
Efficient Lattice-Based Threshold Signatures
with Functional Interchangeability

Guofeng Tang1, Bo Pang2, Long Chen3, and Zhenfeng Zhang3⋆

1 AntGroup tangguofeng.gf@antgroup.com
2 Institute of Information Engineering Chinese Academy of Sciences

pangbo215@gmail.com
3 Institute of Software Chinese Academy of Sciences, Beijing, China

chenlong,zhenfeng@iscas.ac.cn

Abstract. A threshold signature scheme distributes the ability to gener-
ate signatures through distributed key generation and signing protocols.
A threshold signature scheme should be functionally interchangeable,
meaning that a signature produced by a threshold scheme should be ver-
ifiable by the same algorithm used for non-threshold signatures. To resist
future attacks from quantum adversaries, lattice-based threshold signa-
tures are desirable. However, the performance of existing lattice-based
threshold signing protocols is still far from practical.
This paper presents the first lattice-based t-out-of-n threshold signature
scheme with functional interchangeability that has been implemented. To
build an t-out-of-n access structure for arbitrary t ≤ n, we first present a
novel t-out-of-n version of the SPDZ MPC protocol. We avoid using the
MPC protocol to evaluate hash operations for high concrete efficiency.
Moreover, we design an efficient distributed rejection sampling protocol.
Consequently, the online phase of our distributed signing protocol takes
only 0.5 seconds in the two-party setting and 7.3 seconds in the 12-party
setting according to our implementation. As a byproduct, our scheme
also presents a periodic key refreshment mechanism and offers proactive
security.

Keywords: Threshold signatures, Lattice-based signatures, Rejection sampling

1 Introduction

Threshold signatures are a cryptographic technique that allows a group of par-
ties to generate and use a single digital signature, requiring a predefined number
of participants (the threshold) to sign a message. A t-out-of-n threshold signa-
ture splits the signing key across n parties, such that: any subset of t honest

⋆ This work was supported by the National Key R&D Program of China
2021YFB3100100. Long Chen was also supported in part by Alibaba Innovative
Research (AIR). Guofeng Tang and Bo Pang are co-first authors. The corresponding
authors are Long Chen and Zhenfeng Zhang.

2 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

parties can produce a valid signature, without reconstructing the key; any sub-
set of fewer than t parties cannot produce a signature, nor find anything about
the key [1, 2]. It enables the distribution of trust placed on human operators,
and offers a plan to prevent several single-points of failure in conventional dig-
ital signature implementations [3]. Additionally, threshold signatures should be
functionally interchangeable [3]. This implies that a signature generated by a
threshold scheme must be verifiable utilizing the same algorithm as conven-
tional signatures. Functional interchangeability not only ensures the efficiency
of the scheme in terms of signature, public key sizes, or verification time but
also guarantees that if a client is capable of operating on the outputs of the
non-threshold signature scheme, they can also handle the final output produced
by the threshold implementation.

Threshold signatures have been found to have applications in multiple sce-
narios, including:

– Secure cryptocurrency wallets: Threshold signatures can be used to cre-
ate secure cryptocurrency wallets [4–6], where multiple participants are re-
quired to sign transactions before they are executed. This can help prevent
unauthorized access and theft of funds, as an attacker would need to com-
promise multiple parties to control the wallet.

– Distributed key management: In organizations, threshold signatures can
be used to distribute the responsibility of managing critical cryptographic
keys[7]. This can help reduce the risk of a single point of failure, as multiple
parties need to collaborate to use the private key.

– Decentralized identity systems: Threshold signatures can be used in
decentralized identity systems [8], where a user’s identity is managed by
multiple parties. This can provide users with more control over their personal
information and reduce their reliance on centralized authorities.

– Byzantine fault tolerance (BFT) consensus algorithms: In decen-
tralized systems, such as blockchains, threshold signatures can be used to
achieve efficient BFT consensus [9, 10]. By requiring a certain number of
participants to sign a block, malicious actors are prevented from controlling
the network unless they control a significant portion of the signing parties.

Indeed, threshold signatures have been receiving increasing attention from re-
searchers [11–16] due to the growing demand for their applications in various
scenarios. Recently, NIST has published a roadmap [3] to present a structured
approach for exploring the space of threshold schemes.

Various works have investigated the threshold version of classic signatures
such as ECDSA [11–16]. However, it is now well-known that these schemes will
become insecure in a “post-quantum” world where classical hard problems like
the discrete logarithm can be solved by Shor’s algorithm [17] using large-scale
quantum computers. Recently, lattices have been recognized as a reliable founda-
tion for post-quantum cryptography, and in 2016, NIST launched a competition
to standardize post-quantum signature schemes [18]. Two of the three selected
signature algorithms are lattice-based, namely Dilithium [19] and Falcon [20].
To ensure the security of popular cryptography systems such as secure wallets

Lattice-Based Threshold Signatures with Functional Interchangeability 3

or BFT consensus in the post-quantum era, it is crucial to study post-quantum
threshold signatures, particularly lattice-based schemes.

However, currently, no practical lattice-based threshold signature scheme
with functional interchangeability exists. To illustrate this point, this paper re-
visits existing approaches to construct a lattice-based threshold signature.

TFHE Method. Boneh et al. [21] recently introduced a new primitive called
the universal thresholdizer, which is built upon the threshold fully homomorphic
encryption (TFHE) scheme. By using the universal thresholdizer, it is possible
to obtain a threshold signature from any signature scheme with ease. Agrawal et
al. [22] have optimized this method by reducing the signature size and improv-
ing adaptive security. However, these works are primarily theoretical and do not
provide concrete efficiency analyses. In reality, this generic construction requires
every participant to evaluate the signing circuit homomorphically via TFHE.
Since a lattice-based signing circuit typically involves complex operations like
Gaussian sampling and hash operations, such homomorphic evaluation is un-
likely to be practical.

Generic MPC Method. The another approach of constructing a threshold
signature is to evaluate the signing algorithm with the generic MPC scheme. For
example, Bendlin et al. [23] leveraged generic multiparty computation (MPC)
to evaluate the GPV signature [24]. Very recently, Cozzo et al. [25] studied
the potential efficiency to compute signing circuits for all signature schemes in
the NIST PQC competition via the generic MPC. Unfortunately, the result is
pessimistic: the generic MPC approach seems far from practical for most of
the lattice-based schemes. The reason is they leveraged different MPC methods
to evaluate different operations while shifting between different MPC schemes
is costly. To distributively evaluate the signing algorithm of the lattice-based
signature scheme like Dilithium, they applied Garbled Circuits (GC) based MPC
[26, 27] for non-linear operations (e.g., hash and rejection sampling) and Secret
Sharing (SS) based MPC [28, 29] for linear operations (e.g., addition and scalar
addition).

Schnorr-like Method. One may suggest to thresholdize lattice based sig-
natures by mimicking the distributed Schnorr protocols [30, 31]. One attempt is
made by Damg̊ard et al. [32] to present a n-out-of-n threshold scheme of lattice-
based Fiat-Shamir (FS) signatures. However, their scheme is not functionally
interchangeable, i.e., the verification operation is different from that of the non-
threshold scheme. Their parameters depend on the number n of parties, which
results in the sizes of signature and public key grow with n, scaling as O(log2 n).
Due to the rejection sampling in the lattice-based FS signing algorithm, the ex-
pected number of repetitions to generate a threshold signature is Mn, where M
is the expected number of repetitions in the non-threshold scheme. Hence the
number of communication rounds also grows with n. Overall the client in [32]
suffers from not only the interoperablity loss, but also the barrier of efficiency.

In a nutshell, an efficient lattice based threshold signature with functional
interchangeability is still missing nowadays.

4 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

1.1 Our Results

In this paper, we construct the first lattice-based t-out-of-n threshold signature
protocol, that is reported to be implemented. Compared with the previous works,
our scheme has the following desirable properties:

– Functional Interchangeability. Our scheme meets the requirement of the
NIST’s threshold cryptography standardization guideline [3], i.e., the signa-
ture can be verified by the same algorithm as used for non-threshold sig-
natures. Moreover, our sizes of the public key and signature are the same
as those of the non-threshold scheme, independent of the number of parties
participating in the distributed signing protocol.

– High Efficiency. According to our implementation, the online phase of
our threshold signing protocol costs 0.5 seconds in a two-party setting and
7.3 seconds in the 12-party setting. The only known running time result
of a lattice-based threshold signing protocol is approximately 12 seconds in
the two-party setting from [25]. Compared with it, our work is much more
efficient.

– Proactive Security. Our scheme can additionally provide the proactive
security [33, 34]. When the key shares are refreshed periodically, our protocol
remains unforgeable as long as at most t−1 parties are compromised during
a period that starts at the beginning of one refreshment of secret key shares
and ends at the end of the next refreshment of secret key shares.

1.2 Technical Overview

In theory, it is always possible to construct a function-interchangeable lattice-
based threshold signature scheme if the signing key is shared among multiple
parties and the signing algorithm is evaluated by a dishonest majority mali-
ciously secure MPC. Note that the security of the MPC protocol guarantees
that the malicious parties will not learn the information about the signing key
shares from honest parties. However, this method requires careful consideration
of the MPC protocol’s efficiency and security. In particular, a generic MPC like
SPDZ [28, 29] may not be efficient enough to handle the non-linear procedures
involved in the signing algorithm, such as hash operations and rejection sam-
pling. Additionally, since the secret is shared among n parties, the MPC protocol
should guarantee that the computation can be carried out even if only t parties
are invoked.

t-out-of-n SPDZ We adapt the SPDZ protocol to use Shamir’s Secret Sharing,
enabling t-out-of-n shares of a secret value. When the signing key is shared with
Shamir’s Secret Sharing, any t parties can jointly compute the signature by
evaluating the signing circuit.

The online computation in our SPDZ protocol based on Shamir’s Secret Shar-
ing scheme is straightforward, due to the linearity of Shamir’s Secret Sharing.

Lattice-Based Threshold Signatures with Functional Interchangeability 5

The method for resisting malicious or incorrect shares still relies on MAC check-
ing, as in SPDZ. So the new MPC protocol will not compromise the efficiency
of the original SPDZ in the online phase.

Generating Beaver’s triples under the form of t-out-of-n shares presents
a primary challenge. To address this, we propose that each party Pi broad-
casts the homomorphic encryption of their randomness values ai and bi. Using
the homomorphic property, we can publicly compute Enc(a) =

∑n
i=1 Enc(ai),

Enc(b) =
∑n

i=1 Enc(bi), and Enc(c) = Enc(a)·Enc(b). We then use a novel method
to ensure that each party obtains a t-out-of-n share of a, b, and c. Specifically,
to reshare the secret value a with an input ciphertext of Enc(a) , the parties first
jointly choose a random mask for a, denoted as f . They then jointly decrypt
Enc(a + f) to obtain the public g = a + f , which can be publicly split into
t-out-of-n shares {gi}ni=1. Since each party holds fi and gi, which is a t-out-of-n
share of f and a+f , respectively, then the difference fi−gi is a t-out-of-n share
of a.

Avoiding Distributed Hash In a FS-type signature, the hash computation
is from generating the challenge value c← H(w, µ) where H is a hash function,
w is the “commit” message and µ is a message to be signed. Evaluating hash
circuit of H (e.g., SHAKE-256, SHA-3) with MPC is complex, we hope to avoid
it although there have been many stepped-up results [35, 36]. If we make w be
public, i.e., each party publicizes its own share of w, then the computation of
H(w, µ) can be run by each party locally without using MPC. However, this
approach may cause a security issue. A lattice-based FS signature is composed
of the challenge c and response z, where z must satisfy ∥z∥∞ < B. Before
outputting it, checking that the infinity norm of vector z is smaller than B is
necessary, and if ∥z∥∞ ≥ B, z is rejected and signing is aborted. This procedure
is called rejection sampling. In a threshold signing protocol, w is revealed no
matter whether z is rejected or accepted. Thus in its security proof, w has to be
simulated in any case. But how to simulate rejected transcripts (w, c,⊥) is not
clear, based on the standard lattice-based hardness assumptions.

Following [32], we avoid this security issue by revealing a commitment com
of w, instead of w. Now the challenge c is derived via c ← H(com, µ). Thus as
long as com is revealed, the hash computation can be run by each party locally
without using MPC. More importantly, simulating (com, c, z) or (com, c,⊥) is
easy no matter whether rejection sampling is successful or not, based on the
hiding property of commitments. The detailed description about this modified
FS signature scheme is shown in Section 4.

Efficient Distributed Rejection Sampling In a threshold signing protocol,
each party Pi can generate a signature share zi, as its own share of z. Without
rejection sampling, each party cannot publicize zi from the perspective of secu-
rity. The rejection sampling involves a logic statement: if ∥z∥∞ < B, publicize
it; otherwise restart the signing protocol. Since each party has only one share
zi, t parties who participate in the signing protocol need to run a distributed

6 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

rejection sampling RejectS protocol, jointly checking whether ∥z∥∞ < B or not,
where z = (z(1), · · · , z(K)) is a K-dimension vector. Following SPDZ, we use ⟨z⟩
to denote each party Pi holds a share zi such that

∑t
i=1 zi = z mod q.

In order to construct RejectS protocol, what we can directly call is a com-
parison protocol LTC from [37]. It takes ⟨x⟩ and public R as the input, outputs
⟨b⟩, such that b = 1 if x < R and b = 0 otherwise. When applying it to RejectS
protocol, the comparison result for z’s each component can be easily obtained,
that is ⟨b(j)⟩ ← LTC(⟨z(j)⟩, B) where b(j) = 1 if z(j) < B. The final bit result

of rejection sampling should be
∏K

j=1 b
(j), but it cannot be calculated locally

since each bit is a shared secret. If we let parties trivially compute it via SPDZ
multiplication, it will require O(log2(K)) communication rounds. As shown in
the left of Fig. 1, we take K = 8 as an example, but K could not be so small
in reality. Actually, the parameter K represents lattice dimension, and should
be set more than 1000 even under a very low security strength, which results in
more than 50 communication rounds.

⟨𝑏(")⟩ ⟨𝑏($)⟩ ⟨𝑏(%)⟩ ⟨𝑏(&)⟩ ⟨𝑏(')⟩ ⟨𝑏(()⟩ ⟨𝑏())⟩ ⟨𝑏(*)⟩

⟨𝑏(")⟩ ⟨𝑏($)⟩ ⟨𝑏(%)⟩ ⟨𝑏(&)⟩

⟨𝑏(")⟩ ⟨𝑏($)⟩

⟨𝑏⟩

⟨𝑏(")⟩ ⟨𝑏($)⟩ ⟨𝑏(%)⟩ ⟨𝑏(&)⟩ ⟨𝑏(')⟩ ⟨𝑏(()⟩ ⟨𝑏())⟩ ⟨𝑏(*)⟩

LTC '
+

𝑏 + , 8 → +𝑏

𝑏 = 1 − ⟨+𝑏⟩

Mult

Mult

Mult

Fig. 1: Trivial method vs. Our method

In our construction of RejectS protocol, we use a novel method to avoid jointly
computing

∏K
j=1 b

(j). Firstly we observe that if and only if b(j) = 1 for each j ∈
[K], we have

∑K
j=1 b

(j) = K; otherwise
∑K

j=1 b
(j) < K. From this observation,

we replace a series of invocations of Mult protocol by one invocation of LTC
protocol. Concretely, the parties compute ⟨

∑K
j=1 b

(j)⟩ without communication,

then run ⟨b̄⟩ ← LTC(⟨
∑K

j=1 b
(j)⟩,K). From the above observation, b ← 1 − b̄

represents the result of rejection sampling. As shown in the right of Fig. 1, our
method makes the communication round be independent of K. More concretely,
the LTC protocol from [37] requires 5 rounds with q < 232, then our RejectS
protocol requires 10 rounds in total.

Achieving Proactive Security If the attacker is mobile, it can compromise
all parties one by one in an adaptive way over time, then the secret key sk
is stolen. To alleviate this attack, the parties need to refresh the shares of sk
periodically, but make sk itself stay unchanged. Following proactive threshold

Lattice-Based Threshold Signatures with Functional Interchangeability 7

ECDSA [15], the shares can be refreshed by adding fresh shares of zeros, and
using verifiable secret sharing (VSS) to check malicious behaviors. But obviously,
the existing efficient VSS [38–40] are either based on easy problems in a “post-
quantum” world or insecure in the dishonest majority setting. The lattice-based
VSS constructions are mainly theoretical and not as efficient as we hope [41–43].
In this work, we invoke SPDZ’s Mult protocol to generate shares of zeros. Then
the malicious behaviors can be prevented by an efficient checking of MACs that
is inherent in SPDZ-type shares.

1.3 Related Works

Similar to the threshold signature, a multi-signature is a primitive that allows a
group of signers holding individual key pairs (sk1, pk1), · · · , (skn, pkn) to jointly
produce an aggregated signature on a message µ of their choice. It seems that
a multi-signature can serve as a replacement for n-out-of-n threshold signature.
But a multi-signature is probably not functional interchangeable, since it may
require a completely new verification algorithm, with the input of n independent
public keys or one aggregated public key. Recently, several lattice-based multi-
signatures have been proposed [44, 45]. Following the work of [32] as described
above, the scheme of [44] also requires O(log2 n) public key and signature sizes,
as well as Mn repetitions. In the scheme of [45], the verification algorithm takes
n independent parts generated from n public keys as input, which results in their
verification time being linear in n. In conclusion, the previous lattice-based multi-
signatures cannot serve as the replacement for n-out-of-n threshold signatures,
from the perspective of functional interchangeability.

2 Preliminaries

2.1 Notations

For positive integers a and b such that a < b the integer notation [a, b] is used
to denote a, a+ 1, · · · , b, and (a, b) is used to denote a+ 1, · · · , b− 1. If a = 1,

[a, b] is always simplified as [b]. If S is a set we use s
$← S to indicate sampling

s from the uniform distribution defined over S and use |S| to denote the size

of S. If D is a probability distribution we write s
$← D to indicate sampling

s from the distribution D. If A is an algorithm we write s ← A to indicate
assigning an output from A to s. We let R and Rq respectively denote the rings
Z[X]/(XN+1) and Zq[X]/(XN+1), for q an integer. Regular font letters denote
elements in R or Rq (which includes elements in Z and Zq) and bold lower-case
letters represent column vectors with coefficients in R or Rq. By default, all
vectors will be column vectors. Bold upper-case letters are matrices. Specifically
Ik denotes a k × k identity matrix.

For an even (resp. odd) positive integer a, we define r′ = r mod±a to be the
unique element r′ in the range −a

2 < r′ ≤ a
2 (resp. −a−1

2 ≤ r′ ≤ a−1
2) such that

8 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

r′ = r mod a. For an element w ∈ Zq, we write ∥w∥∞ to mean |w mod±q|. We
define the l∞ and l2 norms for w = w0 + w1X + · · ·+ wN−1X

N−1 ∈ R:

∥w∥∞ = max
i
∥wi∥∞, ∥w∥ =

√
∥w0∥2∞ + · · ·+ ∥wN−1∥2∞

Similarly, for a vector w = (w1, · · · , wk) ∈ Rk, we define

∥w∥∞ = max
i
∥wi∥∞, ∥w∥ =

√
∥w1∥2 + · · ·+ ∥wk∥2

We rely on the following key set Sη ⊆ R parameterized by η ≥ 0 consisting of
small polynomials

Sη = {x mod±2η : x ∈ R}

Moreover the challenge set C ⊆ R parameterized by τ ≥ 0 consists of small and
sparse polynomials that have τ coefficients that are either −1 or 1 and the rest
are 0. C will be used as the image of random oracle H.

2.2 Lattice Problems

We present the definitions of two standard lattice problems over rings: module
short integer solution (MSIS) and learning with errors (MLWE) [46]. We also call
them MSIS/MLWE assumption if for any probabilistic polynomial-time (PPT)
adversaries the probability that they can solve a given problem is negligible.

Definition 1 (MSISq,k,l,γ Problem). Given a random matrix A
$← Rk×l

q , find

a vector x ∈ Rl+k such that [A|Ik] · x = 0 mod q and 0 < ∥x∥∞ ≤ γ.

Definition 2 (MLWEq,k,l,η Problem). Given a pair (A, t) ∈ Rk×l
q ×Rk

q decide

whether it was generated uniformly at random from Rk×l
q ×Rk

q , or it was generated

in a way that A
$← Rk×l

q , s
$← Dl, e

$← Dk and t ← As + e mod q where
D : Rq → [0, 1] is a probability distribution. In particular, we consider D to be
the uniform distribution over Sη.

3 t-out-of-n version of SPDZ

In this section, we propose a modified version of the SPDZ protocol that supports
t-out-of-n threshold access structures for arbitrary t ≤ n, building upon previous
work on SPDZ [28, 29] in the preprocessing model. The key difference in our
approach is the use of Shamir’s Secret Sharing [47] instead of additive secret
sharing. For each evaluation, t parties are required to complete the computation
instead of all n parties. If at least one honest party is present among the t parties
involved, the output must be either an abort or the correct evaluation result.

Intuitively, the online phase of the protocol involves computing a function
represented as a circuit, where privacy is achieved through Shamir’s Secret Shar-
ing of the inputs and outputs of each gate, and correctness is ensured by adding

Lattice-Based Threshold Signatures with Functional Interchangeability 9

Shamir’s Secret Sharings of MACs on the inputs and outputs of each gate. Specif-
ically, each player Pi holds a Shamir’s secret share αi ∈ Fp of a secret value α,
which is considered a fixed MAC key that is secretly generated during the pre-
processing phase (see Protocol 3). A data item x ∈ Fp is said to be secretly
shared if Pi holds a tuple (xi, γ(x)i), where xi is a Shamir’s secret share of x,
and γ(x)i is a Shamir’s secret share of γ(x) := α · x. Here, γ(x) = α · x serves
as an information-theoretical MAC that authenticates x under the global key
α, thereby guaranteeing the integrity of the value x even in the presence of
malicious parties.

In the following, the tuple of shares is denoted as ⟨x⟩ ← ((x1, · · · , xn), (γ(x)1, · · · , γ(x)n)).
Here, for any subset S ⊆ [n] with |S| ≥ t, it holds that

∑
i∈S λi,S ·xi mod q = x

and
∑

i∈S λi,S · γ(x)i mod q = γ(x), where the Lagrangian coefficients are de-

fined as λi,S =
∏

j∈S,j ̸=i
j

j−i . This notion can be extended to a vector. Specif-

ically, if the secret x = (x(1), · · · , x(K)) is a K-dimensional vector, then ⟨x⟩ is
composed of ⟨x(1)⟩, · · · , ⟨x(K)⟩. Thus, the protocol can be described in detail as
follows.

Online Phase The online operation can be easily derived from the linearity of
Shamir’s secret sharing. Let shares of secret values x, y are represented as follows

⟨x⟩ ← ((x1, · · · , xn), (γ(x)1, · · · , γ(x)n))
⟨y⟩ ← ((y1, · · · , yn), (γ(y)1, · · · , γ(y)n))

The linear operations (addition and scalar multiplication) can be performed on
the ⟨·⟩-sharings locally. The addition ⟨x+ y⟩ ← ⟨x⟩+ ⟨y⟩ is easily generated by
each party Pi computing xi + yi mod q and γ(x)i + γ(y)i mod q. The scalar
multiplication for a public constant ē in Zq with ⟨x⟩ can be performed by letting
each party Pi multiplies its own share xi, γ(x)i by ē. The addition for a public
constant ē in Zq with ⟨x⟩ is performed by generating a t-out-of-n share ēi of ē
for each party and compute

⟨x+ ē⟩ ← ((x1 + ē1, x2 + ē2, · · · , xn + ēn),

(γ(x)1 + α1 · ē, · · · , γ(x)n + αn · ē)).

Thus ⟨x+ ē⟩ ← ⟨x⟩+ ē represents that each party Pi adds ēi to its share xi and
adds αi · ē to its share γ(x)i for i ∈ [n].

Computing multiplication requires one-round interaction. With pre-processed
Beaver’s triples (⟨x̄⟩, ⟨ȳ⟩, ⟨z̄⟩) such that x̄ · ȳ = z̄, two ⟨·⟩-sharings ⟨x⟩, ⟨y⟩ can be
multiplied as described in Protocol 1.

Particularly, by utilizing shares of random bits generated in the preprocessing
phase, the parties can jointly sample a random value and obtain its shares.
Suppose the parties have shares ⟨b(0)⟩, · · · , ⟨b(nγ−1)⟩ of nγ random bits, where

each b(j)
$← {0, 1}. In this case, they can generate shares ⟨r⟩ as follows:

⟨r⟩ ←
nγ−1∑
j=0

2j · ⟨b(j)⟩ such that r
$← [0, 2nγ − 1].

10 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

Protocol 1 Mult(⟨x⟩, ⟨y⟩)→ ⟨x · y⟩
The parties takes shares (⟨x⟩, ⟨y⟩) as the input, do the following:

1. Take one pre-processed triple (⟨x̄⟩, ⟨ȳ⟩, ⟨z̄⟩) and open ⟨x⟩− ⟨x̄⟩, ⟨y⟩− ⟨ȳ⟩ to get ϵ, ρ
respectively.

2. The parties compute shares ⟨x · y⟩ ← ⟨z̄⟩+ ϵ · ⟨ȳ⟩+ ρ · ⟨x̄⟩+ ϵ · ρ

Protocol 2 Our sub-protocol Reshare(Enc(a)) with t-out-of-n Shamir’s secret
sharing

The parties take a public ciphertext Enc(a) as the input. Output is a t-out-of-n share
ai of a ∈ ZK

q to each party Pi.

1. Each party Pi samples an uniform fi ∈ ZK
q . Broadcast the ciphertext Enc(fi).

Define f =
∑n

i=1 fi mod q.
2. Each party Pi performs Shamir’s secret sharing to re-share fi: generate t-out-of-n

shares {fi,j}j∈[n] of fi, send fi,j to Pj .
3. Each party Pi generates a zero-knowledge proof to prove the validity of Enc(fi).

The protocol aborts if any proof fails.
4. The parties compute Enc(f) = Enc(f1)⊕ · · · ⊕ Enc(fn), and Enc(a+ f) = Enc(a)⊕

Enc(f).
5. The parties jointly decrypt Enc(a+ f) and thereby obtain a+ f . Let the party P1

performs Shamir’s secret sharing to re-share r = a+ f : generate t-out-of-n shares
{rj}j∈[n] of r, send rj to Pj .

6. Each party Pi locally computes ai = ri −
∑n

j=1 fj,i mod q, satisfying that∑
i∈S λi,S · ai = a mod q with |S| ≥ t.

To open ⟨x⟩, each party Pi broadcasts its own xi, then locally sums up
the received shares, and finally obtains the opened value x. To guarantee the
correctness of x while avoiding opening the global key α, we observe that since
x is public, the value γ−αx is a linear function of shared values γ, α. Therefore,
players can compute shares of the value γ(x)− αx locally and then reconstruct
γ(x)− αx and check if it is equal to 0, without revealing information on α.

Preprocessing Phase Our preprocessing phase is similar to that of SPDZ
[28, 29, 48]. As described in the functionality FPREP of preprocessing phase (Pro-
tocol 3), the parties complete three tasks: (1) selecting a global MAC key, (2)
generating multiple Beaver’s triples, and (3) generating shares of random bits
denoted as ⟨b⟩.

For completeness, we present the concrete construction of preprocessing phase
in Protocol 4. Overall, the entire procedure is the same as before, except for the
replacement of the Reshare protocol component with a new one, which is illus-
trated in Protocol 2.

Lattice-Based Threshold Signatures with Functional Interchangeability 11

Protocol 3 Functionality FPREP

1. It first specifies a t-out-of-n share αi for each party, let the global MAC key be
α←

∑
i∈S λi,S · αi mod q for any subset S ⊆ [n] with |S| ≥ t.

2. It outputs a set of “multiplication triples”: {⟨x̄⟩, ⟨ȳ⟩, ⟨z̄⟩} such that x̄, ȳ
$← Zq and

z̄ = x̄ · ȳ.
3. It outputs shares of bits: ⟨b⟩ such that b is a binary vector.

4 A Signature Scheme from MLWE and MSIS

In this section, we propose a modification to the lattice-based signature frame-
work to ensure that the security of a threshold signature scheme is based on
standard assumptions. Our approach involves the addition of a commitment
scheme, inspired by the ideas presented in [32].

The original lattice-based signature scheme for Fiat-Shamir transformation

utilizes MLWE samples A and t = [A|Ik]
[
s
e

]
as its public key. To sign a

message µ, the scheme first samples a short random vector y and computes the
“commit” message w ← [A|Ik]y, the challenge c ← H(w, µ), and the response

z← y+ c ·
[
s
e

]
. If ∥z∥∞ < B, the output is (c, z) as a signature. Otherwise, the

signing process is aborted using rejection sampling theorem [49].
In a threshold version of the above signature scheme, the “commit” message

w must be revealed since it is useful for deriving the challenge c for parties.
Therefore, the security reduction needs to simulate transcripts (w, c, z) for the
“non-aborting” case, as well as rejected (w, c,⊥) for the “aborted” case. Simulat-
ing (w, c, z) is easy based on the zero-knowledge (ZK) property of the underlying
Σ-protocol [49]. However, simulating rejected (w, c,⊥) requires additional non-
standard assumptions (e.g., rejected MLWE [50]).

Following [32], we avoid this issue by revealing a commitment of w, instead
of w itself. Concretely, the challenge c is derived via c ← H(com, µ) instead of
c ← H(w, µ) where com is a commitment of w. Since com hides w, simulating
“aborted” (com, c,⊥) becomes easy based on the hiding property of commit-
ments. Only if rejection sampling is successful, w will be opened thus simulating
“non-aborting” transcripts still relies on the ZK property. Concretely, we make
use of a lattice-based commitment from [51] to construct the following signature
scheme, which can be seen as a modified version of the Crystal-Dilithium scheme
[19].

– KeyGen(1λ) → (pk, sk): On input of the security parameter λ, randomly

choose A
$← Rk×l

q , and s
$← Sl

η, e
$← Sk

η , compute t ← As + e mod q.

Choose A′ $← Rk1×(k2−k1)
q and construct A(1) ← [Ik1

|A′] ∈ Rk1×k2
q . Let

k3 = k+l, choose A′′ $← Rk3×(k2−k1)
q and construct A(2) ← [0|A′′] ∈ Rk3×k2

q .

Return the public key pk ← (A, t,A(1),A(2)) and secret key sk ← (s, e).

12 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

– Sign(sk, µ)→ σ: Given the secret key sk = (s, e), and a message µ ∈ {0, 1}∗:
1. Randomly choose y

$← Sl+k
γ , computew← [A|Ik]y mod q. Choose r

$←

Sk2
γ1

randomly, compute the commitment value of w, com ←
[
A(1)

A(2)

]
·

r+

[
0
w

]
mod q.

2. Compute c ← H(com, µ) and z ← y + c

[
s
e

]
If ∥z∥∞ ≥ B, restart the

computation from Step 1, where B = γ − β and β is a bound such

that

∥∥∥∥c [se
]∥∥∥∥

∞
≤ β holds for all possible c, s, e. Otherwise, output the

signature σ ← (com, z, r).
– Verify(pk, µ, σ) → 1/0: Given the public key pk = (A, t,A(1),A(2)), a mes-

sage µ and a signature σ = (com, z, r), compute w← [A|Ik] z−H(com, µ) ·t

mod q. Return 1 if ∥z∥∞ < B, ∥r∥∞ < γ1, and com =

[
A(1)

A(2)

]
· r +

[
0
w

]
mod q; otherwise return 0.

Theorem 1. The signature scheme is unforgeable against chosen message at-
tacks based on the MLWEq,k,l,η, MSISq,k,l+1,2(γ−β) assumptions on input [A|t],
as well as the binding property of the commitment com. Concretely, the binding
property relies on the MSISq,k1,k2,2γ1

assumption on input A(1). (The proof is
implicitly included in the proof of Theorem 2.)

5 A Lattice-Based Threshold Signature Scheme

In this section, we give a t-out-of-n threshold signature system, including three
multi-party computation protocols (DKeyGen,DSign,ShareRefresh).

1. DKeyGen(1λ)→ (pk, ⟨sk⟩): The distributed key generation protocol (run by
n parties) takes the security parameter λ as input, and outputs the public
key and t-out-of-n shares of the corresponding secret key.

2. ShareRefresh(⟨sk⟩)→ ⟨sk⟩: The share refreshment protocol (run by n parties)
takes secret key shares as input, outputs new shares of the same secret key
sk.

3. DSign(⟨sk⟩, pk, µ) → σ: The distributed signing protocol (run by t parties)
takes secret key shares, the public key and message as inputs, outputs a
signature σ. We stress that σ can be verified by the conventional verification
algorithm Verify(pk, µ, σ)→ 1/0 in Section 4.

The parameters for our threshold signature scheme are shown in Table 1.

5.1 Security Definition

In a t-out-of-n threshold signature scheme, the security definition can be de-
scribed as follows. We consider a proactive model where the protocol’s lifespan

Lattice-Based Threshold Signatures with Functional Interchangeability 13

Table 1: Parameters for our lattice-based threshold signature scheme

Parameter Description

n; t Number of parties; threshold value
m The length of MAC keys α
N A power of two defined the degree of XN + 1

q;nq Prime modulus; nq = log2 q
(k, l) The height and width of random matrices A

(k1, k2) The height and width of random matrices A(1)

(k3, k2) The height and width of random matrices A(2)

γ A power of two defined the y coefficient range
γ1 A power of two defined the r coefficient range
η A power of two defined the s, e coefficient range
τ The number of −1, 1 in c

β The bound such that

∥∥∥∥c [se
]∥∥∥∥

∞
≤ β, β = τ · η

M The expected number of rejection samplings
k3;K;K2;B k3 = k + l;K = (k + l) ·N ;K2 = k2 ·N ;B = γ − β
nη;nγ ;nγ1 nη = log2(2η);nγ = log2(2γ);nγ1 = log2(2γ1)

is divided into separate time periods. We assume that at most t − 1 parties
are corrupted during each period. A period is defined as starting at the begin-
ning of one refreshment of secret key shares and ending at the end of the next
refreshment of secret key shares, following the model proposed in [52].

Since all parties have the same role, we fix the index of honest party who
has to send out the message first in each round of interaction. Assume that
{P1, P2, · · · , Pt} is the set of parties participating in the signing protocol. For a
mobile adversary A, assume that it corrupts Pc = {P2, P3, · · · , Pt} during the
period tp (P1 is honest), and may corrupt different parties P ′

c = {P1, P3, · · · , Pt}
during the next period tp + 1 (P2 is honest). In the above case, we say that
the Pc-corrupted state is changed to the P ′

c-corrupted state. Between the two
compromises, there is a refreshment phase which belongs to not only period tp,
but also period tp + 1. Thus during this refreshment phase, the parties P1 and
P2 are both honest.

Recall how A works: it first participates in the key generation protocol to
generate a public key pk for the threshold scheme. Then it queries signatures of
several messages µ1, · · · , µqs by interacting with P1 to run the signing protocol
on those messages if it is under the Pc-corrupted state. In the meanwhile, A may
query the share-refreshment for changing to the P ′

c-corrupted state. In the end,
A wins if it outputs a message µ∗ ̸= µl for each l ∈ [qs] and a valid signature σ∗

for it under the public key pk.
Formally, we define the security model using the following game ExptDSP

EUF−CMA

between an adversary A and the honest parties. Assume that A is under the Pc-
corrupted state from the beginning.

• At this stage, A can make the following queries:

14 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

- DKG Query: This query is allowed only once, and the honest parties run
the distributed key generation protocol with A (controlling Pc). Finally,
output a public key pk to A.

- Share-Refreshment Query: Upon receiving P ′
c, the honest parties and A

(controlling Pc ∩ P ′
c) run the share-refreshment protocol. Finally, give the

secret shares of P ′
c \ (Pc ∩P ′

c) to A. For an instance with Pc = {P2, · · · , Pt}
and P ′

c = {P1, P3, · · · , Pt}, give P1’s secret share to A. Then we enter into
the next period under the P ′

c-corrupted state.
- Signing Query: Upon receiving a message µ, P1 runs the signing protocol
with A (controlling Pc). Finally, output a signature σ to A. Set Mset ←
Mset ∪ {µ}.

• After the above queries, A outputs a message-signature pair (µ∗, σ∗). Output
1 if A wins, such that µ∗ /∈ Mset and σ∗ is a valid signature on µ∗ under pk.

Definition 3. A threshold signature scheme is said to be proactively secure if
for any PPT adversary A, its advantage of winning ExptDSP

EUF−CMA is negligible in
κ,

AdvDSP
EUF−CMA(A) = Pr[ExptDSP

EUF−CMA(A)→ 1] ≤ negl(κ)

5.2 Distributed Key Generation

We propose a distributed key generation protocol in which n parties interactively
generate a public key.

To achieve this goal, the secret key (s, e) should be uniformly sampled from
Sη jointly by the n parties. Recall that the parties can generate shares

⟨r⟩ ←
nη−1∑
j=0

2j · ⟨b(j)⟩ s.t. r $← [0, 2nη − 1]

from pre-processed shares ⟨b(0)⟩, · · · , ⟨b(nη−1)⟩ of bits. With nη = log2 2η, each

party locally computes its own share of a random integer r
$← [0, 2η − 1]. Then

the parties can get shares ⟨r̄⟩ of a coefficient r̄
$← [−η + 1, η] by computing

⟨r̄⟩ ← ⟨r⟩ − (η − 1). Since each coefficient of a polynomial in Sη belongs to the
interval [−η+1, η], sampling (s, e) is to sampleK random integers from [−η+1, η]

with K = (k + l)N . To generate shares of K coefficients r̄
$← [−η + 1, η] in the

above way, the parties can get shares ⟨s⟩, ⟨e⟩. To obtain the public key, parties
compute ⟨t⟩ ← A⟨s⟩+ ⟨e⟩ and then open ⟨t⟩.

However, an active adversary may manipulate t by broadcasting a malicious
share, which poses a security risk. To protect t from manipulation, parties need to
check its MAC value. If the check passes, honest parties can trust the correctness
of t and output it as the public key. If the check fails, honest parties must abort
this protocol by outputting ⊥.

It is important to note that a soundness error of a single MAC checking,
as provided by the SPDZ protocol [28, 29], is not sufficiently small, especially
against quantum adversaries. For a single MAC key in Fq, the soundness error

Lattice-Based Threshold Signatures with Functional Interchangeability 15

is 2
q . However, when the security parameter λ = 128, a soundness error of less

than 2−256 is required. Unfortunately, q is set to be less than 230 in lattice-based
FS signatures.

To achieve the desired soundness error, we replicate MAC keys by generating
m global MAC keys α = (α(1), · · · , α(m)) ∈ Zm

q during the preprocessing phase
(see Protocol 3). The shares of a secret value a ∈ Zq are represented as follows:

⟨a⟩ ← ((a1, · · · , an), (γ(a)(1)1 , · · · ,γ(a)(m)
1), · · · ,

(γ(a)(1)n , · · · , γ(a)(m)
n))

where
∑

i∈S λi,S ·ai mod q = a and
∑

i∈S λi,S ·γ(a)(ξ)i = α(ξ) ·a mod q for each

ξ ∈ [m] and subset S ⊆ [n] with |S| ≥ t. Party Pi owns (ai, γ(a)
(1)
i , · · · , γ(a)(m)

i)
for each i ∈ [n]. The checking procedure for replicated MACs is defined in Pro-
tocol 5, denoted as MACCheckm. The soundness of this protocol can be demon-
strated by the following lemma:

Lemma 1. The MACCheckm protocol is sound, meaning that it outputs 0 except
with a probability of ϵs = (2q)

m if at least one value or MAC is not computed
correctly.

Malicious parties may also attempt to use forged secret shares or violate the
protocol’s specifications during the signing procedure. To detect such behavior,
the MAC shares of the secret key generated during the distributed key generation
must be included as part of the shared secret key and used in the distributed
signing protocol. The distributed signing protocol also uses MACCheckm, but
with t-out-of-t shares as input instead of t-out-of-n shares used in the distributed
key generation protocol. To modify Protocol 5 for the signing protocol, we only

need to perform two steps: first, compute σ
(ξ)
i ← γ

(ξ)
i −α

(ξ)
i ·tr at Step 2; second,

compute σ(ξ) ←
∑t

i=1 σ
(ξ)
i mod q at Step 4.

By invoking MACCheckm in Protocol 5, the distributed key generation is
specified as Protocol 6.

5.3 Key Shares Refreshment

In this section, we present a refreshment protocol that enables the modification
of each share of sk while preserving the value of sk itself. This protocol is invoked
periodically to prevent mobile adversaries from compromising all parties in an
adaptive manner.

A straightforward method is for each party to distribute fresh shares of zeros
and then locally sum up the received shares. However, this method is vulnerable
to attacks by malicious parties who may distribute malicious shares to disrupt
the procedure. To address this vulnerability, one potential solution is to use
homomorphic commitment-based verifiable secret sharing (VSS). This approach
involves each party distributing fresh shares of zeros in the form of commitments
and then providing zero-knowledge proofs to verify that the shared secret in the

16 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

commitment is indeed zero. However, one can not directly derive a VSS scheme
from the lattice-based homomorphic commitment [51]4. The lattice-based VSS
constructions [41–43] are not as practical as we need.

In this work, we use SPDZ’s multiplication operations, Mult(⟨b⟩, ⟨1 − b⟩) →
⟨x⟩, where b is a random bit and x = b · (1− b) = 0. This allows us to generate
shares of zero. Importantly, the correctness of the protocol can be ensured by
efficiently checking MACs that are inherent in SPDZ-type shares ⟨x⟩. By gener-
ating shares ⟨0⟩ of K zeros in parallel, each party Pi adds its own share of 0 to

its secret key share

[
si
ei

]
. This changes

[
si
ei

]
but leaves (s, e) unchanged.

Furthermore, we must update the global MAC keyα. Our approach is making
the parties generate shares of m random secret values ⟨α(ξ)′⟩ to form a new
shared MAC key ⟨α′⟩. They then jointly compute the multiplication of ⟨α(ξ)′⟩
with the refreshed ⟨sk⟩ to obtain ⟨α(ξ)′ · sk⟩ for each ξ ∈ [m]. It is important
to note that ⟨α(ξ)′ · sk⟩ for ξ ∈ [m] form the new MAC shares of the secret key
⟨sk ·α′⟩ with respect to a new MAC key α′.

The detailed procedure is shown in Protocol 7.

5.4 Distributed Signing

In this subsection, we present a distributed signing protocol that enables any
more than t parties to jointly generate a signature that can be verified by the
Verify algorithm presented in Section 4. Since t parties are sufficient to generate
the signature, we assume without loss of generality that only t parties, indexed
by [t] = {1, 2, . . . , t}, are involved in the signing protocol.

Recall that each party Pi for i ∈ [t] possesses t-out-of-n shares in ⟨s⟩ and
⟨e⟩ after the distributed key generation. The first step in the protocol is to
convert these t-out-of-n shares into t-out-of-t shares by multiplying λi,[t] with
si, ei, and Pi’s corresponding MAC shares. For each secret value a ∈ Zq, it is
shared by t parties with shares ⟨a⟩ ← ((a1, . . . , at), (γ(a)1, . . . , γ(a)t)), where∑

i∈[t] ai mod q = a and
∑

i∈[t] γ(a)i mod q = γ(a). These shares are referred to
as t-out-of-t shares.

The second step in the protocol involves the joint sampling of short vectors
y ∈ Sl+k

γ and r ∈ Sk2
γ1

by the t parties. During the preprocessing phase, t-out-of-
n shares ⟨b⟩ of bits are generated. The t parties {Pi}i∈[t] convert their t-out-of-n
shares into t-out-of-t shares by multiplying appropriate Lagrangian coefficients
and use them to construct t-out-of-t shares ⟨y⟩ and ⟨r⟩. Next, the parties com-

pute shares ⟨w⟩ ← [A|Ik]⟨y⟩ and commitment each shares

[
A(1)

A(2)

]
⟨r⟩+

[
0
⟨w⟩

]
as comi.

Subsequently, each party Pi sends its own share comi to the other parties
and receives comī for each ī ̸= i. As a result, each party obtains the joined

4 The limited homomorphic property of the lattice commitment [51] cannot support
the homomorphic multiplication with a large constant factor without destroying the
structure of the commitment.

Lattice-Based Threshold Signatures with Functional Interchangeability 17

commitment com ←
∑t

i=1 comi mod q. The universal challenge c ← H(com, µ)
is computed locally using the commitment and a random value µ. With this
universal challenge c, the parties can compute their signature shares as ⟨z⟩ ←

⟨y⟩+ c ·
[
⟨s⟩
⟨e⟩

]
.

The signature is generated only if ∥z∥∞ < B. The next step is to deter-
mine whether ∥z∥∞ < B in a distributed manner, where B = γ − β. This
involves checking whether −B < z(j) mod ±q < B for each j ∈ [K], where z =
(z(1), . . . , z(K)). Since B < q/2 always holds, the inequality −B < z(j) mod ±q <
B is equivalent to z(j) +B mod q < 2B.

To determine this condition in a distributed manner, we use the LTC pro-
tocol from [37]. This protocol takes a shared secret value ⟨x⟩ and a public con-
stant R as input, and outputs ⟨b⟩ such that b = 1 if x < R and b = 0 oth-
erwise. When using the LTC protocol in our scheme, it should be invoked as
LTC(⟨z(j)⟩+B, 2B)→ ⟨b(j)⟩ for each j ∈ [K]. To avoid O(log2(K)) communica-
tion rounds, parties calculate

∑
j(⟨b(j)⟩) and call the comparison protocol again

as LTC(
∑

j⟨b(j)⟩,K)→ ⟨b̄⟩.
∑

j b
(j) < K if and only if at least one b(j) = 0 . Let

⟨b⟩ ← 1−⟨b̄⟩. If ⟨b⟩ is opened to be 0, the signing protocol needs to be restarted.
The specification of the distributed rejection sampling RejectS is presented in
Protocol 8. Further details on the LTC protocol can be found in [37, 53].

Here we show a complete description of the distributed signing protocol in
Protocol 9.

6 Security Analysis

It has been proven that the concrete construction πPREP realizes the function-
ality FPREP in many previous works, thus we omit the security analysis of the
preprocessing phase, and refer the readers to [29]. The security of our threshold
signatures is proven in the FPREP model, so the simulator S simulates the func-
tionality for all adversaries. Concretely, S obtains the MAC key α and secret
shares of generated bits, triples which belong to corrupted parties, from simu-
lating FPREP. Besides, we also rely on the random oracle model. Therefore, the
simulator S simulates the key generation, share-refreshment, and signing oracles,
as well as the random oracle H and functionality FPREP for A.

The security of our scheme can be demonstrated by the following theorem.

Theorem 2. The threshold signature scheme described in Section 5 is proac-
tively secure for any PPT adversary A,

AdvDSP
EUF−CMA(A) ≤ AdvMLWEq,k,l,η

+ AdvMLWEq,k̄,k2,γ1
+√

(Qh +Qs + 1) · (AdvMSISq,k1,k2,2γ1
+ AdvMSISq,k,l+1,2B

)

+
Qs · (Qh +Qs) +Qh +Qs + 1

|C|
+ ϵs

(1)

with ϵs < 2−256 and k̄ = k1 + k + l.

18 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

Proof. We present a simulator S that can solve the MLWE or MSIS problem with
the assistance of A, assuming that A wins in the game ExptDSP

EUF−CMA. Based on
the hardness of the MLWE and MSIS problems, we can infer that the advantage
of A is negligible.

Let Pr[Gi] denote the probability that A wins in game Gi. We provide se-
curity proof using the following series of games.

G1 In this game, S and A run the game ExptDSP
EUF−CMA. In the meanwhile, S

keeps a table TH for random oracle H. When A queries H with the input
of m, S first checks whether there exists an entry (m,H(m)) or not in TH.
If yes, S sends H(m) to A; otherwise S samples H(m)

$← C, sends H(m)
to A and adds (m,H(m)) into table TH. If A wins in this game, then it
breaks the proactive security of our threshold signature scheme. Thus we
have Pr[G1] = AdvDSP

EUF−CMA(A).
G2 This game is identical to G1, except for the answering of signing queries.

Specifically, we modify the simulation strategy of the signing oracle as fol-
lows.
The simulator S chooses y

$← Sl+k
γ r

$← Sk2
γ1
. Since S simulates FPREP

(Protocol 3) for A, it knows {bi}i∈[2,t] in ⟨b⟩. Since ⟨y⟩, ⟨r⟩ are computed
from ⟨b⟩, S also knows {yi, ri}i∈[2,t] and has the ability to compute

y1 ← y −
∑

i∈[2,t]

yi mod q, r1 ← r−
∑

i∈[2,t]

ri mod q (2)

It uses y1, r1 to run the following steps of DSign(·) honestly.

Analysis: After simulating FPREP, S knows corrupted parties’ shares {yi, ri}i∈[2,t].
Thus the distribution of y1, r1 computed as eq. (2) is the same with that of
G1. Thus the minor change has no effect on the advantage Pr[G2] = Pr[G1].

G3 In this game, we continue to modify the simulation strategy of the signing
oracle as follows.
At Step 6, S runs the RejectS protocol with A using dummy input 0

instead of using honestly generated z1. Note that the simulator can compute

zi ← yi + c ·
[
si
ei

]
mod q (3)

for each i ∈ [2, t] from simulating FPREP. Thus S knows the dummy result b′,
such that b′ = 1 if ∥

∑
i∈[2,t] zi mod q∥∞ < B and b′ = 0 otherwise. After

running RejectS protocol, S gets P1’s share in ⟨b′⟩ as the output.
At Step 8, it has to simulate P1’s share such that it is consistent with the

honest result b, such that b = 1 if ∥z∥∞ < B and b = 0 otherwise where

z← y+c·
[
s
e

]
is computed by the simulator. The simulation strategy is that

S adds b− b′ to P1’s share of b
′ and α(b− b′) to P1’s share of corresponding

MACs.

Lattice-Based Threshold Signatures with Functional Interchangeability 19

Analysis: In G3, S uses a dummy input to run RejectS protocol while it
uses honestly generated z1 in G2. When we need to open shares ⟨a⟩ of any
secret value a during running RejectS protocol, fresh shares of a random
value are added to shares ⟨a⟩. That is all secrets of P1 are perfectly hiding
for the adversary A. Thus A cannot distinguish whether P1’s input is honest
z1 or not at Step 6. Moreover Step 7 guarantees that S can compute correct
P1’s share of the dummy result b′ since malicious behaviors will be checked
at Step 7 except with probability ϵs. Finally the simulator adds b − b′ to
P1’s share of b′ and α(b− b′) to P1’s share of corresponding MAC, making
the honest result be b at Step 8. Overall the advantage difference between
G2 and G3 is soundness error in Step 7, |Pr[G3]− Pr[G2]| ≤ ϵs.

G4 In this game, we continue to modify the simulation strategy of the signing
oracle as follows.
(a) With the probability of 1/M , the simulator S does as follows: it chooses

c
$← C, z

$← Sl+k
B and computes w ← [A|Ik] z − c · t, as well as its

commitment value

com←
[
A(1)

A(2)

]
· r+

[
0
w

]
(4)

It then programs H(com, µ) → c. Note that S can compute corrupted
parties’ shares {comi}i∈[2,t] of com since it knows {ri,yi}i∈[2,t] from
simulating FPREP. At Step 5, the simulator broadcasts com1 ← com −∑

i∈[2,t] comi mod q. At Step 8, the simulator broadcasts

z1 ← z−
∑

i∈[2,t]

zi mod q. (5)

where {zi}i∈[2,t] are computed as eq. (3).
(b) With probability 1 − 1/M , the simulator S does as follows: it samples

a random vector w
$← Rl+k

q and computes its commitment as eq. (4).
Similarly, S broadcasts com1 ← com −

∑
i∈[2,t] comi mod q at Step 5.

Then it follows G3 until restarts in Step 8 or aborts in Step 7.

Analysis: With the probability of 1/M , the simulator simulates (c, z) by
directly sampling them from uniform distributions, and computes w, com
which are distributed identically to those in G3. One concern is com may
be opened maliciously at Step 5, becoming com′ and generating a different
challenge c′. However these malicious behaviors will be checked at Step 7,
thus z1 computed by S as eq. (5) has the same distribution with that in G3.
Finally the adversary A has the same views in the two games as long as no

collision occurs in reprogramming H. The probability is at most Qs·(Qh+Qs)
|C| .

With the probability of 1 − 1/M , the simulator commits to an uniform
w, instead of honestly generated [A|Ik]y. Note that the adversary cannot
distinguish this simulated com from the real one due to the hiding property
of commitment. Following [51], its based on the MLWEq,k̄,k2,γ1

assumption

20 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

on input

[
A(1)

A(2)

]
with k̄ = k1 + k + l. Overall, we have

|Pr[G4]− Pr[G3]| ≤ AdvMLWEq,k̄,k2,γ1
+

Qs · (Qh +Qs)

|C|

G5 This game is identical to G4 except in answering share-refreshment queries.
That is to say we change the simulation strategy of the share-refreshment
oracle as follows.
Upon receiving a share-refreshment query on input P ′

c = {P1, P3, · · · , Pt},
it aims to change the Pc-corrupted state into the P ′

c-corrupted state. The
simulator plays the roles of honest parties {P1, P2, Pt+1, · · · , Pn} to simulate
the ShareRefresh(·) protocol using dummy input 0 instead of using honest
secret key shares. S chooses random values (s1, e1, γ(s)1, γ(e)1) as P1’s new
secret key shares, and then send them to A.
Analysis: In this game, S uses a dummy input to run ShareRefresh protocol
while it uses honest ⟨sk⟩ in the last game. When we need to open shares of
any secret value during each execution of Mult protocol, fresh shares of a
random value are added to the secret value. Thus the adversary A cannot
distinguish whether S contributed correct input. (Note that S can pass the
MACCheckm process since it knows the complete α from simulating FPREP.)
After a real execution of ShareRefresh, P1’s shares (s1, e1, γ(s)1, γ(e)1) are
added to random values, which are uniformly distributed. Thus the adver-
sary A’s views in two games are identical. We have Pr[G5] = Pr[G4].

G6 This game is identical to G5 except in answering the only key generation
query. That is to say we change the simulation strategy of the key generation
oracle as follows.
The simulator picks randommatricesA

$← Rk×l
q ,A′ $← Rk1×(k2−k1)

q ,A′′ $←
Rk3×(k2−k1)

q and vector t
$← Rk

q . At Step 1 of DKeyGen protocol, it samples

g1
$← C and broadcasts g1. Upon receiving {gi}i∈[2,t], the simulator searches

H’s table TH to find the corresponding pre-images {Ai,A
′
i,A

′′
i }i∈[2,t]. It

computes A1 ← A −
∑

i∈[2,t] Ai mod q, A′
1 ← A′ −

∑
i∈[2,t] A

′
i mod q,

A′′
1 ← A′′ −

∑
i∈[2,t] A

′′
i mod q and broadcasts A1,A

′
1,A

′′
1 at Step 1. Af-

ter extracting {si, ei}i∈[2,t] from simulating FPREP, the simulator computes
t1 ← t−

∑
i∈[2,t](Asi + ei) mod q and broadcasts it at Step 3.

Analysis: Based on MLWEq,k,l,η assumption, the adversary cannot distin-

guish uniform t
$← Rk

q and MLWE samples t ← As + e. Thus the dis-
tributions of A1, t1 are computationally close to those of G5. Overall we
have

|Pr[G6]− Pr[G5]| ≤ AdvMLWEq,k,l,η

Forking Lemma. As in G6 the combined public key (A, t) is uniformly dis-
tributed in Rk×l

q × Rk
q , it is also an instance of MSISq,k,l+1,γ′ problem on input

[A|t]. Due to uniform A′,A′′,

[
A(1)

A(2)

]
also follows the uniform distribution. Now

Lattice-Based Threshold Signatures with Functional Interchangeability 21

we prove the theorem by constructing S that (1) either breaks binding property
of commitment, finding a solution to MSISq,k1,k2,2γ1

on input A(1) following [51]
or (2) finds a solution to MSISq,k,l+1,2B on input [A|t].

If the adversary A wins in G6, i.e., it outputs a valid signature forgery
(µ∗, (com∗, z∗, r∗)), it must have queried c∗ ← H(com∗, µ∗). A standard forking
lemma argument [54] shows that with probability ϵfrk we immediately get two
forgeries (com∗, c∗, z∗, r∗, µ∗) and (com′, c′, z′, r′, µ′) by rewinding A, where the
probability ϵfrk and Pr[G6] satisfy Pr[G6] ≤ Qh+Qs+1

|C| +
√
(Qh +Qs + 1) · ϵfrk.

The two forgeries satisfy com∗ = com′, µ∗ = µ′ and c∗ ̸= c′. If w∗ ̸= w′, we have[
A(1)

A(2)

]
· r∗ +

[
0
w∗

]
=

[
A(1)

A(2)

]
· r′ +

[
0
w′

]
.

Then we have r∗ ̸= r′, and A(1)(r∗ − r′) = 0. Thus S can solve MSISq,k1,k2,2γ1

problem on input A(1). If w∗ = w′, we have [A|Ik] z∗ − c∗ · t = [A|Ik] z′ − c′ · t.
That can be rewritten as

[A|t|Ik]

z∗(1) − z′(1)

c′ − c∗

z∗(2) − z′(2)

 = 0

That is S solves MSISq,k,l+1,2B problem on input [A|t]. Thus we have ϵfrk ≤
AdvMSISq,k1,k2,2γ1

+AdvMSISq,k,l+1,2B
. Finally A’s advantage is bounded as eq. (1).

7 Performance

7.1 Efficiency Analysis

Table 2 and Table 3 present the theoretical costs of our distributed key generation
(DKG), the share-refreshment and the distributed signing protocols, as well as
the concert costs under the parameter settings specified in Table 4. Note that
the parameters are set to achieve the security strength of 123 classical bits and
112 quantum bits. These protocols require a specific number of shared bits and
multiplication triples generated during the preprocessing phase. Additionally, the
online communication rounds and complexity are displayed, which represents the
amount of data sent by each party. Here, K = (k+ l) ·N , where k and l are the
height and width of the random matrix A in the public key, N is the dimension
of the polynomial corresponding to the ring, nq = log2 q, and other parameters
are described in Table 1.

The distributed rejection sampling sub-protocol, RejectS, is the most expen-
sive component of our signing protocol, DSign. In RejectS, we utilize the com-
parison protocol, LTC, from [37]. This protocol leverages recent advancements
in the generation and deployment of doubly authenticated shared bits (daBits
[55]) and extended doubly authenticated bits (edaBits [53]). These correspond
to shared integers in the arithmetic domain, whose bit decomposition is shared
in the binary domain. One daBit can be generated from one shared bit, while

22 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

one edaBit in Zq can be generated from nq shared bits. The generation of these
bits occurs during the preprocessing phase.

We count the number of shared bits required in LTC, RejectS, and DSign
protocols, as shown in Table 3. The theoretical costs of the comparison protocol,
LTC, from [37], are presented first. Since our RejectS invokes LTC K+1 times, it
requires K + 1 times as many bits and triples as LTC. The first K executions of
LTC are called in parallel, followed by one additional call, resulting in a total of
2 log2 nq rounds. The sum of the theoretical costs of RejectS and the remaining
parts is the total cost of DSign, shown in the last row of Table 3.

Note that in our t-out-of-n threshold signature scheme, firstly we ask all n
parties to run the preprocessing protocol once, to generate a large amount of
t-out-of-n authenticated shared bits and Beaver triples for the following dis-
tributed key generation phase (which is run once) and signing phase. For in-
stance, the preprocessing runs once to generate one million triples, which can
support the execution of signing protocol for 5 times. If the shared triples or
bits are used up, the parties participating in the signing protocol currently can
rerun the preprocessing protocol to generate t-out-of-t′ shared triples or bits,
where t′ is the number of currently-online parties. As above, we have analyzed
the number of bits and triples needed in each protocol in a theoretical way.

Table 2: The costs of the DKG and refreshment protocols

Protocols
Shared
Bits

Shared
Triples

Rounds Comm.

DKeyGen nηK 0 5 4nqK
ShareRefresh K + mnq (m + 1)K 4 (m + 1)nqK

DKeyGen 4096 0 5 23 KB
ShareRefresh 2324 26624 4 43 KB

Table 3: The costs of our distributed signing protocol and its main components
Protocols Shared Bits Shared Triples Rounds Comm.

LTC nq + 1 nq log2 nq log2 nq 2λnq

RejectS (K + 1)(nq + 1) (K + 1)nq log2 nq 2 log2 nq 2(K + 1)λnq

DSign - in total (K + 1)(nq + 1) +K2nγ (K + 1)nq log2 nq 2 log2 nq + 5 (2(K + 1)λ+ 3K)nq

LTC 24 115 5 0.7 KB

RejectS 49152 235520 10 1.4 MB

DSign - in total 59392 235520 15 1.417 MB

Lattice-Based Threshold Signatures with Functional Interchangeability 23

Table 4: The setting of parameters

Parameters N q m τ γ γ1

Values 256 8380417 12 39 28 28

Parameters (k, l) (k1, k2) η β M

Values (4, 4) (3, 5) 2 78 3.38

7.2 Implementation

Our implementation is built on the top of MP-SPDZ [48]5. More concretely, we
modify the Reshare process of their codes to implement our preprocessing phase
to generate t-out-of-n shares of shared bits and multiplication triples in Zq. Note
that in this subsection, we will present the amortized preprocessing runtime for
each protocol. Assume that the preprocessing can generate the number of triples
required for 5 executions of signing at once, then the amortized time is tall/5 for
DSign-Preprocessing, where tall is the runtime it takes for the preprocessing to
run once.

All the following experiments are performed on a set of Alibaba Cloud
ecs.c7.2xlarge instances with a 2.70GHz processor and 16 gigabytes of RAM.
All our programs are implemented in C++ for 16 threads and run in two net-
work settings, namely, LAN and WAN settings. For benchmarks in the LAN
setting, we created a set of 12 nodes, among which the bandwidth was generally
between 300 and 400 MBps, and the round-trip latency was approximately 0.3
ms. For WAN setting, we chose 3 nodes located in 3 different cities inside one
country, among which the bandwidth was 44 MBps, and the round-trip latency
was approximately 40 ms.

LAN Benchmarks The experiment results for preprocessing and online phases
of DKeyGen and ShareRefresh protocols can be seen in a line chart in Fig. 2.
The distributed key generation runs only once, but the shares-refreshment runs
periodically (once a month or every six months), thus we are more concerned
about the efficiency of refreshment. In a two-party setting, its online phase only
takes 0.24 seconds and in 12-party setting, it takes 6.39 seconds.

The experiment results for the DSign protocol are shown in a bar chart in Fig.
3. It shows the running times of the preprocessing and online phases, respectively.
As the most time-consuming part in DSign online phase, the green bars represent
the running times of RejectS protocol, which accounts for 80% - 90% of the total
signing time. Due to its efficiency being mainly dependent on the comparison
protocol, if more efficient LTC protocol emerges, the efficiency of our RejectS
protocol will be improved significantly.

To compare our scheme with existing works that satisfy functional inter-
changeability, we consider two methods, namely, TFHE and generic MPC (GMPC),

5 https://github.com/data61/MP-SPDZ

https://github.com/data61/MP-SPDZ

24 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

Fig. 2: The running times (seconds) of the distributed key generation and re-
freshment protocols over LAN

Lattice-Based Threshold Signatures with Functional Interchangeability 25

Fig. 3: The running times (seconds) of the distributed signing protocol over LAN

26 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

as analyzed in Section ??. For TFHE-based works [21, 22], they are too theoret-
ical to give a realistic efficiency analysis. For GMPC-based work [25], they tried
to use garbled circuit (GC) to implement distributed rejection sampling process.
Table 5 first compares our RejectS protocol with GC-based construction, we can
perform most of the complex computations in preprocessing phase, resulting in
a significant improvement in efficiency during the online phase, up to 30 times
faster for a two-party setting. Moreover, Table 5 also shows that our DSign pro-
tocol is approximately 20 times faster than their distributed signing protocol.
Even adding up the costs spent on both offline and online phases, our protocols
costs 2.9 seconds for a two-party setting, that is 4 times faster than theirs. The
last column “Threshold” shows our scheme supports arbitrary threshold access
structure with t ≤ n, instead of only full-threshold t = n.

Table 5: Comparison with GMPC-based scheme over LAN
Schemes Runtime (s) Comm. Threshold

GC-based RejectS [25] 12 65 MB t = n

Our RejectS 0.4 1.4 MB t ≤ n

DSign [25] 12.4 71 MB t = n

Our DSign 0.5 1.417 MB t ≤ n

WAN Benchmarks In Table 6, we demonstrate the runtimes of three protocols
under two kinds of threshold settings over WAN. Under (t, n) = (2, 3) thresh-
old setting, the DKeyGen,ShareRefresh protocols involve three participants, thus
require more runtime compared to (t, n) = (2, 2) setting with two participants.
However, the runtime of the DSign protocol remains almost the same, as it in-
volves two participants in both 2-out-of-2 and 2-out-of-3 threshold settings.

Table 6: The runtimes in seconds of our protocols over WAN
Threshold setting (t, n) DKeyGen ShareRefresh DSign

(2, 2) 0.36 0.27 1.5

(2, 3) 0.59 0.53 1.65

In real-world deployments, optimizing for communication rounds is a com-
mon goal since latency may be the most time-consuming resource. Our scheme
is practical even when latency is taken into account, thanks to our novel ideas of
avoiding distributed hashing and reducing communication rounds for the RejectS
protocol. Specifically, the distributed evaluation of hashing requires at least 10
rounds as shown in [36], while our protocol locally evaluates hashing without
communication. Additionally, if generic MPC is used in a trivial way to run

Lattice-Based Threshold Signatures with Functional Interchangeability 27

RejectS, the number of communication rounds will be more than 50, whereas
our approach only requires 10 rounds.

Table 7: Performance comparison with generic MPC for distributed signing pro-
tocol in the 2-out-of-3 threshold setting. Runtimes are in seconds.

Protocols
Runtime

Rounds Comm.
LAN WAN

GMPC-DSign 12.4 15.7 60 71 MB

Our DSign 0.5 1.65 15 1.417 MB

Table 7 shows the improvement of our distributed signing DSign protocol
over GMPC method in both LAN and WAN settings. In particularly, the costs
for GMPC-DSign are roughly estimated by combining the overhead of SHA-3
evaluation [36] and rejection sampling in GMPC [25]. In summary, our savings
in terms of rounds and communication costs have enabled our protocol to remain
10 times faster in the WAN network setting.

28 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

Protocol 4 The preprocessing protocol πPREP

1. It specifies the global MAC key α, and distributes a t-out-of-n share αi to each
party Pi, where α←

∑
i∈S λi,S · αi mod q for any subset S ⊆ [n] with |S| ≥ t.

(a) Each party Pi samples an uniform α′
i ∈ Zq. Broadcast the ciphertext eα′

i
←

Enc(α′
i). Define α =

∑n
i=1 α

′
i.

(b) Each party Pi performs Shamir’s secret sharing to re-share α′
i: generate t-out-

of-n shares {αi,j}j∈[n], send αi,j to Pj .
(c) Each party Pi generates a zero-knowledge proof to prove the validity of eα′

i
.

The protocol aborts if any proof fails.
(d) All parties set eα ←

∑n
i=1 eα′

i
, and each party Pi locally computes αi ←∑n

j=1 αj,i.

2. Output a set of “multiplication triples”: {⟨x̄⟩, ⟨ȳ⟩, ⟨z̄⟩} such that x̄, ȳ
$← Zq and

z̄ = x̄ · ȳ.
(a) Each party Pi samples two uniform x̄′

i, ȳ
′
i ∈ ZK

q . Broadcast two ciphertexts
ex̄′

i
← Enc(x̄′

i), eȳ′
i
← Enc(ȳ′

i). Define: x̄ =
∑n

i=1 x̄
′
i, ȳ =

∑n
i=1 ȳ

′
i.

(b) Each party Pi performs Shamir’s secret sharing to re-share x̄′
i, ȳ

′
i: generate

t-out-of-n shares {x̄i,j}nj=1, {ȳi,j}nj=1, send x̄i,j , ȳi,j to Pj .
(c) Each party Pi generates a zero-knowledge proof to prove the validity of ex̄′

i

and eȳ′
i
. The protocol aborts if any proof fails.

(d) All parties set ex̄ ←
∑n

i=1 ex̄′
i
, eȳ ←

∑n
i=1 eȳ′

i
. And each party Pi locally

computes x̄i ←
∑n

j=1 x̄j,i, ȳi ←
∑n

j=1 ȳj,i. Obviously, {x̄i} and {ȳi} are t-
out-of-n shares of x̄ and ȳ repectively.

(e) Let z̄ = x̄ · ȳ, all parties set ez̄ ← ex̄ · eȳ. The parties jointly run the Reshare
protocol (Protocol 2): {z̄i} ← Reshare(ez̄).

(f) All parties set eγ(x̄) ← ex̄ · eα, eγ(ȳ) ← eȳ · eα, and eγ(z̄) ← ez̄ · eα.
(g) The parties jointly run the Reshare protocol: {γ(x̄)i}i∈[n] ← Reshare(eγ(x̄)),
{γ(ȳ)i}i∈[n] ← Reshare(eγ(ȳ)), and {γ(z̄)i}i∈[n] ← Reshare(eγ(z̄)).

(h) Ouputs t-out-of-n authenticated multiplication triples: ⟨x̄⟩ = ({x̄i}, {γ(x̄)i}),
⟨ȳ⟩ = ({ȳi}, {γ(ȳ)i}), and ⟨z̄⟩ = ({z̄i}, {γ(z̄)i}).

3. Output a set of shared bits: ⟨b⟩ such that b is a vector of bits.
(a) Each party Pi samples an uniform ci ∈ ZK

q . Broadcast the ciphertext eci ←
Enc(ci). Define: c =

∑n
i=1 ci.

(b) Each party Pi generates a zero-knowledge proof to prove the validity of eci .
The protocol aborts if any proof fails.

(c) All parties set ec ←
∑n

i=1 eci , compute ec2 ← ec · ec.
(d) The parties jointly decrypt ec2 and thereby obtain d = c2.
(e) If any slot position in d equals zero, then set it to one.
(f) A fixed square root t of d is taken, say the one for which each slot position is

odd when represented in [1, · · · , q − 1].
(g) Compute ev ← t−1 · ec. This is encryption of v = t−1 · c, that is a message

for which each slot position contains {−1, 1}, bar the one which we replaced
in step e).

(h) All parties set eγ(v) ← ev · eα.
(i) The parties jointly run the Reshare protocol: {vi} ← Reshare(ev), and
{γ(v)i} ← Reshare(eγ(v)).

(j) Outputs ⟨b⟩ ← (1/2) · (⟨v⟩+ 1).

Lattice-Based Threshold Signatures with Functional Interchangeability 29

Protocol 5 MACCheckm(⟨t⟩, t)→ 1/0

For each i ∈ [n], each party Pi takes opened t = (t(1), · · · , t(K)), t’s MAC value

share γ(t)
(1)
i , · · · , γ(t)(m)

i in ⟨t⟩ as well as pre-processed MAC key share αi =

(α
(1)
i , · · · , α(m)

i) as the input, does the following:

1. The parties jointly sample a random vector (r(1), · · · , r(K)), compute tr ←∑K
j=1 r

(j) · t(j) mod q.

2. For each ξ ∈ [m], each party Pi splits γ(t)
(ξ)
i into a vector (γ(t(1))

(ξ)
i , · · · , γ(t(K))

(ξ)
i)

and computes γ
(ξ)
i ←

∑K
j=1 r

(j) · γ(t(j))(ξ)i mod q, σ
(ξ)
i ← λi,[n] · (γ(ξ)

i − α
(ξ)
i · tr)

mod q where λi,[n] =
∏

j∈[n],j ̸=i
j

j−i
.

3. Each party Pi computes ci ← H({σ(ξ)
i }

m
ξ=1), then broadcasts ci.

4. Each party broadcasts {σ(ξ)
i }

m
ξ=1, and checks if H({σ(ξ)

ī
}mξ=1) = cī for all ī ̸= i. If

not, output 0 and abort. From this, all parties obtain σ(ξ) ←
∑n

i=1 σ
(ξ)
i mod q for

ξ ∈ [m].
5. If σ(ξ) = 0 for each ξ ∈ [m], the parties output 1; otherwise output 0.

Protocol 6 DKeyGen(1λ)→ (pk, ⟨sk⟩)
Initialize: Each party Pi calls FPREP to get share αi = (α

(1)
i , · · · , α(m)

i) of m MAC
key, and its own share in ⟨b⟩ where b is a binary vector.
Generate: On input the security parameter λ, the parties do the following

1. Each party Pi samples Ai
$← Rk×l

q ,A′
i

$← Rk1×(k2−k1)
q ,A′′

i
$← Rk3×(k2−k1)

q and
broadcasts gi ← H(Ai,A

′
i,A

′′
i). After receiving gī for each ī ̸= i, party Pi broad-

casts Ai,A
′
i,A

′′
i . After receiving Aī,A

′
ī,A

′′
ī from others, party Pi checks whether

gī = H(Aī,A
′
ī,A

′′
ī) for each ī ̸= i or not. If not, party Pi outputs ⊥ and aborts.

Otherwise all parties generate A ←
∑

i Ai mod q,A′ ←
∑

i A
′
i mod q and

A′′ ←
∑

i A
′′
i mod q. Then construct A(1) ← [Ik1 |A′] and A(2) ← [0|A′′].

2. For each j ∈ [K], the parties choose shares of nη bits from ⟨b⟩, that is

(⟨b(0)⟩, · · · , ⟨b(nη−1)⟩). Then for each j ∈ [K], they compute ⟨s(j)⟩ ←
∑nη−1

ζ=0 2ζ ·
⟨b(ζ)⟩ − (η − 1). The shares of K integers, {⟨s(j)⟩}j∈[K] can form ⟨s⟩, ⟨e⟩.

3. The parties compute ⟨t⟩ ← A⟨s⟩+ ⟨e⟩. Open ⟨t⟩: each party Pi broadcasts ti and
receives {tī}ī̸=i from others, then computes t←

∑
i ti mod q.

4. The parties call MACCheckm (Protocol 5) on input ⟨t⟩, t. If the result is 0, they
output ⊥ and abort. Otherwise, they output the public key pk ← (A, t,A(1),A(2)),
and each party stores its own share in ⟨s⟩, ⟨e⟩ as well as its shares of the MAC key
αi.

30 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

Protocol 7 ShareRefresh(⟨s⟩, ⟨e⟩)→ ⟨sk⟩
Initialize: The parties call FPREP to get shares ⟨b⟩ of bits and shares ⟨x̄⟩, ⟨ȳ⟩, ⟨x̄ · ȳ⟩ of
multiplication triples.
Generate: Each party Pi takes its own share in ⟨s⟩, ⟨e⟩ as the input, generates and
stores its new share:

1. For each j ∈ [K], the parties choose shares ⟨b(j)⟩ of one bit from ⟨b⟩, and
run Mult(⟨b(j)⟩, 1 − ⟨b(j)⟩) → ⟨x(j)⟩ such that x(j) = 0. The shares of K zeros,
{⟨x(j)⟩}j∈[K] can form ⟨0⟩ such that 0 is a K-dimension zero vector.

2. Compute ⟨sk⟩ ←
[
⟨s⟩
⟨e⟩

]
+ ⟨0⟩.

3. For each ξ ∈ [m], use shared bits to generate a random value ⟨α(ξ)′⟩ ←∑nq

ζ=1 2
ζ⟨b(ζ)⟩. Then m shares ⟨α(ξ)′⟩ can form ⟨α′⟩ where α′ ∈ Zm

q , and run
Mult(⟨sk⟩, ⟨α′⟩) → ⟨sk · α′⟩. Call MACCheckm (Protocol 5) on input all opened
values in Mult protocol and their shares.

4. Discard the MAC shares of ⟨sk⟩, ⟨sk·α′⟩, let value shares of ⟨sk·α′⟩ be the refreshed
MAC shares of ⟨sk⟩. After this, α′ be the new MAC key, and the refreshed ⟨sk⟩
represents that each party holds a refreshed value share ski and MAC share [sk·α′]i

Protocol 8 RejectS(⟨z⟩, B)→ ⟨b⟩
Each party takes its own share in ⟨z⟩ and public B as the input, and gets its own
share in ⟨b⟩ as the output where b = 1 if ∥z∥∞ < B and b = 0 otherwise. It does the
following:

1. Split ⟨z⟩ into shares of K integers (⟨z(1)⟩, · · · , ⟨z(K)⟩). For each j ∈ [K], the parties
run

LTC(⟨z(j)⟩+B, 2B)→ ⟨b(j)⟩.
2. Parties run LTC(

∑
j⟨b

(j)⟩,K)→ ⟨b̄⟩.
3. Output ⟨b⟩ ← 1− ⟨b̄⟩.

Lattice-Based Threshold Signatures with Functional Interchangeability 31

Protocol 9 DSign(⟨sk⟩, pk, µ)→ σ

Initialize: Each party Pi calls FPREP to get its own share in ⟨b⟩, where b is a binary
vector.
Generate: The parties {Pi}i∈[t] take secret key shares (⟨s⟩, ⟨e⟩), public key pk and
message µ as the input, they do the following:

1. Each party Pi first transfers their t-out-of-n shares in ⟨s⟩, ⟨e⟩, ⟨b⟩ into t-out-of-t
shares via multiplying λi,[t].

2. For each j ∈ [K], the parties choose shares of nγ bits from ⟨b⟩, that is

(⟨b(0)⟩, · · · , ⟨b(nγ−1)⟩). Then for each j ∈ [K], they compute ⟨y(j)⟩ ←
∑nγ−1

ζ=0 2ζ ·
⟨b(ζ)⟩ − (γ − 1). The shares of K integers, {⟨y(j)⟩}j∈[K] can form shares ⟨y⟩.

3. For each j ∈ [K2], the parties choose shares of nγ1 bits from ⟨b⟩, that is

(⟨b(0)⟩, · · · , ⟨b(nγ1
−1)⟩). Then for each j ∈ [K2], they compute ⟨r(j)⟩ ←

∑nγ1
−1

ζ=0 2ζ ·
⟨b(ζ)⟩ − (γ1 − 1). The shares of K2 integers, {⟨r(j)⟩}j∈[K2] can form shares ⟨r⟩.

4. The parties compute ⟨w⟩ ← [A|Ik] ⟨y⟩ and the commitment ⟨com⟩ ←
[
A(1)

A(2)

]
·

⟨r⟩+
[

0
⟨w⟩

]
with each share as comi.

5. Open ⟨com⟩: Each party Pi broadcasts his commitment share comi and receives
{comī}ī ̸=i from others, and thus computes w’s commitment com ←

∑n
i=1 comi

mod q. Then they locally compute the challenge c← H(com, µ).

6. The parties compute ⟨z⟩ ← ⟨y⟩ + c ·
[
⟨s⟩
⟨e⟩

]
. Run RejectS(⟨z⟩, B) → ⟨b⟩ (Protocol

8).
7. The parties call MACCheckm (Protocol 5) on input all opened values so far and

their shares. If it outputs 0, they output ⊥ and abort.
8. Open ⟨b⟩: each party Pi broadcasts bi and receives {bī}ī̸=i from others, and com-

putes b ←
∑n

i=1 bi mod q. Then call MACCheckm on input (⟨b⟩, b). If it outputs
0, they output ⊥ and abort. If b = 0, the parties go back to Step 2. Other-
wise, they open ⟨z⟩ and ⟨r⟩ to get z, r. Output the signature σ ← (com, z, r) if
Verify(pk, µ, σ)→ 1. Otherwise, output ⊥ and abort.

Bibliography

[1] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust threshold DSS
signatures,” in International Conference on the Theory and Application of
Cryptographic Techniques - EUROCRYPT, vol. 1070. Springer, 1996, pp.
354–371.

[2] V. Shoup, “Practical threshold signatures,” in International Conference on
the Theory and Application of Cryptographic Techniques - EUROCRYPT,
ser. LNCS, vol. 1807. Springer, 2000, pp. 207–220.

[3] L. T. Brandão, M. Davidson, A. Vassilev et al., “Nist roadmap toward
criteria for threshold schemes for cryptographic primitives,” 2020.

[4] S. Goldfeder, J. Bonneau, J. Kroll, and E. Felten, “Securing bitcoin wallets
via threshold signatures,” 2014.

[5] S. Goldfeder, R. Gennaro, H. Kalodner, J. Bonneau, J. A. Kroll, E. W.
Felten, and A. Narayanan, “Securing bitcoin wallets via a new dsa/ecdsa
threshold signature scheme,” in et al., 2015.

[6] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-optimal
dsa/ecdsa signatures and an application to bitcoin wallet security,” in Ap-
plied Cryptography and Network Security: 14th International Conference,
ACNS 2016, Guildford, UK, June 19-22, 2016. Proceedings 14. Springer,
2016, pp. 156–174.

[7] Y. Harchol, I. Abraham, and B. Pinkas, “Distributed ssh key management
with proactive rsa threshold signatures,” in Applied Cryptography and Net-
work Security: 16th International Conference, ACNS 2018, Leuven, Bel-
gium, July 2-4, 2018, Proceedings 16. Springer, 2018, pp. 22–43.

[8] D. Maram, H. Malvai, F. Zhang, N. Jean-Louis, A. Frolov, T. Kell, T. Lob-
ban, C. Moy, A. Juels, and A. Miller, “Candid: Can-do decentralized iden-
tity with legacy compatibility, sybil-resistance, and accountability,” in 2021
IEEE Symposium on Security and Privacy (SP). IEEE, 2021, pp. 1348–
1366.

[9] M. Yin, D. Malkhi, M. K. Reiter, G. G. Gueta, and I. Abraham, “Hotstuff:
Bft consensus with linearity and responsiveness,” in Proceedings of the 2019
ACM Symposium on Principles of Distributed Computing, 2019, pp. 347–
356.

[10] Y. Gao, Y. Lu, Z. Lu, Q. Tang, J. Xu, and Z. Zhang, “Dumbo-ng: Fast asyn-
chronous bft consensus with throughput-oblivious latency,” in Proceedings
of the 2022 ACM SIGSAC Conference on Computer and Communications
Security, 2022, pp. 1187–1201.

[11] Y. Lindell, “Fast secure two-party ECDSA signing,” in Annual International
Cryptology Conference - CRYPTO, vol. 10402. Springer, 2017, pp. 613–
644.

[12] Y. Lindell and A. Nof, “Fast secure multiparty ECDSA with practical dis-
tributed key generation and applications to cryptocurrency custody,” in

Lattice-Based Threshold Signatures with Functional Interchangeability 33

Conference on Computer and Communications Security - CCS. ACM,
2018, pp. 1837–1854.

[13] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ECDSA with fast
trustless setup,” in Conference on Computer and Communications Security
- CCS. ACM, 2018, pp. 1179–1194.

[14] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker,
“Two-party ECDSA from hash proof systems and efficient instantiations,”
in Annual International Cryptology Conference - CRYPTO, vol. 11694.
Springer, 2019, pp. 191–221.

[15] R. Canetti, R. Gennaro, S. Goldfeder, N. Makriyannis, and U. Peled, “UC
non-interactive, proactive, threshold ECDSA with identifiable aborts,” in
Conference on Computer and Communications Security - CCS. ACM,
2020, pp. 1769–1787.

[16] G. Castagnos, D. Catalano, F. Laguillaumie, F. Savasta, and I. Tucker,
“Bandwidth-efficient threshold EC-DSA,” in International Conference on
Practice and Theory of Public-Key Cryptography - PKC, vol. 12111.
Springer, 2020, pp. 266–296.

[17] P. W. Shor, “Polynomial-time algorithms for prime factorization and dis-
crete logarithms on a quantum computer,” SIAM J. Comput., pp. 1484–
1509, 1997.

[18] NIST, “Call for proposals,” https://csrc.
nist.gov/Projects/post-quantum-cryptography/
post-quantum-cryptography-standardization/Call-for-Proposals, 2016-
12-21.

[19] L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, P. Schwabe, G. Seiler, and
D. Stehlé, “Crystals-dilithium: A lattice-based digital signature scheme,”
Trans. Cryptogr. Hardw. Embed. Syst., pp. 238–268, 2018.

[20] P.-A. Fouque, J. Hoffstein, P. Kirchner, V. Lyubashevsky, T. Pornin,
T. Prest, T. Ricosset, G. Seiler, W. Whyte, and Z. Zhang, “Falcon: Fast-
fourier lattice-based compact signatures over ntru,” Submission to the
NIST’s post-quantum cryptography standardization process, vol. 36, 2018.

[21] D. Boneh, R. Gennaro, S. Goldfeder, A. Jain, S. Kim, P. M. R. Rasmussen,
and A. Sahai, “Threshold cryptosystems from threshold fully homomorphic
encryption,” in Annual International Cryptology Conference - CRYPTO,
vol. 10991. Springer, 2018, pp. 565–596.

[22] S. Agrawal, D. Stehlé, and A. Yadav, “Towards practical and round-optimal
lattice-based threshold and blind signatures,” IACR Cryptol. ePrint Arch.,
p. 381, 2021.

[23] R. Bendlin, S. Krehbiel, and C. Peikert, “How to share a lattice trapdoor:
Threshold protocols for signatures and (H)IBE,” in International Confer-
ence on Applied Cryptography and Network Security - ACNS, vol. 7954.
Springer, 2013, pp. 218–236.

[24] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard lat-
tices and new cryptographic constructions,” in Symposium on the Theory
of Computing - STOC, 2008, pp. 197–206.

https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals
https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals

34 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

[25] D. Cozzo and N. P. Smart, “Sharing the LUOV: threshold post-quantum
signatures,” in IMA Conference on Cryptography and Coding - IMACC, ser.
LNCS, vol. 11929. Springer, 2019, pp. 128–153.

[26] X. Wang, S. Ranellucci, and J. Katz, “Global-scale secure multiparty com-
putation,” in Conference on Computer and Communications Security -
CCS. ACM, 2017, pp. 39–56.

[27] C. Hazay, P. Scholl, and E. Soria-Vazquez, “Low cost constant round MPC
combining BMR and oblivious transfer,” J. Cryptol., pp. 1732–1786, 2020.

[28] I. Damg̊ard, V. Pastro, N. P. Smart, and S. Zakarias, “Multiparty compu-
tation from somewhat homomorphic encryption,” in Annual International
Cryptology Conference - CRYPTO, vol. 7417. Springer, 2012, pp. 643–662.

[29] I. Damg̊ard, M. Keller, E. Larraia, V. Pastro, P. Scholl, and N. P. Smart,
“Practical covertly secure MPC for dishonest majority - or: Breaking the
SPDZ limits,” in ESORICS, vol. 8134. Springer, 2013, pp. 1–18.

[30] M. Abe and S. Fehr, “Adaptively secure feldman VSS and applications to
universally-composable threshold cryptography,” in Annual International
Cryptology Conference - CRYPTO, vol. 3152. Springer, 2004, pp. 317–
334.

[31] C. Komlo and I. Goldberg, “FROST: flexible round-optimized schnorr
threshold signatures,” IACR Cryptol. ePrint Arch, p. 852, 2020.

[32] I. Damg̊ard, C. Orlandi, A. Takahashi, and M. Tibouchi, “Two-round n-
out-of-n and multi-signatures and trapdoor commitment from lattices,” in
International Conference on Practice and Theory of Public-Key Cryptogra-
phy - PKC, vol. 12710. Springer, 2021, pp. 99–130.

[33] R. Ostrovsky and M. Yung, “How to withstand mobile virus attacks (ex-
tended abstract),” in Symposium on Principles of Distributed Computing-
PODC. ACM, 1991, pp. 51–59.

[34] A. Nicolosi, M. N. Krohn, Y. Dodis, and D. Mazières, “Proactive two-party
signatures for user authentication,” in NDSS 2003. The Internet Society,
2003.

[35] M. Keller, P. Scholl, and N. P. Smart, “An architecture for practical ac-
tively secure MPC with dishonest majority,” in Conference on Computer
and Communications Security - CCS. ACM, 2013, pp. 549–560.

[36] M. Kraitsberg, Y. Lindell, V. Osheter, N. P. Smart, and Y. T. Alaoui,
“Adding distributed decryption and key generation to a ring-lwe based CCA
encryption scheme,” in ACISP. Springer, 2019, pp. 192–210.

[37] E. Makri, D. Rotaru, F. Vercauteren, and S. Wagh, “Rabbit: Efficient com-
parison for secure multi-party computation,” in Financial Cryptography and
Data Security - FC, vol. 12674. Springer, 2021, pp. 249–270.

[38] P. Feldman, “A practical scheme for non-interactive verifiable secret shar-
ing,” in Annual Symposium on Foundations of Computer Science. IEEE
Computer Society, 1987, pp. 427–437.

[39] T. P. Pedersen, “Non-interactive and information-theoretic secure verifiable
secret sharing,” in Annual International Cryptology Conference - CRYPTO,
vol. 576. Springer, 1991, pp. 129–140.

Lattice-Based Threshold Signatures with Functional Interchangeability 35

[40] A. Chandramouli, A. Choudhury, and A. Patra, “A survey on perfectly
secure verifiable secret-sharing,” ACM Comput. Surv., vol. 54, no. 11s, pp.
232:1–232:36, 2022.

[41] B. Rajabi and Z. Eslami, “A verifiable threshold secret sharing scheme based
on lattices,” Information Sciences, vol. 501, pp. 655–661, 2019.

[42] H. Pilaram, T. Eghlidos, and R. Toluee, “An efficient lattice-based thresh-
old signature scheme using multi-stage secret sharing,” IET Information
Security, vol. 15, no. 1, pp. 98–106, 2021.

[43] R. E. Bansarkhani and M. Meziani, “An efficient lattice-based secret shar-
ing construction,” in Information Security Theory and Practice. Security,
Privacy and Trust in Computing Systems and Ambient Intelligent Ecosys-
tems - 6th IFIP WG 11.2 International Workshop, WISTP 2012, Egham,
UK, June 20-22, 2012. Proceedings, ser. Lecture Notes in Computer Science,
I. G. Askoxylakis, H. C. Pöhls, and J. Posegga, Eds., vol. 7322. Springer,
2012, pp. 160–168.

[44] C. Boschini, A. Takahashi, and M. Tibouchi, “Musig-l: Lattice-based multi-
signature with single-round online phase,” in Annual International Cryp-
tology Conference - CRYPTO, vol. 13508. Springer, 2022, pp. 276–305.

[45] N. Fleischhacker, M. Simkin, and Z. Zhang, “Squirrel: Efficient synchronized
multi-signatures from lattices,” in Conference on Computer and Communi-
cations Security - CCS. ACM, 2022, pp. 1109–1123.

[46] A. Langlois and D. Stehlé, “Worst-case to average-case reductions for mod-
ule lattices,” Des. Codes Cryptogr., vol. 75, no. 3, pp. 565–599, 2015.

[47] A. Shamir, “How to share a secret,” Commun. ACM, vol. 22, no. 11, pp.
612–613, 1979.

[48] M. Keller, V. Pastro, and D. Rotaru, “Overdrive: Making SPDZ great
again,” in International Conference on the Theory and Application of Cryp-
tographic Techniques - EUROCRYPT, vol. 10822. Springer, 2018, pp. 158–
189.

[49] V. Lyubashevsky, “Lattice signatures without trapdoors,” in International
Conference on the Theory and Application of Cryptographic Techniques -
EUROCRYPT, vol. 7237. Springer, 2012, pp. 738–755.

[50] M. Fukumitsu and S. Hasegawa, “A lattice-based provably secure multisig-
nature scheme in quantum random oracle model,” in ProvSec, vol. 12505.
Springer, 2020, pp. 45–64.

[51] C. Baum, I. Damg̊ard, V. Lyubashevsky, S. Oechsner, and C. Peikert, “More
efficient commitments from structured lattice assumptions,” in Interna-
tional Conference on Security and Cryptography for Networks - SCN, vol.
11035. Springer, 2018, pp. 368–385.

[52] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive secret shar-
ing or: How to cope with perpetual leakage,” in Annual International Cryp-
tology Conference - CRYPTO, vol. 963. Springer, 1995, pp. 339–352.

[53] D. Escudero, S. Ghosh, M. Keller, R. Rachuri, and P. Scholl, “Improved
primitives for MPC over mixed arithmetic-binary circuits,” in Annual In-
ternational Cryptology Conference - CRYPTO, vol. 12171. Springer, 2020,
pp. 823–852.

36 Guofeng Tang, Bo Pang, Long Chen, and Zhenfeng Zhang

[54] M. Bellare and G. Neven, “Multi-signatures in the plain public-key model
and a general forking lemma,” in Conference on Computer and Communi-
cations Security - CCS. ACM, 2006, pp. 390–399.

[55] D. Rotaru and T. Wood, “Marbled circuits: Mixing arithmetic and boolean
circuits with active security,” in International Conference on Cryptology in
India - INDOCRYPT, vol. 11898. Springer, 2019, pp. 227–249.

	Efficient Lattice-Based Threshold Signatures with Functional Interchangeability

