
ArcEDB: An Arbitrary-Precision Encrypted Database via
(Amortized) Modular Homomorphic Encryption

Zhou Zhang∗
zhouzhang@buaa.edu.cn

Beihang University
Beijing, China

Song Bian∗
sbian@buaa.edu.cn
Beihang University

Beijing, China

Zian Zhao
zhaozian@buaa.edu.cn
Beihang University

Beijing, China

Ran Mao
maoran_44@buaa.edu.cn

Beihang University
Beijing, China

Haoyi Zhou
haoyi@buaa.edu.cn
Beihang University

Beijing, China
Zhongguancun Laboratory

Beijing, China

Jiafeng Hua
jiafenghhua@163.com
Xidian University

Xian, China

Yier Jin
jinyier@gmail.com

University of Science and Technology
of China

Hefei, Anhui, China

Zhenyu Guan†
guanzhenyu@buaa.edu.cn

Beihang University
Beijing, China

ABSTRACT
Fully homomorphic encryption (FHE) based database outsourcing
is drawing growing research interests. At its current state, there
exist two primary obstacles against FHE-based encrypted databases
(EDBs): i) low data precision, and ii) high computational latency. To
tackle the precision-performance dilemma, we introduce ArcEDB, a
novel FHE-based SQL evaluation infrastructure that simultaneously
achieves high data precision and fast query evaluation. Based on
a set of new plaintext encoding schemes, we are able to execute
arbitrary-precision ciphertext-to-ciphertext homomorphic compar-
ison orders of magnitude faster than existing methods. Meanwhile,
we propose efficient conversion algorithms between the encoding
schemes to support highly composite SQL statements, including ad-
vanced filter-aggregation and multi-column synchronized sorting.
We perform comprehensive experiments to study the performance
characteristics of ArcEDB. In particular, we show that ArcEDB can
be up to 57× faster in homomorphic filtering and up to 20× faster
over end-to-end SQL queries when compared to the state-of-the-art
FHE-based EDB solutions. Using ArcEDB, a SQL query over a 10K-
row time-series EDB with 64-bit timestamps only runs for under
one minute.

CCS CONCEPTS
• Security and privacy→ Cryptography; Management and
querying of encrypted data.

KEYWORDS
Fully Homomorphic Encryption, Secure Database Outsourcing

∗Both authors contributed equally to this work.
†Corresponding author.

1 INTRODUCTION
The past quarter century has witnessed the rise of a golden age
in building cloud-based outsourcing services [8, 9, 31, 85] to meet
the increased needs of low-cost and flexible data management.
However, such convenience is often accompanied by data secu-
rity concerns, as data owners may lose control of their sensitive
information and suffer from data breaches. Consequently, we see
growing interest from both the data owners and the cloud ser-
vice providers in developing encrypted database (EDB) infrastruc-
tures [5, 16, 24, 33, 56, 80, 83, 86, 87, 99], where data confidentiality
is provably secured over the entire outsourcing life cycle.

While a straightforward application of symmetric-key encryp-
tion suffices the need of provably secure data storage, the chal-
lenge for EDB systems is how to efficiently execute expressive
queries over the outsourced data. Hence, although there exists
multiple lines of work that study how to securely store [49], re-
trieve [5, 80, 83, 84, 86, 87], and process [24, 33, 39, 43, 56] en-
crypted data outsourced to the cloud, such protocols either lack
provable security guarantees [36, 47, 65, 84, 103] or only focus on
a specific set of data processing functionalities (e.g., data storage
only [49] or encrypted search only [38]). For example, oblivious
RAM (ORAM) [22, 41, 43, 93, 102] is a well-known primitive in
efficiently storing data in an oblivious way, such that fetching
data securely from the server achieves poly-logarithmic overheads.
Nonetheless, as observed in [39], existing ORAM protocols be-
come less effective when handling multi-dimensional queries (i.e.,
predicates over multiple attribute columns), where the worst-case
querying communication complexity grows to linear, defeating the
purposes of adopting ORAM in the first place.

To solve the efficiency-expressiveness dilemma, a line of recent
works [16, 99] explore how fully homomorphic encryption (FHE)
can be used to construct EDB systems. In particular, [16] proposes
a cross-scheme FHE infrastructure that can be used to implement

https://orcid.org/0009-0009-9341-124X
https://orcid.org/0000-0003-0467-6203
https://orcid.org/0000-0001-7854-1155
https://orcid.org/0009-0004-3925-9607
https://orcid.org/0000-0002-2393-3634
https://orcid.org/0000-0002-9767-4233
https://orcid.org/0000-0002-8791-0597
https://orcid.org/0000-0002-3959-338X

Zhou Zhang et al.

Table 1: Runtime Analysis of 16-bit Precision TPC-H Q6 [37]
on HEDA [99],HE3DB [16] and ArcEDB.

Scheme Filter (s) Aggregation (s) Total (s)

HEDA [99] 11758 99.7% 32 0.3% 11790 100%
HE3DB [16] 1363 93.4% 97 6.6% 1460 100%
ArcEDB 91 48.9% 95 51.1% 186 100%

a comprehensive list of common SQL query statements, including
SELECT, WHERE, GROUP BY, ORDER BY, JOIN, etc. Unfortunately, the
query expressiveness of [16] does come at the price of usability is-
sues, especially when compared to the less expressive solution [72].
Hence, in its current state, we observe the following two main
obstacles confronting FHE-based EDB frameworks:
• Limited Data Precision: Most existing FHE-based EDB frame-

works [16, 99] attain faster computation speed at the cost of lower
data precision. For example, even the most recent work [16] can
only perform end-to-end SQL evaluation over encrypted data up
to 32-bit precisions. It is obvious that such loss of data precision
can be fatal in real-world DB systems, especially in specialized data
management systems such as time-series databases. In such cases,
complex data types, such as the DATE and TIMESTAMP attributes,
are often encoded into large-size integers, where a loss of precision
can defeat the purpose of the entire system.
• Slow Evaluation Speed: Evaluating complex SQL statements

over data at scale requires a huge amount of homomorphic opera-
tions, where the dominant computations are the (high-precision)
homomorphic comparisons between ciphertexts. For instance, as il-
lustrated in Table 1, while HE3DB [16] achieves better performance
than HEDA [99], it spends the most amount of computation time
in producing filtering results. In particular, when performing 16-bit
precision TPC-H Q6 [37] on a 1K-row database, 93% of the overall
query evaluation time is consumed by the filtering process. There-
fore, completing high-precision comparisons over a large volume of
encrypted entries is one of the biggest bottlenecks against efficient
EDB designs.

1.1 Our Contribution
To address the above challenges, we propose ArcEDB, an FHE-based
encrypted database framework that can simultaneously achieve
arbitrary-precision data processing and low-latency query evalua-
tion. Specifically, we first build a new FHE infrastructure based on
a variant of the modular fully homomorphic encryption (MFHE)
scheme equipped with novel encoding techniques and advanced
homomorphic operators tailored for SQL processing. Next, building
upon the MFHE infrastructure, we formalize the abstract data types
to establish a set of standard application program interfaces (APIs)
for the efficient evaluation of large-precision SQL queries, where
the queries can be composed of a complex combination of filtering,
aggregation, and non-polynomial functions (e.g., ORDER BY). The
main contributions of ArcEDB are summarized as follows.

• A New Encrypted SQL Evaluation Infrastructure: We
propose new data encodings, ciphertext types, and operator
designs to efficiently evaluate complex SQL over arbitrary-
precision encrypted data. To the best of our knowledge,

ArcEDB provides the first purely FHE-based infrastruc-
ture that supports arbitrary-precision composite SQL with
highly expressive clauses, such as unbounded-depth filter-
ing, arithmetic aggregation (e.g., SUM, COUNT) and advanced
logic aggregation (e.g., ORDER BY).

• Arbitrary-Precision Amortized FHE Comparison:
Leveraging our DB-specific modular FHE ciphertexts, we
devise a new segment-merging strategy to extend a low-
precision comparison to the arbitrary-precision homomor-
phic comparison operator ArbHCMP. Furthermore, we also
show how to batch ArbHCMP to efficiently filter large num-
bers of data rows.

• Synchronized Sorting and Aggregation: To the best of
our knowledge, ArcEDB is the first FHE-based EDB frame-
work that supportsmulti-column synchronized aggregation.
More concretely, we can efficiently sort an EDB column
to generate a particular order, and synchronize such order
across all of the EDB columns for subsequent data retrieval
and processing.

• Performance Improvements: We show that ArcEDB out-
performs the best-performing FHE-based EDB implementa-
tions on all SQL microbenchmarks, and is on average 20×
faster than the state-of-the-art (SOTA) on end-to-end SQL
benchmarks. We demonstrate that using ArcEDB, an en-
crypted query over time-series databases can finish within
one minute. Our code is publicly available1.

1.2 Related Works
1.2.1 Outsourced Encrypted Databases. Over the past decade, a
plethora of protocol and system designs are proposed to efficiently
execute SQL queries over encrypted data [6, 7, 10–12, 16, 34, 39,
40, 43, 48, 56, 63, 69, 72, 74, 84, 91, 94, 95, 97–99, 105, 107–110,
113]. We focus on existing EDB designs with a special emphasis on
outsourced EDB schemes.

Securely processing outsourced data over the cloud is one of
the most common applications of EDB [16, 56, 72, 91, 94, 97, 99].
We see two main lanes of research in the area of outsourced
EDB: i) storage-centric and ii) query-centric. Protocols such as
ORAM [22, 41, 43, 93, 102] are considered as storage-centric
protocol, since such protocols perform extremely well (poly-log
complexity) at obliviously storing and retrieving encrypted data.
Nonetheless, as mentioned above, storage-centric protocols are
generally not efficient at handling composite SQL statements
over multi-dimensional EDBs. In contrast, dedicated protocols
such as [16, 40, 48, 56, 72, 91, 92, 94, 97, 99, 104] are propose to
enable fast evaluation of complex queries over encrypted data,
and are therefore classified as query-centric EDB protocols. Un-
fortunately, a number of such constructions, especially schemes
based on searchable encryption [21, 38, 56, 91, 94] and order-
preserving encryption [1, 75, 97], are challenged by leakage-abuse
attacks [20, 40, 52–54, 64, 67, 70, 71, 90, 96, 112]. Recently, FHE-
based protocols [16, 56, 99] gain increasing popularity in imple-
menting EDB, attaining both expressive query evaluation and prov-
able security. However, as further elaborated in Section 1.2.2, the

1https://github.com/zhouzhangwalker/ArcEDB

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

Table 2: Qualitative Comparisons Between Ciphertext-Ciphertext Homomorphic Comparison Algorithms

Lu Cheon Kortekaas Iliashenko Antonio PEGASUS Liu SortingHat TFHE-rs HE3DB Ours
et al. [79] et al. [28] [72] et al. [62] et al. [55] [78] et al. [76] [32] [111] [16]

Ciphertext type+ RLWE RLWE MRLWE RLWE MLWE LWE LWE MLWE MLWE LWE MRLWE
Encoding Exponent Slot Boolean Boolean Boolean Coeff Coeff Boolean Coeff Coeff Exponent

32-bit precision % ! ! ! ! % ! ! ! ! !

Arbitrary precision % n∗ ! n∗ ! % n∗ ! ! % !

Equality ! % ! ! ! ! ! ! ! ! !

Unbounded depth % % % % ! ! ! ! ! ! !

Batching % ! ! ! % % % % % % !

Aggregation++ % ! ! % ! ! ! ! ! ! !
+Ciphertext type refers to the ciphertext format defined in Section 2.1, including LWE, RLWE, Modular LWE (MLWE), and Modular RLWE (MRLWE).

∗Improving precision requires larger parameters. ++Supporting encrypted aggregations over comparison results.

performance penalties induced by FHE computations are still the
main barrier against its real-world deployment.

1.2.2 Comparing Encrypted Data over FHE. As sketched in Table 1,
the single most important limiting factor to the performance of FHE-
based EDB is the excessive amount of homomorphic comparisons
that stem from the filtering and logic aggregation statements. Here,
we give a comprehensive review of existing homomorphic compar-
ison algorithms and their computational characteristics. Roughly
speaking, ciphertext-ciphertext comparison over FHE can be im-
plemented based on two main approaches: i) leveled comparison
and ii) unbounded-depth comparison. In what follows, we discuss
the benefits and drawbacks of each of the approaches.

Leveled Homomorphic Comparison: As detailed in [27, 28,
62], leveled homomorphic comparison methods typically approxi-
mate the comparison function using high-degree polynomials. In
this way, the computation of homomorphic comparison is trans-
formed into the evaluation of a univariate polynomial over the
input ciphertexts, and the overall latency can be amortized using
the single instruction multiple data (SIMD) properties of the BFV
or CKKS ciphertext. Unfortunately, these methods face two funda-
mental challenges when applied to encrypted databases. First, the
depth (i.e., degree) of the polynomial needs to be known a-priori,
since the depth determines the encryption parameters used to enci-
pher the database. However, when run-time queries demand the
evaluation of a polynomial deeper than the pre-defined maximum
depth, the entire database needs to be re-encrypted using a new set
of encryption parameters, incurring prohibitive overheads to the
protocol participants, especially the client. Second, the polynomial
approximation techniques in [27, 28] do not directly support en-
crypted aggregations over results from ranged equality tests (e.g.,
≥). The main reason here is that, due to the intrinsic continuity of
the approximation polynomial, the comparison result of two equal
inputs will become 1/2 (instead of 1 for true or 0 for false).

Unbounded-Depth Homomorphic Comparison: Different
from leveled homomorphic comparisons, unbounded-depth homo-
morphic comparisons [16, 32, 55, 76, 78] mainly adopts the pro-
grammable bootstrap operator (PBS) proposed in [29] to carry out
ciphertext comparisons. By leveraging its inherent bootstrapping
capability, PBS-based homomorphic comparison schemes can evalu-
ate arbitrarily deep comparison trees with fixed encryption param-
eters. Consequently, many FHE-based EDB solutions [16, 72, 99]

prefer using unbounded-depth comparisons to implement the filter-
ing [16, 99] and sorting [16]. Despite the usability benefits, many
existing unbounded-depth FHE comparisons [16, 32, 55, 76, 78] suf-
fer from both low data precision and slow efficiency. In fact, as also
elaborated in Table 2, most of the existing homomorphic compari-
son methods (including many of the leveled comparison schemes)
cannot compare ciphertexts that encrypt ≥ 32-bit plaintext values
in an efficient manner. To mitigate the deficiency in precision, some
works [32, 55] seek a bit-wise encryption approach, where each
ciphertext only encrypts one bit of the plaintext value. While bit-
wise encryption can be used to achieve arbitrary-precision homo-
morphic comparison, such approaches often result in even slower
performance and large communication costs when applied to EDB
applications. Therefore, one of the primary motivations of this work
is to design a homomorphic comparison scheme tailored for EDB
queries that simultaneously achieves unbounded comparison depth,
fast evaluation speed and arbitrary data precision.

Remark: We acknowledge the substantial body of work [32, 80,
81] on ciphertext-plaintext comparisons, which are also important
in many applications [24, 32, 33, 83]. However, as illustrated in Ta-
ble 1, comparisons between large numbers of ciphertexts constitute
the absolute majority of the computations in evaluating composite
SQL statements, and therefore is the main focus of this work.

2 FHE PRIMITIVES
In this section, we give an overview of the ciphertext types and key
homomorphic operators in Section 2.1 and Section 2.2, respectively.

In terms of notations, we use bold lowercase letters (e.g., a)
for vectors, tilde lowercase letters (e.g., 𝑎) for polynomials, and
bold uppercase letters (e.g., A) for matrices. Throughout this work,
We use 𝜆 to denote the security parameter and 𝑝/𝑃 for different
plaintext moduli (generally 𝑃 > 𝑝). 𝑞/𝑄/𝑄 ′ indicate ciphertext
moduli with varying sizes (generally 𝑄 > 𝑞), and 𝑛/𝑁 /𝑁 ′ specify
lattice dimensions (generally 𝑁 > 𝑛). Z𝑞 refers to the set of integers
modulo 𝑞. We define 𝑅𝑁 and 𝑅𝑁,𝑄 denote Z[𝑋]/(𝑋𝑁 + 1) and
Z[𝑋]/(𝑋𝑁 + 1) mod 𝑄 . For a comprehensive list of notations and
terminologies, please refer to Appendix A.

2.1 FHE Ciphertexts Types
Similar to previous encrypted databases [16, 99], we adopt a cross-
scheme approach that utilizes all of the BFV [18, 45], TFHE [29],

Zhou Zhang et al.

CKKS [26] and GSW [51] FHE schemes along with the-state-of-
the-art optimizations techniques [15, 17, 25, 30, 57–59, 61, 73, 78].
In what follows, we review the basics of the fundamental FHE
ciphertext types, modular FHE schemes, and FHE operators.

2.1.1 Fundamental Ciphertext Types. We use three types of fun-
damental FHE ciphertexts: learning-with-errors (LWE) ciphertext
LWE, ring-learning-with-errors (RLWE) ciphertextRLWE, and ring-
Gentry-Sahai-Waters (GSW) ciphertext RGSW.
• LWE𝑛,𝑞s (𝑚): We define an LWE ciphertext that encrypts only

a single message𝑚 ∈ Z𝑝 under the secret key s ∈ Z𝑛𝑞 as follows.

LWE𝑛,𝑞s (𝑚) = (𝑏, a) = (< −a, s > +Δ𝑚 + 𝑒, a) . (1)

where a ∈ Z𝑛𝑞 and 𝑒 ∈ Z𝑞 . Δ =

⌈
𝑞
𝑝

⌋
is a scaling factor to protect the

least significant bits of the message from the noises.
• RLWE𝑁,𝑄

𝑠
(�̃�): An RLWE ciphertext is formulated as

RLWE𝑁,𝑄

𝑠
(�̃�) = (𝑏, 𝑎) = (−𝑎 · 𝑠 + Δ�̃� + 𝑒, 𝑎) . (2)

for a polynomial of encoded messages �̃� ∈ 𝑅𝑁,𝑃 under a secret key
𝑠 ∈ 𝑅𝑁,𝑄 and Δ =

⌈
𝑄
𝑃

⌋
.

• RGSW𝑁 ′,𝑄 ′

𝑠
(𝑚): Given a decomposition size 𝑙 , the RGSW en-

cryption of a message𝑚 ∈ Z𝑝 under the secret key s ∈ R𝑁 ′,𝑄 ′ is
defined as RGSW𝑁 ′,𝑄 ′

𝑠
(𝑚) = (B,A) ∈ Z2𝑙×2

𝑄 ′ .
The concrete constructions of RGSW can be found in [16, 51, 68,

82]. Here, we can simply consider an RGSW ciphertext as a tuple
of two 2𝑙-degree RLWE ciphertexts.

It can be observed that all of the above types of ciphertexts
contain intrinsic noises (e.g., 𝑒 in LWE and 𝑒 in RLWE) that are
amplified by the homomorphic operators.

2.1.2 Modular Homomorphic Encryption. As mentioned, while
fixed-size FHE ciphertexts can accelerate encrypted computations,
such ciphertexts often result in degradations on the plaintext accu-
racy. Therefore, in this work, we make use of a particular variant
of MFHE to solve the accuracy-performance dilemma. Specifically,
we define the modular version of the LWE ciphertexts as�LWE

𝑛,𝑞

s (�̂�) =
(
LWE(𝑚0), · · · , LWE(𝑚𝜔−1)

)
, (3)

where �̂� = {𝑚0,𝑚1 . . . ,𝑚𝜔−1} =
∑𝜔−1
𝑖=0 𝑚𝑖𝛽

𝑖 ∈ Z𝑃 for some large
plaintext modulus 𝑃 , and𝑚𝑖 ∈ Z𝑝 for some small plaintext modulus
𝑝 < 𝑃 . Essentially, �LWE is a series of LWE ciphertexts, where each
LWE encrypts a radix-𝛽 decomposed chunk of the large integer �̂�.
Similarly, we define the modular version of the RLWE ciphertext as�RLWE

𝑁,𝑄

𝑠 (ˆ̃𝑚) =
(
RLWE(�̃�0), · · · ,RLWE(�̃�𝜔−1)

)
, (4)

where �̃�𝑖 =
∑𝑁−1

𝑗=0 𝑚𝑖, 𝑗𝑋
𝑗 ∈ 𝑅𝑁,𝑝 , and ˆ̃𝑚 = {�̃�0, �̃�1, . . . , �̃�𝜔−1} =∑𝜔−1

𝑖=0 �̃�𝑖𝛽
𝑖 ∈ 𝑅𝑁,𝑃 for some radix base 𝛽 . In other words, here, a

large plaintext polynomial ˆ̃𝑚 ∈ 𝑅𝑃 is cut into 𝜔 chunks of �̃�𝑖 ∈ 𝑅𝑝 ,
where each �̃�𝑖 is encrypted as an RLWE ciphertext RLWE(�̃�𝑖).

Throughout this work, we use �RLWE[𝑖] (resp.�LWE[𝑖]) to refer to
the 𝑖-th ciphertext RLWE(�̃�𝑖) (resp. LWE(𝑚𝑖)) in �RLWE(ˆ̃𝑚) (resp.�LWE(�̂�)).

Remark: We note that the above definition is slightly differ-
ent from the general modular FHE ciphertexts formulated in [14].

The main reason here is that the above modular ciphertext def-
initions are tailored for high-precision EDB operations, such as
filter-aggregation, rather than general computations. In Section 4,
we show how homomorphic functions can be efficiently applied
over such modular ciphertexts.

2.2 Homomorphic Operators
Here, we explain the key homomorphic operators used throughout
this work. We abbreviate the ciphertext notations to shorthands
such as LWE(𝑚) and RLWE(𝑚) when the parameters are irrelevant
from the discussion.

2.2.1 Homomorphic Arithmetic Operators. We primarily use homo-
morphic arithmetic operators to evaluate linear (i.e., polynomial)
operations over RLWE ciphertexts. In particular, all arithmetic oper-
ators act over RLWE ciphertexts can be used in a single-instruction-
multi-data (SIMD) manner, where one execution of an operator
carries effects over a batch (usually all of the 𝑁 plaintext elements
in �̃� encrypted in RLWE𝑁,𝑄

𝑠 (�̃�)).
• +, − and ·: We use standard ciphertext addition, subtraction,

and multiplication operators over RLWE ciphertexts.
• 𝑝𝑜𝑙𝑦 (RLWE(�̃�)): For any polynomial 𝑝𝑜𝑙𝑦 (𝑥),

𝑝𝑜𝑙𝑦 (RLWE(�̃�)) represents the homomorphic evaluation of
𝑝𝑜𝑙𝑦 over the input ciphertext RLWE(�̃�) encrypting �̃�.
• Automorphism(RLWE(�̃�), 𝔡): For a given ciphertext

RLWE(�̃�[𝑋]), Automorphism(RLWE(�̃�[𝑋], 𝔡) outputs a new
ciphertext RLWEout (�̃�[𝑋𝔡]), i.e., the coefficient of the plaintext
polynomial is rearranged by the parameter 𝔡.
• ExternalProduct(RGSW(𝑑),RLWE(�̃�)): ExternalProduct

is a special type of homomorphic multiplication, where
ExternalProduct(RGSW(𝑑),RLWE(�̃�)) = RLWE(𝑑 · �̃�). In
general, ExternalProduct tends to be faster and generates signif-
icantly less noise compared to a straightforward homomorphic
multiplication. This is why we will use external products as the
basic operator in ArcEDB.

More details on the exact cryptographic properties of the above
operators can be found in [16, 18, 23, 29, 50].

2.2.2 Homomorphic Logic Operators. Different from homomorphic
arithmetic operators, homomorphic logic operators are better at
handling deep chains of non-polynomial functions. In this work,
we mainly utilize the following three homomorphic logic operators.
• CMUX(RGSW(𝔱), LWE(𝑎), LWE(𝑏)): For inputs LWE(𝑎) and

LWE(𝑏), given a control signal RGSW(𝔱) that encrypts a binary
plaintext 𝔱 ∈ {0, 1}, CMUX(RGSW(𝔱), LWE(𝑎), LWE(𝑏)) homomor-
phically computes 𝔱 ? LWE(𝑎) : LWE(𝑏), i.e., the function selects
LWE(𝑎) if 𝔱 = 1 and LWE(𝑏) if 𝔱 = 0.
• BlindRotate(LWE𝑛,𝑞s ,BK, ˜𝑇𝑉): BlindRotate takes as input

an LWE ciphertext LWE𝑛,𝑞s , a bootstrapping key BK, and a poly-
nomial ˜𝑇𝑉 (i.e., the test vector in [29]), and generates an RLWE
ciphertext RLWE(𝑋 −𝜌 ˜𝑇𝑉), where 𝜌 =

⌈
2𝑛 · (𝑏 +∑ℓ

𝑖=1 𝑠𝑖 · 𝑎𝑖)/𝑞
⌋
.

• HomGate(LWE(𝑚0), LWE(𝑚1), OP): Given two LWE cipher-
texts LWE(𝑚0) and LWE(𝑚1) with a two-input logic gate
OP, HomGate(LWE(𝑚0), LWE(𝑚1), OP) produces LWE(OP(𝑚0,𝑚1)).
Here, OP includes logic operations such as AND, OR, NAND, etc.

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

To find more details on the SIMD homomorphic logic opera-
tors and other operators such as RLWEtoLWEs, LWEstoRLWE and
LWEtoRGSW, we refer the readers to the related literature [23, 30, 77].

2.2.3 Ciphertext Type Conversion. Converting between ciphertext
types is the key design element in enabling consecutive SQL state-
ments to be executed over encrypted data. Here, we summarize the
conventional conversion algorithms proposed in [23, 29, 78].
• RLWEtoLWEs(RLWE(�̃�)): RLWEtoLWEs converts RLWE𝑁,𝑄

𝑠
ci-

phertext to a set of 𝑁 LWE𝑛,𝑞s ciphertexts. As defined in [29],
RLWEtoLWEs outputs 𝑁 LWE ciphertexts ct = (𝑐𝑡0, 𝑐𝑡1, ..., 𝑐𝑡𝑁−1)
where 𝑐𝑡𝑖 encrypts the 𝑖-th plaintext coefficient of �̃�.
• LWEstoRLWE(LWE0, · · · , LWE𝑁−1): LWEstoRLWE converts a

set of 𝑁 LWE𝑛,𝑞s ciphertexts to one RLWE𝑁,𝑄

𝑠
ciphertext, i.e., the

inverse of RLWEtoLWEs.
• LWEtoRGSW(LWE,BK): LWEtoRGSW converts an LWE𝑛,𝑞s cipher-

text to an RGSW𝑁 ′,𝑄 ′

s̃ ciphertext. LWEtoRGSW is generally used to
convert an LWE ciphertext to an RGSW switching signal for the
CMUX operator.

3 FRAMEWORK OVERVIEW
In this section, we first outline the overall ArcEDB framework in
Section 3.1, and then discuss the data structures and application-
programming interfaces in Section 3.2 and Section 3.3.

3.1 SystemWorkflow
Similar to prior works [16, 99], executing queries over ArcEDB
consists of three primary steps: client data encryption, client query
encryption, and server query evaluation. Inwhat follows, we outline
the main procedures for each of the steps, which are also illustrated
in Figure 1.

➀ Client Data Encryption: During this step, the main task
involves homomorphically encrypting all the data tables in the
databaseD by the client. Here, each table T ∈ D, will be encrypted
utilizing the TableEncrypt function, producing the encrypted ta-
ble [T]. More specifically, an encrypted Table [T] comprises a
number of encrypted data columns that can be categorized into two
classes based on the attribute properties, namely, the filter attribute
columns (Attrcmp) and the aggregation attribute columns (Attragg).
Different classes of attribute columns can have different encrypted
data types and ciphertext structures, which will be further elabo-
rated in Section 3.2. After table encryption, the client generates the
associated evaluation keys (i.e., BK and KSK) and transfers both the
encrypted tables [T] along with the evaluation keys to the server.

➁ Client Query Encryption: When querying the outsourced
encrypted table [T], the client initiates the QueryEncrypt func-
tion to encrypt the private data in the query. In this work,
we consider the query Q follows a typical SQL SELECT form,
where Q = (P0♦P1♦ . . . ♦P| Q |−1,Attr

agg,Agg). Here, each P𝑖 =

(Attrcmp
𝑖

, cmp𝑖 , 𝑏𝑖) represents a predicate consisting of the 𝑖-th fil-
tering attribute Attrcmp

𝑖
, the comparison operator cmp𝑖 , and a pred-

icate value 𝑏𝑖 . Different predicates are concatenated with some
logic function ♦, which can be AND ∧ or OR ∨. Agg denotes the
aggregation function to be applied on the aggregation attribute
Attragg. The QueryEncrypt function homomorphically encrypts
the predicate values in each of P𝑖 , yielding the encrypted predicate

[P]𝑖 ciphertexts. Subsequently, we obtain the encrypted query [Q]
formatted as ([P]0♦ . . . ♦[P] | Q |−1,Attr

agg,Agg). In the end, [Q]
is dispatched to the server.

➂ Server Query Evaluation: Upon receiving [Q], the server un-
dertakes its evaluation using the Query function on the encrypted
table [T]. The main computations involved in homomorphic query
evaluations are the homomorphic filtering and homomorphic ag-
gregation functions. First, in the filtering stage, each encrypted
predicate [P]𝑖 is evaluated over the encrypted table using the
FilterPred (more details in Section 3.3) function and produces
the filtered result [F]𝑖 , which is a set of ciphertexts encrypting 1 if
the predicate P𝑖 on such item is true and 0 if false. Next, after the
predicate evaluation, the filtering results {[F]𝑖 } will be homomor-
phically chained together using the homomorphic logical operators
(i.e., AND or OR) defined in Section 2.2 and produce a single filter-
ing result [F]. Here, [F] is an array of |T |row LWE ciphertexts
encrypting either 1 (true) or 0 (false), indicating whether the 𝑖-th
row of T is selected or not. Lastly, the aggregation functions Agg
are executed over the aggregated Attragg column to produce the
final result [R], which can be either �LWE or �RLWE ciphertexts,
depending on the aggregation function. Finally, the round of query
evaluation finishes when the client decrypts [R] that is returned
from the server.

3.2 Data Encoding and Structure
In this section, we provide a deeper dive into the exact data types
and structures used to encrypt the data tables in ArcEDB. We de-
velop a layered approach to better decouple the high-level EDB
data structures and low-level cryptographic primitives (as further
illustrated in Figure A1). Below, we detail the concrete construc-
tions for the three proposed layers: the homomorphic ciphertext
layer (Section 3.2.1), the encrypted data type layer (Section 3.2.2),
and the encrypted table structure layer (Section 3.2.3).

3.2.1 Homomorphic Ciphertext Layer. The core of ArcEDB is the
set of modular homomorphic ciphertexts defined to better aid the
evaluation of large-precision SQL queries. The main ciphertext
types and plaintext encodings adopted in ArcEDB are as follows.
•�LWE: The modular variant of the LWE ciphertext as defined

in Section 2.1.2. �LWE is mainly employed for encrypting Boolean
values in ArcEDB. Meanwhile, �LWE can also encrypt the interme-
diate results during the query evaluation.
• Coefficient/Slot/Exponent-based �RLWE: The modular version

of RLWE ciphertext defined in Section 2.1.2. The plaintext encoding
for �RLWE is much more complex than that of �LWE. In addition to
the slot [101] and the coefficient [15, 61] encoding methods that
are commonly used in existing FHE-based EDB frameworks, we
also introduce a new exponent encoding approach in ArcEDB to
handle homomorphic comparisons between high-precision data.
Inspired by [32, 79, 81], we employ a specific mapping function 𝜋 :
Z→ 𝑅 with the property 𝜋 (𝑎) = 𝑋𝑎 to embed the plaintext integer
𝑎 ∈ Z into a polynomial in 𝑅. In particular, when encrypting a
large-precision value 𝑎 = {𝑎0, 𝑎1 · · · , 𝑎𝜔−1}, the modular exponent
RLWE ciphertext is defined as:

�RLWE
(
𝜋 (𝑎)

)
=
(
RLWE(𝑋𝑎0), · · · ,RLWE(𝑋𝑎𝜔−1)

)
. (5)

Zhou Zhang et al.

Sales Time

12

17

21

201

171

142

145

Income

SELECT SUM(Sales) FROM Business
WHERE Income > 160
AND Time > 2023:12:01
GROUP BY ID
ORDER BY ID

1

0

0

1

ArbHCMP SIMDArcHCMP

Encrypted Boolean Encrypted INT Encrypted TIMESTAMP

…

Home
Gate

......

54

2023:12:01

2023:12:01

2023:12:30

2023:12:02

...

=

(Amortized) Homomorphic Filtering
Section 4

Encrypted Query [𝒬]

0

1

1

1

…

1

0

0

1

…

Complex Homomorphic Aggregation
Section 5

Homomorphic Operator

Income > 160 Time > 2023:12:01
ID

8

1

2

2

...

Encrypted Table [𝒯]

[ℱ0]

GROUP
BY

[ℱ 𝐼𝐷 −1]

[ℱ1]

Inner
Product

Inner
Product

Inner
Product

.
.
.

.
.
.

[ℛ0]

[ℛ1]

[ℛ 𝐼𝐷 −1]

Sort
Synchronize

[ℛ𝐼𝐷 𝐼𝐷 −1
]

[ℛ𝐼𝐷0]

[ℛ𝐼𝐷1]

.
.
.

.
.
.

Figure 1: The system-level overview of ArcEDB.

We point out that, while exponent encoding is useful at comparing
large-precision data, it is not previously known how such encoding
can be adopted in end-to-end SQL evaluation due to the ciphertext
incompatibility issues. In Section 4, we further study the low-level
characteristics of exponent encoding, and show designs of efficient
ciphertext conversion algorithms to effectively make use of such
encoding in FHE-based EDB.
• Coefficient/Exponent-based �RGSW: The modular version of

the RGSW ciphertext defined in Section 2.1.2. In ArcEDB, �RGSW
mainly has two types of plaintext encodings: coefficient and expo-
nent. Different from modular RLWE ciphertexts, modular RGSW
ciphertexts encrypt plaintexts using negative exponents. In other
words, when encrypting 𝑏 = {𝑏0, 𝑏1, · · ·𝑏𝜔−1}, the corresponding
ciphertext is formulated as:�RGSW(

𝜋 (−𝑏)
)
=
(
RGSW(𝑋 −𝑏0), · · · ,RGSW(𝑋 −𝑏𝜔−1)

)
(6)

3.2.2 Encrypted Data Type Layer. Building upon the low-level FHE
ciphertexts, we define four principal data types that form as the
fundamental way of encrypted numerics, encrypted timestamps,
encrypted strings, and encrypted Booleans.
• Encrypted Numerics: Numeric data types are found exten-

sively throughout SQL queries to store numerical values. This in-
cludes both exact numerical types like integers (EINT, EBIGINT)
and floating-point numbers (EFLOAT). Under the context of
ArcEDB, a column data denoted as the coefficients of a polyno-
mial 𝑎 is of a numeric type (e.g., EINT) when 𝑎 is encrypted into
any one of the modular RLWE ciphertext variants depending on
its encoding method: coefficient (�RLWE(𝑎)), slot (�RLWE

(
E(𝑎)

)
), or

exponent (�RLWE
(
𝜋 (𝑎)

)
). On the other hand, approximate numbers

are first converted to fixed-point integer representations and then
encrypted just as exact numerics.
• Encrypted Timestamps: Time-related SQL data types, such

as ETIMESTAMP and EDATE, are designed to represent time values
accurately. These types are translated into high-precision integers
and then encrypted as modular RLWE ciphertexts. While existing
approaches [16, 99] face precision limitations and do not natively
support time data types, we are able to handle time data with
arbitrary-precision �RLWE ciphertexts, enhancing the functionality

of encrypted databases. In general, timestamps are encrypted using
exponent encodings, as such attribute columns are mostly used in
comparisons instead of aggregations.
• Encrypted Strings: Encrypted string data types, such as

CHAR and TEXT, are used to store textual values. Similar to time
data types, string values in ArcEDB need to be encoded to integers
with extremely large precision such that arbitrarily long strings
can be correctly decoded after query evaluation. Encrypted string
types in ArcEDB are encrypted as modular RLWE ciphertexts.
• Encrypted Booleans: Binary data types, including EBOOL,

EBINARY and EVARBINARY, represent Boolean data values. Since
Boolean data can only have up to one-bit precision, we do not need
modular ciphertexts, and can directly encrypt the binary values
into (R)LWE ciphertexts.

3.2.3 Encrypted Table Structure Layer. Based on the above two
layers of abstractions, we can define table-level data structures for
ArcEDB. As mentioned in Section 3.1, by default, the entire data
table T is encrypted column-by-column using (modular) RLWE
ciphertexts, where each column is divided into sets of 𝑁 -sized data
chunks. Each chunk is encoded into degree-𝑁 plaintext polynomials
ˆ̃𝑚𝑖 . However, depending on the actual applications, we can have
the following three concrete types of table-level data structures.
• Filtering Columns: For attributes that are mainly used in

filtering statements (e.g., TIMESTAMP, TEXT), each column ˆ̃𝑚 is
encrypted into modular RLWE ciphertexts with exponent encoding,
i.e., �RLWE

(
𝜋 (ˆ̃𝑚)

)
.

• Aggregation Columns: Since coefficient encoding is more
efficient in performance homomorphic aggregations, aggregation
attributes (e.g. Salary), are by default encrypted into �RLWE(ˆ̃𝑚𝑖).
• Sorting Columns: We point out that, when we need to syn-

chronize the order of a particular attribute column to other columns,
it is much more efficient to encrypt such column using RGSW ci-
phertexts in a bit-decomposed manner. The formal constructions
can be found in Section 5.2 and Appendix C.

Remark: It is noted that some attribute columns can be used
as both filtering and aggregation columns. The straightforward
approach is to encrypt them in both forms. To avoid excessive en-
cryption burdens on the client side, ArcEDB offers ciphertext format

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

conversion methods in Section 5.1 to convert exponent modular
RLWE ciphertext into coefficient modular RLWE ciphertext.

3.3 ArcEDB API
Utilizing the rich class of data types, we specify the APIs of ArcEDB
for both client and server described as follows.
• TableEncrypt(T) → [T]: Encrypts the database table T and

yields the encrypted table [T]. This process involves encrypting
both the filter and the aggregation columns in T .
• QueryEncrypt(Q) → [Q]: Encrypts a SQL query Q =

(P0♦P1♦ . . . ♦P| Q |−1,Attr
agg,Agg) into an encrypted query [Q] =

([P]0♦[P]1♦ . . . ♦[P] | Q |−1,Attr
agg,Agg). In ArcEDB, each en-

crypted predicate [P]𝑖 is always encrypted in the form of a negative
exponent modular RGSW ciphertexts �RGSW(

𝜋 (−𝑏𝑖)
)
, where 𝑏𝑖 is

the corresponding predicate value 𝑏𝑖 .
• Query([Q], [T]) → [R]: Evaluates an encrypted query [Q] =

([P]0♦[P]1♦ . . . ♦[P] | Q |−1,Attr
agg,Agg) on the encrypted table

[T]. Essentially, the querying process is to invoke the FilterPred
and Aggregation APIs consecutively, detailed as follows.

- FilterPred([P], [T]) → [F]: Filters an encrypted pred-
icate [P] on the encrypted table [T] and outputs |T |row LWE
ciphertexts [F] = LWE0, · · · LWE | T |row−1. The function utilizes
advanced homomorphic comparison operators HCMP, ArbHCMP, and
SIMDArbHCMP, detailed in Section 4, to enhance the precision and
efficiency of encrypted predicate evaluation.

- Aggregation([F],Attragg,Agg, [T]) → [R]: Aggregates a
specified column Attragg by a function Agg on the encrypted table
[T] and the encrypted filter result [F].

ArcEDB supports both arithmetic aggregation (such as SUM and
COUNT) and logic aggregation (such as MIN, MAX and Top-k) func-
tions. The detail is constructed in Section 5.
• GROUP BY([Q],Attrgrpby, [T]) → {[R]𝑖 }: Evaluates the

SELECT statement query [Q] with the GROUP BY attribute Attrgrpby
on the encrypted table [T]. Similar to [16, 99], to implement
GROUP BY, we issues multiple copies of the query [Q], each aug-
mented with an additional equality test for the group attribute.
• ORDER BY(Attrsort, [T]) → [T]′: Evaluates the ORDER BY

statement on the encrypted table [T] based on a target attribute
Attrsort. ORDER BY is essentially a series of homomorphic compar-
isons appended by data swapping based on the comparison results.
Note that existing approaches [16] only focus on sorting the Attrsort
column alone and do not account for the synchronization of other
columns based on the sorted column. ArcEDB introduces a novel
homomorphic ORDER BY technique built upon our exponent-based
encoding, enabling efficient synchronized sorting across multiple
columns. More details can be found in Section 5.2.

3.4 Threat Model and Security Guarantees
The security objective of ArcEDB is to protect the outsourced data-
base D owned by the client C against a semi-honest server S,
aligning with previous works [32, 56, 72, 97, 99]. The concrete pub-
lic and private data from the scope of the server is summarized as
follows.
Public Data:
• |T |row, |T |col: the number of rows as well as the number of

columns in the table T ∈ D.

HCMP
Section 4.1

Section 4.2

G
a
t
e
M
U
X

HCMP

HCMP

HCMP

...
G
a
t
e
M
U
X

HCMP

HCMP

HCMP

...

ArbHCMP

Section 4.3

...

S
I
M
D
M
U
X

HCMP

HCMP

HCMP

...

SIMDArbHCMP

...

Figure 2: An overview of the homomorphic filtering in
ArcEDB.

• |Q|: the number of filtering predicates in a SQL query Q.
• Attr, |Attr|: The attribute label (e.g., gender, date) and the range

of the attribute (e.g., |Gender| = 2).
• ♦: The concatenating logic function (e.g., ∧, ∨) between the

filtering predicates in a SQL query.
• Agg: the aggregation functions (e.g., SUM, MIN) in Q.

Private Data:
• T𝑖, 𝑗 , for 𝑖 ∈ |T |row, 𝑗 ∈ |T |col: exact values of the database

items for all T ∈ D.
• P𝑖 ∈ Q, for 𝑖 ∈ |Q|: the predicate values in the SQL query.
Security of ArcEDB: Since all private data is encrypted into

FHE ciphertext. The security of ArcEDB is deeply rooted in the FHE
schemes it employs. Traditional FHE schemes, such as BFV [18],
CKKS [26], and TFHE [29], all guarantee security under chosen
plaintext attacks, which inherently provides ArcEDB with a semi-
honest security on the outsourced database D. Under the premise
of circular security of FHE [19], switching between distinct cipher-
text formats maintains the the overall semi-honest security of the
protocol. It is emphasized that ArcEDB protects not only the data
items but also the intermediate computation results, which provides
security against access patterns and volume leakage attacks [67].

4 (AMORTIZED) HOMOMORPHIC FILTERING
In this section, we delve into the methodology for efficiently fil-
tering large-size DB columns in ArcEDB. Based on the fact that
filtering predicates are essentially a series of comparisons, our fo-
cus is on enhancing the efficiency and precision of comparisons of
ciphertexts. Our approach contains three pivotal components:
• In Section 4.1, we introduce a fast homomorphic compari-

son operator, HCMP, utilizing exponent encoding ciphertext. This
operator is optimized for swift homomorphic filtering within a
constrained precision range.
• In Section 4.2, we extend the precision of HCMP by leveraging

modular homomorphic ciphertexts defined in Section 2.1.2. We

Zhou Zhang et al.

Table 3: Summary of Operation Costs in ArcEDB for Each Homomorphic SQL Statement.

SQL statement #ArbHCMP #HomGate #CMUX #LWEtoRGSW #LWEstoRLWE #+ #· #Automorphism

SELECT | T |row · | Q | | T |row · (| Q | − 1) 0 0 0 0 0 0
SUM 0 0 0 0 1 log2 | T |row 1 log2 | T |row

COUNT 0 0 0 0 0 | T |row − 1 0 0
MIN/MAX | T |row − 1 0 2 | T |row − 1 | T |row − 1 0 0 0 0
GROUP BY | T |row · |Attrgrpby | 0 0 0 0 0 0 0
ORDER BY 0 0 | T |2row − |T |row 0 0 | T |row − 1 0 0
JOIN | T𝑎 |row · | T𝑏 |row 0 0 0 0 0 0 0

| Q | , | T |row , |Attrgrpby | are publicly known to the server.

observe that comparisons between two such ciphertexts can be ef-
ficiently executed by comparing individual chunks and integrating
the results using a homomorphic multiplexer (MUX). Consequently,
we propose a novel homomorphic MUX operator GateMUX, which
is finely tuned to work in conjunction with the outputs of HCMP.
Through the synergistic use of HCMP and GateMUX, we devise an
innovative homomorphic comparison algorithm ArbHCMP, enabling
arbitrary precision filtering in EDB systems.
• In Section 4.3, we aim to further accelerate homomorphic fil-

tering speed based on the batch bootstrapping technique proposed
in [77]. We introduce an innovative amortized homomorphic MUX
operator SIMDCMUX, capable of evaluating multiple MUX operations
with a single round of homomorphic computation. Utilizing the
HCMP and SIMDCMUX operator, we propose the amortized arbitrary-
precision homomorphic comparison operator SIMDArbHCMP to ef-
ficiently filter batches of rows to significantly boost the computa-
tional efficiency and data precision in large-scale EDB systems.

4.1 Limited Precision Filtering
Here, we outline a fast homomorphic comparison algorithm HCMP
to filter items with limited precision.

4.1.1 Exponent Encoding based Comparison. Before delving into
HCMP, we first discuss the exponent encoding ciphertext format,
which is the key inspiration in instantiating HCMP. We first point
out that, existing homomorphic filtering algorithms [16, 99] follow-
ing the PBS procedure [78] proposed in [30] may not be well-suited
for EDB systems due to their relatively low evaluation speed. For
instance, HE3DB [16] relies on the iterative execution of PBS to per-
form comparisons between queried attributes and DB items. How-
ever, the speed of the PBS algorithm is notably slow, and dominates
the computation time (93% as shown in Table 1) in HE3DB [16].

To overcome this issue, we adopt the exponent encoding strategy
as introduced in Section 3.2. Leveraging the exponent encoding,
ciphertext comparisons can be evaluated through simple multipli-
cations, significantly faster than PBS-based approaches. Specifically,
given two log𝑁 -bit integers 𝑎 and 𝑏, the comparison between 𝑎

and 𝑏 can be expressed as:

𝐶 = ˜𝑇𝑉 · 𝜋 (𝑎) · 𝜋 (−𝑏) mod (𝑋𝑁 + 1), (7)

where ˜𝑇𝑉 = 1 + 𝑋 + ... + 𝑋𝑁−1 and 𝜋 (𝑎) = 𝑋𝑎 . The constant term
of𝐶 depends on 𝜋 (𝑎) · 𝜋 (−𝑏) = 𝑋𝑎−𝑏 . If 𝑎 ≤ 𝑏, the polynomial𝑇𝑉
shifts right, making the zeroth coefficient 𝐶 equal to 1. Conversely,
if 𝑎 > 𝑏,𝑇𝑉 shifts left, resulting in the zeroth coefficient of𝐶 being
−1. While the above formulation is an illustration using plaintext
data, we can see that comparisons using exponent encoding are

Algorithm 1: Basic hmomorphic comparison operator
HCMP≤
Input :Two ciphertexts 𝑐𝑡𝑎 = RLWE(𝑋𝑎),

𝑐𝑡𝑏 = RGSW(𝑋 −𝑏) with plain modulus 𝑝 .
Output :An LWE ciphertext 𝑐𝑡𝑂 = LWE(𝑐) where 𝑐 = 1 if 𝑎

≤ 𝑏, otherwise 𝑐 = 0.
1 𝑐𝑡 ← ExternalProduct(𝑐𝑡𝑏 , 𝑐𝑡𝑎) 𝜇 ← 2−1 mod 𝑝

2 ˜𝑇𝑉 ← 𝜇 + 𝜇𝑋 + ... + 𝜇𝑋𝑁−1

3 𝑐𝑡 ← ˜𝑇𝑉 · 𝑐𝑡 + 𝜇 𝑐𝑡𝑂 ← RLWEtoLWEs(𝑐𝑡) [0]
Return :𝑐𝑡𝑂 = LWE(𝑐)

simply shifting polynomial coefficients. Hence, in the following
sections, we show that shift-based comparisons can be implemented
extremely fast over FHE ciphertexts, especially when compared to
PBS-based approaches [16, 99].

4.1.2 Homomorphic Comparison Operator HCMP. Now, we describe
the homomorphic comparison operator HCMP utilizing the expo-
nent encoding. In contrast to the existing approaches [32, 79, 81],
we reformulate one of the comparison inputs as an RLWE cipher-
text representing a database item and another input as an RGSW
ciphertext representing the queried attribute value. The above mod-
ification is tailored for the EDB systems where the number of data
items (i.e., the size of the entire database) are in general orders of
magnitude larger than the number of queried attribute values (i.e.,
usually less than a dozen).

The detailed algorithm for HCMP is provided in Algorithm 1.
For illustrative purposes, we focus on the "less than or equal to"
(≤) comparison to walk through Algorithm 1. On Line 1, the ini-
tial step involves an ExternalProduct between RLWE(𝑋𝑎) and
RGSW(𝑋 −𝑏), yielding 𝑐𝑡 = RLWE(𝑋𝑎−𝑏). Subsequently, on Line
2–3, we construct a test vector ˜𝑇𝑉 = 𝜇 + 𝜇𝑋 + ... + 𝜇𝑋𝑁−1 where
𝜇 denotes the inverse of 2 modulo 𝑝 . In the following phase (Line
4), we evaluate 𝑇𝑉 · 𝑐𝑡 + 𝜇 to obtain RLWE(𝑋𝑎−𝑏 · 𝑇𝑉 + 𝜇). It is
observed that the constant term of RLWE(𝑋𝑎−𝑏 ·𝑇𝑉 + 𝜇) results in
either 𝜇 + 𝜇 = 1 or −𝜇 + 𝜇 = 0, depending on whether 𝑎 ≤ 𝑏. Lastly,
on Line 5, we apply the RLWEtoLWEs function and extract the zeroth
coefficient of RLWE(𝑋𝑎−𝑏 · 𝑇𝑉 + 𝜇) to produce the output LWE
ciphertext 𝑐𝑡𝑂 . The ciphertext 𝑐𝑡𝑂 encrypts either 1 or 0, indicating
whether the data item 𝑎 satisfies the predicate condition. For other
comparison operators like >, ≥, <, ==, and ≠, we only need to
slightly modify the test vector 𝑇𝑉 . Detailed explanations for these
modifications are provided in Table A3.

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

Algorithm 2: Homomorphic MUX operator GateMUX
Input :Three LWE ciphertexts 𝑐𝑡𝑑 = LWE𝑛,𝑞 (𝑑),

𝑐𝑡𝑎 = LWE𝑛,𝑞 (𝑎), 𝑐𝑡𝑏 = LWE𝑛,𝑞 (𝑏), where
𝑑, 𝑎, 𝑏 ∈ {0, 1} and plain modulus 𝑝 .

Input :A bootstrapping key BK.
Output :An LWE ciphertext 𝑐𝑡𝑂 = LWE(𝑑 ? 𝑎 : 𝑏).

1 𝑐𝑡𝑦 = 𝑐𝑡𝑑 + 4𝑐𝑡𝑎 + 2𝑐𝑡𝑏 𝑠𝑐𝑎𝑙𝑒 ← ⌊𝑝/16⌋ , 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← ⌊𝑞/32⌋
2 𝑐𝑡𝑙𝑖𝑛𝑒𝑎𝑟 ← 𝑠𝑐𝑎𝑙𝑒 · 𝑐𝑡𝑦 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡
3 T← {0, 0, 1, 0, 0, 1, 1, 1} ˜𝑇𝑉 =

∑7
𝑦=0

∑𝑛/8−1
𝑗=0 T[𝑦] · 𝑋 𝑗+𝑦𝑛/8

4 𝑐𝑡𝑟𝑜𝑡 ← BlindRotate(𝑐𝑡𝑙𝑖𝑛𝑒𝑎𝑟 ,BK, ˜𝑇𝑉)
5 𝑐𝑡𝑂 ← RLWEtoLWEs(𝑐𝑡𝑟𝑜𝑡) [0]
Return :𝑐𝑡𝑂 = LWE(𝑑 ? 𝑎 : 𝑏)

Algorithm 3: Arbitrary-precision homomorphic compari-
son operator ArbHCMP≤
Input :A modular RLWE ciphertext 𝑐𝑡𝑎 = �RLWE(𝜋 (𝑎)),

where 𝑎 =
∑𝜔−1
𝑖=0 𝑎𝑖 · 𝑁 𝑖 , a modular RGSW

ciphertext 𝑐𝑡𝑏 = �RGSW(𝜋 (−̂𝑏)) where where
𝑏 =

∑𝜔−1
𝑖=0 𝑏𝑖 · 𝑁 𝑖 .

Input :A bootstrapping key BK, modular ciphertext size 𝜔 .
Output :An LWE ciphertext 𝑐𝑡𝑂 = LWE(𝑎 ≤ 𝑏).

1 𝜔 ← 𝑐𝑡𝑎 .𝑠𝑖𝑧𝑒 ()
2 if 𝜔 == 1 then
3 𝑐𝑡𝑂 ← HCMP≤ (𝑐𝑡𝑎 [0], 𝑐𝑡𝑏 [0])
4 else
5 𝑐𝑡𝑑 ← HCMP== (𝑐𝑡𝑎 [𝜔 − 1], 𝑐𝑡𝑏 [𝜔 − 1])
6 𝑐𝑡0 ← ArbHCMP≤(𝑐𝑡𝑎 [0 : 𝜔 − 1], 𝑐𝑡𝑏 [0 : 𝜔 − 1],BK)
7 𝑐𝑡𝜔−1 ← HCMP≤ (𝑐𝑡𝑎 [𝜔 − 1], 𝑐𝑡𝑏 [𝜔 − 1])
8 𝑐𝑡𝑂 ← GateMUX(𝑐𝑡𝑑 , 𝑐𝑡0, 𝑐𝑡𝜔−1,BK)
Return :𝑐𝑡𝑂 = LWE(𝑐)

4.1.3 Limitation of the HCMP. Unfortunately, HCMP suffers from con-
strained precision limited to log𝑁 bits, where 𝑁 is the encryption
parameter for the RLWE ciphertext. While the straightforward way
of increasing precision is to enlarge 𝑁 , larger 𝑁 leads to signifi-
cantly slower computations.

4.2 Arbitrary Precision Filtering
To enhance the precision of HCMP, we leverage modular homomor-
phic encryption schemes defined in Section 2.1.2 and devise a new
selector operator GateMUX to construct the arbitrary-precision com-
parison operator ArbHCMP.

We first discuss how to evaluate comparison on modular cipher-
texts. As mentioned in Section 3.3, in ArcEDB, we split a large
precision 𝜂-bit integer into a sequence of 𝜔 chunks of lower preci-
sion log𝑁 -bit integers, and encrypts the integer chunk by chunk.
The key insight is that, the comparison between two ciphertext
chunks can be conducted individually for each pair of chunks. The
results of these individual comparisons can be linked by a multi-
plexer (MUX) operation to derive the final result. For instance, for
two 2 log𝑁 bit integer 𝑎 = 𝑎1 · 𝑁 + 𝑎0 and 𝑏 = 𝑏1 · 𝑁 + 𝑏0 where

𝑎1, 𝑎0, 𝑏1, 𝑏0 ∈ Z𝑁 . The expression 𝑎 ≤ 𝑏 is equivalent to

𝑎1 == 𝑏1 ? 𝑎0 ≤ 𝑏0 : 𝑎1 ≤ 𝑏1 (8)

Since we can evaluate 𝑎1 == 𝑏1, 𝑎0 ≤ 𝑏0, and 𝑎1 ≤ 𝑏1 separately
using the HCMP operator, the only piece left is to perform a homo-
morphic MUX operation to combine individual comparison results.

While there exists prior works [79] for evaluating homomorphic
MUX operation on individual comparison results, such techniques
work poorly when directly applied to evaluating arbitrary-precision
homomorphic comparison due to the low evaluation speed. The
fundamental issue lies in the incompatibility of the output from
individual comparison results with subsequent combinations. For
instance, the method [79] produce an RLWE ciphertext as the indi-
vidual comparison result and combine these results using leveled
homomorphic ciphertext addition and multiplication. However,
their output RLWE ciphertext format does not inherently support
ciphertext multiplication, incurring additional costs to convert the
ciphertext to be compatible with multiplication. Similarly, the com-
parison result produced by [32] remains incompatible with the CMUX
operator and necessitates the use of LWEtoRGSW to bridge the gap,
which induces a significant amount of performance overheads.

To avoid the above incompatibility issues, we propose a homo-
morphic MUX operator GateMUX that takes as input exactly the
output of our proposed HCMP. Our key insight is to generate the
LWE ciphertext as the individual comparison result (as illustrated
in Line 5 in Algorithm 1) and conducting the MUX operation as
a three-input-one-output homomorphic gate. By leveraging the
inherent capability of LWE ciphertext in performing homomorphic
gate evaluations, we can complete the MUX operation with a single
programmable bootstrapping.

The main procedure of GateMUX basically follows the HomGate
defined in Section 2.2 but with some crucial modifications. As
presented in Algorithm 2, given three LWE ciphertexts 𝑐𝑡𝑑 =

LWE𝑛,𝑞 (𝑑), 𝑐𝑡𝑎 = LWE𝑛,𝑞 (𝑎), 𝑐𝑡𝑏 = LWE𝑛,𝑞 (𝑏), where 𝑑, 𝑎, 𝑏 ∈
{0, 1}. On Line 1–3, we follow the general procedure of HomGate
which performs a linear combination of three input ciphertexts and
results in 𝑐𝑡𝑙𝑖𝑛𝑒𝑎𝑟 . Next on Line 4–5, we design a test polynomial
specifically for the MUX function 𝑑 ? 𝑎 : 𝑏. On Line 6–7, we apply
BlindRotate and RLWEtoLWEs to output the LWE ciphertext 𝑐𝑡𝑂
encrypting 𝑑 ? 𝑎 : 𝑏.

Based on the homomorphic comparison operator HCMP and
homomorphic MUX algorithm GateMUX derived above, we can
finally carry out arbitrary-precision comparisons between the
queried attribute and DB items. For 𝑎 and 𝑏 two 𝜂-bit integers,
let 𝜔 = ⌈𝜂/𝑁 ⌉, we have that 𝑏 = {𝑏0, ..., 𝑏𝜔−1} =

∑𝜔−1
𝑖=0 𝑏𝑖 ·

𝑁 𝑖 is the queried predicate value and 𝑎 = {𝑎0, ..., 𝑎𝜔−1} =∑𝜔−1
𝑖=0 𝑎𝑖 · 𝑁 𝑖 is one of the item in the Attrcmp column. As

shown in Algorithm 3, let 𝑐𝑡𝑎 be the modular RLWE cipher-
text that encrypts the 𝜔 log𝑁 -bit input 𝑎 with �RLWE(𝜋 (𝑎)) =

(RLWE(𝑋𝑎0), ...,RLWE(𝑋𝑎𝜔−1)) and 𝑐𝑡𝑏 be the modular RGSW ci-
phertext that encrypts the 𝜔 log𝑁 -bit queried attribute value 𝑏
with �RGSW(𝜋 (−𝑏)) = (RGSW(𝑋 −𝑏0), ...,RGSW(𝑋 −𝑏𝜔−1)). Sup-
pose that cmp is the type of comparison to be performed (where cmp
can be one of the ≤, <, ≥, >,==,≠ operators). The ArbHCMP outputs
an LWE ciphertext encrypting 1 if the predicate 𝑎 cmp 𝑏 is true and
0 if the predicate is false. We take ≤ as an example to go through

Zhou Zhang et al.

Algorithm 4:Amortized arbitrary-precision homomorphic
comparison operator SIMDArbHCMP≤
Input :N modular RLWE ciphertexts cta =

(�RLWE(𝜋 (𝑎0)), �RLWE(𝜋 (𝑎1)), ..., �RLWE(𝜋 (𝑎𝑁−1)))
for 𝑎𝑖 a modular RGSW ciphertext
𝑐𝑡𝑏 = �RGSW(𝜋 (−𝑏)).

Input :A batch bootstrapping key BTK.
Input :An LWE key switching key KSK.
Output :N LWE ciphertexts ctO =

(LWE(𝑎0 ≤ 𝑏), LWE(𝑎1 ≤ 𝑏), ..., LWE(𝑎𝑁−1 ≤ 𝑏)).
1 𝜔 ← cta [0] .𝑠𝑖𝑧𝑒 ()
2 if 𝜔 == 1 then
3 for 𝑖 = 0 to 𝑁 − 1 do
4 ctO [𝑖] ← HCMP≤ (cta [𝑖] [0], 𝑐𝑡𝑏 [0])
5 else
6 for 𝑖 = 0 to 𝑁 − 1 do
7 ctd [𝑖] ← HCMP== (cta [𝑖] [𝜔 − 1], 𝑐𝑡𝑏 [𝜔 − 1])
8 ct𝜔−1 [𝑖] ← HCMP≤ (cta [𝑖] [𝜔 − 1], 𝑐𝑡𝑏 [𝜔 − 1])
9 ct0 ← SIMDArbHCMP≤ (cta [0 : 𝑁] [0 : 𝜔 − 1], 𝑐𝑡𝑏 [0 :

𝜔 − 1],BTK,KSK)
10 𝑐𝑡𝑂 ← SIMDCMUX(ctd, ct0, ct𝜔−1,BTK,KSK)

Return :ctO

the detailed procedures for ArbHCMP≤ in Algorithm 3. First, when
𝜔 == 1, we can directly apply HCMP≤ on 𝑐𝑡𝑎 [0] and 𝑐𝑡𝑏 [0] and get
the comparison result (Line 2 − 3). Otherwise when 𝜔 ≥ 2, suppos-
ing ArbHCMP≤ can perform (𝜔 −1) · log𝑁 -bit precision comparison,
we transform the expression 𝑎 ≤ 𝑏 to the following equation

𝑎𝜔−1 == 𝑏𝜔−1?{𝑎0, ..., 𝑎𝜔−2} ≤ {𝑏0, ..., 𝑏𝜔−2} : 𝑎𝜔−1 ≤ 𝑏𝜔−1 (9)

Thus, on Line 5 − 7, we individually evaluate the comparisons
in Equation (9) utilizing HCMP operator and (𝜔 − 1) · log𝑁 -
bit precision ArbHCMP operator to obtain three LWE cipher-
texts 𝑐𝑡𝑑 , 𝑐𝑡0, 𝑐𝑡𝜔−1 encrypting 𝑎𝜔−1 == 𝑏𝜔−1, {𝑎0, ..., 𝑎𝜔−2} ≤
{𝑏0, ..., 𝑏𝜔−2}, and 𝑎𝜔−1 ≤ 𝑏𝜔−1. Finally, on Line 8, we perform
the MUX operation on 𝑐𝑡𝑑 , 𝑐𝑡0, 𝑐𝑡𝜔−1 based on the GateMUX to get
the final LWE ciphertext result encrypting 𝑎 ≤ 𝑏. By recursively
evaluating 𝑎𝑖 ≤ 𝑏𝑖 using HCMP and combining the comparison of
the result by GateMUX without extra conversion, we can construct
ArbHCMP for efficient arbitrary precision homomorphic filtering.

4.3 Amortized Arbitrary Precision Filtering
While ArbHCMP provides the capability for arbitrary precision ho-
momorphic filtering, the operator can only filter one single DB
item per comparison, which can still be too slow when dealing with
large databases. Since EDB filtering often involves comparing one
queried attribute against all items in some DB columns, a promis-
ing strategy to ease the computation burdens is to amortize costs
by simultaneously filtering a batch of DB items. In this section,
we introduce a new amortized homomorphic comparison operator
SIMDArbHCMP customized for batched filtering.

As indicated in Equation (9), arbitrary-precision comparison is
composed of the evaluation of individual lower-precision compar-
isons and a number of MUX operations between the comparison
results. Since we can use the same lightweight HCMP building block

to construct SIMDArbHCMP, we only need to design a new homo-
morphic MUX algorithm in a SIMD manner, i.e., the SIMDCMUX op-
erator, to accelerate homomorphic comparisons over large-size DB
columns. The main procedure of SIMDCMUX follows the amortized
bootstrapping technique proposed in [77], which homomorphically
decrypts multiple LWE ciphertexts into a single RLWE ciphertext
and applies the specific MUX polynomial to all of the plaintext slots
in the RLWE ciphertext. In contrast to the GateMUX operator, which
conducts a single MUX operation on three-input LWE ciphertexts,
SIMDCMUX is able to perform 𝑁 MUX operations simultaneously
on 3𝑁 LWE ciphertexts. Due to the space limitation, the concrete
constructions for SIMDCMUX is depicted in Algorithm 6.

Based on the amortized homomorphic MUX operator SIMDCMUX
devised above, we can easily construct amortized arbitrary-
precision homomorphic comparisons between the queried at-
tributes and a lot of DB items. As shown in Algorithm 4, let
cta = (�RLWE(𝜋 (𝑎0)), �RLWE(𝜋 (𝑎1)), ..., �RLWE(𝜋 (𝑎𝑁−1))) be the
𝐿 modular RLWE ciphertexts encrypt 𝜔 log𝑁 -bit DB integer item
𝑎0, 𝑎1, ..., 𝑎𝑁−1 and 𝑐𝑡𝑏 be the modular RGSW ciphertext encrypts
𝜔 log𝑁 -bit query attribute 𝑏 with 𝑐𝑡𝑏 = �RGSW(𝜋 (−𝑏)). Sup-
pose that cmp is the type of comparison to be performed. The
SIMDArbHCMP outputs 𝑁 LWE ciphertexts encrypting 1 if the predi-
cate𝑎𝑖 cmp𝑏 is true and 0 if𝑎𝑖 cmp𝑏 is false.We take ≤ as an example
and summarize the exact arithmetic procedure for SIMDArbHCMP≤
in Algorithm 4. The main process is similar to Algorithm 3 but
change the Line 6 in Algorithm 3 with SIMDArbHCMP operator to
combine the comparison result from all𝑁 DB items simultaneously.

5 COMPLEX HOMOMORPHIC AGGREGATION
After the homomorphic filtering, ArcEDB obtains the encrypted
filtered result [F], which encompass |T |row LWE ciphertexts en-
crypt either 1 or 0, indicating the selection status of these rows.
The subsequent phase is to execute various aggregation functions
over the filtered rows. In this section, we explain the mechanisms
of both arithmetic and logic aggregations based on the results of
homomorphic filtering.

5.1 Homomorphic Arithmetic Aggregation
In this section, we present how to perform arithmetic aggregation
such as SUM, COUNT on the filtered rows.

Before arithmetic aggregation, |T |row LWE ciphertexts encrypt-
ing the filtered results must first be packed into an RLWE ciphertext
[F rlwe] through the LWEstoRLWE operator. This step is crucial for
enabling rapid arithmetic aggregations on the RLWE ciphertexts.
After that, the COUNT function is computed as an inner product
between [F rlwe] and a vector 𝐼 = (1, 1, . . . , 1). Similarly, the SUM
function involves an inner product between [F rlwe] and the to-
be-aggregated column ciphertext Attragg. The homomorphic inner
product is feasible with ciphertexts in either slot [66, 78] or coeffi-
cient [61, 99] formats.

However, as discussed Section 4, ArcEDB utilizes the expo-
nent encoding method for achieving low-latency homomorphic
filtering. Unfortunately, exponent encoding ciphertext is not in-
herently compatible with the latter homomorphic inner prod-
uct for arithmetic aggregation. A straightforward solution is

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

Algorithm 5: Exponent-to-coefficient ciphertext conver-
sion ExpToBase

Input :𝐿 modular RLWE ciphertexts cta =
(�RLWE

(
𝜋 (𝑎0)

)
, �RLWE

(
𝜋 (𝑎1)

)
, · · · , �RLWE

(
𝜋 (ˆ𝑎𝐿−1)

)
where 𝑎𝑖 =

∑𝜔−1
𝑗=0 𝑎𝑖, 𝑗 𝛽

𝑗 .
Input :Modular RLWE ciphertext dimension 𝑁 .
Output :An RLWE ciphertext 𝑐𝑡𝑂 = �RLWE(ˆ̃𝑎), where

ˆ̃𝑎 =
∑𝜔−1

𝑗=0 𝛽 𝑗
∑𝐿−1
𝑖=0 𝑎𝑖, 𝑗𝑋

𝑖 .
1 Initialize ˜𝑇𝑉 ← 0 + 𝑋 + 2𝑋 2 + ... + (𝑁 − 1)𝑋𝑁−1

2 for 𝑖 = 0 to 𝐿 − 1 do
3 for 𝑗 = 0 to 𝜔 − 1 do
4 𝑐𝑡𝑖, 𝑗 ← Automorphism(cta [𝑖] [𝑗], 2𝑁 − 1)
5 𝑐𝑡𝑖, 𝑗 ← ˜𝑇𝑉 · 𝑐𝑡𝑖, 𝑗
6 LWE𝑖, 𝑗 ← RLWEtoLWEs(𝑐𝑡𝑖, 𝑗) [0]
7 for 𝑗 = 0 to 𝜔 − 1 do
8 𝑐𝑡 𝑗 ← LWEstoRLWE(LWE0, 𝑗 , LWE1, 𝑗 , · · · LWE𝐿−1, 𝑗)
9 𝑐𝑡𝑂 ← (𝑐𝑡0, 𝑐𝑡1, · · · , 𝑐𝑡𝜔−1)
Return :𝑐𝑡𝑂 = �RLWE(ˆ̃𝑎)

to involve the client transmitting ciphertexts in both the ex-
ponent and coefficient encoding formats, but this will increase
the client’s computational workload. Therefore, we provide a
choice to transform the exponent encoding ciphertexts into the
coefficient encoding ciphertexts on the server side. The algo-
rithm is detailed in Algorithm 5. Given 𝐿 modular RLWE cipher-
texts cta = (�RLWE

(
𝜋 (𝑎0)

)
, �RLWE

(
𝜋 (𝑎1)

)
, · · · , �RLWE

(
𝜋 (ˆ𝑎𝐿−1)

)
where 𝑎𝑖 =

∑𝜔−1
𝑗=0 𝑎𝑖, 𝑗 𝛽

𝑗 . The conversion process begins by
performing the automorphism (Line 4) 𝑋 → 𝑋 2𝑁−1 on
the exponent encoding ciphertext to obtain �RLWE

(
𝜋 (−𝑎𝑖)

)
=(

RLWE(𝑋 −𝑎𝑖,0), . . . ,RLWE(𝑋 −𝑎𝑖,𝜔−1)
)
. Subsequently, a plaintext

multiplication (Line 5) is conducted between the test polynomial
˜𝑇𝑉 = 0 + 𝑋 + 2𝑋 2 + . . . + (𝑁 − 1)𝑋𝑁−1 and �RLWE

(
𝜋 (−𝑎𝑖)

)
,

resulting in
(
RLWE(𝑋𝑎𝑖,0 · ˜𝑇𝑉), . . . ,RLWE(𝑋𝑎𝑖,𝜔−1 · ˜𝑇𝑉)

)
. Af-

ter extracting the zeroth coefficient of each RLWE ciphertext
(Line 6) in �RLWE

(
𝜋 (−𝑎𝑖)

)
, we will get �LWE𝑖 encrypting 𝑎𝑖 . The

final step (Line 8) is to pack the 𝐿 modular LWE ciphertext�LWE0,�LWE1, . . . ,�LWE𝐿−1 to a modular RLWE ciphertext 𝑐𝑡𝑂 en-
crypting ˆ̃𝑎 =

∑𝜔−1
𝑗=0 𝛽 𝑗

∑𝐿−1
𝑖=0 𝑎𝑖, 𝑗𝑋

𝑖 . This process can be carried out
in the offline stage on the server side, and its cost is relatively mi-
nor compared to the substantial efficiency gains from utilizing the
exponent encoding format in the filtering stage.

5.2 Homomorphic Logic Aggregation
While existing FHE-based EDBs, such as [16], can implement logic
aggregations like MIN, MAX and ORDER BY, a critical challenge per-
sists in the synchronization of the order in one column across
other columns. For example, in practical SQL usage, the ORDER BY
statement requires not only sorting the specified column but also
ensuring the synchronization of this order across all other table
columns. To overcome this challenge, we propose new HomSort and
SortSynchronize algorithms for fast sorting and synchronization.

Here, we provide a toy example of the HomSort algorithm evalu-
ating 𝐿 = 4 rows columns in Figure 3, and defer further details in

Extract coefficients sequentially

𝒘 = 5, 3, 7, 6

𝑰𝒅[𝑖] = σ𝑗=0
3 𝒘𝑖 < 𝒘𝑗

ො𝑣 = σ𝑖=0
3 𝒗𝑖𝑋

𝑰𝒅[𝑖]

= 4𝑿𝟏 + 9𝑿𝟎 + 2𝑿𝟑 + 8𝑿𝟐

= 9𝑿𝟎 + 4𝑿𝟏 + 8𝑿𝟐 + 2𝑿𝟑

⇐

[9, 4, 8, 2]

Synchronize another column

To-be-sorted column

𝑰𝒅 = [𝟏, 𝟎, 𝟑, 𝟐]

⇐

𝒗 = 4, 9, 2, 8

Figure 3: Toy example for HomSort with L = 4.

Appendix C.3. Our HomSort algorithm works in a two-step process:
i) computing a position index array for the to-be-sorted column,
and ii) utilizing this index to guide the synchronization of other
columns. In Figure 3, we use a plaintext example to demonstrate
how the homomorphic sorting and synchronizing algorithm work
for a to-be-sorted columnw ∈ Z4

𝑝 . Here, we first compute the order
index of each item in the through Id[𝑖] = ∑4

𝑗=0 (w𝑖 < wj), resulting
in Id = [1, 0, 3, 2]. This indicates that the w[𝑖] can be placed in the
Id[𝑖] position in the sorted column ws. The subsequent step in-
volves converting the position values Id[𝑖] into the exponent form
𝑋 Id[𝑖] , followed by an inner product with a to-be-synchronized
column v to produce 𝑣 . The crucial observation is that, the result-
ing polynomial 𝑣 will automatically swap the coefficients due to
the exponent indices. After extracting the coefficients of 𝑣 , we ob-
tain the synchronized column, and its order matches with that of
the sorted-w. Due to space limitations, more details on the sort-
ing and synchronizing algorithms are outlined in Algorithm 7 and
Algorithm 8.

Remark: Similar to sorting, other logic aggregation algorithms
such as MIN or MAX can also be accelerated by the exponent-
encoding-based sorting approach. As later shown in Section 6.2.3,
with a properly encrypted index column, ArcEDB can significantly
outperform existing solutions.

6 EVALUATION
Throughout the experiments, we wish to answer the following two
main research questions (RQs).
• RQ1: How do the individual cryptographic components of

ArcEDB perform in an encrypted database, and how efficient are
they compared to SOTA methods?
• RQ2: How does the efficiency and expressiveness of ArcEDB

in SQL queries compare to other methods?

6.1 Implementation
We implemented ArcEDB using C++17 and complied with it using
GCC 11.4.0. Our implementation is based on Microsoft SEAL [100],
TFHEpp [106] and OpenFHE [89]. The experiments were carried
out on two Intel(R) Xeon(R) Gold 5318Y processors with 512GB of
RAM. We configured the parameters of ArcEDB to provide at least
128-bit of security level according to [3] and [2], and the detailed
parameters are laid out in Table A5.

Zhou Zhang et al.

28x
19x

(a) Relational Comparison

57x 11x

(b) Equality Comparison

Figure 4: Benchmark results for homomorphic predicate eval-
uation with the relational comparison operator and equality
comparison operator.

6.2 Microbenchmarks
To answer the RQ1, we conducted comprehensive benchmarks
to evaluate the efficiency of each cryptographic component in
constructing encrypted SQL query evaluations, including filtering,
filter-aggregation, and ORDER BY.

6.2.1 Filtering. The primary focus of our filtering benchmark
is to compare the performance of our proposed ArbHCMP and
SIMDArbHCMP operators against the leading existing solutions [16,
32, 55, 76, 78, 111] that facilitate unbounded-depth predicate evalu-
ation. We re-implement these solutions based on their open-source
implementations [4, 35, 46, 60, 89, 111]. Our benchmarking catego-
rizes the predicate comparison operators into two groups: relational
predicates (such as >, ≤, <, ≤) and equality predicates (including ==
and ! =). We set different precision levels (Precision = 4, 8, 16, 32, 64
bits) and measure the latency for processing a single predicate.
As observed in Figure 4, while other solutions may perform dif-
ferently on relational and equality comparison operator, ArbHCMP
and SIMDArbHCMP perform consistently better on both comparison
tasks. Specifically, ArbHCMP is 6×−56× faster than the SOTAmethod
and SIMDArbHCMP is 20 × −112× faster than the SOTA method. We
provide more clarifications for Figure 4 and include a complexity
comparison between these methods in Appendix D.3.

6.2.2 Filter-Aggregation. In the evaluation of filter-aggregation
performance, we conduct a thorough comparison between ArcEDB
and the SOTA FHE-based EDB solution [16] on a sum query with
conjunctions of 2, 4, and 8 predicates applied on 1K and 32K records.
For smaller datasets (1K records), we utilize ArbHCMP as the pri-
mary comparison operator and for larger datasets (32K records),
SIMDArbHCMP performs faster for its effective batch processing ca-
pability. Figure 5 illustrates the breakdown in query execution time
of ArcEDB and HE3DB [16]. We note that while ArcEDB introduces
extra ExpToBase conversions due to encoding format changes, its
impact remains negligible compared to the efficiency enhancements
brought about by using exponent encoding in the filtering phase.
As illustrated in Figure 5, ArcEDB achieves a speedup of 4× to 7×
over HE3DB [16] for datasets with 10K records with ArbHCMP and

0 1000 2000 3000
Latency (s)

P = 2

P = 4

P = 8

4 × ArcEDB

HE3DB

5 × ArcEDB

HE3DB

6 × ArcEDB

HE3DB

Filter
Packing
Converison
Aggregation

(a) Latency with 1K records.

0 30 60 90
Latency (103 s)

P = 2

P = 4

P = 8

102 × ArcEDB

HE3DB

57 × ArcEDB

HE3DB

36 × ArcEDB

HE3DB

Filter
Packing
Converison
Aggregation

(b) Latency with 32K records.

Figure 5: Breakdown of SQL filter-aggregation latency with
different numbers of predicates (𝑃). The filter phase includes
predicate evaluation and combination. The packing phase
converts LWE filter results to RLWE ciphertext for aggrega-
tion. The aggregation phase aggregates the specific column.

8 16 32 64
Records

0

200

400

600

800

1000

La
te

nc
y

(s
)

1×
1×

1×

1×

1.3×
1.4×

1.4×

1.4×

2.1× 2.2×
3.2×

3.0×

TFHE-rs
HE3DB
ArcEDB

(a) Column Sorting

24 25 26 27 28 29 210

Records

100

101

102

103

La
te

nc
y

(m
s)

Onion Ring ORAM
ArcEDB

(b) Column Synchronization

Figure 6: The (a) sorting and (b) synchronization performance
of ORDER BY operator over databases with different sizes.

36× to 102× acceleration for datasets with 32K records owing to
the use of SIMDArbHCMP.

6.2.3 ORDER BY. Lastly, we benchmark the performance of the
ORDER BY statement. We explore two common scenarios encoun-
tered in SQL ORDER BY evaluations. The first scenario assesses the
efficiency of sorting a single column. In this evaluation, we com-
pare the latency of ArcEDB to existing works HE3DB [16] and
TFHE-rs [111]. The results, as shown in Figure 6a, demonstrate that
ArcEDB outperforms these methods with an average speedup of 2×
to 3×. The second scenario focuses on synchronizing other columns
based on a particular order. We compare our approach with the
Onion Ring ORAM[22] technique, which implements the Waksman
permutation network[13] based on the CMUX operator to permute a
series of inputs. As depicted in Figure 6b, our performance can be
as much as 3 × −8× faster than [22].

6.3 SQL Benchmarks
To answer the RQ2, we test the performance of ArcEDB using the
TPC-H benchmarks [37] and real-world time-series DB queries [39,
44, 88]. We compare our results against the best-performing FHE-
based frameworks HEDA [99] and HE3DB [16] (details for the SQL
are listed in the Figure A2).

For memory usage, as illustrated in Figure 7, we can achieve on
average 1.6× less memory than HE3DB [16] over 16-bit-precision

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

Q1 Q6 Q12 Q14
Query

10

20

30

40

M
em

or
y

U
sa

ge
 (G

B
)

6.4× 6.2× 3.1×
7.7×

1× 1×

1×

1×

1.9×

1.5×

1.3× 1.9×

HEDA
HE3DB
ArcEDB

(a) Relational DB with 32K records.

TQ1 TQ2 TQ3 TQ4
Query

10

20

30

40

M
em

or
y

U
sa

ge
 (G

B
)

2.6× 3.0× 2.9× 6.3×

1× 1× 1×

1×

5.1× 6.2× 5.8×

1.7×

HEDA
HE3DB
ArcEDB

(b) Time-series DBwith 32K records.

Figure 7: Peak memory usage comparisons on SQL queries.

Q1 Q6 Q12 Q14
Query

102

103

104

105

106

La
te

nc
y

(s
)

1×

1×

1×
1×3×

5×

3×

6×

80×

68×

58×

83×

HEDA
HE3DB
ArcEDB

(a) Relational DB with 32K records.

TQ1 TQ2 TQ3 TQ4
Query

102

103

104

105

106

La
te

nc
y

(s
)

1× 1× 1×
1×

4× 4× 4× 6×

48× 53×
105×

93×

HEDA
HE3DB
ArcEDB

(b) Time-series DBwith 32K records.

Figure 8: Latency performance comparisons on SQL queries.

32K database query and 4.7× less memory over 32K time-series
database query. Meanwhile, HEDA [99] has smaller memory con-
sumption over 16-bit-precision 32K database query due to reduced
aggregation precision.

For latency performance, as observed in Figure 8a, we achieve on
average 16× faster than HE3DB [16] and 72× than HEDA [99] over
16-bit-precision 32K database query2. Moreover, since HEDA [99]
and HE3DB [16] do not support 64-bit timestamp, we extend their
precision based on by constructing comparison circuits and com-
pare them with ArcEDB on real-world time-series database queries.
As illustrated in Figure 8b, ArcEDB is on average 19× faster than
HE3DB and 75× faster than HEDA over 32K time-series database
query. To the best of our knowledge, ArcEDB is the first FHE-based
EDB framework that can evaluate time-series database queries due
to its arbitrary precision capability. Overall, when utilizing 48 cores,
we can evaluate an end-to-end SQL query over 10K-row time-series
database with 64-bit timestamps under one minute, nearly 20×
faster than HE3DB [16] and 75× faster than HEDA [99].

7 CONCLUSIONS
In this work, we introduced ArcEDB, an FHE-based encrypted
database system that enables arbitrary-precision and low-latency
query evaluations. By leveraging a variant of the modular fully
homomorphic encryption scheme and novel encoding methods,
we build a new EDB-orient FHE infrastructure with advanced ho-
momorphic comparison, aggregation, and conversion operators.

2We benchmarked the latency and memory usage using the results specified in [99],
as the authors have not made their source code available publicly.

We show that ArcEDB can outperform the best-known FHE algo-
rithms on all DB-related task benchmarks, and is able to evaluate
a complete SQL query over a 10K-row time-series DB with 64-bit
timestamps within one minute. Although ArcEDB has made no-
table contributions, there is a need for latency improvement to
adapt to real-world scenarios. One important future research would
be to improve efficiency through more advanced cryptographic
primitives or hardware-based accelerations.

REFERENCES
[1] Rakesh Agrawal, Jerry Kiernan, Ramakrishnan Srikant, and Yirong Xu. 2004.

Order preserving encryption for numeric data. In International Conference on
Management of Data. 563–574.

[2] Martin Albrecht, Melissa Chase, Hao Chen, Jintai Ding, ShafiGoldwasser, Sergey
Gorbunov, Shai Halevi, JeffreyHoffstein, Kim Laine, Kristin Lauter, Satya Lokam,
Daniele Micciancio, Dustin Moody, Travis Morrison, Amit Sahai, and Vinod
Vaikuntanathan. 2018. Homomorphic Encryption Security Standard. Technical
Report. HomomorphicEncryption.org.

[3] Martin R. Albrecht, Rachel Player, and Sam Scott. 2015. On the concrete hardness
of Learning with Errors. Journal of Mathematical Cryptology 9, 3 (2015), 169–
203.

[4] Alibaba-Gemini-Lab. [n. d.]. Pegasus: Bridging Polynomial and Non-polynomial
Evaluations in Homomorphic Encryption. https://github.com/Alibaba-Gemini-
Lab/OpenPEGASUS

[5] Sebastian Angel, Hao Chen, Kim Laine, and Srinath T. V. Setty. 2018. PIR with
Compressed Queries and Amortized Query Processing. In IEEE Symposium on
Security and Privacy. IEEE Computer Society, 962–979.

[6] Panagiotis Antonopoulos, Arvind Arasu, Kunal D Singh, Ken Eguro, Nitish
Gupta, Rajat Jain, Raghav Kaushik, Hanuma Kodavalla, Donald Kossmann,
Nikolas Ogg, et al. 2020. Azure SQL database always encrypted. In ACM
SIGMOD International Conference on Management of Data. 1511–1525.

[7] Arvind Arasu, Ken Eguro, Manas Joglekar, Raghav Kaushik, Donald Kossmann,
and Ravi Ramamurthy. 2015. Transaction processing on confidential data using
cipherbase. In IEEE International Conference on Data Engineering. IEEE, 435–446.

[8] AWS. 2023. Machine Learning on AWS. https://aws.amazon.com/machine-
learning/?nc2=h_ql_sol_use_ml. Accessed: 2023-01-01.

[9] Azure. 2023. Azure Machine Learning. https://azure.microsoft.com/en-us/
products/machine-learning/. Accessed: 2023-01-01.

[10] Maurice Bailleu, Jörg Thalheim, Pramod Bhatotia, Christof Fetzer, Michio
Honda, and Kapil Vaswani. 2019. SPEICHER: Securing LSM-based Key-Value
Stores using Shielded Execution. In USENIX Conference on File and Storage
Technologies. 173–190.

[11] Sumeet Bajaj and Radu Sion. 2011. TrustedDB: a trusted hardware based
database with privacy and data confidentiality. In ACM SIGMOD International
Conference on Management of data. 205–216.

[12] Johes Bater, Gregory Elliott, Craig Eggen, Satyender Goel, Abel Kho, and Jennie
Rogers. 2016. SMCQL: Secure querying for federated databases. arXiv preprint
arXiv:1606.06808 (2016).

[13] Bruno Beauquier and Éric Darrot. 2002. On Arbitrary Size Waksman Networks
and Their Vulnerability. Parallel Processing Letters 12, 3-4 (2002), 287–296.

[14] Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien Ligier,
Jean-Baptiste Orfila, and Samuel Tap. 2023. Parameter Optimization and Larger
Precision for (T) FHE. Journal of Cryptology 36, 3 (2023), 28.

[15] Song Bian, Dur-e-Shahwar Kundi, KazumaHirozawa,Weiqiang Liu, and Takashi
Sato. 2021. APAS: Application-Specific Accelerators for RLWE-Based Homo-
morphic Linear Transformations. IEEE Transactions on Information Forensics
and Security 16 (2021), 4663–4678.

[16] Song Bian, Zhou Zhang, Haowen Pan, Ran Mao, Zian Zhao, Yier Jin, and
Zhenyu Guan. 2023. HE3DB: An Efficient and Elastic Encrypted Database
Via Arithmetic-And-Logic Fully Homomorphic Encryption. In ACM SIGSAC
Conference on Computer and Communications Security. 2930–2944.

[17] Jean-Philippe Bossuat, Christian Mouchet, Juan Ramón Troncoso-Pastoriza,
and Jean-Pierre Hubaux. 2021. Efficient Bootstrapping for Approximate Homo-
morphic Encryption with Non-sparse Keys. In EUROCRYPT. Springer, 587–617.

[18] Zvika Brakerski. 2012. Fully Homomorphic Encryption without Modulus
Switching from Classical GapSVP. In CRYPTO. 868–886.

[19] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. 2012. (Leveled)
fully homomorphic encryption without bootstrapping. In ACM Transactions on
Computation Theory. 309–325.

[20] David Cash, Paul Grubbs, Jason Perry, and Thomas Ristenpart. 2015. Leakage-
abuse attacks against searchable encryption. In ACM SIGSAC Conference on
Computer and Communications Security. 668–679.

https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS
https://github.com/Alibaba-Gemini-Lab/OpenPEGASUS
https://aws.amazon.com/machine-learning/?nc2=h_ql_sol_use_ml
https://aws.amazon.com/machine-learning/?nc2=h_ql_sol_use_ml
https://azure.microsoft.com/en-us/products/machine-learning/
https://azure.microsoft.com/en-us/products/machine-learning/

Zhou Zhang et al.

[21] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin
Roşu, and Michael Steiner. 2013. Highly-scalable searchable symmetric encryp-
tion with support for boolean queries. In Annual cryptology conference. Springer,
353–373.

[22] Hao Chen, Ilaria Chillotti, and Ling Ren. 2019. Onion ring ORAM: efficient
constant bandwidth oblivious RAM from (leveled) TFHE. In ACM SIGSAC
Conference on Computer and Communications Security. 345–360.

[23] HaoChen,Wei Dai,Miran Kim, and Yongsoo Song. 2021. Efficient Homomorphic
Conversion Between (Ring) LWE Ciphertexts. In Applied Cryptography and
Network Security. Springer, 460–479.

[24] Hao Chen, Zhicong Huang, Kim Laine, and Peter Rindal. 2018. Labeled PSI
from fully homomorphic encryption with malicious security. In ACM SIGSAC
Conference on Computer and Communications Security. 1223–1237.

[25] Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. 2018. Bootstrapping for Approximate Homomorphic Encryption. In
EUROCRYPT. Springer.

[26] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yong Soo Song. 2017. Homo-
morphic Encryption for Arithmetic of Approximate Numbers. In ASIACRYPT.
409–437.

[27] Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. 2020. Efficient Homomor-
phic Comparison Methods with Optimal Complexity. In ASIACRYPT. Springer,
221–256.

[28] Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun-Hee Lee, and Keewoo
Lee. 2019. Numerical Method for Comparison on Homomorphically Encrypted
Numbers. In ASIACRYPT. Springer, 415–445.

[29] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène. 2020.
TFHE: Fast Fully Homomorphic Encryption Over the Torus. Journal of Cryptol-
ogy 33, 1 (2020), 34–91.

[30] Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. 2021. Im-
proved Programmable Bootstrapping with Larger Precision and Efficient Arith-
metic Circuits for TFHE. In ASIACRYPT. 670–699.

[31] Google Cloud. 2023. Cloud SQL. https://cloud.google.com/sql/. Accessed:
2023-01-01.

[32] Kelong Cong, Debajyoti Das, Jeongeun Park, and Hilder V. L. Pereira. 2022.
SortingHat: Efficient Private Decision Tree Evaluation via Homomorphic En-
cryption and Transciphering. In ACM SIGSAC Conference on Computer and
Communications Security. ACM, 563–577.

[33] Kelong Cong, Radames Cruz Moreno, Mariana Botelho da Gama, Wei Dai,
Ilia Iliashenko, Kim Laine, and Michael Rosenberg. 2021. Labeled psi from
homomorphic encryption with reduced computation and communication. In
ACM SIGSAC Conference on Computer and Communications Security. 1135–1150.

[34] Henry Corrigan-Gibbs and Dan Boneh. 2017. Prio: Private, Robust, and Scal-
able Computation of Aggregate Statistics. In USENIX Conference on Networked
Systems Design and Implementation. 259–282.

[35] KU Leuven COSIC. [n. d.]. Private decision tree evaluation via Homomor-
phic Encryption and Transciphering. https://github.com/KULeuven-COSIC/
SortingHat

[36] Victor Costan and Srinivas Devadas. 2016. Intel SGX explained. Cryptology
ePrint Archive (2016).

[37] Transaction Processing Performance Council. 2022. TPC BENCHMARK𝑇𝑀 H
Standard Specification. Technical Report. San Francisco,CA.

[38] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. 2006. Search-
able symmetric encryption: improved definitions and efficient constructions. In
ACM SIGSAC Conference on Computer and Communications Security. 79–88.

[39] Emma Dauterman, Mayank Rathee, Raluca Ada Popa, and Ion Stoica. 2022.
Waldo: A Private Time-Series Database from Function Secret Sharing. In IEEE
Symposium on Security and Privacy. IEEE, 2450–2468.

[40] Ioannis Demertzis, Dimitrios Papadopoulos, Charalampos Papamanthou, and
Saurabh Shintre. 2020. SEAL: Attack mitigation for encrypted databases via
adjustable leakage. In USENIX Security Symposium. 2433–2450.

[41] Srinivas Devadas, Marten van Dijk, Christopher W Fletcher, Ling Ren, Elaine
Shi, and Daniel Wichs. 2016. Onion ORAM: A constant bandwidth blowup
oblivious RAM. In Theory of Cryptography Conference. Springer, 145–174.

[42] Léo Ducas and Daniele Micciancio. 2015. FHEW: Bootstrapping Homomorphic
Encryption in Less Than a Second. In EUROCRYPT. 617–640.

[43] Saba Eskandarian andMatei Zaharia. 2019. ObliDB: Oblivious Query Processing
for Secure Databases. Proceedings of the VLDB Endowment. 13, 2 (2019), 169–183.

[44] Muhammad Faisal, Jerry Zhang, John Liagouris, Vasiliki Kalavri, and Mayank
Varia. 2023. TVA: A multi-party computation system for secure and expressive
time series analytics. USENIX Association, 5395–5412.

[45] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. IACR Cryptol. ePrint Arch. (2012), 144.

[46] FBT-TFHE. [n. d.]. Revisiting the functional bootstrap in TFHE. https://github.
com/antoniocgj/FBT-TFHE

[47] Erhu Feng, Xu Lu, Dong Du, Bicheng Yang, Xueqiang Jiang, Yubin Xia, Binyu
Zang, and Haibo Chen. 2021. Scalable Memory Protection in the PENGLAI
Enclave. InUSENIX Symposium on Operating Systems Design and Implementation.

275–294.
[48] Benjamin Fuller, Mayank Varia, Arkady Yerukhimovich, Emily Shen, Ariel

Hamlin, Vijay Gadepally, Richard Shay, John Darby Mitchell, and Robert K
Cunningham. 2017. Sok: Cryptographically protected database search. In IEEE
Symposium on Security and Privacy. IEEE, 172–191.

[49] Sanjam Garg, Payman Mohassel, and Charalampos Papamanthou. 2016.
TWORAM: efficient oblivious RAM in two rounds with applications to search-
able encryption. In Annual International Cryptology Conference. Springer, 563–
592.

[50] Craig Gentry, Shai Halevi, and Nigel P Smart. 2012. Homomorphic evaluation
of the AES circuit. In CRYPTO. Springer, 850–867.

[51] Craig Gentry, Amit Sahai, and Brent Waters. 2013. Homomorphic Encryp-
tion from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster,
Attribute-Based. In CRYPTO. 75–92.

[52] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
2018. Pump up the volume: Practical database reconstruction from volume
leakage on range queries. In ACM SIGSAC Conference on Computer and Com-
munications Security. 315–331.

[53] Paul Grubbs, Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson.
2019. Learning to reconstruct: Statistical learning theory and encrypted database
attacks. In IEEE Symposium on Security and Privacy. IEEE, 1067–1083.

[54] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. 2019. Encrypted Databases:
New Volume Attacks against Range Queries. In ACM SIGSAC Conference on
Computer and Communications Security. 361–378.

[55] Antonio Guimarães, Edson Borin, and Diego F. Aranha. 2021. Revisiting the
functional bootstrap in TFHE. IACR Transactions on Cryptographic Hardware
and Embedded Systems (2021), 229–253.

[56] Timon Hackenjos, Florian Hahn, and Florian Kerschbaum. 2020. SAGMA:
Secure Aggregation Grouped by Multiple Attributes. In International Conference
on Management of Data. ACM, 587–601.

[57] Shai Halevi, Yuriy Polyakov, and Victor Shoup. 2019. An Improved RNS Variant
of the BFV Homomorphic Encryption Scheme. In Topics in Cryptology–CT-RSA.
83–105.

[58] Shai Halevi and Victor Shoup. 2014. Algorithms in HElib. In CRYPTO. Springer,
554–571.

[59] Kyoohyung Han, Minki Hhan, and Jung Hee Cheon. 2019. Improved Homo-
morphic Discrete Fourier Transforms and FHE Bootstrapping. IEEE Access 7
(2019), 57361–57370.

[60] HE3DB. [n. d.]. HE3DB: An Efficient and Elastic Encrypted Database Via
Arithmetic-And-Logic Fully Homomorphic Encryption. https://github.com/
zhouzhangwalker/HE3DB

[61] Zhicong Huang, Wen-jie Lu, Cheng Hong, and Jiansheng Ding. 2022. Cheetah:
Lean and Fast Secure Two-Party Deep Neural Network Inference. In USENIX
Security Symposium. USENIX Association, 809–826.

[62] Ilia Iliashenko and Vincent Zucca. 2021. Faster homomorphic comparison
operations for BGV and BFV. Proc. Priv. Enhancing Technol. 2021, 3 (2021),
246–264.

[63] Yuval Ishai, Eyal Kushilevitz, Steve Lu, and Rafail Ostrovsky. 2016. Private
large-scale databases with distributed searchable symmetric encryption. In
Cryptographers’ Track at the RSA Conference. Springer, 90–107.

[64] Mohammad Saiful Islam, Mehmet Kuzu, and Murat Kantarcioglu. 2012. Access
pattern disclosure on searchable encryption: ramification, attack andmitigation..
In Network & Distributed System Security Symposium.

[65] Simon Johnson, Raghunandan Makaram, Amy Santoni, and Vin-
nie Scarlata. 2021. Supporting intel sgx on multi-socket platforms.
https://www.intel.com/content/dam/www/public/us/en/documents/white-
papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf.

[66] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha P. Chandrakasan. 2018.
GAZELLE: A Low Latency Framework for Secure Neural Network Inference.
In USENIX Security Symposium. USENIX Association, 1651–1669.

[67] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. 2016.
Generic attacks on secure outsourced databases. In ACM SIGSAC Conference on
Computer and Communications Security. 1329–1340.

[68] Alhassan Khedr, Glenn Gulak, and Vinod Vaikuntanathan. 2015. SHIELD:
scalable homomorphic implementation of encrypted data-classifiers. IEEE
Trans. Comput. 65, 9 (2015), 2848–2858.

[69] Taehoon Kim, Joongun Park, Jaewook Woo, Seungheun Jeon, and Jaehyuk
Huh. 2019. Shieldstore: Shielded in-memory key-value storage with sgx. In
Proceedings of the Fourteenth EuroSys Conference. 1–15.

[70] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2020. The state of the uniform: Attacks on encrypted databases beyond the
uniform query distribution. In IEEE Symposium on Security and Privacy. IEEE,
1223–1240.

[71] Evgenios M Kornaropoulos, Charalampos Papamanthou, and Roberto Tamassia.
2021. Response-hiding encrypted ranges: Revisiting security via parametrized
leakage-abuse attacks. In IEEE Symposium on Security and Privacy. IEEE, 1502–
1519.

https://cloud.google.com/sql/
https://github.com/KULeuven-COSIC/SortingHat
https://github.com/KULeuven-COSIC/SortingHat
https://github.com/antoniocgj/FBT-TFHE
https://github.com/antoniocgj/FBT-TFHE
https://github.com/zhouzhangwalker/HE3DB
https://github.com/zhouzhangwalker/HE3DB
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/white-papers/supporting-intel-sgx-on-mulit-socket-platforms.pdf

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

[72] Y.A.M. Kortekaas. 2020. Access Pattern Hiding Aggregation over Encrypted
Databases. http://essay.utwente.nl/83874/

[73] Yongwoo Lee, Joon-Woo Lee, Young-Sik Kim, Yongjune Kim, Jong-Seon No,
and HyungChul Kang. 2022. High-Precision Bootstrapping for Approximate
Homomorphic Encryption by Error Variance Minimization. In EUROCRYPT.
Springer, 551–580.

[74] John Liagouris, Vasiliki Kalavri, Muhammad Faisal, and Mayank Varia. 2021.
Secrecy: Secure collaborative analytics on secret-shared data. arXiv preprint
arXiv:2102.01048 (2021).

[75] Zheli Liu, Xiaofeng Chen, Jun Yang, Chunfu Jia, and Ilsun You. 2016. New order
preserving encryption model for outsourced databases in cloud environments.
Journal of Network and Computer Applications 59 (2016), 198–207.

[76] Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. 2022. Large-Precision Ho-
momorphic Sign Evaluation Using FHEW/TFHE Bootstrapping. In ASIACRYPT,
Shweta Agrawal and Dongdai Lin (Eds.). Springer, 130–160.

[77] Zeyu Liu and Yunhao Wang. 2023. Amortized Functional Bootstrapping in less
than 7ms, with �̃� (1) polynomial multiplications. In ASIACRYPT. 1–29.

[78] Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu. 2021.
PEGASUS: Bridging Polynomial and Non-polynomial Evaluations in Homomor-
phic Encryption. In IEEE Symposium on Security and Privacy. IEEE, 1057–1073.

[79] Wenjie Lu, Jun-Jie Zhou, and Jun Sakuma. 2018. Non-interactive and Out-
put Expressive Private Comparison from Homomorphic Encryption. In Asia
Conference on Computer and Communications Security. ACM, 67–74.

[80] Rasoul Akhavan Mahdavi and Florian Kerschbaum. 2022. Constant-weight PIR:
Single-round Keyword PIR via Constant-weight Equality Operators. In USENIX
Security Symposium. USENIX Association, 1723–1740.

[81] Rasoul Akhavan Mahdavi, Haoyan Ni, Dimitry Linkov, and Florian Kerschbaum.
2023. Level Up: Private Non-Interactive Decision Tree Evaluation using Lev-
elled Homomorphic Encryption. In ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2945–2958.

[82] Kotaro Matsuoka, Ryotaro Banno, Naoki Matsumoto, Takashi Sato, and Song
Bian. 2021. Virtual Secure Platform: A Five-Stage Pipeline Processor over TFHE.
In USENIX Security Symposium. 4007–4024.

[83] Samir Jordan Menon and David J Wu. 2022. Spiral: Fast, high-rate single-server
PIR via FHE composition. In IEEE Symposium on Security and Privacy. IEEE,
930–947.

[84] Pratyush Mishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and
Raluca Ada Popa. 2018. Oblix: An Efficient Oblivious Search Index. In IEEE
Symposium on Security and Privacy. IEEE Computer Society, 279–296.

[85] MonogoDB. 2023. Application-Driven Analytics. https://www.mongodb.com/
use-cases/analytics. Accessed: 2023-01-01.

[86] Muhammad Haris Mughees, Hao Chen, and Ling Ren. 2021. OnionPIR: Re-
sponse Efficient Single-Server PIR. In ACM SIGSAC Conference on Computer
and Communications Security. ACM, 2292–2306.

[87] Muhammad Haris Mughees and Ling Ren. 2023. Vectorized Batch Private
Information Retrieval. In IEEE Symposium on Security and Privacy. IEEE, 437–
452.

[88] Syeda Noor Zehra Naqvi, Sofia Yfantidou, and Esteban Zimányi. 2017. Time
series databases and influxdb. Studienarbeit, Université Libre de Bruxelles 12
(2017).

[89] openfheorg. [n. d.]. OpenFHE - Open-Source Fully Homomorphic Encryption
Library. https://github.com/openfheorg/openfhe-development

[90] Simon Oya and Florian Kerschbaum. 2021. Hiding the access pattern is not
enough: Exploiting search pattern leakage in searchable encryption. In USENIX
Security Symposium. 127–142.

[91] Antonis Papadimitriou, Ranjita Bhagwan, Nishanth Chandran, Ramachandran
Ramjee, Andreas Haeberlen, Harmeet Singh, Abhishek Modi, and Saikrishna
Badrinarayanan. 2016. Big Data Analytics over Encrypted Datasets with Seabed.
In USENIX Conference on Operating Systems Design and Implementation. USENIX
Association, 587–602.

[92] Vasilis Pappas, Fernando Krell, Binh Vo, Vladimir Kolesnikov, Tal Malkin, Se-
ung Geol Choi, Wesley George, Angelos Keromytis, and Steve Bellovin. 2014.
Blind seer: A scalable private DBMS. In IEEE Symposium on Security and Privacy.
IEEE, 359–374.

[93] Benny Pinkas and Tzachy Reinman. 2010. Oblivious RAM revisited. In CRYPTO.
Springer, 502–519.

[94] Rishabh Poddar, Tobias Boelter, and Raluca Ada Popa. 2019. Arx: An Encrypted
Database using Semantically Secure Encryption. Proceedings of the VLDB
Endowment (2019).

[95] Rishabh Poddar, Sukrit Kalra, Avishay Yanai, Ryan Deng, Raluca Ada Popa, and
Joseph M Hellerstein. 2021. Senate: A Maliciously-Secure MPC Platform for
Collaborative Analytics. In USENIX Security Symposium. 2129–2146.

[96] Rishabh Poddar, Stephanie Wang, Jianan Lu, and Raluca Ada Popa. 2020. Practi-
cal volume-based attacks on encrypted databases. In IEEE European Symposium
on Security and Privacy. IEEE, 354–369.

[97] Raluca A. Popa, Catherine M. S. Redfield, Nickolai Zeldovich, and Hari Bal-
akrishnan. 2011. CryptDB: protecting confidentiality with encrypted query

processing. In ACM Symposium on Operating Systems Principles. ACM, 85–100.
[98] Christian Priebe, Kapil Vaswani, and Manuel Costa. 2018. EnclaveDB: A secure

database using SGX. In 2018 IEEE Symposium on Security and Privacy. IEEE,
264–278.

[99] Xuanle Ren, Le Su, Zhen Gu, Sheng Wang, Feifei Li, Yuan Xie, Song Bian, Chao
Li, and Fan Zhang. 2022. HEDA: Multi-Attribute Unbounded Aggregation over
Homomorphically Encrypted Database. Proceedings of the VLDB Endowment
(2022).

[100] SEAL 2022. Microsoft SEAL (release 4.1.0). https://github.com/Microsoft/SEAL.
Microsoft Research, Redmond, WA..

[101] Nigel P. Smart and Frederik Vercauteren. 2014. Fully homomorphic SIMD
operations. Designs, codes and cryptography 71, 1 (2014), 57–81.

[102] Emil Stefanov, Marten Van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM: an
extremely simple oblivious RAM protocol. J. ACM 65, 4 (2018), 1–26.

[103] G Edward Suh, Charles W O’Donnell, and Srinivas Devadas. 2007. Aegis: A
single-chip secure processor. IEEE Design & Test of Computers 24, 6 (2007),
570–580.

[104] Stephen Tu, M. Frans Kaashoek, Samuel Madden, and Nickolai Zeldovich. 2013.
Processing analytical queries over encrypted data. Proceedings of the VLDB
Endowment (2013), 289–300.

[105] Dhinakaran Vinayagamurthy, Alexey Gribov, and Sergey Gorbunov. 2019.
StealthDB: a Scalable Encrypted Database with Full SQL Query Support. Proc.
Priv. Enhancing Technol. 2019, 3 (2019), 370–388.

[106] virtualsecureplatform. [n. d.]. TFHEpp. https://github.com/
virtualsecureplatform/TFHEpp

[107] Nikolaj Volgushev, Malte Schwarzkopf, Ben Getchell, Mayank Varia, Andrei
Lapets, and Azer Bestavros. 2019. Conclave: secure multi-party computation
on big data. In Proceedings of the Fourteenth EuroSys Conference. 1–18.

[108] Chenghong Wang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala.
2022. IncShrink: Architecting Efficient Outsourced Databases using Incremental
MPC and Differential Privacy. In International Conference on Management of
Data. ACM, 818–832.

[109] Sheng Wang, Yiran Li, Huorong Li, Feifei Li, Chengjin Tian, Le Su, Yanshan
Zhang, Yubing Ma, Lie Yan, Yuanyuan Sun, et al. 2022. Operon: An encrypted
database for ownership-preserving data management. Proceedings of the VLDB
Endowment 15, 12 (2022), 3332–3345.

[110] Yilei Wang and Ke Yi. 2021. Secure Yannakakis: Join-Aggregate Queries over
Private Data. In International Conference on Management of Data. 1969–1981.

[111] Zama. 2022. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data. https://github.com/
zama-ai/tfhe-rs.

[112] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. 2016. All your
queries are belong to us: the power of {File-Injection} attacks on searchable
encryption. In USENIX Security Symposium. 707–720.

[113] Wenting Zheng, Ankur Dave, Jethro G Beekman, Raluca Ada Popa, Joseph E
Gonzalez, and Ion Stoica. 2017. Opaque: An oblivious and encrypted distributed
analytics platform. In USENIX Symposium on Networked Systems Design and
Implementation. 283–298.

http://essay.utwente.nl/83874/
https://www.mongodb.com/use-cases/analytics
https://www.mongodb.com/use-cases/analytics
https://github.com/openfheorg/openfhe-development
https://github.com/Microsoft/SEAL
https://github.com/virtualsecureplatform/TFHEpp
https://github.com/virtualsecureplatform/TFHEpp
https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

Zhou Zhang et al.

Appendix Table A1: Summary of Notations

Notation Description

D The database
T The data table in the database
Q The SQL query
P The SQL query predicate
Agg The aggregation function in SQL query
Attr The attribute label in database table
| T |row The number of rows in table T
|T |col The number of columns in table T
|Q | The number of predicates in query Q
[T] The encrypted database table
[Q] The encrypted SQL query
[P] The encrypted predicate
[F] The encrypted filter result
[R] The encrypted query result

𝜆 The security parameter
𝑝 The plaintext modulus
𝑞 The ciphertext modulus for LWE and �LWE
𝑄 The ciphertext modulus for RLWE and �RLWE
𝑄 ′ The ciphertext modulus for RGSW and �RGSW
𝑛 The lattice dimension for LWE and �LWE
𝑁 The lattice dimension for an RLWE and �RLWE
𝑁 ′ The lattice dimension for an RGSW and �RGSW
𝑙 The number of RLWE in RGSW
Z𝑛𝑞 The set of n-vectors over Z𝑞
𝑅 The cyclotomic ring Z[𝑋]/(𝑋𝑁 + 1)
𝑅𝑄 The cyclotomic ring ZQ [𝑋]/(𝑋𝑁 + 1)
𝜒 The noise distribution
Δ The scaling factor
𝛽 The radix base
𝜔 The modular ciphertext chunks
𝔡 The automorphism parameter
a An element in vector domain
a𝑖 The i-th element of a
�̃� An element in polynomial ring
�̃�𝑖 The i-th coefficient of �̃�
A An element in matrix domain
𝑎 A modular integer
ˆ̃𝑚 A modular polynomial

LWE𝑛,𝑞s (𝑚)
An LWE ciphertexts encrypting𝑚
with parameters (𝑛,𝑞) and secret s

RLWE𝑁,𝑄

𝑠
(�̃�) An RLWE ciphertexts encrypting �̃�

with parameters (𝑁,𝑄) and secret 𝑠

RGSW𝑁 ′,𝑄′
s̃ (m) An RGSW ciphertext encryptingm

with parameters (𝑁 ′,𝑄 ′) and secret s̃�LWE
𝑛,𝑞

s (�̂�)
A modular LWE ciphertexts encrypting �̂�
with parameters (𝑛,𝑞) and secret s�RLWE

𝑁,𝑄

𝑠 (ˆ̃𝑚)
An RLWE ciphertexts encrypting ˆ̃𝑚
with parameters (𝑁,𝑄) and secret 𝑠�RGSW𝑁 ′,𝑄′

s̃ (ˆ̃𝑚)
An RGSW ciphertext encrypting ˆ̃𝑚
with parameters (𝑁 ′,𝑄 ′) and secret s̃

A FULL NOTATIONS AND OPERATORS
We summarize the notations and operators used in this work in
Table A1 and Table A2.

B LAYERED DATA STRUCTURE
As shown in Figure A1, the overall data types in ArcEDB are split
into three main layers. From top to bottom, we have the encrypted
table structure layer, the encrypted data type layer, and the homo-
morphic ciphertext layer. While most FHE algorithms operate on
the bottom layer, we believe that decoupling data structures with
low-level FHE ciphertexts are beneficial in building more advanced

Appendix Table A2: Summary of Operators

Operator Description

𝜋 The exponent encoding
⋄ Homomorphic matrix-vector multiplication

Automorphism Homomorphic automorphism [50]
ExternalProduct Homomorphic External Product [29]

+, −, · Addition, subtraction and multiplication
CMUX Homomorphic selector [29]

BlindRotate Blind rotate [29]
PBS Programmable bootstrapping [30]

HomGate Homomorphic gate [29, 42]
𝑐𝑡 The NOT gate result of 𝑐𝑡

RLWEtoLWEs
Converting RLWE to LWEs
(a.k.a, sample extract index [29])

LWEstoRLWE
Converting LWEs to RLWE
(a.k.a, repack [23, 78])

LWEtoRGSW
Converting LWE to RGSW
(a.k.a., circuit bootstrapping [29])

𝐑𝐋𝐖𝐄
Slot Coefficient
Exponent-based

𝐑𝐆𝐒𝐖
Coefficient

Exponent-based

𝐋𝐖𝐄

Encrypted
Numeric

Encrypted
Timestamps

Encrypted
String

Encrypted
Boolean

Homomorphic Ciphertext Layer

Database Datatype Layer

Encrypted Table Structure Layer

Filtering Column Aggregation Column Sorting Column

Appendix Figure A1: An overview of the data structure in
ArcEDB.

Appendix Table A3: Test vector of HCMP on different compari-
son operator ≤, <, ≥, >,==, <> .

Comparison Test Vector 𝜇

𝑎 ≤ 𝑏 𝑇𝑉 = 𝜇 + 𝜇𝑋 + · · · + 𝜇𝑋𝑁 − 1 1/2
𝑎 < 𝑏 𝑇𝑉 = −𝜇 + 𝜇𝑋 + · · · + 𝜇𝑋𝑁 − 1 1/2
𝑎 ≥ 𝑏 𝑇𝑉 = 𝜇 − 𝜇𝑋 − · · · − 𝜇𝑋𝑁 − 1 1/2
𝑎 > 𝑏 𝑇𝑉 = −𝜇 − 𝜇𝑋 − · · · − 𝜇𝑋𝑁 − 1 1/2
𝑎 == 𝑏 𝑇𝑉 = 𝜇 1

EDB systems, especially when large-precision plaintext values are
stored and processed.

C DETAIL ALGORITHMS
C.1 Homomorphic Filtering
We listed the test vector of HCMP on different comparison operators
≤, <, ≥, >,== on Table A3, and the <> operator can be evaluated
by the NOT gate of the result of ==.

We detail how to construct high-precision comparisons based
on low-precision comparisons on operator ≤, <, ≥, >,==, <> in
Table A4.

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

Appendix Table A4: Constructing high-precision comparison
based on low-precision comparisons.Taking 𝑎 = {𝑎0𝑎1} and
𝑏 = {𝑏0𝑏1} as an example.

Comparison Expression

𝑎 ≤ 𝑏 𝑎1 == 𝑏1?𝑎0 ≤ 𝑏0 : 𝑎1 ≤ 𝑏1
𝑎 < 𝑏 𝑎1 == 𝑏1?𝑎0 < 𝑏0 : 𝑎1 < 𝑏1
𝑎 ≥ 𝑏 𝑎1 == 𝑏1?𝑎0 ≥ 𝑏0 : 𝑎1 ≥ 𝑏1
𝑎 > 𝑏 𝑎1 == 𝑏1?𝑎0 > 𝑏0 : 𝑎1 > 𝑏1
𝑎 == 𝑏 𝑎1 == 𝑏1 ∧ 𝑎0 == 𝑏0
𝑎 <> 𝑏 𝑎1 <> 𝑏1 ∨ 𝑎0 <> 𝑏0

Appendix Table A5: The Proposed Parameter Sets

Ciphertext Format Parameters

LWE & �LWE 𝑛 = 1024,
⌈
log2 𝑞

⌉
= 32

RLWE & �RLWE
𝑁 = 1024,

⌈
log2 𝑄

⌉
= 32

𝑁 = 4096,
⌈
log2 𝑄

⌉
= 109

𝑁 = 32768,
⌈
log2 𝑄

⌉
= 720

RGSW & �RGSW 𝑁 ′ = 1024,
⌈
log2 𝑄

′⌉ = 32
𝑁 ′ = 2048,

⌈
log2 𝑄

′⌉ = 64
𝑁 ′ = 4096,

⌈
log2 𝑄

′⌉ = 109

C.2 SIMD Homomorphic MUX
Our core concept in designing SIMDCMUX follows the amortized
bootstrapping technique proposed in [77], which homomorphically
decrypts multiple LWE ciphertexts into a single RLWE ciphertext
and applies the specific MUX polynomial to all of the plaintext
slots in the RLWE ciphertext simultaneously. The detailed algo-
rithm SIMDCMUX presented in Algorithm 6 involves the following
steps. Given three sets of 𝑁 -sized LWE ciphertexts {LWE𝑛,𝑞s (𝔱𝑖)},
{LWE𝑛,𝑞s (𝔞𝑖)}, {LWE𝑛,𝑞s (𝔟𝑖)}, where 𝑖 ∈ Z𝑁 , the first step (Line
1–3 in Algorithm 6) is the linear combination of the LWE cipher-
texts. After the linear combination, we can see that 𝑏𝑖 + a𝑖 · s𝑖 is
equal to (4𝔱𝑖 + 2𝔞𝑖 + 𝔟𝑖) · ⌊𝑞/8⌋ + ⌊𝑞/16⌋ with some small error.
The next step (Line 4–6) is evaluating the homomorphic decryp-
tion circuit. On line 4, we rearrange the ciphertexts to construct
a ciphertext vector b = [𝑏0, 𝑏1, ..., 𝑏𝑁−1] and a ciphertext matrix
A = [a0, a1, ..., aN−1]𝑇 ∈ Z𝑁×𝑛𝑞 . Next on line 5−6, we apply the ho-
momorphic matrix multiplication operations [58, 66, 78] to evaluate
A ⋄ BTK and get 𝑐𝑡 = RLWE𝑁,𝑄

𝑠′
(E(As)). After homomorphically

adding b to 𝑐𝑡 , we obtain 𝑐𝑡𝑙 = RLWE𝑁,𝑄

𝑠′
(E(As + b)). Here 𝑐𝑡𝑙 en-

crypts A · s + 𝑏 = m + 𝑡q, and the 𝑡q term is automatically removed
as 𝑐𝑡𝑙 is an RLWE ciphertext with plain modulus 𝑞. Thus, 𝑐𝑡𝑙 is
encrypting m where𝑚[𝑖] = 𝑏𝑖 + a𝑖 · s𝑖 . The next step (line 7 − 8)
is the evaluation of a specific polynomial 𝑝𝑚𝑢𝑥 (𝑥) : Z𝑞 → Z𝑞. We
define the polynomial 𝑝𝑚𝑢𝑥 (𝑥) as

𝑝𝑚𝑢𝑥 (𝑥) =
{⌊𝑞/𝑝⌋ ⌈𝑥/⌊𝑞/8⌋⌉ ∈ [1, 2] ∪ [3, 4] ∪ [6, 8]

0 ⌈𝑥/⌊𝑞/8⌋⌉ ∈ [0, 1] ∪ [2, 3] ∪ [4, 6] (A1)

Simplicity, the value m[𝑖] = 𝑏𝑖 + a𝑖 · s+ will falls into the inter-
val [(4𝔱𝑖 + 2𝔞𝑖 + 𝔟𝑖) · ⌊𝑞/8⌋ , (4𝔱𝑖 + 2𝔞𝑖 + 𝔟𝑖 + 1) · ⌊𝑞/8⌋]. If 𝔱𝑖?𝔞𝑖 :

Algorithm 6: SIMDCMUX
Input :3𝑁 input LWE ciphertexts with plain modulus 𝑝

(LWE𝑛,𝑞s (𝔱0), LWE𝑛,𝑞s (𝔱1)..., LWE𝑛,𝑞s (𝔱𝑁−1),
(LWE𝑛,𝑞s (𝔞0), LWE𝑛,𝑞s (𝔞1)..., LWE𝑛,𝑞s (𝔞𝑁−1),
(LWE𝑛,𝑞s (𝔟0), LWE𝑛,𝑞s (𝔟1)..., LWE𝑛,𝑞s (𝔟𝑁−1).

Input :A Batch bootstrapping key BTK =

RLWE𝑁,𝑄

𝑠′
(E(s)) with the plain modulus 𝑞.

Input :An LWE key switching key KSK.
Output :𝑁 LWE ciphertexts ctO =

(LWE𝑛,𝑞s (𝔠0), LWE𝑛,𝑞s (𝔠1), ..., LWE𝑛,𝑞s (𝔠𝑁−1))
where 𝔠𝑖 = 𝔱𝑖?𝔞𝑖 : 𝔟𝑖 .

1 𝑠𝑐𝑎𝑙𝑒 ← ⌊𝑝/8⌋, 𝑜 𝑓 𝑓 𝑠𝑒𝑡 ← ⌊𝑞/16⌋
2 for 𝑖 = 0 to 𝑁 − 1 do
3 (𝑏𝑖 , ai) ← 𝑠𝑐𝑎𝑙𝑒 · (4LWE(𝔱𝑖) + 2LWE(𝔞𝑖) + LWE(𝔟𝑖))
4 𝑏𝑖 ← 𝑏𝑖 + 𝑜 𝑓 𝑓 𝑠𝑒𝑡
5 Let b← [𝑏0, 𝑏1, ..., 𝑏𝑁−1], A← [a0, a1, ..., aN−1]𝑇 ∈ Z𝑁×𝑛𝑞

6 𝑐𝑡 ← A ⋄ BTK ; ⊲ 𝑐𝑡 = RLWE𝑁,𝑄

𝑠′
(E(As))

7 𝑐𝑡𝑙 ← 𝑐𝑡 + (E(b), 0) ; ⊲ 𝑐𝑡𝑙 = RLWE𝑁,𝑄

𝑠′
(E(As + b))

8 Generate the evaluation polynomial 𝑝𝑚𝑢𝑥 (𝑥)
9 𝑐𝑡𝑝 ← 𝑝𝑚𝑢𝑥 (𝑐𝑡𝑙) ; ⊲ 𝑐𝑡𝑝 = RLWE𝑁,𝑄

𝑠′
(E(𝔠0, 𝔠1, ..., 𝔠𝑁−1))

10 𝑐𝑡𝑐 ← SlotToCoeff(𝑐𝑡𝑝) ; ⊲ 𝑐𝑡𝑐 = RLWE𝑁,𝑄

𝑠′
(𝔠)

11 𝑐𝑡𝑚 ← ModSwitch(𝑐𝑡𝑐) ; ⊲ 𝑐𝑡𝑚 = RLWE𝑁,𝑞

𝑠′
(𝔠)

12 ctO ← RLWEtoLWEs(𝑐𝑡𝑚) ; ⊲ ctO [𝑖] = LWE𝑁,𝑞

s′ (𝔠𝑖)
13 for 𝑖 = 0 to 𝑁 − 1 do
14 ctO [𝑖] ← KeySwitch(ctO [𝑖],KSK) ; ⊲ LWE𝑛,𝑞s (𝔠𝑖)

Return :ctO

𝔟𝑖 is 1, we define the value of 𝑝𝑚𝑢𝑥 (𝑥) on the the interval
[(4𝔱𝑖 + 2𝔞𝑖 + 𝔟𝑖) · ⌊𝑞/8⌋ , (4𝔱𝑖 + 2𝔞𝑖 + 𝔟𝑖 + 1) · ⌊𝑞/8⌋] is ⌊𝑞/𝑝⌋, oth-
erwise 0. As explained in Section 2.2, 𝑝𝑚𝑢𝑥 (𝑥) can be directly ap-
plied to the RLWE ciphertext 𝑐𝑡𝑙 . Thus, after line 8, we get the
ciphertext 𝑐𝑡𝑝 = RLWE𝑁,𝑄

𝑠′
(E(𝔠0, 𝔠1, ..., 𝔠𝑁−1)) and 𝔠𝑖 = (𝔱𝑖?𝔞𝑖 :

𝔟𝑖) · ⌊𝑞/𝑝⌋. Next, we follow [17, 25, 73] to apply SlotToCoeff on
𝑐𝑡𝑝 and gets 𝑐𝑡𝑐 = RLWE𝑁,𝑄

𝑠′
(𝔠). Here 𝔠𝑖 = (𝔱𝑖?𝔞𝑖 : 𝔟𝑖) · ⌊𝑞/𝑝⌋.

After we perform the modulus switching (line 9), we change
back the ciphertext with plain modulus 𝑝 and ciphertext mod-
ulus 𝑞 and gets 𝑐𝑡𝑚 = RLWE𝑁,𝑞

𝑠′
(𝔠). Now, the value 𝔠𝑖 is equal

to (𝔱𝑖?𝔞𝑖 : 𝔟𝑖). Finally, we extract the 𝑁 LWE ciphertexts from
𝑐𝑡𝑚 and key switch the LWE ciphertext to the original parameters
(line 12−14) and gets (LWE𝑛,𝑞s (𝔠0), LWE𝑛,𝑞s (𝔠1), ..., LWE𝑛,𝑞s (𝔠𝑁−1))
where 𝔠𝑖 = (𝔱𝑖?𝔞𝑖 : 𝔟𝑖) and the noise of the output is independent
of the input ciphertext.

C.3 Homomorphic Sorting and Synchronization
We present the detail algorithm for SortSynchronize in Algo-
rithm 7 and HomSort in Algorithm 8.

The Algorithm 7 includes the following
steps. Given 𝐿 modular RGSW ciphertext ct =

(�RGSW(
𝜋 (𝑎0)

)
, �RGSW(

𝜋 (𝑎1)
)
, · · · , �RGSW(

𝜋 (𝑎𝐿−1)
)

where
𝑎𝑖 =

∑𝜔−1
𝑗=0 𝑎𝑖, 𝑗2𝑗 and L another modular RLWE ciphertexts

Zhou Zhang et al.

Appendix Table A6: Complexity Comparisons Between Liu et al. [76], HE3DB [16], ArbHCMP and SIMDArbHCMP in ArcEDB.

Bootstrap complexity Precision (𝑘) #bootstrap Bootstrap parameters

Liu et al. [76] 2 · ⌈𝑘/4⌉ − 1
16 7 𝑛 = 2048,

⌈
log2 𝑞

⌉
= 29

32 15 𝑛 = 4096,
⌈
log2 𝑞

⌉
≤ 109

64 31 𝑛 = 4096,
⌈
log2 𝑞

⌉
≤ 109

HE3DB [17] 2 · ⌈𝑘/5⌉ − 1
16 7 𝑛 = 2048,

⌈
log2 𝑞

⌉
= 64

32 13 𝑛 = 2048,
⌈
log2 𝑞

⌉
= 64

64 25 𝑛 = 4096,
⌈
log2 𝑞

⌉
= 128

ArcEDB

ArbHCMP ⌈𝑘/10⌉ − 1
16 1 𝑁 = 1024,

⌈
log2 𝑄

⌉
= 32

32 3 𝑁 = 1024,
⌈
log2 𝑄

⌉
= 32

64 6 𝑁 = 1024,
⌈
log2 𝑄

⌉
= 32

SIMDArbHCMP ⌈𝑘/12⌉ − 1
16 1 𝑁 = 32768,

⌈
log2 𝑄

⌉
= 660

32 2 𝑁 = 32768,
⌈
log2 𝑄

⌉
= 660

64 5 𝑁 = 32768,
⌈
log2 𝑄

⌉
= 660

(�RLWE(�̂�0), · · · , �RLWE(�̂�𝐿−1)
)

where �̂�𝑖 =
∑𝜔−1
𝑖=0 𝑚𝑖, 𝑗 𝛽

𝑖 .
First in Line 3, for each modular RLWE ciphertext �RLWE(�̂�𝑖),
we multiply the �RLWE(�̂�𝑖) with 𝑋 0, 𝑋 1, · · · , 𝑋𝐿−1 and result
ct𝑒𝑥𝑝 =

(
𝑋 0�RLWE(�̂�𝑖), · · · , 𝑋𝐿−1�RLWE(�̂�𝑖)

)
. Next in Line 4-6,

we utilize the modular RGSW ciphertext as the control signal
and evaluate a CMUX tree on ct𝑒𝑥𝑝 to get �RLWE(�̂�𝑖𝑋

𝑎𝑖). After
that, in Line 7, we summarize the L modular ciphertext and obtain
𝑐𝑡𝑟𝑒𝑠 =

∑𝐿−1
𝑖=0

�RLWE(�̂�𝑖𝑋
𝑎𝑖). Since the swap will automatically

performed due to the exponent indices, after extracting the coeffi-
cients of the 𝑐𝑡𝑟𝑒𝑠 , we get L synchronized modular LWE ciphertexts(�LWE(�̂�𝑠0), · · · ,�LWE(�̂�𝑠𝐿−1)

)
. The sequence 𝑠0, · · · 𝑠𝐿−1 satisfy

𝑎𝑠0 ≤ 𝑎𝑠1 ≤ . . . 𝑎𝑠𝐿−1 .
The Algorithm 8 is based onAlgorithm 7. Given 𝐿modular RLWE

ciphertexts cta =

(�RLWE
(
𝜋 (𝑎0)

)
, · · · , �RLWE

(
𝜋 (𝑎𝐿−1)

))
First, in

Line 1-6, we compare each two ciphertext in cta and construct
a comparison matrix 𝐴 where 𝐴[𝑖] [𝑗] = LWE(𝑎𝑖 < 𝑎 𝑗). Next,
in Line 7-10, we summarize each row of 𝐴 and obtain LWE ci-
phertext vector Id where Id[𝑖] encrypts the sorted position of
𝑎𝑖 . On Line 11-14, we decompose the LWE ciphertext Id[𝑖] into
a set of LWE ciphertexts encrypting Boolean values and result
BitId[𝑖] [0], ...,BitId[𝑖] [𝐿 − 1] where BitId[𝑖] [𝑗] encrypts the 𝑗-bit
of Id[𝑖]. Finally, on Line 15, we apply the Algorithm 7 and swap 𝐿

modular RLWE ciphertexts
(�RLWE(�̂�0), · · · , �RLWE(�̂�𝐿−1)

)
into

𝐿 modular LWE ciphertexts
(�LWE(�̂�𝑠0), · · · ,�LWE(�̂�𝑠𝐿−1)

)
. The se-

quence 𝑠0, · · · 𝑠𝐿−1 satisfy 𝑎𝑠0 ≤ 𝑎𝑠1 ≤ . . . 𝑎𝑠𝐿−1 .

D EXPERIMENT DETAILS
D.1 Encryption Parameters
The instantiated parameters are outlined in Table A5, which provide
at least 128-bit of security level according to [3].

D.2 SQL Queries Illustration
We provide the time-series benchmark SQL queries in Figure A2.
For TPC-H benchmark [37] queries, we remove the JOIN conditions
to be consistent with HEDA [99] and HE3DB [16].

Algorithm 7: SortSynchronize
Input :𝐿 modular RGSW ciphertexts ct =

(�RGSW(
𝜋 (𝑎0)

)
, �RGSW(

𝜋 (𝑎1)
)
, · · · , �RGSW(

𝜋 (ˆ𝑎𝐿−1)
)

where 𝑎𝑖 =
∑𝜔−1

𝑗=0 𝑎𝑖, 𝑗2𝑗 .
Input :L another modular RLWE ciphertexts(�RLWE(�̂�0), · · · , �RLWE(�̂�𝐿−1)

)
where

�̂�𝑖 =
∑𝜔−1
𝑖=0 𝑚𝑖, 𝑗 𝛽

𝑖 .
Output :L synchronized modular LWE ciphertexts(�LWE(�̂�𝑠0), · · · ,�LWE(�̂�𝑠𝐿−1)

)
. The sequence

𝑠0, · · · 𝑠𝐿−1 satisfy 𝑎𝑠0 ≤ 𝑎𝑠1 ≤ . . . 𝑎𝑠𝐿−1 .
1 Initialize 𝑐𝑡𝑟𝑒𝑠 = �RLWE(0)
2 for 𝑖 = 0 to 𝐿 − 1 do
3 ct𝑒𝑥𝑝 ←

(
𝑋 0�RLWE(�̂�𝑖), · · · , 𝑋𝐿−1�RLWE(�̂�𝑖)

4 for 𝑗 = 0 to log𝐿 − 1 do
5 for 𝑡 = 0 to 2log𝐿−𝑖−1 − 1 do
6 ct𝑒𝑥𝑝2𝑗+1 ·𝑡 ← CMUX(ct[𝑖] [𝑗], ct𝑒𝑥𝑝2𝑗+1 ·𝑡+2𝑗 , ct

𝑒𝑥𝑝

2𝑗+1 ·𝑡)
7 𝑐𝑡𝑟𝑒𝑠 ← 𝑐𝑡𝑟𝑒𝑠 + ct𝑒𝑥𝑝0
8 for 𝑖 = 0 to 𝐿 − 1 do
9 ct𝑂 ← RLWEtoLWEs(𝑐𝑡𝑟𝑒𝑠) [𝑖]
Return :𝑐𝑡𝑂

SELECT COUNT(*) FROM MedicalHistory
WHERE (systolic < 90 OR diastolic < 50 OR

weight_gain > 2 OR heart_rate < 40
OR heart_rate > 90) AND (time BETWEEN
2021:07:01:00:00 AND 2021:08:01:00:00)

(a) TQ1.

SELECT COUNT(*) FROM MobileHealth
WHERE glucose < 70 OR glucose > 100 AND

time > 2023:12:01:00:00
GROUP BY time(1m)

(b) TQ2.
SELECT COUNT(passenger_count) FROM passengers
WHERE time = 2021:07:01:00:00

AND VendorID = 2 AND RatecodeID = 2

(c) TQ3.

SELECT SUM(fare_amount) FROM fare
WHERE (time BETWEEN 2016:01:01:00:00 AND

2016:01:03:00:00)

(d) TQ4.

Appendix Figure A2: The detail time-series queries bench-
mark in Section 6.3.

ArcEDB: An Arbitrary-Precision Encrypted Database via (Amortized) Modular Homomorphic Encryption

Algorithm 8: The homomorphic sorting operator HomSort
Input :𝐿 modular RLWE ciphertexts

cta =
(�RLWE

(
𝜋 (𝑎0)

)
, · · · , �RLWE

(
𝜋 (𝑎𝐿−1)

))
.

Input :L another modular RLWE ciphertexts
ctm =

(�RLWE(�̂�0), · · · , �RLWE(�̂�𝐿−1)
)
where

�̂�𝑖 =
∑𝜔−1
𝑖=0 𝑚𝑖, 𝑗 𝛽

𝑖 .
Output :L synchronized modular LWE ciphertexts(�LWE(�̂�𝑠0), · · · ,�LWE(�̂�𝑠𝐿−1)

)
. The sequence

𝑠0, · · · 𝑠𝐿−1 satisfy 𝑎𝑠0 ≤ 𝑎𝑠1 ≤ . . . 𝑎𝑠𝐿−1
1 for 𝑖 = 0 to 𝐿 − 1 do
2 for 𝑗 = 0 to 𝑖 − 1 do
3 A[𝑖] [𝑗] ← 1 − A[𝑗] [𝑖]
4 A[𝑖] [𝑖] ← RLWE(0)
5 for 𝑗 = 𝑖 + 1 to 𝐿 − 1 do
6 A[𝑖] [𝑗] ← ArbHCMP<

(
cta𝑖 , cta 𝑗

)
7 Initialize Id =

(
LWE0 (0), · · · , LWE𝐿−1 (0)

)
8 for 𝑖 = 0 to 𝐿 − 1 do
9 for 𝑗 = 0 to 𝐿 − 1 do
10 Id[𝑖] ← Id[𝑖] +𝐴[𝑖] [𝑗]
11 for 𝑖 = 0 to 𝐿 − 1 do
12 BitId[𝑖] ← Decompose(Id[𝑖])
13 for 𝑗 = 0 to log𝐿 − 1 do
14 BitId[𝑖] [𝑗] ← LWEtoRGSW(BitId[𝑖] [𝑗])
15 ct𝑂 ← SortSynchronize(BitID, ctm)

Return :ct𝑂

D.3 Clarifications for Figure 4
We conclude the concrete complexity comparisons between Liu et
al. [76], HE3DB [16] and ArcEDB in Table A6. Moreover, we
provide more clarifications for experimental differences between
HE3DB [16] and ArcEDB. The main reduction here comes from
bootstrapping: ArbHCMP in ArcEDB requires ⌈𝑘/10⌉ − 1 bootstrap-
ping for the comparison of 𝑘-bit encrypted integers, while HE3DB
requires 2 · ⌈𝑘/5⌉ −1. For instance, when 𝑘 is 16, ArbHCMP requires
1 bootstrapping operation per 𝑘-bit comparison, while HE3DB re-
quires 7 (7× gain). Besides, the ciphertext dimension of ArbHCMP
in bootstrapping remains unvarying at 1024, while that of HE3DB
changes with data precision. At 𝑘 = 16, the dimension of HE3DB is
2048 (roughly 2× gain). Therefore, for 16-bit comparisons, ArcEDB
is around 14× faster than HE3DB as shown in Figure 4 in the main
manuscript. Additionally, HE3DB requires twice PBS in the case
of ==, which doubles the runtime, while the performance of Arb-
HCMP is unchanged. Overall, the difference between ArbHCMP
and HE3DB ranges from 14×–28×.

	Abstract
	1 Introduction
	1.1 Our Contribution
	1.2 Related Works

	2 FHE Primitives
	2.1 FHE Ciphertexts Types
	2.2 Homomorphic Operators

	3 Framework Overview
	3.1 System Workflow
	3.2 Data Encoding and Structure
	3.3 ArcEDB API
	3.4 Threat Model and Security Guarantees

	4 (Amortized) Homomorphic Filtering
	4.1 Limited Precision Filtering
	4.2 Arbitrary Precision Filtering
	4.3 Amortized Arbitrary Precision Filtering

	5 Complex Homomorphic Aggregation
	5.1 Homomorphic Arithmetic Aggregation
	5.2 Homomorphic Logic Aggregation

	6 Evaluation
	6.1 Implementation
	6.2 Microbenchmarks
	6.3 SQL Benchmarks

	7 Conclusions
	References
	A Full Notations and operators
	B Layered Data Structure
	C Detail Algorithms
	C.1 Homomorphic Filtering
	C.2 SIMD Homomorphic MUX
	C.3 Homomorphic Sorting and Synchronization

	D Experiment details
	D.1 Encryption Parameters
	D.2 SQL Queries Illustration
	D.3 Clarifications for fig: benchfilter

