (i-vi) of Definition 4.4, with an
arbitrary assignment γ on V const

G s.t. G is correct w.r.t. γ.
(i-iiii) are naturally ensured since hv is an identity

function.
(v): here, we will prove a stronger statement that ψ :

α 7→ α ◦ hv is a bijection of type TASγ
G → TASγ◦hv

H .
Since hv = idVG

, ψ = idTASγ
G

. It is sufficient to show that
TASγ

G = TASγ
H . In the following, we will simplify this

goal step by step until it can be directly proved.
Consider each assignment α on VG s.t. α|V const

G
= γ.

α ∈ TASγ
G iff for every e ∈ EG we have α(−→srce) ∈

dom(ope) ∧ ope(α(−→srce)) = α(dste). We abbreviate this

property to P (e, α). Then, what we need to prove now is
that “∀e ∈ EG, P (e, α)” iff “∀e ∈ EH , P (e, α)”.

By Fact 4.3, there exists a QDFG morphism g : R→ H
which is symmetric to f , and, EG \ fe(EL) ⊆ EG ∩ EH

and EH \ gv(ER) ⊆ EG ∩ EH . Thus, we can simplify
our goal as: “∀e ∈ fe(EL), P (e, α|fv(VL))” iff “∀e ∈
ge(ER), P (e, α|gv(VR))”.

Since QDFG morphisms preserve source and destination
structure and operations of hyper-edges (Definition 4.7), it
is sufficent to prove that “∀e ∈ EL, P (e, α ◦ fv)” iff “∀e ∈
ER, P (e, α ◦ gv)”.

Since QDFG morphisms preserve whether a node is
const (Definition 4.7), we have that

(α ◦ fv)|V const
L

= (α|V const
L

) ◦ fv = γ ◦ fv.

Thus, our goal can be simlified as: “α ◦ fv ∈ TASγ◦fv
L ” iff

“α ◦ gv ∈ TASγ◦gv
R ”. This equivalence is directly indicated

by the definition of equivalent production (Definition 4.6).
(vi): As we have proved for (iv), |TASγ

H | =
|TASγ

G|. Since G is correct w.r.t. γ, by Fact 4.2,
|TASγ

G| =
∏

r∈V rand
G

|ΓG(r)|. From the condition of equiv-
alent rewriting (Definition 4.8) that

∑
r∈V rand

G
[ΓG(r) =

t] =
∑

r∈V rand
H

[ΓH(r) = t] for any t ∈ T , we
have

∏
r∈V rand

G
|ΓG(r)| =

∏
r∈V rand

H
|ΓH(r)|. Therefore,

|TASγ
H | =

∏
r∈V rand

H
|ΓH(r)|.

And, the number of possible assignments on V rand
H is∏

r∈V rand
H

|ΓH(r)|. Thus, for each assignment α on V rand
H ,

if there does not exist a total assignment β ∈ TASγ
H s.t.

β|V rand
H

= α, we will find a contradiction: |TASγ
H | <∏

r∈V rand
H

|ΓH(r)|. This contradiction indicates that the
non-existence hypothesis is wrong. Thus, we can conclude
that H is correct w.r.t. γ ◦ hv.

A.2. Tail Node Elimination

Theorem A.2. Given the number of parties n and a cor-
rupted party set I ⊆ [n], considering a QDFG G, a node
u ∈ VG \ IVG, and a QDFG H constructed from G by tail
node elimination of node u, the tail node elimination is a
vintage transformation w.r.t. I .

Proof. As EH ⊆ EG and G is acyclic, H is also acyclic.
Define hv := idVH

. We will prove that hv satisfies the
conditions (i-vi) of Definition 4.4, with each assignment γ
on V const

G s.t. G is correct w.r.t. γ.
(i-iv) are naturally ensured as hv is an identity function

and u ̸∈ IVG.
The construction of H could give us the following

observations:
1. Because deg+(u) = 0, removing u does not change

the indegree of any other nodes. Thus, the only node
of different indegrees in G and H is u, which further
indicates that V rand

H = V rand
G \ {u}.

2. Because EH ⊆ EG, i.e., all semantic requirements of
a total assignment of H are semantic requirements of
a total assignment of G, we have that for each β ∈

https://doi.org/10.5281/zenodo.8161141


TASγ
G, β ◦ hv ∈ TASγ◦hv

H , that is, ψ is a function of
type TASγ

G → TASγ◦hv

H .
Now we can prove (vi): consider any assignment α on

V rand
G , which means, by observation 1, each assignment

on V rand
H ⊆ V rand

G is also considered. According to the
correctness of G w.r.t. γ, there exists a total assignment β
of G w.r.t. γ s.t. β|V rand

G
= α. According to observation 2,

β|VH
∈ TASγ◦hv

H and β|V rand
H

= α|V rand
H

. Since this holds
for each α, H is correct w.r.t. γ ◦ hv.

For (v), we consider two cases to prove that ψ : α 7→
α ◦ hv is k-surjective where k is 1 or |ΓG(u)|.

• u ̸∈ V rand
G : From observation 2, we have known that

ψ(TASγ
G) ⊆ TASγ◦hv

H . Now we need to prove that ψ
is bijective i.e. 1-surjective.
(injectivity) Consider any α1, α2 ∈ TASγ

G s.t. ψ(α1) =
ψ(α1), i.e., α1|VH

= α2|VH
. As u ̸∈ V rand

G , i.e.,
deg−G(u) ̸= 0, there is an e ∈ EG s.t. dste = u, and,
−→srce ⊆ VH , since G is acyclic. Thus,

α1(u) = ope(α1(
−→srce)) = ope(α2(

−→srce)) = α2(u).

Due to VG = VH ∪ {u}, we have that α1 = α2.
(surjectivity) The correctness of G w.r.t. γ implies Fact
4.2 for G, which is also ensured by (v) for H . So, we
can find the equivalence between the amount of total
assignments of G and H:

|TASγ
G| =

∏
r∈V rand

G

|ΓG(r)| =
∏

r∈V rand
H

|ΓH(r)| = |TASγ◦hv
H |.

Thus, ψ(TASγ
G) = TASγ◦hv

H .
• u ∈ V rand

G : u is an isolated node (deg+G(u) =
deg−G(u) = 0). Thus, for each assignment β ∈
TASγ◦hv

H , we can construct α ∈ TASγ
G s.t. α|VH

= β,
α(u) is arbitrarily chosen from ΓG(u), and ψ(α) = β.
In this way, we can construct

∏
r∈V rand

G
|ΓG(r)| preim-

ages in all, which are exactly as many as all total
assignments in TASγ

G. Therefore, |ψ−1(β)| = |ΓG(u)|,
i.e., ψ is |ΓG(u)|-surjective.

Appendix B.
Proofs for Completeness for BGW Protocols

In this section, we give the details about the complete-
ness of Algorithm 1 on BGW protocols. We formalize BGW
protocols as QDFGs in Section B.1, provide equivalent pro-
ductions in Section B.2, and finally show the completeness
in Section B.3.

B.1. BGW Protocol as QDFG

Note that BGW protocols are actually a class of pro-
tocols (QDFGs), which can be constructed in the same
way. What an instance of protocol (QDFG) looks like is
dependent on threshold t, algorithmic circuit C and distinct
non-zero values α1, · · · , αn.

Before formulating the graph structures, we formulate
the operators we need:

• addition add : F2 → F : (x, y) 7→ x+ y
• multiplication-by-a-constant mulc : F → F : x 7→ cx
• multiplication mul : F2 → F : (x, y) 7→ xy
• message transit mt : F → F : x 7→ x
• polynomial interpolation and evaluation

i&eγβ1,··· ,βm
: Fm ⇀ F

: (y1, · · · , ym) 7→
m∑
i=1

yiℓ
γ
βj
(β1, · · · , βj−1, βj+1, βm),

where ℓγδ (β1, · · · , βp) :=
∏

1≤j≤p
γ−βj

δ−βj
and points

(β1, y1), · · · , (βm, ym) fall in a polynomial of degree
t.

Now we can formulate BGW protocols as QDFGs in
Figure 7. Here, for the sake of clarity of exposition, we
focus on the circuit C containing exactly n input wires and
n output wires. The modifications to the general case are
straightforward.

B.2. Equivalent Productions for Transformation

The equivalent production set P consists of all equiva-
lent productions of two kinds: sharing productions (see Fig-
ure 3) and reconstruction productions (see Figure 2). These
productions are mainly about operator i&e (polynomial
interpolation and evaluation): all participant (source and
destination) nodes could be reorganized so that t+1 nodes
are source nodes and at least one node is the destination.

Remark B.1. WLOG, the corrupted party set I is assumed
as a set of consecutive number starting from 1.

Definition B.1 (sharing production). A QDFG pair p =
(L,R) is a sharing production if

• |VL| = |VR| = n + t + 1 (we denote VL = VR by
{u0, · · · , ut, v1, · · · , vn});

• EL =
⋃n

i=1{(i&eαi
0,··· ,t, (u0, · · · , ut), vi)};

• ER =
⋃t

i=1{(i&ei0,α1,··· ,αt
, (u0, v1, · · · , vt), ui)} ∪⋃n

i=t+1{(i&ei0,α1,··· ,αt
, (u0, v1, · · · , vt), vi};

• V const
L = V const

R and ρL = ρR = j ∈ [n] \ I .

Fact B.1. A sharing production is an equivalent production.

Definition B.2 (reconstruction production). A QDFG pair
p = (L,R) is a reconstruction production if

• |VL| = |VR| = 2n + 1 (we denote VL = VR by
{u0, · · · , un, v1, · · · , vn});

• EL = {(i&e0α1,··· ,αn
, (u1, · · · , un), u0)} ∪⋃n

i=1{(mt, (vi), ui)};
• ER =

⋃n
i=t+1{(i&eαi

0,α1,··· ,αt
, (u0, · · · , ut), ui)} ∪⋃t

i=1{(mt, (vi), ui)} ∪
⋃n

i=t+1{(mt, (ui), vi)};
• V const

L = V const
R ;

• ρL = ρR and ρL(u0) = ρR(u0) ∈ I and ρL(vi) =
ρR(vi) = i for each i ∈ [n].

Fact B.2. A reconstruction production is an equivalent
production.



1) The input sharing stage: Each party Pi contains an input node of xi and t random nodes for uniformly choosing a polynomial,
also, Pi contains n nodes βi,1, · · · , βi,n representing n shares of xi. For each j ∈ [n], there is an edge of operator i&e

αj

0,1,··· ,t
taking the input node and random nodes as source and βi,j as destination at party Pi.
For each βi,j(i ̸= j), there is also a node β′

i,j at party Pj and an edge of operator mt taking βi,j as source and β′
i,j as

destination.
2) The circuit emulation stage: Let g1, · · · , gl be a predetermined topological ordering of the gates of circuit C.

For k = 1, · · · , l, party Pi has a node ϵki to denote the share of output wire of gk:
• Case 1 gk is an addition gate: Let γk

i and δki be the nodes of the input wires of gk held by party Pi. There is an add edge
taking γk

i and δki as source and ϵki as destination.
• Case 2 gk is a multiplication-by-a-constant gate with constant c: Let γk

i be the node of the input wire of gk held by party
Pi. There is a mulc edge taking γk

i as source and ϵki as destination.
• Case 3 gk is a multiplication gate: Let γk

i and δki be the nodes of the input wires of gk held by party Pi. For each Pi,
there is a node ζki , and, a mul edge taking γk

i and δki as source and ζi as destination.
ζk1 , · · · , ζkn fall in a polynomial of degree 2t. To reduce the degree, we need a re-sharing similar to the input sharing
stage. Each Pi contains t random nodes and n nodes ηk

i,1, · · · , ηk
i,n. For each Pi and j ∈ [n], there is an edge of operator

i&e
αj

0,1,··· ,t taking ζki and t random nodes as source and ηk
i,j as destination.

Then we will send the shares. Let ηk
i,j

′
be the nodes of sent shares at party Pj , especially, ηk

i,i
′
= ηk

i,i. For each i ̸= j ∈ [n],
there is an edge of operator mt taking ηk

i,j as source and ηk
i,j

′
as destination.

Now we perform a linear combination to reduce the degree of polynomial from 2t to t. There are n nodes θ1, · · · , θn and
n− 1 nodes ιk1 , · · · , ιkn−1, which stores the results of multiplications and additions, respectively, when evaluating the linear
combination. Each party Pi contains an edge of operator mulℓ0αj

(α1,··· ,αj−1,αj+1,··· ,αn) taking ηk
j,i

′
as source and θkj as

destination for each j ∈ [n]. Also, party Pi contains an edge of operator add taking θkj and θkj+1 as source and ιkj as
destination for each 1 ≤ j < n.
Let the node of output wire ϵki = ιkn−1.

3) The output reconstruction stage: Let o1, · · · , on be the output wires of circuit C, where party Pi’s output is the value on
wire oi. For every j ∈ [n] denote by κi,j the node of shares that parties hold for oi, and, we use κ′

i,j to denote the node of
sent shares. Thus, there are mt edges taking κi,j as source and κ′

i,j as destination (i ̸= j). And we simply let κ′
i,i = κi,i.

Each party Pi contains an output node ωi. The edge to produce ωi has an operator i&e0
α1,··· ,αn

and source nodes κi,1, · · · , κi,n.

Figure 7. BGW Protocol as QDFG

B.3. Completeness for BGW Protocols

First, we give a heuristic evaluation function by measur-
ing the distance of a QDFG to a witness graph. Formally,
we define the BGW potential function Φ on QDFGs to be
the tuple of:

1) The number of bubbles, i.e.,
∣∣IBG

∣∣.
2) The number of nodes at honest parties that can reach

corrupted parties. A node reaching corrupted parties
means that there exists a path from this node to some
node at corrupted parties.

3) The number of nodes in G, i.e., |VG|.
Φ functions will be compared in the lexicographical order.

Using the Φ as the heuristic evaluation function, we can
prove that, for a BGW protocol, Algorithm 1 degenerates
into a steepest descent optimization procedure: in each
iteration, we choose the best state transformed from the
last iteration until a witness graph is found. Furthermore,
in Algorithm 1 the chosen graphs in all iterations consist of
a normal transformation series. We formalize and prove the
above intuitional idea in the following theorem.

Theorem B.1. Let QDFG G0 be an n-party BGW protocol
as constructed in Figure 7, and, let I ⊆ [n] be a set of cor-
rupted parties s.t. |I| ≤ t. Consider vintage transformations
containing equivalent rewriting of equivalent production set

P and tail node elimination. For any vintage transformation
series G0

I
⇝ G1 · · ·

I
⇝ Gm s.t. for each 1 ≤ i ≤ m,

a) Φ(Gi) < Φ(Gi−1), and
b) for any G′

i s.t. Gi−1
I
⇝ G′

i, Φ(Gi) ≤ Φ(G′
i),

one of the followings is satisfied:
1) IBGm = ∅,
2) there exists a graph Gm+1 s.t. Gm

I
⇝ Gm+1 and

Φ(Gm+1) < Φ(Gm).

Proof. This proof could be roughly divided into two parts:
(1) construct a class of normal transformation series from
G0 to a QDFG without bubble; (2) prove that given G0

I
⇝

· · · I
⇝ Gm must be a prefix of normal transformation series.
First, notice that there is a vintage transformation series

starting at G0 consisting of the following fragments:
1) equivalent rewritings of reconstruction production for

the output reconstruction stage at corrupted parties I;
2) equivalent rewritings of sharing production, for the

input sharing stage and all multiplication gates in the
circuit emulation stage, at honest parties [n] \ I;

3) tail node eliminations of
• output node ωi and all output shares κ′i,j (i ̸= j) at

honest parties i ∈ [n] \ I ,
• the nodes of gates that cannot reach output wires
o1, · · · , o|I|, at honest parties [n] \ I ,



• the input nodes at honest parties, and
• all the rest nodes at parties Pt+1, · · · , Pn.

After the constructed vintage transformation, the bubbles
are all resolved. Because

• in fragment 1, the reconstruction production has been
applied for the output node ωi at each corrupted party,
which indicates the in-degree of ωi has become zero,

• there is no equivalent production to provide any in-edge
for the input node at corrupted parties, and,

• in fragment 3, all the input nodes at honest parties have
been eliminated.

We can also show that our constructed vintage transfor-
mation series satisfies (a) and (b), i.e., along each vintage
transformation in the series, the evaluation function Φ de-
creases with the largest possible difference.

1) In G0, at each corrupted party i ∈ I , an equivalent
rewriting of the reconstruction production for bubble
node ωi sets its in-degree to zero and resolves it. This
action reduces the bubble count, the first entry of Φ,
and is the only transformation that decreases this first
entry until all ωi bubbles are resolved.

2) Once every ωi (i ∈ I) bubble is resolved, only honest
parties’ input nodes remain as bubbles. But before we
eliminate any node, there is no vintage transformation
to resolve them. Therefore, in the second fragment, the
first entry of Φ cannot be decreased by any vintage
transformation. Now it is sufficient to show applying
sharing production decreases the second entry of Φ.
As depicted in Figure 7, applying sharing production
converts t random nodes into zero-out-degree nodes,
which could previously reach corrupted parties via
share nodes and mt edges, decreasing the second entry
of Φ by at least t.
Note that sharing production is limited to input sharing
and multiplication gates in the circuit emulation stage,
and tail node elimination, which removes zero-out-
degree nodes at honest parties, cannot impact corrupted
parties. Consequently, no other vintage transformations
affect the second entry of Φ.

3) After fragment 2, no equivalent rewriting can decrease
Φ, as reconstruction and sharing productions can be
applied only once, which reverses i&e edges. Node
elimination merely shrinks the graph without introduc-
ing new patterns, so no equivalent rewriting can be
performed to decrease Φ in fragment 3.
We have shown that the only possible vintage transfor-
mation in fragment 3 is tail node elimination, which
indeed decreases the Φ tuple: it lowers the first entry
if a bubble node is eliminated (otherwise unchanged);
it doesn’t affect the second entry since the eliminated
node’s out-degree is zero and doesn’t reach corrupted
parties; and it always decreases the third entry by one.

Note that the order of transformations in a fragment
is not precisely specified. What we construct is indeed a
class of vintage transformation series. We call them normal
transformation series.

Second, assume the opposite, that G0
I
⇝ · · · I

⇝ Gm

is not a prefix of any normal transformation series. Let
k ≤ m be the minimal number s.t. G0

I
⇝ · · · I

⇝ Gk

is not a prefix of any normal transformation series, which
indicates G0

I
⇝ · · · I

⇝ Gk−1 is a prefix of some normal
transformation series. Let G∗

k be the next graph after Gk−1

in this normal transformation series. We will prove that
Φ(G∗

k) < Φ(Gk), which contradicts the requirement (b) of
G0

I
⇝ · · · I

⇝ Gm. Consider which fragment Gk−1
I
⇝ G∗

k
belongs to:

1) In fragment 1, the input nodes of honest parties have
non-zero out-degree, which indicates they cannot be
removed by tail node elimination. Thus, the only pos-
sibly resolved bubbles are the output nodes of corrupted
parties, which can only be resolved by applying recon-
struction production. Therefore, Gk−1

I
⇝ Gk cannot

decrease the amount of the bubbles, while Gk−1
I
⇝ G∗

k
resolves a bubble.

2) In fragment 2, observe that no reconstruction pro-
duction could be applied. If Gk−1

I
⇝ Gk is not an

equivalent rewriting of sharing production, it must be a
tail node elimination. Since the input nodes of honest
parties in fragment 2 have non-zero out-degree, they
cannot be removed by tail node elimination. Thus,
Gk−1

I
⇝ Gk cannot decrease the first entry of Φ,

but can only decrease the third entry of Φ, while
Gk−1

I
⇝ G∗

k decreases the second entry of Φ.
3) In fragment 3, recall that no equivalent rewriting could

be performed. This fragment in normal transformation
series contains all possible tail node eliminations. Thus,
it is impossible that G0

I
⇝ · · · I

⇝ Gk is not a prefix of
any normal transformation series.

We have proved that G0
I
⇝ · · · I

⇝ Gm is a prefix of some
normal transformation series. Thus, if Gm is not the end
of the series, there exists a graph Gm+1 in the series s.t.
Gm

I
⇝ Gm+1; otherwise, we have shown that all bubbles

must have been resolved after a normal transformation se-
ries, i.e., IBGm

= ∅.

Note that each entry of Φ(G) is O(|G|). Thus, Theo-
rem B.1 indicates that the length of a normal transformation
series is also O(|G|). Induction on the length of the normal
transformation series, with the help of Theorem B.1, one
can finally prove the completeness of Algorithm 1 for BGW
protocols with polynomial time.

Theorem B.2 (completeness for BGW protocols). Let
QDFG G be an n-party BGW protocol as constructed
in Figure 7. Consider vintage transformations containing
equivalent rewriting of equivalent production set P and tail
node elimination. For any corrupted party set I ⊆ [n] of
cardinality at most t, With the BGW potential function as
the heuristic evaluation function, Algorithm 1 can prove the
t-perfect-security for I in polynomial time.



Appendix C.
Meta-Review

The following meta-review was prepared by the program
committee for the 2024 IEEE Symposium on Security and
Privacy (S&P) as part of the review process as detailed in
the call for papers.

C.1. Summary

The paper describes a technique for automatically veri-
fying secure MPC protocols in the perfect security model,
assuming a semi-honest attacker. The idea is to view the
protocol as a (quasi-)data-flow graph, which is rewritten
iteratively using graph transformations until it is in a form
that corresponds to a PPT simulator of the protocol in the
idealized model. The paper provides a prototype of the
framework for BGW protocols and another protocol, B2A.

C.2. Scientific Contributions

• Provides a Valuable Step Forward in an Established
Field

C.3. Reasons for Acceptance

1) The paper presents a new approach to verifying MPC
protocols.

2) The approach is fully automated in a tool for BGW
and B2A protocols.

3) The approach also promises to generalize to other MPC
protocols.
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