
Quirky Interactive Reductions of Knowledge

Joseph Johnston

Abstract

Interactive proofs and arguments of knowledge can be generalized to the concept of interactive reductions of
knowledge, where proving knowledge of a witness for one NP language is reduced to proving knowledge of a witness
for another NP language. We take this generalization and specialize it to a class of reductions we refer to as ‘quirky
interactive reductions of knowledge’ (or QUIRKs). This name reflects our particular design choices within the broad
and diverse world of interactive reduction methods. A central design choice is allowing the prover to rewind or regress
to any previous reduction and repeat it as many times as desired. We prove completeness and extractability properties
for QUIRKs. We also offer tools for constructing extraction algorithms along with several simple examples of usage.

Contents
1 Introduction 2

2 QUIRKs 4
2.1 Reduction without regression . 5
2.2 Reduction with regression . 6
2.3 Definitions . 6
2.4 Properties . 9

3 Proof of completeness 10

4 Proof of extractability 12
4.1 Extraction and solution without regression . 14

4.1.1 red and properties . 14
4.1.2 Extending with reduction . 15
4.1.3 Joining claims . 17

4.2 Extraction and solution with regression . 19
4.2.1 pro and reg and properties . 19
4.2.2 proreg and properties . 23
4.2.3 Extending with regression . 24
4.2.4 Joining claims . 25

5 Message-independent sampling 27
5.1 Probability of success . 29

5.1.1 Obtaining the univariate. 29
5.1.2 Lower bounding g for k = 1. 31
5.1.3 Lower bounding g for k ≥ 2. 31

5.2 Expected time . 32

6 Message-dependent sampling 33
6.1 The algorithm . 34
6.2 Lower bounding probability of success . 35
6.3 Upper bounding probability of success . 37
6.4 Expected running time . 37

1

7 Instance and witness reductions 38
7.1 Prover witness reductions . 38
7.2 Prover instance reductions . 38
7.3 Verifier-move witness reductions . 40

7.3.1 Constructing core . 41
7.3.2 Constructing corei . 41

7.4 Verifier-move instance reductions . 44

8 Examples 46
8.1 Univariate identity testing . 46
8.2 Evaluation check . 47

8.2.1 A prover-move instance reduction . 48
8.2.2 A verifier-move instance reduction . 50

8.3 Three examples of verifier-move witness reduction . 50
8.3.1 Extracting Pedersen commitments by linear independence 51
8.3.2 Extracting Pedersen commitments independently . 52
8.3.3 Hash trees . 54

A Founding papers of interactive proofs 55
A.1 The framework of GMR85 . 56

A.1.1 Basic Tools . 56
A.1.2 Proof systems . 56
A.1.3 Complexity classes . 56

A.2 The framework of Bab85 . 56
A.2.1 Basic Tools . 56
A.2.2 Proof systems . 56
A.2.3 Complexity classes . 57

A.3 Similarities . 57
A.4 Differences . 57
A.5 Analysis and equivalence . 58
A.6 Motivations and results . 59

References 60

1 Introduction
The theory and practice of interactive proof systems have a long history beginning with [GMR85] and [Bab85]; we
provide an overview of those founding papers in Appendix A. Many variational frameworks for proof systems emerged
in the years following, and today one of the most popular frameworks for proof systems is that of ‘interactive oracle
proofs’ (IOPs) from [BSCS16]. We aim to develop another framework that can capture most if not all practical proof
systems while shifting perspective on how we may develop and analyze proof systems. We shift focus from the mono-
lithic nature of proof systems as entire protocols, to the modular nature of how most proof systems can be decomposed
into prover-moves and verifier-moves. Proof systems for NP languages are of concern, and in particular proofs of
knowledge for NP, where the prover must prove knowledge of a witness for a particular instance to be in a particular
language. Beyond proofs we also allow for ‘arguments’ in which the prover is assumed computationally bounded.
We study ‘reductions of knowledge’ between languages, that is where the prover may not fully prove knowledge of
a witness for an instance in a language but instead reduce to proving knowledge of a witness for another instance
in another language. Any interactive proof or argument of knowledge can be viewed as an interactive reduction of
knowledge, and vice versa. While the reduction-based perspective then is not fundamentally different, we believe it to
be valuable and are not the first to write on the perspective (e.g. see [KP22]).

We develop a class of reductions we call ‘quirky interactive reductions of knowledge’ to reflect our particular and
potentially peculiar design decisions. Most of these design decisions relate to how the prover and verifier interact, and
how we define associated notions such as completeness and knowledge soundness. In relation to IOPs, we mention
two other design decisions.

2

• QUIRKs are void of oracles, taking place entirely in the plain model. The popularity of IOPs today is likely
due to the convenience of relying on oracles to represent data that is not readily available to the verifier, such
as the witness the prover claims to hold. A similar convenience can be achieved with QUIRKs by means of
composition.

• While traditional interactive proofs and arguments assume the prover cannot ask the verifier for a new chal-
lenge when not fond of a challenge given, QUIRKs indeed allow the prover to navigate the entire sequence
of reductions both backwards and forwards as many times as desired. Moving backwards we call ‘regression’
and moving forwards we call ‘progression’. The notion of ‘state-restoration’ presented in [BSCS16] for IOPs
is similar, where the prover is allowed to rewind the verifier to any previous verifier state. In the case that the
verifier only chooses random challenges, however, the verifier has no state. In QUIRKs we restrict the verifier
to only sampling random challenges, and therefore according to [BSCS16] the verifier is stateless. Using the
term ‘state-restoration’ then makes little sense for QUIRKs since there is never any state.

Sections are organized as follows.

• In Section 2 we define QUIRKs, associated notions, and we present the core theorem of QUIRKs.

• In Sections 3 and 4 we prove the completeness and extractability properties fo QUIRKs, respectively.

• In Sections 5 and 6 we present two auxiliary algorithms one may choose to use in constructing extractors.
Both of their results, concerning the probability of success and expected time of sampling algorithms, have
two versions. While both versions may be used to achieve the same extractability errors, one offers superior
probability of success and the other offers superior expected running time. For simplicity of notation, in the
definitions of QUIRKs and their proven properties, as well as all examples of QUIRKs we explore, we use
the version with superior running time for notational simplicity. The versions offering superior probability of
success, however, are important for achieving what are likely near optimal results.

• In Section 7 we introduce the notions of ‘instance reductions’ and ‘witness reductions’ and present example
generic constructions of each.

• In Section 8 we present several toy examples of QUIRK constructions.

Throughout we use the following notation and conventions without re-introduction.

• We use several algebraic data types defined as

Maybe⟨T ⟩ = No | Yes(T)
Result⟨T,E⟩ = Ok(T) | Err(E)

Either⟨L,R⟩ = Left(L) | Right(R)

We use two enumerated types called Way and Error. A core type will be Result⟨T,Error⟩ for some type T .

Way = Regress | Progress, Error = Regress | Fail

We treat types also as sets, a type T naturally defined as the set containing all values of type T .

• We model any prover P , whether honest or adversarial, as an object in a set Pvr characterized by three public
methods.

– The verifier invokes P.message() to generate a prover message if the prover is the moving party. We
expect P.message to return a message of the appropriate type.

– When the verifier generates a message m as the moving party, the verifier sends the prover the message by
invoking P.update(m) receiving no return value, or rather the unit return value ().

– The verifier allows the prover to regress and progress through the reductions by invoking P.way() and
receiving a value of type Way.

3

• Choosing notation to express reduction composition was not an obvious choosing. Intuitively upon executing
one reduction, one simply transitions to the next. But when it comes to witness extraction the second reduction
must return a witness to the first reduction. Communication both directions can be modelled by message passing,
but formalizing with message passing became too complex. We instead chose to make the second reduction a
subroutine of the first reduction. Reductions involve multiple parameters, including a prover, an instance, and
also whatever reductions are to follow. Currying becomes natural in this setting and we adopt a functional
notation involving higher-order functions. We curry functions passing each parameter with parentheses, e.g. to
invoke f with arguments x and then y we write f(x)(y).

Despite our function notation, our functions are far from pure, and in fact quite the opposite as they are centered
around the randomness of both the prover and verifier. Care must be taken, then, in interpretation of function
invocation as follows: When a function is not pure, the function does not execute even partially (i.e. no β-
reduction occurs) until one explicitly executes the function and assigns an identifier to the result. A function is
explicitly executed with the left arrow pointing from the function to the output identifier.

• It only makes sense to discuss witnesses with respect to a particular instance. We will often, however, discuss
witnesses leaving it implicit to which instance a witness belongs. For example, we may say that at the end of
a reduction from language L(I;W) to language L′(I ′;W ′) the prover holds a W ′ witness. We don’t mean the
prover may choose any value of type W ′. Instead, if we reduce from instance x ∈ I to instance x′ ∈ I ′ we
mean the prover holds a witness for x′.

• When we write algorithms, the return value of a function is the value of the last expression in the function. The
unit type and unit value are both denoted ().

• To compose a sequence of functions {fi}ki=j we write⃝k
i=j(fi). The functions to compose are located inside

the parentheses immediately following⃝. As such it is clear that⃝k
i=j(fi) ◦ g for another function g means(

⃝k
i=j (fi)

)
◦ g and not⃝k

i=j((fi) ◦ g).

• We typeset types and variables in the Roman and Greek alphabets. Types are written capitalized in the Roman
alphabet. These include enumeration types and their variants. All other symbols are written in the lower case
Roman alphabet or the Greek alphabet. We use sans-serif font for the Roman alphabet if and only if the symbol
is multi-letter. Sans-serif font is not to be interpreted as semantically different.

Here we mention two points for improvement on QUIRKs.

• The QUIRK model as developed has no regard for zero-knowledge. Conceptualizing zero-knowledge for
QUIRKs seems a tricky task such that it is defined independently per QUIRK but is preserved on concatenation
of QUIRKs into poly-QUIRKs.

• Intuitively we may allow the prover more freedom than regression, allowing the prover to choose not only
between whether to regress or progress, but also what QUIRK to execute next in the case of progression. This
would offer what is likely a new paradigm in interactive proofs. In contrast to typical interactive proofs where
the sequence of prover and verifier moves are hardcoded, in this relaxed model the prover could choose during
interaction which reduction to apply at what step, while still having complete freedom to regress and perhaps
choose a different reduction after each regression. This framework would require adapting communication
between the prover and verifier to agree not only on when to progress, but with which QUIRK to progress. The
proof of extractability must also be reformulated, though the basic techniques underling and proof as well as
the functional formalization seem still applicable. The task would largely be one of adapting definitions and
notation.

2 QUIRKs
This section is organized as follows.

• In Section 2.1 we outline how reduction is performed for a QUIRK without allowing regression.

• In Section 2.2 we outline how reduction changes when we allow for regression.

4

• In Section 2.3 we define QUIRKs and related notions.

• In Section 2.4 list the properties of QUIRKs.

2.1 Reduction without regression
A QUIRK Q for reduction from a language L(I;W) to a language L′(I ′;W ′) consists of five functions(

message, instance, witness, extract, solve
)

We outline how the prover and verifier use the first three functions to reduce some instance x ∈ I to some (potentially
random) instance x′ ∈ I ′. An honest prover holds a witness w ∈ W in hopes of reducing to a witness w′ ∈ W ′. The
latter two functions solve and extract serve to justify security and are not invoked during reduction.

• The moving party invokes the probabilistic function Q.message and sends a message of some type M to
the other party. We use binary valued utility functions Pmove and Vmove to indicate the moving party. If
Pmove(Q) = 1 then Q.message may depend on x and w. If Vmove(Q) = 1 then Q.message accepts no
arguments.

• Upon both parties holding a message m ∈ M , the deterministic function Q.instance is invoked by both parties
to compute a new instance x′ ∈ I ′, which may depend on the current instance x as well as the message m.

• At this point an honest prover also invokes the deterministic function Q.witness accepting x, m, and w as
arguments, in hopes the output is a new witness w′ ∈ W ′. Due to what is called completeness error, however,
this may not be the case. To capture this circumstance we type the output of Q.witness as Maybe⟨W ′⟩.

• Whether or not an honest prover has obtained a new witness, Q has finished execution, and the subsequent
reduction is invoked. When we allow for regression the prover will be able to repeat the execution of Q as many
times as necessary until obtaining a valid new witness.

We formalize this reduction in Algorithm 1, calling it δ to signify a change occurs in reducing from one language to the
other. Despite δ not formally a component ofQ, we identify it asQ.δ because it is fully determined by the components
of Q, in particular by Q.message, Q.instance, and Q.witness. Shown in Algorithm 1, Q.δ is a higher-order function.
We now examine the signature.

• Following the execution of δ there remain any number of subsequent reductions to perform. The composition
of all subsequent reductions is passed to δ as first argument with signature next : I ′ → Pvr→ Result⟨T,Error⟩.
The function next may be composed of not just reductions for other QUIRKS, but composed of a combination
of extraction, solution, and reduction functions. Moreover, all of them will incorporate regression, which is why
errors returned may have value Err(Regress).

• The instance x ∈ I is passed as second argument.

• The prover P ∈ Pvr is passed as third argument.

• The function next is tail called by δ with a new instance in I ′ and the prover P . As next returns a value of type
Result⟨T,Error⟩ = Ok(T) | Err(Regress | Fail), so does δ. If T is to be W ′, then next must be composed of
extractors in order to extract W ′. But as said, next may be composed of combinations of extraction, solution,
and reduction functions, which may return results of other types T .

Algorithm 1 Reduction without regression

δ⟨T ⟩ : (I ′ → Pvr→ Result⟨T,Error⟩)→ I → Pvr→ Result⟨T,Error⟩
δ(next)(x)(P) :=

if Pmove(Q)
m← P.message()

if Vmove(Q)
m← Q.message()
P.update(m)

next
(
Q.instance(x)(m)

)
(P)

5

Remark 1. Regarding the design choice of Q.message for a verifier move accepting no arguments, we believe this to
be natural for most cases. In exceptional cases this limitation can be circumvented by having Q.message sample a
uniform string (e.g. a series of coin flips) and leaving Q.instance to compute the instance-dependent message.

2.2 Reduction with regression
Regression is a matter of allowing the prover to regress and progress between reductions. Upon executing one QUIRK
Q and prior to executing another QUIRK Q′, the verifier queries the prover on a method called way to receive a value
of type Way = Regress | Progress. If the prover responds with Regress then the verifier regresses to the point before
Q and again queries the prover on way. If the prover responds with Progress then Q′ is executed. Thus if a prover
wishes to regress exactly k ≥ 0 QUIRKs it will be queried on way k + 1 times returning Regress the first k times
followed by Progress the last time.

Formalized in Algorithm 2 we denote regression with Γ. Similar to δ, the higher-function Γ accepts as first
argument a function called next. Whereas with δ the function next has first argument with an instance type, with Γ the
function next has first argument with a type variable H leaving Γ unassociated with any particular language. Though
H is free it will resolve to a particular instance type when Γ is used in composition. The Γ process first queries the
prover on way, and returns a regression error if the prover requests regression. If the prover requests progression,
the function next is invoked, and if the return value is a regression error then by tail recursion we repeat the process.
By this logic we capture the pattern of regression and progression between whatever QUIRK called Γ and whatever
QUIRK is first encountered when executing next. The value returned by next is not a regression error if and only if
next was fully executed until the end and the verifier made a final decision.

Note how Γ invoked on a function of type H → Pvr→ Result⟨T,Error⟩ for any types H and T , yields a function
of the same type. Since δ accepts a next function of such a type, composition δ ◦ Γ with H := I ′ is natural. Since
δ ◦ next returns a function of such a type, composition Γ ◦ δ with H := I is natural. In both cases, the signature
remains that of δ.

Algorithm 2 Regression

Γ⟨H,T ⟩ : (H → Pvr→ Result⟨T,Error⟩)→ H → Pvr→ Result⟨T,Error⟩
Γ(next)(x)(P) :=

match w ← P.way()
Regress⇒ Err(Regress)

Progress⇒
match r ← next(x)(P)

Err(Regress)⇒
r′ ← Γ(next)(x)(P)

Err(Fail)⇒ Err(Fail)

Ok(t)⇒ Ok(t)

2.3 Definitions
Having introduced δ in Algorithm 1 and Γ in Algorithm 2, we are prepared to formalize QUIRKs, poly-QUIRKs, and
associated definitions.

• QUIRKs are define in Definition 1

• Completeness and extractability errors, as well as expected extraction and solution times, are defined in Defini-
tion 2

• Poly-QUIRKs are defined in Definition 3

• Definition 2

• Definition 4

6

• Definition 5

Definition 1. A QUIRK from language L(I;W) to language L′(I ′;W ′) consists of five functions(
message, instance, witness, extract, solve

)
described as follows.

• Message. The function message is probabilistic and outputs a message of some type M . Mono-QUIRKs can be
categorized as prover-move or verifier-move and the distinction is captured by the signature of the message
function. A prover-move QUIRK has message signature

message : I →W →M

A verifier-move QUIRK accepts no arguments and therefore has message signature

message : ()→M

• Instance. The function instance is deterministic with signature

instance : I →M → I ′

• Witness. The function witness is probabilistic with signature

witness : I →M →W → Maybe⟨W ′⟩

Implicitly, rather than enforced in signature, we assume that for any x ∈ I , m ∈ M , and w ∈ W such that
(x; w) ∈ L and witness(x)(m)(w) = Yes(w′) for some w′ ∈W ′, we have(

instance(x)(m); w′) ∈ L′(I ′; W ′) (1)

In other words, if witness returns a new witness we assume it to be a witness for the new instance returned by
instance. We may refer to this as the consistency assumption between the instance and witness functions.

• Extract and solve. The functions extract and solve are functions one can use to interact with a prover in effort
to extract a witness of type W or a ‘solution’ of type S, respectively, as described next.

– The type W is the set of all witnesses for all instances I in L. The function extract is passed an instance
x ∈ I as second argument, and returns an error (of type Error) or some witness value w (of type W). The
task of extracting a witness, however, is only meaningful if w is constrained to be a witness for instance
x. We therefore implicitly constrain extract to output a witness only for the instance given, though this
constraint is not expressed in the signature.

– The type S in the set-theoretic sense consists of elements we may call ‘solutions’ to the search problem of
finding an s ∈ S. The function solve returns a result with an error (of type Error) or a solution (of type S).

extract :
(
I ′ → Pvr→ Result⟨W ′,Error⟩

)
→ I → Pvr→ Result⟨W,Error⟩

solve :
(
I ′ → Pvr→ Result⟨W ′,Error⟩

)
→ I → Pvr→ Result⟨S,Error⟩

An implicit assumption on how these functions operate is crucial. We describe how extract operates and the
description is naturally extended to solve. On arguments η : I ′ → Pvr → Result⟨W ′,Error⟩, x ∈ I , and
P ∈ Pvr, the function extract operates as follows. It immediately invokes δ(η)(x)(P) and examines the result,
which is of type Result⟨W ′,Error⟩. If the result holds the Error variant then extract returns that error. If the
result holds the Ok⟨W ′⟩ variant then extract may continue operating by and interacting with the prover as
it chooses. Finally extract returns a result that holds the variant Error with value Fail, or holds the variant
Ok⟨W ⟩. Consequently, extract returns Err(Regress) if and only if δ does so on the initial invocation.

7

QUIRK type notation. For a QUIRK Q we access the five functions with dot notation, for example writing
Q.message to access the message function. When we wish to access a type T associated with a particular QUIRK Q,
we use the type as a utility function and write T (Q). For example, the signature of the witness function for a QUIRK
Q may be written I(Q) → M(Q) → W (Q) → Maybe⟨W ′(Q)⟩. We may do the same for the languages, saying for
example that a QUIRK Q reduces from language L(Q) to language L′(Q). Note that a language may be regarded as
a type, consisting of all instances in the language. When a QUIRK is clear from context, we access all the associated
types freely as done in Definition 1.

Definition 2. For a QUIRK Q we define the following notions and associated notation. Let all η below have the
signature I ′ → Pvr→ Result⟨W ′,Error⟩.

• Completeness error is the unique smallest constant denoted κ(Q) ∈ R such that the following inequality holds
over all x ∈ I and w ∈W .

κ(Q) ≥ Pr

v
′ = No

∣∣∣∣∣∣∣∣∣∣∣∣

if Pmove(Q)

m← Q.message(x)(w)

if Vmove(Q)

m← Q.message()

v′ ← Q.witness(x)(m)(w)

• Extractability error is the unique smallest constant denoted ϵ(Q) ∈ R such that the following inequality holds

over all η, x ∈ I , and P ∈ Pvr.

Pr
[
r ∈ Ok(W)

∣∣∣ r ← Q.extract(η)(x)(P)
]
+ Pr

[
r ∈ Ok(S)

∣∣∣ r ← Q.solve(η)(x)(P)
]

≥ Pr
[
r ∈ Ok(W ′)

∣∣∣ r ← Q.δ(η)(x)(P)
]
− ϵ(Q)

• Expected extraction and solution times are the unique smallest constants denoted τ(Q.extract) ∈ R and
τ(Q.solve) ∈ R such that the following hold over all η, x ∈ I , and P ∈ Pvr.

– Q.extract(η)(x)(P) executes Q.δ(η)(x)(P) an expected number of times at most τ(Q.extract).
– Q.solve(η)(x)(P) executes Q.δ(η)(x)(P) an expected number of times at most τ(Q.solve).

Note that by assumption Q.extract and Q.solve are constructed to each execute Q.δ at least once.

Definition 3. A poly-QUIRK Q of length n is a sequence of n ≥ 1 QUIRKs

Q0, Q1, . . . , Qn−1

such that adjacent languages coincide, that is L′(Qi−1) = L(Qi) for 1 ≤ i ≤ n− 1.

Poly-QUIRK type notation. We extend types as utility functions from QUIRKs to poly-QUIRKs by defining
Ti(Q) := T (Qi) for a poly-QUIRK Q and an associated type T . When the poly-QUIRK is clear from context
we simply write Ti.

Definition 4 (Q.extract, Q.solve, and Q.δ). Let Q be a poly-QUIRK of length n. Define Q.extract as follows

Q.extract : (In → Pvr→ Result⟨Wn,Error⟩)→ I0 → Pvr→ Result⟨W0,Error⟩
Q.extract :=⃝n−1

j=0

(
Γ ◦Qj .extract

)
For i ∈ {0, . . . , n− 1} define Q.solvei as follows

Q.solvei : (In → Pvr→ Result⟨Wn,Error⟩)→ I0 → Pvr→ Result⟨Si,Error⟩
Q.solvei :=⃝i−1

j=0

(
Γ ◦Qj .δ

)
◦
(
Γ ◦Qi.solve

)
◦⃝n−1

j=i+1

(
Γ ◦Qj .extract

)
Define Q.δ as follows

Q.δ : (In → Pvr→ Result⟨Wn,Error⟩)→ I0 → Pvr→ Result⟨Wn,Error⟩
Q.δ :=⃝n−1

j=0

(
Γ ◦Qj .δ

)
8

Definition 5 (Aj). For a poly-QUIRK Q of length n we define the random variable Aj for j ∈ {0, . . . , n − 1}. The
purpose of Aj is to capture the time complexity Q.extract, Q.solvei, and Q.δ for any particular arguments. To do so
Aj accepts one of these functions with arguments and counts the number of times Qj .δ is executed. One may think of
Aj as the number ‘attempts’ the prover makes at reduction Qj .δ, whether honestly or dishonestly, in effort to reach
the end in a particular state such as holding a Wj+1 witness.

For example, for any η : In → Result⟨Wn,Error⟩, x ∈ I0, and P ∈ Pvr the number of times Qj .δ is executed
during execution of Q.extract(η)(x)(P) is denoted

Aj

(
Q.extract(η)(x)(P)

)
More generally Aj is well defined on any function that involves Qj .δ. For example, since Γ composes with other

reductions without affecting the signature, one can invoke Aj for j ∈ {0, . . . , n− 1} on Q.extract, Q.solvei, and Q.δ
as defined in Definition 4 but stripped of one or more instances of Γ. In Theorem 1 we only invoke Aj on Q.extract,
Q.solvei, and Q.δ. In the proof of Theorem 1 we additionally invoke Aj on these functions stripped of the leading Γ.

2.4 Properties
Theorem 1. Suppose Q is a poly-QUIRK of length n. Suppose also η is a function of signature In → Pvr →
Result⟨Wn,Error⟩, and x ∈ I0.

• Completeness. Suppose η is poly-QUIRK, such that execution of η begins with execution of Γ. Consider a
prover P ∈ Pvr that may be given values of types I0 and Maybe⟨W0⟩ prior to execution of Q.δ(η)(x)(P). One
may construct P to satisfy the following.

– Probability of completion. Every time before η is invoked throughout the reduction of Q.δ(η)(x)(P) we
say P has arrived at η. Arrival at η may occur multiple times and is always preceded by execution of
Qn−1.δ. We consider P to be successful if it ever arrives at η holding a Wn witness.

* Given x and v = No, P arrives at η holding a Wn witness with probability 0.

* Given x and v = Yes(w) for w ∈W0, P arrives at η holding a Wn witness with probability 1.

– Expected time of completion.

* If P is given x and v = No then

∀j ∈ {0, . . . , n− 1}, E
[
Aj

(
Q.δ(η)(x)(P)

)]
= 0

* If P is given x and v = Yes(w) for w ∈W0 then

∀j ∈ {0, . . . , n− 1}, E
[
Aj

(
Q.δ(η)(x)(P)

)]
≤ 1

1− κj

• Extractability. For any P ∈ Pvr

– Probability of extraction and solution.

Pr
[
r ∈ Ok(W0)

∣∣∣ r ← Q.extract(η)(x)(P)
]
+

n−1∑
i=0

Pr
[
r ∈ Ok(Si)

∣∣∣ r ← Q.solvei(η)(x)(P)
]

≥ Pr
[
r ∈ Ok(Wn)

∣∣∣ r ← Q.δ(η)(x)(P)
]
−

n−1∑
i=0

ϵi · E
[
Ai(∆(η)(x)(P))

]
– Expected time of extraction and solution.

∀j ∈ {0, . . . , n− 1}, E
[
Aj

(
Q.extract(η)(x)(P)

)]
≤

(
j∏

k=0

τ
(
Qj .extract

))
· E
[
Aj

(
Q.δ(η)(x)(P)

)]

9

For i ∈ {0, . . . , n− 1}

∀j ∈ {0, . . . , i− 1}, E
[
Aj

(
Q.solvei(η)(x)(P)

)]
≤ E

[
Aj

(
Q.δ(η)(x)(P)

)]
∀j ∈ {i, . . . , n− 1}, E

[
Aj

(
Q.solvei(η)(x)(P)

)]
≤ τ

(
Qi.solve

)(j∏
k=i+1

τ
(
Qk.extract

))
· E
[
Aj

(
Q.δ(η)(x)(P)

)]
Proof. Completeness properties are proven in Section 3. Extractability properties are proven in Section 4.

Corollary 1. Extractability for a poly-QUIRK Q of length n in Theorem 1 is concerned only with extracting a W0

witness. At least that is what the signature of Q.extract suggests. But in fact the event that Q.extract extracts a
W0 witness implies that Q.extract has extracted a Wi witness for i ∈ {1, . . . , n − 1} as well, and in particular the
instances to which these witnesses belong are the instances of the final reduction trace. Therefore we believe extracting
a witness for the input instance, thus implicitly extracting witnesses for all intermediate instances, is an appropriate
definition of extractability for Q.

3 Proof of completeness
We first lay out construction of a prover P ∈ Pvr that satisfies the completeness properties of Theorem 1. To prove
correctness of P , we first prove the case when P is given values x ∈ I0 and v = No. Then we prove the case when P
is given values x ∈ I0 and v = Yes(w) for w ∈W0.

Honest prover reduction. The definition of Pvr as consisting of objects with three particular public methods nat-
urally leads us to construct an honest prover P ∈ Pvr by defining a class-like template for honest prover objects. In
Algorithm 3 we lay out such a template PQ which can be instantiated with two arguments of types I0 and Maybe⟨W0⟩.
On initialization the private method init is immediately invoked to initialize the state.

After initialization the state of an object consists of four values with types

i : N, y : Maybe⟨Ii⟩, v : Maybe⟨Wi⟩, valid : {0, 1}

We are informally using dependent types, but in hopes of clarity on Algorithm 3 we are sure to keep consistency
between them. Suppose we wish to reassign i along with new Yes values for y and v. One encounters the trouble that
reassigning one before the others results in inconsistency, unless one manages to assign them all simultaneously. To
circumvent this issue we first assign value No to both y and v, then reassign i, and only then reassign Yes values to y
and v. This works in the sense that with type casting, value No may be interpreted as a value of type Maybe⟨Ii⟩ or
Maybe⟨Wi⟩ for any i. Consistency of dependent types is in fact the sole reason we type y using Maybe, though v must
be typed using Maybe since the witness may not be present on instantiation.

10

Algorithm 3 Honest prover template

PQ :=
i : N
y : Maybe⟨Ii⟩
v : Maybe⟨Wi⟩
valid : {0, 1}
− init : I0 → Maybe⟨W0⟩ → ()
− init(x0)(v0) :=

i := 0
match v0

No⇒
y := Yes(x0), v := No
valid := 0

Yes(w0)⇒
y := Yes(x0), v := Yes(w0)
valid := 1

− check : Ii+1 → Maybe⟨Wi+1⟩ → ()
− check(x′)(v′) :=

match v′
No⇒ valid := 0
Yes(w′)⇒

y := No, v := No
i := i+ 1
y := Yes(x′), v := Yes(w′)
valid := 1

message : ()→Mj

message() :=
x := unwrap(y), w := unwrap(v)
m := Qi.message(x)(w)
x′ := Qi.instance(x)(m)
v′ := Qi.witness(x)(m)(w)
check(x′)(v′)
m

update : Mi → ()
update(m) :=

x := unwrap(y), w := unwrap(v)
x′ := Qi.instance(x)(m)
v′ := Qi.witness(x)(m)(w)
check(x′)(v′)

way : ()→Way
way() :=

match valid
0⇒

valid := 1
Regress

1⇒ Progress

We turn to proving correctness of PQ. The reductionQ.δ(η) =⃝n−1
j=0

(
Γ◦Qj .δ

)
◦η executes alternating functions

Γ and Qj .δ followed by η. While all n instances of Γ are the same, let us rewrite Q.δ(η) as⃝n−1
j=0

(
Γj ◦Qj .δ

)
◦η with

Γj = Γ for clarity. By assumption execution of η starts with execution of Γ. Let us identify the Γ at the start of η as
Γn.

Instantiating without a witness. Suppose we invoke PQ(x)(No) to get P ∈ Pvr. Then by examination of init the
state of P has i = 0 and valid = 0. On execution of Γ0 the call to P.way() returns Regress, which Γ0 receives to
then return value Err(Regress). Therefore Q.δ returns Err(Regress) never reaching state with i = n and valid = 1.
Moreover, Q.δ never executes Qj .δ for any j ≥ 0.

Instantiating with a witness. Suppose we invokePQ(x)(Yes(w)) forw ∈W0 to getP ∈ Pvr. Then by examination
of init the state of P has i = 0, y ∈ Yes(I0), v ∈ Yes(W0), and valid = 1. This state is a ‘valid 0-state’ as defined
next.

Definition 6. For j ≥ 0 we define a valid j-state to be one of the form

i = j, y ∈ Yes(Ij), v ∈ Yes(Wj), valid = 1

and an invalid j-state to be one of the form

i = j, y ∈ Yes(Ij), v ∈ Yes(Wj), valid = 0

Claim 1. Suppose prior to executing Γj ◦Qj .δ for j ∈ {0, . . . , n− 1}, P holds a valid j-state.

• With probability at least 1− κj upon executing Γj ◦Qj .δ we arrive at Γj+1 in a valid (j + 1)-state.

• With probability at most κj upon executing Γj ◦Qj .δ we arrive at Γj in a valid j-state.

11

Proof. Suppose at the start of Γj we have a valid j-state. Executing Γj we arrive at Qj .δ because with valid = 1
P.way() returns Progress. Then Qj .δ invokes P.message() for a prover message m ∈ Mj if Pmove(Q) = 1, or
Qj .δ invokes P.update(m) on verifier message m ∈ Mj if Vmove(Q) = 1. Regardless which, due to a valid j-
state we may unwrap y and v for values x ∈ Ij and w ∈ Wj . A new instance x′ ∈ Ij+1 and potential witness
v′ ∈ Maybe⟨Wj+1⟩ are computed, and then check(x′)(v′) is invoked and we continue in one of two ways.

• If v′ ∈ Yes(Wj+1) then we arrive at Γj+1 in a valid (j + 1)-state.

• If v′ = No then we arrive at Γj+1 in an invalid j-state. Executing Γj+1 we arrive at Γj in a valid j-state because
P.way() flips valid from 0 to 1 and returns Regress.

By the definition of completeness error, see Definition 2, the probability over m that v′ = No is at most κj . The claim
follows.

Recall that instantiation puts P in a valid 0-state prior to any execution, which will begin with Γ0. By Claim 1 we
infer that upon executing Γ0 ◦Q0.δ at most an expected 1/(1−κ0) times we arrive at Γ1 in a valid 1-state. Continuing
like this for j ∈ {1, . . . , n−1} we infer that upon executing Γj ◦Qj at most an expected 1/(1−κj) times we arrive at
Γj+1 in a valid (j+1)-state. Finally we arrive at Γn in a valid n-state. Therefore P arrives at η holding a Wn witness,
and in the process executing Qj .δ for k ∈ {0, . . . , n− 1} an expected number of times at most 1/(1− κj).

4 Proof of extractability
We will define new notation and use it to restate the extractability results of Theorem 1 with Theorem 2. We also state
Lemma 1 to help in proving Theorem 2. In Section 4.1 we prove Lemma 1 and in Section 4.2 we prove Theorem 2.

Throughout the proof we invoke an additional public method on prover objects in Pvr not mentioned previously.
We are able to clone the state of a prover P ∈ Pvr with P.clone(), receiving back a new object in Pvr. While this
ability to clone the state of a prover is often used inside extraction and solution functions, in the case of this proof
it is instead used for analytical purposes. Since P is stateful we cannot assume that P is in the same state prior to a
reduction as after the reduction. We may clone P before or after a reduction to capture the prover’s current state.

Definition 7 defines new notation. For example, we rename Q.δ as ∆ for ease of differentiating Q.δ and Qj .δ for
j ∈ {0, . . . , n − 1}. We’d like to similarly rename Q.extract as Extract but doing so would violate the convention
of capitalization reserved for types in Roman alphabet. We use the Greek alphabet instead. Note Q.δ becomes ∆,
Q.extract becomes Φ, and Q.solvei becomes Ψi. The reason we also define the prime notation versions not involving
Q0 is for use in induction.

Definition 7. For i ∈ {0, . . . , n− 1} we define ϕi, ψi, δi as follows

ϕi := Qi.extract, ψi := Qi.solve, δi := Qi.δ

We define Φ′,Φ as follows

Φ′ : (In → Pvr→ Result⟨Wn,Error⟩)→ I1 → Pvr→ Result⟨W1,Error⟩
Φ′ :=⃝n−1

j=1

(
Γ ◦ ϕj

)
Φ: (In → Pvr→ Result⟨Wn,Error⟩)→ I0 → Pvr→ Result⟨W0,Error⟩
Φ := Γ ◦ ϕ0 ◦ Φ′ =⃝n−1

j=0

(
Γ ◦ ϕj

)
For i ∈ {1, . . . , n− 1} we define Ψ′

i and for i ∈ {0, . . . , n− 1} we define Ψi as follows

Ψ′
i : (In → Pvr→ Result⟨Wn,Error⟩)→ I1 → Pvr→ Result⟨Si,Error⟩

Ψ′
i :=⃝i−1

j=1

(
Γ ◦ δj

)
◦
(
Γ ◦ ψi

)
◦⃝n−1

j=i+1

(
Γ ◦ ϕj

)
Ψi : (In → Pvr→ Result⟨Wn,Error⟩)→ I0 → Pvr→ Result⟨Si,Error⟩
Ψ0 := Γ ◦ ψ0 ◦ Φ′ =

(
Γ ◦ ψ0

)
◦⃝n−1

j=1

(
Γ ◦ ϕj

)
Ψi>0 := Γ ◦ δ0 ◦Ψ′

i =⃝i−1
j=0

(
Γ ◦ δj

)
◦
(
Γ ◦ ψi

)
◦⃝n−1

j=i+1

(
Γ ◦ ϕj

)
12

We define ∆′,∆ as follows

∆′ : (In → Pvr→ Result⟨Wn,Error⟩)→ I1 → Pvr→ Result⟨Wn,Error⟩
∆′ :=⃝n−1

j=1

(
Γ ◦ δj

)
∆: (In → Pvr→ Result⟨Wn,Error⟩)→ I0 → Pvr→ Result⟨Wn,Error⟩
∆ := Γ ◦ δ0 ◦∆′ =⃝n−1

j=0

(
Γ ◦ δj

)
We define β, β′ as follows

β′⟨T ⟩ : (I1 → Pvr→ Result⟨T,Error⟩)→ I1 → Pvr→ R

β′(f)(x′)(P) := Pr
[
r ∈ Ok⟨T ⟩

∣∣∣ r ← f(x′)(P)
]

β⟨T ⟩ : (I0 → Pvr→ Result⟨T,Error⟩)→ I0 → Pvr→ R

β(f)(x)(P) := Pr
[
r ∈ Ok⟨T ⟩

∣∣∣ r ← f(x)(P)
]

For j ∈ {1, . . . , n− 1} we define α′
j and for j ∈ {0, . . . , n− 1} we define αj as follows

α′
j⟨T ⟩ : (I1 → Pvr→ Result⟨T,Error⟩)→ I1 → Pvr→ R

α′
j(f)(x

′)(P) := E
[
Aj(f(x

′)(P))
]

αj⟨T ⟩ : (I0 → Pvr→ Result⟨T,Error⟩)→ I0 → Pvr→ R

αj(f)(x)(P) := E
[
Aj(f(x)(P))

]
Using Definition 7 we rewrite the extractability results of Theorem 1. Henceforth we write η without re-introduction

assuming it to be a function of signature In → Pvr→ Result⟨Wn,Error⟩.

Theorem 2 (Theorem 1 using Definition 7). For Q a poly-QUIRK of length n the following hold.

β(Φ(η)) +

n−1∑
i=0

β(Ψi(η)) ≥ β(∆(η))−
n−1∑
i=0

χi · αi(∆(η)) (2)

∀j ∈ {0, . . . , n− 1}, αj(Φ) ≤

(
j∏

k=0

τ(ϕk)

)
· αj(∆(η)) (3)

For i ∈ {0, . . . , n− 1}

∀j ∈ {0, . . . , i− 1}, αj(Ψi(η)) ≤ αj(∆(η)) (4)

∀j ∈ {i, . . . , n− 1}, αj(Ψi(η)) ≤ τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj(∆(η)) (5)

The following lemma will be proven in Section 4.1. In Section 4.2 we utilize Lemma 1 to prove Theorem 2.

Lemma 1 (Extractability without regression). For Q a poly-QUIRK of length n the following hold.

β
(
ϕ0(Φ

′(η))
)
+ β

(
ψ0(Φ

′(η))
)
+

n−1∑
i=1

β
(
δ0(Ψ

′
i(η))

)
≥ β

(
δ0(∆

′(η))
)
−

n−1∑
i=0

χi · αi

(
δ0(∆

′(η))
)

(6)

∀j ∈ {0, . . . , n− 1}, αj

(
ϕ0(Φ

′(η))
)
≤

(
j∏

k=0

τ(ϕk)

)
· αj(δ0(∆

′(η))) (7)

∀j ∈ {0, . . . , n− 1}, αj

(
ψ0(Φ

′(η))
)
≤ τ(ψ0)

(j∏
k=1

τ(ϕk)
)
· αj

(
δ0(∆

′(η))
)

(8)

13

For i ∈ {1, . . . , n− 1}

∀j ∈ {0, . . . , i− 1}, αj

(
δ0(Ψ

′
i(η))

)
≤ αj

(
δ0(∆

′(η))
)

(9)

∀j ∈ {i, . . . , n− 1}, αj

(
δ0(Ψ

′
i(η))

)
≤ τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

(10)

4.1 Extraction and solution without regression
To prove Lemma 1 for n ≥ 2 we proceed assuming Theorem 2 for n − 1 ≥ 1. We state this induction assumption in
the following claim. For the case n = 1 we argue the inductive assumption can be extended to n− 1 = 0.

Claim 2. For Q a poly-QUIRK of length n ≥ 1 the following hold.

β(Φ′(η)) +

n−1∑
i=1

β(Ψ′
i(η)) ≥ β(∆′(η))−

n−1∑
i=1

χi · αi(∆
′(η)) (11)

∀j ∈ {1, . . . , n− 1}, αj(Φ
′(η)) ≤

(
j∏

k=1

τ(ϕk)

)
· αj(∆

′(η)) (12)

For i ∈ {1, . . . , n− 1}

∀j ∈ {1, . . . , i− 1}, αj(Ψ
′
i(η)) ≤ αj(∆

′(η)) (13)

∀j ∈ {i, . . . , n− 1}, αj(Ψ
′
i(η)) ≤ τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj(∆

′(η)) (14)

Proof. For n ≥ 2 these equations hold by Theorem 2 for n − 1 ≥ 1. For n = 1 we cannot invoke Theorem 2 for
n− 1 = 0, but we observe these equations trivially hold by the fact Φ′(η) = Ψ′

i(η) = ∆′(η) = η, and they reduce to
β(η) = β(η).

4.1.1 red and properties

We introduce a function red and claim two properties.

Definition 8 (red). The function red (short for ‘reduce’) accepts a function f , an instance x ∈ I0, and a prover
P ∈ Pvr. With f some function that accepts a new instance x′ ∈ I1 and the prover in a new state P ′, the value
red(f)(x)(P) is the expected value of f , had by iterating over all possible new instances x′ and new prover states P ′,
and multiplying the probability of x′ and P ′ by the value f(x′)(P ′).

red : (I1 → Pvr→ R)→ I0 → Pvr→ R

red(f)(x)(P) :=
∑
x′∈I1

∑
P ′∈Pvr

Pr

Q0.instance(m)(x) = x′

p = P ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if Pmove(Q0)

m← P.message()

if Vmove(Q0)

m← Q0.message()

P.update(m)

p← P.clone()

· f(x′)(P ′)

Claim 3 (red linearity). For f, g : Pvr→ R and α ∈ R we see red to be linear, that is

λ0(P) := f(P) + g(P) λ1(P) := α · f(P)
red(λ0) = red(f) + red(g) red(λ1) = α · red(f)

14

Proof. Linearity is evident by examination of red and properties of real arithmetic, including distributivity of multi-
plication over addition.

Claim 4 (red inequality). For f, g : I1 → Pvr→ R

f ≥ g =⇒ red(f) ≥ reg(g)

where inequality between two real-valued functions means inequality between their evaluations for all possible argu-
ments.

Proof. Inequality is evident by examination of red and properties of real arithmetic.

4.1.2 Extending with reduction

We use the function red to relate the execution of functions Φ′(η), Ψ′
i(η), and ∆′(η) to the execution of reduction δ0

followed by those functions, that is δ0(Φ′(η)), δ0(Ψ′
i(η)), and δ0(∆′(η)).

Claim 5.

red
(
β(Φ′(η))

)
= β

(
δ0(Φ

′(η))
)

∀i ∈ {1, . . . , n− 1}, red
(
β(Ψ′

i(η))
)
= β

(
δ0(Ψ

′
i(η))

)
red
(
β(∆′(η))

)
= β

(
δ0(∆

′(η))
)

For j ∈ {1, . . . , n− 1}

red
(
αj(Φ

′(η))
)
= αj

(
δ0(Φ

′(η))
)

∀i ∈ {1 . . . , n− 1}, red
(
αj(Ψ

′
i(η))

)
= αj

(
δ0(Ψ

′
i(η))

)
red
(
αj(∆

′(η))
)
= αj

(
δ0(∆

′(η))
)

Proof. These equalities hold by Definition 7 and Definition 8, as shown below for the case of red
(
β(Φ′(η))

)
and

β
(
δ0(Φ

′(η))
)
, and can be shown similarly for the other cases.

red
(
β(Φ′(η))

)
(x)(P)

=
∑
x′∈I1

∑
P ′∈Pvr

Pr

Q0.instance(m)(x) = x′

p = P ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if Pmove(Q0)

m← P.message()

if Vmove(Q0)

m← Q0.message()

P.update(m)

p← P.clone()

· Pr

[
r ∈ Ok⟨Wn⟩

∣∣∣ r ← Φ′(η)(x′)(P ′)
]

= Pr

r ∈ Ok⟨Wn⟩

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if Pmove(Q0)

m← P.message()

if Vmove(Q0)

m← Q0.message()

P.update(m)

r ← Φ′(η)
(
Q0.instance(m)(x)

)
(P)

= Pr

[
r ∈ Ok⟨Wn⟩

∣∣∣ r ← δ0(Φ
′(η))(x)(P)

]
= β

(
δ0(Φ

′(η))
)
(x)(P)

15

Claim 6.

β
(
δ0(Φ

′(η))
)
+

n−1∑
i=1

β
(
δ0(Ψ

′
i(η))

)
≥ β

(
δ0(∆

′(η))
)
−

n−1∑
i=1

χi · αi

(
δ0(∆

′(η))
)

(15)

∀j ∈ {1, . . . , n− 1}, αj

(
δ0(Φ

′(η))
)
≤

(
j∏

k=1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

(16)

For i ∈ {1, . . . , n− 1}

∀j ∈ {1, . . . , i− 1}, αj

(
δ0(Ψ

′
i(η))

)
≤ αj

(
δ0(∆

′(η))
)

(17)

∀j ∈ {i, . . . , n− 1}, αj

(
δ0(Ψ

′
i(η))

)
≤ τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

(18)

Proof. We prove each of the four equations, listing the justifying claims on the right.

Proving Equation (15).

β
(
δ0(Φ

′(η))
)
+

n−1∑
i=1

β
(
δ0(Ψ

′
i(η))

)
= red

(
β(Φ′(η))

)
+

n−1∑
i=1

red
(
β(Ψ′

i(η))
)

by Claim 5

= red

(
β(Φ′(η)) +

n−1∑
i=1

β(Ψ′
i(η))

)
by Claim 3

≥ red

(
β(∆′(η))−

n−1∑
i=1

χi · αi(∆
′(η))

)
by Claim 4 with Equation (11)

= red
(
β(∆′(η))

)
−

n−1∑
i=1

χi · red
(
αi(∆

′(η))
)

by Claim 3

= β
(
δ0(∆

′(η))
)
−

n−1∑
i=1

χi · αi

(
δ0(∆

′(η))
)

by Claim 5

Proving Equation (16). For j ∈ {1, . . . , n− 1}

αj

(
δ0(Φ

′(η))
)
= red

(
αj(Φ

′(η))
)

by Claim 5

≤ red

((
j∏

k=1

τ(ϕk)

)
· αj(∆

′(η))

)
by Claim 4 with Equation (12)

=

(
j∏

k=1

τ(ϕk)

)
· red

(
αj(∆

′(η))
)

by Claim 3

=

(
j∏

k=1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

by Claim 5

Proving Equation (17). For i ∈ {1, . . . , n− 1} and j ∈ {1, . . . , i− 1}

αj

(
δ0(Ψ

′(η))
)
= red

(
αj(Ψ

′(η))
)

by Claim 5

≤ red
(
αj(∆

′(η))
)

by Claim 4 with Equation (13)
= αj(∆

′(η)) by Claim 5

16

Proving Equation (18). For i ∈ {1, . . . , n− 1} and j ∈ {i, . . . , n− 1}

αj

(
δ0(Ψ

′(η))
)
= red

(
αj(Ψ

′(η))
)

by Claim 5

= red

(
τ(ψi) ·

(
j∏

k=i+1

τ(ϕk)

)
· αj(∆

′(η))

)
by Claim 3

≤ τ(ψi) ·

(
j∏

k=i+1

τ(ϕk)

)
· red

(
αj(∆

′(η))
)

by Claim 4 with Equation (14)

= τ(ψi) ·

(
j∏

k=i+1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

by Claim 5

4.1.3 Joining claims

Claim 7. For x ∈ I0, P ∈ Pvr, and f : I1 → Pvr→ Result⟨W1,Error⟩

E
[
Aj

(
Q0.extract(f)(x)(P)

)]
≤ τ

(
Q0.extract

)
· E
[
Aj

(
Q0.δ(f)(x)(P)

)]
E
[
Aj

(
Q0.solve(f)(x)(P)

)]
≤ τ

(
Q0.solve

)
· E
[
Aj

(
Q0.δ(f)(x)(P)

)]
Proof. We argue this inequality for Q0.extract and the same reasoning may be applied for Q0.solve.

The left side represents the expected number of times Q0.extract executes Qj .δ on arguments f , x, and P . Func-
tion Q0.extract operates simply by executing Q0.δ any number of times. Therefore the expected value of Aj for
Q0.extract as written on the left side is determined by the expected value of Aj for Q0.δ and also the expected
number of times Q0.extract executes Q0.δ. In particular, we multiply these two metrics.

By the expected extraction and solution times in Definition 2, we know the expected number of times Q0.extract
executes Q0.δ for any arguments is at most τ

(
Q0.extract

)
. Therefore multiplying this value by the expected value of

Aj for Q0.δ as done on the right side yields an upper bound on the left side.

Claim 8.
β
(
ϕ0(Φ

′(η))
)
+ β

(
ψ0(Φ

′(η))
)
≥ β

(
δ0(Φ

′(η))
)
− χ0 (19)

For j ∈ {0, . . . , n− 1}

αj

(
ϕ0(Φ

′(η))
)
= τ(ϕ0) · αj

(
δ0(Φ

′(η))
)

(20)

αj

(
ψ0(Φ

′(η))
)
= τ(ψ0) · αj

(
δ0(Φ

′(η))
)

(21)

Proof. Equation (19) holds by the definition of χ0 = χ(Q0) in Definition 2. Expanding the definition of β along with
ϕ0 = Q0.extract, ψ0 = Q0.solve, and Definition 2 (with η there replaced with Φ′(η) here) we see

β
(
ϕ0(Φ

′(η))
)
+ β

(
ψ0(Φ

′(η))
)

= Pr
[
r ∈ Ok(W0)

∣∣∣ r ← Q0.extract(Φ
′(η))(x)(P)

]
+ Pr

[
r ∈ Ok(S0)

∣∣∣ r ← Q0.solve(Φ
′(η))(x)(P)

]
≥ Pr

[
r ∈ Ok(W1)

∣∣∣ r ← Q0.δ(Φ
′(η))(x)(P)

]
− χ(Q0)

= β
(
δ0(Φ

′(η))
)
− χ0

Equations (20) and (21) are verified via Claim 7. Expanding the definition of αj along with ϕ0 = Q0.extract and
ψ0 = Q0.solve we arrive at Claim 7 with f := Φ′(η)

E
[
Aj

(
Q0.extract(Φ

′(η))(x)(P)
)]
≤ τ

(
Q0.extract

)
· E
[
Aj

(
Q0.δ(Φ

′(η))(x)(P)
)]

E
[
Aj

(
Q0.solve(Φ

′(η))(x)(P)
)]
≤ τ

(
Q0.solve

)
· E
[
Aj

(
Q0.δ(Φ

′(η))(x)(P)
)]

17

Claim 9.
α0

(
δ0(Φ

′(η))
)
= α0

(
δ0(∆

′(η))
)
= 1 (22)

Proof. Let f ∈ {Φ′(η), ∆′(η)}. Expanding the definition of α0 and δ0 we have for any x ∈ I and P ∈ Pvr

α0(δ0(f))(x)(P) = E
[
A0

(
Q0.δ(f)(x)(P)

)]
We assert the following holds and the claim follows.

A0

(
Q0.δ(f)(x)(P)

)
= 1

By the definition of A0 and Q0.δ this equation asserts that Q0.δ is executed once during the execution of Q0.δ(f).
Examining Q0.δ via Algorithm 1 we see it tail calls f , returning whatever f returns, therefore executing exactly
once.

Proving Equation (6). Using Equation (15), Equation (19), and Equation (22) we can now prove Equation (6).
Rewriting Equation (19) as

β
(
ϕ0(Φ

′(η))
)
+ β

(
ψ0(Φ

′(η))
)
+ χ0 ≥ β

(
δ0(Φ

′(η))
)

and substituting the left side for β
(
δ0(Φ

′(η))
)

in Equation (15) yields

β
(
ϕ0(Φ

′(η))
)
+ β

(
ψ0(Φ

′(η))
)
+ χ0 +

n−1∑
i=1

β
(
δ0(Ψ

′
i(η))

)
≥ β

(
δ0(∆

′(η))
)
−

n−1∑
i=1

χi · αi

(
δ0(∆

′(η))
)

Adding χ0 · 1 = χ0 · α0

(
δ0(∆

′(η))
)

by Equation (22) to both sides yields the desired inequality of Equation (6).

Proving Equations (7) and (8). We write Equations (20) and (21) holding for j ∈ {0, . . . , n− 1}

αj

(
ϕ0(Φ

′(η))
)
= τ(ϕ0) · αj

(
δ0(Φ

′(η))
)

αj(ψ0(Φ
′(η))) = τ(ψ0) · αj(δ0(Φ

′(η)))

For j = 0 we substitue for α0

(
δ0(Φ

′(η))
)
= 1 using Equation (22) to get

α0

(
ϕ0(Φ

′(η))
)
= τ(ϕ0) · 1

α0

(
ψ0(Φ

′(η))
)
= τ(ψ0) · 1

For j ∈ {1, . . . , n− 1} we substitute for αj

(
δ0(Φ

′(η))
)

using Equation (16) to get

αj

(
ϕ0(Φ

′(η))
)
= τ(ϕ0) · αj

(
δ0(Φ

′(η))
)
=

(
j∏

k=0

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

αj

(
ψ0(Φ

′(η))
)
= τ(ψ0) · αj

(
δ0(Φ

′(η))
)
= τ(ψ0) ·

(
j∏

k=1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

The latter two equations at j = 0 are consistent with the former two equations for j = 0, and indeed the latter two
equations considered for j ∈ {0, . . . , n− 1} yield Equations (7) and (8) as desired.

Proving Equations (9) and (10). We write Equations (17) and (18) holding for i ∈ {1, . . . , n− 1}

∀j ∈ {1, . . . , i− 1}, αj

(
δ0(Ψ

′
i(η))

)
= αj

(
δ0(∆

′(η))
)

∀j ∈ {i, . . . , n− 1}, αj

(
δ0(Ψ

′
i(η))

)
= τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
)

By Equation (22) the former equation holds too for j = 0, yielding Equation (9). The latter equation already yields
Equation (10).

18

4.2 Extraction and solution with regression
4.2.1 pro and reg and properties

We introduce functions pro and reg, their combination proreg⋆ to be used later, and we show relevant properties.

Definition 9 (pro function).

pro⟨I⟩ : (I → Pvr→ R)→ I → Pvr→ R

pro(x)(g)(P) :=
∑

P′∈Pvr

Pr

r = Progress

p = P ′

∣∣∣∣∣∣ r ← P.way()p← P.clone()

 · g(x)(P ′)

Definition 10 (reg function).

reg⟨I, T ⟩ : (I → Pvr→ Result⟨T,Error⟩)→ (I → Pvr→ R)→ I → Pvr→ R

reg(f)(g)(x)(P) :=
∑

P′∈Pvr

Pr

r = Err(Regress)

p = P ′

∣∣∣∣∣∣ r ← f(x)(P)
p← P.clone()

 · g(x)(P ′)

Claim 10 (pro and reg linearity). For f⟨I, T ⟩ : I → Pvr → Result⟨T,Error⟩ and g, g′⟨I⟩ : I → Pvr → R we see pro
and reg to be linear in the sense that

λ0(x)(P) := g(x)(P) + g′(x)(P) λ1(x)(P) := α · g(x)(P)
pro(λ0) = pro(g) + pro(g′) pro(λ1) = α · pro(g)

reg(f)(λ0) = reg(f)(g) + reg(f)(g′) reg(f)(λ1) = α · reg(f)(g)

Proof. Linearity is evident by examination of pro and reg and properties of real arithmetic, including distributivity of
multiplication over addition.

Claim 11 (pro and reg inequality). For f⟨I, T ⟩ : I → Pvr → Result⟨T,Error⟩ and g, g′⟨I⟩ : I → Pvr → R we see
pro and reg preserve inequalities, that is

g ≥ g′ =⇒ pro(g) ≥ pro(g′), reg(f)(g) ≥ reg(f)(g′)

where inequality between two real-valued functions means inequality between their evaluations for all possible argu-
ments.

Proof. Inequality is evident by examination of pro and reg and properties of real arithmetic.

reg invariance The following lemma presents two equations. First we will prove Equation (24). Then we will utilize
Equation (24) to prove Equation (23). Equation (24) will be used subsequently in Section 4.2 while Equation (23) will
not. We mention now that type variables are written on invocation whenever we feel it adds clarity.

Lemma 2 (reg invariance). The following two equations hold for n ≥ 1 and i ∈ {1, . . . , n− 1}.

reg⟨I0,W1⟩(Φ(η)) = reg⟨I0, Si⟩(Ψi(η)) = reg⟨I0,Wn⟩(∆(η)) (23)

reg⟨I0,W0⟩
(
ϕ0(Φ

′(η))
)
= reg⟨I0, S0⟩

(
ψ0(Φ

′(η))
)

= reg⟨I0, Si⟩
(
δ0(Ψ

′
i(η))

)
= reg⟨I0,Wn⟩

(
δ0(∆

′(η))
)

(24)

19

Proving Equation (24) To prove Equation (24) for n ≥ 2 we proceed assuming Equation (23) for n − 1 ≥ 1. We
state this induction assumption in the following claim. For the case n = 1 we argue the inductive assumption can be
extended to n− 1 = 0.

Claim 12. The following two equations hold for n ≥ 1 and i ∈ {1, . . . , n− 1}.

reg⟨I1,W1⟩(Φ′(η)) = reg⟨I1, Si⟩(Ψ′
i(η)) = reg⟨I1,Wn⟩(∆′(η)) (25)

Proof. For n ≥ 2 these equalities hold by Equation (23) for n − 1 ≥ 1. For n = 1 we cannot invoke Equation (23)
for n− 1 = 0, but we observe these equalities trivially hold by the fact Φ′(η) = Ψ′

i(η) = ∆′(η) = η.

Claim 13 (Extending with regression). For f and f ′ with signatures

f⟨T ⟩ : I1 → Pvr→ Result⟨T,Error⟩
f ′⟨T ′⟩ : I1 → Pvr→ Result⟨T ′,Error⟩

the following implication holds.

reg⟨I1, T ⟩(f) = reg⟨I1, T ′⟩(f ′) =⇒ reg⟨I0, T ⟩(δ0(f)) = reg⟨I0, T ′⟩ (δ0(f ′))

Proof. Plugging δ0(f) into reg along with some g : I0 → Pvr → R, x0 ∈ I0, and P ∈ Pvr, we obtain Equa-
tion (26). Equation (27) holds by the definition of δ0, see Algorithm 1. Equation (28) expands the meaning of
r ← f(instance(m)(x0))(P).

reg⟨I0, T ⟩
(
δ0(f)

)
(g)(x0)(P)

=
∑

P′∈Pvr

Pr

r = Err(Regress)

p = P ′

∣∣∣∣∣∣ r ← δ0(f)(x0)(P)
p← P.clone()

 · g(x0)(P ′) (26)

=
∑

P′∈Pvr

Pr

r = Err(Regress)

p = P ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if Pmove(Q0)

m← P.message()

if Vmove(Q0)

m← Q0.message()

P.update(m)

r ← f
(
instance(m)(x0)

)
(P)

p← P.clone()

· g(x0)(P ′) (27)

=
∑

P′∈Pvr

∑
x1∈I1

Pr

instance(m)(x0) = x1

p = P ′

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

if Pmove(Q0)

m← P.message()

if Vmove(Q0)

m← V.message()

P.update(m)

p← P.clone()

×
∑

P′′∈Pvr

Pr

r = Err(Regress)

p = P ′′

∣∣∣∣∣∣ r ← f(x1)(P ′)

p← P ′.clone()

 · g(x0)(P ′′) (28)

Define λ : I0 → I1 → Pvr → R by λ(x0)(x1)(P) := g(x0)(P). Consider the second factor in Equation (28), that is
the bottom sum multiplying the top double sum. With g(x0)(P ′′) = λ(x0)(x1)(P ′′) we may make the replacement,
and the bottom sum becomes∑

P′′∈Pvr

Pr

r = Err(Regress)

p = P ′′

∣∣∣∣∣∣ r ← f(x1)(P ′)

p← P ′.clone()

 · λ(x0)(x1)(P ′′) = reg⟨I1, T ⟩(f)
(
λ(x0)

)
(x1)(P ′′)

20

The top double sum is independent of f . With reg⟨I1, T ⟩(f) = reg⟨I1, T ⟩(f ′) by assumption, and feeding both the
same arguments λ(x0), x1, and P ′′, we conclude reg⟨I0, T ⟩(δ0(f)) = reg⟨I0, T ⟩(δ0(f ′)) on any arguments g, x0,
and P .

Claim 14. For n ≥ 1 and i ∈ {1, . . . , n− 1}

reg⟨I0,W1⟩
(
δ0(Φ

′(η))
)
= reg⟨I0, Si⟩

(
δ0(Ψ

′
i(η))

)
= reg⟨I0,Wn⟩

(
δ0(∆

′(η))
)

(29)

Proof. For n ≥ 1 and i ∈ {1, . . . , n− 1} by induction assumption Claim 12 we have

reg⟨I1,W1⟩(Φ′(η)) = reg⟨I1, Si⟩
(
Ψ′

i(η)) = reg⟨I1,Wn⟩(∆′(η))

Applying Claim 13 we conclude Equation (29).

The two rightmost functions in Equation (29) yield two of the desired functions in Equation (24). It remains to
obtain the two other desired functions in Equation (24) from the leftmost function in Equation (29).

Claim 15. For f : I1 → Pvr→ Result⟨W1,Error⟩

reg⟨I0,W0⟩(ϕ0(f)) = reg⟨I0, S0⟩(ψ0(f)) = reg⟨I0,W1⟩(δ0(f))

Proof. Expanding the definition of reg for the rightmost funcntion with δ0(f) we see the value of reg⟨I0,W1⟩(δ0(f))
on inputs g : I0 → Pvr → R, x ∈ I0, and P ∈ Pvr is determined from the probability δ0(f)(x)(P) returns value
Err(Regress) and returns the prover in a particular state P ′, multiplied by g(x)(P ′).

reg⟨I0,W1⟩(δ0(f))(g)(x)(P) :=
∑

P′∈Pvr

Pr

r = Err(Regress)

p = P ′

∣∣∣∣∣∣ r ← δ0(f)(x)(P)
p← P.clone()

 · g(x)(P ′)

By assumption, ϕ0 = Q0.extract and ψ = Q0.solve invoke δ0 = Q0.δ and return the error Err(Regress) if and only
if Q0.δ does. Therefore the probability Q0.extract(f)(x)(P) and Q0.solve(f)(x)(P) return Err(Regress) is the same
as the probability Q0.δ(f)(x)(P) does. In the case that Q0.extract and Q0.solve return error Err(Regress), they have
executed precisely Q0.δ and therefore return the prover in the same state as Q0.δ does. The reg function exhibits the
same behavior whether its first argument is Q0.extract(f), Q0.solve(f), or Q0.δ(f).

The two leftmost functions in the following claim yield the remaining two desired functions for Equation (24).

Claim 16.
reg⟨I0,W0⟩

(
ϕ0(Φ

′(η))
)
= reg⟨I0, S0⟩

(
ψ0(Φ

′(η))
)
= reg⟨I0,W1⟩

(
δ0(Φ

′(η))
)

Proof. This holds by invoking Claim 15 with f := Φ′(η).

Proving Equation (23). The following is the first of two recursive expressions we convert to the additive form of an
infinite series. The expression in Claim 17 relates to the probability the prover requests regression, while the recursive
expression we will encounter in Claim 21 relates to the probability the prover requests progression. They also differ,
however, by Claim 17 considering not only the probability of regression, but the probability that upon regression the
prover is in a certain state, as will be needed in Claim 18. In Claim 21, by constrast, we only consider the probability
of progression and need not consider the returning state of the prover.

Claim 17. Consider the function λ : Pvr→ I0 → Pvr→ R

λ(P ′)(·)(P) := Pr

r = Regress

p = P ′

∣∣∣∣∣∣ r ← P.way()p← P.clone()

21

For some f⟨T ⟩ : I0 → Pvr→ Result⟨T,Error⟩, x ∈ I0, and P,P ′′′ ∈ Pvr

Pr

r = Err(Regress)

p = P ′′′

∣∣∣∣∣∣ r ← Γ(f)(x)(P)
p← P.clone()

 (30)

= Pr

w = Regress

p = P ′′′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

+
∑

P′∈Pvr

Pr

w = Progress

p = P ′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

((31)

∑
P′′∈Pvr

Pr

r = Err(Regress)

p = P ′′

∣∣∣∣∣∣ r ← f(x)(P ′)

p← P ′.clone()

 · Pr
r′ = Err(Regress)

p = P ′′′

∣∣∣∣∣∣ r
′ ← Γ(f)(x)(P ′′)

p← P ′′.clone()

) (32)

=

∞∑
i=0

(
⃝i−1

j=0

(
pro ◦ reg⟨I0, T ⟩(f)

)
◦ λ(P ′′′)

)
(x)(P) (33)

Note that the series converges since it represents a probability.

Proof. The recursive form expresses the probability that execution of Γ(f)(x) with prover P results in the error
Err(Regress), and also whether the prover returns having shifted to a particular state P ′′′. This event occurs as follows.

1. Prover P is queried on the method way and returns a variant of Way = Regress | Progress. Either Step 2 or
Steps 3, 4, and 5 follow.

2. If P returns Regress and shifts to state P ′′′ then Γ, see Algorithm 2, returns the value Err(Regress) In this case
the event has occured.

3. If P returns Progress and shifts to state P ′, then Γ executes f(x)(P ′) and examines the result r.

4. If r holds a result variant Ok⟨T ⟩ or Err(Fail) then Γ returns those values and the event never occurred. If r holds
the result variant Err(Regress) and the prover has shifted to state P ′′ then Γ recurses by invoking Γ(f)(x)(P ′′).

5. On re-invocation of Γ we reconsider these five steps, but now starting with prover P ′′. The event occurs at this
point if and only if Γ(f)(x)(P ′′) returns Err(Regress) with the prover in state P ′′′.

Expanding the recursive form and rewriting terms using pro, reg, and λ one obtains the series. For illustration we write
out the first two expanded terms and the first three terms using pro, reg, and λ.

Pr

r = Err(Regress)

p = P ′′′

∣∣∣∣∣∣ r ← Γ(f)(x)(P)
p← P.clone()

 = Pr

w = Regress

p = P ′′′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

+
∑

P′∈Pvr

Pr

w = Progress

p = P ′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

 · ∑
P′′∈Pvr

Pr

r = Err(Regress)

p = P ′′

∣∣∣∣∣∣ r ← f(x)(P ′)

p← P ′.clone()

× Pr

w = Regress

p = P ′′′

∣∣∣∣∣∣ w ← P
′′.way()

p← P ′′.clone()

+ . . .

= λ(P ′′′)(x)(P) +
(
pro ◦ reg(f) ◦ λ(P ′′′)

)
(x)(P) +

(
pro ◦ reg(f) ◦ pro ◦ reg(f) ◦ λ(P ′′′)

)
(x)(P) + . . .

Claim 18. To prove Equation (23) we use the definitions of Φ, Ψi for i ∈ {1, . . . , n−1}, and ∆ to rewrite Equation (23)
as follows.

reg⟨W0⟩
(
Γ ◦ ϕ0 ◦ Φ′ ◦ η

)
= reg⟨S0⟩

(
Γ ◦ ψ0 ◦ Φ′ ◦ η

)
= reg⟨Si⟩

(
Γ ◦ δ0 ◦Ψ′

i ◦ η
)
= reg⟨Wn⟩

(
Γ ◦ δ0 ◦∆′ ◦ η

)
22

Proof. For f ∈ {ϕ0(Φ′(η)), ψ0(Φ
′(η)), δ0(Ψ

′
i(η)), δ0(∆

′(η))}, g : I0 → Pvr → R, x ∈ I0, and P ∈ Pvr we write
reg(Γ(f)) invoked on g and P in Equation (34) and in Equation (35) we invoke Claim 17 using λ unchanged from
Claim 17.

reg(Γ(f))(g)(x)(P) =
∑

P′∈Pvr

Pr

r = Err(Regress)

p = P ′

∣∣∣∣∣∣ r ← Γ(f)(x)(P)
p← P.clone()

 · g(x)(P ′) (34)

=
∑

P′∈Pvr

∞∑
i=0

(
⃝i−1

j=0

(
pro ◦ reg(f)

)
◦ λ(P ′)

)
(x)(P) · g(x)(P ′) (35)

By Equation (24), previously proven, we conclude reg(f) is the same for all four functions f . Therefore reg(Γ(f)) is
the same for all four functions f , and the claim follows.

4.2.2 proreg and properties

We define the composition of pro and reg for depth i ≥ 0, calling it proreg(i). We then define proreg⋆ involving
the compositions of pro and reg of every depth, capturing the probability any number of progressions followed by a
regression occur. But rather than leaving the first argument of reg free, we fix it to δ0(∆′(η)) which will suffice for
our purposes having previously proven the invariance property of reg in Section 4.2.1, Equation (24). We also fix

Definition 11 (proreg(i)).

∀i ≥ 0, proreg(i)⟨T ⟩ : (I0 → Pvr→ Result⟨T,Error⟩)→ (I0 → Pvr→ R)→ I0 → Pvr→ R

proreg(0)(·)(g)(x)(P) := g(x)(P)

∀i ≥ 1, proreg(i)(f)(g)(x)(P) :=
(
⃝i−1

j=0

(
pro ◦ reg⟨I0, T ⟩(f)

))
(g)(x)(P)

Definition 12 (proreg⋆).

proreg⋆ : (I0 → Pvr→ R)→ I0 → Pvr→ R

proreg⋆(g)(x)(P) :=
∞∑
i=0

proreg(i)
(
δ0
(
∆′(η)

))
(g)(x)(P)

Claim 19 (proreg⋆ linearity). For g, g′ : I0 → Pvr→ R and α ∈ R we see proreg to be linear in the sense that

λ0(x)(P) := g(x)(P) + g′(x)(P) λ1(x)(P) := α · g(x)(P)
proreg⋆(λ0) = proreg⋆(g) + proreg⋆(g′) proreg⋆(λ1) = α · proreg⋆(g)

Proof. Linearity is evident by the linearity of pro and reg by Claim 10 and the definition of proreg⋆ in terms of pro
and reg.

Claim 20 (proreg⋆ inequality). For g, g′ : I0 → Pvr→ R we see proreg to preserve inequalities, that is

g ≥ g′ =⇒ proreg⋆(g) ≥ proreg⋆(g′)

where inequality between two real-valued functions means inequality between their evaluations for all possible argu-
ments.

Proof. Inequality preservation is evident by the inequality preservation of pro and reg by Claim 11 and the definition
of proreg⋆ in terms of pro and reg.

23

4.2.3 Extending with regression

Claim 21. Consider the function signature labelled with f below and note that ϕ0(Φ′(η)), ψ0(Φ
′(η)), δ0(Ψ′

i(η)), and
δ0(∆

′(η)) are all instances of such a function.

f⟨T ⟩ : I0 → Pvr→ Result⟨T,Error⟩

For f ∈ {ϕ0(Φ′(η)), ψ0(Φ
′(η)), δ0(Ψ

′
i(η)), δ0(∆

′(η))}, consider the function signature labelled with λ below and
note that β and αj for j ∈ {0, . . . , n − 1} are all instances of such a function. We redefine β and αj for clarity, and
note Aj is well defined on f .

λ⟨T ⟩ : (I0 → Pvr→ Result⟨T,Error⟩)→ I0 → Pvr→ R

β(f)(x)(P) := Pr
[
r ∈ Ok⟨T ⟩

∣∣∣ r ← f(x)(P)
]

∀j ∈ {0, . . . , n− 1}, αj(f)(x)(P) := E
[
Aj

(
f(x)(P)

)]
For λ ∈ {β} ∪ {αj}j∈{0,...,n−1} as well as x ∈ I0 and P ∈ Pvr we claim the following.

λ(Γ(f))(x)(P) =
∑

P′∈Pvr

Pr

w = Progress

p = P ′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

(λ(f)(x)(P ′)

+
∑
P′′

Pr

r = Err(Regress)

p = P ′′

∣∣∣∣∣∣ r ← f(x)(P ′)

p← P ′.clone()

 · λ(Γ(f))(x)(P ′′)

)

=

∞∑
i=0

(
⃝i−1

j=0

(
pro ◦ reg⟨I0, T ⟩(f)

)
◦ pro(λ(f))

)
(x)(P)

Proof. Before arguing that λ(Γ(f))(x)(P) on the left side equates to the recursive formula, we first argue the recursive
formula equates to the series. This recursive expression can be translated to the additive form of a series in the same
way as Claim 17. We write out the first two terms.∑

P′∈Pvr

Pr

w = Progress

p = P ′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

 · λ(f)(x)(P ′)

+
∑

P′∈Pvr

Pr

w = Progress

p = P ′

∣∣∣∣∣∣ w ← P.way()p← P.clone()

 · ∑
P′′∈Pvr

Pr

r = Err(Regress)

p = P ′′

∣∣∣∣∣∣ r ← f(x)(P ′)

p← P ′.clone()

×
∑

P′′′∈Pvr

Pr

w = Progress

p = P ′′′

∣∣∣∣∣∣ w ← P
′′.way()

p← P ′′.clone()

 · λ(f)(x)(P ′′′) + . . .

=
(
pro ◦ λ(f)

)
(x)(P) +

(
pro ◦ reg(f) ◦ pro ◦ λ(f)

)
(x)(P) + . . .

=

∞∑
i=0

(
⃝i−1

j=0

(
pro ◦ reg(f)

)
◦ pro(λ(f))

)
(x)(P)

The recursive formula describes a real value in relation to execution of Γ(f)(x)(P). Consider the following event in
the execution of Γ(f)(x)(P), parameterized by integer i ≥ 0: The two steps below occur i times, followed by one
occurance of Step 1.

1. The prover is queried on way and returns Progress.

2. Execution of f(x)(P) is performed and results in value Err(Regress).

24

Term i ≥ 0 in the series can be examined to represent the probability of this event with respect i, multiplied by real
value λ(f)(x)(P̂) where P̂ is the state of the prover after the event, before execution i+ 1 of f(x)(P̂).

When λ := β, term i represents the probability that i progressions and regressions occur, followed by another
progression and then execution of f(x)(P̂) returning an Ok⟨T ⟩ value. Therefore the whole series represents the prob-
ability of execution of Γ(f)(x)(P) returning an Ok⟨T ⟩ value, which indeed equates to the left side β(Γ(f))(x)(P).

When λ := αj , term i represents the multiplication of two real values: (a) the probability that i progressions and
regressions occur, followed by another progression; (b) the expected value of Aj

(
f(x)(P̂)

)
. Therefore the whole

series represents the expected value of Aj

(
Γ(f)(x)(P)

)
, which indeed equates to the left side αj(Γ(f))(x)(P).

Claim 22.

β(Φ(η)) = proreg⋆ ◦ pro ◦ β
(
ϕ0(Φ

′(η))
)

β(Ψ0(η)) = proreg⋆ ◦ pro ◦ β
(
ψ0(Φ

′(η))
)

∀i ∈ {1, . . . , n− 1}, β(Ψi(η)) = proreg⋆ ◦ pro ◦ β
(
δ0(Ψ

′
i(η))

)
β(∆(η)) = proreg⋆ ◦ pro ◦ β

(
δ0(∆

′(η))
)

For j ∈ {0, . . . , n− 1}

αj(Φ(η)) = proreg⋆ ◦ pro ◦ αj

(
ϕ0(Φ

′(η))
)

αj(Ψ0(η)) = proreg⋆ ◦ pro ◦ αj

(
ψ0(Φ

′(η))
)

∀i ∈ {1, . . . , n− 1}, αj(Ψi(η)) = proreg⋆ ◦ pro ◦ αj

(
δ0(Ψ

′
i(η))

)
αj(∆(η)) = proreg⋆ ◦ pro ◦ αj

(
δ0(∆

′(η))
)

Proof. This claim re-interprets Claim 21 in a convenient form. With f and λ as in Claim 21, the left sides of the
equations above correspond to λ(Γ(f)). Therefore we reduce to equating the right sides of the equations above to

∞∑
i=0

⃝i−1
j=0

(
pro ◦ reg⟨I0, T ⟩(f)

)
◦ pro(λ(f))

Note we are now equating functions without the application of x and P as done in Claim 21, e.g. λ(Γ(f)) instead of
λ(Γ(f))(x)(P).

We invoke the invariance property of reg proven Section 4.2.1, specifically Equation (24), restated as

reg⟨I0,W0⟩
(
ϕ0
(
Φ′(η)

))
= reg⟨I0, S0⟩

(
ψ0

(
Φ′(η)

))
= reg⟨I0, Si⟩

(
δ0
(
Ψ′

i(η)
))

= reg⟨I0,Wn⟩
(
δ0
(
∆′(η)

))
With f ∈ {ϕ0(Φ′(η)), ψ0(Φ

′(η)), δ0(Ψ
′
i(η)), δ0(∆

′(η))}, this means all four functions of reg(f) are equal. We may
thus replace reg(f) in the series with reg(δ0(∆

′(η))) and arrive at the claimed right sides of the equations as

∞∑
i=0

⃝i−1
j=0

(
pro ◦ reg

(
δ0(∆

′(η))
))
◦ pro(λ(f)) = proreg⋆

(
pro(λ(f))

)

4.2.4 Joining claims

We invoke Lemma 1, along with Claim 22, Claim 19, and Claim 20 to prove Theorem 2.

25

Proving Equation (2).

β(Φ(η)) +

n−1∑
i=0

β(Ψi(η))

= proreg⋆ ◦ pro ◦ β
(
ϕ0(Φ

′(η))
)
+ proreg⋆ ◦ pro ◦ β

(
ψ0(Φ

′(η))
)

+

n−1∑
i=1

proreg⋆ ◦ pro ◦ β
(
δ0(Ψ

′
i(η))

)
by Claim 22

= proreg⋆ ◦ pro
(
β
(
ϕ0(Φ

′(η))
)
+ β

(
ψ0(Φ

′(η))
)
+

n−1∑
i=1

β
(
δ0(Ψ

′
i(η))

))
by Claim 19

≥ proreg⋆ ◦ pro
(
β
(
δ0(∆

′(η))
)
−

n−1∑
i=0

χi · αj

(
δ0(∆

′(η))
))

by Claim 20 with Equation (6)

= proreg⋆ ◦ pro ◦ β
(
δ0(∆

′(η))
)
−

n−1∑
i=0

χi · proreg⋆ ◦ pro ◦ αj

(
δ0(∆

′(η))
)

by Claim 19

= β(∆(η))−
n−1∑
i=0

χi · αj(∆(η)) by Claim 22

Proving Equation (3). For j ∈ {0, . . . , n− 1}

αj(Φ) = proreg⋆ ◦ pro ◦ αj

(
ϕ0(Φ

′(η))
)

by Claim 22

= proreg⋆ ◦ pro ◦

((
j∏

k=0

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
))

by Equation (7)

=

(
j∏

k=0

τ(ϕk)

)
· proreg⋆ ◦ pro ◦ αj

(
δ0(∆

′(η))
)

by Claim 19

=

(
j∏

k=0

τ(ϕk)

)
· αj(∆(η)) by Claim 22

Proving Equation (4). For j ∈ {0, . . . , n− 1}

αj(Ψ0(η)) = proreg⋆ ◦ pro ◦ αj

(
ψ0(Φ

′(η))
)

by Claim 22

= proreg⋆ ◦ pro ◦

(
τ(ψ0)

(
j∏

k=1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
))

by Equation (8)

= τ(ψ0)

(
j∏

k=1

τ(ϕk)

)
· proreg⋆ ◦ pro ◦ αj

(
δ0(∆

′(η))
)

by Claim 19

= τ(ψ0)

(
j∏

k=1

τ(ϕk)

)
· αj(∆(η)) by Claim 22

26

Proving Equation (5). For i ∈ {1, . . . , n− 1}

∀j ∈ {0, . . . , i− 1}, αj(Ψi(η)) = proreg⋆ ◦ pro ◦ αj

(
δ0(Ψ

′
i(η))

)
by Claim 22

= proreg⋆ ◦ pro ◦ αj

(
δ0(∆

′(η))
)

by Equation (9)
= αj(∆(η)) by Claim 22

∀j ∈ {i, . . . , n− 1}, αj(Ψi(η)) = proreg⋆ ◦ pro ◦ αj

(
δ0(Ψ

′
i(η))

)
by Claim 22

= proreg⋆ ◦ pro ◦

(
τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj

(
δ0(∆

′(η))
))

by Equation (10)

= τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· proreg⋆ ◦ pro ◦ αj

(
δ0(∆

′(η))
)

by Claim 19

= τ(ψi)

(
j∏

k=i+1

τ(ϕk)

)
· αj(∆(η)) by Claim 22

5 Message-independent sampling
We develop a sampling algorithm we call a message-independent sampling algorithm that may be used to interact
with the prover in extraction and solution algorithms. The application is verifier-move QUIRKs in which extraction
or solution requires obtaining many message-witness pairs such that the messages may be independent, not requiring
any particular relationships. We model the scenario as having multiple boolean random variables, each modelling a
sampling algorithm to obtain a single instance-witness pair, and our goal is to successfully sample from all of them.

Let P and Q denote boolean random variables with success probabilities p and q. For a boolean random variable
V let τ(V) denote the random variable of the time it takes to sample V . One can successfully sample both P and Q in
expected time E[τ(P)]/p + E[τ(Q)]/q by sampling each until they both succeed. We instead seek to sample both in
expected time linear in E[τ(P)] and E[τ(Q)], and we wish to succeed with probability nearly min{p, q}. Moreover,
in the case p = q = 1 we should succeed with probability 1.

We will construct two algorithms. The first will sample P and Q, and the second will utilize the first to sample
n boolean random variables {Pi}i∈[n]−1. We state the properties of the first algorithm in Theorem 3 and those of the
second in Corollary 2.

Theorem 3. For integer k ≥ 1 an algorithm exists to obtain successful samples of P and Q with expected time
bounded by (k + 1)(E[τ(P)] + E[τ(Q)])/2, and success probability 0 for p = q = 0 and otherwise at least

min{p, q} − 1/(k · 2k)
1− 1/(k · 2k)

Whether the algorithm executes P or Q first, the algorithm succeeds only if that first execution succeeds.

Proof. We present the algorithm after Corollary 2. In Section 5.1 we prove the algorithm’s probability of success, and
in Section 5.2 we prove the algorithm’s expected time.

Corollary 2. For integer k ≥ 1 an algorithm exists to obtain successful samples of n ≥ 1 boolean random variables
{Pi}i∈[n]−1 with expected time bounded by

(
(k+1)/2

)log(n)∑n−1
i=0 E[τ(Pi)], and success probability 0 when pi = 0

for all i ∈ [n]− 1 and otherwise at least

min{pi}i∈[n]−1 − log(n)/(k · 2k)
1− log(n)/(k · 2k)

with the logarithm base 2.

Proof. We organize the n random variables {Pi}i∈[n]−1 into a binary tree padding for the case n is not a power of 2
with dummy random variables that succeed with probability 1. We argue by induction on the depth d := ⌈log(n)⌉.
The case d = 1 holds by Theorem 3. For d = 0 we simply sample the single boolean random variable and succeed

27

with probability p0, satisfying the claim. For d > 1 let L and R denote the boolean random variables had by sampling
the left and right subtrees. By induction, L and R succeed with probabilities lower bound by ℓ and r, defined as

ℓ :=
min{pi}i∈[n/2]−1 − (d− 1)/(k · 2k)

1− (d− 1)/(k · 2k)
, r :=

min{pi}i∈[n/2]+(n/2−1) − (d− 1)/(k · 2k)
1− (d− 1)/(k · 2k)

Therefore the probability we succeed on both L and R using Algorithm 4 is lower bound by

min{ℓ, r} − 1/(k · 2k)
1− 1/(k · 2k)

=

(
min{pi}i∈[n]−1 − (d− 1)/(k · 2k)

1− (d− 1)/(k · 2k)
− 1/(k · 2k)

)/(
1− 1/(k · 2k)

)
=

min{pi}i∈[n]−1 − ϵ
1− ϵ

ϵ := 1−
(
1− 1

k · 2k

)(
1− d− 1

k · 2k

)
≤ 1

k · 2k
+
d− 1

k · 2k
=

d

k · 2k

The expected times for sampling L and R are bounded by Expressions 36 and 37, respectively.(
(k + 1)/2

)d−1 ∑
i∈[n/2]−1

E[τ(Pi)] (36)

(
(k + 1)/2

)d−1 ∑
i∈[n/2]+(n/2−1)

E[τ(Pi)] (37)

Therefore the expected time of Algorithm 4 is bounded by

(
(k + 1)/2

)((k + 1)/2
)d−1 ∑

i∈[n/2]−1

E[τ(Pi)] +
(
(k + 1)/2

)d−1 ∑
i∈[n/2]+(n/2−1)

E[τ(Pi)]

=
(
(k + 1)/2

)((k + 1)/2
)d−1 ∑

i∈[n]−1

E[τ(Pi)]

 =
(
(k + 1)/2

)d ∑
i∈[n]−1

E[τ(Pi)]

Remark 2. Flipping coins randomizes the order of sampling. There is another version of this algorithm that succeeds
with the same probability but has twice the expected running time for the case n = 2. For our purposes unordered
sampling is sufficient so we choose the algorithm with half the expected running time.

To execute Algorithm 4 for the binary case of P and Q, one first flips a coin and assigns P or Q as the head
random variable H and the other as the tail random variable T depending on the coin flip. One then alterates between
sampling H and T . One first samples H , and if it fails the algorithm aborts. Otherwise one proceeds to continue
sampling, next sampling T , alternating until one of two events occur: T succeeds once, or H succeeds k times in
addition to its first success. One executes the algorithm as follows with C the coin flip distribution and j the number
of remaining times H can succeed before the algorithm fails.

28

Algorithm 4 Sampler algorithm for independents

1. match c← C
heads⇒

H := P , h := p, T := Q, t := q

tails⇒
H := Q, h := q, T := P , t := p

2. match b← H
0⇒ return 0
1⇒ continue

3. j := k
4. if j = 0 return 0

5. match b← T
0⇒ continue
1⇒ return 1

6. match b← H
0⇒ goto Step 5
1⇒

j := j − 1
goto Step 4

5.1 Probability of success
We prove the lower bound on the probability of success in two parts. In Section 5.1.1 we model the probability of
success as an expression written in h and t. We posit that the probability increases monotonically in both variables, and
therefore to lower bound to expression we may lower bound the expression as a univariate with h, t = min{h, t}. In
Section 5.1.2 we lower bound the univariate expression for k = 1, and in Section 5.1.3 we lower bound the univariate
expression for k ≥ 2. Note that if p = q = 0 then the probability of success is 0 because with h = 0 the algorithm exits
with failure in Step 3. Thus we are concerned below for the case max{p, q} > 0 which translates to max{h, t} > 0
by the way h and t are assigned.

5.1.1 Obtaining the univariate.

After an initial success it must be that h > 0, and we then repeat the following subroutine at most k times. The
subroutine performs rounds, in each round sampling T and then H , until a round occurs in which either T or H
succeeds. There may be i ≥ 0 failed rounds in which both T andH fail. The probability a round fails is (1−t)(1−h).
We say the subroutine succeeds if after any number of failed rounds, in the final round T succeeds. We say the
subroutine fails if after any number of failed rounds, in the final round T fails and then H succeeds. The probability
the subroutine fails may be written

∞∑
i=0

(1− t)i(1− h)i · (1− t)h =
(1− t)h

1− (1− t)(1− h)

where we have written the geometric series in closed form taking care that 1− (1− t)(1− h) < 1 due to h > 0.
The probability the algorithm succeeds is the probability H succeeds on initial execution (Step 2) and then the

subroutine fails fewer than k times. We lower bound the probability the algorithm succeeds as

h

(
1−

(
(1− t)h

1− (1− t)(1− h)

)k
)

(38)

Claim 23 (Monotinicity of Equation (38)). Probability 38 is monotonically non-decreasing in both variables.

29

Proof. We prove monotinicity in each variable by showing non-negativity of the partial derivatives, though we omit
the lengthy derivative calculations. Let

f(h, t) :=
(1− t)h

1− (1− t)(1− h)

Monotinicity in h. The partial derivative of expresion 38 with respect to h is

1− f(h, t)k ·
(
1 +

kt

t+ (1− t)h

)
Showing non-negativity of this derivative means showing the inequality

1 +
kt

t+ (1− t)h
≤ 1
/
f(h, t)k =

(
1 +

t

(1− t)h

)k

We rewrite the right side using the binomial formula as

k∑
i=0

(
k

i

)(
t

(1− t)h

)i

= 1 + k

(
t

(1− t)h

)
+

k∑
i=2

(
k

i

)(
t

(1− t)h

)i

With all terms non-negative and comparing denominators (1− t)h ≤ t+ (1− t)h we see the inequality holds.

Monotinicity in t. The partial derivative of expression 38 with respect to t is

f(h, t)k · kh

(1− t)
(
h+ (1− h)t

)
Both the numerator and denominator are non-negative.

Due to probability 38 monotonically non-decreasing in both variables by Claim 23, we may lower bound the
expression by plugging in x := min{h, t} to get

h

(
1−

(
(1− t)h

1− (1− t)(1− h)

)k
)
≥ x

(
1−

(
(1− t)x

1− (1− t)(1− x)

)k
)
≥ x

(
1−

(
(1− x)x

1− (1− x)(1− x)

)k
)

where the first inequality holds by monotinicity in h, and the second by monotinicity in t.
Recall we are concerned with proving a lower bound assuming max{h, t} > 0. So far this assumption has been

enough to ensure the expressions considered are well defined. But with x := min{h, t}, the univariate expression in
x is undefined when h = 0 or t = 0. To cover the case max{h, t} > 0 but h = 0 or t = 0 one may refer back to the
bivariate expression in h and t and confirm that it is well defined and equal to 0 for such cases. We therefore need only
focus on the univariate expression for x > 0. With x > 0 we may simplify the expression by rearranging the fraction
to cancel x/x and rewriting as

g(x) := x

(
1−

(
1− x
2− x

)k
)

The function g represents a curve in the interval [0, 1] and passes through (0, 0) and (1, 1). We obtained g as a lower
bound for the probability the algorithm succeeds assuming x > 0, and therefore g only applies as a lower bound
for x > 0. But in the case min{h, t} = 0 the probability of the algorithm succeeding is 0, which matches g since
g(0) = 0. We may therefore treat g as a lower bound for the probability of success for all min{h, t} = x ∈ [0, 1].

In Sections 5.1.2 and 5.1.3 we lower bound g in the unit interval with a line that passes through (1, 1). Relevant to
both sections are the first and second derivatives of g written below, again omitting the calculations. One may calculate
these derivatives using software like SageMath or SymPy.

g′(x) =

(
1− x
2− x

)k (
kx

(1− x)(2− x)
− 1

)
+ 1

g′′(x) = k ·
(
1− x
2− x

)k (
4− (k + 3)x

(1− x)2(2− x)2

)

30

The tangent line touching the curve at α ∈ [0, 1] may be written

g′(α)(x− α) + g(α)

5.1.2 Lower bounding g for k = 1.

With k = 1 we rewrite the derivatives as

g′(x) =
(1− x)k−1

(2− x)k+1

(
kx− (1− x)(2− x)

)
+ 1 =

(
x− (1− x)(2− x)

(2− x)2

)
+ 1 (39)

g′′(x) =

(
1− x
2− x

)(
4− 4x

(1− x)2(2− x)2

)
=

4

(2− x)3

Both derivatives are well defined and positive in [0, 1]. Therefore the curve from (0, 0) to (1, 1) is concave up, and the
tangent line at α := 1 lies at or below g for [0, 1]. The tangent line then serves as our lower bound and we write it as

g′(1)(x− 1) + g(1) = (1 + 1)(x− 1) + 1 = 2x− 1 =
x− 1/2

1− 1/2

5.1.3 Lower bounding g for k ≥ 2.

With k ≥ 2 we rewrite the first derivative as we did in the first equality of Equation (39). We also rewrite the second
derivative.

g′(x) =
(1− x)k−1

(2− x)k+1

(
kx− (1− x)(2− x)

)
+ 1

g′′(x) = k · (1− x)
k−2

(2− x)k+2

(
4− (k + 3)x

)
Both derivaties are well defined in [0, 1]. The first derivative is positive in [0, 1]. The second derivative crosses zero
at x = 4/(k + 3), is positive in [0, 4/(k + 3)] and negative in [4/(k + 3), 1). Without need to consider the second
derivative at x = 1 we conclude the curve is concave up in [0, 4/(k + 3)] and concave down in [4/(k + 3), 1].

Let α be a dynamic tangent point, and consider the tangent line ℓ at α. First setting α := 4/(k+3) we infer by the
concavities the following inequality relations between ℓ and g.

∀x ∈ [0, 4/(k + 3)], ℓ(x) ≤ g(x)
∀x ∈ [4/(k + 3), 1], g(x) ≤ ℓ(x)

Suppose we gradually decrease α from 4/(k+3) towards 0. Then there appears a second intersection point β ∈ [0, 1]
between ℓ and g such that we infer, again from the concavities, that

∀x ∈ [0, α], ℓ(x) ≤ g(x)
∀x ∈ [α, β], ℓ(x) ≤ g(x)
∀x ∈ [β, 1], g(x) ≤ ℓ(x)

Since we wish to make ℓ a lower bound for g we must decrease α to the point that β = 1. Therefore we seek the
unique line ℓ that is tangent to g a some point α ∈ [0, 4/(k + 3)] and passes through (1, 1).

The first part below is devoted to determining ℓ by determining the defining parameter α. Given the correct value
α we obtain ℓ by plugging α into the definition of ℓ as a tangent line at point α. The second part below is devoted to
solving ℓ such that we may express ℓ in terms of its root rather than as a tangent line.

Solving for α. As a line tangent to g at point α and as a line passing through (1, 1), ℓ may be defined as the unique
line satisfying the two constraints

∃α ∈ [0, 4/(k + 3)], ℓ(x) = g′(α)(x− α) + g(α)

1 = g′(α)(1− α) + g(α) (40)

31

To solve for α we solve Equation (40) reusing the original forms of g′ and g′′.

1 = g′(α)(1− α) + g(α)

=

((
1− x
2− x

)k (
kα

(1− α)(2− α)
− 1

)
+ 1

)
(1− α) + α

(
1−

(
1− α
2− α

)k
)

=

(
1− α
2− α

)k
kα(1− α)

(1− α)(2− α)
−
(
1− α
2− α

)k

(1− α) + (1− α) + α− α
(
1− α
2− α

)k

=

(
1− α
2− α

)k
kα

2− α
−
(
1− α
2− α

)k

+ 1

⇐⇒
(
1− α
2− α

)k (
kα

2− α
− 1

)
= 0 ⇐⇒ kα

2− α
= 1 ⇐⇒ α =

2

k + 1

where (1− α)k/(2− α)k > 0 since α ∈ [0, 4/(k + 3)] with k > 1.

Solving ℓ. Solving ℓ means solving the following equation for root x where α = 2/(k + 1).

ℓ(x) = g′(α)(x− α) + g(α) = 0

After a long, omitted series of simplifications we arrive at the root x = 1/(1 + γ) for

γ :=
2k(k − 1)

2
(
1− 1

k

)k
We handle k = 2, k = 3, and k ≥ 4 independently.

• For k = 2 we have γ = 8, yielding root upper bound 1/9 > 1/(2 · 22) = 1/(k · 2k).

• For k = 3 we have γ = 27, yielding root upper bound 1/28 > 1/(3 · 23) = 1/(k · 2k).

• We wish to show the root is upper bounded by k · 2k for k ≥ 4. That translates to proving k · 2k ≤ 1 + γ. By
the bound (1 − 1/k)k < 1/e for k ≥ 1 we have 2k(k − 1) · e/2 < γ and may therefore alternatively prove
k · 2k ≤ 1 + 2k(k − 1) · e/2.

k · 2k ≤ 1 + 2k(k − 1) · e/2⇐= k · 2k ≤ 2k(k − 1) · e/2
⇐⇒ 2k ≤ (k − 1) · e ⇐⇒ e ≤ k(e− 2)

With k ≥ 4 we indeed have k ≥ e/(e− 2) ≈ 3.78.

5.2 Expected time
Let Sj denote the expected remaining time of the algorithm upon reaching Step 4 with a particular j ∈ {0, . . . , k}.
Then the expected time of the algorithm is E[τ(H)] + h · Sk.

Claim 24. For j ∈ [k],

Sj =
E[τ(T)] + (1− t)(E[τ(H)] + h · Sj−1)

1− (1− t)(1− h)
(41)

Proof. Note S0 = 0 because Step 4 immediately exits. When j > 0 we have Sj equal to the expected remaining time
upon reaching Step 5 because Step 4 immediately proceeds to Step 5.

We may characterize Sj for j > 0 in terms of Sj−1 and Sj . If T succeeds in Step 5 the expected remaining time
is 0. If T fails and H succeeds the expected remaining time is Sj−1 because we then enter Step 4 with j := j − 1. If
T fails and H also fails the expected remaining time is Sj because we return to Step 5 with j unchanged. Accounting
also for the expected times to sample T and H we may write

Sj = E[τ(T)] + t · 0 + (1− t)
(
E[τ(H)] + h · Sj−1 + (1− h) · Sj

)
32

Rearranging we have

Sj − (1− t)(1− h) · Sj = E[τ(T)] + (1− t)
(
E[τ(H)] + h · Sj−1)

and the result follows upon dividing by 1− (1− t)(1− h).

To proceed further in calculating expected time we must account for the random assignment of H and T between
P and Q. Let SPj denote Sj in the case H := P and let SQj denote Sj in the case H := Q. Then by Equation (41)
we have for j > 0

SPj =
E[τ(Q)] + (1− q)

(
E[τ(P)] + p · SPj−1

)
1− (1− q)(1− p)

SQj =
E[τ(P)] + (1− p)

(
E[τ(Q)] + q · SQj−1

)
1− (1− p)(1− q)

Then the expected time of the algorithm may be written(
E[τ(P)] + p · SPk

)
/2 +

(
E[τ(Q)] + q · SQk

)
/2

=
(
E[τ(P)] + E[τ(Q)]

)
/2 +

(
p · SPk + q · SQk

)
/2

Therefore by proving p · SPk + q · SQk ≤ k
(
E[τ(P)] +E[τ(Q)]

)
the desired expected time for the algorithm follows.

We prove this inequality in the following claim.

Claim 25. For j ∈ {0, . . . , k},
p · SPj + q · SQj ≤ j

(
E[τ(P)] + E[τ(Q)]

)
Proof. We prove by induction. The base case for j = 0 holds by the fact SQ0 = SP0 = 0. Assuming the inequality
holds for j − 1 ≥ 0 we may write

p · SPj + q · SQj ≤ p

(
E[τ(Q)] + (1− q)

(
E[τ(P)] + p · SPj−1

)
1− (1− q)(1− p)

)

+ q

(
E[τ(P)] + (1− p)

(
E[τ(Q)] + q · SQj−1

)
1− (1− p)(1− q)

)

=

(
p · E[τ(Q)] + p(1− q) · E[τ(P)] + q · E[τ(P)] + q(1− p) · E[τ(Q)]

1− (1− q)(1− p)

)
+

(
p(1− q)p · SPj−1 + q(1− p)q · SQj−1

1− (1− p)(1− q)

)
≤

((
q + p(1− q)

)
· E[τ(P)] +

(
p+ q(1− p)

)
· E[τ(Q)]

1− (1− q)(1− p)

)

+

((
q + p(1− q)

)
p · SPj−1 +

(
p+ q(1− p)

)
q · SQj−1

1− (1− p)(1− q)

)
(42)

=
(
E[τ(P)] + E[τ(Q)]

)
+
(
p · SPj−1 + q · SQj−1

)
≤
(
E[τ(P)] + E[τ(Q)]

)
+ (j − 1)

(
E[τ(P)] + E[τ(Q)]

)
(43)

where in Equation (42) we have added pq to the factors multiplying SPj−1 and SQj−1, and in Equation (43) we invoke
induction.

6 Message-dependent sampling
We develop a sampling algorithm we call a message-dependent sampling algorithm that may be used to interact with
the prover in extraction and solution algorithms. The application is verifier-move QUIRKs in which extraction or

33

solution requires obtaining many message-witness pairs such that the messages are dependent, requiring particular
relationships we capture with a notion of monotonicity. The notion of monotonicity also appears in [AFR23] serving
a similar purpose, but the two techniques are independent and we achieve a tighter result.

To model a relationship via monotonicity we consider a function χ that maps from sequences (of any finite length)
of elements in a set Ω to subsets of Ω.

χ : Ω⋆ → 2Ω

Definition 13. Let χ : Ω⋆ → 2Ω denote a function from all sequences of elements of a set Ω to all subsets of Ω. We
say χ is monotonic if for any j ≥ 0, sequence (ω1, . . . , ωj) ∈ Ωj , and ωj+1 ∈ Ω we have

χ(ω1, . . . , ωj−1) ⊆ χ(ω1, . . . , ωj−1, ωj)

We say χ is strictly monotonic if the subset is a strict subset.

Theorem 4. For k ≥ 0 and monotonic function χ we construct algorithms V1k+1 (version 1) and V2k+1 (version 2)
that attempt to sample (e1, . . . , ek+1) ∈ Ek+1 ⊆ Ωk+1 such that

∀i ∈ [k + 1], χ
(
e1, . . . , ei−1

)
⊂ χ

(
e1, . . . , ei

)
Algorithms V1k+1 and V2k+1 operate with probabilities of success

Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V1k+1()
]
≥ Pr[E]− Pr[χ(e1, . . . , ek)]

Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V2k+1()
]
≥ Pr[E]− Pr[χ(e1, . . . , ek)]

1− Pr[χ(e1, . . . , ek)]

and expected running times
E
[
V1k+1()

]
≤ k + 1, E

[
V2k+1()

]
≤ 2(k + 1)

Proof. We prove here the base case for k = 0 and will subsequently prove by induction for k ≥ 1. The algorithms
for V11 and V21 are identical with common algorithm denoted V presented in Algorithm 5. Algorithm V succeeds
with probability Pr[E] by simply sampling ω ← Ω and succeeds if and only if ω ∈ E. With χ(()) = ∅ we have
Pr[χ(())] = 0 and therefore both algorithms succeed with the probabilities claimed. The expected time of V is 1 so
both algorithms have expected times bounded as claimed.

In Section 6.1 we present the algorithms and prove two preliminary claims. In Section 6.2 we lower bound the
probabilities of success. In Section 6.3 we upper bound the probabilities of success for the purpose of upper bounding
the expected times. We upper bound the expected times in Section 6.4.

6.1 The algorithm

Algorithm 5 Message-dependent sampling algorithms trySuccess and tryOutside

trySuccess : 2Ω → 2Ω → Maybe⟨E⟩
trySuccess(Sk−1)(Sk) :=

ω ← Ω \ Sk−1

match ω ∈ E
0⇒ trySuccess(Sk−1)(Sk)

1⇒
match ω ∈ Sk

0⇒ Yes(ω)

1⇒ No

tryOutside : 2Ω → Maybe⟨E⟩
tryOutside(Sk) :=

ω ← Ω \ Sk

match ω ∈ E
0⇒ No
1⇒ Yes(ω)

34

Algorithm 6 Message-dependent sampling algorithms V, V1k+1, and V2k+1

V : ()→ Maybe⟨E⟩
V() :=

ω ← Ω
match ω ∈ E

0⇒ No
1⇒ Yes(ω)

∀k ≥ 1:
V1k+1 : ()→ Maybe⟨Ek+1⟩
V1k+1() :=

match m← V1k()
No⇒ No
Yes((e1, . . . , ek))⇒

Sk−1 := χ(e1, . . . , ek−1)
Sk := χ(e1, . . . , ek)
match α← trySuccess(Sk−1)(Sk)

No⇒ No
Yes(ek+1)⇒ (e1, . . . , ek, ek+1)

∀k ≥ 1:
V2k+1 : ()→ Maybe⟨Ek+1⟩
V2k+1() :=

match m← V2k()
No⇒ No
Yes((e1, . . . , ek))⇒

Sk−1 := χ(e1, . . . , ek−1)
Sk := χ(e1, . . . , ek)
α← trySuccess(Sk−1)(Sk)
β ← tryOutside(Sk)
match (α, β)

(No,No)⇒ No

(Yes(ek+1), ·)⇒ (e1, . . . , ek, ek+1)

(· ,Yes(ek+1))⇒ (e1, . . . , ek, ek+1)

Claim 26.

Pr
[
α ∈ Yes⟨E⟩

∣∣∣ α← trySuccess(Sk−1)(Sk)
]
=

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
E ∩ (Ω \ Sk−1)

]
Proof. In trySuccess we sample from the space Ω \ Sk−1 until obtaining a sample in E, that is a sample in E ∩ (Ω \
Sk−1). The algorithm returns a Yes⟨E⟩ value if and only if this sample is not in Sk, that is the sample is inE∩(Ω\Sk).
Therefore the probability the algorithm returns a Yes⟨E⟩ value is the probability a sample is in E ∩ (Ω\Sk) given that
it is in E ∩ (Ω \ Sk−1). We write this conditional probability as

Pr
[
E ∩ (Ω \ Sk)

∣∣ E ∩ (Ω \ Sk−1)
]
=

Pr
[
E ∩ (Ω \ Sk) ∩ (Ω \ Sk−1)

]
Pr
[
E ∩ (Ω \ Sk−1)

] =
Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
E ∩ (Ω \ Sk−1)

]
where the first equality is due to the definition of conditional probability, and the second equality is due to Sk−1 ⊆
Sk.

Claim 27.

Pr
[
β ∈ Yes⟨E⟩

∣∣∣ β ← tryOutside(Sk)
]
=

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk

]
Proof. In tryOutside we sample once from the space Ω \ Sk and return a Yes⟨E⟩ value if and only if the sample is in
E, that is the sample is in E ∩ (Ω \ Sk). We write this conditional probability as

Pr
[
E ∩ (Ω \ Sk)

∣∣ Ω \ Sk

]
=

Pr
[
E ∩ (Ω \ Sk) ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk

] =
Pr
[
E ∩ (Ω \ Sk

)]
Pr
[
Ω \ Sk

]

6.2 Lower bounding probability of success
Lower bounding for V1

Claim 28.
Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V1k+1()
]
= Pr

[
E ∩ (Ω \ Sk)

]

35

Proof. We prove by induction on k. For the base case of k = 0 first note that by assumption of monotonicity we
regard Sk := χ(()) = ∅ and therefore E ∩ (Ω \ S0) = E. With k = 0 we have V1k+1 = V which succeeds with
probability Pr[E], and the result follows.

For k ≥ 1, the probability that V1k+1 succeeds is the probability that V1k succeeds and trySuccess on Sk−1 and
Sk also succeeds. By induction V1k succeeds with probability Pr

[
E ∩ (Ω \ Sk−1)

]
. Multiplying this probability by

the probability that trySuccess succeeds as established in Claim 26 we write probability of success for V1k+1 as

Pr
[
m ∈ Yes

(
Ek
) ∣∣∣m← V1k()

]
· Pr

[
α ∈ Yes(E)

∣∣∣ α← trySuccess(Sk−1)(Sk)
]

= Pr
[
E ∩ (Ω \ Sk−1)

]
·

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
E ∩ (Ω \ Sk−1)

] = Pr
[
E ∩ (Ω \ Sk)

]

To obtain the desired lower bound for V1 we use Claim 28 to write

Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V1k+1()
]
= Pr

[
E ∩ (Ω \ Sk)

]
= Pr[E]− Pr[E ∩ Sk] ≥ Pr[E]− Pr[Sk]

Lower bounding for V2

Lemma 3. For a, b, A,B ≥ 0 with b ≥ a and B ≥ A we have

∀x > a, B/A ≥ (x− b)/(x− a)

Proof. We instead show B(x− a) ≥ A(x− b). First we establish a(B −A) ≥ Ba−Ab.

b ≥ a ⇐⇒ Ab ≥ Aa ⇐⇒ Ba−Aa ≥ Ba−Ab ⇐⇒ a(B −A) ≥ Ba−Ab

Second we establish x(B −A) ≥ Ba−Ab using the previous inequality for the last inequality below.

x ≥ a ⇐⇒ x(B −A) ≥ a(B −A) ≥ Ba−Ab

We conclude assuming x(B −A) ≥ Ba−Ab.

x(B −A) ≥ Ba−Ab ⇐⇒ Bx−Ax ≥ Ba−Ab ⇐⇒ Bx−Ba ≥ Ax−Ab ⇐⇒ B(x− a) ≥ A(x− b)

Assigning x, a, b, A,B as below we note that with Sk−1 ⊆ Sk we have a ≤ b and A ≤ B. Also recall the
assumption Pr[E] > Pr[Sk−1] and thus x > a.

x := Pr[E], a := Pr[Sk−1], b := Pr[Sk], A := Pr[E]− Pr[E ∩ Sk], B := Pr[E]− Pr[E ∩ Sk−1]

Then we may invoke Lemma 3 and write

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
E ∩ (Ω \ Sk−1)

] = Pr[E]− Pr[E ∩ Sk]

Pr[E]− Pr[E ∩ Sk−1]
≥ Pr[E]− Pr[Sk]

Pr[E]− Pr[Sk−1]

The probability V2k+1 succeeds is the probability V2k succeeds and either trySuccess or tryOutside succeeds. The
probability of the disjunction that not both trySuccess and tryOutside fail may be written(

1−
(
1− Pr

[
α ∈ Yes(E)

∣∣∣ α← trySuccess(Sk−1)(Sk)
])(

1− Pr
[
β ∈ Yes(E)

∣∣∣ β ← tryOutside(Sk)
]))

=

(
1−

(
1−

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
E ∩ (Ω \ Sk−1)

])(1− Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk

]))
(44)

Combining results we have the inequality below, and the following equality is had be simplification.

Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V2k+1()
]

≥

(
Pr[E]− Pr[Sk−1]

1− Pr[Sk−1]

)(
1−

(
1− Pr[E]− Pr[Sk]

Pr[E]− Pr[Sk−1]

)(
1− Pr[E]− Pr[Sk]

1− Pr[Sk]

))

=
Pr[E]− Pr[Sk]

1− Pr[Sk]

36

6.3 Upper bounding probability of success
The upper bound for the probability that V1 succeeds is had by Claim 28 since it is an equality. We turn to upper
bounding the probability of success for V2. These upper bounds serve in lower bounding the expected times.

Claim 29.

Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V2k+1()
]
≤

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk

] (45)

Proof. for Version 2 Equation (44)

Pr
[
m ∈ Yes

(
Ek+1

) ∣∣∣m← V2k+1()
]

≤

(
Pr
[
E ∩ (Ω \ Sk−1)

]
Pr
[
Ω \ Sk−1

])(
1−

(
1−

Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
E ∩ (Ω \ Sk−1)

])(1− Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk

]))

=

(
Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk

])(
Pr
[
E ∩ (Ω \ Sk−1)

]
Pr
[
Ω \ Sk−1

] +
Pr
[
Ω \ Sk

]
Pr
[
Ω \ Sk−1

] − Pr
[
E ∩ (Ω \ Sk)

]
Pr
[
Ω \ Sk−1

])

Pr
[
E ∩ (Ω \ Sk−1)

]
+ Pr

[
Ω \ Sk

]
− Pr

[
E ∩ (Ω \ Sk)

]
≤ Pr

[
Ω \ Sk−1

]
⇐⇒ Pr

[
Ω \ Sk

]
− Pr

[
E ∩ (Ω \ Sk)

]
≤ Pr

[
Ω \ Sk−1

]
− Pr

[
E ∩ (Ω \ Sk−1)

]
⇐⇒ 1− Pr

[
Sk

]
−
(
Pr[E]− Pr

[
E ∩ Sk

])
≤ 1− Pr

[
Sk−1

]
−
(
Pr[E]− Pr

[
E ∩ Sk−1

])
⇐⇒ Pr

[
Sk−1

]
− Pr

[
E ∩ Sk−1

]
≤ Pr

[
Sk

]
− Pr

[
E ∩ Sk

]
= Pr

[
Sk−1 ∪ (Sk \ Sk−1)

]
− Pr

[
E ∩

(
Sk−1 ∪ (Sk \ Sk−1)

)]
= Pr

[
Sk−1

]
+ Pr

[
Sk \ Sk−1

]
− Pr

[
E ∩ Sk−1

]
− Pr

[
E ∩ (Sk \ Sk−1)

]
⇐⇒ Pr

[
E ∩ (Sk \ Sk−1)

]
≤ Pr

[
Sk \ Sk−1

]
where we have utilized Sk−1 ⊆ Sk.

6.4 Expected running time
Claim 30.

E
[
τ
(
trySuccess(Sk−1)(Sk)

)]
=

Pr
[
Ω \ Sk−1

]
Pr
[
E ∩ (Ω \ Sk−1)

]
E
[
τ
(
tryOutside(Sk)

)]
= 1

Proof. The algorithm trySuccess samples from the space Ω \ Sk−1 until obtaining a value in E ∩ (Ω \ Sk−1). The
probability the algorithm succeeds on each sample is thus

Pr
[
E ∩ (Ω \ Sk−1)

]
Pr
[
Ω \ Sk−1

]
so the expected number of samples needed is the inverse.

The algorithm tryOutside samples once from the space Ω \ Sk so takes time 1.

Expected time for V1. The expected time fo V1k+1 is the expected time for V1k plus the time of trySuccess should
V1k succeed. Therefore we write

E
[
τ
(
V1k+1

)]
= E

[
τ(V1k)

]
+ Pr

[
m ∈ Yes

(
Ek
) ∣∣∣m← V1k()

]
· E
[
τ
(
trySuccess(Sk−1)(Sk)

)]

37

Plugging in the probability V1k succeeds as established in Claim 28 and plugging in the expected time of V1k had by
induction we arrive at By induction we have The probability V1k succeeds is Pr

[
E ∩ (Ω \ Sk−1)

]
which holds by

Claim 28 for k rather than k + 1.

E
[
τ
(
V1k+1

)]
= E

[
τ(V1k)

]
+ Pr

[
E ∩ (Ω \ Sk−1)

]
·

Pr
[
Ω \ Sk−1

]
Pr
[
E ∩ (Ω \ Sk−1)

]
≤ k + Pr

[
Ω \ Sk−1

]
≤ k + 1

Expected time for V2. The expected time for V2k+1 is the expected time for V2k plus the time of trySuccess and
tryOutside should V2k succeed. Therefore we write

E
[
τ
(
V2k+1

)]
= E

[
τ(V2k)

]
+ Pr

[
m ∈ Yes

(
Ek
) ∣∣∣m← V2k()

]
· E
[
τ
(
trySuccess(Sk−1)(Sk)

)]
· E
[
τ
(
tryOutside(Sk)

)]
Plugging in the upper bound on the probability V2k succeeds as established in Equation (45) for k rather than k + 1,
and plugging in the expected time of V2k had by induction we arrive at

E
[
τ
(
V2k+1

)]
= E

[
τ(V2k)

]
+

(
Pr
[
E ∩ (Ω \ Sk−1)

]
Pr
[
Ω \ Sk−1

])
·

(
Pr
[
Ω \ Sk−1

]
Pr
[
E ∩ (Ω \ Sk−1)

] + 1

)

≤ (2k) + 1 +
Pr
[
E ∩ (Ω \ Sk−1)

]
Pr
[
Ω \ Sk−1

] ≤ 2(k + 1)

7 Instance and witness reductions
We classify QUIRKs into two types we call ‘instance reductions’ and ‘witness reductions.’ Intuitively, an instance
reduction is one in which the language may change and the instance may undergo trivial or non-trivial reduction, but
the witness only undergoes trivial reduction. The term can be misleading because it does not include QUIRKs in which
both the instance and the witness undergo non-trivial reduction. We choose the name, however, to give emphasis to
the instance, rather than the witness, as undergoing non-trivial reduction. A QUIRK is a witness reduction if it is not
an instance reduction. To capture the special class of QUIRKs that are instance reductions, we define a QUIRK as an
instance reduction if it executes δ only once during extraction. Intuitively, this requires that a witness for the input
instance be immediately derived from a single output witness. The immediate transformation of an output witness into
an input witness suggests the input witness did not undergo non-trivial reduction.

Definition 14 (Instance and witness reduction). A QUIRK is an instance reduction if the extract function executes δ
only once. Otherwise, the QUIRK is a witness reduction.

In the following four subsections we distinguish these two types of reductions for prover-move and verifier-move
QUIRKs, and we present an example QUIRK pattern for the latter three subsections each.

7.1 Prover witness reductions
When a prover-move reduction involves non-trivial reduction to the witness, the verifier has no randomness to exercise
in attempt at extraction. If the verifier rewinds the prover, there’s no guarantee the prover will return a different witness
useful for extraction. It seems the best one may do in this case is make use of assumptions, likely non-falsifiable
assumptions. In this case one may leave the extract or solve functions of a QUIRK undefined and instead conjecture
security.

7.2 Prover instance reductions
Consider functions message, instance, and witness for building a prover-move QUIRK with a message type M be-
tween language L(I;W) and L′(I ′;W ′). We show how another function witOrSol allows us to construct functions

38

extract and solve to complete the prover-move QUIRK. Intuitively the resulting class of QUIRKs is intended to cap-
ture all prover-move reductions in which the instance and the language may change, but the witness hardly changes
if at all. The function name witOrSol is short for ‘witness or solution’ and given an input instance, prover message,
and output witness (in W ′), we ask that it immediately (without further interaction with the prover) yields either an
input witness (in W) or a solution for some solution type S associated with the QUIRK. Such a function implies that
an output witness effectively contains all that’s needed to derive an input witness (or a solution), and thus the witness
has not undergone any non-trivial reduction.

The function witOrSol has signature

witOrSol : I →M →W ′ → Either⟨W,S⟩

and it is expected to output an input witness or a solution assuming inputs x ∈ I , m ∈ M , and w′ ∈ W ′ satisfy(
instance(x)(m) ; w′) ∈ L′. We construct both extract and solve in terms of a subroutine we call core in which we

utilize witOrExt. We construct core, extract, and solve in Algorithm 7

Algorithm 7 Functions for prover-move instance reduction

core : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨Either⟨W,S⟩,Error⟩
core(η)(x)(P) :=

m← P.message()
match r ← η

(
instance(x)(m)

)
(P)

Err(·)⇒ r

Ok(w′)⇒ witOrSol(x)(m)(w′)

extract : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨W,Error⟩
extract(η)(x)(P) :=

match r ← core(η)(x)(P)
Err(·)⇒ r

Ok(Left(w))⇒ Ok(w)

Ok(Right(s))⇒ Err(Fail)

solve : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨S,Error⟩
solve(η)(x)(P) :=

match r ← core(η)(x)(P)
Err(·)⇒ r

Ok(Left(w))⇒ Err(Fail)

Ok(Right(s))⇒ Ok(s)

Lemma 4. Given prover-move QUIRK functions message, instance, and witness as well as a witOrSol function, we
may construct functions extract and solve to complete the QUIRK with extractability error 0 and expected extraction
and solution times both 1.

Proof. Regarding extractability error, note that by construction of extract and solve we have

Pr
[
r ∈ Ok(W)

∣∣∣ r ← extract(η)(x)(P)
]
+ Pr

[
r ∈ Ok(S)

∣∣∣ r ← solve(η)(x)(P)
]

= Pr
[
r ∈ Ok(Either⟨W,S⟩)

∣∣∣ r ← core(η)(x)(P)
]

= Pr
[
r ∈ Ok(W ′)

∣∣∣ r ← δ(η)(x)(P)
]

Therefore we have extractability error 0.
Regarding expected solution and extraction times, note how core executes the equivalent of δ exactly once, there-

fore so do extract and solve.

39

7.3 Verifier-move witness reductions
Suppose we have three functions message, instance, and witness for a verifier-move QUIRK with message type M
between two languages L(I,W) and L′(I ′,W ′). We will construct a class of QUIRKs by complementing the three
functions with a class of extract and solve functions. In addition to the three functions, the message type, and the two
languages, these QUIRKs are parameterized by the following.

• A solution type S.

• Integers ℓ > 0 and ki > 0 for i ∈ [ℓ].

• For each i ∈ [ℓ] a pair of types Ui×Vi ∼=M that decompose the message type M , and such that sampling from
M can be done by sampling u ← Ui and v ← Vi and joining them with a function joini : Ui → Vi → M as
joini(u)(v). Note a trivial decomposition can always be had with Ui or Vi assigned the unit type and the other
assigned the M type.

• For each i ∈ [ℓ] a monotonic function χi : V
⋆
i → 2Vi , as defined below in Definition 13.

• A ‘witness or solution’ function witOrSol with signature

witOrSol : I →
∏

i∈[ℓ]Ui × (Vi ×W ′)ki+1 → Either⟨W,S⟩

that will only be invoked with inputs x ∈ I and(
ui, (vi,j , w

′
i,j)j∈[ki+1]

)
i∈[ℓ]
∈
∏
i∈[ℓ]

Ui × (Vi ×W ′)ki+1

that satisfy

∀i ∈ [ℓ], ∀j ∈ [ki + 1] :(
instance(x)

(
joini(ui)(vi,j)

)
; w′

i,j

)
∈ L′(I ′;W ′)

χi(vi,1, . . . , vi,j−1) ⊂ χi(vi,1, . . . , vi,j)

the former which we call validity and the latter strict monotonicity.

Given these parameters, we create a function core of signature

core : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨Either⟨W,S⟩,Error⟩

and create functions extract and solve by wrapping core as follows in Algorithm 8.

Algorithm 8 extract and solve wrapping core for verifier-move witness reduction

extract : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨W,Error⟩
extract(η)(x)(P) :=

match r ← core(η)(x)(P)
Err(·)⇒ r

Ok(Left(w))⇒ Ok(w)

Ok(Right(s))⇒ Err(Fail)

solve : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨S,Error⟩
solve(η)(x)(P) :=

match r ← core(η)(x)(P)
Err(·)⇒ r

Ok(Left(w))⇒ Err(Fail)

Ok(Right(s))⇒ Ok(s)

40

We must enforce that extract and solve meet the implicit assumption of returning a regression error if and only if
the first execution of δ returns a regression error. To enforce this assumption we must enforce it on core. For simplicity
we will not discuss further how we enforce this assumption on core, noting it may simply be done by observing the
execution of core and adjusting returned errors as necessary.

We will construct core by utilizing the sampling algorithms presented in Section 5 and Section 6. In core we aim
to extract the input to witOrSol of type

∏
i∈[ℓ] Ui× (Vi×W ′)ki+1 such that we may feed it along with instance x ∈ I

to witOrSol and receive output of type Either⟨W,S⟩ for the Ok variant of the output for core. If we fail to extract the
necessary input for witOrSol then we output an Error value for the Err variant of the output for core, but we must take
care on whether to output Err(Regress) or Err(Fail) as mentioned in the previous paragraph.

Algorithm core is constructed in terms of algorithms corei for i ∈ [ℓ] of signatures

corei : (I
′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨Ui × (Vi ×W ′)ki+1,Error⟩

We aim to extract with each corei a value of type Ui× (Vi×W ′)ki+1, and then compose these values into one of type∏
i∈[ℓ] Ui × (Vi ×W ′)ki+1 for the output of core.

In Section 7.3.1 we illustrate how we may construct core out of (corei)i∈[ℓ] using the sampling algorithm of
Section 5. In Section 7.3.2 we then construct (corei)i∈[ℓ] using the sampling algorithm of Section 6.

7.3.1 Constructing core

Let us treat (corei)i∈[ℓ] as ℓ boolean random variables, each yielding success or failure depending on whether the
output is of variant Ok or Err. Define the algorithm core to be that which executes the message-independent sampling
algorithm of Section 5 in attempt to sample all corei binary random variables successfully, to then plug the results into
witOrSol for output. Then by Corollary 2, for some λ ∈ N, core succeeds with probability

Pr
[
r ∈ Ok(Either⟨W,S⟩)

∣∣∣ r ← core(η)(x)(P)
]

≥ min
i∈[ℓ]

{
Pr
[
r ∈ Ok

(
Ui × (Vi ×W ′)ki+1

) ∣∣∣ r ← corei(η)(x)(P)
]}
− log(ℓ)

/(
λ · 2λ

)
(46)

executing δ an expected number of times at most(
λ+ 1

2

)log(ℓ) ∑
i∈[ℓ]

τ(corei) (47)

where τ(corei) is the expected number of times corei executes δ.

7.3.2 Constructing corei

We construct corei using the message-dependent sampler algorithm of Section 6. The message-dependent sampler is
parameterized by a distribution Ωi, meaning a set Ωi and an algorithm to sample from it, as well as an event Ei ⊆ Ωi,
and a ‘clashing’ function clash : E⋆

i → 2Ωi . We define these as follows.

Ωi := Vi × Result⟨W ′,Error⟩
Ei := {(·, r) ∈ Ωi | r ∈ Ok(W ′)}
clashi : E

⋆
i → 2Ωi

clashi((v1, ·), . . . , (vη, ·)) := {(v, ·) ∈ Ωi | v ∈ χi(v1, . . . , vη)}

We let the corei algorithm invoke the message-dependent sampler through a function invokeSampler parameterized
by Ωi, Ei, clashi, as well as a function sampleOmegaCond : E⋆

i → Ωi. The signature of invokeSampler is

invokeSamplerΩi,Ei
: (E⋆

i → 2Ωi)→ (E⋆
i → Ωi)→ Result⟨Eki+1

i ,Error⟩

The function sampleOmegaCond allows the message-dependent sampler to sample from not only Ωi but also from
conditional distributions Ωi \ clash(e1, . . . , eη) for e1, . . . , eη ∈ Ei. To assist the message-dependent sampler we
parameterize sampleOmegaCond by a sequence of zero or more Ei values to specify the conditional distribution.

41

The corei algorithm operates by sampling u from Ui, defining sampleOmegaCond, and then invoking the message-
dependent sampler by calling invokeSample. We write corei in Algorithm 9.

Algorithm 9 corei

corei : (I
′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨Ui × (Vi ×W ′)ki+1,Error⟩

corei(η)(x)(P) :=
P ′ := P.clone()
u← Ui

sampleOmegaCond : E⋆
i → Ωi

sampleOmegaCond((v1, ·), . . . (vη, ·)) :=
P := P ′

v ← Vi
if v ∈ χi(v1, . . . , vη)

sampleOmegaCond((v1, ·), . . . , vη)
m := joini(u)(v)
P.update(m)
r ← η

(
instance(x)(m)

)
(P)

(v, r)
match r ← invokeSamplerΩi,Ei

(clashi)(sampleOmegaCond)
Ok((vj ,Ok(w

′
j))j∈[ki+1])⇒ Ok((u, (vj , w

′
j)j∈[ki+1]))

Err(error)⇒ Err(error)

We capture the probability corei succeeds in the following equations. We denote the random variable sampled
from Ui by rvu. To indicate the input variables to corei, on which several probabilities depend, we define the predicate
ivs to accept the three input arguments in order. We justify the equations after stating them.

Pr
[
r ∈ Ok

(
Ui × (Vi ×W ′)ki+1

) ∣∣∣ r ← corei(η)(x)(P)
]

=
∑
u∈Ui

Pr

[
r ∈ Ok

(
Eki+1

i

) ∣∣∣∣∣ rvu = u, ivs(η, x,P)
r ← invokeSamplerΩi,Ei

(clashi)(sampleOmegaCond)

]
· Pr

[
rvu = u

∣∣ u← Ui

]
(48)

≥
∑
u∈Ui

(
Pr

[
ω ∈ Ei

∣∣∣∣∣ ivs(η, x,P), rvu = u

ω ∈ sampleOmegaCond()

]

−Pr

ω ∈ clashi
(
(v1, ·), . . . , (vki

, ·)
) ∣∣∣∣∣∣∣
v1, . . . , vki

∈ Vi
ivs(η, x,P), rvu = u

ω ← sampleOmegaCond()

 · Pr [rvu = u

∣∣ u← Ui

]
(49)

= Pr
[
r ∈ Ok(W ′)

∣∣∣ r ← δ(η)(x)(P)
]
− Pr

[
v ∈ χi(v1, . . . , vki

)
∣∣∣ v ← Vi, v1, . . . , vki

∈ Vi
]

(50)

• Equation (48) holds by definition of corei. We iterate over all u ∈ Ui and multiply the probability of sampling
u by the probability that invokeSampler succeeds and thus corei succeeds given that particular u value and the
input variables.

• We obtain Equation (49) by invoking Theorem 4 with distribution Ωi, event Ei, and clashing function clashi.
By Theorem 4 the probability that invokeSampler succeeds is at least that probability of a sample from Ωi

occurring in Ei, minus the probability of a sample from Ωi occurring in (clashing with) clashi(e1, . . . , eki) for
any e1, . . . , eki

∈ Ei, which we may write as clashi
(
(v1, ·), . . . , (vki

, ·)
)

for any v1, . . . , vki
∈ Vi. To sample

from the non-conditional Ωi distribution we sample from sampleOmegaCond with an empty sequence of Ei

values.

• Equation (50) is had by distributing the probability of rvu taking a particular value, and analyzing the resulting
two terms of the summand as follows.

42

– The first term in the summand becomes the probability a sample from Ωi, given a fresh sample from Ui,
occurs in Ei. That is the probability that sampling u ← Ui and v ← Vi to form m := joini(u)(v),
updating the prover with P.update(m), and invoking η for result r, yields output (v, r) ∈ Ei and thus
r ∈ Ok(W ′). The probability that a sample from δ(η)(x)(P) occurs in Ok(W ′) is the same, because
that is the probability that sampling m, updating the prover, and invoking η for result r, also yields output
r ∈ Ok(W ′). Therefore the first term in the summand summed over Ui may be written as the probability
of a sample from δ occurring in Ok(W ′).

– The second term in the summand becomes the probability a sample from Ωi, given a fresh sample from
Ui, occurs in clashi

(
(v1, ·), . . . , (vki

, ·)
)

for any v1, . . . , vki
∈ Vi. By definition of clashi, this is the

probability a sample from Vi occurs in χi(v1, . . . , vki
). We similarly sum over Ui and write the new

second term.

Regarding the expected number of times corei executes δ, note that each execution of sampleOmegaCond, that is
each sample of Ωi or a conditional distribution on Ωi, corresponds to one execution of δ. By Theorem 4 the expected
number of times Ωi or a conditional distribution on Ωi is sampled is at most ki + 1, thus

τ(corei) ≤ ki + 1 (51)

Lemma 5. For some λ ∈ N we may complement verifier-move QUIRK functions message, instance, and witness with
functions extract and solve with extractability error at most

max
i∈[ℓ]

{
Pr

[
v ∈ χi(v1, . . . , vki

)

∣∣∣∣ v ← Vi
v1, . . . , vki ∈ Vi

]}
+ log(ℓ)

/(
λ · 2λ

)
and expected extraction and solution times at most(

λ+ 1

2

)log(ℓ) ∑
i∈[ℓ]

(ki + 1)

Proof. By construction of extract and solve we have

Pr
[
r ∈ Ok(W)

∣∣∣ r ← extract(η)(x)(P)
]
+ Pr

[
r ∈ Ok(S)

∣∣∣ r ← solve(η)(x)(P)
]

= Pr
[
r ∈ Ok(Either⟨W,S⟩)

∣∣∣ r ← core(η)(x)(P)
]

By Equation (46) we have

Pr
[
r ∈ Ok(Either⟨W,S⟩)

∣∣∣ r ← core(η)(x)(P)
]

≥ min
i∈[ℓ]

{
Pr
[
r ∈ Ok

(
Ui × (Vi ×W ′)ki+1

) ∣∣∣ r ← corei(η)(x)(P)
]}
− log(ℓ)

/(
λ · 2λ

)
By the series of equations ending with Equation (50) we have

Pr
[
r ∈ Ok

(
Ui × (Vi ×W ′)ki+1

) ∣∣∣ r ← corei(η)(x)(P)
]

≥ Pr
[
r ∈ Ok(W ′)

∣∣∣ r ← δ(η)(x)(P)
]
− Pr

[
v ∈ χi(v1, . . . , vki

)

∣∣∣∣ v ← Vi
v1, . . . , vki ∈ Vi

]
Combining the three equations we get

Pr
[
r ∈ Ok(W)

∣∣∣ r ← extract(η)(x)(P)
]
+ Pr

[
r ∈ Ok(S)

∣∣∣ r ← solve(η)(x)(P)
]

≥ Pr
[
r ∈ Ok(W ′)

∣∣∣ r ← δ(η)(x)(P)
]

−max
i∈[ℓ]

{
Pr

[
v ∈ χi(v1, . . . , vki

)

∣∣∣∣ v ← Vi
v1, . . . , vki

∈ Vi

]}
− log(ℓ)

/(
λ · 2λ

)

43

Regarding expected extraction and solution times, we must bound the expected numbers of times extract and
solve invoke δ. By construction of extract and solve we see the answer reduces to the expected number of times core
executes δ. By Equation (47) the function core executes δ an expected number of times at most(

λ+ 1

2

)log(ℓ) ∑
i∈[ℓ]

τ(corei)

By Equation (51) the function corei executes δ an expected number of times at most ki + 1. Therefore we have total
at most (

λ+ 1

2

)log(ℓ) ∑
i∈[ℓ]

(ki + 1)

7.4 Verifier-move instance reductions
Given functions message, instance, and witness for a verifier-move QUIRK with message type M between two lan-
guages L(I;W) and L′(I ′;W ′), and given the following parameters, we present how one may construct extract and
solve functions to complete the QUIRK.

• A solution type S.

• Integer k > 0

• Monotonic function χ : M⋆ → 2M .

• Functions

sol : I → (M ×W ′)k+1 → Maybe⟨S⟩
wit : I → (M ×W ′)→ Maybe⟨W ⟩

such that the following holds. Suppose x ∈ I and (mi, w
′
i)i∈[k+1] ∈ (M ×W ′)k+1 such that it satisfies

– Strict monotonicity:
∀i ∈ [k + 1] : χ(m1, . . . ,mi−1) ⊂ χ(m1, . . . ,mi)

– Validity:
∀i ∈ [k + 1] :

(
instance(x)(mi) ; w

′
i

)
∈ L′

Then it must hold that at least one of the two functions output a Yes variant, that is

sol(x)
(
(mi, w

′
i)i∈[k+1]

)
∈ Yes(S) ∨ wit(x)((m1, w

′
1)) ∈ Yes(W)

To define extract and solve we borrow the function core1 constructed in Section 7.3.2 which in our context has
signature

core1 : (I
′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨()× (M ×W ′)k+1,Error⟩

In Algorithm 10 we define solve and extract′ using core1, while we construct extract without using core1. We will
explain the purposes of extract′ versus extract.

44

Algorithm 10 Functions for verifier-move instance reductions

solve : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨S,Error⟩
solve(η)(x)(P) :=

match r ← core1(η)(x)(P)
Err(·)⇒ r

Ok
((
(), (mi, w

′
i)i∈[k+1]

))
⇒

match sol(x)
(
(mi, w

′
i)i∈[k+1]

)
Yes(s)⇒ Ok(s)

No⇒ Err(Fail)

extract′ : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨W,Error⟩
extract′(η)(x)(P) :=

match r ← core1(η)(x)(P)
Err(·)⇒ r

Ok
((
(), (mi, w

′
i)i∈[k+1]

))
⇒

match wit(x)
(
(m1, w

′
1)
)

Yes(w)⇒ Ok(w)

No⇒ Err(Fail)

extract : (I ′ → Pvr→ Result⟨W ′,Error⟩)→ I → Pvr→ Result⟨W,Error⟩
extract(η)(x)(P) :=

m←M
P.update(m)
match r ← η

(
instance(x)(m)

)
(P)

Err(·)⇒ r

Ok(w′)⇒
match wit(x)((m,w′))

Yes(w)⇒ Ok(w)

No⇒ Err(Fail)

Our algorithms for seeking extraction and solution are solve and extract. The purpose of extract′ is to aid in
proving the extractability error of extract. We argue that

Pr
[
r ∈ Ok(W)

∣∣∣ r ← extract(η)(x)(P)
]
≥ Pr

[
r ∈ Ok(W)

∣∣∣ r ← extract′(η)(x)(P)
]

Observe that extract executes the equivalent of δ and matches the return value. If δ returns an error, extract returns
that. If δ returns a W ′ witness, extract attempts to return a W witness via wit. In contrast, extract′ executed core1
but treats the return value similarly, returning it if it is an error, otherwise parsing it for (m1, w

′
1) and attempting to

a return a W witness via wit. Therefore we are left to argue that execution of δ succeeds with probability no less
than execution of core1. By construction of core1 and its message-dependent sampling subroutine, algorithm core1
executes δ and if δ returns any error then core1 returns that error. Therefore if core1 succeeds so does δ. Moreover, the
(m,w′) pair that is fed to wit in both core1 and δ is the same.

Lemma 6. We may complement verifier-move QUIRK functions message, instance, and witness with functions extract
and solve with extractability error at most

Pr

[
m ∈ χ(m1, . . . ,mk)

∣∣∣∣ (m,w′)← δ
m1, . . . ,mk ∈M

]
and expected extraction time 1 and expected solution time at most k + 1.

45

Proof. Regarding extractability error, it is clear by construction of extract′ and solve that

Pr
[
r ∈ Ok(W)

∣∣∣ r ← extract′(η)(x)(P)
]
+ Pr

[
r ∈ Ok(S)

∣∣∣ r ← solve(η)(x)(P)
]

= Pr
[
r ∈ Ok

(
()× (M ×W ′)k+1

) ∣∣∣ r ← core1(η)(x)(P)
]

As established previously in the series of equations ending with Equation (50) we may write

Pr
[
r ∈ Ok

(
()× (M ×W ′)k+1

) ∣∣∣ r ← core1(η)(x)(P)
]

≥ Pr
[
r ∈ Ok(W ′)

∣∣∣ r ← δ(η)(x)(P)
]
− Pr

[
m ∈ χ(m1, . . . ,mk)

∣∣∣∣m←M
m1, . . . ,mk ∈M

]
Having argued that extract succeeds with probability no less than extract′, we may combine the previous two equations
replacing extract′ with extract to establish the desired extractability error.

Regarding expected solution time, since core1 is based on the message-dependent sampling algorithm of Section 6
with χ and k, we have expected solution time at most k + 1. Regarding expected extraction time, by construction
extract executes the equivalent of δ exactly once.

8 Examples
In Section 8.1 we construct a verifier-move instance reduction for checking identity between polynomials over a
commutative ring. In Section 8.2 we utilize the identity checking QUIRK for a variation of the classic sumcheck
protocol. In Section 8.3 we discuss three verifier-move witness reductions, the first two intended for discrete log based
commitments, the last informal and for hash trees.

8.1 Univariate identity testing
Consider the following language identity whereR is a commutative ring, d ∈ N, and p, q ∈ R[X].

identity(R, d, p, q ; ()) :=
deg(p) < d, deg(q) < d

p = q

We construct a verifier-move instance reduction Q from identity to the following language randIdentity where
c ∈ R.

randIdentity(R, d, p, q, c ; ()) :=
deg(p) < d, deg(q) < d

p(c) = q(c)

Working in the commutative ring R we let ZD(R) denote the set of zero-divisors in R. The verifier’s message is a
challenge c ∈ R thus we set the message type as M := R. We construct the message, instance, and witness functions
for Q as follows.

Algorithm 11 Functions for verifier-move reduction to randIdentity

message : ()→M
message() := c← U(R)

instance : I →M → I ′

instance(x)(c) := (. . . x, b)

witness : I →M →W → Maybe⟨W ′⟩
witness(·)(c)() := Yes(())

46

For extractability we invoke the verifier-move instance reduction helper from Section 7.4 with the following pa-
rameters.

• Solution type S := ⊥.

• Integer k := d.

• Monotonic function χ defined as

χ : R⋆ → 2R

χ(r1, . . . , rη) :={
r ∈ R

∣∣ ∃i ∈ [η] : (ri − r) ∈ ZD(R)
}

• Functions wit and sol defined as

sol : I → (M ×W ′)k+1 → Maybe⟨S⟩
sol(·)(·) := No

wit : I → (M ×W ′)→ Maybe⟨W ⟩
wit((·, p, q))(·) :=

match p = q

0 ⇒ No

1 ⇒ Yes(())

We argue as required that given inputs (ri, w
′
i)i∈[k+1] for sol with input (r1, w′

1) for wit, at least one of these
two functions outputs a Yes variant. Clearly sol never outputs a Yes variant. To conclude that wit always outputs
a Yes variant, recall that inputs (mi, w

′
i)i∈[k+1] are promised to satisfy the validity and strict monotonicity

assumptions. Validity means that for each ri we have p(ri) = q(ri). Strict monotonicity by definition of χ
implies that for every pair ri, rj for i, j ∈ [k + 1] we have (ri − rj) ̸∈ ZD(R). By standard algebra and
induction on d one may argue if the polynomial p − q ∈ R[X] of degree less than d is non-zero, it has at most
d roots in the set {ri}i∈[d+1] given all differences in this set are regular elements. Since we have d+ 1 roots for
p− q it must be that p = q and therefore wit may always return the Yes variant.

Lemma 7. QUIRK Q from identity to randIdentity has completeness error 0 and extractability error at most

Pr

[
∃i ∈ [d] : r − ri ∈ ZD(R)

∣∣∣∣ r ← U(R)r1, . . . , rd ∈ R

]
Q has expected extraction time 1 and expected solution time at most d+ 1.

Proof. Completeness error follows by examination of the witness function. The claimed extractability error and
expected extraction and solution times hold by Lemma 6.

8.2 Evaluation check
We construct a poly-QUIRK to reduce between the two languages evalCheck0 and evalCheckv for some v ∈ N,
written below. Witness types are the trivial unit type, and instance types involve the following. Let F be a finite field,
f ∈ F[X0, . . . , Xv−1], d ∈ N, t0 ∈ F, (Bi)i∈[v]−1 ∈ Fv , (Ci)i∈[v]−1 ∈ Fv , and (ri, qi)i∈[v]−1 ∈ F[X]2. Each µi for
i ∈ [v]− 1 is the set of |µi| roots of unity in the multiplicative group. We define value Ξµi

(B, b) for b ∈ µi and B ∈ F
to be the (normalized) Lagrange basis monomial corresponding to b evaluated at B.

47

evalCheck0
(
F, f, d, t0, (µi)i∈[v]−1, (Bi)i∈[v]−1 ; ()

)
:=

t0 =
∑

b0∈µ0

Ξµ0
(B0, b0)

· · ·
∑

bv−1∈µv−1

Ξµv−1
(Bv−1, bv−1) · f(b0, . . . , bv−1)

evalCheckv
(
F, f, d, t0, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[v]−1, (ri, qi)i∈[v]−1 ; ()

)
:=

∀i ∈ [v]− 1:

deg(ri) < |µi|, deg(qi) < d− |µi|

ti = ri(Bi), ti+1 := ri(Ci) + (C
|µi|
i − 1) · qi(Ci)

tv = f(C0, . . . , Cv−1)

In order to reduce from evalCheck0 to evalCheckv we use the following additional languages for k ∈ [v + 1]− 1
where evalCheckk for k = 0 and k = v recovers languages evalCheck0 and evalCheckv .

evalk
(
F, f, tk, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[k]−1 ; ()

)
:=

tk =
∑

bk∈µk

Ξµk
(Bk, bk)

· · ·
∑

bv−1∈µv−1

Ξµv−1
(Bv−1, bv−1) · f(C0, . . . , Ck−1, bk, . . . , bv−1)

evalCheckk
(
F, f, d, t0, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[k]−1, (ri, qi)i∈[k]−1 ; ()

)
:=

∀i ∈ [k]− 1:

deg(ri) < |µi|, deg(qi) < |µi| − d

ti = ri(Bi), ti+1 := ri(Ci) + (C
|µi|
i − 1) · qi(Ci)

Lk
(
f, tk, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[k]−1 ; ()

)
In Section 8.2.1 we construct a reduction from evalCheckk to another language evalCheck′k for k ∈ [v] − 1. In
Section 8.2.2 we construct a reduction from evalCheck′k to another language evalCheck′′k which is equivalent to
evalCheckk+1 for k ∈ [v]−1. Composing these QUIRKs together into a poly-QUIRK we may reduce from evalCheck0
to evalCheckv .

8.2.1 A prover-move instance reduction

We construct a prover-move instance reduction from evalCheckk to the following language evalCheck′k for k ∈ [v]−
1. Note the instance and witness types are the same as those of evalCheckk with the instance additionally holding

48

(rk, qk) ∈ F[X]× F[X]. This additional input is the prover’s message and thus we assign M := F[X]× F[X].

evalCheck′k
(
F, f, d, t0, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[k]−1, (ri, qi)i∈[k]−1, (rk, qk) ; ()

)
:

∀i ∈ [k]− 1:

deg(ri) < |µi|, deg(qi) < d− |µi|

ti = ri(Bi), ti+1 := ri(Ci) + (C
|µi|
i − 1) · qi(Ci)

deg(rk) < |µk|, deg(qk) < d− |µk|
tk = rk(Bk) (52)

identity
(
F, d, rk(X) + (X |µk| − 1) · qk(X),

∑
bk+1∈µk+1

Ξµk+1
(Bk+1, bk+1)

· · ·
∑

bv−1∈µv−1

Ξµv−1
(Bv−1, bv−1) · f(C0, . . . , Ck−1, X, bk+1, . . . , bv−1) ; ()

)
We use Lemma 4 with the following message, instance, witness, and witOrSol functions. In message the prover

computes rk and qk by dividing the polynomial in the last instance argument of identity by (X |µk| − 1) to obtain
quotient qk and remainder rk. Let I and W be the instance and witness types of evalCheck, and let I ′ and W ′ be the
instance and witness types of evalCheck′. We’ll use the never type for the solution type S := ⊥. The ‘spreading’ no-
tation ‘. . . x’ in the instance function means unpacking the direct product element x into its components and inserting
them into the new instance direct product element along with component (rk, qk).

Algorithm 12

message : I →W →M
message(·) := (rk, qk)

instance : I →M → I ′

instance(x)((rk, qk)) := (. . . x, (rk, qk))

witness : I →M →W ′ → Maybe⟨W ⟩
witness(·)(·)(·) := Yes(())

witOrSol : I →M →W ′ → Either⟨W,S⟩
witOrSol(·)(·)(·) := Yes(())

The fact witOrSol simply returns the unit means that whenever the output instance is valid then the input instance
should be valid, as we now argue. With a valid output instance we may write the following to prove the input instance
is valid.

tk = rk(Bk) (53)

=
∑

bk∈µk

Ξµk
(Bk, bk) · rk(bk) (54)

=
∑

bk∈µk

Ξµk
(Bk, bk) ·

(
rk(bk) + (b

|µk|
k − 1) · qk(bk)

)
=
∑

bk∈µk

Ξµk
(Bk, bk)

∑
bk+1∈µk+1

Ξµk+1
(Bk+1, bk+1)

· · ·
∑

bv−1∈µv−1

Ξµk+1
(Bv−1, bv−1) · f(C0, . . . , Ck−1, bk, bk+1, . . . , bv−1)

where Equation (53) holds by Equation (52), and Equation (54) holds by the fact that with deg(rk) < |µk| evaluating
rk on the |µk| roots of unity and multiplying by the corresponding Lagrange monomials evaluated at Bk is equal to
evaluating polynomial rk at Bk.

49

Claim 31. We may construct a QUIRK from from evalCheckk to evalCheck′k with functions message, instance, and
witness having completeness error 0, extractability error 0, and expected extraction and solution times 1.

Proof. Completeness holds by correctness of (rk, qk). Extractability error and expected extractability and solution
times hold by Lemma 4

8.2.2 A verifier-move instance reduction

We construct a verifier-move QUIRK from evalCheck′k to the following language evalCheck′′k for k ∈ [v]− 1.

evalCheck′′k
(
F, f, d, t0, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[k]−1, (ri, qi)i∈[k]−1, (rk, qk), Ck ; ()

)
:

∀i ∈ [k]− 1:

deg(ri) < |µi|, deg(qi) < |µi| − d

ti = ri(Bi), ti+1 := ri(Ci) + (C
|µi|
i − 1) · qi(Ci)

deg(rk) < |µk|, deg(qk) < |µk| − d
tk = rk(Bk)

randIdentity
(
F, d, rk(X) + (X |µk| − 1) · qk(X),

∑
bk+1∈µk+1

Ξµk+1
(Bk+1, bk+1)

· · ·
∑

bv−1∈µv−1

Ξµv−1
(Bv−1, bv−1) · f(C0, . . . , Ck−1, X, bk+1, . . . , bv−1), Ck ; ()

)
which we can rewrite as

evalCheckk+1

(
F, f, d, t0, (µi)i∈[v]−1, (Bi)i∈[v]−1, (Ci)i∈[k+1]−1, (ri, qi)i∈[k+1]−1 ; ()

)
Our reduction is had by applying the univariate identity testing reduction of Section 8.1 from language identity to
language randIdentity.

Claim 32. We may reduce from evalCheck′k to evalCheck′′k using the identity testing reduction of Section 8.1 with
completeness 0, extractability error d/|F|, expected extraction time 1, and expected solution time d+ 1.

Proof. Suppose degree bound d is large enough to accommodate all polynomials tested. Expected extraction and
solution times, as well as completeness error hold by Lemma 7. The extractability error given by Lemma 7 translates
to

Pr

[
∃i ∈ [d] : r − ri ∈ ZD(F)

∣∣∣∣ r ← U(F)r1, . . . , rd ∈ F

]
with F a field we have ZD(F) = {0}, thus the probability is that of r coinciding with any ri for i ∈ [d]. With d
possible collisions the probability is d/|F|.

8.3 Three examples of verifier-move witness reduction
We illustrate three example verifier-move witness reductions in the context of extracting from commitments. The first
two are both intended for discrete log commitments, the third is informal and pertains to commitments by linear codes.

We set the context for the two discrete log based examples. Let Fp be a prime field, G a commutative group, and
ϕ : Fm

p → G a linear function for some commitment length m ∈ N. We will invoke ϕ both by function calling and by
interpreting it as a linear functional, multiplying by the row vector ϕT .

We illustrate an example of ϕ and G for univariate polynomial commitment by ϕ computing both a discrete log
commitment opening on the input and a univariate evaluation of the input. The type G is a direct product of the
claimed discrete log commitment and the claimed polynomial evaluation. Let q ∈ Z be a prime such that an elliptic
curve E(Fq) over Fq has a subgroup of order p. Let b ∈ E(Fq)

m be points in the subgroup to be used for Pedersen
commitment. We write the group operations in additive form, but represent the output as x and y coordinates in Fq .

50

The polynomial is over Fp, and let a ∈ Fp be the evaluation point. Our group G consists of the two Fq coordinates for
the commitment, along with the single Fp evaluation point. With G := F2

q × Fp we define ϕ as

ϕ : Fm
p → F2

q × Fp

ϕ(f) :=

(xj , yj) :=
∑
i∈[m]

bi · fi, ej :=
∑
i∈[m]

ai−1 · fi

(xj , yj , ej)

Regardless the particular definition of ϕ, consider the following two languages L(I;W) and L′(I ′,W ′) where
I := Gn, W := Fm×n

p , I ′ := Gn × Fn
p , and W ′ := Fm

p .

L(g ; A) := ϕT ·A = gT

L′(g, c ; a) := ϕT · a = gT · c

We define the message, instance, and witness functions for a natural verifier-move QUIRK with message type
M := Fn

p where the verifier sends a challenge c ∈M .

Algorithm 13 Functions for G-based commitment reduction

message : ()→M
message() := c← U(Fn

p)

instance : I →M → I ′

instance((g))(c) := (g, c)

witness : I →M →W → Maybe⟨W ′⟩
witness(·)(c)(A) :=

Yes(A · c)

The three functions in Algorithm 13 feature completeness error 0 because the function witness always yields a new
witness since ϕT ·A · c = gT · c holds given ϕT ·A = gT . In Section 8.3.1 and Section 8.3.2 we complete the three
functions by two contrasting applications of Lemma 5.

8.3.1 Extracting Pedersen commitments by linear independence

We will invoke Lemma 5 with the following parameters.

• Solution type S := ⊥, that is the never type.

• Integer ℓ := 1 and k1 := n− 1.

• Types U1 := () and V1 :=M and join1 : U1 → V1 →M defined as join1()(v) := v.

• Monotonic function χ1 defined as mapping a seqence of vectors in Fn
p to their linear span, that is

χ1 : V
⋆
1 → 2V1

χ1

(
c(1), . . . , c(η)

)
:=

η∑

j=1

sj · c(j)
∣∣∣∣∣∣ ∀j ∈ [η] : sj ∈ Fp

The function χ1 maps from all sequences of elements of Fn

p to all subsets of Fp. Monotonicity of χ1 as per Defi-
nition 13 is due to the linear span of some set of j ≥ 0 vectors c(1), . . . , c(j) containing the linear span of vectors
c(1), . . . , c(j−1).

51

• Function witOrSol. It receives an input in I and an input in U1 × (V1 ×W ′)k1+1 which is ()× (M ×W ′)n.

witOrSol : I → ()× (M ×W ′)n → Either⟨W,S⟩

witOrSol(·)
((

(),
(
c(j),a(j)

)
j∈[n]

))
:=

C :=
[
c(1), . . . , c(n)

]
, A′ :=

[
a(1), . . . ,a(n)

]
A := A′ ·C−1

Left(A)

We argue that witOrSol indeed fulfills its signature assuming the two promises of Lemma 5, those are

– Strict monotonicity:
∀j ∈ [n] : χ1

(
c(1), . . . , c(j−1)

)
⊂ χ1

(
c(1), . . . , c(j)

)
By definition of χ1 this means in the vector space Fn

p that c(1) is outside the span of ∅ and is thus a non-zero
vector, c(2) is outside the span of c(1), and c(3) is outside the span of

(
c(1), c(2)

)
, etc. Therefore

(
c(j)
)
j∈[n]

is a

list of n linearly independent vectors, enabling us to invert the matrix C formed with columns c(j) for j ∈ [n].

– Validity:

∀j ∈ [n],
(
instance((g))

(
join()

(
c(j)
))

; a(j)
)
∈ L′

=⇒
(
instance((g))

(
c(j)
)
; a(j)

)
= (g, c(j) ; a(j)) ∈ L′

=⇒ ϕT · a(j) = gT · c(j)

Thus we may write ϕT ·A′ = gT ·C, and with C invertible this becomes ϕT ·A = gT , thus (g ; A) ∈ L.

Claim 33. Functions message, instance, and witness may be completed with extract and solve functions for a QUIRK
with extractability error at most 1/p and expected extraction and solution times at most n.

Proof. Given our parameters Lemma 5 constructs functions extract and solve that complete functions message,
instance, and witness for a QUIRK with extractability error at most

Pr

[
c ∈ χi

(
c(1), . . . , c(k1)

) ∣∣∣∣∣ c← U(Fn
p)

c(1), . . . , c(k1) ∈ Fn
p

]
+ log(1)/(λ · 2λ)

for some λ ∈ N, noting the second term disappears regardless of λ. With k1 := n − 1, this is the probability that
a uniformly sampled vector c ∈ Fn

p occurs in the linear span of an (n − 1)-dimensional subspace spanned by an
arbitrary set of n − 1 linearly independent vectors c(1), . . . , c(n−1) ∈ Fn

p . With pn−1 vectors in the subspace and pn

vectors in the n-dimensional vector space, the probability of a uniformly random vector occurring in the subspace is
pn−1/pn = 1/p.

Lemma 5 yields expected solution and extraction times at most(
λ+ 1

2

)log(ℓ) ∑
i∈[ℓ]

(ki + 1)

which reduces to n given ℓ = 1, ki = n− 1, and again regardless of λ.

8.3.2 Extracting Pedersen commitments independently

There are circumstances in extraction of homomorphic commitments by by linear independence as in Section 8.3.1
is an inconvenient option. In particular, when extracting for lattice based homomorphic commitments we wish to
avoid inverting the challenge matrix C as done in Section 8.3.1 because an inverted matrix leads to large values and
large norm. The smaller n is the smaller norm, so we wish to minimize n to 2. But we may still need to extract for
many commitments. Our solution is to let n remain large and instead extract such that we are effectively inverting
as if n = 2 by extracting for each commitment independently. A popular extraction technique in the literature for

52

lattice based commitments is called the ‘heavy row extractor’ (e.g. see [BBC+18]) and is inspired by the extraction
technique of [Dam10] intended for the discrete log setting. The heavy row extractor also extracts for each commitment
independently, but suffers worse extractability error and expected extraction time than we are able to achieve using
Lemma 5. While the core lemma of the heavy row extractor can be tightened, it is not possible to reach the tight result
we achieve using the basic idea underlying the heavy row extractor.

We will invoke Lemma 5 with the following parameters.

• Solution type S := ⊥, that is the never type.

• Integer ℓ := n and kj := 1 for j ∈ [n].

• For j ∈ [n] types Uj := Fn−1
p and Vj := Fp and joinj : Uj → Vj →M defined as

joinj(u)(v) := (u1, . . . ,uj−1, v,uj+1, . . . ,un)

• Monotonic function χj for j ∈ [n] defined as mapping a sequence of Vj values, that is field elements, to their union.

χj : F⋆
p → 2Fp

χj

(
v1, . . . , vη

)
:=
⋃
i∈[η]

vi

Monotonicity follows naturally by use of unionization.

• Function witOrSol. It receives an input in I and an input in∏
j∈[n]

Uj × (Vj ×W ′)kj+1 =
(
Fn−1
p × (Fp ×W ′)2

)n
We define witOrSol as

witOrSol : I →
(
Fn−1
p × (Fp ×W ′)2

)n → Either⟨W,S⟩

witOrSol(·)
((

u(j),
(
v(1,j),b(1,j)

)
,
(
v(2,j),b(2,j)

))
j∈[n]

)
:=

∀j ∈ [n] : a(j) :=
(
b(1,j) − b(2,j)

)/(
v(1,j) − v(2,j)

)
A :=

[
a(1), . . . ,a(n)

]
Left(A)

We argue that witOrSol indeed fulfills its signature assuming the two promises of Lemma 5, those are

– Strict monotonicity:

∀j ∈ [n], ∀i ∈ [2] : χj

(
v(1,j), . . . , v(j−1,j)

)
⊂ χj

(
v(1,j), . . . , v(i,j)

)
=⇒ ∀j ∈ [n] : χj() ⊂ χj

(
v(1,j)

)
⊂ χj

(
v(1,j), v(2,j)

)
By definition of χj this means v(1,j) ̸= v(2,j) allowing us to divide by the difference v(1,j) − v(2,j).

– Validity: For j ∈ [n] and i ∈ [2] define

c(i,j) := join
(
u(j)

)(
v(i,j)

)
=
(
u
(j)
1 , . . . ,u

(j)
j , v(i,j),u

(j)
j+1, . . . ,u

(j)
n

)
∈ Fn

p

Then by validity

∀j ∈ [n], ∀i ∈ [2] :
(
instance((g))

(
join
(
u(j)

)(
v(i,j)

))
; b(i,j)

)
∈ L′

=⇒
(
instance((g))

(
c(i,j)

)
; b(i,j)

)
∈ L′

=⇒ ϕT · b(i,j) = gT · c(i,j)

=⇒ ϕT · b
(1,j) − b(2,j)

v(1,j) − v(2,j)
= gT · c

(1,j) − c(2,j)

v(1,j) − v(2,j)

=⇒ ϕT · a(j) = gj

53

where the last implication comes from multiplying gT by the vector having zeros in all entries except having
1 in entry j. Thus we conclude ϕT ·A = gT thus (g ; A) ∈ L.

Claim 34. Functions message, instance, and witness may be completed with extract and solve functions for a QUIRK
with extractability error at most

1/p+ log(n)
/(
λ · 2λ

)
for some parameter λ ∈ N, and expected extraction and solution time at most

2n

(
λ+ 1

2

)log(n)

In an asymptotic setting one would set λ as the security parameter and n as a constant.

Proof. Given our parameters Lemma 5 constructs functions extract and solve that complete functions message,
instance, and witness for a QUIRK with extractability error and expected extraction and solution times as follows.
Let λ ∈ N be some parameter that offers a tradeoff between extractability error and expected times. Lemma 5
promises extractability error at most

max
j∈[n]

{
Pr

[
v ∈ χj(v1)

∣∣∣∣ v ← Vj
v1 ∈ Vj

]}
+ log(n)

/(
λ · 2λ

)
By definition of χj , the first term is the probability v = v1, which is at most 1/p since v is sampled uniformly from
Fp. Lemma 5 promises expected extraction and solution times at most(

λ+ 1

2

)log(n) ∑
j∈[n]

(kj + 1) = 2n

(
λ+ 1

2

)log(n)

8.3.3 Hash trees

We informally present how Lemma 5 can be used to extract hash path openings spanning a particular fraction δ of a
hash tree. This reduction is of particular importance to polynomial commitments based on linear codes, in which the
prover commits to the encoding of the coefficient vector by hashing the codeword using a hash tree. The verifier must
check that the prover has knowledge of openings for leaves that cover some fraction δ of the domain. Supposing the
codeword length is n, we aim to extract openings for δn leaves, supposing for simplicity δn ∈ N. We will argue for
extractability error at most (δn− 1)s and expected time at most 2δn.

Remark 3. MDS codes can be used for commitments to unique polynomials by setting δ to the (fractional) unique
decoding radius. If non-unique polynomial commitments are tolerable one can set δ to the largest distance for which
a list-decoding algorithm is known or conjectured. One may even go further, beyond provable extractability, and in
the extreme case set δ to the code rate.

We start with the language in which an instance is a hash tree root r, and the witness is at least δn leaf openings.
Full completeness is conditioned on instantiating the prover with not just δn leaf openings but all n leaf openings. The
witness only asks for δn leaf openings, however, because that is all we will extract. The natural verifier-move reduction
from this language is to uniformly sample s ∈ N leaves by sampling s ← U([n]s) (thus M := [n]s), reducing to a
language in which the instance consists of both the root r and the sampled indices vector s, while the witness consists
of the s opening paths to the leaves indicated by s. For simplicity we sample with replacement. For completeness,
clearly a prover instantiated with all n openings paths is able to trim the witness to the s random opening paths.

For extractability we use Lemma 5 with S := ⊥, ℓ := 1, U1 := (), V1 := M = [n]s, and k1 := δn − 1. The
idea is that χ1 gather all distinct leaves located in the input sequence vectors into a set S, representing the set of all
leaves already extracted. The output of χ1 is then all vectors which don’t have any leaves outside S. We write χ1 in
Algorithm 14, though we are not able to use it as written.

54

Algorithm 14 χ1 for hash tree

χ1 : ([n]
s)⋆ → 2([n]

s)

χ1(s
(1), . . . , s(η)) :=

S :=
⋃

i∈[η]

⋃
j∈[n] s

(i)
j{

s ∈ [n]s
∣∣ ∀i ∈ [n] : si ∈ S

}
The issue with χ1 is that it could have an input sequence of length η := k1+1 such that each input vector s(i) only

contributes one ‘new’ leaf to S (‘new’ meaning not present in a vector s(j) for j < i). In this case, when η := k1 + 1
we would have |S| = k1 + 1 and needing |S| = δn translates to k1 := δn − 1. But it could also be the case, as is
likely with an honest prover, that each input vector contributes many new leaves to S. As η gets larger (ultimately
reaching k1 + 1), |S| gets larger and thus the output set gets larger, increasing the probability of ‘clashing’. It may
well be that with an η < k1 + 1 we have |S| = n in which case it would be impossible to extract k1 + 1 vectors that
satisfy the ‘strict monotonicity’ property promised by Lemma 5. Our solution is to set k1 := δn − 1, but we observe
the message-dependent sampling algorithm as it executes, and when we observe an invocation of χ1 with |S| ≥ δn
we exit the message-dependent sampling algorithm early, even if less than k1 +1 vectors have been extracted (despite
k1 + 1 of them promised).

Given the above strategy of exiting early once |S| ≥ δn, we are able to extract opening paths for δn distinct leaves.
Our witOrSol function simply outputs these leaves with their paths as the witness. Early exits don’t increase the
expected time of the message-dependent sampling algorithm. Regarding probability of success, we may calculate the
extractability error of the message-dependent sampling algorithm using χ1 and k1 := δn− 1, but with the assumption
that |S| < δn due to having exited early if |S| ≥ δn. In that case Lemma 5 yields extractability error at most

Pr

[
c ∈ χ1

(
s(1), . . . , s(k1)

) ∣∣∣∣∣ s← U([n]s)s(1), . . . , s(k1) ∈ [n]s

]
+ log(1)/(λ · 2λ)

for some λ ∈ N, noting the second term disappears. By the definition of χ1, this is the probability that a uniformly
sampled s ∈ [n]s have all entries occurring in S. Assuming |S| ≤ δn − 1 this probability is at most (δn − 1)s.
Regarding expected time, Lemma 5 promises at most k1 + 1 = δn.

A Founding papers of interactive proofs
Rather than dwelling on the rich history of interactive proofs in the introduction, we choose to develop here in the
Appendix an exploration of the two founding papers of interactive proofs. Interactive proofs are both the foundation
for all other proof system models following, and the proof system model most closely related to the QUIRK model.

Two works are usually regarded as the primary founding papers of (probabilistic) proof systems. The first paper
is by Goldwasser, Micali, and Rackoff [GMR85] and doesn’t have a precise publishing date because early versions of
the paper circulated as early as 1982, but it was rejected from major journals three times before being accepted into
STOC’85 more than a decade later [Gol02]. The second paper is by Babai [Bab85] and appeared in 1985 and was in
fact presented at the same conference (STOC’85) as [GMR85]. The two works were independently created, but given
their simultaneous publishing and related topics each work cited the other.

We note that [GMR85] was also the founding paper of the concept of zero-knowledge, more generally knowl-
edge complexity. After introducing interacting proofs, [GMR85] took a natural next step and considered how much
knowledge a proving process reveals to the verifier beyond the validity of the statement. The concept of knowledge
complexity, however, can be examined separately and we do not examine it here.

The two works independently define their own basic tools, proof systems employing these tools, and complexity
classes describing languages in terms of these proof systems. The resulting proof systems and complexity classes carry
both similarities and differences. A subsequent paper [GS86] proved the complexity classes are in fact equivalent.

55

A.1 The framework of GMR85
A.1.1 Basic Tools

The tools defined in [GMR85] are pairs of interactive Turing machines. Both machines read the same input tape.
Each machine has two private tapes, a random tape for reading, and a work tape for reading and writing. Additionally
there are two tapes for communication between the machines. Each communication tape facilitates communication in
one direction by one machine writing to it and the other reading from it. They contrast this model of communicating
Turing machines with the model for the traditional NP proving process in which the random tapes are nonexistent and
there is only one communication tape from the prover to the verifier.

A.1.2 Proof systems

To convert a pair of interactive Turing machines into a proof system for a language L, [GMR85] treats one machine as
the prover and the other as the verifier and enforces the following conditions.

• Unbounded prover The prover has unbounded computational resources.

• Bounded verifier The verifier is bounded by polynomial time.

• Completeness For every x ∈ L, the verifier halts and accepts with probability at least 1 − 1/p(|x|) for all
polynomials p.

• Soundness For every x /∈ L, the verifier halts and accepts with probability at most 1/p(|x|) for all polynomials
p.

In this case we say L has a proof system.

A.1.3 Complexity classes

With a definition of proof systems in hand, [GMR85] defines induced complexity classes. They define the complexity
class Interactive Polynomial-time, denoted IP, as containing all languages that have a proof system as previously
defined. Any such proof system is referred to as an interactive proof system. The authors believe the number of
messages exchanged between the two machines, capturing the amount of interaction required, is the primary metric
for efficiency. In light of this they further partition IP into subclasses according to how the amount of interaction grows
with the input size. The class IP[t(·)] for t : N → N comprises languages having a proof system with the exchange
of t(|x|) messages on instance x. To make this precise, [GMR85] assumes the verifier sends the first message.

A.2 The framework of Bab85
A.2.1 Basic Tools

The tools defined in [Bab85] are Arthur vs. Merlin games or Arthur-Merlin games. Arthur-Merlin games are a special
case of Games against Nature from [Pap84]. A Game against Nature, in turn, is a special case of a more general game
involving two players on a common input that sequentially exchange an prespecified number of messages, and at the
end a deterministic polynomial time Turing machine views all moves taken and declares a winner. A Game against
Nature is when one of the players, called Nature, is indifferent to winning and on each move simply sends a random
message. An Arthur-Merlin game is a Game against Nature in which Arthur plays the role of Nature and for any input
the probability of Merlin winning is bounded away from one-half in one direction or the other (e.g. probability less
than 1/3 or greater than 2/3). The purpose of the latter condition will become apparent when using Arthur-Merlin
games as proof systems.

A.2.2 Proof systems

While Arthur-Merlin games may seem irrelevant to proof systems they may in fact serve as proof systems. The
prover can be identified with the powerful wizard Merlin, appropriately so in that Arthur-Merlin games impose no
computational restrictions on Merlin. The verifier can be identified as the machine that makes the random moves of
Arthur and then invokes the deciding Turing machine at the end. Thus the verifier is restricted to only asking random

56

questions and once all answers are received to making a decision in deterministic polynomial time. If we invoke this
proof system on a language containing exactly those strings on which Merlin wins with probability more than half,
then the final condition of Arthur-Merlin games promises notions of completeness and soundness analogous to those of
[GMR85]. In order to guarantee completeness and soundness, Arthur-Merlin proof systems are appropriate for exactly
such languages. It may seem backwards that we first define Arthur-Merlin proof systems and then seek appropriate
languages, but this is an artifact of how [Bab85] organizes definitions. In practice we first define languages and then
seek appropriate Arthur-Merlin proof systems. Either way, the same pairs of languages and proof systems exist.

A.2.3 Complexity classes

With Arthur-Merlin games in hand, [Bab85] defines induced complexity classes. Every Arthur-Merlin game induces a
language consisting of all inputs for which Merlin succeeds with probability above one half. Thus we may define sets
of languages, that is complexity classes, by defining sets of Arthur-Merlin games. Suppose we partition Arthur-Merlin
games by which player moves first and also by how many moves take place. Let t : N→ N be a function of game input
lengths. For games where Arthur moves first and there are t(·) moves, denote the corresponding complexity class by
AM[t(·)]. For games where Merlin moves first and there are t(·) moves, denote the corresponding complexity class
byMA[t(·)]. In the case that there are a constant number of moves, we may omit the brackets and instead expand the
capital string to indicate the sequence of moves. For example, the complexity classes induced by single-move games
may be denoted A and M, two-move games AM and MA, three-move games AMA and MAM, etc.

A.3 Similarities
Both forms of (probabilistic) proof systems rely crucially on interaction, in particular non-trivial interaction beyond
the prover simply sending the verifier a proof. The interaction of [GMR85] takes place via interacting Turing ma-
chines, while the interaction of [Bab85] takes place via a game and a sequence of moves between two parties. All
proof systems that have followed these works (including MIPs, PCPs, NIZKs) still employ some form of non-trivial
interaction, even if the verifier only interacts once with the prover.

Both forms of proof systems employ a randomized verifier. In contrast, verifiers for the NP proof system are
deterministic. The need for verifier randomization is equally important to the need for verifier interaction. In fact, in
most proof systems including all those explored in this project, the randomization and interaction of the verifier can
be thought of as the same. They are the same in that all randomness is only used in interaction, and all interaction
only uses randomness. This is how verifiers function in the proof systems of [Bab85], whereas verifiers function more
freely in the proof systems of [GMR85].

In both forms of proof systems the prover has unbounded computational resources and the verifier is restricted
to probabilistic polynomial time (and [Bab85] further restricts exactly how the randomness is used). It seems both
papers arrived at this asymmetric formulation for the same reasons. If the prover were restricted, the prover could not
prove many statements otherwise provable. If the verifier were unrestricted, the verifier could prove many statements
to itself with no need for a prover. Both works intend to capture the theoretical power of interactive proof systems with
no intention for practicality. Works that follow, such as this project, narrow focus to proof systems with probabilistic
polynomial time provers.

A.4 Differences
The primary difference between the proof systems of [Bab85] and [GMR85] arises due to the already mentioned
difference of how [Bab85] restricts the verifier’s use of randomness. The verifier of [GMR85] has a private random
tape and may thus hide randomness from the prover. The verifier of [Bab85], on the other hand, only may use the
randomness of Arthur all of which is sent to the prover. A useful analogy is drawn by [Bab85] wherein interactive
proofs from [GMR85] are card games (in which cards may be private) and interactive proofs from [Bab85] are chess
games (in which all moves are public). Interactive proofs with private randomness are qualified as ‘private coin’
whereas those with public randomness are qualified as ‘public coin’.

The notation of complexity classes also differs between the two works. The two notations IP[t(·)] and AM[t(·)]
(and MA[t(·)]) are similar in that they both involve brackets indicating the number of messages exchanged. But
when we omit the brackets they suddenly carry contrasting meanings. IP captures languages with interactive proofs
of any polynomial number of messages, while AM (and MA) captures languages with interactive proofs of only two

57

messages. Thus with brackets omitted IP allows a maximum number of bidirectional messages, while AM (and MA)
allows a minimum number of bidirectional messages.

We also mention that the completeness and soundness probabilities are presented differently but they are effec-
tively equivalent. The error probabilities in [GMR85] are required to be negligible, whereas the error probabilities
in [GMR85] may not be negligible but they are formulated such that they will become negligible upon repeating the
protocol any non-constant polynomial number of times.

A.5 Analysis and equivalence
The complexity classes formulated by [Bab85] are more amenable to analysis than those of [GMR85] due to the public
coin restriction [Bab85] imposes on the verifier. While [GMR85] provides no analysis of the complexity classes IP[·],
[Bab85] makes several trivial and nontrivial observations about AM[·] and MA[·]. Many papers followed making
further observations about these classes and their relationships to each other and to other classes.

Trivially, [Bab85] notes A = BPP and M = NP. To see why A = BPP, see that Arthur tosses coins and Merlin sends
nothing, so a deterministic polynomial time machine is left to decide membership only with the help of Arthur’s coins.
To see why M = NP, see that Merlin sends the equivalent of an NP witness and Arthur sends nothing, so a deterministic
polynomial time machine is left to decide membership only with the help of Merlin’s witness. It is also trivial to note
the inclusion relation relative to the number of messages exchanged which holds for the IP classes as well. In particular,
if a language has a proof system with k messages exchanged then it also has a proof system with k′ > kmessages
exchanged where the additional messages are empty. Extending the inclusion relation by concatenating moves also at
the beginning of the game we have

AM[k] ∪MA[k] ⊆ AM[k + 1] ∩MA[k + 1] (55)

Non-trivially, [Bab85] proves that an MA game can be simulated by an AM game with only a polynomial increase
in the total size of messages sent, and thus any constant length game can be simulated by a single AM game. Revers-
ing the moves of an MA game to obtain an AM game lets Merlin adaptively choose his message after learning the
randomness of Arthur which is problematic for soundness. To overcome this bias in Merlin’s message, [Bab85] plays
the AM game many times in parallel requiring Merlin to reply the same to each. The result is a single AM game with
polynomially larger messages. One may then take any Arthur-Merlin game and make a constant number of MA to
AM swaps and then merge adjacent A’s and M’s all while maintaining polynomial message sizes. Consequently all
finite levels of the hierarchy above AM collapse down to AM, that is for any constant k

AM[k] = AM[2] (56)

Unbounded levels of the hierarchy specified by any non-constant polynomial, however, are not known to collapse.
Following [GMR85] and [Bab85], [GS86] proves that private coin interactive proofs can be simulated by public

coin interactive proofs with the same number of messages but with one additional message sent from Merlin to Arthur
at the beginning. In particular for any polynomial t they prove

IP[t(·)] ⊆MA[t(·) + 1] ⊆ AM[t(·) + 2] (57)

Combined with the collapsing theorem of [Bab85] one may collapse the additional two messages of the AM game into
the polynomial t. Combining further with the trivial fact that proof systems from [Bab85] are special cases of proof
systems from [GMR85] we obtain the equality

IP[t(·)] = AM[t(·)] (58)

Thus the two forms of proof systems have equal power for proving statements, and private verifier randomness pro-
vides no additional power over public verifier randomness. We warn, however, that this does not immediately imply
equivalence with respect to any feature of proof systems (e.g. zero-knowledge).

The power of interactive proofs was well underestimated in these early days. An early extended abstract of
[GMR85] conjectured that AM is a strict subset of IP[2], and that the IP hierarchy doesn’t collapse, that is IP[k] is a
strict subset of IP[k + 1]. Given the above equivalence and collapsing theorem, both of these conjectures turned out
to be false as AM = IP[2] and the finite IP hierarchy collapses. On the other hand, [Bab85] describes the family of

58

languages having Arthur-Merlin proof systems as ”just above NP” believing it is not much larger than NP, and such be-
lief was not unique to [Bab85]. The Arthur-Merlin games were inspired by the Games against Nature of [Pap84] with
the added constraint that winning and losing probabilities against Nature are bounded away from one-half. Though
[Pap84] showed Games against Nature characterize PSPACE, [Bab85] believed Arthur-Merlin games characterize a
much smaller complexity class. In particular, [Bab85] believed that even coNP could not exist within AM[poly(·)],
but later [LFKN92] proved to the contrary that coNP ⊆ IP = AM[poly(·)]. Ultimately it was proven by [Sha92]
that interactive proof systems characterize PSPACE. In other words, languages with interactive proof systems are
equivalent to languages computable in polynomial space, that is

PSPACE = IP = AM[poly(·)] (59)

This result highlights how interactive proof systems are believed to be much more powerful than NP proof systems.

A.6 Motivations and results
The founding works [GMR85] and [Bab85] each arrive at interactive proof systems by their own motivations and
each arrive at their own corresponding results. In [GMR85] attention is drawn to interactive proof systems because
they seem efficient by intuition and because they offer the ability to prove statements in zero-knowledge in contrast to
previous nontrivial proving systems. They construct zero-knowledge interactive proofs for quadratic residuosity and
quadratic nonresiduosity. If it were not for these zero-knowledge proofs the paper would not have presented anything
about interactive proof systems provably superior to previous proof systems. We also note that the zero-knowledge
proofs they present rely on a non-deterministic prover and thus do not suffice for efficient protocols. In [Bab85]
attention is drawn to interactive proof systems because they allow proving certain statements from group theory either
not known to be provable in the NP proof system or rather complex to prove in the NP proof system. In particular,
the problems are deciding membership and non-membership in a group and deciding order and non-order of a group
when groups are matrix groups represented by generating sets. A particular version of the membership problem (4 by
4 integral matrices) is even known to be undecidable, and yet [Bab85] shows it may be proven probabilistically via
interactive proofs.

Each work also comments philosophically on the significance of interactive proofs. The authors of [GMR85]
emphasize the interactivity, contrasting how NP proofs are analogous to those that can be ”written down in a book,”
whereas interactive proofs are analogous to those that can be ”explained in class.” A proof written down in a book
must answer all possible questions, whereas a proof explained in class must only answer questions as they arise.
The author of [Bab85] emphasizes randomness, saying ”a random string can sometimes replace the most formidable
mathematical hypothesis” and recalling how randomness often radically simplifies solutions, the classic example being
primality testing. The philosophy of [Bab85] is contained in its title, ”Trading group theory for randomness,” referring
to a trade off that statements not easily proven via group theory can be easily proven via randomness if one is willing to
trade complete soundness for statistical soundness. Lastly, we note that the class AM has evidence for being a natural
class. As [Bab85] points out, one may prove AM relates to NP in the same naturally relativized way that BPP relates
to P. In particular, for a random oracle O (meaning for almost every oracle O in a measure-theoretic sense)

BPP = PO and AM = NPO (60)

Thus AM might be thought of as a probabilistic version of NP in the same way BPP is a probabilistic version of P.
At the same time, MA might also be thought of as a probabilistic version of NP in which the NP verifier may use
randomness. Perhaps both AM and MA are indeed deserving of the name ”just above NP.”

59

References
[AFR23] Thomas Attema, Serge Fehr, and Nicolas Resch. Generalized special-sound interactive proofs and their knowledge soundness. Cryp-

tology ePrint Archive, Paper 2023/818, 2023. https://eprint.iacr.org/2023/818.

[Bab85] L. Babai. Trading group theory for randomness. In STOC ’85, 1985.

[BBC+18] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafael del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-linear lattice-based zero-
knowledge arguments for arithmetic circuits. Cryptology ePrint Archive, Paper 2018/560, 2018. https://eprint.iacr.org/
2018/560.

[BSCS16] Eli Ben-Sasson, Alessandro Chiesa, and Nicholas Spooner. Interactive oracle proofs. Cryptology ePrint Archive, Paper 2016/116,
2016. https://eprint.iacr.org/2016/116.

[Dam10] I. Damgård. On sigma-protocols. 2010.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems. In STOC ’85, 1985.

[Gol02] Oded Goldreich. Zero-knowledge twenty years after its invention. IACR Cryptol. ePrint Arch., 2002:186, 2002.

[GS86] S. Goldwasser and M. Sipser. Private coins versus public coins in interactive proof systems. Adv. Comput. Res., 5:73–90, 1986.

[KP22] Abhiram Kothapalli and Bryan Parno. Algebraic reductions of knowledge. Cryptology ePrint Archive, Paper 2022/009, 2022. https:
//eprint.iacr.org/2022/009.

[LFKN92] Carsten Lund, L. Fortnow, H. Karloff, and N. Nisan. Algebraic methods for interactive proof systems. J. ACM, 39:859–868, 1992.

[Pap84] C. Papadimitriou. Games against nature. Journal of Computer and System Sciences, 31:288–301, 1984.

[Sha92] A. Shamir. Ip = pspace. J. ACM, 39:869–877, 1992.

60

https://eprint.iacr.org/2023/818
https://eprint.iacr.org/2018/560
https://eprint.iacr.org/2018/560
https://eprint.iacr.org/2016/116
https://eprint.iacr.org/2022/009
https://eprint.iacr.org/2022/009

	Introduction
	QUIRKs
	Reduction without regression
	Reduction with regression
	Definitions
	Properties

	Proof of completeness
	Proof of extractability
	Extraction and solution without regression
	red and properties
	Extending with reduction
	Joining claims

	Extraction and solution with regression
	pro and reg and properties
	proreg and properties
	Extending with regression
	Joining claims

	Message-independent sampling
	Probability of success
	Obtaining the univariate.
	Lower bounding g for k=1.
	Lower bounding g for k2.

	Expected time

	Message-dependent sampling
	The algorithm
	Lower bounding probability of success
	Upper bounding probability of success
	Expected running time

	Instance and witness reductions
	Prover witness reductions
	Prover instance reductions
	Verifier-move witness reductions
	Constructing core
	Constructing corei

	Verifier-move instance reductions

	Examples
	Univariate identity testing
	Evaluation check
	A prover-move instance reduction
	A verifier-move instance reduction

	Three examples of verifier-move witness reduction
	Extracting Pedersen commitments by linear independence
	Extracting Pedersen commitments independently
	Hash trees

	Founding papers of interactive proofs
	The framework of GMR85
	Basic Tools
	Proof systems
	Complexity classes

	The framework of Bab85
	Basic Tools
	Proof systems
	Complexity classes

	Similarities
	Differences
	Analysis and equivalence
	Motivations and results

	References

