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Abstract

A sequential function is, informally speaking, a function f for which a massively parallel
adversary cannot compute “substantially” faster than an honest user with limited parallel
computation power. Sequential functions form the backbone of many primitives that are
extensively used in blockchains such as verifiable delay functions (VDFs) and time-lock puzzles.
Despite this widespread practical use, there has been little work studying the complexity or
theory of sequential functions.

Our main result is a black-box oracle separation between sequential functions and one-way
functions: in particular, we show the existence of an oracle O that implies a sequential function
but not a one-way function. This seems surprising since sequential functions are typically
constructed from very strong assumptions that imply one-way functions and also since time-lock
puzzles are known to imply one-way functions (Bitansky et al., ITCS ’16).

We continue our exploration of the theory of sequential functions. We show that, informally
speaking, the decisional, worst-case variant of a certain class of sequential function called a
continuous iterative sequential function (CISF) is PSPACE-complete. A CISF is, in a nutshell, a
sequential function f that can be written in the form f (k, x) = gk (x) for some function g where
k is an input determining the number of “rounds” the function is evaluated. We then show that
more general forms of sequential functions are not contained in PSPACE relative to a random
oracle.

Given these results, we then ask if it is possible to build any interesting cryptographic primitives
from sequential functions that are not one-way. It turns out that even if we assume just the
existence of a CISF that is not one-way, we can build certain “fine-grained” cryptographic
primitives where security is defined similarly to traditional primitives with the exception that
it is only guaranteed for some (generally polynomial) amount of time. In particular, we show
how to build “fine-grained” symmetric key encryption and “fine-grained” MACs from a CISF.
We also show how to build fine-grained public-key encryption from a VDF with a few extra
natural properties and indistinguishability obfucsation (iO) for null circuits. We do not assume
one-way functions. Finally, we define a primitive that we call a commutative sequential function–
essentially a sequential function that can be computed in sequence to get the same output in
two different ways–and show that it implies fine-grained key exchange.

This article is the full version of the article under the same name submitted by the authors to the IACR and to
Springer-Verlag on May 31, 2024. The version published by Springer-Verlag will be available in the proceedings of
CRYPTO 2024.

∗Part of this research was conducted while this author was a Ph.D. student at Princeton University.



1 Introduction

Traditional cryptography is focused on security assumptions that assume an adversary’s compu-
tational budget is limited to some polynomial function of a security parameter, or some concrete
number of operations (e.g. 2128). However, some exciting new applications of cryptography such as
verifiable delay functions (VDFs) require sequential assumptions, which demand that adversaries
cannot solve certain problems in less than a specified amount of time, even with substantial parallel
computing resources.

Informally, to say that a function is sequential we need to define a model of computation for an
adversary, which we call MA, and a challenger, which we call MC . In general, we will assume that
MA has more parallel computation power than MC. In this work, we will typically assume that
MA and MC are essentially equivalent outside of parallel power. Although this is certainly not the
case for many real-world applications where adversaries may have more powerful hardware than
“honest” users, in most practical situations, we expect an adversary’s parallel advantage to be much
greater than their sequential advantage over typical honest users. For example, a supercomputing
cluster may be able to perform sequential operations faster than a desktop computer, but its real
advantage over the desktop lies in its parallel processing abilities.

We say that a function is (tC , tA)-sequential if a challenger can compute the function in time tC in
the model MC , while no adversary can compute the function faster than time tA in the model MA.
We note that it is far from trivial to even define a sequential function, and we use the definitions
from [JMRR21] which generalize those of [BBBF18].

Sequential functions are used in a wide variety of practical deployments. For instance, the Solana
blockchain uses proof of history in its consensus layer [Yak18], which relies on a verifiable delay
function. The Chia network blockchain also relies on a VDF for its proof of space and time consensus
protocol [CP18a]. In fact, the Ethereum Foundation and a number of other blockchain entities are
pushing towards building practical VDFs in order to better scale [CHI+20] and currently [KMT22]
plan on using a VDF based on using the Nova proof system [KST22] as a recursive SNARK.
Potentially billions of dollars [eth] will rely on a secure VDF construction in the near future, so it is
important that we have confidence in our constructions that rely on sequential assumptions.

Sequential Assumptions. Despite this, almost all of the constructions (that are not based on
random oracles) of sequential functions and VDFs with security proofs use essentially the same sort
of assumption. The original construction of time-lock puzzles [RSW96] makes the assumption that
repeated squaring in a group of unknown order is sequential, and almost all other practical time-delay
constructions [BN00, GMPY06, LW17, Wes19, Pie19, DGMV20, Sha19, BDGM19] rely on variants
of this assumption or efficient CCA timed commitments in class groups [BBBF18, DMPS19]. Most
of these constructions assume that with a description of a group G that does not include the order,
and a generator g ∈ G, then it takes Ω (T ) time to compute g2T .

However, this assumption is false: Bernstein and Sorenson [BS07] proved that computing g2T in
a group of unknown order can be parallelized with T 1+o(1) processors to a depth of O(T/ lg lg T ),
emphasizing that these assumptions could probably use more study. On the other hand, Rotem and
Segev [RS20] showed that generically speeding up repeated squaring on generic groups is equivalent
to factoring, but it is still not known how to tie repeated squaring to any sort of standard model
assumption, even with some slack factor (which could be compatible with the attack from [BS07]).
We additionally note that [RSS20] showed that delay functions on groups require an unknown order,
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indicating that it is likely we will need to completely scrap group-based assumptions of sequentiality
if quantum computing becomes viable.

It has long been folklore that the repeated computation of a random oracle [BR93] is sequential,
and more recent work has expanded on this idea [MMV13, CP18b]. However, random oracle-based
primitives have not typically been useful for building cryptosystems that rely upon sequential
assumptions because they lack any kind of structure, which is often useful for things like verifying
computations. In fact, Mahmoody et al. show that VDFs satisfying perfect uniqueness and tight
VDFs are impossible to construct in a black-box way solely from ideal hash functions [MSW20],
which may indicate some practical limitations of RO-based constructions.

There are a handful of constructions (mostly focused on time-lock puzzles) that use indistin-
guishability obfuscation (iO) as a core assumption [BGJ+16, MT19]. However, these constructions
typically require subexponential security, and while theoretically appealing, are far from practical.
Finally, we note that [JMRR21] construct a concrete sequential function assuming the existence of a
sequential function and fully homomorphic encryption, but this construction does not fundamentally
help us to understand what assumptions are required for sequential functions.

The Complexity of Sequential Functions. Given the practical importance of sequential
functions, we would like to understand more about sequential assumptions. This is especially true
given that all of the known assumptions that imply sequentiality are either idealized (generic group
or random oracle) or very impractical (iO with subexponential security). Can we characterize
sequential functions from a cryptographic perspective?

We note that parallel complexity has been an important topic in complexity theory [AB09].
However, complexity theorists have typically not spent time on parallel average-case complexity,
which is what would be necessary for sequential assumptions. Some notable exceptions include
Applebaum, Ishaii, and Kushilevitz [AIK06], who study cryptography in NC0, Alwen and Serbinenko,
who study average-case parallel complexity with respect to memory hardness [AS15], and Bitansky et
al.[BGJ+16], who study time-locked puzzles. Notably, the authors of [BGJ+16] show that time-lock
puzzles imply one-way functions.

On the other hand, fine-grained complexity [Bri19]-on which practical sequential functions
critically rely1–has been extensively studied recently in the theory community [WW10, AW14,
AWY15, ABBK17]. However, it has received considerably less attention recently in the cryptographic
community, and there are a comparatively smaller number of works on the subject [DVV16, BRSV17,
CG18, LLW19, EWT21, WPC21, WP22, BC22, ACM22].

Ultimately we would like to be able to tie sequential functions to standard cryptographic
assumptions. Unfortunately, this seems difficult: it is easy to define a one-way function that is not
a sequential function, and, in practice, most attacks on cryptographic primitives are parallelizable.
It seems that sequential assumptions are, in fact, more powerful than standard cryptographic
assumptions. Could we, for instance, show that a sequential function implies a one-way function?

Constructions from Sequential Functions. In addition to the major applications listed above,
there are a number of interesting and potentially practical constructions that rely on sequential
functions, including modern protocols that have blockchain applications like delay encryption [BD21]
and short-lived zero knowledge proofs and signatures [ABC22] as well as older things like time-locked

1If the reason why isn’t clear now, hopefully our formal definitions of sequential functions in Section 4 will make it
clear.
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commitments [BN00]. Is it possible to build these kinds of constructions on simpler assumptions, or
only rely on sequentiality (and not one-wayness)?

1.1 Our Contributions

In this paper, we show surprisingly that sequential functions do not imply one-way functions in
a black-box way. Despite this fact, we show that it is still possible to build some fine-grained
cryptographic primitives. In particular, we show the following results:

An Oracle Separation. Our main result is an oracle separation between one-way functions
and sequential functions.1 More precisely, we show the existence of an oracle that implies a
sequential function but does not imply a one-way function. Our construction and proof techniques
here borrow from things as disparate as the Davies-Meyer construction and traditional black-box
separations [IR89, BM09]. This is a technically involved construction and we present a full overview
of it in the next section, so we will omit further description for now.

Worst-Case, Decisional Continuous Iterable Sequential Functions (CISFs) are PSPACE-
Complete. A CISF is, roughly speaking, a sequential function that is defined by a “round”
function. This round function takes polynomial time and has identical input and output domains.
A CISF can (approximately) be written in the form y = Roundk (x) for input x, output y, and
k rounds of evaluation. We formally define a CISF in Section 4. We define a class of functions
that encapsulates natural worst-case, decisional versions of a CISF and show that this class is
PSPACE-complete. This implies that “worst-case” sequential functions are seemingly in a different
complexity class than “worst-case” one-way functions, which would be in NP.

More General Sequential Functions Are Not in PSPACE. In contrast to the previous result,
we next show that a more general kind of sequential function called a dynamic sequential function
(DSF) is not in PSPACE relative to a random oracle. In particular, we give an example of a
DSF that is not evaluatable in PSPACE assuming the existence of a random oracle. Our proof
technique relies on a technique by Dwork, Naor, and Wee [DNW05] that converts a graph to a
function in the random oracle model, while preserving space and time lower bounds. We note that
this contrasts with our earlier result on CISFs, as it indicates that CISFs could have a completely
different complexity than general sequential functions.

Cryptographic Implications. Our work here seems to imply that sequential functions and
one-way functions have a more complicated relationship than a strictly hierarchical one: sequential
functions do not appear to be strictly stronger than OWFs. Unfortunately, this also means that it
may be difficult to build cryptoprimitives with sequential functionalities from standard assumptions.
Our results also beg the following question: what sort of cryptographic primitives can we build
based on functions that are sequential but not one-way? Since sequential functions may not be
incompatible with Pessiland [Imp95], the implications of any cryptoprimitives from sequential but
not one-way functions might be quite interesting.

It turns out we can build a number of “fine-grained” primitives from certain types of sequential
functions where we only assume the function is sequential (and not one-way). By fine-grained, we

1We technically separate one-way functions and CISFs, which we explain shortly.
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(informally) mean that security only holds for a certain (polynomial) amount of time against all
PPT adversaries, but after this time period has elapsed, there are no security guarantees.1 These
include the following:

Symmetric-Key Encryption and MACs from Continuous Iterative Sequential Func-
tions (CISFs). We first show that CISFs imply fine-grained basic symmetric-key cryptoprimitives.
Intuitively, these constructions are similar to their traditional cryptographic counterparts with
the exception of the fact they only remain secure for some polynomial amount of time. More
precisely, we show how to build fine-grained symmetric-key encryption and MACs from CISFs. The
constructions are limited in the sense that users can only encrypt or MAC an apriori-determined
number of messages, but only require a shared secret that is of size independent of this number of
messages.

Public-Key Encryption from VDFs and Null iO. We next show how to build fine-grained
PKE from VDFs with some extra natural properties and iO for null circuits. In particular, we
need the VDF we use in the construction to have unique accepting proofs and a property that
we call proof indistinguishability, which means, informally speaking, that the VDF proofs look
indistinguishable from random for an adversary that has not computed the final output of the VDF.
These extra requirements are not necessarily unreasonable in practice: for instance, the proof of the
VDF in [Wes19] is a single group element for which it seems very plausible (i.e. under what appear
to be reasonable security assumptions) to achieve these properties, although of course this VDF
immediately implies a one-way function.

However, we note that VDFs are not known to imply PKE or even one-way functions2 and even
“full” iO without the existence of OWFs does not appear to be a very powerful primitive3. This
result intimates that VDFs might be the “fine-grained public-key” equivalent of basic sequential
functions, at least in some sense.

Commutative Sequential Functions and Key Exchange. Finally, we show that fine-grained
key exchange can be built from what we define as a “commutative” sequential function. Informally
speaking, a commutative sequential function allows two parties, Alice and Bob, to each compute
a part of a sequential function, send it to the other party, and let the other party “finish” the
computation, while any eavesdropper Eve must start from the beginning.

This allows us to more closely see the relationship between sequential functions and key exchange.
Our definitions here are general enough to encapsulate any sort of key exchange protocol, and we
emphasize that traditional key exchange protocols can be viewed as extremely strong fine-grained
key exchange protocols and also, generally speaking, imply commutative sequential functions.
Unfortunately, we know of no fine-grained key exchange protocols that are built from assumptions
that do not already imply key exchange, so we leave the problem of finding these functions (or
ruling them out) as interesting future work.

1We note that this definition does also imply security against an adversary with a fixed computational runtime,
which is a more traditional way of viewing fine-grained assumptions, assuming parameters are set correctly; we discuss
the nuances of our definitions in more detail later.

2Although [BGJ+16] showed that time-lock puzzles imply one-way functions, it was pointed out in [JMRR21] that
it remains an open problem to show whether or not a VDF implies a time-lock puzzle.

3In fact, if P = NP, then iO exists trivially.
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1.2 Paper Outline

The rest of the paper proceeds as follows. In section 2, we give an overview of our main result
showing an oracle separation between a sequential function and a one-way function. Then, in
section 3, we give an overview of our other results and proof techniques in the paper. The paper
proper begins in section 4, where we define preliminary material and basic notation.

In section 5, we show our main technical construction: an oracle that implies a sequential
function but not a one-way function. Then in section 6, where we prove that (informally speaking)
worst-case, decisional CISFs are PSPACE-complete but DSFs are not contained in PSPACE in the
random oracle model.

We next move to our constructions of fine-grained cryptoprimitives. We start by defining and
showing how to build fine-grained symmetric-key encryption in section 7 and MACs in section 8,
both directly from CISFs. In section 9, we define and show how to build fine-grained PKE from
VDFs and iO. Finally, in section 10, we define commutative sequential functions and show that they
are equivalent to fine-grained key exchange.

2 Technical Overview of the Oracle Separation

In this section, we explain our main oracle separation. We defer the overview of our other results
to a later section. For the ease of exposition, here we use a set of simplified notations and symbols
slightly different from those in the rest of the paper.

2.1 An Oracle Separation between OWFs and CISFs

How could we build a function that is sequential but not one-way? An initial starting point might be
to consider a function f that is sequential (i.e. if it takes C time to compute f , then fT takes time
TC) but also similarly easy to invert (i.e. f−1 also takes T time to compute). We could abstract
this as a random permutation P where we also provided (efficient) access to P−1.

As any block cipher expert would know, the above idea does not work: the Davies-Meyer
construction uses exactly such a random permutation (and its inverse) to build an iterated hash
function, exploiting the fact that, in the random permutation model, P (x)⊕ x is pseudorandom
even in the presence of an oracle for P−1. So the basic idea of giving out a permutation P and its
inverse P−1 will not work.

A More Sophisticated Idea. Instead, consider the following: what if we still consider a pseu-
dorandom permutation P , but instead of giving out just its inverse P−1, we give out a more general
oracle OP , which we will call a full inversion oracle? Suppose we let OP : C × {0, 1}`

′
→ {0, 1}`

be an oracle that takes as input a polynomially-sized binary circuit augmented with gates that
compute P and a target value for the output of the circuit and outputs a valid input (which could
be arbitrarily polynomially long). We say that the size of the input circuits is equal to the number

of P “gates” in the circuit. Critically, we require that OP
(
c ∈ C, x ∈ {0, 1}`

′
)

take time Tt to

evaluate, where T is the size of c and P takes time t to evaluate.
Note that such an oracle lets us immediately compute P−1 as before (we can just ask our oracle

to solve for x in P (x) = y), but also gives us substantially more power. For instance, we can use
OP to efficiently break the Davies-Meyer construction and other related constructions.
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Handling Recursion. While the above solution seems elegant, it does not get us all the way
to eliminating the possibility of one-way functions. For instance, given that we can call OP on
arbitrary inputs, what if we chain calls to OP? Or, even worse, what if we chain calls and mix in
some calls to P in the middle? One might imagine a circuit of the form, “solve this equation, use
the solution in a circuit made of gates that call P, and then use that as the solution to another
equation to solve, and output the input that solves that equation.” It’s not necessarily clear that
we can efficiently invert these kinds of circuits using just OP as we have currently defined, so we
need to modify the oracle OP further.

More precisely, we will let OP recursively call the output of oracle calls and use them in its solver.
In other words, we will modify the circuit class C which can be input to OP to also include “OP -gates.”
We note that these “circuit-solver gates” will take the same time to evaluate as the sub-circuit
would. We note that this technique has been used before in black-box separations [GMM17].

As an illustrating example, suppose we let C be the circuit that computes Pn for some n. Then
OP (C, y) would find the input value x such that Pn (x) = y. We could then define C ′ = OP (C, ·)
and then compute OP (C ′, y). Of course, an adversary (or anyone) wouldn’t be restricted from
calling OP on non-algebraic inputs (i.e. those that are not directly input into a P gate), either.

Non-One-Wayness. Do our oracles P, OP imply a one-way function? We have deliberately
designed them so it is straightforward to show that they do not. Any circuit that can be built
using P, OP , and standard binary gates can, by definition, be inverted by a call to OP in time
proportional to the size of the circuit, which must be polynomial. So our definitions make arguing
(non-)one-wayness relatively straightforward; we have pushed all of the hardness of the proof to
proving sequentiality.

Sequentiality. Can we prove that our oracle collection is sequential? In other words, given P,
OP , and some element x, does it still take time proportional to T to compute PT (x)? This is
considerably more complicated than showing non-one-wayness. If we only gave access to P, then
our function would clearly be sequential. Intuitively, what we need to show is that giving access to
OP doesn’t give an adversary any advantage.

This might seem straightforward to prove at a first glance: after all, being able to compute P−1

doesn’t seem to give an adversary too much extra power, and using the inversion oracle on with bit
strings that are unrelated to the existing labels seems even less likely to be useful to an adversary.
However, formalizing this is complicated.

A Simpler Oracle. Analyzing a random permutation can be difficult. To be able to avoid some of
the analytical difficulties involved with random permutations, we choose to work with a permutation
that is a “single cycle”. More precisely, we consider a very weak version of a generic group oracle:
we essentially have a generic group where it is only allowed to multiply (assuming a multiplicative
group) by an apriori-fixed group element. Consider some prime order, cyclic group G of order q,
and let ` be an integer such that 2` � q. Finally, let C be a class of circuits that consists of the
usual binary gates (any complete representation) as well as “multiply” gates. Notice that here in
the overview we use a simplified version of syntax, which does not exactly match our syntax in
Section 5.

We will define two oracles OMult,x : {0, 1}` → {0, 1}` and OInv : C × {0, 1}` → {0, 1}` that work
in approximately the following way. First, we note that the oracles share a “database” that takes
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the form of a constraint graph (cycle) with the following properties:

• The database stores pairs of values
(
g ∈ G, y ∈ {0, 1}`

)
. The element g tells us “where we

are” on the cycle graph, and the bit string is the “label” for the element.

• The database is instantiated with a “base point”
(
h ∈ G, y ∈ {0, 1}`

)
for h and y sampled

uniformly at random. WLOG, we will usually assume that h is the identity element of G.

• The database is instantiated with pairs
(
h′ ∈ G, y′ ∈ {0, 1}`

)
for all other h′ 6= h ∈ G, where

the corresponding y′ for each h′ are sampled uniformly at random. We note that in some of
our hybrids we will lazily simulate this step.

In our full proof, we formalize a notion of time by using rounds. Each round acts as a discrete
unit of time, and any reader familiar with universally composable security [Can01], memory-hard
functions [AB16], or multiparty computation [Lin20] should be immediately familiar with this notion.
This allows us to handle the fact that different operations take different (relatively) amounts of
time: for instance, computing OMult,x (y) for some input y might take one round, and O2

Mult,x (y)
might take two rounds, modeling the fact that the latter operation should intuitively take twice as
long as the former.

We can now define our multiplication oracle OMult,x. Recall that x ∈ G will be our “generator
element”.

• On a query z ∈ {0, 1}` the oracle does the following:

– Checks if z forms part of a valid tuple. If not, outputs ⊥.

– Otherwise, finds the tuple (j, z). The oracle then computes xj and looks it up in the set
of tuples.

– Then, in the next round, the oracle outputs the bit string in the tuple associated with
the group element xj.

Finally, we can define our inversion oracle OInv.
• On a query that contains a circuit C ∈ C of size d and a bit string z ∈ {0, 1}` the oracle does

the following:

– Checks the database to see if there are satisfying inputs t such that C (t) = z. Note that
this may not be an efficient process without a PSPACE oracle.

– If there is at least one satisfying set of inputs, choose one at random and output it d
rounds later. Otherwise, output ⊥ after d rounds have elapsed.

Note that this oracle would be very similar if we used a random permutation instead of a “very
weak” generic group (where we can only multiply by one element). The only difference is that we
are enforcing the fact that there is only one “loop.” We expect that our proof would go through
with a proper random permutation than our oracle, but it would severely complicate bookkeeping,
so we choose to use this oracle instead. We also want to reiterate that our inversion oracle OInv can
take as input circuits consisting of binary gates, calls to OMult,x, and calls to itself.

Lazily Simulating the Oracle. It will be important for us to be able to lazily simulate the
oracle in all of our proofs. How might this work? If we only gave an adversary access to OMult,x

and not OInv, then it would be very simple: a simulation would work in a very similar way to any
number of generic group oracle simulations. However, we also have to be able to simulate queries to
OInv, so unfortunately the process for us is not so simple here.

8



We will need a PSPACE oracle in order to successfully lazily simulate the oracle. To see why
this is the case, note that the adversary could embed arbitrarily difficult binary circuits into a
circuit C which was then provided as input to OInv. Without the power of a PSPACE oracle, we
would not be able to successfully find solutions to these circuits. In general, powerful oracles are
necessary for many black-box separations to ensure that the only “hardness” that participants can
rely upon comes from the oracles provided in the game descriptions. We note that other separations
(e.g. [IR89] and [BM09]) use a similar approach. There are some subtleties in using a PSPACE oracle
to help us answer queries, but we defer these to section 5.

To lazily simulate the oracle, we will start with just the instantiation of the base point (h, y).
When an inversion query is asked, we will use the PSPACE oracle to compute the probability that
such a query is satisfied with respect to the current values of the database (including values that
have not yet been set). Based on the probability that a query has a solution or not, we will then
either respond with ⊥ or use the PSPACE oracle to sample a random response from the set of
satisfying states.

Note that answering a query will involve either new assignments to or, in the case of a ⊥ response,
new constraints (we need to be sure our simulation is consistent) to our database. After a query,
we will update our database with new values (i.e. add labels to nodes on the cycle) or constraints,
respectively. We can simulate an arbitrary polynomial number of queries in this way. Since we are
actually writing down values and constraints in our simulation, we can only handle a polynomial
number of queries, which is overall the reason why we must use a fine-grained notion of sequential
function like those of [JMRR21] rather than those of [BBBF18].1

Splitting up the Oracle. Now that we can simulate the oracle, we will explain how we can
argue that it still implies a sequential function. Our core technique will essentially be a hybrid
argument where we “split” the oracle into two parts, one of which we simulate arbitrarily, and the
other which is responsible for queries that correspond to small powers of x relative to our base point
h which we answer honestly. We explain this in more detail below.

Suppose we consider our oracle as before, but instead of a tuple (OMult,x,OInv) we provide a

tuple
(
O′Mult,x,O′Mult,x−1

)
, where O′Mult,x−1 simply does the exact same thing as OMult,x except it

multiplies by x−1 instead of x. It is very simple to see that it will take at least T queries to compute
hxT (= xT since we assume W.L.O.G. that h = 1) given h (assuming WLOG it is the identity
element) and these oracles with high probability; an adversary must successfully guess a label
representing a group element (which happens with extremely low probability) to do this and a proof
follows as a simple extension of the result that random oracles are sequential [MMV13].

So, we know that, given only the above “simple” oracle, our function would be sequential.
But can we extend this to a full proof? We would need to be able to simulate all of the queries,
including those coming from the inversion oracle, to be consistent with this tuple of oracles (or
at least statistically close). This simulation would have to be indistinguishable from the “real”
simulation, which we have outlined before.

A Dual Simulation. It turns out we can! Our reduction will boil down to the following: we will

start with a tuple of oracles
(
O′Mult,x,O′Mult,x−1

)
and show how to simulate the full tuple of oracles

1We think this is the more intuitive notion anyway since it is usually against convention for adversaries to be able
to perform superpolynomial work.
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(OMult,x,OInv) in a way that is indistinguishable to an adversary that can only make T −1 sequential
queries (for some T ) with an arbitrary polynomially bounded parallelism from our earlier, perfect
simulation. The main challenge is showing that using the tuple of oracles we are given as input,(
O′Mult,x,O′Mult,x−1

)
, which outputs values independent of the rest of the simulation (although the

simulated terms can be dependent on terms we receive from these oracles), instead of faithfully
simulating, does not change the overall distribution of the outputs of the simulation (responses to
queries) in a statistically significant way.

Our simulation will essentially work as follows:
• In the first round, we (as the simulator) will query OMult,x (1) and OMult,x−1 (1). In the k-th

round, we will query OMult,x (sxk−1) and OMult,x−1 (sx−k+1), where sxk−1 and sx−k+1 are the
labels representing xk−1 and x−k+1, respectively.

• We will add these values to the input/output tuples to our query list, with the appropriate
algebraic representations.

• We will simulate using our general lazy simulation as before, with the addition of the above
operations.

Why is this a simulation that looks correct to the adversary? Well, very informally speaking,

the distribution will be perfectly correct–in other words, all of the tuples
(
h′ ∈ G, y′ ∈ {0, 1}`

)
are

distributed appropriately–as long as the simulation doesn’t conflict non-negligibly with the queries
from the multiplication oracle tuple we used as input. In other words, the only time this simulation
does not work is if the simulator is forced to instantiate or provide some kind of non-negligible
distinguishing information on a value that can be efficiently reached using the multiplication oracles,
which correspond to small (positive and negative) powers of x. For some intuition, note that in
the absence of information from inversion queries where we receive ⊥ (which we discuss later), we
fail if our general lazy simulation technique creates a label corresponding to a value xc for some
c ∈ [−k, k] before round k has been reached.

It’s worth it to think for a little bit about how an adversary can “misbehave”. At a first glance,
it might seem possible to show that an adversary cannot generate new elements without using the
“basic” multiplication oracle, but this is not true. As an example, note that we can, in fact, generate
valid labels using the OInv oracle: on an input circuit C which is just a single multiplication gate,
we could tell the oracle to “solve” for an element that has a label with first bit one, which happens
with high probability. Then we could tell the oracle to solve for an element that had a label with
first bit one and second bit one, and then first bit one and second bit zero. One of these would have
to succeed, and we could repeat until we got a proper label.

This seems like it might be a problem for our proof: how do we handle these rogue inversion
circuits? The answer is actually pretty simple: intuitively, if we ignore constraints implied by ‘⊥’
responses to queries, if we stumble upon a label that is not tied to any existing other label (it is not
the output of OMult,x or OMult,x−1 for any existing labels in our lazily simulated database) then it is
equally likely to be assigned to any non-assigned group element. Thus, it is likely to be “far away”
on the cycle graph from existing group elements (small powers of x) that we are trying to reach,
and thus is unlikely to conflict with these terms or be useful for distinguishing them from faithfully
sampled values. Formalizing this “location independence” is one major crux of our argument.

Proving This Simulation Works. As an astute reader can probably guess at this point, the
tricky part in our proof is responding to the queries to the inversion circuit. Recall that we respond
to inversion queries on circuits of size d after a wait of time d. Proving that this simulation works
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takes three general steps:
• We show that any new labels (or chains of labels) instantiated by the inversion circuit that

are not “connected” on the cycle graph to any other existing labels are located randomly on
the cycle graph.

• Next, we show that any existing chain of labels cannot be extended by d labels in < d rounds
with non-negligible probability, assuming there is no “joining” of chains of labels. This follows
from a minor adapatation of standard argument showing that random oracles are sequential.

• Finally, we show that, except with negligible probability, chains of labels cannot be joined
together. This follows from the above two facts, in that these chains must be far apart and
can only grow a polynomial amount during our whole game.

All of these steps – lemmas in our proof – together show that the inversion oracle can not be
used to reach small powers of x, which lets us complete the proof. We note that our proof approach
here has some similarities with the “two oracle trick” in [HR04] as we are hybridizing over the
oracles.

Handling “⊥” Query Responses. One thing that we have not mentioned much so far is the
impact that queries that have ⊥ as an output have on our overall arguments: they do, in fact,
change our distributions. But, it turns out they change them in such a small way that they can
essentially be ignored. Why is this the case? To see why, think about when a query to OInv returns
⊥: with all but negligible probability, this happens when the probability the number of remaining,
legal ways to instantiate the oracle (i.e. assign labels to all of the group elements) for which there
is no satisfying assignment to the circuit is at least 1

poly() of all potential remaining, legal ways to
instantiate the oracle.

By corollary, such ⊥ responses only reduce the number of possible label assignments by a
1

poly multiplicative factor. However, since we have a doubly exponential amount of possible label
assignments, this turns out to not be that substantial. For instance, this could correspond to fixing
a logarithmic number of bits on a single label. This doesn’t intuitively seem like it could help an
adversary too much. If an adversary learned a negligible amount about every label (maybe no label
could have some particular assignment) or a substantial information about a label of a randomly
selected group element, then these ⊥ outputs wouldn’t be a useful source of information to the
adversary.

However, what if the adversary could concentrate all of this “advantage” from a ⊥ response into
a single useful label (i.e. xT for some small T )? Perhaps even a label that would let it guess a new
label when it shouldn’t be able to do so? In theory, this could constitute an attack: if an adversary
somehow managed to concentrate its advantage from “⊥” query responses onto a single label which
it was trying to predict (say, in a way that extends an chain of labels that it shouldn’t be able to
do), it might be a problem for our proof.

If it seems confusing as to how the above might work, that’s OK: we can show that no such
attack can actually work. To see this, note that any query that gets a ⊥ response on a circuit of
size d will take time d to be returned. Suppose, in this time, the adversary also “extends” the label
chains it knows by computing calls to OMult,x and OMult,x−1 on the respective labels at the “edges”
of chains. It will create d new labels on each side of existing label chains. The circuit for which ⊥
was ouput may not be independent of all of the labels—after all, the adversary could incorporate
known labels into the circuit—but it will be “almost” independent of the d labels on each end of
any given chain (unless we somehow had prior non-negligible information on these labels, but we
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can assume by induction that that is not the case) because these labels are determined after the
circuit with the ⊥ output was submitted to the adversary.

Now, if the adversary wants to use information from the ⊥ queries to predict labels, it needs to
apply the circuit in a specific location (with known or unknown labels) and then see if any specific
label values or combinations are eliminated. To predict labels near the boundary of any chains, a
circuit of depth d will only use the d labels closest to the edges of the chain. But we know that,
from our above argument, these labels are independent (or statistically close to independent) from
our circuit that output ⊥. So therefore we aren’t likely to learn more information about these labels
(in parcticular) than any other labels, and thus we learn no more than negligible information about
these labels from ⊥ queries. Formalizing this argument is the key to one of the steps in our overall
hybrid argument.

Implications. Our oracle – and its related separation – show that we could potentially live in a
world where one-way functions do not exist but sequential functions do exist. This would be a very
interesting portion of Pessiland [Imp95], and, as we show below, it wouldn’t completely rule out
cryptography (at least in a fine-grained sense).

Why Circuit Size and not Circuit Depth for the Inversion Circuit? At a first glance, it
would appear that we should have defined our inversion oracle to return results in time proportional
to the depth of a circuit, not the overall size. However, this turns out to be problematic, and we
thank anonymized for pointing this out to us. To see this, consider a circuit C with two “layers”
(illustrated in figure 1): the bottom layer is sets of bits which can represent valid inputs and outputs
to OMult,x, which we label P0, ..., Pk. For each i ∈ [0, k − 1], we “connect” Pi and Pi+1 with a circuit
stating that OMult,x (Pi) = Pi+1.

1 This results in a circuit of constant depth and width k+ 1 (or k if
we only count multiplication gates).

Figure 1: Illustration of the circuit C with input wires P0, P1, . . . , Pk ∈ {0, 1}` and output wire
b ∈ {0, 1}. y ∈ {0, 1}` is the label for the group identity and is hard-coded as a constant.

Note that if we give this circuit C to OInv, it will be the case that, with high probability,
Pk = OkMult,x (P0). If we allowed OInv to return a solution to this circuit in time less than k, we

1We can easily check equality with AND gates in binary circuits.
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would break the sequentiality of our candidate sequential function. Thus, we must not return any
outputs of OInv in time less than the number of multiplication gates in the input circuit. This
unfortunately means that we do not have a tight separation: we only rule out one-way functions
that take superpolynomial time to invert relative to the time necessary to compute them (and
not fine-grained OWFs). However, we consider this satisfactory since this rules out all standard
definitions of OWFs.

3 Overview of Other Results

We now outline our other results, which further explore the theory of sequential functions and
connections to cryptography.

3.1 Sequential Functions and PSPACE

We next explain our results concerning the equivalence of a deterministic, worst-case CISF and
PSPACE, and the non-equivalence of a worst-case variant of a general sequential function and
PSPACE.

CISFs and PSPACE Are “Equivalent”. Informally speaking, recall that a CISF is a sequential
function f that can be parameterized by a Round function, where f can be written in the form
f = Roundk (x) for some input x and some number of rounds k. We define and explain this fully
in Section 6. Importantly, the Round function must be evaluatable in polynomial time and have
polynomial input (and output) size. From this, it follows almost immediately that CISFs are in
PSPACE.

Showing that worst-case, decisional CISFs are PSPACE-complete is trickier. It’s straightforward
to define a worst-case, decisional CISF variant: to make the problem decisional, we can just define
the problem in the form of whether or not a particular value is the correct evaluation of the CISF
on a particular input, and to make it worst-case, define the problem to hold for all choices of valid
public parameters for the CISF. For a full, formal definition, please see Section 6.

To show that this version of a CISF is PSPACE complete, we use the true quantified boolean
formula (TQBF) problem. Recall a TQBF problem statement is of the form Q1x1Q2x2 . . . Qnxnφ(x1,
. . . , xn) where Q1, . . . Qn ∈ {∃, ∀} are quantifiers, x1, . . . , xn are boolean variables, and φ is a
boolean formula. The answer to the problem is true if and only if there exists an assignment of
x1, . . . , xn ∈ {0, 1} such that the overall boolean formula Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) is true.

A folklore result (explained in complexity theory textbooks, including [Pap07]) shows how to
recursively evaluate the validity of a TQBF statement. We write this recursion in the form of a
binary tree evaluation, and then show how to write a Round function that appropriately handles
each step of the tree evaluation, one after another (if desired). A naive evaluation of this recursion
might use exponential space. To ensure that this evaluation remains in PSPACE, we evaluate the
tree using a depth-first search style of evaluation. For full details, we again refer the reader to
Section 6.

General Sequential Functions Are Probably Not in PSPACE. A dynamic sequential function
(DSF) is a more general form of sequential function that does not necessarily have a nice round
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structure like a CISF. We define DSFs precisely in Section 4, but the exact properties of a DSF
beyond being a sequential function are not extremely important here. We show that there exists a
DSF that is not evaluatable in PSPACE in the random oracle model.

Our proof technique borrows from the constructions of memory-hard functions in the random
oracle model. As in the construction of many memory-hard functions, we first construct a graph
which requires a certain minimal number of pebbles to pebble, which we formally define in Section 6.
Then we use a technique by [DNW05] to convert the graph to a function, where roughly speaking, each
node in the graph represents a random oracle evaluation and the edges represent the input/output
flow. [DNW05] show that the time and space lower bounds for pebbling the graph readily translate
to time and space lower bounds for evaluating the resulting function. However, the parameters we
need are quite different from those used in memory-hard functions: secure memory-hard functions
require some minimal polynomial memory to evaluate efficiently, while we need to show that a DSF
exists that requires superpolynomial memory to compute.

One line of memory-hard functions is based on a well-known sequence of graph constructions:
concentrators → hyperconcentrators → superconcentrators1. We use this stack of graphs to build a
graph of random oracle evaluations that takes superpolynomial memory to evaluate. Unfortunately,
there are quite a few complications in getting this approach to work: for instance, we need to show
that all of our graphs can be compactly described in polynomial space–even if the graphs themselves
are superpolynomially large–and that, given a node on a graph and polynomial advice (in our case,
the description of the graph), its neighbors can be found, and these properties were not shown
previously in the literature. So, we have to take a deep dive into classic graph constructions, which
is a little bit tedious. However, this does, in fact, work out; for full details, please see Section 6.

3.2 Fine-Grained Cryptography from Sequential Primitives

We next explain the core ideas behind our constructions of fine-grained cryptoprimitives from
sequential functions and VDFs. We assume that we have a CISF (or, later, a VDF) that is not
necessarily one-way ; our proofs only rely on sequentiality and not one-wayness. Of course, if we had
access to one-way functions, we could immediately build much stronger cryptoprimitives.

Fine-Grained Symmetric Key Encryption. We start by showing how to build fine-grained
symmetric key encryption from a sequential function. Recall that traditional symmetric key
encryption, informally speaking, is an encryption scheme where two participants Alice and Bob have
a shared secret key and must send message(s) between each other in a way that an eavesdropping
adversary Eve cannot learn anything about the messages being sent. In traditional symmetric key
encryption, security must hold against any PPT adversary Eve; but in fine-grained symmetric key
encryption, security must only hold against a PPT adversary for some (polynomial) amount of time.

With this in mind, a simplified version of our scheme is (informally) as follows. In this overview,
we will assume a CISF f that outputs bit strings and takes time T to compute for both honest and
adversarial parties, although our construction can be generalized to other outputs and parameters.

• Setup: Alice and Bob begin with a shared secret, which consists of the description of a CISF
f as well as a shared key x that is a valid input for f .

• Precomputation: Alice and Bob both take Tnk time to compute fnk (x) for some integers
n, k, and they record each output f ik (x) for integers i ∈ [0, n].

1For an unfamiliar reader, we define all of these explicitly in Section 6.
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• Initial Encryption: To encrypt an initial (bit) message m1, Alice samples a random binary
string r1 with the same length as the output of f and computes c1 = 〈fk (x) , r1〉 ⊕m1, where
〈·, ·〉 denotes the inner product, and ⊕ denotes the XOR operation. The ciphertext consist of
the tuple ct1 = (c1, r1).

• Time Passes: Suppose Tk time passes, and during this time Alice and Bob continue to
iteratively compute f .

• Next Encryption: To encrypt a message m2, Alice first samples a random r2, computes
c2 = 〈f3k (x) , r2〉 ⊕m2 and outputs ct2 = (c2, r2).1

• The Ending: This process can continue until the encryptions “catch up” to Alice and Bob
with respect to f . In our example here, Alice and Bob will be able to exchange

⌊
n
2

⌋
− 1

messages, since each message “uses” k computations.
Decryption in the above scheme by Bob is immediate since Bob will have precomputed and

stored all of the output values of f that appear in the ciphertexts, but what about security? As an
example, let’s consider the second encryption ct2. Even if Eve sees fk (x) in the clear, she sees ct2
only Tk time later. However, to successfully decrypt ct2 at the time it is sent, Eve would need to
compute f3k (x) given fk (x) in time Tk, which would contradict the sequentiality property of the
CISF. However, note that security would only last for Tk time, because Eve could have computed
f3k (x) by that time. We formalize our definitions of fine-grained symmetric key encryption and our
scheme (and provide a security proof) in Section 7.

Fine-Grained MACs. It turns out there is a simple extension of the above argument to message
authentication codes (MACs) as well. Given a sequence of bits bi,j for i ∈ [1, `] and j ∈ {0, 1} (for
some ` that approximates a security parameter) that are known to Alice and Bob but unpredictable
to Eve for some amount of time–which we can generate using the construction above–we can construct
a MAC of a single bit message representing a bit x by outputting the bitstring b1,x||b2,x||...||b`,x. We
can obtain these bits in a “fine-grained secure” way using the same idea as from our symmetric-key
encryption scheme. For messages longer than one bit, we can just repeat this core idea for each bit.

This MAC is obviously extremely inefficient, and unfortunately is not very useful for MACing
large messages either: to do so would seemingly require a CRHF, which would imply a OWF,
which we are not assuming. So this construction would be very bad practically, but we still find it
interesting because generic constructions of MACs from symmetric-key encryption, while known in
the standard model, would not necessarily hold in the fine-grained setting.

Fine-Grained PKE from VDFs and null iO. We next show how to build fine-grained PKE
from verifiable delay functions (VDFs) with certain additional properties and indistinguishability
obfuscation (iO) for null circuits. Recall that a VDF is, informally, a sequential function that can
be computed along with an (efficiently verifiable) proof that it was computed correctly. In our work,
we will assume some (somewhat strong) additional properties on the VDFs we need; we refer the
reader to Section 9 for the full details.

To build fine-grained PKE from these assumptions, Alice first samples a VDF f , an input x,
and computes y = f (x) as well as a proof π. Alice’s public key is the tuple (x, π) and the secret key
is y. To encrypt a message, Bob obfuscates a program that, informally speaking, does the following:

• On input y′, if the VDF proof verification holds for (x, y′, π), output the message m.
• Otherwise, output ⊥.

1Note that an adversary could have computed f2k (x) by this time period, which is why Alice must use f3k (x).
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Note that the security of construction almost immediately follows if we were to use virtual black-box
(VBB) obfuscation: the only effective way to make the oracle output the message m is to provide
the correct output of the VDF y. Moreover, note that proof verification of VDFS is required to
be efficient (with time uncorrelated to the length of time necessary to compute the VDF) so the
program being obfuscated can be efficient as well. The main challenge in the proof is using null
iO instead of VBB; we defer the details of this to Section 9 but offer some intuition as to why the
proof works below.

Our proof for iO is actually quite subtle: a natural approach would be to use a puncturing
argument, but we are assuming that OWFs do not exist, and therefore have no PRFs (or other
minicrypt primitives) to puncture! Instead, we assume that our VDF has a property called proof
indistinguishability : namely, an adversary that has not computed the final output of the VDF cannot
distinguish a correct proof of a particular input (when given the input) from random. While we do
not know whether or not this would hold for a VDF that does not imply a one-way function (because
we don’t know of any such VDFs), it does appear to essentially hold for some existing VDFs (e.g.
that of [Wes19]) in that the proofs will look random unless “almost all” of the computation has
been done.

With this property, as well as the fact that proofs are unique, we can construct a hybrid argument
where we switch between encryptions of 0 and 1 in a way that is undetectable to an adversary.
Roughly speaking, given an encryption of zero, we first switch out a correct proof with a proof
that doesn’t verify for any input because they are assumed to be indistinguishable (assuming only
a certain amount of time has elapsed). At this point, we have a program that outputs ⊥ on all
programs, so we can apply null iO and switch to a different program–one that has one as a message
instead of zero. Then, we can switch the proof back to being valid and we have an encryption of
zero.

Note that, unlike our previous symmetric-key scheme, this construction allows us to encrypt
arbitrary-length messages.

Fine-Grained Key Exchange and Commutative Sequential Functions. In order to explore
what sort of primitive is necessary for fine-grained key exchange, we show how to build fine-grained
key exchange from a primitive that we call a commutative sequential function. Informally speaking,
a commutative sequential function is one where two players Alice and Bob can each “partially”
compute a sequential function, send the partial computation to each other, and have the other
party finish the computation, all while an eavesdropping adversary Eve, upon seeing the exchange
of messages, cannot compute the function faster than if she started from the beginning. We explain
this in detail in Section 10.

4 Preliminaries

Notation-wise, for n ∈ N, we let [n] denote the ordered set {1, 2, . . . , n}.
For random distributions X and Y , let H∞(X|Y ) denote the min-entropy of X conditioned on

Y . Furthermore, let Um denote a uniformly distributed random variable of m bits for some positive
integer m.

Definition 1 (Statistical Distance). Let D1 and D2 be two distributions with support in X. The
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statistical distance between D1 and D2 is

∆(D1, D2) =
1

2

∑
x∈X
|Pr[D1 = x]− Pr[D2 = x]|

Remark 1. Let A and B be two random variables with support in X. We use ∆(A,B) to denote
the statistical distance ∆(PA, PB) between the underlying distributions of the random variables.

Remark 2. Let X ≈ε Y denote that the two distributions are statistically close, or ε-close, i.e. the
statistical distance between these two distributions ∆(X,Y ) ≤ ε.

Definition 2 (Mutual Information). Let X and Y be two two random variables with sample space
X and Y respectively. The mutual information between X and Y is given by

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
,

where p(x, y) is the joint probability mass function of X and Y , and p(x) and p(y) are the marginal
probability mass functions of X and Y respectively.

Remark 3. One useful property that we will utilize of mutual information is

I(X;Y ) ≡ H(X)−H(X|Y ),

where H(X) is the marginal entropy of X and H(X|Y ) is the conditional entropy of X conditioned
on Y . Notice that if X and Y are independent, then I(X;Y ) = 0; if X and Y are identical, then
I(X;Y ) = H(X) will be maximal.

Lemma 1 (Leftover Hash Lemma for Conditional Min-Entropy [ILL89]). Let X, E be a joint
distribution. If H∞(X|E) ≥ k, and m = k − 2 log(1/ε), then

(H(X), H,E) ≈ε/2 (Um, Ud, E),

where m is the output length of a universal hash function H, and d is the length of the description
of H.

4.1 Sequential Functions

We here recall the definitions of sequential functions due to [JMRR21].

Definition 3 (Sequential Functions). A selective sequential function (SSF) F = (Setup,Gen,
Eval) is defined as the following tuple of algorithms:

Setup(1λ , k )→ pp: On input the security parameter 1λ , and k ∈ 2o(λ) , the setup algorithm
returns the public parameters pp. By convention, the public parameters encode an input domain
X and an output domain Y .

Gen(pp , k )→ x: On input the public parameters pp , and k ∈ 2o(λ) , the instance generation
algorithm samples a random input x← X.
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Eval(pp, x, k)→ y: On input the public parameters pp, an input x ∈ X, and k ∈ 2o(λ), the
evaluation algorithm returns an output y ∈ Y .

An SSF is an Adaptive Sequential Function (ASF) if Setup is independent of k. An ASF
is a Dynamic Sequential Function (DSF) if Gen is independent of k. For SSFs, ASFs, and
DSFs, Gen and Setup are required to be PPT in the security parameter. For SSFs and ASFs, Gen
is allowed to also have a polylog dependency on k, and for SSFs, Setup is also allowed to have a
polylog dependency on k.

An SF F satisfies (tC(λ), tA(λ))-sequentiality for machine models (MC ,MA) if the following
hold:

1. There exists an algorithm in the computational model MC such that for all k and for all x
that can be output by Gen, it computes Eval in at most time k · tC(λ).

2. For all λ ∈ N and for all tuples of PPT machines (A0,A1,A2), such that A2 runs in time
strictly less than k · tA(λ) in the computational model MA, there exists a negligible function
negl such that:

(a) If F is a selective sequential function:

Pr

 y = y′
(k, τ0)← A0(1λ), pp← Setup(1λ, k),
τ1 ← A1(pp, k, τ0), x← Gen(pp, k),

y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

 = negl(λ)

(b) If F is an adaptive sequential function:

Pr

 y = y′
pp← Setup(1λ), (k, τ)← A1(pp),

x← Gen(pp, k),
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

 = negl(λ)

(c) If F is a dynamic sequential function:

Pr

 y = y′
pp← Setup(1λ), (k, τ)← A1(pp),

x← Gen(pp)
y′ ← A2(pp, x, k, τ), y ← Eval(pp, x, k)

 = negl(λ)

We next define iterative sequential functions.

Definition 4. An Iterative Sequential Function (ISF) is a Sequential Function such that the Eval
function is iterative: there exists a function Round such that Eval(pp, x, k) = (Round(pp, ·, k))(k)(x)
where ’·’ represents some fixed-length, polynomially-sized bit string that is only dependent on the
output of the previous call to Round. We have Selective, Adaptive and Dynamic Iterative Sequential
Functions defined in the same way as Sequential Functions. In addition, we say that a DISF is a
Continuous ISF (CISF) if Round is also independent of k.

We will use CISFs considerably in this paper, so we provide some intuition hree. It may seem
like every ISF is a CISF, but this is not the case. An example of an ISF that is not a CISF can easily
be seen by modifying the FHE-based construction of [JMRR21] to not use FHE bootstrapping every
round. If that construction used bootstrapping, say, every other round, then the Round function
needs to take k as an input because it needs to do different things in even and odd rounds. A
simpler (if more artificial) construction that is an ISF but not a CISF could be a sequential function
based on raising an element of a group of unknown order to, say, the 3rd power in odd rounds and
the 5th power in even rounds.
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Alternative Definitions of Sequential Functions. We note that there are potentially other,
alternative ways of defining sequential functions. One obvious way might be, for an ISF, allowing
the adversary to choose k after seeing the input value x. For the applications we consider, typically
k is fixed in advance, but for other applications, this might be a useful extension of the definition.
We note that all of our results for ISFs still hold for this change to the definition with at most minor
changes, including our main separation result.

4.2 Verifiable Delay Functions

We next recall the definition of Verifiable Delay Functions (VDFs). We use the definition
from [JMRR21], which is adapted from [BBBF18, DGMV19]. Specifically, we define sequen-
tiality twice: once for their (T, ε) notion of sequentiality, and once for our (TC , TA) definition
of sequentiality. This new definition helps us more accurately take into account differences in
computational models (and thus hardware). The two definitions are trivially equivalent if the same
hardware model is used for both honest and adversarial evaluators.

Definition 5 (Verifiable Delay Function). A VDF V = (Setup,Gen,Eval,Vf) is defined as the
following tuple of algorithms:

Setup(1λ)→ pp: On input the security parameter 1λ, the setup algorithm returns the public pa-
rameters pp. By convention, the public parameters encode an input domain X and an output
domain Y .

Gen(pp)→ x: On input the public parameters pp, the instance generation algorithm samples a
random input x← X.

Eval(pp, x, T )→ (y, π): On input the public parameters pp, an input x ∈ X, and a time parameter
T ∈ 2o(λ), the evaluation algorithm returns an output y ∈ Y together with a proof π. The
evaluation algorithm may use random coins to compute π, but not for computing y.

Vf(pp, x, y, π, T )→ {0, 1}: On input the public parameter pp, an input x ∈ X, an output y ∈ Y , a
proof π, and a time parameter T , the verification algorithm outputs a bit {0, 1}.

Efficiency. We require that Setup and Gen run in time poly(λ), and Vf runs within poly(log(T ), λ).
We require Eval to run in exact parallel time T with at most poly(log(T ), λ) processors.

Definition 6 (Completeness). A VDF V = (Setup,Gen,Eval,Vf) is complete if for all λ ∈ N and
all T ∈ N, the following holds:

Pr

 Vf(pp, x, y, π, T ) = 1
pp← Setup(1λ)
x← Gen(pp)
(y, π)← Eval(pp, x, T )

 = 1

Definition 7 (Soundness). A VDF V = (Setup,Gen,Eval,Vf) is sound if for all λ ∈ N and for all
PPT machines A, there exists a negligible function negl such that:

Pr

 Vf(pp, x, y′, π′, T ) = 1 and y 6= y′
pp← Setup(1λ)
(T, x, y′, π′)← A1(pp)
(y, π)← Eval(pp, x, T )

 = negl(λ)
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We can define sequentiality for VDFs:

Definition 8 ((T, ε)-Sequentiality). A VDF V = (Setup,Gen,Eval,Vf) is (T, ε)-sequential if for all
λ ∈ N and for all pairs of PPT machines (A1,A2), such that the parallel running time of A2 (with
poly(T, λ) processors) is less than (1− ε) · T , there exists a negligible function negl such that:

Pr

[
y = y′

pp← Setup(1λ), (T, τ)← A1(pp), x← Gen(pp)
y′ ← A2(pp, x, T, τ), (y, π)← Eval(pp, x, T )

]
= negl(λ)

Definition 9 ((TC , TA)-Sequentiality). A VDF V = (Setup,Gen,Eval,Vf) is (TC , TA)-sequential if
for all λ ∈ N and for all pairs of PPT machines (A1,A2), such that the running time of A2 on
computational model MA is less than TA, there exists a negligible function negl such that:

Pr

[
y = y′

pp← Setup(1λ), (TC , τ)← A1(pp), x← Gen(pp)
y′ ← A2(pp, x, TC , τ), (y, π)← Eval(pp, x, TC)

]
= negl(λ)

4.3 Indistinguishability Obfuscation

Lastly, we recall the definition of indistinguishability obfuscation.

Definition 10 (Indistinguishability Obfuscation [BGI+01]). An indistinguiability obfuscator iO
for a circuit class {Cλ} is a PPT uniform algorithm satisfying the following conditions:

• Functionality: For any C ∈ Cλ, then with probability 1 over the choice of C ′ ← iO(1λ, C),
C ′(x) = C(x) for all inputs x.

• Security: For all pairs of PPT adversaries (S,D), if there exists a negligible function α such
that

Pr[∀x,C0(x) = C1(x) : (C0, C1, σ)← S(λ)] > 1− α(λ)

then there exists a negligible function β such that∣∣Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

When Cλ is the class of all polynomial-size circuits, we simply call iO an indistinguishability
obfuscator. There are several known ways to construct indistinguishability obfuscation:

• Garg et al. [GGH+13] build the first candidate obfuscation from cryptographic multilinear
maps.

• Provably from novel strong circularity assumptions [BDGM20, GP21, WW20].

• Provably from “standard” assumptions [JLS21]: (sub-exponentially secure) LWE, LPN over
fields, bilinear maps, and constant-locality PRGs.

For the sake of this paper, we only need a very weak form of iO, namely iO for null circuits.
It has the same functionality as a normal iO, and can obfuscate circuits with non-null outputs,
but its security only needs to hold for null programs that output ⊥ on all inputs. Notice that it is
equivalent to witness encryption [GGSW13].
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Definition 11 (Security of iO for Null Circuits [WZ17, GKW17]). For all pairs of PPT adversaries
(S,D), if there exists a negligible function α such that

Pr[∀x,C0(x) = C1(x) = ⊥ : (C0, C1, σ)← S(λ)] > 1− α(λ)

then there exists a negligible function β such that∣∣Pr[D(σ, iO(λ,C0)) = 1]− Pr[D(σ, iO(λ,C1)) = 1]
∣∣ < β(λ)

5 An Oracle Separation for One-Way Functions and Sequential
Functions

In this section, we show that there exists an oracle that implies a sequential function but does not
imply a time-bounded one-way function. Specifically, for a prime-order cyclic group G with order
p = Θ(2λ), a random generator g for the group, and a randomly sampled group element r ∈ G, we
consider the following function:

fOMult(r, T ) = r · gT

where we compute r · gT in the group using a group multiplication oracle OMult which computes the
“multiply by g” group operation with the generator g hard-coded. To compute this result, one just
need to call the OMult oracle iteratively for T times, starting with the input r. While this would be
one-way in any number of generic group models (e.g. [Sho97]), we also provide an oracle OInv that
takes as input circuits with standard binary gates, OMult gates, and other OInv gates that allows
us to invert any kind of function or circuit we might build using these tools. As we explained in
the overview, the challenge (and what we spend most of our time doing) is proving that providing
access to the OInv oracle does not break the inherent sequentiality of OMult.

Our construction borrows heavily from generic group techniques: we imagine that instead of
given group elements directly, we are only given labels of group elements, similar to that of Shoup’s
version [Sho97] of the generic group model. For extensive intuition on our proof, please go back to
section 2.

5.1 Sampling a PSPACE Solution

One of the core technical tools that the proof relies on is a uniform generator to sample a random
accepting instance (i.e. solution) for a PSPACE-relation, similar to the generator for an NP-witness
due to Bellare, Goldreich, and Petrank [BGP00]. They show how to construct a uniform generator
for an NP-relation using an NP-oracle.

Lemma 2 ([BGP00]). Let R be an NP-relation. Then there is a uniform generator for R which is
implementable in probabilistic, polynomial time with an NP-oracle.

We essentially want a PSPACE version of the above lemma, and it turns out that we can construct
such generators quite directly (in fact, our lemma is much easier to prove than the one above).

Lemma 3. Let R be a PSPACE-relation. Then there is a uniform generator for R which is
implementable in probabilistic, polynomial time with an PSPACE-oracle.
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Proof. Let the input to R be n bits, the generator works in these following two steps.
First, we determine the total number of solutions m for the relation R. To do so, we construct

the following PSPACE statement for k = 0, 1, 2, . . . , 2n: there exists at least k solutions for R. And
then we can use the PSPACE-oracle to determine if the statement is true or not. Naively, we can
iterate k from 0 up to 2n to obtain the number of solutions with O(2n) calls to the PSPACE oracle.
Or, we can perform a binary search by starting with k = 2n−1, and recurse in the half where m lies
in. This gives us m in O(n) calls to the PSPACE oracle.

Then using m, we sample a uniform i ∈ [m]. The generator will output the i-th solution in the
following way. Fix an ordering of all the inputs, say just an increasing order according to the bit
values. We construct the following PSPACE statement: the first bit of the i-th solution for R is 0.
We use the PSPACE oracle to solve for the statement and hence is able to determine the first bit of
the i-th solution. We repeat this n times to get all the n bits of the i-th solution, which we output.

5.2 Definitions for the Proof

In this subsection, we define the other necessary concepts for the proof. In particular, we introduce
notation which will allow us to much more concisely state arguments in our proof. Let λ be the
security parameter. In the proof, we will be working with the cyclic group G with prime order
p = Θ(2λ) and a generator g sampled uniformly at random.

Labeling of Group Elements. Similar to that of Shoup’s version [Sho97] of the generic group
model, we imagine access to the group elements through the labels of group elements, following the
formalization by Zhandry [Zha22]. The labels of group elements will be n-bit strings with 2n � p
where n = poly(λ). The label for a group element gx with x ∈ Zp is determined by the labeling
function L : Zp → {0, 1}n modeled as a random function, and is denoted by L(x). For instance, the
group element g7 will have label L(7). Notice that x here is the exponent, and the group element is
gx.

Additionally, we let L(x) denote the distribution of the label for gx, and `(x) ∼ L(x) be the actual
sampled label. Similarly, for the ease of syntax, we let x(`) denote the exponent in gx whose label is
`. For instance, if ` is the label for the group element g7, we will have x(`) = 7. We have x(`) = ⊥
if ` is not a valid label, i.e. there is no such x that gx has the label `. So technically, we have
x(`(x)) = x and `(x

(`)) = `.
In some cases in our proof, we will require `(x) be to sampled from an appropriate distribution

to account for possible constraints posted to the label distribution. For instance, through some
carefully crafted queries, an adversary might be able to produce a constraint that the first bit of
the label for gx is 0. In that case, `(x) will no longer be a uniform n-bit string,. Instead, it will be
sampled from the distribution `(x) ∼ 0||Un−1, where Un−1 is a uniform distribution of a (n− 1)-bit
string.

Construction of the Sequential Function. The original sequential function definition due
to [BBBF18] allows for sequentiality T up to 2o(λ), but in order for the simulated random oracle
to record the queries, here we only allow up to a polynomial number of queries. This requires us
to use a fine-grained definition of sequential function such as from [JMRR21] that allows for only
polynomial evaluations and not a definition of sequential function like that of [BBBF18] that allows
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even honest users to compute the function a superpolynomial number of times. We note that these
definitions are mostly equivalent in practice because in [BBBF18], the authors assume that both
adversaries and honest users can perform superpolynomial sequential work. Please see Section 4 for
the full definitions.

Towards constructing our sequential function, we sample a random generator g ∈ G. For a
desired time bound T = poly(λ)� p , our sequential function requires the adversary to query T
times in sequence a “multiply by g” oracle OMult which we define below, along with other oracles
used in the proof. To model the sequential time required for different computations, the game will
proceed in rounds, and the oracle queries will take some corresponding number of rounds to execute
before they are answered. Roughly speaking, the more complicated an oracle query is, the more
rounds it will need to wait before being answered. We note that, like a random oracle, our oracles
are not efficiently implementable (they would require exponential space). We specify the oracles
below:

• OMult(α1)→ α2: takes as input a label α1. If x(α1) = ⊥, i.e. α1 is not a valid label of a group

element, output ⊥. Otherwise, output α2 = `(x
(α1)+1), which is the label for the group element

gx
(α1)+1 = gx

(α1) · g, where gx
(α1) is the corresponding group element for the label α1. If the

query is received in round i, the response will be provided at round i+ 1.

• OMultInv(α1) → α2: takes as input a label α1. If x(α1) = ⊥, i.e. α1 is not a valid label of

a group element, output ⊥. Otherwise, output α2 = `(x
(α1)−1), which is the label for the

group element gx
(α1)−1 = gx

(α1) · g−1. If the query is received in round i, the response will be
provided at round i+ 1. We note that this oracle is implied by OInv but we list it here anyway
because it plays an integral role in our proof.

• OInv(C, y)→ z/⊥: takes as input a circuit C with potentially polynomially many input and
output wires which can either represent bits or labels, a desired output y, and outputs a
uniformly random solution z s.t. C(z) = y, and ⊥ in the case if no such z exists. The circuit
C can contain binary gates, “multiply by g” and “multiply by g−1” gates, and inversion gates
which may recursively use OInv to invert some circuit C ′ on some output y′. Let d be the size
of the circuit C, which we will define below (roughly speaking, it is the number of gates in the
circuit, counted recursively), then for a query received in round i, the response will be sent at
round i+ d.

Definition 12. The size of a circuit C containing binary gates, group multiplication gates and
inversion gates is defined recursively. First, we assign costs to each gate. A binary gate has cost 0,
a “multiply by g” or “multiply by g−1” gate has cost 1, and an inversion gate for a circuit C has
cost equal to the size of C. Then the size of the circuit is defined to be the summation of the costs
of all the gates in the circuit.

Intuitively, this definition implies for any power i, it takes at minimum i rounds to compute
gi or g−i assuming that the inversion oracle OInv isn’t too useful for speeding up the computation.
This intuition does turn out to be true, and we formalize and prove this later in our proof.

We formally define our construction of the sequential function as follows.

• Setup(1λ): To set up the sequential function, we sample the cyclic group G with prime order
p = Θ(2λ) and labels as n-bit strings with n = poly(λ) > 2 log ||G||. We sample a random

23



generator g ∈ G and define OMult and OMultInv with g hard-coded in. The public parameter
pp consists of the group description G, the label length n, and access to random oracles OMult,
OMultInv, and OInv, as defined above.

• Gen(pp): To generate an input α for the sequential function, sample a random group element
r ∈ G and the input α is the corresponding label for the group element r. Notice that if we
have r = gx, then we have α = `(x), where `(x) denotes the label for the group element gx = r.

• Eval(pp, α, T ): To evaluate the sequential function, invoke the random oracle OMult a total
of T times starting from α. The output is hence β = OMult

(T )(α), which corresponds to the
group element r · gT . Notice that by setting the Round function to be OMult, this is in fact a
CISF by definition.

In the proof, W.L.O.G., we assume r = g0 is the multiplicative identity, and hence we have
α = `(0) and the sequential function we compute is simply

Eval(pp, α, T ) = OMult
(T )(`(0)) = `(T ),

which we will argue to be indeed sequential. We emphasize that this does not change any fundamental
properties of the proof, but does allow us to ignore r in our description, considerably simplifying
the presentation in some places.

5.3 Proof Outline

To show that this gives us a sequential function that is not one-way, we show that given an inversion
oracle OInv that inverts any binary circuit with additional “group multiplication” gates as well as
“gates” that represent calls to itself, the function is still sequential. But now with the inversion oracle,
the function can be easily inverted, and hence is not one-way. Effectively, we wish to show that
for any adversary AOMult,OInv(α) that outputs OTMult (α), A must still be sequential (take time T ).
Notice that similar to the generic group model, we never hand out the group elements directly - all
the adversary sees are the labels for them. In the proof, in order to simulate the inversion oracle, we
assume the existence of a PSPACE oracle that all parties (including the adversary) have access to.

We note that arguing that no one-way function can exist in this model is simple: because OInv

can be called recursively on itself and we have a PSPACE oracle, there is nothing that cannot be
inverted in our model. However, arguing that our construction is sequential is substantially more
complicated. We prove this using a hybrid argument, which proceeds essentially as follows:

• H0: we start with the original pair of oracles (OMult,OInv). We note that this corresponds to
the real game as we have defined it, and also that, as defined, it is not efficiently implementable
(it would require exponential space).

• H1: we move to an efficient simulation (SOPSPACE) where SOPSPACE is a simulator with two
interfaces and access to a PSPACE oracle, and it simulates both the group multiplication oracle
and the inversion oracle by maintaining a list of constraints. This is an efficient (assuming a
PSPACE oracle) simulation, and the (relatively straightforward) challenge in moving from H0

to H1 is just showing that this simulation is correct.

• H2: we make a relatively minor change to the simulator. In addition to any queries the
adversary makes, for every label β that has been returned to the adversary, we also query
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OMult (β) and OMultInv (β) if they have not yet been queried. If the adversary does not make
these queries, we just store them and don’t return them. Since this would be a valid way for
an adversary to query, its indistinguishability from H1 also follows from the correctness of our
simulator.

• H3: we simulate using the same simulator, but when sampling the labels for group elements gi

where i ≤ T , we ignore the constraints that follow from queries to OInv that result in ⊥. We
note that, by our description of the previous hybrid, these will be sampled by the simulator in
the course of the game.

• H4: we simulate using the simulator as in H3, except that when sampling the labels for elements
gi where i ≤ T , we query the actual group multiplication and the group multiplicative inverse
oracle (OMult,OMultInv) . In other words, the values of these labels corresponding to group
elements with small exponent are sampled completely independently from the rest of the
simulation.

We show that for any efficient adversary, it cannot distinguish between two consecutive hybrids
with non-negligible probability. And then we show that in H4, no adversary can output OTMult (α)
in sequential time less than T . This last step is rather straightforward since only the OMult and
OMultInv oracles are queried; we never query the OInv oracle in the simulation. The bulk of the proof
is in proving the indistinguishability of H2 and H3, as well as H3 and H4.

5.4 Hybrid Definitions

We prove the following theorem through a sequence of hybrids.

Theorem 1. Assuming the existence of a PSPACE oracle, then there exists an oracle O and a
function fO with oracle access to O such that fO is a sequential function, but not a one-way
function.

We begin the proof by defining a shortcutting experiment/game for the adversary, where the
adversary wins by computing `(T ) in strictly less than T rounds. To show the adversary’s advantage in
winning this game is negligible, we modify the experiment through a sequence of hybrid experiments,
so that in the final hybrid, it is easy to argue about the adversary’s negligible winning probability.

Shortcutting Game.

The adversary A plays the game ShortcutOMult,OInv
A (α, T ), for a label α ∈ {0, 1}m that corresponds to

the group identity and a sufficiently large exponent T = poly(λ). It is allowed q = poly(λ) parallel
oracle access to OMult and OInv, i.e. it can submit up to q number of parallel queries to the oracles
each round. The rule of the game is rather simple: the adversary wins the game if it outputs `(T ),
the label that corresponds to the group element gT , in time less than T , and loses otherwise. Put
more formally, consider the following game:

Shortcutting Game ShortcutOMult,OInv
A (α, T, q):

• For round i = 1, 2, . . . , T − 1:

– At the beginning of the round, A receives responses from OMult and OInv for queries
submitted in previous rounds.
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– A submits up to q number of parallel queries to OMult and OInv. Recall that A will
receive responses from OMult in round i+ 1, and those from OInv in round i+ d where d
is the size of the circuit C queried.

• At any time, A can terminate the game by outputting a label β. It wins the game if β = `(T ),
and loses otherwise.

• After T − 1 rounds have expired, the adversary automatically loses the game.

Notice that we wish to show that for all adversaries, the probability of winning the shortcutting
game is negligible.

Hybrid 0.

In hybrid 0, the adversary plays the original shortcutting game ShortcutOMult,OInv
A (α, T, q).

Hybrid 1.

In Hybrid 1, we will simulate OMult and OInv for the adversary using a simulator SOPSPACE . The
simulator has two interfaces (and hence can answer queries to both oracles) and operates in the
following manner:

• S maintains a list of constraints. The initial constraint is that α is the label for the multiplicative
identity. We denote this constraint as INIT . For every query that is responded to with a
non-⊥ output, we add appropriate LABEL constraints which takes the form of a pair of labels
(α1, α2), meaning that x(α1) = x(α2) + 1, i.e. the group element that corresponds to α1 is
equal to the generator g multiplied by the group element that corresponds to α2. We denote
the entire set of LABEL constraints as LABEL. For queries that have a ⊥ response, we add
NEVER constraints, indicating that a circuit is not satisfiable, which we specify in a moment.
Similarly, we denote the set of NEVER constraints as NEVER.

• To answer a query for OMult(α1), construct the following two PSPACE-relations:

– R1: There is an assignment of labels to all group elements in G that satisfies all the
constraints (i.e. INIT ∧ LABEL ∧ NEVER) and that α1 is a valid label.

– R2: There is an assignment of labels to all group elements in G that satisfies all the
constraints.

Let a be the number of solutions for the PSPACE-relation R1, and b be the number of solutions
for R2. Then:

– With probability 1 − a/b, output α2 = ⊥, and record a NEVER constraint that
OMult(α1) = ⊥, meaning that α1 should never be a valid label.

– With probability a/b, output α2 that is computed in the following way. First, use a
uniform generator for R1 based on Lemma 2 to sample a satisfying solution for R1. Using
the assignment of labels in this solution, first look up the group element with exponent
x(α1) that corresponds to the label α1, and then find the label α2 that corresponds to the
group element with exponent x(α1) + 1. Notice that we essentially have α2 = `(x

(α1)+1).
Record (α1, α2) in the list of LABEL constraints.
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At a first glance, the response to multiplication queries may seem unnecessarily complex. Why
do we need to do more than just check if an input label is valid and just use the existing LABEL
constraints naturally? However, we emphasize that asking the oracle to multiply invalid labels
creates NEVER constraints, and there can be seemingly complicated interplay between NEVER
constraints and asking the multiplication oracle to multiply things that are not confirmed to be
valid labels. So we unfortunately need a rather complicated description here.

• To answer a query for OInv(C, y), construct the following two PSPACE-relations:

– R1: There is an assignment of labels to all group elements in G that satisfies all the
constraints and that there exists an input z s.t. C(z) = y.

– R2: There is an assignment of labels to all group elements in G that satisfies all the
constraints.

Notice that here, perhaps a bit counter-intuitively, we are still counting the number of possible
label assignments for the group elements, instead of possible assignments of wire values. This
is because the distribution of whether a circuit is satisfiable should also be dependent on the
previous label assignments, not just the circuit itself.

Let a be the number of solutions for the PSPACE-relation R1, and b be the number of solutions
for R2. Then:

– With probability 1−a/b, output z = ⊥, and record a NEVER constraint that OInv(C, y) =
⊥, meaning that the inversion query on (C, y) should never be satisfiable.

– With probability a/b, output z that is computed in the following way. First, use a uniform
generator for R1 based on Lemma 2 to sample a satisfying solution for R1. Then use the
PSPACE oracle again to generate a solution for the following PSPACE-relation: under
the assignment of labels in the solution for R1, there exists an assignment of values to
input and output wires in C such that the output of the circuit is y. Using this solution,
simply output z as the value in the input wire to the circuit. To maintain the list of
constraints, run the circuit C with z as input. For each “multiply by g” gate in C with
input wire α1 and output wire α2, record (α1, α2) in the list of constraints. For each
“multiply by g−1” gate with input wire α1 and output wire α2, record (α2, α1) in the list
of LABEL constraints.

Hybrid 2.

In Hybrid 2, we simulate OMult and OInv using the same simulator as in H1, with a slight twist.
Recall that the simulator S maintains a list of constraints consisting of INIT ,LABEL and NEVER,
and these constraints are added at the beginning of the experiment (INIT ) or when answering
an oracle query (LABEL and NEVER). In hybrid 2, we will “predict” which constraints will be
added later, and we sample them proactively at the beginning of each round. Notice that we
are only sampling these constraints behind the scenes in the simulator, the interaction with the
adversary remains the same as in hybrid 2 in that we don’t send any additional things to the
adversary. With this “proactive sampling” technique, we will add some LABEL constraints at
the beginning of each round, which we denote as AUTO∗ and AUTO, and we will explain the
difference between them in a moment. Whenever we sample a label, it will now be conditioned on
INIT ,LABEL,NEVER,AUTO∗ and AUTO.
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With proactive sampling, for any label α1 that the adversary has, we “predict” that since the
adversary already has α1, it might query OMult(α1) or OMultInv(α1) in the future, so we proactively
sample the constraints we would get if the adversary were to make these two queries, which essentially
requires us sampling the labels `(x

(α1)+1) and `(x
(α1)−1).

Put more concretely, at the beginning of round i, for any label α1 that appears in INIT ,LABEL,
AUTO∗, or AUTO constraints, we first check whether `(x

(α1)+1) and `(x
(α1)−1) haven been sampled

yet. If they are already sampled, we make sure to not resample them, as that will cause a collision
in the label-to-group-element mapping. If either of them hasn’t been sampled yet, say `(x

(α1)+1)

for instance, we sample it using the PSPACE oracle, conditioned on INIT ∧ LABEL ∧ NEVER ∧
AUTO∗ ∧AUTO. Notice that this label can be though of as sampled uniformly (conditioned on all

existing constraints) as α2 = `(x
(α1)+1) ∼ L(x(α1)+1)|INIT ∧ LABEL ∧ NEVER ∧AUTO∗ ∧ AUTO.

If x(α1) = i− 1, this means α1 = `(i−1), and α2 = `(i), so they are the labels one would get if
one were to follow the honest execution trace by iteratively querying OMult starting with the initial
input α. For these α1’s, we add the label constraint (α1, α2) to the set of AUTO∗ constraints. For
all other α1’s, we add the label constraint (α1, α2) to the set of AUTO constraints.

It works similarly for `(x
(α1)−1). We sample α3 = `(x

(α1)−1) ∼ L(x(α1)−1)|INIT ∧ LABEL ∧
NEVER ∧ AUTO∗ ∧ AUTO, and if x(α1) = −i + 1, we add the constraint (α3, α1) to AUTO∗;
otherwise, we add it to AUTO.

The rest of the simulator works exactly as in H1. Notice that the constraints in AUTO∗ and
AUTO are sampled in the same way, so for now they are just different categorizations depending on
which group elements the labels correspond to. Namely, if the labels in the constraints correspond
to g−i, g−i+1, . . . , g−1, g0, g1, . . . , gi, i.e. the group elements in the honest execution trace, they are
put in AUTO∗ 1; all other constraints go to AUTO. In the future hybrids, we will further modify
how the constraints in AUTO∗ are sampled, which the main reason why we separate them out.

Hybrid 3

In Hybrid 3 we modify the way the AUTO∗ constraints in H2 are sampled.
Recall that in hybrid 2, for the AUTO∗ constraints, we sample α2 = `(i) and α3 = `(−i) at

round i, and we sample them uniformly as `(i) ∼ L(i)|INIT ∧LABEL∧NEVER∧AUTO∗ ∧AUTO
and `(−i) ∼ L(−i)|INIT ∧ LABEL ∧ NEVER ∧ AUTO∗ ∧ AUTO. In H3, we will sample them as
`(i) ∼ L(i)|INIT ∧LABEL∧AUTO∗∧AUTO and `(−i) ∼ L(−i)|INIT ∧LABEL∧AUTO∗∧AUTO.
Notice the difference is that we sample them no longer conditioned on the NEVER constraints.

This is the only change we make in this hybrid. For constraints in AUTO, they are still sampled
conditioned on NEVER and the rest of the simulator works exactly as in H2.

Hybrid 4

In Hybrid 4 we further modify the way these AUTO∗ constraints in H3 are sampled. Specifically, in
H3, at round i, we sample the labels `(i) and `(−i) from appropriate label distributions, conditioned
on INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO. Now, we will generate these constraints by querying the
actual OMult and OMultInv oracles. Specifically, in H4, we maintain the AUTO∗ constraints in the
following way.

1Another way to think about the AUTO∗ constraints is that they are what one will get if running proactive
sampling starting with just the INIT constraint.
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• In round i− 1 for i = 1, 2, 3, . . . , T , query `(i) ← OMult(`
(i−1)) and `(−i) ← OMultInv(`

(−i+1)).

• At the beginning of round i, add the LABEL constraints (`(i−1), `(i)), (`(−i), `(−i+1)) to the
set of AUTO∗.

The rest of the simulator works exactly as in H3. Notice that in this hybrid, everything is simulated
except for the queries to OMult and OMultInv.

5.5 Proof of Hybrid Arguments

Lemma 4. H0 and H1 are distributed in a statistically identical way.

Proof. This lemma just boils down to the correctness of our initial simulation in H1. By inspecting
the construction of the simulator in Hybrid 1, we can see that from the adversary’s point of view, the
behavior of Mult and Inv queries are exactly the same in both hybrids. Specifically, the probability
of answering ⊥ or non-⊥ are computed correctly according to the overall number of possible label
assignments as in the PSPACE relations R1 and R2, and if non-⊥ answers are provided, we sample
them correctly using a uniform PSPACE-relation generator, which we show can be constructed
using lemma 3.

Essentially, in H1, when we sample the labels when answering a query, we sample them from the
distributions {L(i)}i∈[p]|INIT ∧ LABEL ∧ NEVER. Notice that this gives a uniform distribution
conditioned on all previous constraints, and therefore query results. And by the definition of the
oracles, in H0, the labels are also sampled uniformly conditioned on prior results. Hence H0 and H1

are statistically indistinguishable.

Lemma 5. H1 and H2 are distributed in a statistically identical way.

Proof. Notice that the simulator in H2 behaves exactly like the simulator in H1 except for the extra
AUTO∗ and AUTO constraints. In H1, the label for some group element g(x) is sampled from
the distribution L(x)|INIT ∧ LABEL ∧ NEVER, while in H2, it is sampled from the distribution
L(x)|INIT ∧ LABEL ∧NEVER ∧AUTO∗ ∧AUTO. We wish to argue that these two distributions
are identical.

Here we utilize the correctness of the PSPACE oracle that is used to sample the labels. In H2,
we are simply sending additional queries to the PSPACE oracle, but each subsequent query will
be conditioned on all of the previous queries. We can think about this process as sampling an
injective mapping from group elements to labels. In H1, we directly sample the mapping for group
element gx, while in H2, we sample some other mappings first, and then sample the mapping for gx

conditioned on the previously sampled mappings. By the chain rule of conditional probability, these
two sampling methods yield the same distribution as desired.

Alternatively, we can think about H2 as another instance of the simulation with a different
set of oracle queries (which now includes those proactive sampling queries). This is just another
valid sequence of queries to make, and given the correctness of the simulation in H1, the resulting
distributions should still be uniform, and hence indistinguishable from H1.

Lemma 6. No adversary can distinguish between H2 and H3 with non-negligible probability.
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Proof. The difference between H2 and H3 is how the AUTO∗ constraints are sampled. In H2, they
are sampled from L(i)|INIT ∧LABEL∧NEVER∧AUTO∗ ∧AUTO. In H3, they are sampled from
L(i)|INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO. To show that H2 and H3 are indistinguishable for the
adversary, we will simply argue that with all but negligible probability, we have

{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ NEVER ∧AUTO∗ ∧ AUTO
≈ε

{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO,

where ≈ε denotes the two distribution are statistically close. Due to the complexity of the argument,
we defer the proof of this statement to section 5.6.

Assuming the correctness of the statement, it should be easy to see that H2 and H3 are
indistinguishable, as the only difference between the hybrids is the distribution of AUTO∗ constraints.
If an adversary is able to distinguish between H2 and H3 with non-negligible probability, then it
essentially distinguishes the two distributions with non-negligible probability, which contradicts
with our assumption of the statement being correct.

Lemma 7. No adversary that can distinguish between H3 and H4 with non-negligible probability.

Proof. The only difference between H3 and H4 is the way the AUTO∗ constraints are generated.
In H3, the labels are randomly sampled conditioned on INIT ,LABEL,AUTO∗ and AUTO, while
in H4, the labels are obtained by directly querying the multiplication and multiplicative inverse
oracle. Notice that the actual oracle samples the labels directly from the distribution L(x), without
conditioning on INIT ,LABEL, and AUTO. It does sample the labels conditioned on AUTO∗ itself
though, as the oracle is consistent and won’t give back the same label for different group elements
or different labels for the same group element. So here, we wish to show that, with all but negligible
probability,

{L(i)}i∈[−T,T ]|AUTO∗ ≈ε {L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO.

We defer the proof of this statement to section 5.6.

Theorem 1. Assuming the existence of a PSPACE oracle, then there exists an oracle O and a
function fO with oracle access to O such that fO is a sequential function, but not a one-way
function.

Proof. The lemmas above show a sequence of a constant number of hybrid experiments where no
adversary can distinguish one from the next with non-negligible probability. Notice that the first
hybrid H0 corresponds to the adversary playing the original shortcutting game, and the last hybrid
H4 corresponds to the adversary playing the shortcutting game, but interacting with simulated
oracles.

In H4, the simulator simulates both OMult and OInv oracles correctly, but only requires access
to OMult and OMultInv. In other words, if an adversary can win the game in H4, then it might as
well simulate OInv for itself using the simulator in H4, and still win the game. But then, the only
information that the adversary can gather about powers of g are through querying the OMult and
OMultInv oracles. Notice that multiplying by g in the group has a cycle length p > T , so using these
two oracles, `(T ) can only be computed as early as in round T , causing the adversary to lose the
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game. Therefore, we have shown an oracle OMult that gives a sequential function fOMult(α) = `(T )

that is not one-way.

5.6 Proof of Lemma 6 and Lemma 7

In this subsection, we present the missing parts of the proof for Lemma 6 and Lemma 7. For these
two lemmas, one important proof technique that we will utilize is to analyze the distribution of X(`)

for some given label `. Recall that x(`) denotes the group element that corresponds to the label `,
and here, we will use the upper case X(`) to denote the distribution from which x(`) is sampled.

One way to visualize the “group element” distribution X(`) is through a constraint graph, which
we will describe in a moment. But first, let’s imagine the following ideal graph for the given group
G and random oracle OMult. The graph has p nodes where p = Θ(2λ) is the order of the group, and
each node corresponds to a label of a group element in G . The edges are added by repeatedly
querying OMult starting from the label for the group identity g0. For each query α2 = OMult(α1), a
directed edge is added from the node for label α1 to the node for label α2. Repeat this process until
we get back at the label `(0) for g0. Notice that by the property of the group multiplication, the
ideal graph has the shape of a cycle with length p.

Now, we describe how to organize the constraints INIT ,LABEL,AUTO∗ and AUTO into
a constraint graph, which is a subgraph of the ideal graph. First, for the constraint INIT (i.e.
the label for group identity is α), we add a node v0 that corresponds to the label α. Then, for
the LABEL,AUTO∗ and AUTO constraints of the form (α1, α2), we add nodes vα1 , vα2 , and a
directed edge (vα1 , vα2). Notice that since the constraint graph is a subgraph of a cycle, the
connected components of the constraint graph corresponds to arcs on the cycle. We denote an
arc as (u1, u2, . . . , uk) for nodes u1, . . . , uk and edges (u1, u2), (u2, u3), . . . , (uk−1, uk). Now imagine
overlaying these arcs onto the ideal graph. Notice that the location of an arc in the ideal graph
depends on the discrete log of its nodes labels w.r.t. g, which is precisely the distribution X(`) for
the labels in the constraints that form the arc. Since we know that v0 corresponds to 1 = g0, the
location of the arc containing v0 is known and fixed. Let us call it the “good arc”. However, for any
“bad arc” that does not contain v0, where should we overlay it in the ideal graph? It turns out that,
ignoring NEVER constraints, its location is uniformly distributed along the entire cycle, minus the
good arc portion containing v0. Translating what this means for the distributions X(`) for all the
labels ` in the bad arc, they should be uniform distributions in [0, p], conditioned on the bad arc
not intersecting with the good arc. For an illustration of the ideal graph, the constraint graph and
how they overlay, see Figure 2.

We note that this constraint graph ignores NEVER constraints, but we will show that this is
not so important in our analysis. We first show a useful lemma explaining that NEVER constraints
don’t actually reduce the number of possible assignments on the constraint graph all that much.

Lemma 8. Any NEVER constraint (i.e. a response from the oracle OInv that returns ⊥) reduces
the number of possible label assignments by no more than a 1

poly(λ) multiplicative factor with all

but negligible probability, i.e. let {L(i)}i∈[p] be the distributions of label assignments for all group
element conditioned on all prior constraints, and never be an added NEVER constraint. We have
that with overwhelming probability,∣∣supp({L(i)}i∈[p]|never)

∣∣∣∣supp({L(i)}i∈[p])
∣∣ ≥ 1

poly(λ)
.
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(a) Ideal Graph (b) Constraint Graph (c) Constraint Graph overlaid
onto Ideal Graph

Figure 2: Illustration of an ideal graph, a constraint graph, and the constraint graph overlaid onto
the ideal graph for a group with order p = 17. The green texts denote the group element to which
the labels at each node correspond. Notice that when overlaying the constraint graph, only the
location of the “good arc” is fixed and is centered around v0 since the discrete logs of its group
elements are known. The other arc with unknown group elements is equally likely to be anywhere
else on the cycle.

Proof. Consider an inversion query on circuit C and output y. Let n be the number of label
assignments that satisfy all the pre-existing constraints, and m be the number of label assignments
that satisfy all the pre-existing constraints and that the circuit C is satisfiable for output y. Notice
that the probability of outputting ⊥ on this query is 1−m/n. So if the adversary wants to obtain a
stronger NEVER constraint by reducing a large number of possible label assignments, it would want
to query (C, y) such that m is large, but doing so would cause the probability of actually getting
the NEVER constraint to go down. In order words, the more powerful a NEVER constraint is, the
less likely it is going to be added. Notice that by adding a NEVER constraint, we are essentially
ruling out the subset of m label assignments that have satisfying inputs from all n possible label
assignments. But this happens with only probability 1−m/n. So on expectation, every time we
make an inversion query in the hope of getting a NEVER constraint, we rule out m(1−m/n) ≤ n/4
out of the total n possible label assignments.

To put this more concretely, in order to reduce the n number of possible label assignments down
to n/superpoly(λ), we would set m = (1− 1/superpoly(λ))n. But in this case, we will only output
a NEVER constraint with probability 1 −m/n = 1/superpoly(λ) which is negligible. Therefore,
any NEVER constraint can only reduce the number of possible label assignments by no more than
a 1
poly(λ) multiplicative factor with overwhelming probability.

This above lemma says that with overwhelming probability, a NEVER constraint can only
reduce the number of all label assignments by a poly(λ) factor, i.e. give at most O(log λ) bits of
information on all the label distributions. But perhaps a sophisticated adversary can concentrate
this information on a specific arc of its choice, and therefore change the label distributions on that
arc in a non-negligible way. In the following lemma, we show that this is also not possible. Recall
that I denotes the mutual information between two random variables. We have:

32



Lemma 9. Let a, b ∈ [p] s.t. a < b, {L(i)}i∈[a,b] be the distributions of label assignments for the arc
(v`(a) , v`(a+1) , . . . , v`(b)) of length b−a = poly(λ), C be the collection of prior non-NEVER constraints
with size |C| = poly(λ) (includes everything in INIT ,LABEL,AUTO∗,AUTO), and never be an
added NEVER constraint. We have that with overwhelming probability,

I
(
never; {L(i)}i∈[a,b]

∣∣∣C) = negl(λ).

Proof. First, by Lemma 8, with overwhelming probability,∣∣∣supp({L(i)}i∈[p]

∣∣∣C ∧ never
)∣∣∣ ≥ 1

poly(λ)
·
∣∣∣supp({L(i)}i∈[p]

∣∣∣C)∣∣∣.
Notice that this implies the mutual information between never and all the label distributions

{L(i)}i∈[p] conditioned on all the prior constraints is bounded by

I
(
never; {L(i)}i∈[p]

∣∣∣C) ≤ − log
1

poly(λ)
= O(log λ).

Since we have an exponential number of labels, this means that the distribution of each individual
label is very unlikely to be changed significantly by a NEVER constraint. But Lemma 8 only gives
us this for the label distributions for all group elements {L(i)}i∈[p], not specifically for the label

distributions {L(i)}i∈[a,b] that we needed. For instance, although the adversary may only reduce
the total number of possible label assignments by a small polynomial factor, but it might target
particularly the labels in the arc [a, b] and cause the label distributions there to change significantly.
We argue that this is not possible.

To impact the label distributions in the arc [a, b], the NEVER constraint never would need
to change the distribution of labels near existing arcs by depending on one of the existing arcs.
Otherwise, if never is independent from all existing arcs, i.e. constraints, we will have that the
mutual information between never and each unsampled label distribution conditioned on C is the
same. Specifically, let LC denote the set of labels that appear in C. If we assume that never is
independent from all labels in LC, then for all i ∈ [p] s.t. `(i) 6∈ LC, I(never;L(i)|C) is the same.
Therefore, we have

I
(
never; {L(i)}i∈[a,b],`(i) 6∈LC

∣∣∣C) = I
(
never; {L(i)}i∈[a,b]

∣∣∣C)
≤ b− a
p− |LC |

O(log λ)

=
poly(λ)

2λ − poly(λ)
O(log λ)

= O(2−λpoly(λ) log λ) = negl(λ),

meaning its impact on the label distributions between [a, b] will be negligible.
Now we consider the case where the circuit in never actually depends on some other existing

constraints/arcs. Let d be the size of the circuit in the never constraint. Notice that a circuit of size
d can only impact the distributions of labels at most distance d away from the constraints that the
circuit is dependent on. Let’s denote the set of these label distributions as Ld. But such a query
will not be answered until d rounds later, and recall that in each round, we automatically extend all
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the known labels with AUTO∗ and AUTO. With this proactive sampling, whatever constraints
the circuit depends on when the query was submitted d rounds ago, their corresponding arcs are
extended in both directions by d, and this matches exactly Ld, the collection of label distributions
that the never constraint might be able to impact. Therefore, for all the label distributions in Ld
that the never constraint might affect, they have already been fully sampled and hence have zero
entropy. Therefore, trivially we have

I(never;Ld|C) ≤ H(Ld|C) = 0.

Another intuitive way to think about this is that since the labels in Ld are sampled after the
adversary submits the inversion query, the circuit in the never constraint must be independent from
these labels and therefore the never constraint cannot possibly give any information about these
labels.

Now that we know never constraint cannot give any information on arcs around existing
constraints, we fall back to the same scenario as before: the mutual information between never and
each label distribution I(never;L(i)|C) is the same for all i ∈ [p] s.t. `(i) 6∈ LC , and we have already
shown that in this case

I
(
never; {L(i)}i∈[a,b]

∣∣∣C) = O(2−λpoly(λ) log λ) = negl(λ).

Bringing these two parts together, we have shown that in either case, with overwhelming
probability, the mutual information between never and {L(i)}i∈[a,b] conditioned on C is negligible as
desired.

With this stronger lemma in hand, we will proceed to prove the missing part for Lemma 6.

Lemma 10. With all but negligible probability,

{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ NEVER ∧AUTO∗ ∧ AUTO
≈ε

{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO,

where ≈ε denotes the two distribution are statistically close.

Proof. We prove this argument by induction on the NEVER constraints. We first consider when
the first NEVER constraint is added. Let’s say it is in round k and we denote never as the random
variable for the first NEVER constraint, we will show that with overwhelming probability

{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO
≈ε

{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ never ∧ AUTO∗ ∧ AUTO.

Notice that {L(i)}i∈[−T,T ]|INIT ∧LABEL∧AUTO∗∧AUTO corresponds to the possible label assign-

ments for g−T , . . . , gT under all previous constraints (notice that INIT ,LABEL,AUTO∗,AUTO
are precisely all the constraints so far), and {L(i)}i∈[−T,T ]|INIT ∧LABEL∧never∧AUTO∗∧AUTO
corresponds to the possible label assignments for g−T , . . . , gT after we add the NEVER constraint
never.
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We now apply Lemma 9 with a = −T, b = T, C = INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO. Notice
that as required, b− a = 2T = poly(λ) and the total number of constraints in INIT ∧ LABEL ∧
AUTO∗ ∧ AUTO is indeed bounded by poly(λ) since there are only poly(λ) number rounds and in
each round we can generate at most poly(λ) number of constraints. By Lemma 9, with overwhelming
probability,

I
(
never; {L(i)}i∈[−T,T ]

∣∣∣INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO)
= O(2−λpoly(λ) log λ) = negl(λ).

Therefore we have, with overwhelming probability,∣∣∣supp({L(i)}i∈[−T,T ]

∣∣∣INIT ∧ LABEL ∧ never ∧ AUTO∗ ∧ AUTO
)∣∣∣

≥2−O(2−λpoly(λ) log λ) ·
∣∣∣supp({L(i)}i∈[−T,T ]

∣∣∣INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO)∣∣∣
≥(1− negl(λ)) ·

∣∣∣supp({L(i)}i∈[−T,T ]

∣∣∣INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO)∣∣∣.
Recall that these two distributions are uniformly random on their supports, therefore their statistical
distance is given by

∆(Lnever,L) =
1

2

∑
{`(i)∈{0,1}n}i∈[−T,T ]

∣∣∣Pr
[
Lnever = {`(i)}i

]
− Pr

[
L = {`(i)}i

]∣∣∣
=

1

2

 ∑
{`(i)}i∈ supp(L) ∩ supp(Lnever)

∣∣∣Pr
[
Lnever = {`(i)}i

]
− Pr

[
L = {`(i)}i

]∣∣∣
+

∑
{`(i)}i∈ supp(L) \ supp(Lnever)

∣∣∣Pr
[
Lnever = {`(i)}i

]
− Pr

[
L = {`(i)}i

]∣∣∣


=
1

2

 ∑
{`(i)}i∈ supp(L) ∩ supp(Lnever)

∣∣∣∣∣∣∣∣ 1

supp(Lnever)

∣∣∣∣− ∣∣∣∣ 1

supp(L)

∣∣∣∣∣∣∣∣
+

∑
{`(i)}i∈ supp(L) \ supp(Lnever)

∣∣∣∣ 1

supp(L)

∣∣∣∣


≤ 1

2

(
2−O(2−λpoly(λ) log λ) · 22λT ·

(
2−2λT · 2−O(2−λpoly(λ) log λ) − 2−2λT

)
+(1− 2−O(2−λpoly(λ) log λ)) · 22λT · 2−2λT

)
≤ 1

2

(
2−O(2−λpoly(λ) log λ) · (2−O(2−λpoly(λ) log λ) − 1) + (1− 2−O(2−λpoly(λ) log λ))

)
=

1

2

(
1− 2−O(2−λpoly(λ) log λ)

)2

= negl2(λ),
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where we use Lnever to denote the distribution {L(i)}i∈[−T,T ]|INIT ∧LABEL∧never∧AUTO∗∧AUTO
and L to denote {L(i)}i∈[−T,T ]|INIT ∧LABEL∧AUTO∗∧AUTO. As we can see, with overwhelming
probability of (1− superpoly(λ)), the statistical distance between these two distributions are indeed
negligible as desired.

Notice that here Lnever and L correspond to label distributions, not particular sampled labels.
For particular sampled labels, the statement could be false. For instance, if the never constraint
ruled out a particular label, and the sampled label happened to be this particular label, then we do
not have the statistical closeness for the sampled label as it would never be sampled if conditioned
on the never constraint. But if we take the distribution of the label over the randomness of the
sampling procedure, such instances happens with only negligible probability, and these two label
distributions are indeed statistically close.

To extend the above argument to multiple NEVER constraints, we apply the inductive argument.
Given the INIT ,LABEL,AUTO∗ and AUTO constraints and a list of NEVER constraints, for each
added NEVER constraint, by the same argument above, with overwhelming probability the label
distributions are statistically close whether conditioned on the NEVER constraint or not. Notice
that this can be repeated up to a polynomial times (and hence allowing up to polynomial number of
NEVER constraints). The number of NEVER constraints is indeed bounded by poly(λ), as there are
at most T = poly(λ) rounds in the game and each round the adversary can submit at most q = poly(λ)
number of queries. Therefore, by union bound and triangular inequality of statistical distance,
with an overwhelming probability of (1− poly(λ) · superpoly(λ)), the statistical distance between
{L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ NEVER ∧AUTO∗ ∧ AUTO and {L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧
AUTO∗ ∧ AUTO is bounded by poly(λ)negl2(λ) = negl(λ). Therefore, even with a polynomial
number of NEVER constraints, with overwhelming probability, these two label distributions are
indeed statistically close as desired.

To finish the proof for Lemma 7, we present the following three lemmas on the location and the
length of the arcs in the constraint graph.

Lemma 11. If an arc generated in our simulation does not contain the node v0, i.e., it is a “bad
arc”, then its location in the ideal graph is statistically close to the uniform distribution along the
entire cycle, conditioned on not intersecting with the good arc. Specifically, at round i, notice that
given INIT and AUTO∗, the good arc takes the form (`(−i), `(−i+1), . . . , `(i−1), `(i)). Let α be the
label at the center of the bad arc, and let d be the length of the bad arc, we have

X(α) ≈ε U
[
i+

d

2
+ 1, p− i− d

2
− 1

]
,

where U [i+ d
2 +1, p− i− d

2−1] denotes a uniform distribution with support [i+ d
2 +1, i+ d

2 +2, . . . , p−
i− d

2 − 1], i.e. the uniform distribution along the entire cycle conditioned on not intersecting with
the good arc.

Proof. In the absence of NEVER constraints, this lemma follows from the observation that the
only direct label-to-discrete-log mapping in the constraints comes from the INIT constraint, which
maps a label to the group identity g0 with discrete log of 0. All the other LABEL constraints only
give out relative discrete logs. For example, a LABEL constraint (α1, α2) only tells us the relation
x(α2) = x(α1) + 1, but without revealing what x(α1) and x(α2) really are. Therefore, in order to know
concretely the value of x(α1), it must be chained, through a sequence of LABEL constraints, back
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to the INIT constraint. And this directly implies that this constraint (α1, α2) is in the good arc.
As a result, for any bad arc, i.e. any arc that does not contain node v0, its corresponding group
elements have unknown discrete logs and are equally likely to be any group element without an
assigned label (since these group elements have the same label distribution). Therefore, its location
on the cycle follows a uniform distribution, conditioned on that it does not intersect with the good
arc, i.e. X(α) ≈ε U [i+ d

2 + 1, p− i− d
2 − 1]. Notice that in order to not intersect with the good arc

at round i, the center of the bad arc must be at least distance d
2 + 1 away from the endpoints i and

−i of the good arc.
However, what happens if NEVER constraints exist? Recall that α is the label at the center of

the bad arc, and let x(α) be the discrete log of its corresponding group element, and never be an
added NEVER constraint. We now apply Lemma 9 with a = x(α) − d

2 , b = x(α) + d
2 and C be the

collection of prior constraints. With overwhelming probability, we have that

I
(
never; {L(i)}i∈[x(α)− d2 ,x(α)+ d

2 ]

∣∣∣C) = negl(λ).

This essentially says that with overwhelming probability, the mutual information between
the never constraint and any specific arc centered at α is negligible. Therefore, the adversary
cannot “concentrate” the mutual information between the never constraint and group element
distributions X(α) for α ∈ {0, 1}n towards any particular location on the arc, meaning the never
constraint can only affect the group element distribution X(α) negligibly. We know that without
the never constraint, X(α) follows the uniform distribution U [i + d

2 + 1, p − i − d
2 − 1], and that

with overwhelming probability, the never constraint’s impact on X(α) is negligible. Therefore, with
overwhelming probability, we have X(α) is statistically close to U [i+ d

2 + 1, p− i− d
2 − 1].

To extend the above argument to multiple NEVER constraints, we apply an inductive argument.
Given the constraint graph and a list of NEVER constraints, the impact of a new NEVER constraint
on the group element distributions is also negligible by the same reasoning above. Notice that
this can be repeated up to a polynomial times (and hence allowing up to polynomial number of
NEVER constraints). With overwhelming probability, the total amount of mutual information these
NEVER constraints can give on the group element distributions is only poly(λ) · log λ bits, but the
information is distributed evenly among 2λ number of group element distributions, meaning the the
mutual information between the NEVER constraint and any specific group element distribution X(α)

is only 2−λpoly(λ) log λ = negl(λ). Hence, even with a polynomial number of NEVER constraints,
their impact on each group element distribution is negligible, so we can fall back to our argument at
the beginning of this proof where we simply ignore the NEVER constraints.

With Lemma 11, we can think about the constraint graph for any collection of INIT ,LABEL,
NEVER,AUTO∗ and AUTO constraints as a good arc, together with some other arcs randomly
located along the entire cycle.

Now consider the collection of constraints and their corresponding constraint graph at the end of
round i, we will argue that it is (almost) impossible to have an arc of length at least 2i+ 1. We say
it is (almost) impossible because of possible arc intersections: imagine we have two separate arcs
that are less than 2d distance apart, then after d rounds, if we extend both arcs in each round, they
would now intersect and form a single arc that could longer than the bound we’re trying to prove.
As a special case, this also captures where the adversary just luckily guesses the label for a group
element, as it would correspond to the adversary obtaining a new arc of length 1 that happens to
intersect with some existing arc. In the following lemma, we prove the bound nevertheless assuming
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such intersections does not happen, and in the next lemma, we bound the probability of such arc
intersections to be negligible.

Lemma 12. Let INIT ,LABEL,NEVER,AUTO∗ and AUTO be the collection of constraints at the
end of round i, and Gi be the corresponding constraint graph, and (v`(−a) , . . . , v`(−1) , v0, v`(1) , . . . , v`(b))
be some arc in Gi (W.L.O.G. we assume the good arc). Then assuming that the arc does not intersect
with another arc, with all but negligible probability in the security parameter λ, we have a, b ≤ i− 1.

Proof. Again, let’s first argue the simpler case without NEVER constraints. Assume W.L.O.G.
towards contradiction that we have b >= i and a = i − 1. Consider the nodes v0, ..., v`(b) . In
order to produce the labels for these nodes, `(0), `(1), . . . , `(i−1), one must evaluate OMult for each of
`(0), `(1), . . . , `(i−2), either directly via an OMult query, or somewhere in the circuit for an OInv query.
Notice that for OInv queries, it can either extend existing arcs or generate new arcs, but in both
cases, as we will show in a moment, the length that is extended or generated is still bounded.

First of all, by the sequentiality nature of the OMult and the fact that they take 1 round to
finish, by the end of round i, using OMult queries alone, we can only reach as far as `(i−1), but not
`(i). What about the OInv queries? We prove this via strong induction. As inductive hypothesis, we
assume that we only have labels up to `(i

′−1) in round i′ for all i′ < i. Now we show that in round i,
we also only have labels up to `(i−1). Let’s consider an OInv query submitted back in round j < i.
In order for it to finish before the end of round i, its size (the number of gates, counting recursively)
must be bounded by i− j. This indicates that this OInv query can produce at most i− j LABEL
constraints, since we only add one LABEL constraint for each OMult gate in the circuit. But this
query was submitted back in round j, so by the inductive hypothesis, it can only depend on the
labels up to `(j−1). Extending these labels by length i− j can only get us to as far as `(i−1), but
not `(i). Notice that this argument readily extends to circuits with recursive calls to the OInv oracle,
following the recursive definition of the “size” of the circuit.

Now let’s consider what happens with NEVER constraints included. Our argument is of a very
similar style as the one without the NEVER constraints. We prove the full statement using strong
induction on the round i. Let Pi be the proposition that at the end of round i, with overwhelming
probability, the arc only reaches v`(−a) and v`(b) where a, b ≤ i− 1. The base case P1 is trivial since
at the end of the first round, we haven’t heard back from any queries yet, and the good arc only
contains v0 corresponding to the INIT constraint.

Next, we show the inductive step that if P1, P2, . . . , Pi−1 are all true, then Pi holds true as well.
To see this, we consider the query responses we receive at round i. Notice that a query response will
produce either LABEL constraints or a NEVER constraint that gets added to the constraint list.

Notice that for any constraints created for a circuit of size d, this means the query takes time d
to complete, so to receive the response at round i, the query must have been submitted at round
i− d. For instance, if a NEVER constraint is added for a circuit of size d, this also means the query
was submitted in round i − d. Notice that by Pi−d, at the time the query was submitted, it can
only depend on (v`(−i+d+1) , . . . , v0, . . . v`(i−d−1)) from the good arc (and potentially other uniformly
distributed arcs). Specifically, it cannot depend on the nodes v`(−i) , . . . , v`(−i+d) and v`(i−d) , . . . , v`(i) ,
since these nodes have not been determined yet at the time the query was submitted. Applying
Lemma 9 with a = i − d, b = i and C be the collection of prior constraints. With overwhelming
probability, we have that

I
(
never; {L(i)}i∈[i−d,i]

∣∣∣C) = negl(λ),
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meaning the never constraint only gives negligible information towards predicting these labels, and
similarly for {L(i)}i∈[−i,−i+d] as well. Then we use a union bound similar as in Lemma 10 and
Lemma 11, and have that even for a poly(λ) number of NEVER constraints, they give negligible
mutual information for the label distributions {L(i)}i∈[−i,−i+d] and {L(i)}i∈[i−d,i].

By proposition Pi−d, the good arc at round i− d reaches at most v`(−i+d+1) and v`(i−d−1) . Then,
with our above argument handling just the LABEL constraints and ignoring the NEVER constraints,
with overwhelming probability, the two sides of the arc can grow by at most d, and therefore reaching
at most v`(−i+1) and v`(i−1) as desired.

Therefore, with both LABEL and NEVER constraints, any arc in Gi at round i cannot reach
nodes beyond v`(−i+1) and v`(i−1) with non-negligible probability. The rest follows by induction.

Next, we argue that the probability of having such arc intersections is also negligible.

Lemma 13. Let Gi be the constraint graph at round i. The probability that there exists two arcs in
Gi that in a later round j ≤ T “merge” together into a single arc is negligible.

Proof. First, we notice that there are only poly(λ) number arcs in Gi and that all the arcs are
poly(λ) in length. This is because we can only generate poly(λ) number of constraints each round,
and there are a total of T = poly(λ) rounds. Each arc corresponds to at least one constraint, and
the arc length corresponds to the number of chained LABEL constraints, so both the number of
arcs and the arc lengths are bounded by poly(λ).

Now let us calculate the probability of two specific arcs having an intersection. Recall that an
arc can only extend its either side by at most d = j − i ≤ T = poly(λ). Therefore, for two arcs to
have an intersection, their endpoints must be within 2d distance of each other. Fixing one arc, then
the other arc only has 4d possible locations in order to intersect. (Note that in the case of one arc
being the good arc centered around v0, we always fix the good arc and consider the bad arc, which
is guaranteed to be randomly located by Lemma 11). Hence, the probability of any two given arcs
having an intersection is 4d/p = O(poly(λ)2−λ).

Then, by union bounding over all possible pairs of arcs ((poly(λ))2 number of these), the
probability of having any intersection is bounded by O((poly(λ))2 · poly(λ)2−λ), which is negligible
as desired.

With the above three lemmas, we can now finish the proof for Lemma 7.

Lemma 14. With all but negligible probability,

{L(i)}i∈[−T,T ]|AUTO∗ ≈ε {L(i)}i∈[−T,T ]|INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO,

where ≈ε denotes the two distribution are statistically close.

Proof. The difference between these two distributions is that the latter is additionally conditioned
on the set of constraints INIT ∧ LABEL ∧ AUTO. What will cause these two distributions to
differ? If without these constraints, the sampled label will present some form of collision with one
or more of these constraints. Let’s say we are at the beginning of round k, and for some i ∈ [−T, T ],
we sample `(i) ∼ L(i)|AUTO∗. There are two types of possible collisions:

1. Group element collision: the label `(i) corresponds to the same group element that a
different label `′ in INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO corresponds to. Notice that `(i)

corresponds to the group element gi. If we have −k + 1 ≤ i ≤ k − 1, notice that `(i)
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will be fully determined by the AUTO∗ constraints in both distributions, as the labels
`(−k+1), `(−k+2), . . . , `(k−1) are already sampled and put in the AUTO∗ constraints. In this
case, for the group element gi, both distributions should give the same label, and hence we
don’t have a group element collision. On the other hand, if i ≥ k or i ≤ −k, consider the
constraint graph constructed formed by the constraints INIT ∧ LABEL ∧ AUTO∗ ∧ AUTO.
If in the constraints there is a label `′ for the group element gi, then there must be some
node that corresponds to gi in the constraint graph. By Lemma 11, with overwhelming
probability, that node must be in the good arc (otherwise, the bad arc will be uniformly
distributed along the entire cycle of length Θ(2λ), and the probability of it containing the
node for gi is negligible). This means there exists an arc (v0, v`(1) , . . . , v`(i)) in the constraint
graph. However, by combining Lemma 12 and Lemma 13, with overwhelming probability that
no arc intersection happens, one can only extend the good arc to at most v`(k−1) , but not v`(i) ,
where i > k − 1. Therefore, the probability of having a group element collision is negligible.

2. Label collision: the label `(i) is the same as some label `′ in INIT ∧LABEL∧AUTO∗∧AUTO.
Notice that we can submit at most q queries per round, and by round k we can submit at
most qk number of queries. For the queries responded before round k, their circuit size must
be bounded by k, meaning that each such query can produce at most k constraints. Also,
notice that each constraint can introduce at most 2 labels. Therefore, there are at most
2q · k2 number of labels in the constraints, where q, T = poly(λ), but there are a total of 2λ

possible labels. By union bound, the probability of having such a label collision is bounded by
2qT 22−λ = poly(λ)2−λ, which is negligible.

Bringing these two parts together, the probability of having either a group element or a label
collision is negligible. Therefore, with overwhelming probability, the two distributions only differ
negligibly, making them statistically close as desired.

5.7 Intuition on the Oracles in the Proof

At a first glance, it might seem that the oracles used in our proof are extremely non-standard: for
instance, we allow our inversion oracles to take as input circuits that call the oracles themselves, we
bound the number of queries an oracle can make in a certain amount of time, and we impose delays
on response times to certain queries. For readers that may only be familiar with traditional lower
bounds like [IR89] or [BM09], this may cause some initial discomfort. However, these techniques are
not novel and we could circumvent the latter two with some extra formalism if we desired.

Letting an Oracle Call Circuit Contain Its Own Routines. It may seem unusual to let a
generic primitive call its own subroutines (in other words, let an oracle call itself). However, this
technique is not without precedent: for instance, in [GMM17], the authors create an extended black-
box framework that does exactly this. Their goals–to model primitives like functional encryption and
fully homomorphic encryption, which have numerous non-black box constructions and proofs–are
very different from ours, but they show that this technique is useful and not inherently incompatible
with separation results. While we do not have to use all of the machinery that they do in their
extended black-box framework, we refer interested readers to their work for more details.

Bounding the Number of Times an Oracle Can Be Called in a Time Period. In tra-
ditional separation results, oracles can be called in an arbitrary manner at arbitrary times, and
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(typically) only the total amount of oracle queries is considered in the lower bound. However, in
order to abstractly model things like proof of work systems in the blockchain [GKL15], it is necessary
to consider oracles that can only be called a certain amount of times within a certain time period;
this concept is in fact integral to proof-of-work consensus algorithms being secure. This sort of
technique has been used far too many times for us to keep track in the literature in some form;
some notable examples include [GKW+16, BGK+18, BMTZ17].

We note that it would be simple to bound the number of times an oracle can be called in a
particular time period without requiring this of the oracle itself by defining a challenger (or more
complicated security game, like in the UC model [Can01]) that regulates how many times an oracle
could be called in a particular round (or time period). This way, no such restrictions would have to
be placed on the oracle itself. We could add this to our main separation result, and it would not
change any of our results.

Oracles with Delayed Response Times. We note that [BBBF18] introduced random delay
oracles, which they define to be essentially just random oracles with delayed response times, and
use them to help prove properties of VDFs. This technique has also been used in other places
as well [Fis18]. We note that this sort of oracle could also be avoided with extra formalism: a
challenger (or environment) could enforce the delays rather than the oracle itself.

6 Sequential Functions vs. PSPACE

In this section, we explore the relationship between sequential functions and PSPACE. Specifically,
we show that Continuous Iterative Sequential Functions (CISFs) are PSPACE-complete, while the
more general Dynamic Sequential Functions (DSFs) are not in PSPACE in the random oracle model.

6.1 (Worst-Case) CISFs are PSPACE-Complete

First, recall the syntax of a CISF [JMRR21] from Definition 4:

Definition 13 (Continuous Iterative Sequential Functions). A continuous iterative sequential
function (CISF) F = (Setup,Gen,Eval,Round) is defined as the following tuple of algorithms:

Setup(1λ )→ pp: On input the security parameter 1λ, the setup algorithm returns the public
parameters pp. By convention, the public parameters encode an input domain X and an output
domain Y .

Gen(pp)→ x: On input the public parameters pp, the instance generation algorithm samples a
random input x← X.

Eval(pp, x, k) = (Round(pp, ·))(k)(x)→ y: On input the public parameters pp, an input x ∈ X, and
k ∈ 2o(λ), the evaluation algorithm runs the Round function iteratively, and eventually returns
an output y ∈ Y .

An CISF F satisfies (tC(λ), tA(λ))-sequentiality as defined in Definition 3.
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Notice that CISFs are by nature a computational problem. To show that CISFs are PSPACE-
complete, we would need a corresponding decisional problem. Concretely, we consider the following
decisional variant of the CISF problem, which we will refer to as the Decisional CISF (DCISF)
problem. This is just the (almost) immediate extension of a computational problem to a decision
problem.

Furthermore, note that CISFs are defined in a cryptographic way: the definition of security is
clearly an average-case notion. However, PSPACE is defined with respect to the worst case. So,
in addition to defining a decisional version of a CISF, we also need to make sure our definition is
“worst-case”.

Definition 14 (Decisional CISF Problem). A Decisional CISF (DCISF) problem consists of an
instantiation of a CISF F = (Setup,Gen,Eval,Round) with public parameter pp that is a valid output
of the Setup procedure, a valid CISF input x ∈ X, a value y ∈ Y in the CISF output space, and
k ∈ 2o(λ). If Eval(pp, x, k) = y, then the answer to the problem is true. Otherwise, the answer to the
problem is false.

Note that our definition here just requires that the public parameters pp and input x are valid
outputs of their respective sampling algorithms, and not that they have actually been randomly
sampled.

Lemma 15. The DCISF problem is in PSPACE.

Proof. To show that the DCISF problem is in PSPACE, we argue that all CISFs can be computed
using only polynomial space. If this is true, then we can just compute the CISF in PSPACE and
then immediately check the output.

It turns out that this is almost immediate due to the definition of a CISF. Notice that a CISF
runs Eval by iteratively executing the Round function, which takes as input x ∈ X of poly(λ) size.
Furthermore, each iteration of the Round function is only of poly(λ) time. Thus, by assuming a
constant rate of writing to memory, each Round function can only use up to poly(λ) amount of
space. And hence, the overall Eval can also be executed under polynomial space. Using this, we can
trivially solve the DCISF problem - simply run the CISF faithfully using polynomial space and then
compare the output y′ with y. Therefore, the DCISF problem is in PSPACE.

The more complicated direction involves proving that an algorithm for the DCISF problem
can be used to solve any problem in PSPACE. To do this, we will use a reduction from the True
Quantified Boolean Formula (TQBF) problem, which is known to be PSPACE-complete [Pap07].

Lemma 16. The DCISF problem is PSPACE-hard.

Proof. To show that the DCISF problem is PSPACE-hard, we reduce the True Quantified Boolean
Formula (TQBF) problem to the DCISF problem using a Cook reduction. Specifically, we show
that an oracle that can solve an arbitrary DCISF problem can be used to solve the TQBF problem.
Since the TQBF problem is a known PSPACE-complete problem, by the reduction, we would have
that DCISF is PSPACE-hard as desired.

To do this, we implement a näıve iterative solving algorithm for the TQBF problem that can be
modeled as a CISF.

First, recall a TQBF problem statement

Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn)
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where Q1, . . . Qn ∈ {∃, ∀} are quantifiers, x1, . . . , xn are boolean variables, and φ is a boolean formula.
The answer to the problem is true if and only if there exists an assignment of x1, . . . , xn ∈ {0, 1}
such that the overall boolean formula Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn) is true. Now, consider the
following algorithm defined in Algorithm 1.

Algorithm 1 A Näıve Iterative Solver for the TQBF problem

i← 0
s← Stack.Init() . A stack of elements of format (v, d)
while i < 2n do

x1, x2, . . . , xn ← ToBinary(i) . Convert i to binary, and assign x1, . . . , xn to be the binary
representation of i

v ← φ(x1, x2, . . . , xn)
d← n . The depth of the tree that we’re currently at
while !s.IsEmpty() and s.Peek().d = d do

if Qd is ∀ then
v ← s.Pop().v ∧ v

else
v ← s.Pop().v ∨ v

end if
d← d− 1

end while
s.Push((v, d))
i← i+ 1

end while
Output s.Pop().v

First, recall that a stack is a first-in last-out data structure. The elements “push”ed into a
stack first are “pop”ed out at last, and “peek” allows one to take a look at the next element to be
“pop”ed out without actually “pop”ing it.

How does this algorithm work? Let’s start by explaining a simplified version. Suppose we
consider a binary tree of depth n, where each leaf node is associated with a particular assignment of
variables. Each level of the tree, except for the base layer containing the leaf nodes, is associated
with either an AND or an OR gate–we can think of each node in the layer as having the same gate.
If layer 0 is the leaf layer and layer n+ 1 is the root node, then layer i is associated with an AND
gate if Qi = ∀ and an OR gate if Qi = ∃. We also associate each layer i with bit xi.

Evaluating the TQBF then reduces to the following: evaluating the validity of φ on all of the
leaf nodes, and then computing the circuit implied by the tree. At each layer, we eliminate one bit
and one constraint. This is essentially equivalent to the standard folklore algorithm for checking the
truthfulness of a QBF.

However, there is one major issue: if we are not careful, our computation of the tree may take expo-
nential space. So we must use a depth first search evaluation of the tree, which only requires linear (in
n) space. So, roughly speaking, the above algorithm simulates a depth first search using a stack data
structure. It starts at the bottom layer by assigning values to all variables, and then gradually works
its way up by combining the value of the boolean formula under the two possible values of the same
boolean variable using the corresponding quantifier. Specifically, for example, let x1, x2, . . . , xi−1 be

43



fixed, and for xi = 0, let a = Qi+1xi+1, . . . , Qnxnφ(x1, . . . , xi−1, 0, xi+1, . . . , xn), and for xi = 1, let
b = Qi+1xi+1, . . . , Qnxnφ(x1, . . . , xi−1, 1, xi+1, . . . , xn). If Qi = ∀, let c = a ∧ b, otherwise, let c =
a ∨ b. Notice that we successfully get c = Qixi, . . . , Qnxnφ(x1, . . . , xi−1, 0, xi+1, . . . , xn). By repeat-
ing this step, we can add in all the quantifiers, and eventually get Q1x1Q2x2 . . . Qnxnφ(x1, . . . , xn)
as the output.

Notice that we can define the Round function for the CISF to be each iteration of the outer
while loop as in Algorithm 1, and the input x to consist of the TQBF description, the iterator
i, and the stack s. Notice that s has at most n elements and hence the whole input to Round is
still of poly(λ) size. Therefore, to solve the TQBF problem, we can construct a DCISF problem
instance with the above Round function and input, and y = 1 as the output. The answer to the
TQBF problem is simply the answer to the crafted DCISF problem.

Bringing lemma 15 and lemma 16 together, we have the following theorem.

Theorem 2. The DCISF problem is PSPACE-complete.

6.2 Dynamic Sequential Functions are not in PSPACE

Then, we show that while CISFs are PSPACE-complete, slightly more general sequential functions
known as dynamic sequential functions (DSFs) are not in PSPACE. Specifically, we will come up
with a Decisional Dynamic Sequential Function problem that is not solvable in polynomial space.
But first, let us recall the syntax of a Dynamic Sequential Function from Definition 3, and define its
corresponding decisonal problem similar to how we define a DCISF.

Definition 15. A dynamic sequential function (DSF) F = (Setup,Gen,Eval) is defined as the
following tuple of algorithms:

Setup(1λ)→ pp: On input the security parameter 1λ , the setup algorithm returns the public
parameters pp. By convention, the public parameters encode an input domain X and an output
domain Y .

Gen(pp)→ x: On input the public parameters pp , the instance generation algorithm samples a
random input x← X.

Eval(pp, x, k)→ y: On input the public parameters pp, an input x ∈ X, and k ∈ 2o(λ), the
evaluation algorithm returns an output y ∈ Y .

F needs to satisfy the (tC(λ), tA(λ))-sequentiality as defined in Definition 3.

Definition 16 (Decisional Dynamic Sequential Function Problem). A Decisional Dynamic Se-
quential Function (DDSF) problem consists of an instantiation of a Dynamic Sequential Function
F = (Setup,Gen,Eval) with public parameter pp that is a valid output of the Setup procedure, a valid
DSF input x ∈ X, a DSF output y ∈ Y , and k ∈ 2o(λ). If Eval(pp, x, k) = y, then the answer to the
problem is true. Otherwise, the answer to the problem is false.

To construct a DDSF problem that requires super-polynomial space to solve, we utilize a
graph with high space complexity. These graphs are often used to argue the space complexity of
Memory-Hard Functions (MHFs) through a pebbling game [AS15].
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Definition 17 (Pebbling a Graph (in Parallel) [AS15]). Given G = (V,E) a DAG with source
nodes S ⊆ V and sink nodes T ⊆ V , a (legal) complete pebbling of G is a sequence P = (P0, . . . , Pt)
of subsets of V such that:

1. P0 ⊆ S.

2. A pebble can be put on a node only if the node’s predecessor has a pebble in the previous step.

∀i ∈ [t],∀(x, y) ∈ E,∀y ∈ Pi\Pi−1 x ∈ Pi−1.

3. At some point every target node is pebbled (not necessarily simultaneously).

∀y ∈ T, ∃i ∈ [t] y ∈ Pi.

Notice that a pebble can be placed on a source node or removed from any node at any time.

The above definition is for a parallel pebbling game. One can also consider a sequential pebbling
game where one can place only one pebble each step1, i.e. ∀i ∈ [t], |Pi\Pi−1| ≤ 1. In fact, the specific
graph that we consider, the graph by Paul, Tarjan, and Celoni [PTC76], originally considers such a
sequential pebbling.

Lemma 17 ([PTC76]). There exists a family of DAGs {Gn}n∈N with in degree of 2, 2n sources
and sinks, and O(n2n) vertices, and have the property that for all n ≥ 8, for any legal sequential
pebbling of the graph, there exists an interval such that during that interval, there are at least Ω(2n)
pebbles always on the graph.

Notice that the above lemma only deals with sequential pebbling, hence only models a machine
with sequential computation power. To model a parallel machine, we would need the following
strengthening of the Lemma by Alwen, Blocki, and Pietrzak [ABP18], which extends the above
lemma to any parallel pebbling.

Lemma 18 ([ABP18]). There exists a family of DAGs {Gn}n∈N with in degree of 2, 2n sources and
sinks, and O(n2n) vertices, and have the property that for all n ≥ 8, for any legal parallel pebbling
of the graph, there exists an interval such that during that interval, there are at least Ω(2n) pebbles
always on the graph.

Eventually, we will construct a DSF based on this family of graphs, so the function description
naturally contains a description of these graphs. We want these graphs to be compactly representable.

Lemma 19. The family of DAGs {Gn}n∈N from [PTC76] can be compactly represented using a
constant-size description of the graph and an additional parameter n to tune the graph size.

Proof. To prove this, we reproduce the construction from [PTC76], and verify that it can be
compactly represented. First of all, to construct this family of DAGs Gn, we would need the
superconcentrators Bn from [Val75].

Definition 18 (Superconcentrator). A k-superconcentrator is a DAG with k source nodes and k
sink nodes, such that for all j ∈ [k], if S is any subset of j source nodes, and T is any subset of j
sink nodes, there exist j vertex-disjoint paths from S to T .

1One can still place a pebble a source node at any time, but that would take one step, since one cannot place two
pebbles simultaneously.
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[Val75] shows how to construct such 2i-superconcentrators with O(2i) number of edges, which
we will reproduce momentarily. Before that, we first see how to construct the desired Gn’s assuming
the existence of Bn, a 2n-superconcentrator.

Gn from Superconcentrators. The graphs Gn’s are recursively defined. Specifically, we define
G8 = B8. And given Gi for i = 8, 9, 10, . . . , we construct Gi+1 = (Vi+1, Ei+1) from two copies of Gi
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and Ti+1 = {ti+1,j : j ∈ [2i+1]} be the 2i+1 source nodes and sink nodes of Gi+1. We have
Gi+1 = (Vi+1, Ei+1) where
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Essentially, Gi+1 is obtained by putting 2i+1 source nodes, B
(1)
i , G

(1)
i , G

(2)
i , B

(2)
i and 2i+1 sink

nodes in a sequence and adding the following edges:

• One-to-one edges from all the source nodes to all the sink nodes (each source node is connected
to one sink node).

• One-to-one edges from the first half of source nodes to the source nodes of B
(1)
i .

• One-to-one edges from the second half of source nodes to the source nodes of B
(1)
i .

• One-to-one edges from the sink nodes of B
(1)
i to the source nodes of G

(1)
i .

• One-to-one edges from the sink nodes of G
(1)
i to the source nodes of G

(2)
i .
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• One-to-one edges from the sink nodes of G
(2)
i to the source nodes of B

(2)
i .

• One-to-one edges from the sink nodes of B
(2)
i to the first half of sink nodes.

• One-to-one edges from the sink nodes of B
(2)
i to the second half of sink nodes.

For a graphic illustration of the construction, see figure 3.

Figure 3: Construction of the graph Gi+1 from two copies of Gi denoted as G
(1)
i , G

(2)
i and two

copies of 2i-superconcentrators B
(1)
i , B

(2)
i . The dots represent source and sink nodes of Gi+1, and

the arrows represent collections of edges between nodes.

Notice that given Gi and Bi, this recursive procedure can be easily executed by a constant-size
Turing Machine, and hence the class of graphs Gn has a compact description, conditioned on that
Bn’s also have compact descriptions. Also, if Bn’s have in degree of 2, Gn’s have in degree of 2 as
well.

Now we verify that such Bn’s are indeed compact, by opening up the construction by [Val75].
It turns out that there are two extra levels of recursion: to construct Bn, a 2n-superconcentrator,

we would first construct a 2n-hyperconcentrator, which we construct from (2n, 2n−1)-concentrators.
Hyperconcentrators and concentrators are defined as below.

Definition 19 (Hyperconcentrator). An k-hyperconcentrator is a DAG with k source nodes and k
sink nodes, such that for all j ∈ [k], if S is any subset of j source nodes, and T is the subset of the
first j sink nodes, there exist j vertex-disjoint paths from S to T .

Definition 20. A (k, `)-concentrator with k ≤ ` is a DAG with k source nodes and ` sink nodes
such that for any subset T of k sink nodes, there exsit k vertex-disjoint paths from the source nodes
S to T .

[Val75] cites [Pin73] for the existence of such concentrators, but the specific constructions of such
concentrators appear to be unclear. Later on in the section, we will present our own construction
of the needed concentrators. For now, we first see how to construct superconcentrators from
hyperconcentrators, and hyperconcentrators from concentrators.
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Superconcentrators from Hyperconcentrators. With these hyperconcentrators, it is easy to
get a superconcentrator. To get a superconcentrator, we just need two copies of a hyperconcentrator
Hi. We first reverse a copy by reversing all of its edges and get Hi. Notice the sources of Hi used to
be the sinks of Hi, and vice versa. Then we simply connect the sinks of Hi to the sources of Hi like
a one-on-one mapping. The resulting graph is a superconcentrator Bi as needed. See figure 4 for an
intuitive illustration. Notice that this construction is also compact and preserves the in degree of 2,
assuming the hyperconcentrators have in degree and out degree of 2.

Figure 4: Construction of a 2i-superconcentrator Bi from two copies of 2i-hyperconcentrators Hi, Hi.
The source nodes are the source nodes of Hi, and the sink nodes are the sink nodes of Hi (originally
sources before reversal).

Hyperconcentrators from Concentrators. Now we show assuming (2n, 2n−1)-concentrators
Cn, how one can construct a 2n-hyperconcentrator Hn.

The construction is once again recursive. First, notice that H1 is trivial - a graph with two
nodes and a single edge connecting them suffices. Then for i ≥ 1, let Hi = (V Hi, EHi) be a

2i-hyperconcentrator, and C
(1)
i+1 = (V C

(1)
i+1, EC

(1)
i+1) and C

(2)
i+1 = (V C

(2)
i+1, EC

(2)
i+1) be two copies of

(2i+1, 2i)-concentrators. We show how to construct Hi+1, a 2i+1-hyperconcentrator. Let Hi have

source nodes SHi = {shi,j : j ∈ [2i]}, and C
(1)
i+1 and C

(2)
i+1 have source nodes SC

(1)
i+1 = {sc(1)

i+1,j :

j ∈ [2i+1]} and SC
(2)
i+1 = {sc(2)

i+1,j : j ∈ [2i+1]}. Similarly, we define the sink nodes for Hi, C
(1)
i+1

and C
(2)
i+1 as THi = {thi,j : j ∈ [2i]}, TC(1)

i+1 = {tc(1)
i+1,j : j ∈ [2i]}, and TC

(2)
i+1 = {tc(2)

i+1,j : j ∈ [2i]}.
Additionally, we let SHi+1 = {shi+1,j : j ∈ [2i+1]} and THi+1 = {thi+1,j : j ∈ [2i+1]} be the 2i+1

source nodes and sink nodes of Hi+1. We have Hi+1 = (V Hi+1, EHi+1) where

V Hi+1 = SHi+1 ∪ THi+1 ∪ V Hi ∪ V C(1)
i+1 ∪ V C

(2)
i+1,

and

Ei+1 =EHi ∪ EC(1)
i+1 ∪ EC

(2)
i+1

∪ {(shi+1,j , sc
(1)
i+1,j) : j ∈ [2i+1]}

∪ {(shi+1,j , sc
(2)
i+1,j) : j ∈ [2i+1]}

∪ {(tc(1)
i+1,j , thi+1,j) : j ∈ [2i]}

∪ {(tc(1)
i+1,j , shi,j) : j ∈ [2i]}

∪ {(tc(2)
i+1,j , shi,j) : j ∈ [2i]}

∪ {(thi,j , thi+1,j) : j ∈ [2i]}
∪ {(thi,j , thi+1,j+2i) : j ∈ [2i]}.
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Essentially, we can think about the construction as putting the 2i+1 source nodes, the two
(2i+1, 2i)-concentrators, the 2i-hyperconcentrator, and the 2i+1 sink nodes into four layers and by
adding the following edges:

• One-to-one edges from all the source nodes (of Hi+1) to all the source nodes of C
(1)
i+1.

• One-to-one edges from all the source nodes (of Hi+1) to all the source nodes of C
(2)
i+1.

• One-to-one edges from all the sink nodes of C
(1)
i+1 to the first half of the sink nodes (of Hi+1).

• One-to-one edges from all the sink nodes of C
(1)
i+1 to all the source nodes of Hi.

• One-to-one edges from all the sink nodes of C
(2)
i+1 to all the source nodes of Hi.

• One-to-one edges from all the sink nodes of Hi to the first half of the sink nodes (of Hi+1).

• One-to-one edges from all the sink nodes of Hi to the second half of the sink nodes (of Hi+1).

See figure 5 for an illustration of the construction.

Figure 5: Construction of a 2i+1-hyperconcentrator Hi+1 from two copies of (2i+1, 2i)-concentrators

C
(1)
i+1, C

(2)
i+1 and a 2i-hyperconcentrator Hi.

Again, this recursive procedure can be described by a constant size TM, and hence Hn’s can be
compactly represented conditioned on that such Cn’s are compactly representable. Also notice that
if Cn has in degree and out degree of 2, then Hn has in degree and out degree of 2 as well.

Constructing Concentrators. Lastly, to complete the argument, we show that the construction
of Cn’s can be compactly represented. [Pin73] does not present any concrete construction of
(2n, 2n−1)-concentrators, so here we present our own construction of a (2n, 2n−1)-concentrator.

The construction is yet again recursive and in fact pretty simple. First, observe the base case
when n = 1. We can easily get a (2, 1)-concentrator by having two source nodes, one sink node, and
an edge from each source to the sink. Now assume that we have (2i, 2i−1) concentrators, we show how

to obtain a (2i+1, 2i) concentrator. Let C
(1)
i = (V C

(1)
i , EC

(1)
i ) and C

(2)
i = (V C

(2)
i , EC

(2)
i ) be two
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copies of (2i, 2i−1)-concentrators. Let C
(1)
i and C

(2)
i have source nodes SC

(1)
i = {sc(1)

i,j : j ∈ [2i]} and

SC
(2)
i = {sc(2)

i,j : j ∈ [2i]}, and sink nodes TC
(1)
i = {tc(1)

i,j : j ∈ [2i−1]} and TC
(2)
i = {tc(2)

i,j : j ∈ [2i−1]}.
We construct Ci+1 = (V Ci+1, ECi+1) as follows. Let it have sources SCi+1 = {sci,j : j ∈ [2i+1]}.
Its sinks are simply the union of TC

(1)
i and TC

(2)
i , i.e. TCi+1 = TC

(1)
i ∪ TC

(2)
i . The vertex and

edges are defined as follow:

V Ci+1 = SCi+1 ∪ V C(1)
i ∪ V C

(2)
i ,

and

Ei+1 =EC
(1)
i ∪ EC

(2)
i

∪ {(sci+1,j , sc
(1)
i,j ) : j ∈ [2i]}

∪ {(sci+1,j , sc
(2)
i,j ) : j ∈ [2i]}

∪ {(sci+1,j+2i , sc
(1)
i,j ) : j ∈ [2i]}

∪ {(sci+1,j+2i , sc
(2)
i,j ) : j ∈ [2i]}.

Roughly speaking, we put two (2i, 2i−1) concentrators side by side, and the sink nodes are just
the the sink nodes of both concentrators. Each half of the source nodes are connected to the source
nodes of each smaller concentrator in a one-to-one fashion. See figure 6 for an illustration of the
construction. This construction is compact, and has both in degree and out degree of 2.

Figure 6: Construction of a (2i+1, 2i)-concentrator Ci+1 from two copies of (2i, 2i−1)-concentrators

C
(1)
i , C

(2)
i . The sink nodes of Ci+1 are the union of the sink nodes of C

(1)
i , C

(2)
i .

It is easy to verify the concentrator property of the construction. We want to show that for any
subset of 2i source nodes, there are 2i vertex-disjoint paths between the subset of sources and the
sink nodes. For any 2i source nodes, we can always break them into two halves. We would “assign”
the first half to go to the source nodes of the first smaller concentrator, and the second half to go to
the second one. Notice that for each smaller concentrator, for any set of 2i−1 sources, there are
2i−1 vertex-disjoint paths between them and the sink nodes. The only remaining thing is to make
sure we don’t reuse vertices when “assigning” the source nodes. Here is a simple procedure: we
first go through the chosen set of 2i sources, and check if there are pairs of source nodes sci+1,j
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and sci+1,j+2i that are 2i indices apart. For all such pairs, we “assign” sci+1,j to go to sc
(1)
i,j , and

sci+1,j+2i to go to sc
(2)
i,j . For the rest of the chosen source nodes, we can arbitrarily let sci+1,j to

go to either sc
(1)
i,j or sc

(2)
i,j , as long as we maintain that the total number of nodes “assigned” to

each smaller concentrator is 2i−1. In this way, these “assignments” have no shared vertices, and
combined with the previous argument, we have that Ci+1 fulfills the concentrator property.

Putting these pieces together from bottom up, we first construct (2n, 2n−1)-concentrators, which
then gives 2n-hyperconcentrators, leading to 2n-super--concentrators, and finally yielding the desired
Gn. All of these constructions are compact, and Gn has an in degree of 2 as desired.

Using this family of graphs, we then proceed to prove that DDSF is no in PSPACE by showing a
DDSF problem not solvable using only polynomial space. Here we use a technique of Dwork, Naor,
and Wee [DNW05] that converts a DAG into a Random-Oracle-based function using graph labeling.
We use the following summarization of the technique from [BCS16].

Definition 21 (Labeling). Let G = (V,E) be a DAG with max in-degree δ and a unique sink vertex,
x ∈ {0, 1}` be a string and H : Z|V | × ({0, 1}` ∪ {⊥})δ → {0, 1}` be a function modeled as a random
oracle. We define the labeling of G relative to H and x as:

labelx(vi) =

{
H(i, x,⊥, . . . ,⊥) If vi is a source node

H(i, labelx(u1), labelx(u2), . . . , labelx(uδ)) Otherwise

where u1, . . . , uδ are the predecessors of v. And if v has less than δ predecessors, ⊥’s are put in the
input to H as placeholders.

We label the graph G using the labeling function by first starting at the source nodes, then proceed
to their successors, so on and so forth until we label the unique sink node. To convert the graph G
into a function fG, we define fG(x) to be the function that outputs the label of the unique sink node
under the labeling of G relative to the random oracle function H and input x.

Dwork, Naor, and Wee [DNW05] prove that if G is a graph that is infeasible to pebble using
only T steps and S pebbles, then with high probability it is infeasible for an adversary to compute
fG using only T ′ ≈ T random oracle queries and space S′ ≈ S`. In the other direction, they show
that if there is a pebbling strategy that uses T steps and S pebbles, then this yields an evaluation of
fG using only T queries to the random oracle H, and S` memory bits. They consider a sequential
pebbling game and sequential queries to the random oracle, but their result readily extends to the
case with a parallel pebbling game and where one can make parallel queries to the random oracle.

With this, we prove the following theorem.

Theorem 3. DDSF is not in PSPACE, assuming the random oracle model.

Proof. We prove this by constructing a DSF in the random oracle model whose decisional variant
cannot be solved in polynomial space.

Let λ be the security parameter, we construct the DSF based on the graph Gn from [PTC76]
with n =

√
λ using the technique by [DNW05]. However, notice that the graph Gn has 2n sinks, so

the first step is to augment the graph Gn to have a single sink node.
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Augmenting the graph Gn. We first augment Gn to G′n by attaching a top-down binary tree
to the sink nodes. Specifically, let the sink nodes of Gn be t0,1, t0,2, . . . , t0,2n . To get G′n, we add
nodes T ′ = {t1,1, t1,2, . . . , t1,2n−1 ; t2,1, . . . , t2,2n−2 ; t3,1, . . . ; tn−1,1}. For each ti,j added, we also add
edges (ti−1,2j−1, ti,j) and (ti−1,2j , ti,j). Notice that a legal pebbling P ′ = (P ′0, . . . , P

′
t) of G′n implies

a legal pebbling P = (P0, . . . , Pt) of Gn: all we need to do is for all i ∈ [t], have Pi = P ′i\T ′, i.e. we
remove all the pebbles on the extra nodes added for G′n. P is a complete pebbling for Gn because in
the successful pebbling P ′ of G′n, we must have pebbled t0,1, t0,2, . . . , t0,2n at some point, so all the
sink nodes in Gn are pebbled sometime in P . Also P is legal because any edge in G′n is either also
in Gn, which preserves the validity of a pebble placed by moving along this edge, or it points to a
node in T , the pebbles on which are already deleted in P . Therefore, Lemma 18 also holds for G′n.

Constructing function fn from G′n. With G′n, we use the technique by [DNW05] to construct
the function fn = fG′n . Notice that by Lemma 18, any pebbling of the graph G′n need at least Ω(2n)
pebbles, therefore, as shown by [DNW05], for any evaluation of the function fn, with high probability,
there must be some point where it uses approximately Ω(2n`) memory bits. Consequently, with only
polynomial space, one cannot evaluate the function fn. Since fn consists of iterated random oracle
calls, the decisional problem is as hard as the computational problem. So to check if y = fn(x) for

given function fn, input x and output y, one would also need Ω(2n`) = Ω(2
√
λ`) memory, which is

super polynomial.

Verifying fn is sequential. Lastly, it remains to show that fn is indeed a DSF. To see this, we
examine the depth of the graph G′n from bottom up. The concentrator component Cn has depth
O(n), and the hyperconcentrator and superconcentrator components have depth O(n2). The graph
Gn has depth O(2n + n2) = O(2n), and G′n has depth O(2n + n) = O(2n), meaning that to pebble
G′n, even in parallel, one would need at least O(2n) steps. By [DNW05], with high probability, to

compute fn also requires O(2n) = O(2
√
λ) batches of random oracle queries, giving us the desired

sequentiality. We can set k of the DSF to be k = 2
√
λ = 2o(λ) as needed.

Putting this together, consider the following DDSF problem. The problem consists of (a class of)
DSFs F = {f8, f9, . . . }, a pp specifying the input and output space, an input x, an output y, and
k ∈ 2o(λ). The problem is true if and only if Eval(pp, x, k) = y. Eval for F works as follows: first,
compute the n that gives the desired k = O(2n), and then compute and output fn(x) corresponding
to the graph G′n. By the above arguments, F is indeed a DSF, but solving this DDSF problem

requires Ω(2
√
λ) super polynomial space.

Therefore, the DDSF problem is not in PSPACE.

7 Fine-Grained Symmetric Key Cryptography

In this section, we define Symmetric Key Encryption (SKE) against fine-grained time bounded
adversaries, which we construct from CISFs. We define fine-grained SKE as a stateful SKE with
updating secret keys that proceeds in rounds. Let Alice and Bob have some shared secret. Before
round 0, both Alice and Bob run a Setup procedure using their shared secret and get an initial
secret key. At each round i, one party, say Alice w.l.o.g., runs Enc to encrypt a message using the
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latest secret key, which can be decrypted by Bob using the latest secret key. At each round, both
parties also run an Update procedure that outputs an updated secret key. Put formally:

Definition 22 (Fine-Grained SKE). Let λ, n be security parameters, and s ∈ S with |S| = 2poly(λ)

a shared secret between two honest parties. An n-time fine-grained symmetric key encryption
(FGSKE) scheme for key space {0, 1}`k and message space {0, 1}`m is a tuple of algorithms Π =
(Setup,Update,Enc,Dec) defined as follows:

• Setup(1λ, 1n, s)→ k1: takes as input the security parameters and the shared secret, and outputs
an initial secret key k1.

• Update(ki)→ ki+1: at round i ∈ [n], takes as input the current secret key ki and outputs the
next secret key ki+1.

• Enc(ki,mi)→ cti: at round i ∈ [n], takes as input the current secret key ki and a message mi,
and outputs a corresponding ciphertext cti.

• Dec(ki, cti)→ m′i: at round i ∈ [n], takes as input the current secret key ki and a ciphertext
cti, and outputs the message m′i associated with the ciphertext.

We require correctness of the above FGSKE scheme.

Definition 23 (Correctness). A FGSKE scheme Π = (Setup,Update,Enc,Dec) is said to be correct
if for all s ∈ S, i ∈ [n] and m ∈ {0, 1}`m, we have

Pr

m′ = m :

k1 ← Setup(1λ, 1n, s)

ki ← Update(i−1)(k1)
m′ ← Dec(ki,Enc(ki,m))

 ≥ 1− negl(λ).

We define security through the following indistinguishability experiment DistFGSKEA,Π (λ, n):

1. Sample a uniform bit b ∈ {0, 1}.

2. Sample a secret s ∈ S and run Setup(1λ, 1n, s) to obtain an initial key k1.

3. For round i = 1, 2, . . . , n,

(a) At the beginning of each round, the adversary can choose to terminate the experiment by
submitting a pair of challenge messages mi,0 and mi,1, and receiving cti ← Enc(ki,mi,b).
Then before the next round, the adversary outputs a guess b′ for b. If b′ = b, we say that
the adversary succeeds and the experiment outputs 1. Otherwise, the experiment outputs
0.

(b) If the adversary choose not to terminate the experiment, the adversary submits a query
message mi, and receives cti ← Enc(ki,mi).

(c) Run Update(ki) to obtain ki+1.

Definition 24 (FGSKE Security). Let λ, n be security parameters. A FGSKE scheme Π =
(Setup,Update,Enc,Dec) is said to have n-time fine-grained SKE security if for all PPT adversaries
A:

Pr
[
DistFGSKEA,Π (λ, n) = 1

]
≤ 1

2
+ negl(λ).
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Notice that the above notion is similar to the standard CPA indistinguishability security notion,
except that here we have updating keys and that the adversary needs to output the bit guess b′ in a
more fine-grained time bound (before the next round starts) than PPT.

We show how to construct such fine-grained SKE from CISFs. To facilitate our security argument,
we assume that the CISF is ideal, meaning that the Round function takes exactly the same time
to evaluate for both the honest parties and the adversaries. Nevertheless, our construction is still
secure if the CISF is not ideal, as long as the adversary only has some small advantage in computing
the Round function than the honest parties.

Construction 1. Let λ, n be security parameters. Given CISF = (Setup,Gen,Eval,Round) an ideal
continuous iterative sequential function whose Round function takes exactly 1 round to evaluate
and has input and output length ` = poly(λ), we construct a fine-grained SKE scheme Π =
(Setup,Update,Enc,Dec) for a single message bit as follows. First, to sample the shared secret s,
first run CISF.Setup(1λ) to get pp, and run CISF.Gen(pp) to get an input x. The shared secret s
consists of pp and x, together with the description of the CISF. The rest of the algorithms work as
follow:

• Setup(1λ, 1n, s): Take time n rounds to run (CISF.Round(pp, ·))(n)(x), and store all the
intermediate results. Output k1 = ({yj}j∈[n], 1) where yj = (CISF.Round(pp, ·))(j)(x).

• Update(ki): Compute yi+1 = CISF.Round(pp, yi), and output ki+1 = ({yj}j∈[n+i], i+1). Notice
that this takes exactly one round.

• Enc(ki,mi): Sample a uniformly random ri ∈ {0, 1}`, and compute ci = mi⊕〈ri, y2i−1〉, where
⊕ denotes the XOR operation and 〈·, ·〉 denotes the inner product. Output cti = (ci, ri).

• Dec(ki, cti = (ci, ri)): Simply output m′i = ci ⊕ 〈ri, y2i−1〉.

The correctness of the above construction should be easy to verify.

Theorem 4. If CISF = (Setup,Gen,Eval,Round) is an ideal continuous iterative sequential function
whose Round function takes exactly 1 round to evaluate, then Construction 1 has n-time fine-grained
SKE security.

Proof. Let i be the round that the adversary playing the FGSKE game outputs the bit guess. Recall
that in round i, the adversary submits a pair of challenge messages mi,0 and mi,1, and receives
cti = (ci, ri) where ri is a uniform `-bit string, and ci = mi,b ⊕ 〈ri, y2i−1〉.

We first argue that y2i−1 has sufficient min-entropy by the property of the sequential function.
Notice that the only possible information that the adversary has about the sequential function
is that in the previous rounds j = 1, 2, . . . , i− 1, the adversary receives ctj that is dependent on
y2j−1. Since now only (i− j) rounds has passed, by the sequentiality of the CISF, the adversary
can compute at most up to y(2j−1)+(i−j) = yi+j−1. Notice that i+ j − 1 < 2i− 1, so the adversary
cannot possibly have computed y2i−1 by round i. Therefore, by the sequentiality of the CISF, the
adversary can only guess y2i−1 correctly with negligible probability. Consequently, conditioned on
the adversary’s view viewA, we have H∞(y2i−1, ri|viewA) ≥ H∞(y2i−1|viewA) = Ω(`).

Once we have that y2i−1 has sufficient min-entropy, we can invoke the Leftover Hash Lemma
(Lemma 1). Let H : {0, 1}` × {0, 1}` → {0, 1} compute the inner product. Using the fact that the
inner product is a universal hash function and applying Lemma 1, we have

(H(y2i−1, ri), H, viewA) ≈ε/2 (U1, Ud, viewA),
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where 1 + 2 log(1/ε) = Ω(`). Solving for ε yields that ε = O(2−`/2), i.e. an adversary has advantage
at most O(2−`/2) in distinguishing 〈y2i−1, ri〉 and a uniform bit.

Therefore, with overwhelming probability, we can switch 〈y2i−1, ri〉 to a uniform bit and the
adversary won’t be able to detect the switch. But now the ciphertext is just the message XOR’ed
with a uniform bit. This is simply One Time Pad (OTP) encryption, and is information theoretically
secure. Hence the adversary cannot produce b′ = b other than a random guess.

Fine-grained MACs can be defined analogously, and our construction follows almost immediately
from our FGSKE construction. We present the definitions and constructions of fine-grained MACs
in section 8.

8 Fine-Grained MAC

We define a fine-grained MAC similarly as to how we defined a fine-grained SKE.

Definition 25 (Fine-Grained MAC). Let λ, n be security parameters, and s ∈ S with |S| = 2poly(λ)

a shared secret between two honest parties. An n-time fine-grained MAC (FGMAC) scheme for key
space {0, 1}`k and message space {0, 1}`m is a tuple of algorithms Π = (Setup,Update,Sign,Verify)
defined as follows:

• Setup(1λ, 1n, s)→ k1: takes as input the security parameters and the shared secret, and outputs
an initial secret key k1.

• Update(ki)→ ki+1: at round i ∈ [n], takes as input the current secret key ki and outputs the
next secret key ki+1.

• Sign(ki,mi)→ σi: at round i ∈ [n], takes as input the current secret key ki and a message mi,
and outputs a corresponding MAC tag cti.

• Verify(ki,mi, σi)→ 1/0: at round i ∈ [n], takes as input the current secret key ki, a message
mi, and a tag σi, and outputs a bit indicating whether the tag is valid on the message.

We require correctness of the above FGMAC scheme.

Definition 26 (Correctness). A FGMAC scheme Π = (Setup,Update,Sign,Verify) is said to be
correct if for all s ∈ S, i ∈ [n] and m ∈ {0, 1}`m, we have

Pr

Verify(ki,m, σ) = 1 :

k1 ← Setup(1λ, 1n, s)

ki ← Update(i−1)(k1)
σ ← Sign(ki,m)

 ≥ 1− negl(λ).

We define security through the MAC forgery experiment ForgeFGMAC
A,Π (λ, n):

1. Sample a secret s ∈ S and run Setup(1λ, 1n, s) to obtain an initial key k1.

2. For round i = 1, 2, . . . , n,
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(a) At the beginning of each round, the adversary can choose to terminate the experiment by
submitting a message m and a tag σ. If Verify(ki,m, σ) = 1, we say that the adversary
succeeds and the experiment outputs 1. Otherwise, the experiment outputs 0.

(b) If the adversary choose not to terminate the experiment, the adversary submits a query
message mi, and receives σi ← Sign(ki,mi).

(c) Run Update(ki) to obtain ki+1.

Definition 27 (FGMAC Security). Let λ, n be security parameters. A FGMAC scheme Π =
(Setup,Update,Sign,Verify) is said to have n-time fine-grained MAC security if for all PPT adver-
saries A:

Pr
[
ForgeFGMAC

A,Π (λ, n) = 1
]
≤ negl(λ).

Notice that the above definition is similar to a standard model MAC security definition, except
that we deal with an adversary with a fine-grained time bound and that the forgery produced could
be on a message that has been queried before. The latter is possible because the keys are updated
each round, so even if a message has been MACed before, its old MAC would not verify under the
current updated key.

As we sketched in the technical overview, our construction effectively follows from our FGSKE
construction. Recall that in our FGSKE construction we run a CISF iteratively to produce many
unpredictable bits and then use an inner product as an extractor to extract the randomness which
we XOR with the message. Here for the FGMAC construction, we run the CISF iteratively starting
from two different inputs and produce two separate chains of unpredictable bits. To MAC a message
bit b, the tag is simply the bits from one of the chains, depending on the bit b. To make a successful
forgery, the adversary needs to predict the output of a CISF in a bounded time, which is hard due
to the CISF security guarantee.

Below we present the construction and security argument in details.

Construction 2. Let λ, n be security parameters. Given CISF = (Setup,Gen,Eval,Round) an ideal
continuous iterative sequential function whose Round function takes exactly 1 round to evaluate
and has input and output length ` = poly(λ), we construct a fine-grained MAC scheme Π =
(Setup,Update,Sign,Verify) for a single message bit as follows. First, to sample the shared secret
s, first run CISF.Setup(1λ) to get pp, and run CISF.Gen(pp) twice to get two inputs x0, x1. The
shared secret s consists of pp and x0, x1, together with the description of the CISF. The rest of the
algorithms work as follow:

• Setup(1λ, 1n, s): First, run (CISF.Round(pp, ·))(n)(x0) and (CISF.Round(pp, ·))(n)(x1). This
takes n rounds and store all the intermediate results. Then, output k1 = ({yj,b}j∈[n],b∈{0,1}, 1)

where yj,b = (CISF.Round(pp, ·))(j)(xb).

• Update(ki): Compute yi+1,b = CISF.Round(pp, yi,b) for b ∈ {0, 1}, and output the updated key
ki+1 = ({yj,b}j∈[n+i],b∈{0,1}, i+ 1). Notice that this takes exactly one round.

• Sign(ki,mi): Simply output σi = y2i−1,mi.

• Verify(ki,mi, σi): Check if σi = y2i−1,mi. If equal, output 1. Otherwise, output 0.
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Correctness. Correctness follows immediately due to the fact that CISFs are deterministic.
Notice that this construction is wildly inefficient. To MAC a single message bit, the tag itself is

poly(λ) bits. But to do better than this seemingly requires a CRHF, which would imply a OWF,
which we are not assuming. Thus, this construction is presented more out of theoretical interest in
exploring how to construct a MAC from minimal assumptions in the fine-grained setting.

Security. Security is also relatively straightforward to argue, which we do with the following
theorem.

Theorem 5. If CISF = (Setup,Gen,Eval,Round) is an ideal continuous iterative sequential function
whose Round function takes exactly 1 round to evaluate, then Construction 2 has n-time fine-grained
MAC security.

Proof. Let i be the round that the adversary playing the FGMAC game outputs their forgery.
W.L.O.G., assume the message that the adversary MACs is 0. In order for the forgery to be valid,
the adversary needs to produce y2i−1,0 in round i.

Notice that the only possible information that the adversary has about the sequential function is
that in the previous rounds j = 1, 2, . . . , i− 1, the adversary receives σj that could be dependent on
y2j−1,0. Since now only (i− j) rounds has passed, by the sequentiality of the CISF, the adversary
can compute at most up to y(2j−1)+(i−j),0 = yi+j−1,0. Notice that i+ j− 1 < 2i− 1, so the adversary
cannot possibly have computed y2i−1,0 by round i. Therefore, by the sequentiality of the CISF, the
adversary can only produce y2i−1,0 correctly with negligible probability. Hence, the adversary can
win the FGMAC game with only negligible probability.

9 Fine-Grained Public Key Encryption

In this section, we define public key encryption that is secure against a fine-grained time-bounded
adversary. The syntax of the encryption scheme is the same as PKE in the standard model, except
that instead of requiring the adversary A to operate in PPT, here we require the adversary to run
in sequential time T .

9.1 Definition

We imagine the following definition for a public key encryption scheme against fine-grained time-
bounded adversary. Consider the following indistinguishability experiment for an adversary A =
(A1,A2):

PKE Security Experiment DistPKEA,Π (λ):

1. Run Gen(1λ, 1S) to obtain keys (pk, sk).

2. Sample a uniform bit b ∈ {0, 1}.

3. The adversary A is provided the public key pk.

4. The adversary replies with the challenge query consisting of two messages m0 and m1, receives
ct← Enc(pk,mb).
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5. A outputs a guess b′ for b. If b′ = b, we say that the adversary succeeds and the output of the
experiment is 1. Otherwise, the experiment outputs 0.

Definition 28 (PKE Security against fine-grained time-bounded adversary). For security parameter
λ, a public key encryption scheme Π = (Gen,Enc,Dec) is secure against fine-grained time-bounded
adversarywith time bound T if for all PPT adversaries A with running time less than T :

Pr
[
DistPKEA,Π (λ) = 1

]
≤ 1

2
+ negl(λ).

9.2 Construction

Here we give a construction of PKE against fine-grained time-bounded adversaryusing Verifiable
Delay Functions (VDFs) and indistinguishability Obfuscation (iO) for null circuits. In addition the
the completeness, soundness and sequentiality of the VDF, we also require the following properties
of the VDF.

Definition 29 (Uniqueness of Proof). A VDF V = (Setup,Gen,Eval,Vf) has a unique proof if for
all λ ∈ N and for all PPT machines A = (A1,A2), there exists a negligible function negl such that:

Pr

 Vf(pp, x, y, π′, T ) = 1 and π 6= π′

pp← Setup(1λ)
(T, x)← A1(pp)
(y, π)← Eval(pp, x, T )
π′ ← A2(pp, x, y, T )

 = negl(λ)

Notice that by soundness of a VDF, the output y is unique on a fixed input, and by the
uniqueness proof, we have that the proof π is also unique given the output y. Additionally, we
require that a real valid proof should be indistinguishable from a random proof if the adversary is
bounded by sequential time T .

Definition 30 (Proof Indistinguishability). A VDF V = (Setup,Gen,Eval,Vf) has indistinguishable
proofs if for all λ ∈ N and for all PPT machines A with time bound T , there exists a negligible
function negl such that:

Pr

 A(pp, x, π, T ) = 1
pp← Setup(1λ)
x← Gen(pp)
(y, π)← Eval(pp, x, T )

−

Pr

 A(pp, x, π, T ) = 1

pp← Setup(1λ)
x← Gen(pp)

π
$← Π

 = negl(λ)

Construction 3. Let iO be an indistinguishability obfuscator for null circuits and VDF = (Setup,
Gen,Eval,Vf) a verifiable delay function with proof indistinguishability and proof uniqueness. We
construct our PKE as follows:

• Gen(1λ): Run pp ← VDF.Setup(1λ), and then sample the a VDF input x ← VDF.Gen(pp).
Compute the output and the proof (y, π)← VDF.Eval(pp, x, T ). The public key is pk = (x, π),
and the private key is sk = y.
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• Enc(pk = (x, π),m): To encrypt a message, consider the following program

Ppp,T,x,π,mb(y
′) =

{
m if VDF.Vf(pp, pk, y′, π, T ) = 1

⊥ otherwise
.

The ciphertext is simply iO(Ppp,T,pk,π,mb).

• Dec(sk, ct): To decrypt a ciphertext, simply evaluate it as an iO program using sk = y as the
input, and the output of the iO program is simply the message m.

Correctness is straightforward given the correctness of the VDF and iO. Next we show this
construction is secure against fine-grained time-bounded adversary.

9.3 Proof of Security

We organize our proof of security into a sequence of hybrids.

Sequence of Hybrids

• H0: The original PKE security game, where the challenge bit is fixed to be 0.

• H1: The same as H0, except that instead of sampling using the actual proof π, sample a
uniformly random π′ from the proof space Π. The program Ppp,T,x,π′,mb now embeds the
random proof π′ instead of the actual proof π.

• H2: Switch the program Ppp,T,x,π′,mb to always output ⊥.

• H3: We switch the challenge bit from 0 to 1.

• H4: Switch the program Ppp,T,x,π′,mb back to output mb if VDF.Vf(pp, pk, y′, π′, T ) = 1.

• H5: Switch back to using the actual proof π instead of the random proof π′.

Proof of Hybrid Arguments

Lemma 20. If VDF is a verifiable delay function with proof indistinguishability, then no PPT
adversary with time bound T can distinguish between H0 and H1 (and hence H4 and H5) with
non-negligible probability.

Proof. This step follows directly from the definition of proof indistinguishability. We show that if
an adversary A can distinguish between H0 and H1, then we can construct an adversary A′ that
breaks the proof indistinguishability property by using A as a subroutine.
A′ receives as input pp, x, π, T , and works as follows. It first forwards (x, π) to A as the public

key pk, and receives the challenge query m0 and m1 from A. A′ then constructs the program
Ppp,T,x,π,mb and then sends iO(Ppp,T,pk,π,mb) back to A. If A outputs that it is in H0, A′ outputs
that π is a real proof. Otherwise, output that π is a random proof.

Lemma 21. If iO is an indistinguishability obfuscator for null circuits and VDF is a verifiable
delay function with perfect soundness and unique proofs, then no PPT adversary can distinguish
between H1 and H2 (and hence H3 and H4) with non-negligible probability.
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Proof. This steps comes from the iO security of the underlying obfuscator. Notice that the only
difference between H1 and H2 is the program being obfuscated. In H1, the obfuscated program
outputs mb if VDF.Vf(pp, pk, y′, π′, T ) = 1, and in H2, the obfuscated program always outputs ⊥. If
we can show that the program in H1 always outputs ⊥, then by the iO security of the obfuscator,
no PPT adversary can distinguish them with non-negligible probability.

We need to show that VDF.Vf(pp, pk, y′, π′, T ) always fails. Notice that for all input y′ 6= y,
by the soundness of the VDF, VDF.Vf(pp, pk, y′, π′, T ) = 0. Then for y′ = y, since in H1 already
have π′ being a random proof, then by the uniqueness of the proof, VDF.Vf(pp, pk, y′, π′, T ) = 0.
Therefore, VDF.Vf(pp, pk, y′, π′, T ) always fails.

Lemma 22. No adversary can distinguish between H2 and H3.

Proof. The only difference between H2 and H3 the challenge bit b. But in neither hybrid does the
ciphertext depend on the message mb. Therefore, no adversary can distinguish between these two
hybrids.

Theorem 6. If VDF is a verifiable delay function with perfect soundness, unique proofs, and proof
indistinguishability, and iO is an indistinguishability obfuscator, then Construction 3 is secure
against fine-grained time-bounded adversary.

Proof. The lemmas above show a sequence of a polynomial number of hybrid experiments where no
PPT adversary bounded by sequential time T can distinguish one from the next with non-negligible
probability. Notice that the first hybrid H0 corresponds to the PKE security game where b = 0,
and the last hybrid H5 corresponds to one where b = 1. The security of the indistinguishability
game follows.

10 Key Exchange

In this section, we define an non-interactive key exchange (NIKE) protocol against a fine-grained
time-bounded adversary. We show that such a NIKE protocol can be built from what we call a
commutative sequential function.

Inspiration for This Construction. Suppose we have some group of unknown order G, with
some order less than some prime q. We could attempt to construct a fine-grained key exchange
between two players Alice and Bob in the following way:

• Fix some public group element g ∈ G.

• Alice and Bob each sample some elements a, b ∈ Zq.

• Alice and Bob each compute ga
T

and gb
T

, respectively.

• Alice sends a to Bob and Bob sends b to Alice.

• Alice and Bob both compute g(ab)T
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This protocol seems interesting, because if we assume that repeated squaring is hard, then it might

seem like given g, a, and b, an adversary would need time 2T to compute g(ab)T –and not time T .
Unfortunately this is not the case–this construction is not a fine-grained secure key exchange, and
there exists attacks by using binary decomposition on the exponents a and b. However, the intuition
behind this construction seemed interesting and illuminating for fine-grained key exchange, so we
define the general primitive and explain its relationship to key exchange here.

10.1 Commutative Sequential Functions

Commutative sequential functions (CSFs) are a class of sequential function where the function
evaluations observe commutativity. In a nutshell, there are four functions f1, f2, g1, g2 which are
individually and compositionally sequential with the additional constraint that, for all inputs x,
f2 (g1 (x)) = g2 (f1 (x)). We emphasize that this enforces some composability properties which we
define in detail below.

Definition 31 (Commutative Sequential Functions). A commutative sequential function

F := (Setup,Gen,Sample1, Sample2,Eval)

is defined as the following tuple of algorithms:

Setup(1λ, k)→ pp: On input the security parameter 1λ and k ∈ 2o(λ) , the setup algorithm returns
the public parameters pp. By convention, the public parameters encode the input domains
X, Xf , Xg and output domain Y and the classes of functions F1 : X → Xf , F2 : Xf → Y ,
G1 : X → Xg, and G2 : Xg → Y .

Gen(pp, k)→ x: On input the public parameters pp, and k ∈ 2o(λ) , the instance generation
algorithm samples a random input x← X.

Sample1(pp, k)→ (f1, f2): On input the public parameters pp , and k ∈ 2o(λ) , the function sampling
algorithm samples a pair of functions f1 ← F1 and f2 ← F2.

Sample2(pp, k)→ (g1, g2): On input the public parameters pp , and k ∈ 2o(λ) , the function sampling
algorithm samples a pair of functions g1 ← G1 and g2 ← G2.

Eval(pp, h, x, k)→ y: On input the public parameters pp, a function handle h ∈ {F1,F2,G1,G2},
an input x, and k ∈ 2o(λ), the evaluation algorithm returns an output y.

In addition to the usual sequential function properties as defined in 3, we require commutativity
of the function evaluations.

Definition 32 (Commutativity). A sequential function F = (Setup,Gen,Sample1, Sample2,Eval) is
commutative if for all security parameters λ ∈ N, the following holds:

Pr

 y = y′

pp← Setup(1λ),
(f1, f2)← Sample1(pp, k), (g1, g2)← Sample2(pp, k),

x← Gen(pp)
y ← Eval(pp, g2,Eval(pp, f1, x, k), k),
y′ ← Eval(pp, f2,Eval(pp, g1, x, k), k)

 = 1.
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We also need to define the security of a commutative sequential function. To do this in a
fine-grained way, we unfortunately need to add a number of parameters.

Definition 33 (Security). Let α1, α2, β1, β2, γ be rational numbers. Fix some particular model of
computation1 and fix some k, and let α1 be the time it takes to compute any f1 ∈ F1, let α2 be the
time it takes to compute any f2 ∈ F2, let β1 be the time it takes to compute any f1 ∈ G1, and let β2

be the time it takes to compute any f1 ∈ G2, where this time is measured in a particular model of
computation and is the time required by an honest user to evaluate the function.

We say that a commutative sequential function is (α1, α2, β1, β2, γ)-secure if, for some γ > α2, β2,
no adversary (bounded by the model of computation) can win the following game played between a
challenger and the adversary with non-negligible probability:

• The challenger samples a random input x ∈ X and sends a description of the public parameters
and relevant function families as well as the input x to the adversary.

• The adversary has arbitrary polynomial time to preprocess on these parameters.

• The challenger samples f1 ← F1, f2 ← F2, g1 ← G1, g2 ← G2.

• The challenger sends the tuple (f2, g2) to the adversary.

• Within time γ, the adversary outputs a value v.

We say that the adversary wins the commutative sequential function security game if

v = f2 (g1 (x)) = g2 (f1 (x )) .

We note that the secrets here are the choices of function from the function family. For fixed
functions, we can just encode these choices as parameters.

10.2 Fine-Grained NIKE

We next describe a NIKE protocol with fine-grained security. The syntax is very similar to a
traditional key exchange definition with the exception that we need to carefully keep track of the
times of evaluation for all of the functions involved.

Definition 34. A fine-grained noninteractive key exchange protocol (FGNIKE) is a tuple
of algorithms (Setup,KeyGen1,KeyGen2,Combine1,Combine2) defined as follows (we allow all of the
algorithms to take randomness as input but omit this in our description):

Setup(1λ)→ pp: On input the security parameter 1λ the setup algorithm returns the public param-
eters pp. By convention, the public parameters encode the domains PP , X1, X2, S1, S2 and
output domain Y .

KeyGen1(pp)→ X1 × S1: on input the public parameters pp, the function outputs a public key
share x1 and a secret s1.

KeyGen2(pp)→ X2 × S2: on input the public parameters pp, the function outputs a public key
share x2 and a secret s2.

1The need to fix a particular model of computation for sequential functions is discussed extensively in [JMRR21],
and we refer the reader to the discussion there for more details
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Combine1(pp, S1, X2)→ Y : on input the public parameters pp, a secret s1, and a public key share
x2, the function outputs a key y.

Combine2(pp, S2, X1)→ Y : on input the public parameters pp, a secret s2, and a public key share
x1, the function outputs a key y.

Definition 35 (Correctness). A FGNIKE protocol (Setup,KeyGen1,KeyGen2,Combine1,Combine2)
is correct if for all security parameters λ ∈ N, the following holds:

Pr

 y1 = y2

pp← Setup(1λ),
(x1, s1)← KeyGen1(pp), (x2, s2)← KeyGen2(pp),

y1 ← Combine1(pp, s1, x2),
y2 ← Combine2(pp, s2, x1)

 = 1.

We can now define the security of the FGNIKE protocol. Again, we are forced to use many
parameters due to the fine-grained nature of the protocol.

Definition 36 (Security). Let α1, α2, β1, β2, γ be rational numbers. Fix some particular model of
computation, and let α1 be the time it takes to compute any KeyGen1, let α2 be the time it takes to
compute KeyGen2, let β1 be the time it takes to compute Combine1, and let β2 be the time it takes
to compute Combine2, where this time is measured in a particular model of computation and is the
time required by an honest user to evaluate the function.

We say that a FGNIKE is (α1, α2, β1, β2, γ)-secure if, for some γ > α2, β2, no adversary
(bounded by the model of computation) can win the following game played between a challenger and
the adversary with non-negligible probability:

• The challenger samples pp← Setup
(
1λ
)

• The adversary has arbitrary polynomial time to preprocess on pp.

• The challenger samples (x1, s1)← KeyGen1 (pp) and (x2, s2)← KeyGen2 (pp).

• The challenger sends the tuple (x1, x2) to the adversary.

• Within time γ, the adversary outputs a value y′.

We say that the adversary wins the commutative sequential function security game if

y′ = Combine1 (pp, s1, x2) .

Note than in a typical key exchange protocol, α1, α2, β1, β2 would all be functions that are
polynomial in the security parameter λ, and γ would be some function that is ideally exponential
(but more likely subexponential) in γ. Since γ in our fine-grained applications would be polynomial
in λ, it is important that we spell out all of the other parameters, particularly the βs.

10.3 Construction of the KE Protocol

Now we show how to construct a two-party NIKE protocol using a commutative sequential functions.
The high-level idea is that each party will sample different function handles (f1, f2) and (g1, g2), and
compute f1(x) and g1(x) on some agreed public input x. Then, they will exchange their function
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descriptions f2 and g2, and eventually computing f2(g1(x)) = g2(f1(x)). For the honest parties, if
we had an “ideally” secure sequential function, it would take time T to arrive at the shared key
after the communication, but for an eavesdropper, it would take time 2T , yielding the sequential
time gap of T between the honest parties and the adversary.

Construction 4. Let F = (Setup,Gen,Sample1,Sample2,Eval) be a commutative sequential function,
we construct the non-interactive key exchange protocol as follows:

• Fix some appropriate security parameter λ and some integer k.

• Setup(1λ)→ pp: Run F.pp← F.Setup(1λ, k) and x← F.Gen(F.pp, k). Set pp = (F.pp, x).

• KeyGeni(pp) → (pvi, svi): For user i = 1, run F.Sample1(pp, k) to obtain function handles
(f1, f2), and compute the secret value sv1 = F.Eval(pp, f1, x, k). Publish the public value pv1 =
f2. For user i = 2, run F.Sample2(pp, k) to obtain (g1, g2), compute sv2 = F.Eval(pp, g1, x, k)
and publish pv2 = g2.

• Combinei(pp, svi, pv3−i)→ key: For user i = 1, compute the shared key as key = F.Eval(pp, pv2,
sv1, k) = F.Eval(pp, g2, F.Eval(pp, f1, x, k), k). For user i = 2, compute key = F.Eval(pp, pv1,
sv2, k) = F.Eval(pp, f2, F.Eval(pp, g1, x, k), k).

Correctness of the scheme follows directly from the commutativity of the sequential function.
Security of the scheme follows from the security definition of the commutative sequential function.

Notice that the honest parties arrive at the shared key in time (α2, β2) after both the Combine
algorithms are run. But in order for the adversary to compute the shared key, it would need to
compute either f2(g1(x)) or g2(f1(x)), none of which can be started before the pv’s are published.
Therefore, the adversary need at least γ sequential time to compute the shared key. Hence, at time
less than γ after the Combine algorithms are run, the adversary has no information about the shared
key.

10.4 (Lack of) Constructions and Extensions

We unfortunately were not able to develop a construction of a commutative sequential function
that wasn’t already a “regular” key exchange protocol, and we leave this as an interesting open
problem. We had to make quite a lot of strong assumptions to build even fine-grained PKE that
potentially did not imply one-way functions, and it is not clear even what sort of primitives would
imply fine-grained key exchange. Some kind of VBB obfuscation protocol would most likely suffice,
but it is not clear whether we could translate this to an iO construction.

We note that the definitions of both commutative sequential functions and fine-grained key
exchange can be extended to involve multiple parties. However, for the sake of brevity (and because
we lack concrete constructions), we omit these here.

It would also be nice to show some sort of equivalence between commutative sequential functions
and fine-grained NIKE. While they are very similar in spirit, the notation of commutative sequential
functions makes this difficult and any such constructions are seemingly very artificial.
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[AS15] Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard
functions. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM STOC, pages
595–603. ACM Press, June 2015.

[AW14] Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong
lower bounds for dynamic problems. In 55th FOCS, pages 434–443. IEEE Computer
Society Press, October 2014.

[AWY15] Amir Abboud, Virginia Vassilevska Williams, and Huacheng Yu. Matching triangles
and basing hardness on an extremely popular conjecture. In Rocco A. Servedio and
Ronitt Rubinfeld, editors, 47th ACM STOC, pages 41–50. ACM Press, June 2015.

[BBBF18] Dan Boneh, Joseph Bonneau, Benedikt Bünz, and Ben Fisch. Verifiable delay functions.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 757–788. Springer, Heidelberg, August 2018.

[BC22] Chris Brzuska and Geoffroy Couteau. On building fine-grained one-way functions from
strong average-case hardness. In EUROCRYPT 2022, Part II, LNCS, pages 584–613.
Springer, Heidelberg, June 2022.

[BCS16] Dan Boneh, Henry Corrigan-Gibbs, and Stuart E. Schechter. Balloon hashing: A
memory-hard function providing provable protection against sequential attacks. In
Jung Hee Cheon and Tsuyoshi Takagi, editors, ASIACRYPT 2016, Part I, volume
10031 of LNCS, pages 220–248. Springer, Heidelberg, December 2016.

[BD21] Jeffrey Burdges and Luca De Feo. Delay encryption. In Anne Canteaut and François-
Xavier Standaert, editors, EUROCRYPT 2021, Part I, volume 12696 of LNCS, pages
302–326. Springer, Heidelberg, October 2021.

65
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and Srdjan Capkun. On the security and performance of proof of work blockchains. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and
Shai Halevi, editors, ACM CCS 2016, pages 3–16. ACM Press, October 2016.

[GKW17] Rishab Goyal, Venkata Koppula, and Brent Waters. Lockable obfuscation. In Chris
Umans, editor, 58th FOCS, pages 612–621. IEEE Computer Society Press, October
2017.

[GMM17] Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. Lower bounds on
obfuscation from all-or-nothing encryption primitives. In Jonathan Katz and Hovav
Shacham, editors, CRYPTO 2017, Part I, volume 10401 of LNCS, pages 661–695.
Springer, Heidelberg, August 2017.

[GMPY06] Juan A. Garay, Philip D. MacKenzie, Manoj Prabhakaran, and Ke Yang. Resource
fairness and composability of cryptographic protocols. In Shai Halevi and Tal Rabin,
editors, TCC 2006, volume 3876 of LNCS, pages 404–428. Springer, Heidelberg, March
2006.

[GP21] Romain Gay and Rafael Pass. Indistinguishability obfuscation from circular security.
pages 736–749. ACM Press, 2021.

[HR04] Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road, or do secure
hash functions need secret coins? In Matthew Franklin, editor, CRYPTO 2004, volume
3152 of LNCS, pages 92–105. Springer, Heidelberg, August 2004.

[ILL89] Russell Impagliazzo, Leonid A. Levin, and Michael Luby. Pseudo-random generation
from one-way functions (extended abstracts). In 21st ACM STOC, pages 12–24. ACM
Press, May 1989.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Structure in
Complexity Theory Conference, pages 134–147, 1995.

[IR89] Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In 21st ACM STOC, pages 44–61. ACM Press, May 1989.

68



[JLS21] Aayush Jain, Huijia Lin, and Amit Sahai. Indistinguishability obfuscation from well-
founded assumptions. pages 60–73. ACM Press, 2021.

[JMRR21] Samuel Jaques, Hart Montgomery, Razvan Rosie, and Arnab Roy. Time-release cryp-
tography from minimal circuit assumptions. In International Conference on Cryptology
in India, pages 584–606. Springer, 2021.

[KMT22] Dmitry Khovratovich, Mary Maller, and Pratyush Ranjan Tiwari. Minroot: Candidate
sequential function for ethereum vdf. Cryptology ePrint Archive, Paper 2022/1626,
2022. https://eprint.iacr.org/2022/1626.

[KST22] Abhiram Kothapalli, Srinath Setty, and Ioanna Tzialla. Nova: Recursive zero-knowledge
arguments from folding schemes. In CRYPTO 2022, Part IV, LNCS, pages 359–388.
Springer, Heidelberg, August 2022.

[Lin20] Yehuda Lindell. Secure multiparty computation (mpc). Cryptology ePrint Archive,
Paper 2020/300, 2020. https://eprint.iacr.org/2020/300.

[LLW19] Rio LaVigne, Andrea Lincoln, and Virginia Vassilevska Williams. Public-key cryptogra-
phy in the fine-grained setting. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part III, volume 11694 of LNCS, pages 605–635. Springer, Heidelberg,
August 2019.

[LW17] Arjen K Lenstra and Benjamin Wesolowski. Trustworthy public randomness with sloth,
unicorn, and trx. International Journal of Applied Cryptography, 3(4):330–343, 2017.

[MMV13] Mohammad Mahmoody, Tal Moran, and Salil P. Vadhan. Publicly verifiable proofs
of sequential work. In Robert D. Kleinberg, editor, ITCS 2013, pages 373–388. ACM,
January 2013.

[MSW20] Mohammad Mahmoody, Caleb Smith, and David J. Wu. Can verifiable delay functions
be based on random oracles? In Artur Czumaj, Anuj Dawar, and Emanuela Merelli,
editors, ICALP 2020, volume 168 of LIPIcs, pages 83:1–83:17. Schloss Dagstuhl, July
2020.

[MT19] Giulio Malavolta and Sri Aravinda Krishnan Thyagarajan. Homomorphic time-lock
puzzles and applications. In Alexandra Boldyreva and Daniele Micciancio, editors,
CRYPTO 2019, Part I, volume 11692 of LNCS, pages 620–649. Springer, Heidelberg,
August 2019.

[Pap07] Christos H. Papadimitriou. Computational complexity. Academic Internet Publ., 2007.

[Pie19] Krzysztof Pietrzak. Simple verifiable delay functions. In Avrim Blum, editor, ITCS
2019, volume 124, pages 60:1–60:15. LIPIcs, January 2019.

[Pin73] Mark S Pinsker. On the complexity of a concentrator. In 7th International Telegraffic
Conference, volume 4, pages 1–318. Citeseer, 1973.

[PTC76] Wolfgang J Paul, Robert Endre Tarjan, and James R Celoni. Space bounds for a game
on graphs. Mathematical systems theory, 10(1):239–251, 1976.

69

https://eprint.iacr.org/2022/1626
https://eprint.iacr.org/2020/300


[RS20] Lior Rotem and Gil Segev. Generically speeding-up repeated squaring is equivalent to
factoring: Sharp thresholds for all generic-ring delay functions. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume 12172 of LNCS,
pages 481–509. Springer, Heidelberg, August 2020.

[RSS20] Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions require hidden-
order groups. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020, Part III,
volume 12107 of LNCS, pages 155–180. Springer, Heidelberg, May 2020.

[RSW96] Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release
crypto. 1996.

[Sha19] Barak Shani. A note on isogeny-based hybrid verifiable delay functions. Cryptology
ePrint Archive, Report 2019/205, 2019. https://eprint.iacr.org/2019/205.

[Sho97] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Wal-
ter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages 256–266. Springer,
Heidelberg, May 1997.

[Val75] Leslie G Valiant. On non-linear lower bounds in computational complexity. In Proceedings
of the seventh annual ACM symposium on Theory of computing, pages 45–53, 1975.

[Wes19] Benjamin Wesolowski. Efficient verifiable delay functions. In Yuval Ishai and Vincent
Rijmen, editors, EUROCRYPT 2019, Part III, volume 11478 of LNCS, pages 379–407.
Springer, Heidelberg, May 2019.

[WP22] Yuyu Wang and Jiaxin Pan. Non-interactive zero-knowledge proofs with fine-grained
security. In EUROCRYPT 2022, Part II, LNCS, pages 305–335. Springer, Heidelberg,
June 2022.

[WPC21] Yuyu Wang, Jiaxin Pan, and Yu Chen. Fine-grained secure attribute-based encryption.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 179–207, Virtual Event, August 2021. Springer, Heidelberg.

[WW10] Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In 51st FOCS, pages 645–654. IEEE Computer Society
Press, October 2010.

[WW20] Hoeteck Wee and Daniel Wichs. Candidate obfuscation via oblivious LWE sampling.
Cryptology ePrint Archive, Report 2020/1042, 2020. https://eprint.iacr.org/2020/
1042.

[WZ17] Daniel Wichs and Giorgos Zirdelis. Obfuscating compute-and-compare programs under
LWE. In Chris Umans, editor, 58th FOCS, pages 600–611. IEEE Computer Society
Press, October 2017.

[Yak18] Anatoly Yakovenko. Solana: A new architecture for a high performance blockchain v0.
8.13. Whitepaper, 2018.

[Zha22] Mark Zhandry. To label, or not to label (in generic groups). In CRYPTO 2022, Part III,
LNCS, pages 66–96. Springer, Heidelberg, August 2022.

70

https://eprint.iacr.org/2019/205
https://eprint.iacr.org/2020/1042
https://eprint.iacr.org/2020/1042

	Introduction
	Our Contributions
	Paper Outline

	Technical Overview of the Oracle Separation
	An Oracle Separation between OWFs and CISFs

	Overview of Other Results
	Sequential Functions and PSPACE
	Fine-Grained Cryptography from Sequential Primitives

	Preliminaries
	Sequential Functions
	Verifiable Delay Functions
	Indistinguishability Obfuscation

	An Oracle Separation for One-Way Functions and Sequential Functions
	Sampling a PSPACE Solution
	Definitions for the Proof
	Proof Outline
	Hybrid Definitions
	Proof of Hybrid Arguments
	Proof of Lemma 6 and Lemma 7
	Intuition on the Oracles in the Proof

	Sequential Functions vs. PSPACE
	(Worst-Case) CISFs are PSPACE-Complete
	Dynamic Sequential Functions are not in PSPACE

	Fine-Grained Symmetric Key Cryptography
	Fine-Grained MAC
	Fine-Grained Public Key Encryption
	Definition
	Construction
	Proof of Security

	Key Exchange
	Commutative Sequential Functions
	Fine-Grained NIKE
	Construction of the KE Protocol
	(Lack of) Constructions and Extensions


