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Abstract

Fully Homomorphic Encryption (FHE) allows computation on encrypted
data. Various software libraries have implemented the approximate-
arithmetic FHE scheme CKKS [1], which is highly useful for applications
in machine learning and data analytics; each of these libraries have differ-
ing performance and features. It is useful for developers and researchers to
learn details about these libraries’ performance and their differences. Some
previous work has profiled FHE and CKKS implementations for this pur-
pose, but these comparisons are limited in their fairness and completeness.
In this article, we compare four major libraries supporting the CKKS
scheme. Working with the maintainers of each of the PALISADE,
Microsoft SEAL, HElib, and HEAAN libraries, we devise methods for fair
comparisons of these libraries, even with their widely varied development
strategies and library architectures. To show the practical performance of
these libraries, we present HEProfiler, a simple and extensible framework
for profiling C++ FHE libraries. Our experimental evaluation is com-
plete in both the scope of tasks tested and metrics evaluated, allowing
us to draw conclusions about the behaviors of different libraries under a
wide range of real-world workloads. This is the first work giving experi-
mental comparisons of different bootstrapping-capable CKKS libraries.
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1 Introduction

Fully Homomorphic Encryption (FHE) schemes allow computations to take
place on encrypted data. This allows the separation of computation and knowl-
edge, allowing privacy-preserving outsourcing of calculations on user data to
external parties. However, FHE is not always feasible to deploy in practice,
mainly due to the huge computational overhead incurred with homomorphic
operations [2]. Since the first theoretical realization of FHE in 2009 [3], much
work has been been done to make FHE more practically usable. One line of
work has been in the development of the approximate homomorphic encryption
scheme, which performs approximate arithmetic computation and make FHE
useful for practical applications in machine learning and data analytics (e.g.,
the CKKS scheme [1]).

There exist several FHE software libraries implementing CKKS (among
other functionality). With the gradual inclusion of many different schemes,
capabilities, optimizations, and engineering features, the major libraries’ matu-
rity has advanced. This work is motivated by a desire to understand the relative
and absolute performance of commonly used CKKS libraries, in order to enable
users to decide which libraries to use in varying circumstances.

Many different research works have used these libraries to implement and
learn about the real-world performance of their work using CKKS (and other
schemes). However, such data is scattered across different papers with differing
libraries, hardware, and end applications. It is thus informative to have a unified
and fair comparison of different libraries, so that researchers and developers
can make informed choices about the advantages and tradeoffs of CKKS
implementations. This helps users not only evaluate the relative performance
of libraries, but also gives runtime measurements to compare CKKS-based
private computation with other methods for secure computation, including
Trusted Execution Environments [4, 5], Secure Multiparty Computation [6], or
application-specific cryptographic protocols [7].

In this work, we carefully analyze the features of some of the most prominent
C++ FHE libraries implementing CKKS, and we present our software frame-
work for profiling them. In particular, we examine the PALISADE, Microsoft
SEAL, HElib, and HEAAN libraries. Our open-source software framework HEP-
rofiler is extensible to other libraries, and allows for reproducibility of results.
Our comparison is more in-depth than other works in comparing library perfor-
mance over a wide range of parameters, as well as parameter selection and other
features relevant to developers (e.g., licenses, programming features). Finally,
we present a comprehensive performance evaluation of these libraries’ perfor-
mance with approximate homomorphic encryption, examining all of latency,
throughput, memory consumption, and computation error.

Many other works similarly profile FHE performance [8–14]. In our work,
in order to give a fair comparison, we faced the challenge of finding equitable
ways to compare libraries while allowing each library the freedom to exercise
its parameter selection strategies. This was a difficult task: each library has
its own different method of parameter selection, and they are not directly
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compatible. (For example: HEAAN allows the user to choose from a small set
of precomputed parameter settings based on the computation’s multiplicative
depth, while HElib asks the user to directly choose many parameters of the
underlying ring polynomials used in CKKS.) In contrast, many other works
simply mandate parameters for all profiled libraries [8, 9], depriving the libraries
of the opportunity to use their own unique strategies for selecting the best
parameters for good performance. However, this strategy will lose a great
amount of information about how these libraries work in real-world use cases:
most users are not FHE experts, and will not carefully tweak parameter settings,
but will instead rely on a software library to yield a set of suitable parameters
for their application. Therefore, in our survey we aim to take into account the
automatic parameter selection provided by a library, as that is a feature that
will likely be heavily used and relied upon by most end users. Our review and
profiling was advised by lead contributors of each of these libraries, allowing
us to very thoroughly perform a fair comparison without disadvantaging any
library.

There is a body of work in comparing the performance of different FHE
libraries [8, 10, 12, 15]. In contrast to these works, we focus on approximate
FHE (CKKS) only, and we take a particular focus on exploring performance at
a large range of parameter selections. It has already been demonstrated that
different FHE schemes are better suited to different tasks; for example, it is easy
to guess and show that comparing the performance of Boolean and approximate-
arithmetic FHE schemes on a workload of logical circuit evaluation will show
that the Boolean FHE scheme is better-suited to the task [8]. We thus compare
FHE libraries on more fair footing by testing their implementations of the same
scheme and thoroughly comparing their performance on different low-level and
high-level benchmarks at a wide range of parameter settings. We choose the
CKKS approximate FHE scheme [1] for our evaluation, due to the many uses
of approximate FHE for applications such as analytics, machine learning, and
statistical regression. Also, unlike other types of FHE, the CKKS scheme is the
dominant scheme in the domain of approximate FHE, and it is implemented in
almost all FHE libraries that have approximate FHE. Therefore, HEProfiler
has a broader impact even though it focuses on the CKKS scheme.

We focus more on benchmarking the core operations of CKKS than on
extensive end-to-end testing, as differences between developers’ implementations
of high-level tasks within each library can unfairly disadvantage one library or
another, even with automated methods of writing a task as an FHE computation
[8, 16]. We also perform some end-to-end benchmarking on simple applications,
to show how our observations on low-level operations extend to end-to-end
computation. Our findings about performance differences can be applied to
future work in compilers/transpilers to help select the best FHE backend and
parameters for a task and inform future development of compilers/transpilers.
Notably, we are able to make comparisons not only for homomorphic operations,
but also for bootstrapping, making our work the first to compare libraries’
CKKS bootstrapping capabilities. This lets us draw conclusions about the
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libraries’ relative performance for applications of high multiplicative depth,
such as deep learning.

1.1 Contributions

1. We analyze four prominent CKKS [1] libraries, and collaborate with the
maintainers of each library in order to fairly evaluate these libraries even
with their differing strategies in parameter selection. We overcome the
challenge of giving a fair comparison of libraries with different parameter
selection by allowing each library to choose its own parameters as much
as possible to satisfy the constraints of the task at hand. This lets the
libraries compete on the merits of their parameter selection, which is
more fair and realistic than previous works that fixed identical parameter
settings across different libraries.

2. We wrote an open-source software framework HEProfiler for profiling
different CKKS implementations. This allows for reproducibility and
further evaluation of future libraries and workloads. HEProfiler is thus
valuable for many future explorations of the performance of homomorphic
encryption libraries, even beyond what we present in this paper. Our
framework is extensible to any C++ library and can implement a wide
range of tests (low-level or high-level) in addition to what we implemented.
HEProfiler is also particularly useful for examining library usability, as it
reports not only latency, but other metrics not reported in previous work,
including throughput, memory consumption, and computation error.

3. We present a thorough experimental evaluation of the four CKKS libraries
and use these results to draw conclusions and make recommendations
about usage and development with these libraries. Our results encompass
both core operations of CKKS and high-level applications for a wide range
of parameters, yielding complete results useful for informing a wide range
of user applications. Furthermore, we compare bootstrapping-capable
libraries’ performance for bootstrapping and other operations, the results
from which can better inform our conclusions about the relative strengths
and weakensses of each library.

2 Related Work

2.1 Works Profiling CKKS

Fawaz et al. [13] profile BGV and CKKS in Microsoft SEAL for a limited
set of parameters. They profile homomorphic addition, multiplication, and
squaring in end-to-end scenarios, including timing for encryption/decryption
and encoding/decoding.

FHEBench, by Jiang and Ju [10], compares different FHE schemes and
libraries. They profile runtimes for arithmetic FHE in B/FV, BGV, and CKKS
using SEAL, PALISADE, and HElib. They also profile logical operations for
TFHE and FHEW. They found that PALISADE is the best library in terms of
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performance for arithmetic FHE in their experiments. FHEBench is only a set
of benchmarks and data, and does not share any test harness code, or claim such
as a contribution. In the paper’s present state, the graphs are confusing and
difficult to read, though their text explains their results and conclusions well.

Dordevic et al. [15] profile BGV in Microsoft SEAL, B/FV in PALISADE,
and CKKS in HElib. They analyze the runtimes of encryption, decryption,
homomorphic addition, and homomorphic multiplication. Most relevant to our
work, they conclude that CKKS homomorphic multiplication is best imple-
mented by PALISADE at smaller parameters, but that SEAL performs better
at larger parameters.

Doan et al. [9] survey many different fully and partially homomorphic
encryption schemes. Their survey covers many aspects, such as theoretical capa-
bilities and limits, security differences, and performance comparison. Similarly
to our work, they test implementations of FHE libraries, also testing PAL-
ISADE, SEAL, HElib, and (an older version of) HEAAN. They focus exclusively
on lower-level primitive operations (key generation, encryption/decryption,
addition, and multiplication), and use only a few parameter settings.

Gouert et al. [8] perform a thorough investigation of the relative performance
of FHE libraries and schemes for different tasks. They profile PALISADE,
SEAL, HElib, Lattigo, and TFHE for a wide variety of tasks. They accomplish
this through the use of a generic compiler that translates a given task into
FHE code. This work further confirmed the observation that different FHE
schemes are better suited for different tasks, prompting our investigation to
focus less on different schemes and more on differences between libraries using
the same scheme. While thorough in terms of tasks, the parameter investigation
of this work was limited and did not exhaustively compare different libraries at
different parameter settings.

HEBench is a benchmarking framework for homomorphic encryption to
compare implementations of various workloads on the hardware and software
level of various HE libraries [17]. HEBench is developed by Intel Corp., and con-
tributors include Duality, IBM Research, Microsoft, and KU Leuven. HEBench
currently has support for five workloads at the time of writing this paper:
dot product, element-wise addition and multiplication, logistic regression, and
matrix multiplication. Currently, SEAL, PALISADE and HElib are the only
libraries that can be benchmarked using HEBench, and they note to add
support for additional libraries in the future. HEBench implements separate
modules for the front and back end of the HEBench framework. These modules
communicate with each other using a middle module named API-Bridge. The
modular design of HEBench makes it more applicable to add extensions in the
future. They also test mostly end-to-end applications and achieve the best per-
formance for each library for various workloads by fine-tuning the parameters.
Unlike HEBench, our framework does not have a design with separate backend
and frontend modules, which makes it less extensible. However, the absence of
individual modules adds simplicity to our framework and easy for developers
to add more customizations. We also focus more on the fairness of the tests by
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fine-tuning parameters for each library instead of each individual test. Our work
provides a more complete comparison compared to HEBench, which focuses
on the runtime of core FHE operations. Fundamental CKKS operations, along
with rotation, relinearization, and ciphertext-plaintext operations are tested in
our framework; we also test some end-to-end applications. Our framework is
simpler compared to HEBench and, at its current stage, offers support for the
comparison of one additional CKKS library, HEAAN, with the capability to
add support for other libraries.

Zhu et al. [18] compared the performance of OpenFHE, Microsoft SEAL, and
HElib for the task of simple convolutional neural networks of low multiplicative
depth not requiring bootstrapping. They concluded that SEAL shows the best
performance on these tasks, and also note that OpenFHE and HElib are useful
for their wide selection of algorithms and historical value, respectively.

2.2 Works Profiling or Analyzing Other Homomorphic
Encryption

Sathya et al. [14] compared the Microsoft SEAL, HElib, TFHE, Paillier, ELGa-
mal, and RSA libraries. This review analyzed the features of these libraries for
partial and somewhat homomorphic encryption for the various schemes they
implement. This analysis did not consider runtime, and mostly compared the
features and supported operations of the libraries.

The study of Melchor et al. [12] compares the HElib, FV-NFLlib, and SEAL
libraries, focusing on the cases of large plaintext moduli. Their comparison
compares overall library performance without considering that the different
libraries implement different schemes (HElib implements BGV, while FV-NFLib
and SEAL implement B/FV for finite-field homomorphic encryption). They
conclude that BGV outperforms B/FV for larger plaintext spaces, and B/FV
performs better for smaller plaintext spaces with less depth afforded. They note
that SEAL is the generally most preferable choice, due to its user-friendliness
and more active development.

Varia et al. [11] presented HEtest to evaluate FHE on Boolean circuits.
Their test harness measures several metrics including key and circuit generation
time, evaluation, encryption, decryption time, and ciphertext expansion. Their
tests, run at 80 bits of security, showed performance results for HElib and a
plain evaluation baseline. HEtest is thorough and extensible, though its focus
on binary circuits shows a limited and sometimes unwieldy application of
homomorphic encryption.

3 Background

Homomorphic encryption has existed in some form since the development of
RSA in 1978 [19]. In the 1980s and 1990s, many other attempts like [20], [21],
[22], [23], [24], [25], and [26] were made towards practical homomorphic encryp-
tion schemes but these schemes allowed either only one type of operation or a
limited number of computationally heavy operations on the encrypted data.
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For instance, [25] allowed only additive homomorphism and [21] allowed only
multiplicative homomorphism in their schemes. These schemes are classifed as
Partially Homomorphic Encryption schemes, as they only allow one type of
operation with an unlimited number. Another type of homomorphic encryption
called Somewhat Homomorphic Encryption (SHE) allows homomorphic evalua-
tion of some functions, but is limited in what it can compute; SHE is frequently
limited primarily by the multiplicative depth of computations. [27] proposed
the first scheme of this type which is capable of performing two operations: an
arbitrary number of additions and one multiplication.

Fully Homomorphic Encryption (FHE) schemes are able to perform arbitrary
calculations on encrypted data. Gentry’s seminal Ph.D. thesis [28] proposed
the first FHE scheme which supports the evaluation of arbitrary circuits
using a technique called bootstrapping. However, the bootstrapping technique
introduced by Gentry for refreshing ciphertext noise was too costly in terms of
computation and made this scheme very impractical in real-world use cases.
Following Gentry’s work, many new schemes and optimizations have been
proposed. Newer FHE schemes include the BGV [29], B/FV [30], THFE [31],
FHEW [32] and CKKS [1] schemes. Implementations of these schemes may
include only the SHE variant, the full FHE scheme, or both.

3.1 Approximate Homomorphic Encryption

The CKKS scheme [1] is similar to the BGV [29] and B/FV [30] schemes, as its
core operations are on ring polynomials over finite fields. BGV and B/FV use
differing methods to manage noise and ensure exactly correct decryption on
finite-field plaintexts. In contrast, CKKS uses a complex canonical embedding to
encode and operate with fixed-point numbers. CKKS does not try to completely
remove noise from the decrypted result as BGV and B/FV do; instead, the noise
is part of the error inherent in limited-precision approximate arithmetic. This
difference does lead to a subtle security issue [33], which has been mitigated in
some libraries via the addition of extra noise [34].

In this work, we focus on the CKKS scheme for our performance evaluation
of FHE libraries. CKKS is applicable to a wide variety of tasks involving
numerical workloads where some error is tolerable, most notably for deep
learning or linear regression.

CKKS operates upon ring polynomials in Rp·q =
Zp·q [X]
XN+1

for powers of two

N . Usually, the polynomial modulus degree N ranges from 210 to 217 and
the ciphertext modulus p · q is approximately 50 to 800 bits wide for 128-bit
classical security. These values parameterize CKKS ciphertexts, determining
their size. Further, in CKKS N

2 operands can be packed into a single ciphertext,
so N affects throughput as well.

3.2 AVX512 and HEXL

FHE schemes based upon the Ring Learning With Errors problem operate
on polynomial rings. The polynomial elements of these rings typically have
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thousands of coefficients that in Zp·q, where p · q may be hundreds of bits
wide. For arithmetic on these rings, the operations of polynomial-polynomial
multiplication, polynomial-scalar multiplication, and polynomial-polynomial
coefficientwise multiplication are significant performance bottlenecks.

In order to reduce the overhead of these operations, the use of new CPU
instructions has been explored. The Advanced Vector Extensions extend the
x86 instruction set with Single Instruction Multiple Data operations, allowing
arithmetic computations to take place on multiple operands simultaneously.
Intel’s HEXL library [35] utilizes the AVX512 instructions (operating on 512-
bit operands) to accelerate polynomial arithmetic. HEXL can be interposed
into libraries to replace their original polynomial arithmetic and has been
demonstrated to bring speedups of up to 6.26× to PALISADE and SEAL. All
of the libraries we profiled optionally use AVX512 via HEXL to improve their
performance.

4 Libraries Profiled

In this section, we briefly describe the libraries we studied in this work. We
give a shorter high-level overview of each library, and more detailed analyses
are provided in Section 5. Our framework can be extended to include any
other FHE library for evaluation, though ensuring a fair comparison across
different programming languages may pose challenges. Our selection criteria
for the libraries we evaluated prioritized factors such as relevance, prominence,
community interest (both historical and current), ease of development and
integration with user codebases, and potential for future hardware optimization
(e.g., multithreading or GPU utilization). We did not include other libraries
such as TFHE, Lattigo, or Concrete [31, 36, 37]. For those interested in the
evaluation of libraries such as Lattigo, one can refer to existing works [8, 37, 38].

During the writing of this paper, the OpenFHE library [39] was released.
OpenFHE is the next-generation successor to PALISADE and retains almost
complete API continuity. The code for OpenFHE has been taken directly from
PALISADE. Thus, our conclusions about PALISADE in this work also generally
apply to OpenFHE. The only major changes at the time of writing between
PALISADE and OpenFHE are in the API for parameter creation, which is
much easier to use in OpenFHE.

4.1 Microsoft SEAL

Microsoft SEAL is an open-source C++ library implementing the B/FV [30]
and CKKS [1] FHE schemes. SEAL is not multithreaded, though it is generally
thread-safe. SEAL does not have required external dependencies, but by default
uses optional dependencies for testing, serialization, and AVX512 support.
SEAL is actively maintained by Microsoft Research. In general, SEAL is easy
to use and understand, but is lacking the finer control over parameters and
wide selection of algorithms included by other libraries such as PALISADE
and HElib.
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Some work [40] uses versions of SEAL with bootstrapping available, but this
functionality is not publicly available. Despite this, we still refer to SEAL (and
HElib) as a FHE library for simplicity. Additionally, some useful functionality
(e.g., the Simulator class) available in previous versions is no longer available
in the current version.

When using SEAL, the -pedantic flag cannot be used during compilation,
due to the use of native 128-bit integers.

4.2 PALISADE

PALISADE is an open-source C++ library implementing several FHE schemes,
including B/FV [30], BGV [41], CKKS [1], and TFHE [31] FHE schemes. PAL-
ISADE is very fully-featured and includes additional functionality such as
multi-party FHE utilities and signatures. PALISADE does not have required
external dependencies but can include dependencies for multi-precision arith-
metic, memory management, and AVX512 support. PALISADE uses OpenMP
for multithreading. PALISADE is actively maintained by Duality Technolo-
gies, though their support efforts have recently shifted to its direct successor
OpenFHE. OpenFHE’s code was directly forked from PALISADE, and its API
is almost identical.

PALISADE is the most customizable library we reviewed; nearly every
parameter for CKKS can be tweaked. This may actually be a disadvantage
for non-expert users, especially as there is little in the way of warnings in the
case of incorrectly set parameters prior to a fatal error. PALISADE’s highly
modular and generic design allows a great deal of flexibility in the choice of
backend components but makes reading PALISADE code more difficult.

While PALISADE’s release and development versions did not have boot-
strapping for finite-field or approximate FHE at the time of writing, Duality
Technologies provided us with an internal version that implements CKKS
bootstrapping.

4.3 HElib

HElib is an open-source C++ library implementing the BGV [41] and CKKS
[1] schemes. HElib has GMP and NTL as dependencies, which can be either
installed with HElib as a package, or one can link HElib against preexisting
installations. HElib can also be linked against separately built Intel HEXL for
AVX512 support. HElib uses NTL’s threading macros, which themselves use
OpenMP. HElib is maintained by various parties.

HElib is generally easy to use, and allows more precise control of some
parameters (e.g., the number of columns in key-switching matrices or the Hensel
lifting factor) which are not easily configured in other libraries. HElib initially
implemented BGV; CKKS support was added at a later date to the library.
Some features such as bootstrapping and polynomial evaluation methods are
thus only implemented for BGV. HElib’s documentation focuses more on
the theoretical foundations of the BGV and CKKS schemes and how they
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are implemented in the HElib library [42]. It also includes many algorithms
specifically designed for homomorphic encryption that can be implemented in
other libraries using low-level scheme operations. HElib is targeted primarily at
researchers and developers who want to use experimental features and provides
documentation that is both thorough and theoretical. HElib is not as actively
maintained as the other libraries we profile.

4.4 HEAAN

HEAAN is a proprietary C++ library implementing only the CKKS scheme
[1]. HEAAN does not have external dependencies and provides versions with
and without both AVX512 and GPU support. HEAAN includes multithreading
via OpenMP and is under development for later distribution by CryptoLab.
Unlike other libraries, the parameter generation in HEAAN is directly based on
the required multiplication level and the homomorphic encryption capabilities
(SHE or FHE). HEAAN recommends the use of provided parameter presets,
though capabilities for non-preset parameter selection are available. This setting
might be helpful to developers who strictly want to choose parameters based
on the multiplicative level of their HE application. HEAAN’s set of parameter
presets is more limited than the capabilities offered by PALISADE or HElib;
one example of this was that the smallest parameter setting from HEAAN was
larger than needed for applications with a multiplicative depth of one. From
our advice, the HEAAN maintainers added a parameter preset for use in such
applications.

HEAAN has a rich set of features for CKKS, though at the time of writing it
is limited in some features (e.g., deferring relinearization indefinitely). HEAAN
was not yet publicly available at the time of experimentation, though some older
versions of the library are available online. CryptoLab, the current developers
of HEAAN, provided us with HEAAN’s headers and compiled libraries for use
in our tests. No publicly available open-source version of HEAAN includes both
RNS arithmetic [43, 44] and bootstrapping. At the time of writing, HEAAN is
proprietary and closed-source. CryptoLab now provides Docker containers with
HEAAN for non-commercial use, allowing for the reproducibility of our results.

5 Comparison of Library Features

5.1 Parameter Selection

Parameter selection for SHE and FHE remains a difficult problem even for
experts, and fully automatic parameter selection is still an open problem. All
of the libraries we profiled had some method of assisting the user in parameter
selection. The most important parameter from a user’s perspective is the depth
of the computation; in most other cases other parameters will be secondary or
dependent upon the depth.

HEAAN provides several parameters presets for SHE, for computation
depths of up to 19. HEAAN also gives 3 parameter presets for use in FHE,



Springer Nature 2021 LATEX template

5 COMPARISON OF LIBRARY FEATURES 11

using polynomial modulus degrees with N ∈ {15, 16, 17}. HEAAN also allows
“Custom” parameter selection, similar to other libraries, though CryptoLab
recommends the use of presets.

PALISADE provides some parameter selection, though some expertise is
required with regard to the many arguments needed. No warnings are generated
for incorrect or incompatible arguments, which can lead to confusing runtime
errors. PALISADE does allow a depth to be specified. In addition to the normal
methods for PALISADE’s parameter selection, the PALISADE team was also
able to provide us with expertly selected parameters for optimizing runtime for
both the SHE and FHE cases. We report the ordinary and optimized PALISADE
cases separately (as “PALISADE” and “PALISADE OPT”, respectively).

SEAL needs a small amount of help from the user for its parameter selection,
but the general strategy is not difficult. The tradeoff of this is that the user
has relatively little ability to customize the parameters and algorithms used.

HElib does not have parameter selection in the same way other libraries
do. Other libraries have some way of generating parameters from the user’s
requested depth. HElib, by contrast, does not provide this, but only gives a
list of possible parameters that guarantee 128 bits of classical security. We
tested each suggested parameter setting for the range of multiplicative depths
we benchmarked and chose the smallest set of parameters that gave the desired
depth.

In most cases, parameters for different libraries at the same depth were
approximately equal or close to each other (e.g., a difference of at most one
in |N |). To account for this, we report throughput for our tests to compare
practical performance even with variations in parameter selection.

5.2 Multithreading

All of PALISADE, HElib, and HEAAN have multithreading available to use
via OpenMP. This can be easily controlled by setting the environment variable
OMP_NUM_THREADS. Even if this is not specified, PALISADE will automatically
use multithreading. It should be noted by developers that utilizing OpenMP
threads at the application level will disable their use in library code that is
called from multithreaded user code.

At the time of writing, HElib’s multithreading is not enabled, due to a
function not being thread-safe; it is likely that this will be fixed in a future
release.

While SEAL does not use threads, it is generally thread-safe. At the time of
writing, its developers recommend using multithreading at the application level.

5.3 IND-CPAD Security

As described by Li and Micciancio [33], approximate homomorphic encryption
can leak information about a user’s secret key in some scenarios. Since the noise
component is a part of the message in CKKS, it results in the linearity of the
decryption function to the secret key revealing the decryption noise, and making
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it vulnerable to IND-CPAD attackers. Hence, the result of a decryption may
leak a small amount of information about the user’s secret key, so an attacker in
a chosen-plaintext setting who can repeatedly query an oracle for decryptions
of homomorphically encrypted messages can compromise the secret key used to
decrypt that information. To mitigate this, PALISADE, HEAAN, and HElib
have some method of adding additional noise during decryption to mask the
information leakage [34]. This method of defending against such attacks is
often referred to as noise flooding or noise smudging, where properly calibrated
noise is attached to the decryption result at the end of the decryption process
[45]. SEAL does not take any mitigations, but recommends that users treat
decrypted results as privileged information [46]. As pointed out by Badawi et al.
[39], IND-CPAD security is only required when the ciphertext decryption result
is shared with other parties who do not possess the secret key in applications
such as private set intersection [47]. Therefore, it is important for the users to
identify their security needs under which FHE libraries can operate for the given
application-case scenarios. To ensure fairness while running the evaluations, we
did not enable IND-CPAD mitigations for PALISADE, HEAAN, and HElib
as it would affect the runtime and accuracy for these libraries during noise
flooding which would be absent in SEAL.

5.4 Serialization and Objects

Each library uses a different selection of objects to manage parameters and
keys. SEAL separates encryption parameters and an encryption context into
different objects, and uses different objects to handle encryption, decryption,
evaluation, et cetera. HEAAN also follows this approach, additionally using cus-
tom ParameterPreset objects for parameter settings (HEAAN has formulatic
parameter selection, but the authors discourage its use and recommend the use
of presets.) PALISADE and HElib use only a pair of keys and a single context
object which is used to perform all operations on ciphertexts and plaintexts.

All libraries implement some form of serialization for ciphertexts, allowing
the user to save and load ciphertexts to/from C++ I/O streams. Additionally,
PALISADE and HEAAN have functions to directly serialize objects to/from
files, saving developers some boilerplate code. (PALISADE relies on the cereal
library for its serialization). SEAL incorporates compression into its serialization,
reducing the size of serialized objects by up to 60%. SEAL further optimizes its
serialization by saving only seeds used for pseudorandom number generation
when possible.

5.5 Hardware Acceleration Support

HEAAN provides a GPU-accelerated version using CUDA, either with or
without AVX512 support. While SEAL does not have an official GPU-capable
version, previous works [48, 49] have used GPU to accelerate SEAL, showing
runtime improvements of up to 140×. PALISADE does not include a GPU
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version, but does have an experimental repository for using GPU to accelerate
some core operations. HElib does not include GPU acceleration.

All libraries that we profiled can use HEXL to take advantage of AVX512.

5.6 Licenses

SEAL is licensed under an MIT License. PALISADE is under a BSD-2 license.
HElib is under an Apache 2.0 license. HEAAN is proprietary, and is not yet
available for general use, so its license details are not known. All of the open-
source licenses used are permissive, making them usable for proprietary and/or
closed-source projects.

Table 1: Feature List of FHE Libraries

Feature SEAL (-) PALISADE (-) HElib (-) HEAAN (-)
Open-Source ✓ ✓ ✓ ×
License MIT BSD-2 Apache TBA
Multithreading × ✓ ✓ ✓
Serialization ✓ ✓ ✓ ✓
AVX512 Support ✓ ✓ ✓ ✓
GPU Support × × × ✓
IND−CPAD mitigations [33] × ✓ ✓ ✓

6 Profiling

Our testing was run on a computer with an Intel Xeon Gold 6226 CPU @
2.70GHz, 192GB memory, and a NVIDIA RTX6000 GPU. We chose a test
computer to be representative of a fairly powerful server, as this best fits the use
case of outsourced private computation. All the tests were run for 50 iterations;
we use the average latency and error for each test. We set inputs for all tests
to be equal to 1 in all slots. This allowed us to calculate error relative to the
computation without divide-by-zero issues. The raw data we collected can
be found at https://drive.google.com/file/d/1ALa39CS2l7P2w9KqRfXRARo
XUJk-nIQ/view?usp=sharing.

Throughput and error were computed using the following formulae in all of
our tests:

Throughput (operations/second) =
Batch Size(operations/batch)

Runtime (second/batch)

Error% =

∣∣∣∣Expected Value−Actual Value

Actual Value

∣∣∣∣ · 100%
6.1 Design of HEProfiler

HEProfiler is implemented in C++17, and is available at https://gitlab.com/
jtakeshi/homenc-profile. Our design goals were ease of use, extensibility, and

https://drive.google.com/file/d/1ALa39CS2l7P2w9KqRfXRARo_XUJk-nIQ/view?usp=sharing
https://drive.google.com/file/d/1ALa39CS2l7P2w9KqRfXRARo_XUJk-nIQ/view?usp=sharing
https://gitlab.com/jtakeshi/homenc-profile
https://gitlab.com/jtakeshi/homenc-profile
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allowing each library’s benchmark implementations the freedom to select
parameters and perform operations with only minimal specifications. As such,
HEProfiler is implemented using a base class HEProfiler and an inheriting
class for each library we profiled. Each class must implement a constructor
that takes in basic parameters, most importantly the desired depth of the
computation. Further, each class implements functions to run both basic (i.e.,
primitive) operations and simple end-to-end computations, as well as functions
that give other information (e.g., ciphertext size, key sizes). Each of these
functions reports back runtime or other relevant metrics, e.g., size in bytes.
Functions also report computation error, which is an important metric when
considering the usability of HE libraries. Extension of HEProfiler to include
other libraries is simple; the user must only write their implementation, define
appropriate preprocessor macros (strongly recommended, to allow compilation
with/without a library), and add the necessary headers and libraries to the
build system (see below).

We were constrained by the need to include HEAAN, whose compiled
libraries were targeted for specific platforms. As a result of this, we also wrote
a custom build system for HEProfiler. The driver program is built and run in a
Singularity container [50] that is compatible with the HEAAN libraries, and has
had the other (open-source) libraries installed. Our system also allows optional
selection of AVX512 optimizations (all libraries) and GPU acceleration (HEAAN
only). The need for either requesting binaries ad-hoc or using containers when
working with closed-source software illustrates a tradeoff that developers should
consider when selecting a library to use.

6.2 Parameter Selection

In our evaluation, we primarily examined the impact of increasing parameter
size on library performance. After much consultation with library developers and
CKKS experts, we chose to use each library’s methods of parameter selection
to choose settings based on the computation depth. This allows each library
to use its own parameter selection methods to choose parameters efficiently
by whatever methods the library’s developers chose, allowing us to indirectly
test the quality of each library’s parameter selection. We provide assistance
and basic requirements (e.g., computation depth) to allow each library to
select its own parameters for a computation, avoiding the manual selection
of a single unified set of parameters for all profiled libraries. Our approach
follows the guidelines set forth by each library and is thus representative of the
methods that developers will use. (It may be possible to tweak each library’s
parameter selection to obtain even better parameters for efficiency or error, but
doing so is extremely tedious even for experts.) For completeness, we further
consider handpicked parameters from the developers of PALISADE, to show
the differences between library-chosen and human-selected parameters. This
approach to parameter selection allows us to fairly evaluate library performance
in a wide range of circumstances without the tedious manual selection of
parameters. Other works [8, 9] assign CKKS parameters (e.g., N , |q|) directly
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and force the libraries to adhere to these; we instead allow libraries to select
their own parameters. We give the parameters for leveled CKKS that each
library chooses in Table 2. All parameter sets used in this evaluation yielded at
least 128 bits of classical security.

For parameters allowing bootstrapping, HEAAN allows the user to choose
from presets giving |N | ∈ {215, 216, 217}. PALISADE’s parameter selection for
bootstrapping is much more configurable (though it did not allow ). For fairness,
we chose parameters for PALISADE yielding equivalent N and allowed depth
between bootstraps.

Table 2: Leveled CKKS parameters

D
ep

th

SEAL PALISADE HElib HEAAN

log2(N) log2(p · q) log2(N) log2(p · q) log2(N) log2(p · q) log2(N) log2(p · q)

1 13 160 13 101 13 268 13 217
2 13 200 14 140 13 322 13 217
3 14 240 14 181 14 429 13 217
4 14 280 14 221 14 453 15 662
5 14 320 14 261 14 483 15 662
6 14 360 14 301 14 593 15 662
7 14 400 15 341 14 637 15 662
8 15 440 15 381 15 667 15 652
9 15 480 15 421 15 755 15 866
10 15 520 15 461 15 811 15 866
11 15 560 15 501 15 854 15 866
12 15 600 15 541 15 934 15 866
13 15 640 15 581 15 1002 15 866
14 15 680 15 621 15 1024 15 866
15 15 720 16 661 15 1118 15 860
16 15 760 16 701 15 1178 15 860
17 15 800 16 741 15 1216 15 860
18 15 840 16 781 15 1309 15 860
19 15 880 16 821 15 1355 15 860

6.3 Core Operation Performance with Increasing
Parameters

For testing SHE computations, our profiler takes the strategy of accepting
a desired multiplicative depth of the computation from the user and then
allowing each library to select a set of parameters to satisfy the depth and other
constraints. This strategy is closest to what a non-expert end user would use.
For HEAAN, we noted a relative disadvantage for single-depth computation
due to the smallest depth preset being for a depth of 3. The CryptoLab team
was able to provide us with custom parameters for single-depth SHE, which
we utilized. HEAAN’s parameter presets allowed a depth of up to 19 for SHE,
which is large enough for most practical applications; we thus tested all libraries
up to that depth.
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6.3.1 Homomorphic Multiplication

We first discuss the relative performance of each library for homomorphic multi-
plication. Figure 1 show the relative runtimes of each library for homomorphic
multiplications. We see that for smaller depths, there is little difference in
performance. At higher depths, differences in the libraries’ parameter choices
and performance start to make themselves more apparent. Interestingly, HElib
suddenly shows much higher latency than other libraries for depths of 17 to 19,
despite having a comparable performance at lower depths. Similarly, other sud-
den jumps in performance are apparent, indicating that differences in parameter
selection are highly influential in the libraries’ performance at a given depth.
As the user-specified depth increases, different libraries’ choices of |N | at a
certain depth may differ.

Besides only runtime, other metrics are important in determining the
performance of a library. Figure 2 shows the error (relative to the inputs)
incurred in homomorphic multiplication. We see that error is generally tolerable
for a single multiplication. Looking at Figure 3b, we see that the error remains
under at most 5% of the original value for up to 18 consecutive multiplications
for all libraries, though the error does begin to increase at a much higher rate for
all of HEAAN, HElib, and PALISADE at about 14 consecutive multiplications.

We recall that different libraries may have different methods of parameter
selection that lead to different choices and sizes of parameters and operands
(see Section 5.1. In particular, choices of the polynomial modulus degree may
differ, affecting the amount of operands that can be packed into a single CKKS
ciphertext. This can lead to latency only not giving a complete picture of
the practical performance of libraries. For this reason, we also investigate
the throughput of FHE operations, in order to fairly evaluate performance
with differing parameter selections. Figures 4a and 4b show the throughput in
operations/second of the libraries we profiled. We see that HEAAN and SEAL
show better throughput at very low depths, but that the throughput of all
libraries quickly degrades, with only minor differences. We conclude that for
most practical purposes, at higher depths the choice of the library does not
affect computational performance much and that other factors such as error,
ciphertext size, and key size should be more important considerations.

6.3.2 Other Primitive Operations

We also evaluated the runtime of other CKKS operations besides homomorphic
multiplication. Though the runtime of homomorphic multiplication dominates
that of other arithmetic operations, it is still informative to compare library
performance on less-intensive operations.

Runtimes for homomorphic addition are shown in Figures 5a and 5b. We
see that as parameter sizes increase, HEAAN generally has the best perfor-
mance for homomorphic addition, followed closely by SEAL. At lower-depth
parameter settings, all libraries have comparable performance. Throughput
for homomorphic addition is shown in Figures 5b and 6a. As parameter sizes
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Fig. 1: Homomorphic Multiplication Runtimes
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Fig. 3: Homomorphic Multiplication (Chained up to allowable depth)

increase, all libraries have comparable performance. Error in homomorphic
addition is shown in Figures 5b and 7a. HEAAN has the best (lowest) error
for parameter settings yielding multiplicative depths of 4 to 12, though SEAL
shows better error in other cases. For addition-heavy workloads, we recommend
using HEAAN, as it performs best at scale and has the best throughput at
lower-depth parameters.
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Fig. 4: Homomorphic Multiplication Throughput (log scale)
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Fig. 5: Homomorphic Addition Runtimes

We show runtimes for homomorphic rotation in Figures 10a and 10b, and
throughput in Figures 10b and 11a. Error is shown in Figures 12a and 12b.
While performance is generally similar among libraries, HEAAN and SEAL
again show the lowest error, making the best for rotation-heavy workloads.
Runtimes for the relinearization step of homomorphic multiplication are shown
in Figure 13. We observe that the runtimes for relinearization are very similar
to that of homomorphic multiplication (see Figure 1), as relinearization is a
dominating subprocedure of homomorphic multiplication.

In many applications such as machine learning (which we explore further in
Section 6.8), performing ciphertext-plaintext addition or multiplication may be
useful, though they generally contribute less noise and runtime to homomorphic
computations than homomorphic (ciphertext-ciphertext) operations. We show
runtimes for ciphertext-plaintext addition and multiplication in Figures 8 and 9.
Without AVX512, SEAL and HEAAN show the best performance for addition,
though PALISADE is generally comparable, and HElib is just as fast at lower-
depth parameters. For multiplication, HEAAN’s performance is poorer at
lower depths; the other libraries generally have better runtimes. With AVX512,
addition runtimes are similar to the case without AVX512, but SEAL now
more clearly has the best latency for depths of 10 and higher.
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Fig. 6: Homomorphic Addition Throughput (log scale)
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Fig. 7: Homomorphic Addition Error

6.3.3 Parameter Sizes

Besides the computational factors of runtime, error, and throughput, the
communication overhead and disk/memory footprint of FHE libraries is an
important metric to manage. Figure 14 shows the ciphertext sizes of different
libraries at differing parameter settings, indicating communication overhead.
(We omitted the optimized PALISADE parameter selections for this test since
the optimized parameters did not affect the sizes of PALISADE objects.) The
FHE ciphertexts’ sizes (measured in MB even at smaller depths) are generally
similar for different libraries, though at higher depths differences become more
starkly apparent. SEAL generally has the most consistent ciphertext growth,
and has the smallest ciphertexts at higher depths. Figures 15a and 15b show
how public and secret key sizes increase as depth increases. The public keys
exhibit relatively consistent growth across libraries, with an exception being in
the case of HElib at depths ≥ 16. For secret keys, HElib’s keys are much larger
than those of the other libraries, to the point where a log scale was necessary
to represent them on the same graph. This is most likely due to HElib not
including any kind of compression with their serialization or other strategies
to reduce the size of serialized objects. PALISADE and SEAL perform key
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Fig. 8: Ciphertext-Plaintext homomorphic operations (AVX2)
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Fig. 9: Ciphertext-Plaintext homomorphic operations using SHE presets
(AVX512)

generation from a single seed, so that the seed can be serialized instead of the
entire polynomial that it generates.

While these keys are not frequently sent between parties in outsourced com-
putations in the same way homomorphic ciphertexts would be, the overhead
they incur may be of importance in bandwidth-limited scenarios. If commu-
nication overhead from keys is a concern (e.g., in a server that must read in
many public keys for many clients’ homomorphic computations), then HElib
should be avoided, and SEAL or PALISADE should be preferred.

6.4 End-to-End Task Performance with Increasing
Parameters

We examined the performance of FHE libraries on some simple end-to-end tests.
To simulate the application-level tasks of HE, we implemented three end-to-
end tests for each library: dot product, linear transformation, and polynomial
evaluation. These three tests are some of the fundamental operations used by
data-driven AI models used in privacy-preserving Machine Learning [51, 52].
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Fig. 10: Homomorphic Rotation Runtimes
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Fig. 11: Homomorphic Rotation Throughput (log scale)
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Fig. 12: Homomorphic Rotation Error

Other work [53] shows that using polynomial approximations of the activation
functions in neural networks can achieve very high accuracy and performance
metrics.

Some libraries have existing built-in methods for performing these operations.
For instance, PALISADE has built-in methods for the polynomial evaluation
and the dot product. HElib has its own implementation of linear transformation
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Fig. 13: Homomorphic Relinearization Runtimes
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Fig. 14: Ciphertext Size with Increasing Depth
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Fig. 15: Key Size with Increasing Depth (log scale, AVX2)

[44] and some replication-based algorithms described in [42]. SEAL and HEAAN
do not include any built-in methods for matrix arithmetic operations. For a fair
comparison, we implemented the end-to-end tasks for each library using generic
algorithms found in the literature. We implement the same specific algorithm
for each library for the three end-to-end tests using low-level scheme operations
exposed by each library, such as multiplication, addition, and rotation.
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Fig. 16: Homomorphic Linear Transformation Runtimes
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Fig. 17: Homomorphic Linear Transformation Error
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Fig. 18: Homomorphic Polynomial Evaluation Runtimes

6.4.1 Linear Transformation

For linear transformation, we used a method described in [42], where we pre-
process the matrix into a diagonal order before multiplication. For simplicity,
we only consider cases of square matrices of size n × n, where n is an integer
which is a power of 2. This method of linear transformation uses a depth of
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Fig. 19: Homomorphic Polynomial Evaluation Error

one multiplication and n rotations, multiplications, and additions. Runtimes
for homomorphic linear transformation are shown in Figures 16a and 16b. We
can observe that as the parameter sizes increase, SEAL generally has better
performance for linear transformation. HEAAN and PALISADE show similar
performance to each other, and at lower-depth parameter settings, this difference
is even smaller. HElib has almost the same runtime on AVX2 and AVX512
but other libraries have better runtime on AVX512. The error in homomorphic
linear transformation is shown in Figures 17a and 17b. Almost all libraries
have similar errors for linear transformation for vectors up to a dimension
of 96, except HElib, which is found to accumulate high errors during the
computation. This is due to its higher amount of error incurred in homomorphic
multiplication, homomorphic addition, and rotation (see Figures 2, 7a and 12a),
which is accumulated during end-to-end tests. The strong performance of SEAL
is most likely due to its good performance in both homomorphic addition and
homomorphic multiplication (see Figures 1a and 5a).

6.4.2 Dot Product

In the dot product end-to-end test, we computed a sum of products of an
arbitrary number of inputs. The dot product operation over the ciphertexts
is performed by performing homomorphic multiplications on matching pairs
of ciphertexts (using batching), then rotating the slots of ciphertexts and
summing up the slots repeatedly. Using this method, the number of rotations
required is the logarithm of the dimension of the input vector. Runtimes for
homomorphic dot product are shown in Figures 20a and 20b. HEAAN and
SEAL are found to have almost identical runtimes and PALISADE follows up
closely. The difference in the runtime of HElib and other libraries is found to
be higher when we increase the dimension of the input vector. This difference
in runtime for dot product between HElib and other libraries is similar for
the AVX512 architecture as well. As this computation features relatively less
homomorphic multiplication and more rotation (for which HEAAN and SEAL
show the best performance at low depth), this results in HEAAN and SEAL
showing the best performance. Errors in homomorphic dot product are shown
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Fig. 20: Homomorphic Dot Product Runtimes
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Fig. 21: Homomorphic Dot Product Error (log scale)

in Figures 21a and 21b. HEAAN, SEAL, and PALISADE all show low error,
while HElib’s is an order of magnitude higher.

6.4.3 Polynomial Evaluation

When testing homomorphic polynomial evaluation, we used the logistic function
approximation found in [54] as a test function. We used the tree method of
evaluating polynomials [55], that uses log(D) multiplications and additions
where D is the degree of the polynomial being evaluated. Figures 18a and 18b
show the polynomial evaluation runtime for AVX2 and AVX512 respectively.
SEAL and PALISADE have the best performance for this experiment, followed
by HEAAN and HElib. Similar to other tests, we can see that all libraries except
HElib perform better on the AVX512 architecture. Error in the homomorphic
polynomial evaluation is shown in Figures 19a and 19b. HEAAN has the lowest
error among the libraries in both the architectures, followed by PALISADE,
HElib and SEAL. PALISADE and SEAL perform well due to their good
performance in homomorphic multiplication and addition.
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Fig. 22: Bootstrapping Latency (only HEAAN and PALISADE included for
bootstrapping tests)
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Fig. 23: Bootstrapping Error (log scale)

6.5 Bootstrapping

We tested the performance of the libraries using parameters conducive to boot-
strapping. To the best of our knowledge, this is the first work that compares
CKKS libraries on their bootstrapping capabilities, mostly due to the fact that
most CKKS bootstrapping functionality is very newly released or not pub-
lic. Figures 22a and 22b show the latency of bootstrapping for HEAAN and
PALISADE (compared using the same polynomial modulus degree, so that
latency directly indicates throughput). PALISADE did not accept N < 216

for bootstrapping parameters due to security reasons, so no measurements for
that case are shown. We see that HEAAN has a much better performance
than PALISADE for bootstrapping. Further, Figures 23a and 23b show that
HEAAN’s bootstrapping also has much lower error. This is likely due to the
inclusion of advanced optimizations for bootstrapping noise in HEAAN [56].
We thus conclude that for applications that rely heavily on bootstrapping,
HEAAN is a strong choice. This is especially true when recalling that HEAAN
and PALISADE show similar performance for homomorphic multiplication (see
Figures 1a, 1b, 4a and 4b). As these two operations are likely to dominate
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Fig. 24: Ciphertext-Plaintext homomorphic operations using FHE presets
(AVX2)
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Fig. 25: Ciphertext-Plaintext homomorphic operations using FHE presets
(AVX512)

runtime for most computations, using HEAAN for faster bootstrapping will
reduce computation time. We show ciphertext modulus sizes for bootstrapping-
capable parameter settings in Table 31. In this, we see that HEAAN chooses
ciphertext moduli conservatively, while PALISADE chooses its moduli aggres-
sively to be smaller; this can reduce the memory footprint for PALISADE’s
ciphertexts. We also show latency for ciphertext-plaintext operations using
bootstrapping-capable parameters in Figures 24 and 25. Again, PALISADE
generally outperforms HEAAN for ciphertext-plaintext operations, though
when AVX512 is enabled, HEAAN’s latency is lower in some cases.

6.6 Impact of Multithreading

We examined the impact of CPU multithreading for the libraries we profile
(without using other acceleration, e.g., AVX512 or GPU acceleration). SEAL
and HElib were not profiled for these tests, as neither (currently) utilizes
library-level multithreading (see Sections 4.1 and 4.3). Figure 26a shows how

1Parameters differed slightly but not significantly for AVX512.



Springer Nature 2021 LATEX template

28 6.6 Impact of Multithreading

Table 3: Bootstrapping CKKS parameters (AVX2)

D
ep

th

PALISADE HEAAN

log2(N) log2(p · q) log2(N) log2(p · q)

5 - - 15 777
6 16 301 16 1555
13 17 581 17 2070
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Fig. 26: Effect of Multithreading (AVX2)

increasing the number of threads can help reduce the runtime of homomorphic
multiplication. HEAAN is able to most effectively utilize multiple threads.
PALISADE is able to gain some modest improvements from multithreading, but
does not match the performance of HEAAN. We see that PALISADE performs
best with 12 threads used, and HEAAN’s performance does not significantly
improve when using more than 12 threads.

We also explore the effect of multithreading on other FHE operations. For
homomorphic addition (shown in Figure 26b), we note that PALISADE again
shows its best performance at 12 threads, but that using other numbers of
threads may actually harm PALISADE’s performance. HEAAN again shows
excellent improvements from multithreading. For homomorphic rotation (shown
in Figure 27a), HEAAN benefits the most and shows the best performance
with more threads.

6.6.1 End-to-End Functions

Figures 29a, 29b and 30 show the performance difference in the end-to-end tests
when the number of threads is increased. SEAL and PALISADE do not gain
any significant level of performance increase while increasing the number of
threads from 1 to 24 in all three tests. HEAAN gains a significant performance
increase (decrease in runtime) while increasing the number of threads from 1
to 4. We see a further increase in performance when the number of threads is
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Fig. 27: Effect of Multithreading (AVX2)
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Fig. 28: Multithreading impact on bootstrapping

increased to 8 but adding any additional threads after 8 do not significantly
affect the performance in HEAAN.

6.6.2 Bootstrapping

We also examine the impact of multithreading on bootstrapping, using param-
eter settings with N = 216. For a full discussion on bootstrapping performance,
see Section 6.5. Regarding multithreading for bootstrapping, we see that
HEAAN’s relative speedup from an increased number of threads is even greater
than that of PALISADE’s, on top of the better base performance of HEAAN.

6.7 Impact of GPU Acceleration

Many other works have explored the use of GPU or other hardware (e.g.,
ASIC, FPGA, etc.) for accelerating homomorphic encryption [57–63]. GPUs
are ubiquitously available in cloud computing clusters. As using GPUs on
services such as AWS comes with additional cost, it is informative for users to
understand the performance improvements gained from the use of a GPU.

HEAAN is the only library in this investigation that comes with GPU sup-
port. There have been various research works implementing GPU acceleration
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Fig. 29: Effect of Multithreading (AVX2)
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Fig. 30: Multithreading Homomorphic Polyno-
mial Evaluation (AVX2)

for other libraries, but these changes are not usable in available versions of
the libraries [49, 64] The most intensive and dominant operations in CKKS
are homomorphic multiplication and bootstrapping; we profile these opera-
tions on GPU to see how GPU acceleration affects the overall performance of
computations.

Figures 31a and 31b show the improvements for homomorphic multiplication
brought by GPU acceleration. At smaller parameter sizes (up to a depth of
14), there is only a slight improvement. For larger depths, there is a more
notable improvement for the AVX2 case (approximately up to 30%). In the
case of depth ≥ 14 when using AVX512, the improvement is much larger - an
improvement of about 2x is shown.

Figures 32a and 32b show the impact from GPU acceleration for bootstrap-
ping. When using only AVX2, GPU acceleration does not bring significant
benefits and is even slightly slower in the case of N = 217. The most likely
reason for this is that the additional latency incurred when transferring data
between the GPU and the CPU’s memory hierarchy outweighs any performance
improvements from GPU acceleration in this case. However, when AVX512 is
used, a modest improvement in latency is seen for larger parameter settings.
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Fig. 31: Homomorphic Multiplication Latency Comparison for HEAAN
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Fig. 32: Bootstrapping Latency Comparison for HEAAN

From these tests, we can conclude that for multiplication-heavy workloads
requiring larger parameter settings, GPU acceleration can improve runtimes
by up to 2x. However, using GPUs may come with a significant increase in
monetary cost. For example, GPU-capable AWS instances can be up to 3.16x
more expensive than CPU-only counterparts [65, 66], forcing users to make a
tradeoff between latency and cost. We also note that other research shows larger
improvements from GPU (e.g., up to 60x faster for homomorphic multiplication
[63]). This is most likely due to these papers reporting the timing of the actual
computation, without accounting for the overhead of data transfer to/from the
GPU.

6.8 Projections in Complex Applications

FHE can be used in applications including finance [67, 68], healthcare [69, 70],
blockchain [71–73], cyber-physical systems [74–76], and education [77]. Machine
learning, which is widely utilized in almost all of the aforementioned sectors,
is also a highly useful application of FHE [77, 78]. FHE can be used to aid
the fundamental operations occurring inside an ML pipeline, e.g., matrix
multiplications, and in computing activation functions including the sigmoid
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and ReLU functions to preserve the privacy of the data being used by the ML
model within the pipeline. Logistic regression is a common ML technique used
to make accurate predictions. However, with encrypted inputs or models, it
is very difficult to achieve the same level of speed of prediction which can be
achieved using unencrypted input or models [79, 80]. Masters et al. [67] explored
the task of running the prediction of a generated logistic regression model using
CKKS in HElib and they found that the prediction computation consisted of an
inner product followed by an application of an approximated sigmoid function.
Since an inner product of a vector is basically a dot product, using Figures 18a,
18b, 20a and 20b, we can conclude that SEAL is the most suitable library for
this application given its low runtime on both dot-product and polynomial
evaluation tasks. SEAL’s low runtime in the linear transformation test (see
Figures 16a and 16b) also makes it suitable for use in scenarios similar to neural
networks, which contain a high number of matrix and vector multiplications
within its layers during the training phase.

For applications such as genome sequencing and similar healthcare related
applications, runtime may not be the most important factor to be considered
when judging which library is best. In such cases, a higher precision (or lower
error rate) provided by the library along with modest runtime would be of
higher significance than higher runtime alone. Crawford et al. [69] observed
that when approximating the parameters of a logistic regression model using
HE, maintaining good accuracy in their approximation can be particularly
challenging. They found that their approximation formula for performing logistic
regression only yields valid results in settings where the number of records
greatly exceeds the number of attributes. They later used a solution based on
table lookup to implement a low-precision approximation of the functions. In
similar applications, libraries such as HEAAN might be more suitable due to
its low runtime and very low polynomial evaluation error in the polynomial
approximation task (see Figures 19a and 19b).

Jang et al. [81] introduced an extended CKKS scheme called MatHEAAN
that provides efficient matrix representations and operations and improved
noise control. The scheme is specifically designed to work with recurrent neural
networks. They designed a custom gated recurrent unit (GRU) [82] using
MatHEAAN. Within the GRU, they perform various operations, including
trainable function approximation, element-wise dot product, and matrix-vector
multiplication and addition. Runtime and error for HEAAN and PALISADE
are the best for all of these operations when performed homomorphically in
our tests (see Figures 16a, 16b, 18a, 18b, 20a and 20b).

In this work, we primarily focused on low-level benchmarks of primitive
CKKS operations and simple applications. To give a more complete view of
the libraries for real-world use, we also studied the relative performance of
bootstrapping-capable libraries for high-depth machine learning tasks. Specifi-
cally, we estimated the runtime of HEAAN and PALISADE for inference with
the ResNet50, VGG16, and MobileNet convolutional neural networks [83–85].
Because the publicly available versions of SEAL and HElib did not include



Springer Nature 2021 LATEX template

6 PROFILING 33

Table 4: Bootstraps in deep CNNs

Network Library |N | Depth #. of Bootstraps

ResNet50
HEAAN 15 5 14976

HEAAN & PALISADE 16 6 12992
HEAAN & PALISADE 17 13 4416

VGG16
HEAAN 15 5 2816

HEAAN & PALISADE 16 6 2048
HEAAN & PALISADE 17 13 1280

MobileNet
HEAAN 15 5 15168

HEAAN & PALISADE 16 6 12544
HEAAN & PALISADE 17 13 6464

CKKS bootstrapping, we omit them from this portion of the study, and also
note that those libraries may thus not be suitable for high-depth computations
such as CNN inference. In this, we replace the max-pooling layers with average-
pooling layers. Average-pooling is much easier to compute homomorphically
than max-pooling; using average-pooling for FHE-based deep learning is com-
mon and has minimal loss of accuracy [86–91]. We used a degree-6 polynomial
approximation of a ReLU activation function. While low-degree approxima-
tions (as low as degree-2) are possible and more efficient, using these may lead
to high computation error [92, 93]. Our estimate assumes that bootstrapping
is done when necessary and not before. We used the same parameter settings
as our tests in Section 6.5, giving polynomial modulus degrees and multiplica-
tive depth of (N, d) ∈ {(215, 5), (216, 6), (217, 13)}. A listing of the number of
bootstraps used in each CNN is given in Table 4.

Our estimated results are shown in Figure 33. We note that this is only a
very simple runtime performance estimate, which does not take into account
many real-world factors such as accuracy, memory consumption, applying
parallelism, or programming optimizations. (There does exist other work that
considers the noise incurred when performing deep learning homomorphically
[80, 94]). Interestingly, we noted that doubling N from 215 to 216 improved
performance. This is most likely due to fewer bootstraps needed because
of the increase in multiplicative depth from 5 to 6 allowed by the larger
parameters. However, this trend did not continue when N = 217; at this point
the larger polynomial modulus degree incurs much more overhead in polynomial
multiplication to the point that the reduction in bootstraps does not reduce
runtime. HEAAN’s performance is better than PALISADE’s in all cases. We
note that when accounting for batched throughput (assuming fully-packed
ciphertexts), HEAAN at |N | = 16 still shows the best performance, and both
HEAAN and PALISADE show better performance at |N | = 17 than PALISADE
does at |N | = 16 for ResNet50 and MobileNet. This is shown in Figure 34.
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Fig. 33: CNN Inference Runtimes for FHE using PALISADE and HEAAN
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6.9 Summary: Which Library is Best for Which Tasks?

For workloads of relatively low depth that do not require bootstrapping domi-
nated by homomorphic multiplication, SEAL is the best due to its low latency
(though PALISADE and HEAAN also show good runtimes) and smaller error.
This holds whether the computation is dominated by homomorphic multiplica-
tion, homomorphic addition, or rotation. HEAAN also shows good performance
for addition with smaller parameter settings, due in part to the addition of a
parameter preset added at our suggestion. HEAAN and PALISADE also per-
form well for rotation. HEAAN, SEAL, and PALISADE all perform comparably
for ciphertext-plaintext operations.

In terms of communication and memory footprint, all four libraries showed
similar ciphertext sizes. However, PALISADE and SEAL showed the smallest
public key sizes, and HElib’s secret key sizes were the largest. In a scenario
where a party needs to store a lot of public keys (e.g., oursourced homomorphic
evaluation as a service for many different users), PALISADE or SEAL may be
preferable to save on the cloud’s use of memory and communication bandwidth.

In our simpler end-to-end tests, we found that SEAL again performed well –
this is an intuitive conclusion, as SEAL’s latency and error were relatively good
in tests of primitive operations at low depth. For the application of polynomial
evaluation, SEAL and PALISADE showed the best latency; however, HEAAN
was slower but yielded much smaller error, making it useful for applications
where accuracy is critical. SEAL and HEAAN show the best runtimes for
computing dot products. SEAL shows the best runtime and error for our linear
transformation tests, though HEAAN and PALISADE are comparable. We
thus conclude that for most SHE tasks, SEAL will be the best to use. However,
SEAL (like HElib) does not include CKKS bootstrapping in public versions of
their library, so it is unsuitable for applications with high multiplicative depth.

For the procedure of bootstrapping, HEAAN’s latency and noise were
both better than that of PALISADE; this is likely due at least in part to
advanced optimizations implemented in HEAAN [56]. However, bootstrappable
ciphertexts for HEAAN will be larger than those of PALISADE for the same N
and allotted depth; PALISADE chooses its ciphertext moduli more aggressively,
reducing the memory footprint of its ciphertexts relative to HEAAN.

HEAAN makes the most relative gains from the use of multiple threads,
showing much more significant speedups. HEAAN also showcases how GPU
acceleration brings a large improvement for homomorphic multiplication at
larger parameter settings when AVX512 is used. However, in many cases
GPU acceleration did not show a significant improvement, and even may slow
down computation slighly; this is most likely due to the overhead of data
transfer. Throughout our testing, we note that using AVX512 can bring modest
improvements to runtime.

For the application of deep learning with convolutional neural networks,
we note that HEAAN has the best runtime, though we did not consider
other aspects such as error in our estimation. This is due to HEAAN’s strong
performance on the critical operations of bootstrapping and homomorphic
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multiplication. Interestingly, in some cases increasing parameter sizes can
actually improve performance on CNNs due to the fewer bootstraps required.
We also note that neither HElib nor SEAL implements CKKS bootstrapping,
making those libraries unsuitable for deep CNNs including any significant
number of activation functions to be computed.

For tasks requiring functionality beyond what CKKS alone is well-suited
for (e.g., scheme switching CKKS ciphertexts to TFHE ciphertexts [95]), PAL-
ISADE is clearly the best choice. This may be important to users who have need
of functionality besides only approximate encrypted computations. For exam-
ple, some protocols may also need functionality such as threshold homomorphic
encryption [96].

7 Our Perspectives on Development with CKKS
Libraries

In this section, we discuss some of our subjective observations in the process of
developing HEProfiler. All of the libraries we profiled featured completeness
and fairly good usability, and any of them would probably be suitable for
general usage.

7.1 Installation

Installing SEAL and PALISADE was generally easy. Compilation with SEAL
was the easiest, as only a single header and static library file are needed.
Compilation with PALISADE is slightly more difficult, as many different
headers and libraries are available, and it is not always obvious which must be
included when compiling. However, this can allow compilation time and binary
size to be reduced, as the user can specify only the headers and libraries needed.

HElib offers two installation options: a system-wide installation or a “packed”
installation bundling the multiprecision libraries GMP and NTL. HElib also
requires manually installing and linking to Intel HEXL for use of AVX512.

HEAAN’s headers and shared library binaries were provided to us by
CryptoLab. This saved us the trouble of building them ourselves, but introduced
additional difficulty because the binaries were built for specific environments.
This necessitated the use of containerization via Singularity.

7.2 General Programming

Programming with PALISADE was more difficult at the time of parameter
selection, but fairly easy for computations. PALISADE offered the most cus-
tomization and control of any library, but did not always warn the user of
settings or operations that would lead to a failure.

Programming with SEAL was made somewhat tedious by the use of a
different object for each set of functionality, i.e., keeping separate objects for
encryption, decryption, encoding/decoding, homomorphic operation, each type
of key, et cetera. Besides this, using SEAL is generally easy and straightforward,
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though some functionality that can be automated and/or done by default is
not (e.g., relinearization after multiplication).

HElib is very easy for non-experts to program with, as it overloads arithmetic
operators. HElib requires objects for only a context, public key, and secret key,
making programming simple. Operations to reduce noise level in ciphertexts
like rescaling and relinearlization are automatic in HElib.

Like SEAL, HEAAN uses several different objects for its functionalities.
There are some minor confusing points, such as the inclusion of both Plaintext

and Message objects. Besides this, the interface is generally simple and easy to
use, though more limited than that of PALISADE.

8 Conclusion

In this work, we present HEProfiler, an extensible profiling framework for
CKKS libraries. We collaborated with library maintainers to find the most
fair way to choose parameters for each library. We performed an experimental
evaluation that is more complete than previous profiling works have considered.
Our experiments are thorough both in the scope of the tasks considered, ranging
from low-level primitives to high-level end-to-end tasks, and also complete in
the metrics measured (latency, throughput, error, memory consumption). Our
experiments with the bootstrapping capabilities of HEAAN and PALISADE
are the first experiments that comparatively evaluate CKKS bootstrapping.
We also provided discussion on the libraries and their features, focusing on the
features and differences most relevant to developers and researchers.

We conclude that for most tasks of limited depth, Microsoft SEAL would be
preferred. For high-depth computation requiring bootstrapping (e.g., machine
learning), HEAAN is the best library. For general functionality, parameter
customization, and features and schemes beyond CKKS, PALISADE is clearly
the best choice. HElib’s performance metrics are not as good as those of the
other libraries, but its thorough and highly technical documentation makes it
useful for researchers.
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