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Abstract. Machine learning is widely used for a range of applications
and is increasingly offered as a service by major technology companies.
However, the required massive data collection raises privacy concerns
during both training and inference. Privacy-preserving machine learning
aims to solve this problem. In this setting, a collection of servers secret
share their data and use secure multi-party computation to train and
evaluate models on the joint data. All prior work focused on the scenario
where the number of servers is two or three. In this work, we study the
problem where there are N ≥ 3 servers amongst whom the data is secret
shared.
A key component of machine learning algorithms is to perform fixed-
point multiplication with truncation of secret shared decimal values. In
this work, we design new protocols for multi-party secure fixed-point
multiplication where each of the N parties have one share each of the
two values to be multiplied and receive one share of the product at the
end of the protocol. We consider three forms of secret sharing - repli-
cated, Shamir, and additive, and design an efficient protocol secure in
the presence of a semi-honest adversary for each of the forms. Our proto-
cols are more communication efficient than all prior work on performing
multi-party fixed-point multiplication. Additionally, for replicated secret
sharing, we design another efficient protocol that is secure in the presence
of a malicious adversary. Finally, we leverage our fixed-point multiplica-
tion protocols to design secure multi-party computation (MPC) proto-
cols for arbitrary arithmetic circuits that have addition and fixed-point
multiplication with truncation gates. All our protocols are proven secure
using a standard simulation based security definition. Our protocols for
replicated and Shamir sharing work in the presence of an honest major-
ity of parties while the one for additive sharing can tolerate a dishonest
majority as well.1
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1 Introduction

Machine learning is widely used to produce models that classify images, per-
form medical diagnosis, provide recommendations and identify fraudulent trans-
actions among several other applications. Major technology companies provide

1 This manuscript was written in 2021 and does not reflect any more recent related
work.



cloud-based machine learning services [1–4] to their customers that perform both
training models using customer data as well as performing inference on pre-
trained models. The data being classified or used for training is often sensitive
and may come from multiple sources with different privacy requirements. Addi-
tionally, for regulatory reasons, or even to retain competitive advantage, entities
might be unable to share their private data. Thus, privacy preserving machine
learning, which aims to perform both training and inference while maintaining
the privacy of user’s data, has become increasingly important and is an actively
studied research direction.

Secure multi-party computation (MPC) provides a promising solution to this
problem. It ensures that, during training, the only information revealed about
the data is the final model (or an encrypted version), and during evaluation,
the only information revealed is the output label. Though MPC does not pro-
vide a full solution to the problem of privacy-preserving machine learning (the
models themselves or interactions with them can leak information about data),
it provides a first line of defense with strong security guarantees that can be
strengthened when combined with orthogonal mechanisms such as differential
privacy [5]. The most common setting considered in this line of work is where
data owners (clients) secret share their data among multiple servers2 who per-
form training on the combined data or apply a (secret shared) pre-trained model
to evaluate new data samples. There have been several efficient solutions pro-
posed in literature [6, 17, 20, 30, 32, 34–39, 41, 44]. However, most of them focus
on the setting of two or three servers3 where an adversary can corrupt at most
one of them. For larger number of parties, there is still a significant gap between
plaintext training/evaluation and privacy-preserving solutions.

In this work, we focus on the scenario where there areN ≥ 3 servers and a ma-
jority of them are honest. While there has been a lot of recent research on improv-
ing the efficiency of honest majority N party MPC protocols [10, 19, 25, 29, 31],
they are typically suited only for computation over integers. In the case of ma-
chine learning algorithms, both training data and intermediate parameters in-
volve decimal values that cannot be natively handled using modular arithmetic.
An immediate idea to handle decimal values would be to represent them as in-
tegers where the least significant bits represent the fractional part, and choose a
large enough modulus to avoid a wrap around. This approach fails when perform-
ing many floating point multiplications, which is the case in standard training
algorithms where millions of sequential multiplications are performed. Moreover,
a large modulus implies a more expensive multiplication that further reduces
performance. Alternatively, one could perform fixed-point multiplication using a
boolean multiplication circuit inside the MPC protocol. Such a boolean circuit
can be evaluated using either secret sharing or garbled circuit based techniques,
leading to a significant increase in either round or communication cost of the
solution, respectively. Indeed, much of the effort in the space of two or three

2 Each server can be an independent party or the representative of a data owner.
3 A few works [11,18,21,32] also consider the setting of four parties with one corrup-
tion.
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party privacy preserving machine learning via MPC has focused on designing
new protocols to perform efficient (rounds and communication cost) fixed point
multiplication where the two inputs to be multiplied are secret shared amongst
the parties (and so is the output). On the other hand, very few works [16, 36]
study multi-party fixed point multiplication. Motivated by the above bottleneck
in performing efficient privacy preserving machine learning for a large number
of parties, in this work, we ask the following question:

Can we design efficient multi-party fixed point multiplication protocols where
the inputs and outputs are secret shared amongst the parties?

1.1 Our Contributions

Our main contribution is a conceptually new method for truncating secret shared
values, i.e. computing JyK := JxK/2d where d is a public value (looking ahead, this
denotes the number of decimal bits in a fixed-point value). This core idea can
then be combined with a standard multiplication protocol to obtain a fixed-point
multiplication protocol. We consider three forms of secret sharing to represent
the inputs to be multiplied and the output: replicated, Shamir and additive
secret sharing.

Replicated sharing. We design two efficient protocols for multi-party fixed
point multiplication where the inputs and output are represented using repli-
cated secret sharing over modulus 2k. The first protocol is secure against a
semi-honest adversary in the presence of an honest majority and requires no of-
fline communication prior to the protocol. The protocol has two forms: a single
round protocol requiring (n2−nt)k bits of online communication or two rounds
requiring only 2nk bits of online communication, where n is the number of par-
ties and t < n/2 is the number of corrupt parties. Our communication overhead
is significantly better than the previous work of Mohassel and Rindal [36] for
multi-party fixed point multiplication in the same setting. We compare the cost
in Fig. 1. We elaborate on the protocol in Sect. 5.
The second protocol, which builds on the first one, is secure against a malicious
adversary in the presence of an honest majority and requires two rounds in the
online phase. We refer to Sect. 6 for more details.

Shamir sharing. We design an efficient multi-party fixed point multiplication
protocol where the inputs and output are represented using Shamir secret shar-
ing. The protocol requires two rounds in the online phase and is secure against
a semi-honest adversary in the presence of an honest majority. Compared to
the prior work of Catrina and Saxena [16] for the same setting, our online com-
munication is the same while offline communication is significantly lower since
n, t≪ k typically in practice (Fig. 1). Our protocol is described in Sect. 7.

General truncation and additive secret sharing. The aforementioned ap-
proaches for replicated and Shamir secret sharing require an honest majority
among the parties. This is inherently required by these secret sharing schemes.
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Protocol Online Rounds Online Comm Offline Comm

Replicated (Ours) 1 or 2 (n2 − nt)k or 2nk 0
Replicated ([36]) 1 (n2 − nt)k (n2 − nt)tk
Shamir (Ours) 2 2nk (n− t− 1)(t+ 1)k
Shamir ([16]) 2 2nk 2k2n.

Fig. 1: Communication (in bits) and round complexity of our protocols compared
to [16,36]. n is the number of parties, t < n/2 is the number of corrupt parties.
For replicated, 2k is the modulus. For Shamir, k = ⌊log2(q)⌋ where q is the prime
modulus.

Nevertheless, it is not a requirement of our new truncation technique. In fact,
our new truncation protocol can be viewed as a general technique that works
for even for dishonest majority. We demonstrate this by applying our approach
to design an efficient multi-party fixed point multiplication protocol where the
inputs and output are represented using an n-out-of-n additive secret sharing
scheme. Our four-round protocol is secure against a semi-honest adversary that
can corrupt any t < n parties. We refer to Sect. 8 for more details.

It is our expectation that future work will apply our core technique to various
other secret sharing schemes.

Performance. The communication and computation cost of all three protocols
is close to a standard secret shared modular multiplication. For replicated secret
sharing the protocol is exactly as the modular counter-part. The same holds for
Shamir for a dishonest majority. Curiously, our Shamir protocol with an honest
majority is mildly less efficient, requiring t+ 1 parties to secret share a random
value. This is contrasted by prior works which required preprocessing k secret
shared bits [16] or performing a binary MPC protocol consisting of kt AND
gates [36].

General MPC. For each form of secret sharing, we leverage our fixed-point
multiplication protocol to design an MPC protocol for computing arbitrary arith-
metic circuits that contain addition and fixed-point multiplication with trunca-
tion gates. We then prove the resulting MPC protocol secure via a standard real
world-ideal world simulation based security definition.

1.2 Related Work

Work in this area of secret sharing decimal values has largely taken two ap-
proaches. The first has been to implement some type of floating point number
system. One could compile a circuit which implements the IEEE 754 floating
point standard using either a binary or arithmetic circuit as done by [40]. How-
ever, this leads to relatively poor performance compared to a standard secret
sharing due to difficulties in expressing it as an MPC circuit. Others have aban-
doned the IEEE standard and implemented more MPC friendly floating point
number systems [8, 13–15, 24, 33]. While significant progress has been made, all
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of these protocols require many rounds of interaction and are inefficient when
compared to their standard secret sharing counter-parts.

A second approach has been to forgo floating-point and instead perform all
operations on fixed-point values. This has the advantage of enabling significantly
more efficient protocols at the expense of a loss in accuracy. For fixed-point, the
core idea is that standard secret sharing can be used with the added required that
after each multiplication, the result is scaled down by the size of the decimal.
This scaling down is referred to as truncation. One of the first methods for
achieving this involves decomposing a secret share of x into secret shares of
the bits of x. This is known as bit decomposition [7, 42]. Given the bits it is
a relatively easy task to truncate the secret share by any power of 2. In 2010
Catrina and Saxena [16] presented an efficient method for truncating an secret
sharing with a prime modulus. Their protocol requires preprocessing k random
secret shared bits, where k is the bit length of the shares. The online phase of
their protocol is quite efficient, consisting of local operations and revealing a
value. More recently, Mohassel and Zhang [37] presented an even more efficient
protocol for a two-out-of-two linear secret scheme with modulus 2k. This protocol
requires no preprocessing. There have also been several follow up works to these,
e.g. [12, 22,26,36]. Some of these protocols are described in detailed later.

Organization. In Sect. 2, we discuss some preliminaries. In Sect. 3, we discuss
the techniques used in our protocols in detail, and this is followed by a perfor-
mance comparison of our protocols with prior work in Sect. 4. In Sect. 5 and
Sect. 6, we describe our protocols for replicated secret sharing. Our protocol for
Shamir secret sharing is in Sect. 7 and finally, Sect. 8 discusses our protocol for
additive secret sharing.

2 Preliminaries

2.1 Notation

We use κ to refer to the computational security parameter and λ for the statis-
tical security parameter. The parties are enumerated as P1, ..., Pn. We use the
notation JxK to denote a secret sharing of x. This sharing can be one of several
different types - JxKR, JxKS or JxKA as described later. Regardless, JxKi will refer
to the share held by Pi.

We assign a variable a the value of b by a := b. When uniformly sampling
from a set S or sampling a randomized function f , we use the notation a← S and
a← f(...) respectively. Let [a, b] denote the set {a, a+1, ..., b} and the shorthand
[b] := [1, b]. A parentheses on the left or right side denotes that corresponding
side of the range is exclusive, e.g. (a, b] := {a+1, a+2, ..., b}. We refer the reader
to [27] for the definition of pseudorandom functions (PRFs), which is one of the
cryptographic primitives we use in our constructions.
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2.2 Representations

In secure computation, functions are generally represented as a circuit where
each wire can hold an integer value modulo some public modulus N ∈ N such
as N = 2 for Boolean and N = 2k or a prime q for arithmetic operations. In
this work, we consider arithmetic circuits with N = 2k or a prime q. In the case
of a prime modulus q, we define k := ⌊log2(q)⌋ such that 2k is just smaller than
q. In addition to being able to perform these types of modular arithmetics, this
framework supports both signed and fixed-point arithmetics such that fractional
numbers can efficiently be represented.

Signed Values. A value x ∈ [−N/2, N/2) can be represented as x̂ := (x
mod N). For N = 2k, this is also known as two’s complement, and it is straight-
forward to see the highest order bit indicates sign. The same approach also works
when N is a prime. Sometimes it will be more convenient to consider a signed
value as simply an element of ZN while at other times x ∈ [−N/2, N/2) is more
natural. In particular, we will use the notation SN := [−N/2, N/2) to denote
this range. Regardless, performing addition, subtraction and multiplication in
SN or ZN has a one-to-one correspondence. We define the symmetric mod oper-
ator x′ := (x symod N) as the unique value x′ ∈ SN such that (x mod N) = (x′

mod N).

Fixed-Point Values. Fixed-point values have support for representing rational
numbers Q such as x = 1.25. This can be achieved by having the bottom d bits
of an integer represent the fractional part. That is, let xi ∈ Z2 be the i’th bit
of an unsigned x, then x =

∑
2i−dxi. We parameterize a set of fixed point

values by two integers N, d. The set of (signed) values can then be described
as FxN,d := {x/2d | x ∈ SN} where the division is performed over Q and it is
assumed that N > 2d. We define addition and subtraction in the natural way.
For multiplication of x, y ∈ FxN,d, we define the result as xy ∈ Q rounded down
to the next multiple of 2−d.

2.3 Security Model

Consider SN and a value k′ where 2k
′ ≪ N . Consider any arithmetic circuit Cd

with addition and fixed-point multiplication with truncation gates. The multi-
plication gates are associated with a truncation parameter d and an error dis-
tribution E - given two inputs x and y, the output of the gate is (xy/2d + e)
where e is a rounding error term sampled from the distribution E . Each party
Pi has an input inpi ∈ S2k′ and they wish to evaluate the circuit Cd on these
n joint inputs without revealing any information about their respective inputs.
The input values satisfy the property that when evaluating circuit Cd, the inputs
and output of any multiplication gate lies in S2k′ .

We follow the standard real-ideal world simulation based security definition
for secure multiparty computation (MPC) [27]. The ideal functionality FCd

is
defined in Fig. 2. We consider an adversary that corrupts at most t of the parties
and study both semi-honest and malicious adversaries.
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FCd

Parameters: An arithmetic circuit Cd that contains addition and fixed-point mul-
tiplication with truncation gates, where the multiplication gates have a error dis-
tribution E .

Input: Each party Pi provides input inpi.

Computation: Compute out = Cd(inp1, . . . , inpn) where each fixed-point multipli-
cation gate with input x and y is processed as follows:
1. Let e← E be the rounding error term sampled from the distribution E .
2. Let the multiplication output be xy/2d + e.

Output: Send the output out to every party.

Fig. 2: Ideal functionality for computing an arithmetic circuit Cd over ring SN

2.4 Secret Sharing Types

We consider different types of secret sharing schemes depending on the number
of parties: replicated secret sharing JxKR for a small number of parties, Shamir
and additive secret sharing JxKS for a larger number of parties.

Replicated Secret Sharing A value x ∈ G is replicated secret shared by
uniformly sampling x1, ..., xm ∈ G for m :=

(
n

n−t

)
such that x =

∑
i xi. G

can be any group such as S2k ,Z2k or Fq for a prime q. To obtain a t-out-of-n
replicated secret sharing of x, it is possible to distribute these shares such that
every subset of (t+ 1) parties holds all m shares of x, yet any smaller coalition
is missing at least one share. One method for doing this is as follows: Define the
sets D1, ..., Dm ⊂ [n] as the m distinct subsets of size (n − t). Without loss of
generality, for i ∈ [n], let Di = {i, i+ 1, i+ 2, ...} be the contiguous set of party
indices starting at index i, with wrap around (see Fig. 3). The replicated secret
share of the ith party Pi is then JxKRi := {xj | i ∈ Dj}. We will use the group
S2k .

Due to the linearity of the scheme, addition, subtraction or multiplication
with a public constant can be performed locally by applying the corresponding
operation to the shares. For example, computing JzKR := JxKR + JyKR can be
done by having each party Pi define the output shares JzKRj := JxKRj + JyKRj .
Subtraction works in the same way while public multiplication JzKR := cJxKR
can be perform by defining JzKRj := cJxKRj . To multiply two secret shared values

JzKR := JxKRJyKR, parties must perform an interactive protocol. We elaborate
more on this later in the paper.

Shamir Secret Sharing [43]. To Shamir secret share a value x ∈ F, the party
who holds x samples a uniformly random polynomial px(·) ∈ F[·] of degree t
such that px(0) = x. Each party Pi is given the point JxKSi := px(i), which is the
evaluation of the polynomial px at i. A degree t polynomial is uniquely defined
by (t + 1) points, so it follows that any subset of (t + 1) parties can use their
shares to reconstruct px and retrieve the secret value x = px(0), while any subset

7



P1

P2

P3 P4

P5

(a) Parties indexed by D1.

P1

P2

P3 P4

P5

(b) Parties indexed by D2.

P1

P2

P3 P4

P5

(c) Parties indexed by D6.

Fig. 3: When n = 5, t = 2, sets D1, . . . , D5 refer to the first 5 contiguous subsets
(e.g Fig. 3a and Fig. 3b), and D6, . . . , D10 are the remaining non-contiguous,
distinct subsets (e.g Fig. 3c). In replicated secret sharing, a share xi is held by
all of the parties indexed by Di.

of fewer than (t + 1) parties learn no information about the secret. We use the
notation JxKS,t

′
to denote the Shamir secret sharing of x using a polynomial of

degree t′. Typically, we will work with polynomials of degree t and omit the
degree in this case for brevity (e.g JxKS) and consider F = Fq for a prime q.

As in the case of replicated secret sharing, observe that addition and multipli-
cation by a constant can be performed locally on each share. That is, to compute
JzKS := JxKS + c or JzKS := cJxKS, each party Pi locally compute JzKSi := JxKSi + c
or JzKSi := cJxKSi , respectively. Similarly, to calculate the sum of two shared
values JzKS := JxKS + JyKS, each party Pi can locally compute their shares as
JzKSi := JxKSi + JyKSi . More care is required when multiplying two shared values
and we elaborate on this later.

Additive Secret Sharing A value x ∈ G is additive secret shared by uniformly
sampling x1, ..., xn ∈ G such that x =

∑
i xi. The additive secret share of the i

th

party Pi is then JxKAi := xi. Observe that unless all the n parties come together,
no information about the secret x is learnt. We will use the group S2k . Simi-
lar to the other two sharing techniques, addition, subtraction or multiplication
with a public constant can be performed locally by applying the corresponding
operation to the shares.

3 Techniques

Generally speaking, this work builds on two main techniques for performing
fixed-point computation. The first is an improvement for replicated secret sharing
over the ring Z2k as performed by [36, 37]. The second approach is tailored for
secret sharing over a prime field Fq such as Shamir secret sharing.

Regardless of whether the scheme naturally supports Z2k or Fq, the basic
operations follow a standard approach. For party Pi to input a value x ∈ FxN,d,
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Pi maps x into the target group and secret shares it. Specifically, for Z2k and
N = 2k, party Pi compute x′ := x2d mod 2k and then runs the standard input
sharing protocol. In the case of secret sharing over Fq, Pi computes x′ := x2d

mod q and inputs x′. Addition, subtraction of shared values and multiplication
by a public integer follow the same approach as the standard secret sharing. To
reveal a shared fixed-point value Jx′K to some of the parties, first the standard
reveal procedure is performed to reveal x′. The final result is then computed as
x := x′/2d ∈ FxN,d.

The core difficulty in multiplying this style of fixed-point secret shares is that
the standard protocol would result in a semantic value in FxN,2d given input
values in FxN,d and ignores the possibility of the product overflowing N . That
is, let Jx′K, Jy′K be sharing of x, y ∈ FxN,d as described above. Then computing
Jz′K := Jx′KJy′K using the standard Z2k or Fq protocols would result in z′ such
that z′/22d ≈ xy where the approximation comes from the rounding of the lower
order terms. An approach known as truncation can then be used to take a shared
value in FxN,2d and produce shares of that value rounded into FxN,d.

Ideally, this rounding would exactly correspond to multiplication in FxN,d

(rounding down to the nearest 2−d) but several works [16, 36, 37] have shown
that a significant performance improvement can be achieved by allowing prob-
abilistic rounding. We capture this in our ideal functionality FN,d,E

mul which is
parameterized by a modulus N , the number of decimal bits d and a rounding
error distribution E . This distribution will specify how the rounding should be
perform.

We adapt and improve these prior approaches beyond the two party setting
with a focus on reducing the communication overhead.

FN,d,E
mul

Fixed-Point Multiply: The functionality is parameterized by N, d ∈ N and a
rounding error distribution E . Upon receiving shares JxK, JyK from parties, the
functionality reconstructs x, y ∈ FxN,d.

1. Sample e← E as the rounding error term.
2. Output Jxy/2d + eK to the respective parties.

Fig. 4: Probabilistic functionality for fixed-point multiplication

3.1 Replicated Secret Sharing

The approach of [36,37]. At its core, this approach is tailored for a 2-out-of-2
secret sharing scheme over S2k . A value z ∈ S2k′ is secret shared into two random
values z1, z2 ∈ S2k such that z1 + z2 = z and for some k ≥ k′. Mohassel and
Zhang [37] showed that so long as |z| ≪ 2k, then with high probability

z1
2d

+
z2
2d
∈
{ z

2d
,
z

2d
− 1

}
9



where the division is the quotient over the integers. Here, the possibility of having
a minus one comes from the fact that if (z1 mod 2d) + (z2 mod 2d) ≥ 2d, then
this would have generated a “carry bit” which was eliminated by performing
separate division operations on the shares.

There are two subtleties in understanding this approach. First it is crucial
to interpret the individual shares z1, z2 as being signed integers in the range
S2k = [−2k−1, 2k−1). Second is the necessity for |z| ≪ 2k−1. In the event that
z1 + z2 wraps around4 in S2k , then it must hold that z1, z2 are both positive or
negative and that z has the opposite sign. However, after dividing z1, z2 by 2d,
the addition of these values can no longer wrap around S2k and as such does
not sum to z/2d. This event where z1 + z2 wraps around is referred to as a
catastrophic error [37].

To fix these catastrophic errors, [37] observed the following. Let us redefine

the shares by r
$←− S2k and z1 := −r, z2 := r + z and require z ∈ S2k′ where

2k
′ ≪ 2k. Then, with probability at least 1 − 2k

′−k it holds that z1 and z2 do
not have the same sign since this would imply that r+ z wraps around S2k and
the top k− k′ bits of r are set to 1. Given that z1, z2 do not have the same sign
it is impossible for them to wrap around S2k and therefore z1

2d
+ z2

2d
will be equal

to z
2d

or z
2d
− 1 as described above.

Unfortunately, this approach does not generalized to more than two parties.
The core reason is that it is likely for the shares to wrap around the modu-
lus, regardless of the distribution of x. Mohassel and Rindal [36] were able to
circumvent this issue by emulating the two party protocol in the multi-party
setting. This required the addition of a preprocessing phase where a truncation
pair JrKR, Jr/2dKR is computed. Given this, the protocol above can be emulated
by revealing Jz1KR := JzKR − JrKR and then letting Jz2/2dKR := Jr/2dKR. Since z1
is made public, all parties can compute Jz/2dK := Jz2/2dKR + z1/2

d.

The main limitation of [36] is the need to generate the truncation pair
JrKR, Jr/2dKR. [36] present a three-party preprocessing protocol which requires
2k binary AND gates in the semi-honest setting and 4k in the malicious setting.
Generalizing this approach results in 2tk and 2mk AND gates respectively in
the multi-party scenario. Since m =

(
n
t

)
= O(2n), the overhead of this approach

does not scale well as n grows.

Our approach. The core contribution of our new approach is a new technique
for generating a multi-party sharing of x which is guaranteed not to wrap around
the modulus. As a starting point, consider secret sharing x ∈ S2k′ over S2k
(where k ≥ k′ + λ + log2 m) by sampling each share x2, . . . , xm

$←− S2k′+λ and
then defining the last share as x1 = x − x2 − · · · − xm. Observe that random
shares are sampled over a 2λ times larger range as compared to the underlying
value, where λ is the statistical security parameter. This is required in order to
sufficiently hide the value of x.

4 i.e. if when interpreting z1, z2 as integers and adding them results in (z1+z2) > 2k−1

or (z1 + z2) < −2k−1 + 1.
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By definition, this type of sharing cannot wrap around the modulus and as
such, locally dividing each share approximately truncates the underlying secret
shared value. In particular, we have

x =x1 + · · ·+ xm

=2d
(x1

2d
+ · · ·+ xm

2d

)
+ (x1 symod 2d + · · ·+ xm symod 2d)

x/2d − e =
x1

2d
+ · · ·+ xm

2d

where e := (x1 symod 2d + · · · + xm symod 2d)/2d ∈ [−m,m]. That is, locally
dividing the shares results in the secret shared value being similarly truncated
with an absolute error |e| of at most logm bits.

This approach does not immediately give a practical secret sharing scheme
due to the size of the shares doubling after each multiplication. We overcome
this by effectively converting a traditional secret sharing (e.g. replicated) into
the sharing described above, performing the division and then converting back.

New replicated secret sharing. First let us consider the task of dividing a
replicated secret sharing of JxKR by 2d to obtain a sharing JzKR where z ≈ x/2d

over the integers. Later we will discuss how to combine this with the multiplica-
tion protocol with little added overhead.

Recall that each replicated secret sharing consists of m shares, distributed
among n parties. In particular, we have x = (x1 + · · · + xm) symod 2k. As
with prior art, our technique will require that x ∈ S2k′ for some 2k

′ ≪ 2k, e.g.
k = k′ + λ+ log2 m.

The parties jointly sample a random sharing JrKR where share ri is defined
as ri ← S2k′+λ . This type of secret sharing has three critical properties: the
first is that JrKR does not wrap around S2k when reconstructed, i.e. r = (r1 +
· · · + rm) = (r1 + · · · + rm symod 2k). The second is that the distributions of r
and w := r + x are statistically close. This latter property follows from r being
distributed over a range that is approximately 2λ+log2 m times bigger than x.
Thirdly, JrKR can be sampled non-interactively by sampling the shares as the
output of a pseudorandom function (PRF).

The protocol proceeds by revealing JwKR := JrKR + JxKR to all parties. Let us
assume that r + x does not wrap around and observe that

w = x+ r

w/2d =
x+ r

2d

w/2d =
( x

2d
+

r1
2d

+ · · ·+ rm
2d

)
+ e,

where e := (x symod 2d + r1 symod 2d + · · ·+ rm symod 2d)/2d

x/2d + e =
w

2d
− r1

2d
− · · · − rm

2d

As before we have that e ∈ [−m,m]. More importantly, the parties can locally
compute shares of JzKR = Jx/2d+eKR given w and JrKR by defining z1 := w/2d−
r1/2

d and zi := −ri/2d for i ∈ [2,m].
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Fused multiply and truncate. Now we consider the challenge of performing
a fused multiply and truncate protocol. The trivial way of doing this is to first
perform the standard multiplication protocol to compute Jz′KR := JxKRJyKR and
then the truncation protocol to compute JzKR :≈ Jz′KR/2d. The main downside
of this approach is the need to perform two rounds of interaction.

First let us recall the normal multiplication protocol. Observe that xy =
(x1 + · · ·+ xm)(y1 + · · ·+ ym) =

∑
j,j′ xjyj′ and that the shares are distributed

such that at least one party can compute each cross term xjyj′ . The shares
xj , yj will be held by party Pi for all i ∈ Dj (recall that Dj consists of a set
of (n − t) parties and by definition, Pi ∈ Di). Let us assign each cross term
xjyj′ to a single Pi and let ui be the sum of them. For j ∈ (n,m], the parties in
Dj non-interactively sample z′j ← S2k . In addition, the parties non-interactively
sample an n-out-of-n zero-sharing JsK where Pi holds si and

∑
i si = 0. Given

these, Pi defines z
′
i := ui + si −

∑
j∈Ni

z′j and distributes z′i to all parties in Di.
Here Ni ⊂ (n,m] index the set of z′j terms that are assigned to Pi. A detailed
description of this protocol is given in Fig. 10.

Observe there are two sets of randomized shares, z′j for j ∈ (n,m] and ri
for i ∈ [n], which play slightly different roles. Given that the adversary corrupts
t parties, there will be exactly one index j∗ ∈ [m] for which they do not hold
the share, e.g. yj∗ . As such, its critical that z′j∗ is sampled uniformly as is done
above. The zero sharing JsK serves a slightly different purpose. For exposition,
let’s assume x is somehow known to the adversary while y, and therefore yj∗ , is
not. The honest parties Pi will each use yj∗ to compute their share z′i. As such,
if si was not included, for some of these z′i values, the adversary will know all
the other terms and can solve for yj∗ . However, by including the zero sharing,
we effectively “distribute” the uncertainty the adversary has about z′j∗ into all
of the z′i messages that are sent.

Now, we are ready to combine the multiplication and division protocols into
a single fused operation. The core change is that instead of distributing shares of
z′, the parties will directly reveal w = z′ + r and then perform the division step
as described before. Beyond this conceptual change, we observe that sampling
the z′j shares for j ∈ (n,m] are no longer necessary due to z′ being sufficiently
masked by r.

In more detail, each party Pi computes the sum ui of their cross terms xj , yj′

along with their zero sharing si. The sharing JrKR is sampled as ri
$←− S2k′+λ

which ensures that r will not wrap around. Party Pi computes wi := ui + si +∑
j∈Ni

rj and reveal it to all parties. The final output shares are defined as

z1 := w1/2
d − r1/2

d and zi := −ri/2d for i ∈ [2,m]. A detailed description of
our semi-honest secure protocol is given in Fig. 8.

Malicious security. To achieve malicious security, we add an information the-
oretic MAC αz′ along with the term z′. The MAC key α is unknown to the
adversary and is secret shared amongst all the parties. Using JαKR, parties can
computes secret shares of αz′. Then, we run a MAC check protocol (from in Fig-
ure 10 of [23]) that checks that shares of the MAC term αz′ are consistent with
JαKR and z′. From this, we have the guarantee that the term z′ was correctly
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computed by the adversary. Finally, after computing JzKR as in the semi-honest
protocol, we now also compute the MAC JαzKR. We refer to Fig. 12 for more
details.

3.2 Shamir Secret Sharing

The [12, 16] approach. For the sake of comparison we first give a detailed
description of the protocol of Catrina and Saxena [16] for computing JzKS :≈
JxKS/2d. The full protocol is shown in Fig. 5. The core of their approach is to
observe that integer division by 2d and modular division in Fq are the same when
the numerator is divisible by 2d. The intuition is then, given an arbitrary numer-
ator a ∈ Fq, we compute a/2d in the integers by computing (a−(a mod 2d))·2−d

in Fq. The challenge is to support signed values and to give an efficient way to
compute a sharing of Ja mod 2dKS given JaKS.

Πtrunc

Parties have access to functionality Fq,d
rand2, which distributes shares JrKS, Jr′KS where

r ∈ Fq and r′ = r mod 2d.

Truncate: Upon input JaKS, parties do the following:
1. Compute JbKS = JaKS + 2k−1.
2. Invoke Fq,d

rand2 and receive shares JrKS, Jr′KS where r′ = r mod 2d.
3. Send JcKS = JbKS + JrKS to party P1. P1 reconstructs c and broadcasts to

other parties.
4. Compute Ja′KS = c′ − Jr′KS where c′ = c mod 2d.
5. Compute JdKS = (JaKS − Ja′KS) · 2−d and take JdKS as output.

Fig. 5: Protocol for truncation [16, Protocol 3.1].

To support signed values, they require that a is in S2k = [−2k−1, 2k−1) where
2k < q. They then shift a into the range [0, 2k) by computing b := a+2k−1 ∈ Fq.
Now observe that a′ := b mod 2d is precisely the “semantic” low order bits
of a. Effectively, shifting a allows us to handle the positive and negative cases
simultaneously.

Given JbKS = Ja+2k−1KS the parties approximate Jb mod 2dKS using a mask

and open technique. First, the pair JrKS, Jr′KS are preprocessed where r
$←− Fq

and r′ := (r mod 2d). The masked value c := b + r is then revealed to all
parties. Importantly, we require that b + r does not wrap around Fq which we
will discuss later. The parties define c′ := c mod 2d = b + r mod 2d. Observe
that Ja′KS := c′− Jr′KS = (b+ r mod 2d)− Jr′KS is equal to (b mod 2d) or (b−1
mod 2d). This −1 term is due to the possibility of b + r generating a carry bit
at bit position d which is eliminated by the mod 2d operation. As such, this
truncation will result in the same rounding error as in [36, 37]. The final result
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can then be computed as JdKS := (JaKS−Ja′KS)·2−d which equals a/2d or a/2d−1
over the integers.

In [16], the multiplication and division are given separately. A followup work
[12] gave an optimization which combined the multiplication and division into
a single round as shown in Fig. 6. At a high level, the protocol begins with the
standard strategy of computing the higher degree product and opening a masked
version of it. Then, following the truncation protocol of [16], the masked value
z′ is shifted to the range [0, 2k) and shares of the unmasked bottom d-bits are
computed. These shares are then used to compute a sharing of the product that
can have the bottom d-bits truncated.

Πmul−trunc(JxKS, JyKS)

Parties hold preprocessed shares JrKS,t, JrKS,2t, Jr′KS,t, where r is random and r′ = r
mod 2d.

Mulitply and truncate: On inputs JxKS, JyKS, each party does the following:

1. Compute Jz′KS,2t = JxKSJyKS + JrKS,2t

2. Send Jz′KS,2t to P1, who reconstructs z′ and broadcasts the result to the
other parties.

3. Compute w = (z′ + 2k−1) mod 2d and Jw′KS,t = w − Jr′KS,t.
4. Output JzKS,t = (z′ − JrKS,t − Jw′KS,t) · 2−d

Fig. 6: Protocol for multiplication for Shamir secret sharing.

Our approach.Our protocol for Shamir secret sharing is conceptually similar to
our replicated secret sharing technique. This generality speaks to the versatility
of our approach in that it can be applied to many settings.

The first step in our protocol is for the parties to sample a linear secret
sharing of r which does not wrap around the modulus. One method for achieving

this is to have Pi for i ∈ [t + 1] sample ri
$←− Sq/(t+1) and generate a sharing

of JriKS and Jri/2dKS. Given these, the parties can define JrKS :=
∑

iJriK
S and

Jr′KS :=
∑

iJri/2
dKS. By the same analysis as above, we have that r/2d = r′ + e

for some e with at most log2 t bits.
To then truncate an existing sharing JxKS by 2d the parties reveal JwKS :=

JxKS + JrKS to all parties. The output shares are defined as JzKS := w/2d− Jr′KS.
Since r is not uniformly distributed over Fq, this protocol requires that |x| ≪ q
in order to argue that x remains hidden. We note that this is a common property
to all efficient division protocols. The detailed protocol is presented in Fig. 16.

3.3 General Truncation and Additive Secret Sharing

The aforementioned approaches for replicated and Shamir secret sharing require
honest majority among the parties. This is inherently required by these secret
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sharing schemes. Nevertheless, it is not a requirement of our new truncation tech-
nique. In fact, our new truncation protocol can be viewed as a general technique
that works for any t < n.

To truncate a secret shared value JxK ∈ SN where x ∈ S2k′ and log2 N ≥
k′ + λ+ log2 n, we first let the parties sample a linear secret sharing of r which
does not wrap round SN . In particular, each party Pi for i ∈ [t + 1] samples

ri
$←− S2k′+λ and generates sharings of JriK and Jri/2dK in SN . Given these, the

parties can define JrK :=
∑

iJriK and Jr′K :=
∑

iJri/2
dK. By the same analysis as

above, we have that r/2d = r′ + e for some e with at most log2 t bits.
To illustrate this idea, we show how to incorporate the truncation protocol

into additive secret sharing with dishonest majority and present the fixed point
multiplication protocol in Fig. 18.

4 Performance Comparison

We now compare the concrete performance of our fixed point multiplication
schemes with that of existing work. In particular, we compare to [36] for multi-
party (semi-honest) replicated secret sharing over S2k and with [16] for Shamir
secret sharing over Fq which is widely implemented [9, 31].

Replicated. Mohassel and Zhang [37] study two party secret sharing over S2k
and perform stand-alone multiplication and truncation operations in a single
round of communication. Our approach (if seen in a two-party setting) is effec-
tively identical to theirs.

Mohassel and Rindal [36] generalized to more than two parties by effectively
emulating the two party protocol of [37] within another MPC protocol. In
essence, the protocol of [36] inputs the shares of the parties into a binary MPC
protocol where the underlying value is reconstructed, truncated and then a new
arithmetic sharing is generated and output to the parties. Their approach can
be optimized to have practical concrete performance. In particular, in the three
party case, it involves a pre-processing phase with 2k binary gates and almost
no overhead in the online phase. However, in the multi-party case, when more
than 3 parties are involved, it requires ((n2−nt)tk) bits of offline communication
and (n2 − nt)k) bits of online communication where t < n/2 is a bound on the
number of corrupt parties.

Our approach eliminates the need to emulate the two party protocol within
a binary protocol. As suggested in Fig. 7, our protocol sends approximately t or
(n− t)t/2 times less data, depending on how z′ is revealed. In particular, all the
shares of z′ can either be sent to all (n − t) parties in D1 resulting in a single
round protocol or a single party can receive them and then send them to the
remaining parties in D1 at the cost of an extra round. Regardless, our protocol
requires significantly less communication than [36], especially in the offline phase
where our protocol is completely non-interactive.

Shamir. Our protocol designed for Shamir secret sharing is also a significant
improvement over the work of Catrina and Saxena [16]. The primary differ-
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Protocol Operation Online Rounds Online Comm Offline Comm

This, Fig. 8 JxKR · JyKR 1 or 2 (n2 − nt)k or 2nk 0

[36] JxKR · JyKR 1 (n2 − nt)k (n2 − nt)tk

This, Fig. 16 JxKS · JyKS 2 2nk (n− t− 1)(t+ 1)k

[16] JxKS · JyKS 2 2nk 2k2n.

Fig. 7: Communication (bits) and round complexity of our protocol compared
to [16, 36]. For Shamir, we do not include the cost of generating beaver triples,
if applicable.

ence is that the protocol of [16] requires preprocessing secret shares of k bits,
Jr1KS, ..., JrkKS which are then used to perform the truncation operation. The
typical method [23] for generating a random bit requires sharing a random value
and a single multiplication. Therefore, the overall cost of the fixed-point multi-
plication protocol of [16] is effectively k multiplications.

Our protocol on the other hand requires (t + 1) parties to each generate
a random sharing. For an dishonest majority, this can be generated with no
interaction using pre-shared keys, i.e. our protocol would be as efficient as a
standard multiplication. More generally, this offline phase requires a total of
(n− t− 1)(t+ 1) elements to be sent, along with the overhead of the standard
multiplication protocol. This is contrasted with [16] which requires generating
k random shares and k multiplications. We compare the numbers in Fig. 7. In
practice, we would typically expect n, t≪ k and so, this represents a significant
reduction in communication.

5 Replicated Secret Sharing: Semi-Honest

We first develop a new technique for fixed point multiplication with replicated
secret sharing in the presence of a semi-honest adversary. We then show how to
incorporate this into a general MPC protocol to compute any arithmetic circuit.

5.1 Fixed Point Multiplication

In this section, we present our new semi-honest protocol for fixed point mul-
tiplication with replicated secret sharing. Consider two fixed point values x, y
represented in twos-complement form in S2k′ where the bottom d bits denote the
decimal. The parties hold replicated secret shares JxKR, JyKR in an extended ring
S2k where k ≥ (k′ + λ + log2(m)). Their goal is to compute a replicated secret
share JzKR where z ≈ xy

2d
. The protocol works among n parties P1, . . . , Pn over

an extended ring S2k . Let m :=
(

n
n−t

)
and D1, . . . , Dm ⊂ [n] be the m distinct

subsets of size (n− t). We describe our protocol formally in Fig. 8.

Overview and proof sketch. In the setup phase, every pair of parties Pi and
Pj jointly sample one PRF key si,j and the set of parties in each set Dj sample
a key sj . Then, in the online phase, for each fixed point multiplication, all the
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ΠRShare−Mul(JxKR, JyKR, d)

- The protocol outputs JzKR where z ≈ xy/d.

- The security and correctness depends on |x|, |y| < 2k
′
and |xy| < 2k

′
when multi-

plied over the integers and k ≥ (k′ + λ+ log2(m)).

- Let PRF : {0, 1}κ × {0, 1}∗ → S2k−log2(m) and P̃RF : {0, 1}κ × {0, 1}∗ → S2k be
pseudorandom functions.
- Let A1, . . . , An ⊂ [m]2 be disjoint and cover [m]2 such that (j, j′) ∈ Ai only if
i ∈ Dj and i ∈ Dj′ .
- Let B1, . . . , Bn ⊂ [m] be disjoint and cover [m].

Setup. In the setup phase:

– For each pair i, j ∈ [n] where i < j, parties Pi, Pj jointly sample si,j ←
{0, 1}κ.

– Parties Pi ∈ Dj jointly sample key sj ← {0, 1}κ. All parties keep a counter
cnt := 0.

Multiply. Upon input shares JxKR, JyKR ∈ S2k , parties compute the product as
follows:

1. The parties sample JrKR such that rj := PRFsj (cnt).
2. Then, they compute an n-out-of-n secret sharing of 0 where Pi’s share

βi is computed as follows: Define γi,j := P̃RFsj,i(cnt) for j ∈ [1, i) and

γi,j := −P̃RFsi,j (cnt) for j ∈ (i, n]. Set βi :=
∑

j∈[n]/i γi,j .
3. Each Pi computes the sum of their local crossterms as follows:

z′i :=

 ∑
(j,j′)∈Ai

xjyj′

+
∑
j∈Bi

rj + βi

where Pi’s share JxKRi = {xj | i ∈ Dj} (resp. JyKR).
4. Let (z′1, . . . , z

′
n) be an n-out-of-n secret sharing of z′. Reveal z′ to Pi ∈ D1.

5. The parties output JzKR where z1 := z′/d − r1/d and zj := −rj/d for
j ∈ [2,m] and increment cnt := cnt+ 1.

Fig. 8: Protocol for fixed point multiplication with replicated secret shares
against semi-honest adversaries.

parties jointly generate replicated shares of a value r by generating each share
rj at random, locally using the PRF key sj . Observe that while the inputs x
and y lie in S2k′ , each share ri lies in S2k′+λ and the value r lies in S2k′+λ+log2(m) .
The parties then use the PRF keys si,j to generate a replicated sharing of 0 -
represented by the β’s where each βi lies in S2k .

The rest of the protocol follows similar to the standard multiplication tech-
nique for replicated secret sharing. Specifically, each party first generates a share
of z′ = x · y + r, masked with a share of 0. The value z′ is revealed to all par-
ties in D1. Note that the sharing of 0 ensures that no individual share of z′ is
revealed in the clear to any party - this is because each individual share is not
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over the whole ring S2k and hence might leak information about the terms in
x · y if revealed in the clear.

Now, when the parties in D1 learn z′ = x · y + r, observe that although r is
not entirely uniform in the ring S2k , its sampling space is sufficiently larger than
the value of x · y and it is in fact statistically close to a uniform distribution,
hence the value z′ looks sufficiently random to all the parties. Finally, all the
parties can obtain the sharing of JzKR by setting the first share z1 = z′/d− r1/d
and the rest of the shares as zj = −rj/d. The formal security proof is presented
for the entire MPC protocol in Sect. 5.2.

Remarks.

1. Rounds vs Communication tradeoff. In the multiply phase, the pro-
tocol as written requires only one round of communication. However, every
party sends its share of z′ to every party in D1 and so the total number of
messages exchanged is n · (n− t) which is quadratic in the number of parties.
Alternatively, we could have a two-round protocol where in the first round
all parties send their shares of z′ only to one party in D1 (say P1) who then
forwards it to the others in D1. This reduces the number of messages to
(n− 1) + (n− t− 1) which is linear in the number of parties.

2. Information-theoretic. Computational assumptions are used only for the
PRF. However, the use of a PRF is needed only to reduce communication.
In fact, to make the protocol completely information theoretic, we could
replace the PRF calls by having one party pick the corresponding random
string and share it with the others (at the cost of more communication).

5.2 MPC Protocol

In this section, we show the MPC protocol with replicated secret sharing lever-
aging our new fixed point multiplication protocol. Protocol ΠRShare−MPC−SH, pre-
sented in Fig. 9, can be used to compute any arithmetic circuit where multiplica-
tions are fixed point multiplication with truncation. The protocol is parameter-
ized by t < n/2 - which denotes the maximum number of parties the adversary
can corrupt.

5.3 Security Proof

We now prove that the protocol ΠRShare−MPC−SH securely realizes the ideal
functionality FCd

against semi-honest adversaries with an honest majority. The
rounding error distribution E is defined by the random variable (

∑
i∈[m] si)/d

where si is uniform over Sd. Formally, we prove the following theorem:

Theorem 1. Assuming one way functions exist, protocol ΠRShare−MPC−SH pre-
sented in Fig. 9 securely computes FCd

(Fig. 2) with rounding error distribution
E defined above, in the presence of a semi-honest adversary that corrupts a set
of t < n/2 parties.
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ΠRShare−MPC−SH

- The protocol works among n parties P1, . . . , Pn over an extended ring S2k . Let
m :=

(
n

n−t

)
and D1, . . . , Dm ⊂ [n] be the m distinct subsets of size (n− t). For each

j ∈ [m], let Sj be the set of parties indexed by Dj .
- During the circuit computation, all the inputs and outputs of every multiplication
gate have absolute value < 2k

′
where k ≥ (k′ + λ+ log2(m)).

Setup: Run the setup of protocol ΠRShare−Mul in Fig. 8.
Share: Every party P ∈ {P1, . . . , Pn} shares an input value x ∈ S2k

′ as follows:

1. Sample x1, . . . , xm ← S2k such that x =
∑

i∈[m] xi.
2. Send xj to all parties Pi such that i ∈ Dj .
3. Each party Pi sets JxKRi := {xi | i ∈ Dj}

Linear operations: For any constant c and share JyKR, parties perform linear
operations on share JxKR to compute the output JzKR as follows:

1. Addition by a constant c: z1 = x1 + c and zj = xj for j ∈ [m]/1
2. Addition of shares: zj = xj + yj for j ∈ [m]
3. Multiplication by a constant c: zj = cxj for j ∈ [m]

Fixed point multiplication: For any two shares JxKR, JyKR, parties perform fixed
point multiplication by running the multiply phase of ΠRShare−Mul in Fig. 8.

Output reconstruction: Each party Pi holds JzKRi and publicly reconstructs z as
follows:

1. For j ∈ [m] where 1 ̸∈ Dj , Pmin(Dj) sends zj to P1.
2. P1 computes z =

∑
i∈[m] zi and sends z to all other parties.

Fig. 9: Protocol for MPC with replicated secret sharing against semi-honest ad-
versaries.

Proof. Consider an adversary A that corrupts a set S∗ of t parties where t < n/2.
Let the honest parties be denoted by set H comprising PH1

, . . . , PHn−t
. The sim-

ulator S has as input the following: the output out of the functionality FCd
and

the set (inpi∗ , ri∗)Pi∗∈S∗ indicating the corrupt parties’ inputs and randomness.
The strategy of S is described below.

Share: On behalf of each honest party Pi, do:

1. Sample x1, . . . , xm ← S2k such that 0 =
∑

i∈[m] xi.
2. Send xj to A for each corrupt party Pi∗ where i∗ ∈ Dj .

Linear Operations: These are local operations that don’t need to be simulated.

Fixed point multiplication: S participates in the setup phase as in Fig. 8.
For each multiplication, for any two shares JxKR, JyKR, S does:

1. Recall that Sj is the set of parties indexed by Dj . Sample JrKR as follows:
For each j ∈ [m], if Sj ∩ S∗ = ∅, sample rj ← S2k−log2(m) . Else, set rj :=
PRFsj (cnt) as in Fig. 8.

2. For each honest party Pi, compute βi :=
∑

j∈[n]/i γi,j where γi,j is computed
as follows:

19



– If Pj ∈ S∗, define γi,j := P̃RFsj,i(cnt) for j ∈ [1, i) and γi,j := −P̃RFsi,j (cnt)
for j ∈ (i, n] as in Fig. 8.

– If Pj /∈ S∗, and j > i, sample γi,j ← S2k and store the value in Γ [i][j].
If Pj /∈ S∗, and j < i, look up Γ [i][j] and set γi,j = −Γ [i][j].

3. Run Step 3 to Step 5 as in Fig. 8.

Output reconstruction: S reconstructs output out as follows.

– If P1 /∈ S∗:

1. Receive a set of messages from A.
2. On behalf of P1, send output out to all other parties.

– If P1 ∈ S∗:

1. Set z∗ = 0.

2. From A’s inputs and randomness (inpi∗ , ri∗)Pi∗∈S∗ , and the protocol
transcript so far, for each j ∈ [m], if Sj ∩ S∗ ̸= ∅, compute zj and set
z∗ = z∗ + zj . If Pmin(Dj) ∈ H, send zj to A.

3. Let j1, . . . , jℓ ∈ [m] denote the indices for which Sj ∩ S∗ = ∅.
4. Pick zj1 , . . . , zjℓ−1

← S2k . Compute zjℓ ∈ S2k as zjℓ = out−
∑

i∈[ℓ−1] zji−
z∗.

5. On behalf of the honest parties, send {zj1 , . . . , zjℓ} to A.
In Appendix A, we prove that the above simulation strategy is successful.

6 Replicated Secret Sharing: Malicious

In this section, we build on the ideas from the previous section to develop a
new protocol for fixed point multiplication with replicated secret sharing in the
presence of a malicious adversary. We then show how to incorporate this into
a general MPC protocol to compute any arithmetic circuit. Along the way, we
design a new protocol for multiplication with replicated secret sharing.

6.1 Multiplication

In this section, we describe a protocol to multiply two values represented using
replicated secret sharing for any n-parties where n ≥ 3. We use this protocol as
a sub-routine in the next section when we design our fixed point multiplication
with truncation protocol.

Let the ring be Z2k . Consider two values x, y. The parties have replicated se-
cret shares JxKR and JyKR. Their goal is to compute a replicated secret share JzKR
where z ≈ xy. Replicated multiplication can logically be split into two parts: (1)
locally computing a n-of-n additive sharing of the product and (2) “promoting”
the n-of-n share into a replicated sharing. We give the basic replicated multi-
plication protocol in Figure 10 and separately give the “promote” protocol in
Figure 11.

20



ΠRShare−Mul(JxKR, JyKR)

- The protocol outputs JzKR where z ≈ xy.

- Let P̃RF : {0, 1}κ × {0, 1}∗ → S2k be a pseudorandom function.
- Let A1, . . . , An ⊂ [m]2 be disjoint and cover [m]2 such that (j, j′) ∈ Ai only if
i ∈ Dj and i ∈ Dj′ .

Setup: For each pair i, j ∈ [n] where i < j, parties Pi, Pj jointly sample si,j ←
{0, 1}κ. All parties keep a counter cnt := 0.

Multiply: Upon input shares JxKR, JyKR, parties compute the product as follows:

1. Each party Pi defines r′i,j := P̃RFsj,i(cnt) for j ∈ [1, i) and r′i,j :=

−P̃RFsi,j (cnt) for j ∈ (i, n]. Set ri :=
∑

j∈[n]/i r
′
i,j .

2. Each Pi computes the sum of their local crossterms as follows:

z′i :=

 ∑
(j,j′)∈Ai

xjyj′

+ ri

where Pi’s share JxKRi = {xj | i ∈ Dj} (resp. JyKR).
3. The parties invoke protocol ΠR

Promote (in Fig. 11) where Pi inputs z′i and
receives JzKRi where z is defined as z =

∑
j∈[n] z

′
j . The parties output JzKR

and increment cnt := cnt+ 1.

Fig. 10: Protocol for multiplication with replicated secret shares.

ΠR
Promote(Jz

′K)

- The protocol outputs JzKR.
- Let PRF : {0, 1}κ × {0, 1}∗ → S2k be a pseudorandom function.
- Let N1, . . . , Nn ⊂ (n,m] be equal sized and disjoint sets such that j ∈ Ni only if
i ∈ Dj .

Setup: For each j ∈ (n,m], the parties {Pi | i ∈ Dj} jointly sample sj ← {0, 1}κ.
All parties keep a counter cnt := 0.

Promote: Upon input z′i from Pi, parties compute the product as follows:
1. For each j ∈ (n,m], the parties {Pi | i ∈ Dj} define zj := PRFsj (cnt).
2. For each i ∈ [n], Pi defines zi := z′i −

∑
j∈Ni

zj and sends it to {Pi′ | i′ ∈
Di}.

3. Party Pi outputs their share JzKRi := {zj | i ∈ Dj} and increments cnt :=
cnt+ 1.

Fig. 11: Protocol for promoting an n-out-of-n sharing into a replicated secret
sharing.

6.2 Fixed Point Multiplication

In this section, we present our new protocol for fixed point multiplication with
replicated secret sharing secure in the presence of a malicious adversary. Consider
two fixed point values x, y represented in twos-complement form in S2k′ where
the bottom d bits denote the decimal. The parties hold replicated secret shares
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JxKR, JyKR in an extended ring S2k where k ≥ (k′ + 2λ + log2(m)). Their goal
is to compute a replicated secret share JzKR where z ≈ xy

2d
∈ S2k′ . The protocol

works among n parties P1, . . . , Pn over an extended ring S2k . Let m :=
(

n
n−t

)
and D1, . . . , Dm ⊂ [n] be the m distinct subsets of size (n − t). Prior to the
execution of the fixed point multiplication protocol (and as part of the overall
MPC protocol), parties jointly sample replicated secret shares of a MAC key
JαKR, where α is randomly sampled from S2λ . Then, they generate shares of the
MAC of one of the inputs JαxKR using the protocol in Fig. 10. We describe our
protocol that is secure against a malicious adversary in Fig. 12.

Remark: We can instantiate functionality FMAC.Check using the “MAC Check”
protocol in Figure 10 of [23].

Overview and proof sketch. In addition to the protocol for semi-honest se-
curity, we add an information theoretic MAC αz′ along with the term z′. Then,
since α is unknown to the adversary, if the MAC Check protocol does not abort,
we have the guarantee that the term z′ was correctly computed by the adver-
sary. Finally, after computing JzKR as in the semi-honest protocol, we now also
compute the MAC JαzKR.

6.3 MPC Protocol

In this section, we show the MPC protocol with replicated secret sharing lever-
aging our new fixed point multiplication protocol. Protocol ΠRShare−MPC−Mal,
presented in Fig. 14, can be used to compute any arithmetic circuit where mul-
tiplications are fixed point multiplication with truncation. The protocol is pa-
rameterized by t < n/2 - which denotes the maximum number of parties the
adversary can corrupt. We postpone the security proof to Appendix B.

7 Shamir Secret Sharing

In this section, we develop a new approach to fixed point multiplication with
Shamir secret sharing, and show how to incorporate this new approach in the
general MPC protocol.

7.1 Fixed Point Multiplication

In this section, we present our semi-honest protocol for fixed point multiplication
with Shamir secret sharing. Consider two fixed point values x, y ∈ S2k′ held by

the parties in Shamir secret sharing JxKS, JyKS on a field Fq where q ≥ 2k
′+λ ·

(t+ 1). For each multiplication, the parties want to learn a Shamir secret share
JzKS where z ≈ xy/d. We describe our protocol in Fig. 16.

Sketched Security Analysis. At a high level, for each fixed point multipli-
cation, all the parties will first perform a preprocessing where they obtain a
2t-out-of-n Shamir secret sharing of a random value JrKS,2t in Fq and a t-out-
of-n Shamir secret sharing of Jr′KS in Fq where r′ = r/d. r and r′ are generated
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ΠRShare−Mul−Mal(JαKR, JxKR, JαxKR, JyKR, d)

- The protocol outputs JzKR, JαzKR where z ≈ xy/d.

- Let PRF : {0, 1}κ × {0, 1}∗ → S2k−log2(m)−λ and P̃RF : {0, 1}κ × {0, 1}∗ → S2k be
pseudorandom functions.
- Let A1, . . . , An ⊂ [m]2 be disjoint and cover [m]2 such that (j, j′) ∈ Ai only if
i ∈ Dj and i ∈ Dj′ .
- Let B1, . . . , Bn ⊂ [m] be disjoint and cover [m].

Setup. In the setup phase:
– For each pair i, j ∈ [n] where i < j, parties Pi, Pj jointly sample si,j ←
{0, 1}κ.

– Parties Pi ∈ Dj jointly sample key sj ← {0, 1}κ. All parties keep a counter
cnt := 0.

Multiply. Upon input shares JαKR, JxKR, JαxKR, JyKR ∈ S2k , parties compute the
product as follows:
1. The parties sample JrKR, Jr′KR such that rj := PRFsj (cnt) and r′j := rj/d.

Compute JαrKR, Jαr′KR using the multiplication protocol in Fig. 10.
2. Then, they compute an n-out-of-n secret sharing of 0 where Pi’s share

βi is computed as follows: Define γi,j := P̃RFsj,i(cnt) for j ∈ [1, i) and

γi,j := −P̃RFsi,j (cnt) for j ∈ (i, n]. Set βi :=
∑

j∈[n]/i γi,j .
3. Each Pi computes the sum of their local crossterms as follows:

z′i :=

 ∑
(j,j′)∈Ii

xjyj′

+
∑
j∈Bi

rj + βi

(αz′)i :=

 ∑
(j,j′)∈Ii

(αx)jyj′

+
∑
j∈Bi

(αr)j + βi

where Pi’s share JxKRi = {xj | i ∈ Dj} (resp. JyKR).
4. The n-out-of-n secret sharing z′ is revealed to all parties.
5. Invoke functionality FMAC.Check (Fig. 13). Each Pi inputs (z′, (αz′)i, α

∗
i )

where α∗
i is the share of JαKR held by Pi corresponding to set Di. Abort

the protocol if it returns “Abort”.
6. The parties increment cnt := cnt+ 1 and output JαzKR, JzKR where

– z1 := z′/d− r1/d and zj := −rj/d for j ∈ [2,m]
– JαzKR := JαKR(z′/d)− Jαr′KR

Fig. 12: Protocol for fixed point multiplication with replicated secret shares
against malicious adversaries.

as a summation of n random values, namely r =
∑

i∈[n] ri and r′ =
∑

i∈[n] r
′
i,

where r′i = ri/d and they are contributed by all the parties. We make sure there
is no overflow in the summation by sampling ri from S2k′+λ . Once we generate
the double sharing with truncation, the rest of the protocol follows from the
standard multiplication techniques for Shamir secret sharing.
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FMAC.Check

Input: Each party Pi has input (z
′, σi, αi).

Computation: Reconstruct α from shares {αi}i∈[n] and σ from {(σ)i}i∈[n]. Output
“Abort” to all parties if σ ̸= (α · z′).

Fig. 13: Ideal functionality for checking the MAC on a secret shared value.

ΠRShare−MPC−Mal

- The protocol works among n parties P1, . . . , Pn over an extended ring S2k . Let
m :=

(
n

n−t

)
and D1, . . . , Dm ⊂ [n] be the m distinct subsets of size (n− t). For each

j ∈ [m], let Sj be the set of parties indexed by Dj .
- During the circuit computation, all the inputs and outputs of every multiplication
gate have absolute value < 2k

′
where k ≥ (k′ + λ+ log2(m)).

Setup: Jointly sample α ∈ S2λ and generate JαKR. Each party Pi gets JαKRi :=
{αi | i ∈ Dj}. Then, run the setup of protocol ΠRShare−Mul in Fig. 8.

Share: Every party P ∈ {P1, . . . , Pn} shares an input value x ∈ S2k
′ as follows:

1. Sample x1, . . . , xm ← S2k such that x =
∑

i∈[m] xi.

2. Send xj to all parties Pi such that i ∈ Dj . Each party Pi sets JxKRi :=
{xi | i ∈ Dj}.

3. Run any MPC protocol (e.g. [28]) to compute functionality FRange (Fig. 15)
where Pi’s input is JxKRi .

4. Run the multiplication protocol ΠRShare−Mul (Fig. 10) where each Pi’s input
is (JxKRi , JαKRi ) and output is JαxKRi .

Linear operations: For any constant c and share (JyKR, JαyKR), parties perform
linear operations on share (JxKR, JαxKR) to compute the output (JzKR, JαzKR) as
follows:
1. Addition by a constant c:

– z1 = x1 + c, (αz)1 = (αx)1 + c · α1,
– zj = xj , (αz)j = (αx)j + c · αj for j ∈ [m]/1

2. Addition of shares: zj = xj + yj , (αz)j = (αx)j + (αy)j for j ∈ [m]
3. Multiplication by a constant c: zj = cxj , (αz)j = c · (αx)j for j ∈ [m]

Fixed point multiplication: For any two shares JxKR, JyKR, parties perform fixed
point multiplication by running the multiply phase of ΠRShare−Mul in Fig. 12.

Output reconstruction: Each party Pi holds JzKRi and publicly reconstructs z as
follows:
1. For j ∈ [m], (t+ 1)a of the parties in set Dj reveal zj to everyone.
2. Abort if there is inconsistency in any zj . Else, compute output z =∑

i∈[m] zi.

a We can order each set and the first (t+ 1) parties speak.

Fig. 14: Protocol for MPC with replicated secret sharing against malicious ad-
versaries.

Specifically, P1 first learns a value z′ = x · y + r and sends it to all the other
parties. Although r is not entirely uniform in the field Fq, its sampling space is
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FRange

Parameters: Ring S2k and a value k′ < k.
Input: Each party Pi has input JxKRi .

Computation: Reconstruct x from the shares {JxKRi }i∈[n]. Output “Abort” to all

parties if x > 2k
′
.

Fig. 15: Ideal functionality for checking the range of a secret shared value

ΠSShare−Mul(JxKS, JyKS, d)

- The protocol outputs JzKS where z ≈ xy/d.

- The security and correctness of the protocol depends on |x|, |y| < 2k
′
and |xy| <

2k
′
when multiplied over the integers and q ≥ 2k

′+λ · (t+ 1).

Preprocessing. For each fixed point multiplication:

1. The party Pi for i ∈ [t+ 1] samples ri
$←− S2k

′+λ , generates JriKS,2t, Jri/dKS

in Fq, and sends the shares to the other parties.
2. All parties locally compute JrKS,2t :=

∑
i∈[t+1]JriK

S,2t, Jr′KS :=∑
i∈[t+1]Jri/dK

S .

Multiply. Upon input shares JxKS, JyKS ∈ Fq, parties compute the product as
follows:
1. All parties locally compute Jz′KS,2t := JxKS · JyKS + JrKS,2t and reveal z′ to

P1.
2. P1 sends z′ to all the parties.
3. All parties output JzKS := z′/d− Jr′KS.

Fig. 16: Semi-honest protocol for fixed point multiplication with Shamir secret
shares.

sufficiently larger than the value of x · y and it is in fact statistically close to
a uniform distribution, hence the value z′ looks sufficiently random to all the
parties. Finally, by the correctness of double sharing with truncation for r and
r′, all the parties can obtain the sharing of JzKS by taking z′/d − Jr′KS. The
formal security proof will be presented in Sect. 7.3.

Remark. Our truncation technique does not have to follow a multiplication step
and it does not necessarily require honest majority. It can be used as a general
approach for truncating Shamir-shared value for any t < n.

7.2 MPC with Shamir Secret Sharing

In this section, we show the MPC protocol with Shamir secret sharing leveraging
our new fixed point multiplication protocol. The protocol, presented in Fig. 17,
can be used to compute any arithmetic circuit where multiplications are fixed
point multiplication with truncation.
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ΠSShare−MPC

- The protocol works among n parties P1, . . . , Pn over a field Fq.
- During the circuit computation, all the intermediate results have absolute value
< 2k

′
.

- q ≥ 2k
′+λ · (t+ 1).

Share: For input value x ∈ S2k
′ , party Pi generates a Shamir secret sharing JxKS

in the field Fq and sends the shares to all the parties.
Linear operations: For any constant c and shares JxKS, JyKS, parties perform lin-

ear operations on share JxKS as follows:
1. Addition by a constant: Jx+ cKS = JxKS + c
2. Addition of shares: Jx+ yKS = JxKS + JyKS

3. Multiplication by a constant: JcxKS = c · JxKS

Fixed point multiplication: For any two shares JxKS, JyKS, parties perform fixed
point multiplication as in Fig. 16.

Reconstruct the output: Each party Pi holds JzKSi and publicly reconstructs z
as follows:
1. For j ∈ [2, . . . , t+ 1], party Pj sends JzKSj to P1.
2. P1 holds t+ 1 points and interpolates the polynomial pz(·).
3. P1 sends z := pz(0) to all parties.

Fig. 17: Protocol for MPC with Shamir secret sharing.

7.3 Security Proof

In this section, we prove that the protocol ΠSShare−MPC securely realizes the ideal
functionality FCd

against semi-honest adversaries corrupting t < n/2 parties.
The rounding error distribution E is defined by the random variable (

∑
i∈[t+1] si)/d

where si is uniform over Sd. Formally, we prove the following theorem:

Theorem 2. The protocol ΠSShare−MPC presented in Fig. 17 statistically securely
realizes the functionality FCd

(defined in Fig. 2) with rounding error distribution
E in the presence of a semi-honest adversary that corrupts t < n/2 parties.

Proof. Correctness of the protocol follows from the invariant that after every
linear operation or fixed point multiplication, parties hold t-out-of-n Shamir
secret sharing of the output. This is straightforward for linear operations. In
terms of fixed point multiplication by truncation, the invariant relies on the
fact that (

∑
i∈[t+1] ri)/d ≈

∑
i∈[t+1] ri/d. Note that each |ri| < 2k

′+λ, hence∑
i∈[t+1] |ri| < 2k

′+λ · (t+ 1), which suggests that
∑

i∈[t+1] ri does not overflow.

Therefore (
∑

i∈[t+1] ri)/d ≈
∑

i∈[t+1] ri/d, where the rounding error follows the
distribution E defined above.

For security, consider an adversary A that corrupts a set C of t parties,
denoted as PC1

, . . . , PCt
. Let the honest parties be denoted by set H comprising

PH1
, . . . , PHn−t

. The simulator S has as input the following: the output out
of the functionality FCd

and the set {(inpCi
, rCi

)}i∈[t] indicating the corrupt
parties’ inputs and randomness. We construct a PPT simulator S that follows
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the protocol description of the corrupted parties to generate A’s view and does
the following on behalf of honest parties:

Share: On behalf of each honest party PHi
:

1. Sample s1, . . . , st
$←− Fd.

2. Send sj to A for each corrupt party PCj
.

Linear operations: These are local operations that don’t need to be simulated.

Fixed point multiplication: For each fixed point multiplication:

– Preprocessing:

1. For each corrupt party PCi
where Ci ∈ [t+ 1], sample rCi

$←− S2k′+λ .

2. For each honest party PHi
where Hi ∈ [t + 1], sample rHi

$←− S2k′+λ ,
generate JrHi

KS,2t, JrHi
/dKS, and send the shares to the corrupted parties.

3. Let r :=
∑

i∈[t+1] ri.

– Online multiplication:

• If P1 is an honest party, let z′ := r and send it to A on behalf of P1.
• If P1 is a corrupt party, compute the shares of Jz′KS,2t for all the corrupt
parties. Let the shares of the honest parties be random such that the
reconstructed z′ = r, and send them to P1 on behalf of the honest
parties.

Reconstruct the output:

– If P1 is an honest party, then let z := out and send it to A on behalf of P1.
– If P1 is a corrupt party, compute the shares of JzKS for all the corrupt parties.

Let the shares of the honest parties be random such that the reconstructed
z = out, and send these shares to P1 on behalf of the honest parties.

In Appendix C, we prove that the above simulation strategy is successful.

8 Additive Secret Sharing

In this section, we develop a new approach to fixed point multiplication with
additive secret sharing, and show how to incorporate this new approach in the
general MPC protocol.

8.1 Fixed Point Multiplication

In this section, we present our new semi-honest protocol for fixed point mul-
tiplication with additive secret sharing. Consider two fixed point values x, y
represented in twos-complement form in S2k′ . The parties hold additive secret
shares JxKA, JyKA in an extended ring S2k where k ≥ k′ + λ+ log2 n. Further, we
assume the parties hold preprocessed Beaver triples of the form JαKA, JβKA, JγKA

in S2k where α, β
$←− S2k and γ = α · β. For each fixed point multiplication, the
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ΠAShare−Mul(JxKA, JyKA, JαKA, JβKA, JγKA, d)

- The protocol outputs JzKA where z ≈ xy/d.

- The security and correctness of the protocol depends on |x|, |y| < 2k
′
and |xy| <

2k
′
when multiplied over the integers and k ≥ k′ + λ+ log2 n.

Preprocessing. For each fixed point multiplication:

1. The party Pi for i ∈ [t + 1] samples ri
$←− S2k

′+λ , generates JriKA, Jri/dKA,
and sends the shares to the other parties.

2. All parties locally compute JrKA :=
∑

i∈[t+1]JriK
A, Jr′KA :=

∑
i∈[t+1]Jri/dK

A.

Multiply. Upon input shares JxKA, JyKA ∈ S2k , parties compute the product as
follows:
1. All parties locally compute Jx′KA := JxKA + JαKA and Jy′KA := JyKA + JβKA

and reveal x′, y′ to P1.
2. P1 sends x′, y′ to all the parties.
3. All parties locally compute Jz′KA := x′ · JyKA+y′ · JxKA+ JγKA−x′ ·y′+ JrKA

and reveal z′ to P1.
4. P1 sends z′ to all the parties.
5. All parties output JzKA := z′/d− Jr′KA.

Fig. 18: Semi-honest protocol for fixed point multiplication with additive secret
shares.

parties want to learn an additive secret share JzKA where z ≈ xy/d. We describe
our protocol in Fig. 18.

Remark. Our multiplication protocol is a standard multiplication with Beaver
triples followed by a our new truncation technique. The truncation step does
not have to follow a multiplication step and can be used as a general approach
whenever truncation is required.

8.2 MPC with Additive Secret Sharing

In this section, we show an MPC protocol with additive secret sharing lever-
aging our new fixed point multiplication protocol. The protocol, presented in
Fig. 19, can be used to compute any arithmetic circuit where multiplications are
fixed point multiplication with truncation. We postpone the security proof to
Appendix D.
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Supplementary Material

A Replicated Semi-Honest: Proof

We now show that the simulation strategy in Sect. 5.3 is successful via a hybrid
argument.

Hyb0: Consider a simulator SimHyb that plays the role of the honest parties as
in Fig. 9. This is the real world.

Hyb1: Switching output. This is similar to Hyb0 except that SimHyb now runs
the output reconstruction step as done by S in the ideal world by using the
output out from the ideal functionality FCd

. Honest parties also get their
output from FCd

in this hybrid.

The only difference between Hyb0 and Hyb1 is the manner in which parties
learn their output. In the real world, correctness of the protocol follows from
the invariant that after every linear operation or fixed point multiplication,
parties hold a replicated secret sharing of the output. In the case of fixed
point multiplication, it is easy to observe that the rounding error associated
with the output follows the distribution E defined above. From the correct-
ness of the protocol, it is easy to observe that the real world output is same
as that from the ideal functionality except with negligible error. For the cor-
rupt parties, in Hyb1, observe that the values {zj1 , . . . , zjℓ} are picked by
SimHyb to ensure that the output reconstructed by the corrupt parties is
same as the value out from the ideal functionality. Hence, the two hybrids
are statistically indistinguishable.

Hyb2: PRF to random. In this hybrid, for each fixed-point multiplication, on
behalf of the honest parties, for each j ∈ [m], if Sj ∩S∗ = ∅, SimHyb samples
rj ← S2k−log2(m) instead of as the output of PRF.

In the multiply phase, for each j ∈ [m], if Sj ∩ S∗ = ∅, in Hyb1, the honest
parties sample the string rj using the pseudorandom function PRF while in
Hyb2, they are sampled uniformly at random. Since the corresponding PRF
key sj is not used anywhere else in the protocol, it is easy to observe that if
there exists an adversary A that can distinguish between these two hybrids
with non-negligible probability, we can build a reduction APRF that breaks
the security of the pseudorandom function PRF which is a contradiction.
Thus, the two hybrids are computationally indistinguishable.

Hyb3: PRF to random. In this hybrid, for each fixed-point multiplication, on
behalf of each honest party Pi, the 0-share βi is computed as in the ideal
world. In particular, the terms γi,j are sampled randomly from S2k if Pj /∈ S∗

and not as the output of P̃RF.
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As in the previous case, the computational indistinguishability between Hyb2
and Hyb3 follows from the security of the pseudorandom function P̃RF.

Hyb4: Switching input. On behalf of each honest party, in the input sharing
step, SimHyb now generates shares of 0 instead of the actual input. This
hybrid is identical to the ideal world.

First, it is easy to observe that the joint distribution of the honest parties’
outputs and A’s view, at the end of the input sharing phase alone, is iden-
tical. This follows from the security of the replicated secret sharing scheme
since the adversary corrupts at most t < n/2 parties and so learns at most
t shares for each honest party input. The same argument can be extended if
we additionally include the linear operations.

We now argue that in each fixed point multiplication, the adversary’s view
remains statistically close. In the multiplication protocol, the value z′ is
comprised of n values (z′1, . . . , z

′
n). For each honest party Pi, the z′i it gen-

erates consists of a term of the product (
∑

(j,j′)∈Ai

xjyj′) masked by a value

βi ∈ S2k . Observe that, aside from the fact that A knows
∑

Pi∈H βi since
they form a sharing of 0, each individual share βi appears uniformly random
in S2k . Therefore, it is easy to argue that each value z′i reveals no informa-
tion to A about the product term masked by βi. Then, all parties in D1

learn z′ = x · y + r. Now, r =
∑

j∈[m] rj where at least one of the rj val-
ues are known only to the honest parties. In particular, for each j such that
S∗∩Sj = ∅, rj appears uniformly random in the space S2k′+λ to A. Thus, the
product x · y which lies in S2k′ is masked by at least one random string that
belongs to a larger space S2k′+λ . Thus, we can argue that A can distinguish
z′ = x ·y+r between the two hybrids only with probability at most 2−λ and
this completes the proof of statistically indistinguishability between the two
hybrids.

B Replicated Malicious: Proof

In this section, we prove that the protocol ΠRShare−MPC−Mal securely realizes
the ideal functionality FCd

against semi-honest adversaries with an honest ma-
jority. The rounding error distribution E is defined by the random variable
(
∑

i∈[m] si)/d where si is uniform over Sd. Formally, we prove the following
theorem:

Theorem 3. Assuming one way functions exist, protocol ΠRShare−MPC−Mal pre-
sented in Fig. 14 securely computes FCd

(Fig. 2) with rounding error distribution
E defined above, in the presence of a malicious adversary that corrupts a set of
t < n/2 parties.

Proof. Consider an adversary A that corrupts a set S∗ of t parties where t < n/2.
Let the honest parties be denoted by set H comprising PH1 , . . . , PHn−t . The sim-
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ulator S has as input the following: the output out of the functionality FCd
and

the set (inpi∗ , ri∗)Pi∗∈S∗ indicating the corrupt parties’ inputs and randomness.
The strategy of S is described below.

Setup: Sample α∗ ∈ S2λ . Run the simulator of the MPC protocol where the
parties generate α jointly to force α = α∗ and receive {JαKRi }Pi∈H on behalf
of the honest parties. Then, on behalf of each honest party, run the setup of
protocol ΠRShare−Mul in Fig. 8 as in the real world.

Share: On behalf of each honest party P :

1. Sample x1, . . . , xm ← S2k such that 0 =
∑

i∈[m] xi. Send xj to A for each
corrupt party Pi∗ where i∗ ∈ Dj .

2. Simulate the MPC protocol used to compute functionality FRange (Fig. 15).

3. Switch PRF to random: Run the multiplication protocol ΠRShare−Mul

(Fig. 10, Fig. 11) with the only difference that the PRF values not locally
computed by A are now sampled uniformly at random by S. In more detail,

– In Step 1 of Fig. 10, on behalf of each honest party Pi, compute terms

r′j as follows: If Pj ∈ S∗, define r′i,j := P̃RFsj,i(cnt) for j ∈ [1, i) and

r′i,j := −P̃RFsi,j (cnt) for j ∈ (i, n] as in Fig. 10. If Pj /∈ S∗, and j > i,
sample r′i,j ← S2k and store the value in R′[i][j]. If Pj /∈ S∗, and j < i,
look up R′[i][j] and set r′i,j = −R′[i][j].

– In Step 1 of Fig. 11, for each j ∈ (n,m], if Sj ∩S∗ = ∅, sample zj ← S2k .
Else, set zj := PRFsj (cnt) as in Fig. 11.

For each corrupt party Pi∗ ’s input sharing:

1. Using the honest parties’ shares {Jxi∗KRi }Pi∈H and the simulator of the MPC
protocol for FRange, extract xi∗ . If the extraction is unsuccessful, output
“Extraction Abort”.

2. Query the ideal functionality FCd
with inputs {xi∗}Pi∗∈S∗ and receive output

out.

Linear Operations: These are local operations that don’t need to be simulated.

Fixed point multiplication: For each multiplication, for any two input shares
JxKR, JαxKR, JyKR, as in the semi-honest case, the only change is the PRF values
not locally computed by A are now sampled uniformly at random by S. In more
detail, S does the following:

1. Recall that Sj is the set of parties indexed by Dj . For each j ∈ [m], if
Sj ∩ S∗ = ∅, sample rj ← S2k−log2(m)−λ . Else, set rj := PRFsj (cnt) as in
Fig. 12. Compute r′j = rj/d and run the multiplication protocol (Fig. 10,

Fig. 11) to compute JαrKR, Jαr′KR with the same changes as listed above in
Step 3.

2. For each honest party Pi, compute βi :=
∑

j∈[n]/i γi,j where γi,j is computed
as follows:

– If Pj ∈ S∗, define γi,j := P̃RFsj,i(cnt) for j ∈ [1, i) and γi,j := −P̃RFsi,j (cnt)
for j ∈ (i, n] as in Fig. 12.
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– If Pj /∈ S∗, and j > i, sample γi,j ← S2k and store the value in Γ [i][j].
If Pj /∈ S∗, and j < i, look up Γ [i][j] and set γi,j = −Γ [i][j].

3. Run Step 3 to Step 6 as in Fig. 12.

4. MAC Check Failure: From the knowledge of all shares of JαKR, JxKR, JyKR, JrKR
and the PRF keys, compute the values {z′i∗}Pi∗∈S∗ to be sent by the adver-
sary. Output “MAC Abort” if, in Step 5, FMAC.Check does not abort but the
values sent by A are inconsistent with those calculated above {z′i∗}Pi∗∈S∗ .

Output reconstruction:

1. Set z∗ = 0. For each j ∈ [m]: note that since Sj \ S∗ ̸= ∅, i.e, each Sj has at
least one honest party, S knows zj . Update z∗ = z∗ + zj if Sj ∩ S∗ ̸= ∅.

2. Let j1, . . . , jℓ ∈ [m] denote the indices for which Sj ∩ S∗ = ∅.
3. Pick zj1 , . . . , zjℓ−1

← S2k . Compute zjℓ ∈ S2k as zjℓ = out−
∑

i∈[ℓ−1] zji−z∗.
4. On behalf of the honest parties, send their shares of z as in the real protocol.
5. Receive zj values from A. As in the real protocol, if A sent inconsistent

values to any honest party Pi, instruct the ideal functionality FCd
to deliver

output “Abort” to that honest party. Else, instruct FCd
to deliver the correct

output out.

We now show that the above simulation strategy is successful via a hybrid
argument.

Hyb0: Consider a simulator SimHyb that plays the role of the honest parties as
in Fig. 14. This is the real world.

Hyb1: Random α. In the setup phase, sample α∗ ∈ S2λ . Run the simulator of
the MPC protocol where the parties generate α jointly to force α = α∗.

Indistinguishability of Hyb0 and Hyb1 is implied by the security of the MPC
protocol used to jointly generate α.

Hyb2: Input extraction. In the input sharing phase, SimHyb runs step Step 1
as done in the ideal world. That is, using the honest parties’ shares {Jxi∗KRi }Pi∈H

and the simulator of the MPC protocol for FRange, extract {xi∗}∗∈S∗ and
query FCd

to learn output out. If the extraction is unsuccessful, output “Ex-
traction Abort”.

From the security of the MPC protocol for FRange, the probability that the
Simulator of MPC protocol for FRange aborts without successfully extracting
the inputs but in the real execution, the honest parties don’t abort is negligi-
ble. As a result, the probability that SimHyb outputs “Extraction Abort” in
Hyb2 is negligible. Apart from that, notice that the distributions produced
by both Hyb1 and Hyb2 are the same. Hence, the two hybrids are indistin-
guishable.

Hyb3: Switching output. SimHyb now runs the output reconstruction step as
done by S in the ideal world by using the output out received from FCd

.
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Honest parties also get their output from FCd
in this hybrid.

The only difference between Hyb2 and Hyb3 is the manner in which parties
learn their output. For the corrupt parties, in Hyb3, observe that the values
{zj1 , . . . , zjℓ} are picked by SimHyb to ensure that the output reconstructed
by the corrupt parties is same as the value out from the ideal functionality.
In the real world, correctness of the protocol is easy to observe (as in the
semi-honest case). Finally, observe that as in the real world, if SimHyb de-
tects any inconsistent shares sent by A to any honest party, it instructs FCd

to deliver output “Abort” to that honest party. Thus, as in the semi-honest
case, it is easy to observe that the real world output is same as that from
the ideal functionality except with negligible error. Hence, the two hybrids
are statistically indistinguishable.

Hyb4: PRF to random. In the multiplication protocols, all the pseudorandom
function outputs not locally computed by A are now sampled uniformly at
random as done by S in the ideal world.

As in the semi-honest protocol, it is easy to see that the computational in-
distinguishability between Hyb3 and Hyb4 follows from the security of the

pseudorandom functions PRF and P̃RF.

Hyb5: MAC Check. SimHyb runs Step 4 as in the ideal world and outputs
“MAC Abort” if A successfully sends incorrect shares of z′ while making
sure FMAC.Check succeeds.

Since the MAC key α appears uniformly random to A, the security of
FMAC.Check guarantees that the probability that FMAC.Check succeeds while
A successfully sends incorrect shares of z′ is negligible. As a result, the
probability that SimHyb outputs “MAC Abort” in Hyb4 is negligible and the
two hybrids are indistinguishable.

Hyb6: Simulate FRange. In the input sharing step, simulate the MPC protocol
used to compute functionality FRange.

Indistinguishability of Hyb6 and Hyb7 follows from the security of the MPC
protocol used to compute FRange.

Hyb7: Switching input. On behalf of each honest party, in the input sharing
step, SimHyb now generates shares of 0 instead of the actual input. This
hybrid is identical to the ideal world.

The argument is similar to that in the semi-honest protocol. The only differ-
ence here is that, unlike the semi-honest protocol, A does not necessarily fol-
low the protocol honestly. However, the below two things guarantee that any
deviation from honest behavior by A will be detected by the honest parties
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with overwhelming probability without revealing anything about the input:
(i) In the fixed point multiplication protocol, the MAC check (functionality
FMAC.Check) guarantees that every share of z′ is correctly generated by A.
(ii) Apart from the shares of z′ computed in the fixed point multiplication,
for any other value JxKR computed as part of the circuit evaluation, every
share of JxKR is held by at least one honest party - this is because t < n/2
and so (n− t) > t. Thus, the two hybrids are statistically indistinguishable
and this completes the proof.

C Shamir: Proof

We now show that the simulation strategy in Sect. 7.3 is successful via a hybrid
argument.

Hyb0: A’s view and the honest parties’ output in the real world.

Hyb1: Same as Hyb0 except that in the final step to reconstruct the output,
the simulator does the following on behalf of the honest parties: if P1 is an
honest party, then let z := out from the ideal functionality and send it to
A on behalf of P1; otherwise, let the shares of the honest parties be random
such that the reconstructed z = out, and send these shares to P1 on behalf
of the honest parties. In the meanwhile, replace the honest parties’ output
in the real world by their output in the ideal world.

Hyb0 and Hyb1 are statistically identical, which follows from the correctness
of the protocol. Since there is at least one share held by honest parties, it
is statistically identical to A if the honest parties sample their shares to be
consistent with the output.

Hyb2: Same as Hyb1 but for each fixed point multiplication by truncation, the
simulator manipulates the honest parties’ shares to be random such that
z′ = x · y + r.

This hybrid is statistically identical to Hyb1 because there is at least one ri
contributed by honest parties in preprocessing. It is thus statistically identi-
cal to A if the honest parties randomly sample their shares to be consistent
with z′.

Hyb3: Same as Hyb2 but for each fixed point multiplication by truncation, the
simulator manipulates the honest parties’ shares to be random such that
z′ = r instead of x · y + r.

Since x · y ∈ S2k′ , and there is at least one ri (sampled from S2k′+λ) con-
tributed by honest parties in preprocessing, the distribution of r and x ·y+r
are statistically close. Hence this hybrid is statistically indistinguishable from
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Hyb2.

Hyb4: Same as Hyb3 except that on behalf of each honest party PHi , the simu-
lator sends random shares to the corrupt parties for its input.

This hybrid is statistically identical to Hyb3, which follows from the security
of Shamir secret sharing. This hybrid outputs the simulated view along with
the honest parties’ output in the ideal world, which concludes the proof.

D Additive: Proof

ΠAShare−MPC

- The protocol works among n parties P1, . . . , Pn over an extended ring S2k .
- During the circuit computation, all the intermediate results have absolute value
< 2k

′
.

- k ≥ k′ + λ+ log2 n.

Share: Each party Pi shares an input value x ∈ S2k
′ by generating JxKA and

sending the shares to the other parties.
Linear operations: For any constant c and shares JxKA, JyKA, parties perform lin-

ear operations on share JxKA as follows:
1. Addition by a constant: Jx+cKA = JxKA+c (only P1 adds c on its share)
2. Addition of shares: Jx+ yKA = JxKA + JyKA

3. Multiplication by a constant: JcxKA = c · JxKA

Fixed point multiplication: For any two shares JxKA, JyKA, parties perform fixed
point multiplication as in Fig. 18.

Reconstruct the output: Each party Pi holds JzKAi and publicly reconstructs z
as follows:
1. Each party Pi sends its share JzKA1 to P1.
2. P1 recovers z from the shares and sends z to all parties.

Fig. 19: Protocol for MPC with additive secret sharing.

In this section, we prove that the protocol ΠAShare−MPC securely realizes
the ideal functionality FCd

against semi-honest adversaries corrupting t < n
parties. The rounding error distribution E is defined by the random variable
(
∑

i∈[t+1] si)/d where si is uniform over Sd. Formally, we prove the following
theorem:

Theorem 4. Given preprocessed Beaver triples, the protocol ΠAShare−MPC pre-
sented in Fig. 19 statistically securely realizes the functionality FCd

(defined in
Fig. 2) with rounding error distribution E in the presence of a semi-honest ad-
versary that corrupts t < n parties.
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Proof. Correctness of the protocol follows from the invariant that after every
linear operation or fixed point multiplication, parties hold an additive sharing
of the output. This is straightforward for linear operations. For fixed point mul-
tiplication by truncation, our protocol is standard multiplication with Beaver
triples followed by a truncation using JrKA and Jr′KA. The invariant relies on
the fact that (

∑
i∈[t+1] ri)/d ≈

∑
i∈[t+1] ri/d. Note that each |ri| < 2k

′+λ, hence∑
i∈[t+1] |ri| < 2k

′+λ · (t+ 1), which suggests that
∑

i∈[t+1] ri does not overflow.

Therefore (
∑

i∈[t+1] ri)/d ≈
∑

i∈[t+1] ri/d, where the rounding error follows the
distribution E defined above.

For security, consider an adversary A that corrupts a set C of t parties,
denoted as PC1

, . . . , PCt
. Let the honest parties be denoted by set H comprising

PH1
, . . . , PHn−t

. The simulator S has as input the following: the output out
of the functionality FCd

and the set {(inpCi
, rCi)}i∈[t] indicating the corrupt

parties’ inputs and randomness. We construct a PPT simulator S that follows
the protocol description of the corrupted parties to generate A’s view and does
the following on behalf of honest parties:

Share: On behalf of each honest party PHi
:

1. Sample s1, . . . , st
$←− S2k .

2. Send sj to A for each corrupt party PCj
.

Linear operations: These are local operations that don’t need to be simulated.

Fixed point multiplication: For each fixed point multiplication with trunca-
tion:

– Preprocessing:

1. For each corrupt party PCi
where Ci ∈ [t+ 1], sample rCi

$←− S2k′+λ .

2. On behalf of each honest party PHi
where Hi ∈ [t + 1], sample rHi

$←−
S2k′+λ , generate JrHi

KA, JrHi
/dKA, and send the shares to the corrupted

parties.
3. Let r :=

∑
i∈[t+1] ri.

– Online multiplication:

• If P1 is an honest party, then sample x′, y′
$←− S2k and let z′ := r; send

x′, y′, z′ to A on behalf of P1.
• If P1 is a corrupt party, then let the shares of Jx′KA and Jy′KA of the

honest parties be random and send them to P1 on behalf of them. Next,
compute the shares of Jz′KA for all the corrupt parties. Let the shares of
the honest parties be random such that the reconstructed z′ = r, and
send these shares to P1 on behalf of the honest parties.

Reconstruct the output:

– If P1 is an honest party, then let z := out and send it to A on behalf of P1.
– If P1 is a corrupt party, then compute the shares of JzKA for all the corrupt

parties. Let the shares of the honest parties be random such that the re-
constructed z = out, and send these shares to P1 on behalf of the honest
parties.
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We now show that the above simulated view together with the honest parties’
output in the ideal world is statistically indistinguishable from A’s view and the
honest parties’ output in the real world via a hybrid argument.

Hyb0: A’s view and the honest parties’ output in the real world.

Hyb1: Same as Hyb0 except that in the final step to reconstruct the output,
the simulator does the following on behalf of the honest parties: if P1 is an
honest party, then let z := out from the ideal functionality and send it to
A on behalf of P1; otherwise, let the shares of the honest parties be random
such that the reconstructed z = out, and send these shares to P1 on behalf
of the honest parties. In the meanwhile, replace the honest parties’ output
in the real world by their output in the ideal world.

Hyb0 and Hyb1 are statistically identical, which follows from the correctness
of the protocol. Since there is at least one share held by honest parties, it
is statistically identical to A if the honest parties sample their shares to be
consistent with the output.

Hyb2: Same as Hyb1 but for each fixed point multiplication by truncation, the
simulator manipulates the honest parties’ shares of z′ to be random such
that z′ = x · y + r.

This hybrid is statistically identical to Hyb1 because there is at least one ri
contributed by honest parties in preprocessing. It is thus statistically identi-
cal to A if the honest parties randomly sample their shares to be consistent
with z′.

Hyb3: Same as Hyb2 but for each fixed point multiplication by truncation, the
simulator manipulates the honest parties’ shares of z′ to be random such
that z′ = r instead of x · y + r.

Since x · y ∈ S2k′ , and there is at least one ri (sampled from S2k′+λ) con-
tributed by honest parties in preprocessing, the distribution of r and x ·y+r
are statistically close. Hence this hybrid is statistically indistinguishable from
Hyb2.

Hyb4: Same as Hyb2 but for each fixed point multiplication by truncation, the
simulator manipulates the honest parties’ shares of x′ and y′ to be random.

First, x′ = x + α is uniformly random in S2k as α
$←− S2k . Since there is at

least one share of α held by honest parties, the distribution of x′ is statis-
tically identical if the honest parties sample their shares randomly. For the
same reason, the distribution of y′ is statistically identical if the honest par-
ties sample their shares randomly. Hence this hybrid is statistically identical
from Hyb3.
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Hyb5: Same as Hyb4 except that on behalf of each honest party PHi
, the simu-

lator sends random shares to the corrupt parties for its input.

This hybrid is statistically identical to Hyb4, which follows from the security
of additive secret sharing. This hybrid outputs the simulated view along with
the honest parties’ output in the ideal world, which concludes the proof.
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