
The Sum-Check Protocol over Fields of Small Characteristic

Suyash Bagad∗

suyash@ingonyama.com

Yuval Domb†

yuval@ingonyama.com

Justin Thaler‡

justin.thaler@georgetown.edu

Abstract

The sum-check protocol of Lund, Fortnow, Karloff, and Nisan underlies SNARKs with the fastest
known prover. In many of its applications, the prover can be implemented with a number of field
operations that is linear in the number, n, of terms being summed.

We describe an optimized prover implementation when the protocol is applied over an extension field
of a much smaller base field. The rough idea is to keep most of the prover’s multiplications over the base
field, at the cost of performing more total field multiplications. When the sum-check protocol is applied
to a product of polynomials that all output values in the base field, our algorithm reduces the number of
extension field operations by multiple orders of magnitude. In other settings, our improvements are more
modest but nonetheless meaningful.

In SNARK design, the sum-check protocol is often combined with a polynomial commitment scheme,
which are growing faster, especially when the values being committed are small. These improved
commitment schemes are likely to render the sum-check prover the overall bottleneck, which our results
help to mitigate.

1 Introduction

The sum-check protocol [LFKN90] underpins SNARKs with the fastest known prover. It is especially effective
at forcing the prover to perform useful work, while minimizing the amount of data to which the prover must
cryptographically commit. This alleviates a key bottleneck for SNARK provers, which is the cost (both in
time and space) of computing cryptographic commitments to large vectors of field elements.

For an `-variate polynomial g over a field F, the sum-check protocol forces the prover to sum up g’s evaluations
over {0, 1}`.1 That is, the sum-check protocol is an interactive proof for computing∑

x∈{0,1}`
g(x). (1)

Throughout this paper, let n = 2` denote the number of terms in this sum. Suppose g can be expressed as a
product of d multilinear polynomials p1, . . . , pd,

g(x) =

d∏
i=1

pi(x). (2)

Also, suppose that for each pi, the prover is provided pi(x) for all inputs x ∈ {0, 1}`. For constant values
of d, it is well-known that the prover in the sum-check protocol can be implemented with O(n) field
operations [CTY11, Tha13], which is within a constant factor of the time required simply to compute
Equation (1) term-by-term.

∗Ingonyama
†Ingonyama
‡a16z Crypto Research and Georgetown University
1The sum-check protocol can more generally sum up g’s evaluations over any product set H` for some H ⊆ F.

mailto:suyash@ingonyama.com
mailto:yuval@ingonyama.com
mailto:justin.thaler@georgetown.edu

SNARKs over large and small fields. A succinct non-interactive argument of knowledge (SNARK) is
a cryptographic protocol allowing an untrusted prover to prove that it knows a witness satisfying a specified
property. A popular viewpoint in SNARK design today is that one should endeavor to work over a “small”
field F for performance reasons.2 This is because a given number m of field operations are much faster if
those operations occur over, say, a 32-bit field rather than a 256-bit field. Similarly, hashing a vector of m
field elements can be faster if all field elements are 32 bits rather than 256.

Most SNARKs are obtained by combining a protocol called a polynomial IOP with a cryptographic protocol
called a polynomial commitment scheme to obtain an interactive succinct argument, and then applying the
Fiat-Shamir transformation to render it non-interactive. Hashing-based polynomial commitment schemes
such as FRI [BBHR18] have become popular, in part because they enable working over smaller fields than
elliptic-curve-based polynomial commitment schemes.

In fact, whether or not it makes sense to work over a small field depends on several factors. For example,
SNARK statements that are natively defined over a large prime-order field (such as proving knowledge of
elliptic-curve-based digital signatures authorizing blockchain transactions) are most efficiently proven by
working over that field. In addition, hashing-based commitment schemes are actually slower than curve-based
ones if the hash function used is a slow “SNARK-friendly” hash function such as Poseidon [GKR+21], and
the prover only needs to commit to “small” values (say, in {0, 1, . . . , 220}).3 This is indeed the case in state-of-
the-art sum-check-based SNARKs such as Lasso and Jolt [STW23, AST23]. And indeed, Jolt’s performance
when using large fields and elliptic-curve-based commitments is competitive with that of comparable SNARKs
that work over small fields and use hashing-based commitments.

Fortunately, new works by Diamond and Posen [DP23b, DP24] called Binius and FRI-Binius give a substan-
tially faster hashing-based commitment scheme for small values, and integrates the scheme with sum-check-
based polynomial IOPs to give very fast SNARKs for standard, fast hash functions like Keccak. Diamond and
Posen’s SNARKs work over the field GF[2128], and their prover’s commitment costs are low enough that the
sum-check protocol is now the prover bottleneck by a significant margin.4 Motivated by these developments,
our goal in this manuscript is to optimize the sum-check protocol when it is applied over fields of small
characteristic.

Sum-check-based SNARKs over small fields. In current linear-time implementations of the sum-check
prover, about half of the field multiplications performed by the prover occur over the extension field (i.e., both
operands in the multiplication are extension-field elements). This is because, to ensure adequate soundness
error in the sum-check protocol, random field elements r1, . . . , r` should be chosen in each round of the
protocol from a field of size (at least) 2128. So if the polynomial g being summed is defined over a small base
field, r1, . . . , r` should be chosen from an extension field.

For example, if using a degree-4 extension of a 32-bit base field, then extension field multiplications are
roughly 9-16 times more expensive than base field multiplications. If half of the multiplications performed
are over the extension field, then the prover will be at least 5-8 times slower than if all multiplications were
over the base field. In other words, even if the sum-check protocol contributes just 13% of the prover’s
work for a SNARK defined over a large field, they may become the dominant prover cost when the same
SNARK is applied over a degree-4 extension field of a 32-bit base field. The situation is amplified further for
larger-degree extensions. In particular, Diamond and Posen [DP23b] make heavy use of degree-8 extensions
(where the base field is GF[216] and the extension field is GF[2128]) and degree-128 extensions (where the base
field is GF[2]). Motivated by projects that seek more than 128 bits of security, in this manuscript we consider
extension degrees up to 256.

In some contexts base field multiplications can even be considered so cheap relative to extension field

2In order to achieve λ bits of security, deployed SNARKs work over a large field (size at least 2λ) for at least some parts of
the protocol. Hence, we personally prefer to view all SNARKs as working over a large field, with the question being whether the
characteristic of that field is large or small.

3See for example https://hungrycatsstudio.github.io/posts/benching-pcs/ and https://a16zcrypto.com/posts/

article/building-jolt/.
4Preliminary experimental results on the prover bottleneck in Binius are available at https://youtu.be/rgRWcWOll0w?

feature=shared&t=1548.

2

https://hungrycatsstudio.github.io/posts/benching-pcs/
https://a16zcrypto.com/posts/article/building-jolt/
https://a16zcrypto.com/posts/article/building-jolt/
https://youtu.be/rgRWcWOll0w?feature=shared&t=1548
https://youtu.be/rgRWcWOll0w?feature=shared&t=1548

multiplications that they are essentially free. One example is GF[2], as multiplying any field element x by 0
or 1 is essentially trivial (the result is either 0 or x).

Repetition, and why it should be avoided. Another option would be to choose r1, . . . , r` from the
base field, and apply parallel or sequential repetition. But sequential repetition does not increase security
when combined with the Fiat-Shamir transformation to render the protocol non-interactive. The same
goes for parallel repetition, at least if naively implemented, unless the number of repetitions is very large.
Specifically, when applying parallel repetition followed by Fiat-Shamir to an `-round interactive protocol,
` · k repetitions are necessary to amplify λ/k bits of security to λ bits of security (i.e., there is actually an
attack demonstrating that this security bound is tight [AFK22].5). In the context of sum-check, this results
in O(nk log n) base field operations for the prover, which is typically worse than the number of base field
operations achieved by existing work on linear-time sum-check provers [CTY11, Tha13] (depending on details
of the field extension and the algorithm used to perform multiplications in the extension field, this number is
typically O(nk1.58496...) or perhaps O(nk2), where k is the degree of the field extension, see Section 2.1 for
details.). Indeed, log n is typically 20 or larger.

We strongly recommend not to combine parallel repetition with the Fiat-Shamir transformation, due to its
introduction of potentially catastrophic security issues and because, when used securely, its performance is
worse than our algorithms. Indeed, our work improves over the O(nk log n) base field operations obtained
from parallel repetition, as well as over the existing linear-time sum-check prover algorithms.

Our results. We start by describing two algorithms from prior works for implementing the sum-check
prover [CTY11, Tha13, CMT12], carefully optimizing them for the extension-field context we consider.
Surprisingly, we point out that the second algorithm, which is asymptotically and concretely slower than
the first algorithm in the standard “large field” setting, is actually cheaper than the first when base field
multiplications (and base-field-times-extension-field multiplications) are much cheaper than extension-field
multiplications.

We then present our main technical contribution: a third algorithm that performs almost no extension field
multiplications in early rounds of the sum-check protocol (at the cost of performing quite a large number of
base-field multiplications). In later rounds, the costs of this new, third algorithm start to exceed those of the
first two. Hence, after enough rounds have passed, it makes sense to “switch” from the third algorithm to
one of the first two. We calculate the optimal sequence of switches, and compare the costs to prior work
alone. We also describe a fourth algorithm, which further improves the number of base field multiplications,
without any increase in extension-field multiplications.

Generally speaking, the cheaper base field multiplications are relative to extension-field multiplications,
the stronger our results. When it is reasonable to consider base field multiplications (and base-field-times-
extension-field multiplications) as “free” relative to extension-field multiplications, our results speed up
the sum-check prover by multiple orders of magnitude (Section 5). When the relative costs obey those of
Karatsuba’s algorithm, our improvements are considerably more modest but can still be a factor of close to
five (see Section 6).

Even modest improvements to sum-check prover time are meaningful. This is because recent SNARKs only
require the prover to commit to base-field elements [STW23, AST23], and polynomial commitment schemes
are growing extremely fast when committing only to such elements [DP23b, DP24]. This will render the
sum-check protocol the prover bottleneck in these SNARKs, and our results help mitigate this bottleneck.

Overview of costs. Let n = 2` be the number of terms being summed in Equation (1), and suppose that
the polynomial g is a product of d multilinear polynomials each defined over the base field (in practice, d is
typically between two and four). Suppose that one executes one of our new prover algorithms (Algorithms 3
or 4) for the first i rounds of the sum-check protocol, and that “switches over” to an existing algorithm like
Algorithm 1 for the final `− i rounds. Then the prover incurs three costs:

5See https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks/#section--13 for an exposition of this
attack. This attack is surprising and not widely known: projects have released code that is vulnerable to it, such as
https://github.com/PolyhedraZK/Expander/issues/15. We hope that our manuscript helps raise awareness of the attack.

3

https://a16zcrypto.com/posts/article/17-misconceptions-about-snarks/#section--13
https://github.com/PolyhedraZK/Expander/issues/15

• In the first i rounds, Algorithm 3 performs O(d · 2d·in) base field multiplications.

• In order to ”switch over” to a pre-existing algorithm at the end of round i, the prover incurs O(n)
many base-field-times-extension-field multiplications. We refer to this procedure as “binding the first i
variables”.

• Once the switchover is complete, the prover performs O(n/2i) extension field multiplications across the
final `− i rounds.

Adapting ideas from the Toom-Cook multiplication algorithm, Algorithm 4 reduces the number of base field
multiplications from O(d · 2d·i) to O(di+1).

Comparison to independent work of Gruen [Gru24]. Independent work of Gruen [Gru24] also seeks
to optimize the sum-check protocol prover when working over fields of small characteristic. Most relevant to
our work is a technique Gruen calls the “univariate skip”. This refers to applying sum-check to a multivariate
polynomial g that has high degree in its first variable–roughly d · 2i for some i ≥ 1 and some constant d, and
degree d in each of its remaining variables.

The sum-check protocol can then be used to compute the sum of g’s evaluations over a set of size n (say,
the set {0, . . . , 2i} × {0, 1}`−i). In this setting, simple variations of existing linear-time sum-check prover
implementations naturally perform O((d · 2d·i) · n) base field multiplications in the first round, and O(n/2i)
extension field multiplications across all other rounds. This has very similar prover costs to our Algorithm
3 (combined with Algorithm 1). Over FFT-friendly fields, the number of base field multiplications of the
univariate-skip approach can even be asymptotically lowered, though this is unlikely to yield major speedups
in practice because these FFTs would only be applied to vectors of length 2i (and in practice we expect i to
be between, say, 2 and 8).

However, the univariate-skip technique is not directly comparable to our results for several reasons. First, our
approach leads to lower proof size than the univariate-skip approach, stemming from the high degree that
the univariate-skip technique introduces in the first variable of g, and the fact that the sum-check protocol’s
proof size grows with the degree in each variable. Second, in SNARK applications the polynomial g is often
derived from various committed polynomials, and the commitment scheme used would need to be modified
if the polynomials being committed have large degree in their first variable and constant degree in their
remaining variables. These modifications may introduce additional costs. Our techniques apply to existing
sum-check-based SNARKs “as is”.

One final remark is that Gruen’s work is targeted at settings where the polynomial g being summed is
not necessarily a product of multilinear polynomials, but rather is obtained by composing some low-degree
univariate polynomial q with several mutlilinear polynomials. Of course, our techniques can also be applied
to this general setting, by expressing q as a sum of monomials. In general this transformation may introduce
overheads. However, in perhaps our main motivating application, namely the zkVM Jolt [AST23], the
sum-check protocol is only ever applied to a product of multilinear polynomials.

Implementation and Experiments. We implemented and benchmarked all four sum-check prover
algorithms6 to compare their run times. Using the degree-4 extension of the Babybear [BG23] field, we tested
single-core and six-core configurations on an Intel i7 processor. Algorithm 4 performs better than Algorithm
3 due to fewer base-field multiplications.

In comparison with the existing algorithms, Algorithms 3 and 4 require fewer extension-field multiplications
but many more base-field multiplications. Naturally, if extension-field multiplications are much slower than
the base-field multiplications, Algorithms 3 and 4 are expected to perform much better than the existing
algorithms. In our implementation, for degree-four extensions of the Babybear field, we observe that the
running times of the existing algorithms are better than the Algorithms 3 and 4. However, we expect
substantial speedups in key applications like Jolt [AST23] with binary tower fields, in which extension-
field multiplications are orders of magnitude slower than the base-field multiplications. We present careful
analytical estimates of the relative speedup of Algorithms 3 and 4 over Algorithm 1 (Section 7) when using a

6Our code is open-sourced at https://github.com/ingonyama-zk/smallfield-super-sumcheck.

4

https://github.com/ingonyama-zk/smallfield-super-sumcheck

degree-128 extension of the binary field GF[2] that support this claim. One reason our current experimental
results are limited is that we use Arkworks [ac22] as the backend for finite field arithmetic. This library is
optimized for fields with characteristic higher than 64, which leads to inefficiencies when working with fields
with smaller characteristic (like the 31-bit Babybear field). The library also does not support field extensions
of degree more than four. Therefore, our implementation has significant potential for improvement, especially
for Algorithms 3 and 4, ranging from efficient field arithmetic for smaller fields to hand-rolled multi-threading
optimizations.

A companion work [DT24]: addressing an “equality” factor. Let eq(y, x) denote the 2n-variate
multilinear polynomial defined as follows.

eq(y, x) =

n−1∏
i=0

(xiyi + (1− xi)(1− yi)) .

This polynomial is the multilinear extension of the “equality function” that takes two n-bit inputs x and y
and outputs 1 if and only if x = y. In most applications of the sum-check protocol to SNARK design, we
actually have that the protocol is applied to a polynomial g of the form:

g(x) = eq(r, x) ·
d∏

i=1

pi(x) (3)

for some multilinear polynomials pi, where pi(x) is in a small base field for all x ∈ {0, 1}logn, and where
r ∈ Fn is chosen at random from a larger extension field F by the verifier.

Our results in this manuscript substantially reduce the extension-field multiplications incurred by the sum-
check prover in order to process the polynomials p1, . . . , pd. However, in this work we do not address
extension-field multiplications introduced by the eq(r, x) factor. The main source of such multiplications is
the prover’s need to compute the values

A = {eq(r, x) : x ∈ {0, 1}n}.

This requires about n F-multiplications using standard memoization-based procedures [VSBW13] (see [Tha22,
Lemma 3.8] for details).

In a companion work, Dao and Thaler [DT24] reduce this cost for the prover when F has characteristic two
and is constructed as a tower extension of a smaller base field, which is exactly the setting considered in
Binius [DP23b] and FRI-Binius [DP24]. Specifically, let F be a degree-2k extension of B. Dao and Thaler
show how to reduce the number of extension-field multiplications to compute the set A of eq(r, x) evaluations
from roughly n down to n/2k. In practice, this 2k factor savings can be 128 (e.g., when the base field is GF[2]
and the extension field is GF[2128]). In this setting, our work, when combined with the result of Dao and
Thaler [DT24], reduces the sum-check prover time by an order of magnitude or more.

2 Preliminaries

2.1 Background on extension fields

Let B be a base field and F an extension of B of degree k. F is a k-dimensional vector space over B, and
elements of F are often represented relative to some basis β1, . . . , βk of this vector space. That is, an element
x ∈ F can represented by (α1, . . . , αk) where x =

∑k
i=1 αi · βi. A popular basis to use when representing

extension fields is the monomial basis. Indeed, the extension field F can be viewed as the set of all degree-k
polynomials over the base field B, modulo a degree-k irreducible polynomial over B. In this view, an extension
field element’s representation under the standard monomial basis is simply its coefficients when viewed as
such a polynomial.

5

2.1.1 Tower fields vs. the standard monomial basis.

Suppose k = 2z for some integer z > 0. A degree-k extension field F of B is said to be a tower extension
if it is constructed from B by first constructing a degree-2 extension B′, and then constructing a degree-2
extension B′′ of B′ (which is a degree-4 extension of B), and so on for z iterations. This leads to a basis for F
in which, for any integer j > 0, the first j basis elements are in the degree-j extension field obtained after j
iterations of the tower construction. Particularly fast and elegant tower field constructions are known for
fields of characteristic two [Wie88, FP97]. There are (at least) two benefits to using a tower basis that are
extremely important to applications of the sum-check protocol in SNARK design [DP23b].

Subfield elements are compressed. Let B′ be a subfield in the tower construction, i.e., B′ is a degree-j
extension of B for some j < k with j a power of two. Then one can identify any element x ∈ B′ via just j
elements of B (specifically, the first j coefficients of x in the tower basis, as all other coefficients are zero).

Information-theoretically, representing elements of B′ with j base-field elements is also possible over the
standard monomial basis, but this comes at a major cost: embedding B′ into F becomes expensive. That is,
unlike in the tower construction, it is not the case that the “compressed” representation of B′ elements is the
same as its representation in the standard monomial basis for F.

Lower memory consumption for subfield elements can have a very large effect on performance: it affects
bandwidth usage for hardware acceleration, and cache efficiency in CPUs.

Fast base-field-by-subfield (or subfield-by-subfield) multiplication. The above also ensures that
multiplying an element of B by an element of B′ costs only j base-field multiplications, rather than k = 2z of
them. Such fast multiplication of elements of the base field and subfields is not supported by the standard
monomial basis for F.

In this paper, for simplicity we present our algorithms assuming that the sum-check protocol is applied
to an `-variate polynomial g that is a product of multilinear polynomials p1, . . . , pd, each of which maps
{0, 1}` to the base field B. For tower fields, due to fast subfield-by-subfield multiplication, our algorithms
also “automatically” improve on prior work under the weaker assumption that different pi’s map {0, 1}` to
different subfields of F.

2.1.2 Multiplication algorithms for extension fields

Karatsuba’s algorithm for tower field multiplication. Let B be a base field and let F be a degree-2
extension of B. Using Karatsuba’s algorithm, multiplying two elements of F can be done with roughly three
base-field multiplications (and several addition operations, followed by reducing a degree-two polynomial
modulo another degree-two polynomial). In general, doubling the extension degree roughly triples the cost of
a multiplication in the extension field. Asymptotically, this means that multiplications in degree-k extension
field F are roughly O(klog2(3)) = O(k1.58496...) times more expensive than multiplications in the base field F.7

Karatsuba’s algorithm for non-tower bases. Karatsuba’s algorithm applies in a different way over
non-tower bases. Specifically, given two elements of F represented in the standard monomial basis, one can
use Karatsuba’s algorithm to multiply the two polynomials in O(k1.58496...) time (and then perform a single
reduction modulo an irreducible polynomial of degree k).

On real hardware, multiplication of extension field elements can be faster when using the standard monomial
basis rather than a tower basis (though using the monomial basis lacks the benefits discussed in Section 2.1.1).
In particular, some hardware supports certain finite field arithmetic as a primitive operation when using the
standard monomial basis. Particularly important examples are the so-called POLYVAL basis for GF[2128],
which is used by AES and hence natively supported by many CPUs8, and Intel’s Galois Field instruction set

7Optimized field multiplication algorithms have been studied for extension degrees k that are not a power of two. For
example, multiplications in extension fields of degree k = 3 can be performed with 5 base field multiplications via the Toom-Cook
algorithm. For extension degree k = 5, extension field multiplications can be done with nine base field multiplications (with over
a hundred base field additions) [EMGI11], or with fourteen base field multiplications and a smaller number of additions.

8See https://docs.rs/polyval/latest/polyval/.

6

https://docs.rs/polyval/latest/polyval/

(GFNI) which has native support for GF[28] multiplication. However, with FPGAs, the difference between
multiplication in the tower vs. monomial bases is much smaller, with recent estimates indicating that
multiplications in the monomial basis uses only 20% fewer resources than tower bases [DP23a].

2.1.3 Notation for costs of field multiplications

Let bb denote the cost of multiplying two base field elements, be ≈ k ·bb denote the cost of multiplying a base
field element by an extension field element, and ee denote the cost of applying two extension field elements.
As discussed above, via Karatsuba’s algorithm, if k is a power of two then ee ≈ k1.5849 · bb. Abusing notation,
we also use bb as shorthand for base-base multiplications, be for base-extension multiplications, and ee for
extension-extension.

When to model bb and be multiplications as “free”, relative to ee multiplications. When the
base field is GF[2], multiplying a base field element b by an extension field e element is essentially free, as b · e
is 0 if b = 0 and is e if b = 1. Hence, it is not the case that ee ≈ k1.5849 · bb (as bb = 0). The goal as an
algorithm designer in this case is to minimize the number of extension field multiplications.

There are other situations where it may be reasonable to consider bb and be multiplications as much less
expensive than ee multiplications (i.e., by more than a factor of k1.5849 and k0.5849 respectively). One example
is when base-field multiplication is a primitive operation on relevant hardware (e.g., Intel’s GFNI for GF[28]
multiplication). In this case, bb multiplications may be so cheap that the extra work performed by Karatsuba’s
algorithm for ee multiplication (outside of the O(k1.5849) bb multiplications) could be a dominant cost.

The cheaper that bb and be multiplications are relative to ee multiplications, the more significant our
improvements over prior work. This is because our algorithms perform a lot of bb and be multiplications, in
order to reduce the number of ee multiplications.

Other considerations. We are be interested not only in base fields B that are of prime size, but also in
base fields that are themselves prime power size. For example, one may want to view GF[2128] as a degree-16
extension of GF[28] rather than a degree-128 extension field of B because our algorithms assume that the
sum-check protocol is applied to a product of `-variate polynomials that map {0, 1}` to B. In some settings,
this will indeed hold for B = GF[2], but in others it will not.

2.2 Background on the sum-check protocol

As per Equations (1) and (2), let us consider applying the sum-check polynomial to compute
∑

x∈{0,1}` g(x),
where g has degree at most d in each variable. A complete description of the sum-check protocol is in the
codebox below.

In each round j, the honest prover sends a univariate polynomial sj of degree d. As any degree-d univariate
polynomial is specified by its evaluations on any set of d+ 1 points, computing sj(c) for all c ∈ {0, 1, . . . , d}
suffices to uniquely specify sj . Here, we are assuming that the characteristic of the field over which g is defined
is at least d. If this is not the case, then one should replace the set {0, 1, . . . , d} with a set {0, 1, x1, . . . , xd−1}
for any convenient points x1, . . . , xd−1 in the field. For example, if F = GF[2128] is constructed as a tower
field (see Section 2.1), then it makes sense to choose x1, . . . , xd−1 to all reside in the subfield GF[2k] where k
is the smallest power of two greater than log(d− 1).

Accordingly, in round j, the prover must compute

sj(c) =
∑

x∈{0,1}`−j

g(r1, . . . , rj−1, c, x), (4)

for all c ∈ {0, 1, . . . , d}. We will ignore the cost of all additions in our accounting below, as well as
multiplications by 2.

7

Description of Sum-Check Protocol applied to the polynomial g of degree at most d in each variable (description
taken from [Tha22, Chapter 4]). In this paper, we assume g is defined over a base field B and that F is an extension
field of B.

• At the start of the protocol, the prover sends a value C1 claimed to equal the value defined in Expression (5).

• In the first round, P sends the univariate polynomial s1(X1) claimed to equal∑
(x2,...,x`)∈{0,1}`−1

g(X1, x2, . . . , x`).

V checks that
C1 = s1(0) + s1(1),

and that s1 is a univariate polynomial of degree at most d, rejecting if not.

• V chooses a random element r1 ∈ F, and sends r1 to P.

• In the jth round, for 1 < j < `, P sends to V a univariate polynomial sj(Xj) claimed to equal∑
(xj+1,...,x`)∈{0,1}`−j

g(r1, . . . , rj−1, Xj , xj+1, . . . , x`).

V checks that sj is a univariate polynomial of degree at most d, and that sj−1(rj−1) = sj(0) + sj(1), rejecting
if not.

• V chooses a random element rj ∈ F, and sends rj to P.

• In Round `, P sends to V a univariate polynomial s`(X`) claimed to equal

g(r1, . . . , r`−1, X`).

V checks that s` is a univariate polynomial of degree at most d, rejecting if not, and also checks that
s`−1(r`−1) = s`(0) + s`(1).

• V chooses a random element r` ∈ F and evaluates g(r1, . . . , r`) with a single oracle query to g. V checks that
s`(r`) = g(r1, . . . , r`), rejecting if not.

• If V has not yet rejected, V halts and accepts.

Theorem 1. The sum-check protocol is a perfectly complete protocol for computing
∑

x∈{0,1}` g(x), with

soundness error at most ` · d/|F|. That is, an honest prover will always pass the verifier’s checks, and a
dishonest prover will pass the verifier’s checks with probability at most ` · d/|F|.

Unless stated otherwise, when applying the sum-check protocol to an `-variate polynomial g, we assume
throughout that g is defined over the base field B. In particular, we assume that g(x) ∈ B for all x ∈ {0, 1}`.

For expository purposes, for each of the sum-check prover algorithms we describe, we begin by considering
Equation (2) in the case that d = 2. In this case, for readability, let us replace p1 with p and p2 with q, so
that the goal of the sum-check protocol is to compute∑

x∈{0,1}`
p(x) · q(x). (5)

2.3 Key lemmas for multilinear polynomials

The following lemma will be used throughout this note.

Lemma 1. Suppose p : F` → F is an `-variate multilinear polynomial over F. Then for any input (r1, x
′) ∈

F× F`−1,
p(r1, x

′) = r1 · p(1, x′) + (1− r1) · p(0, x′). (6)

Proof. The right hand side of Equation (6) is clearly a multilinear polynomial in x = (r1, x
′), and agrees with

p(x) for all x = (r1, x
′) ∈ {0, 1}`. Hence it must equal p(x), as {0, 1}` is an interpolating set for multilinear

8

polynomials. That is, if p and q are two multilinear polynomials satisfying p(x) = q(x) for all x ∈ {0, 1}`,
then p and q are the same polynomial.

Lagrange basis polynomials and a generalization of Lemma 1. For any S ∈ {0, 1}`, let χS(x) =∏`
i=1(xiSi + (1− xi)(1− Si)) denote the S’th multilinear Lagrange basis polynomial. For example, if ` = 4

and S = (0, 1, 1, 0), then χS(x) = (1− xi)x2x3(1− x4). We have the following generalization of Lemma 1

Lemma 2. Suppose p : F` → F is an `-variate multilinear polynomial over F. Then then for any input
((r1, . . . , ri), x

′) ∈ Fi × F`−i,

p(r1, . . . , ri, x
′) =

∑
S⊆i

χS(r1, . . . , ri) · p(S, x′). (7)

Proof. The right hand side of Equation (7) is a multilinear polynomial in x = (r1, . . . , ri, x
′), and agrees

with p(x) for all x = (r1, . . . , ri, x
′) ∈ {0, 1}`. Hence it must equal p(x), as {0, 1}` is an interpolating set for

multilinear polynomials.

Lemma 3. Suppose f : F` → F is an `-variate multilinear polynomial over F, and let P : F × F → F be a
linear map. Then, for y ∈ Fi−1 and given x ∈ F`−i, the polynomial F (y) := P (f(y, 0, x), f(y, 1, x)) is also a
multilinear polynomial.

Proof. Since f is a multilinear polynomial, f(y, 0, x) and f(y, 1, x) are multilinear polynomials in y ∈ Fi−1

for given x ∈ Fn−i. As the linear combination of multilinear polynomials is also a multilinear polynomial,
and F (y) is a linear combination of f(y, 0, x) and f(y, 1, x), F is a multilinear polynomial in y.

The equality function and its multilinear extension. Let ẽq` : F`×F` → F be the following multilinear

polynomial: ẽq`(x, y) =
∏`

j=1 (xjyj + (1− xj)(1− yj)) . ẽq` is the unique multilinear polynomial satisfying,

for all x, y ∈ {0, 1}`,

ẽq`(x, y) =

{
1 if x = y

0 otherwise.

That is, ẽq` is the so-called multilinear extension of the equality function over {0, 1}` × {0, 1}`. Note that for
any S ∈ {0, 1}`, ẽq`(S, y) = χS(y). We omit the subscript ` from ẽq` when ` is clear from context.

3 Existing algorithms: Algorithms 1 and 2

3.1 Algorithm 1

3.1.1 The case of d = 2.

Consider applying the sum-check polynomial to g(x) = p(x) · q(x). The known linear-time sum-check
prover [CTY11, Tha13] operates as follows. The prover maintains two arrays, say A and B, which initially
store all evaluations of p and q over {0, 1}`. We will index entries of A and B by x ∈ {0, 1}`, so that at
initialization, A[x] stores p(x) and B[x] stores q(x). In each round, the size of the arrays will halve.

Round 1. Given the contents of A and B upon initialization, the prover can compute s1(0) and s1(1) with
n = 2` bb multiplications in total. Indeed,

s1(0) =
∑

x∈{0,1}`−1

p(0, x) · q(0, x) =
∑

x∈{0,1}`−1

A(0, x) ·B(0, x), (8)

and similarly for

s1(1) =
∑

x∈{0,1}`−1

p(1, x) · q(1, x) =
∑

x∈{0,1}`−1

A(1, x) ·B(1, x). (9)

9

To compute s1(2), by Lemma 1,

s1(2) =
∑

x∈{0,1}`−1

p(2, x) · q(2, x) =
∑

x∈{0,1}`−1

((1− 2) · p(0, x) + 2 · p(1, x)) ·
((1− 2) · q(0, x) + 2 · q(1, x)) . (10)

Since we are ignoring the cost of additions and multiplications by two, s1(2) can be computed with n/2 bb
multiplications. Indeed, ((1− 2) · p(0, x) + 2 · p(1, x)) is a base field element that can be computed via
additions and multiplications by two, as is ((1− 2) · q(0, x) + 2 · q(1, x)), and the results can be multiplied
together with one base-field multiplication.

After the verifier selects r1 ∈ F, the prover updates the arrays A and B as follows. For each x ∈ {0, 1}`−1,
the prover sets

A[x]← (1− r1) ·A[0, x] + r1 ·A[1, x] = A[0, x] + r1 · (A[1, x]−A[0, x])

B[x]← (1− r1) ·B[0, x] + r1 ·B[1, x] = B[0, x] + r1 · (B[1, x]−B[0, x]).

Updating both arrays costs n be multiplications (n/2 per array). By Lemma 1, after the update, for each
x ∈ {0, 1}`−1, A[x] = p(r1, x), B[x] = q(r1, x) are extension field elements.

Round 2. Given the contents of the updated arrays, the prover can compute s2(0) and s2(1) with n/4 ee
multiplications in total, since

s2(0) =
∑

x∈{0,1}`−2

p(r1, 0, x) · q(r1, 0, x) =
∑

x∈{0,1}`−2

A[0, x] ·B[0, x]

and s2(1) = s1(r1)− s2(0). By Lemma 1,

s2(2) =
∑

x∈{0,1}`−2

p(r1, 2, x) · q(r1, 2, x)

=
∑

x∈{0,1}`−2

((1− 2) · p(r1, 0, x) + 2 · p(r1, 1, x)) · (11)

((1− 2) · q(r1, 0, x) + 2 · q(r1, 1, x))

=
∑

x∈{0,1}`−2

((1− 2) ·A[0, x] + 2 ·A[1, x]) · ((1− 2) ·B[0, x] + 2 ·B[1, x]) .

Hence, s2(2) can be computed in n/4 ee multiplications. After the verifier chooses r2 ∈ F, the prover updates
A and B for each x ∈ {0, 1}`−2 as follows.

A[x]← (1− r2) ·A[0, x] + r2 ·A[1, x] = A[0, x] + r2 · (A[1, x]−A[0, x])

B[x]← (1− r2) ·B[0, x] + r2 ·B[1, x] = B[0, x] + r2 · (B[1, x]−B[0, x]),

thereby ensuring via Lemma 1 that A[x] = p(r1, r2, x) and B[x] = q(r1, r2, x).

Round i > 2. Following the above blueprint from round 2, in each round i > 2, the prover ensures that at
the start of round i, A and B respectively store p(r1, . . . , ri−1, x) and q(r1, . . . , ri−1, x) for all x ∈ {0, 1}`−i+1.
Given these values, the prover can compute si(0), si(1), and si(2) with n/2i−1 ee multiplications in total.
Here, n/2i ee multiplications are devoted to computing si(0) (from which the value si(1) can be derived,
given si−1(ri−1)), and another n/2i are devoted to computing si(2).

The prover can then update the two arrays with n/2i ee multiplications in total, ensuring that A and B
respectively store p(r1, . . . , ri, x) and q(r1, . . . , ri, x) for all x ∈ {0, 1}`−i.

10

Total Algorithm 1 prover costs when d = 2. Across all ` rounds, the prover’s work in Algorithm 1 is
as follows: (

3n

2
· bb + n · be

)
+
∑̀
i=2

4n

2i
· ee ≤ 3n

2
· bb + n · be + 2n · ee.

Here, the first term is for computing the round 1 message s1(0), s1(1), and s1(2), and the following array
update. The sum is for computing the round i message and array updates for all rounds i ≥ 2.

3.1.2 Algorithm 1 for general degrees d.

Algorithm 1 has a straightforward generalization to the case where g(x) = p1(x) · p2(x) · · · · pd(x). The
algorithm stores d arrays, with the j’th array at the end of round i storing the values pi(r1, . . . , ri, x) for all
x ∈ {0, 1}`−i.

Assuming that multiplication by field elements in {0, 1, . . . , d} are free, the cost in each round i ≥ 2 of
computing si(0), si(1), . . . , si(d) is d(d− 1)n/2i ee multiplications. This is because si(1) can be derived as
si−1(ri−1)− si(0), while the other d evaluations of si can each be expressed as the sum of n/2i terms (one for
each input in {0, 1}`−i), with each term equal to a product of d ee elements. At the end of round i, updating
all d arrays costs d · n/2i ee multiplications. Hence, the cost of Algorithm 1 across all ` rounds is:(

d(d− 1)n

2
· bb +

dn

2
· be
)

+
∑̀
i=2

d2n

2i
· ee ≤

(
(d2 − 1)n

2
· bb +

dn

2
· be
)

+
d2n

2
· ee. (12)

In Expression (12), on the left side of the inequality, the expression before the sum accounts for computing
the round 1 message s1(0), s1(1), s1(d),9 and the following array update. The sum in Expression (12) is
for computing the round i message and array updates for all rounds i ≥ 2.

3.2 Algorithm 2

3.2.1 The case of d = 2.

A second known sum-check prover implementation, dating to work of Cormode, Mitzenmacher, and
Thaler [CMT12], has the prover perform O(2`) field operations per round rather than in total.10

However, as we will show, most of these field operations are be operations rather than ee operations. Even
for “dense” polynomials p (where m = n and ` = log n), m log n be multiplications can be faster than O(n)
ee multiplications.

Round 1. Round 1 proceeds identically to Algorithm 1, with the prover computing s1(0), s1(1) and s1(2)
with n bb multiplications in total.11 The difference from Algorithm 1 is that, after the verifier selects r1 ∈ F,
the prover does not update the arrays A and B.

9Evaluating s1(i) requires (d− 1) · n/2 base field multiplications for any i ∈ {0, 1, . . . , d}. Here, n/2 is the number of terms
in the sum defining s1, see Equation (4).

10More precisely, the number of field operations performed by the prover in each round is linear in the sparsity m of p and q,
i.e., the number of inputs x ∈ {0, 1}` for which p(x) · q(x) 6= 0. However, we won’t focus on sparse polynomials in this paper.

11For Algorithm 1, we stated a bound of n+ n/2, but it is easy to see by inspection that computing s1(0) and s1(1) only
require one bb multiplication per x ∈ {0, 1}` such that p(x) · q(x) 6= 0. Similarly, the n/2 term can be replaced with m.

11

Round i ≥ 2. In each round i ≥ 2, the prover can compute si(0), si(1), and si(2) as follows. For each
x ∈ {0, 1}`−i and y ∈ {0, 1}i−1, let

C[y, 0, x] = ẽqi−1(y, r1, . . . , ri−1) · p(y, 0, x),

C[y, 1, x] = ẽqi−1(y, r1, . . . , ri−1) · p(y, 1, x),

D[y, 0, x] = ẽqi−1(y, r1, . . . , ri−1) · q(y, 0, x),

D[y, 1, x] = ẽqi−1(y, r1, . . . , ri−1) · q(y, 1, x),

E[y, x] = ẽqi−1(y, r1, . . . , ri−1) (−p(y, 0, x) + 2p(y, 1, x)) ,

F [y, x] = −ẽqi−1(y, r1, . . . , ri−1) (−q(y, 0, x) + 2q(y, 1, x)) .

Lemma 2 implies that ∑
y∈{0,1}i−1

C[y, 0, x] = p(r1, . . . , ri−1, 0, x),

∑
y∈{0,1}i−1

C[y, 1, x] = p(r1, . . . , ri−1, 1, x),

∑
y∈{0,1}i−1

D[y, 0, x] = q(r1, . . . , ri−1, 0, x),

∑
y∈{0,1}i−1

D[y, 1, x] = q(r1, . . . , ri−1, 1, x),

∑
y∈{0,1}i−1

E[y, x] = p(r1, . . . , ri−1, 2, x),

∑
y∈{0,1}i−1

F [y, x] = q(r1, . . . , ri−1, 2, x).

Standard techniques enable the prover to use 2i−1 ee multiplications to compute ẽqi−1(y, r1, . . . , ri−1) for
all y ∈ {0, 1}i−1, given ẽqi−2(y, r1, . . . , ri−2) for all y ∈ {0, 1}i−2 (see [Tha22, Lemma 3.8]). With these
values in hand, the prover can compute all necessary values (that is, C[y, 0, x], C[y, 1, x], D[y, 0, x], D[y, 1, x],
E[y, x] and F [y, x]) with 3n be multiplications. The prover can compute s2(0), s2(1), and s2(2) with n/2i ee
multiplications each, owing to the fact that

si(c) =
∑

x∈{0,1}`−i

p(r1, . . . , ri−1, c, x) · q(r1, . . . , ri−1, c, x), (13)

for each c ∈ {0, 1, 2}. As an optimization, si(1) can instead be derived as si(1) = si−1(ri−1)− si(0).

Algorithm 2 costs when d = 2. With the aforementioned optimization, in each round i, the prover
performs 2n be multiplications and

(
2 · n/2i + 2i−1

)
ee multiplications.

Remark 1 (Cost comparison of Algorithm 1 vs. Algorithm 2). Algorithm 2 has fewer ee multiplications in
each round i, until the final `/2 rounds (when the 2i−1 term for Algorithm 2 becomes dominant). After round
`/2, one should “switch” from Algorithm 2 to Algorithm 1. That is, the 2n/2i ee multiplications in round i
of Algorithm 2 is superior to the 4n/2i ee multiplications of Algorithm 1.

The main downside of Algorithm 2 is that it also performs 2n be multiplications per round. However, when
be multiplications are “free” (e.g., when the base field is GF[2]), then this downside is not relevant, and
Algorithm 2 is preferable to Algorithm 1 until the last few rounds.

Conceptually, for general degree bounds d, Algorithm 2 cuts out all of the d/2i many ee multiplications that
Algorithm 1 “spends” to update its d arrays in each round. This benefit is particularly significant for small
degrees d, e.g., for d = 2 this cuts the number of ee multiplications by a factor of 2. The price that Algorithm
2 pays for this is increasing the number of be multiplications from about Θ(dn) across all rounds, to Θ(dn)
per round.

12

3.2.2 Algorithm 2 for general degrees d.

Algorithm 2 has a straightforward generalization to the case where g(x) = p1(x) · p2(x) · · · · pd(x). Assuming
that multiplication by field elements in {0, 1, . . . , d} are free, the cost of this algorithm in each round i > 1 is:

(d+ 1)n · be +

(
d(d− 1)n

2i
+ 2i−1

)
· ee.

Here, the 2i−1 term is the number of ee multiplications required to evaluate all (i− 1)-variate Lagrange basis
polynomials at (r1, . . . , ri−1) via a standard memoization procedure (see [Tha22, Figure 3.3 and Lemma
3.8]). The d(d− 1)n/2i term is the number of ee multiplications required to evaluate the degree-d analog of
Equation (13). Specifically, there are d+ 1 equations, one for each of si(0), si(1), . . . , si(d). Each equation
involves a sum over n/2i terms, with each term involving a product of d extension-field elements (such a product
can be computed with d− 1 ee multiplications). However, si(1) can be derived as si(1) = si−1(ri−1)− si(0),
reducing the effective number of equations to be computed from d+ 1 to d.

4 Optimized provers for extension fields: Algorithms 3 and 4

Overview of the improvement. In the existing linear-time prover algorithm (Algorithm 1), starting in
Round 2 the prover begins multiplying extension-field elements, because in round 1 the first variable of p and
q was bound to a random extension field element r1.

The main idea for optimization is that in Expression (11), although p(r1, x) and q(r1, x) for x ∈ {0, 1}`−1
are extension field elements, it is a simple expression of just four base-field elements, namely p(0, x), p(1, x),
q(0, x) and q(1, x). In fact, it is a linear combination of the four products p(0, x) · q(0, x), p(1, x) · q(1, x),
p(0, x) · q(1, x), p(1, x) · q(0, x). Using schoolbook multiplication, we compute

s2(0) =
∑

x∈{0,1}`−1

((1− 2) · p(0, x) + 2 · p(1, x)) · ((1− 2) · q(0, x) + 2 · q(1, x))

=
∑

x∈{0,1}`−1

(−1)2 · p(0, x) · q(0, x) + 22 · p(1, x) · q(1, x) +

(−1) · 2 · p(0, x) · q(1, x) + (−1) · 2 · p(1, x) · q(0, x)

The first two of these four products already had to be computed just to determine the correct answer. So it
makes sense (for the first several rounds at least) not to treat p(r1, x) and q(r1, x) as arbitrary extension-field
elements, but rather to compute them as the appropriate linear combination of (products of) base field
elements, thereby keeping (almost) all arithmetic within the base field for the first several rounds. We call
this Algorithm 3. Further, we can use the Karatsuba trick to combine the cross-terms p(0, x) · q(1, x) and
p(1, x) · q(0, x) into a single product (p(0, x) + q(0, x)) · (p(1, x) + q(1, x)).

s2(0) =
∑

x∈{0,1}`−1

(−1)2 · p(0, x) · q(0, x) + 22 · p(1, x) · q(1, x) +

(−1) · 2 · p(0, x) · q(1, x) + (−1) · 2 · p(1, x) · q(0, x)

=
∑

x∈{0,1}`−1

(
((−1)2 − (−2)) · p(0, x) · q(0, x) + (22 − (−2)) · p(1, x) · q(1, x) +

(−2) · (p(0, x) + q(0, x)) · (p(1, x) + q(1, x))
)
.

Since the first two products have already been computed, we only need to compute the new product
(p(0, x) + q(0, x)) · (p(1, x) + q(1, x)). We call this Algorithm 4.

4.1 Algorithm 3

4.1.1 Details of Algorithm 3 when d = 2.

The prover maintains an array C initially of length n = 2`, indexed by x ∈ {0, 1}`. Initially, C[x] contains
p(x) · q(x). This initialization costs n · bb multiplications.

13

Round 1. Given the contents of the array, the prover can compute s1(0) and s1(1) with no multiplications
at all, since

s1(0) =
∑

x∈{0,1}`−1

p(0, x) · q(0, x) =
∑

x∈{0,1}` : x1=0

C[x],

s1(1) =
∑

x∈{0,1}`−1

p(1, x) · q(1, x) =
∑

x∈{0,1}` : x1=1

C[x].

To compute s1(2), as per Equation (10),

s1(2) =
∑

x∈{0,1}`−1

p(2, x) · q(2, x)

=
∑

x∈{0,1}`−1

((1− 2) · p(0, x) + 2 · p(1, x)) · ((1− 2) · q(0, x) + 2 · q(1, x))

=
∑

x∈{0,1}`−1

(p(0, x) · q(0, x) + 4p(1, x) · q(1, x)− 2q(0, x) · p(1, x)− 2p(1, x) · q(0, x)) .

Since we are ignoring the cost of additions and multiplications by two, this quantity can be computed in
n bb multiplications, as the products p(0, x) · q(0, x) and p(1, x) · q(1, x) have already all been computed,
so the only additional products required are the “cross-terms” q(0, x) · p(1, x) and p(1, x) · q(0, x) for all
x ∈ {0, 1}`−1. These extra products (namely, p(y) · q(ȳ) for all y ∈ {0, 1}` with ȳ denoting y with the first bit
flipped) are stored by the prover for use in future rounds. Specifically, the data structure C is updated to
store not only p(y) · q(y) for all y ∈ {0, 1}`, but also p(y) · q(ȳ).

Remark 2. In Algorithm 1 (Section 3.1.1), the prover computed

((1− 2) · p(0, x) + 2 · p(1, x)) · ((1− 2) · q(0, x) + 2 · q(1, x))

with a single base-field multiplication, while here we are computing it with two base-field multiplications (one
for each cross term, p(0, x) · q(1, x) and p(1, x) · q(0, x)), in addition to the two base-field multiplications, that
were required simply to compute the correct answer, namely p(0, x) · q(0, x) and p(1, x) · q(1, x). The reason to
pay the extra price in our new prover implementation, of two base field multiplications instead of one, is that
these cross terms will be useful in subsequent rounds.

Round 2. Given the products stored in the data structure C, the prover can compute s2(0) and s2(1) with
just three additional be multiplications and two ee multiplications in total. This is because s2(0) and s2(1)
are simple expressions of the already-computed products, which are all of the form p(x) · q(x) and p(x) · q(x̄)
as x ranges over {0, 1}`. For example:

s2(0) =
∑

x∈{0,1}`−2

p(r1, 0, x) · q(r1, 0, x)

=
∑

x∈{0,1}`−2

((1− r1) · p(0, 0, x) + r1 · p(1, 0, x)) · ((1− r1) · q(0, 0, x) + r1 · q(1, 0, x)) .

Expanding the x’th term of this sum, using schoolbook multiplication, yields:

(1− r1)2 · p(0, 0, x) · q(0, 0, x) + r21 · p(1, 0, x) · q(1, 0, x) +

(1− r1) · r1 · p(0, 0, x) · q(1, 0, x) + r1 · (1− r1) · p(1, 0, x) · q(0, 0, x).

Hence, every term equals a previously-computed product, times either r21, r1(1− r1), or (1− r1)2.12

Computing s2(2), however, involves additional products, namely all those of the form p(x) · q(x′), where x
and x′ disagree in their second bit (and may or may not disagree on their first bit). This is an additional

12Of course, it is simpler and cheaper to compute s2(1) as s1(r1)− s2(0).

14

2n · bb multiplications (since for every one of the n possible inputs x, there are two new inputs x′ such that
the prover must compute p(x) · q(x′), namely the x′ that agrees with x in the first bit but not the second,
and the x′ that agrees with x in the second bit but not the first). Specifically,

s2(2) =
∑

x∈{0,1}`−2

p(r1, 2, x) · q(r1, 2, x)

=
∑

x∈{0,1}`−2

((1− r1) · p(0, 2, x) + r1 · p(1, 2, x)) · ((1− r1) · q(0, 2, x) + r1 · q(1, 2, x)) .

This expression in turn equals ∑
x∈{0,1}`−2

G(x) ·H(x)

where

G(x) = ((1− r1) · ((1− 2)p(0, 0, x) + 2p(0, 1, x))) + r1 · ((1− 2)p(1, 0, x) + 2p(1, 1, x))) ,

H(x) = ((1− r1) · ((1− 2)q(0, 0, x) + 2q(0, 1, x)) + r1 · ((1− 2)q(1, 0, x) + 2q(1, 1, x))) .

Applying the distributive law expresses G(x) · H(x) as the desired sum of sixteen different products of
evaluations of p and q, namely:

(1− r1)2 ·
(
p(0, 0, x) · q(0, 0, x)− 2p(0, 0, x) · q(0, 1, x) −
2p(0, 1, x) · q(0, 0, x) + 4p(0, 1, x) · q(0, 1, x)

)
+ (1− r1) · r1 ·

(
p(0, 0, x) · q(1, 0, x)− 2p(0, 0, x) · q(1, 1, x) −
2p(0, 1, x) · q(1, 0, x) + 4p(0, 1, x) · q(1, 1, x)

)
+ (1− r1) · r1 ·

(
p(1, 0, x) · q(0, 0, x)− 2p(1, 0, x) · q(0, 1, x) −
2p(1, 1, x) · q(0, 0, x) + 4p(1, 1, x) · q(0, 1, x)

)
+ r21 ·

(
p(1, 0, x) · q(1, 0, x)− 2p(1, 0, x) · q(1, 1, x) −
2p(1, 1, x) · q(1, 0, x) + 4p(0, 1, x) · q(1, 1, x)

)
.

Hence, in round two, the prover appends an additional 2n products to the data structure C, so that C stores
all products of the form p(x)q(x̄), where x ranges over {0, 1}` and x̄ ranges over the four vectors in {0, 1}`
that agree with x in all but the first two coordinates.

Round i. In round i > 2, the prover can always compute si(0) and si(1) given products computed and
stored in the data structure C during the previous round (namely, p(x) · q(x̄), where x ranges over {0, 1}`
and x̄ ranges over the 2i vectors in {0, 1}` that agree with x on all but the first i coordinates).

Computing si(2) requires an additional 2i−1 · n bb multiplications, the results of which are stored in the data
structure C. Specifically, at the start of round i, C contains all products of the form p(x) · q(x̄) where x
ranges over {0, 1}` and x̄ ranges over vectors in {0, 1}` that agree with x on all but the first i− 1 coordinates.
During round i, the prover appends an additional 2i−1 · n base field elements to C, ensuring that C contains
p(x) · q(x̄), where now x̄ ranges over vectors that agree with x on all but the first i coordinates.

When expressing si(2) as a linear combination of the values stored in C at the end of round i, p(y) · q(y′)
gets multiplied by

ẽq((y1, . . . , yi), (r1, . . . , ri−1, 2)) · ẽq((y′1, . . . , y
′
i), (r1, . . . , ri−1, 2)). (14)

For each j = 1, . . . , i− 1, letting zj = yj + y′j . this is a product of the factors

r
zj
j · (1− rj)

2−zj ,

15

(along with the additional factor ẽq(yi, 2) · ẽq(y′i, 2)). Hence, the algorithm at each round i computes an array
D of 3i−1 values, one for each vector z = (z1, . . . , zi−1) ∈ {0, 1, 2}i−1, with D[z] equal to:

i−1∏
j=1

r
zj
j · (1− rj)

2−zj .

D in round i can be updated with 1 + 3i−1 ee multiplications in total, via the recurrence13

D[z]← r
zi−1

i−1 ·D[z1, . . . , zi−2] + (1− ri−1)2−zi−1 ·D[z1, . . . , zi−2]. (15)

Thus, across the entirety of the first j rounds, the number of ee multiplications to maintain the array D is at
most j + 3j , and the number of be multiplications to multiply each entry of D by the appropriate sum of
entries of C is 3j .

Combining Algorithm 3 with prior algorithms. In Algorithm 3, eventually i gets large enough that
2i · n bb multiplications and 1 + 3i−1 ee multiplications is worse than the cost of Algorithm 1 at round i+ 1
onwards. Moreover, Algorithm 3’s need to store 2i · n base field elements in round i can also be prohibitive in
practice when i gets large.

Accordingly, eventually one should “switch over” to Algorithm 1 or Algorithm 2. Per Remark 1, Algorithm 1
should be used if be multiplications are expensive, while Algorithm 2 should be used if be multiplications are
cheap. In Sections 5 and 6, we work out the optimal rounds at which one should switch over from Algorithm
3 to Algorithm 1 and/or Algorithm 2.

4.1.2 Algorithm 3 when d = 3.

Let g(x) = p(x) · q(x) · h(x) where p, q, and h are each multilinear. The prover maintains two arrays C and
C ′ initially of length n = 2`, indexed by x ∈ {0, 1}`. Initially, C[x] contains p(x) · q(x) and C ′[x] contains
C[x] · h(x). This initialization of the two arrays costs 2n · bb multiplications in total.

Round 1. Given the contents of the array, the prover can compute s1(0) and s1(1) with no multiplications
at all, since

s1(0) =
∑

x∈{0,1}`−1

p(0, x) · q(0, x) · h(0, x) =
∑

x∈{0,1}` : x1=0

C ′[x],

s1(1) =
∑

x∈{0,1}`−1

p(1, x) · q(1, x) · h(1, x) =
∑

x∈{0,1}` : x1=1

C ′[x].

The prover computes s1(2) as follows. Per Equation (10),

s1(2) =
∑

x∈{0,1}`−1

p(2, x) · q(2, x) · h(2, x)

=
∑

x∈{0,1}`−1

((1− 2) · p(0, x)+2 · p(1, x)) · ((1−2) · q(0, x)+2 · q(1, x)) · ((1−2) · h(0, x)+2 · h(1, x))

=
∑

x∈{0,1}`−1

z(x), (16)

where

z(x) := − p(0, x) · q(0, x) · h(0, x) + 2q(0, x) · p(0, x) · h(1, x) +

2q(0, x) · p(1, x) · h(0, x)− 4q(0, x) · p(1, x) · h(1, x) +

2q(1, x) · p(0, x) · h(0, x)− 4q(1, x) · p(0, x) · h(1, x) −
4q(1, x) · p(1, x) · h(0, x) + 8p(1, x) · q(1, x) · h(1, x).

13The first ee multiplication simply computes r2
i−1, from which (1− ri)2 can be derived with no additional ee multiplications.

16

Here, z(x) involves eight terms, one for each product of the form p(y) · q(y′) · q(y′′) where y, y′, y′′ ∈ {0, 1}`
agree on their last `− 1 bits (and may or may not differ in their first bit).

Since we are ignoring the cost of additions and multiplications by powers of two, this quantity can be computed
in 4n bb multiplications. Indeed, the products p(0, x) · q(0, x) ·h(0, x) = C ′[0, x] and p(1, x) · q(1, x) ·h(1, x) =
C ′[1, x] have already all been computed. Meanwhile, p(0, x) · q(0, x) · h(1, x) and p(1, x) · q(1, x) · h(0, x) can
each be computed with one additional bb multiplication each (as they equal C[0, x] ·h(1, x) and C[1, x] ·h(0, x)
respectively). The remaining four terms equal one of the two “cross-terms” computed by Algorithm 3 in
round 1 of the degree-2 case (namely p(y) · q(ȳ) for some y ∈ {0, 1}`), times either h(y) or h(ȳ). So across all
x ∈ {0, 1}`−1, these four terms can be computed with 3n bb multiplications in total: n for the cross-terms
p(y) · q(ȳ) and 2n more to multiply each such cross-term by h(y) and h(ȳ).

All of these extra products are stored by the prover in C and C ′ for use in future rounds. Specifically, as in
the degree-two case, the data structure C is updated to store not only p(y) · q(y) for all y ∈ {0, 1}`, but also
p(y) · q(ȳ). Similarly, the data structure C ′ is updated to store p(y) · q(y′) · q(y′′) where y, y′, y′′ ∈ {0, 1}`
may or may not differ in their first bit.

Because s1(X) has degree d = 3, the prover has to evaluate not only s1(0), s1(1), and s1(2), but also s1(3).
Fortunately, analogous to Equation (11),

s1(3) =
∑

x∈{0,1}`−1

((1− 3) · p(0, x) + 3 · p(1, x)) · ((1− 3) · q(0, x) + 3 · q(1, x)) · ((1− 3) · h(0, x) + 3 · h(1, x)) .

This sum can also be written as ∑
x∈{0,1}`−1

z′(x)

such that z′(x) is a weighted sum of the same products arising in the computation of s1(2), namely
p(y) · q(y′) · q(y′′) where y, y′, y′′ ∈ {0, 1}` agree on their last `− 1 bits. So s1(3) can be computed without
any additional multiplications.

Round 2. Given the products stored in the data structures C and C ′, the prover can compute s2(0) and
s2(1) with just four additional be multiplications and six ee multiplications in total. This is because s2(0) and
s2(1) are simple expressions of the already-computed products, which are all of the form p(y) · q(y′) · h(y′′) as
y ranges over {0, 1}` and y′, y′′ may or may not differ from y in their first bit.

s2(0)=
∑

x∈{0,1}`−2

p(r1, 0, x) · q(r1, 0, x) · h(r1, 0, x)

=
∑

x∈{0,1}`−2

((1− r1) · p(0, 0, x) + r1 · p(1, 0, x)) ·
((1− r1) · q(0, 0, x) + r1 · q(1, 0, x)) ·
((1− r1) · h(0, 0, x) + r1 · h(1, 0, x)) .

Expanding the x’th term of this sum yields:

(1− r1)3· p(0, 0, x) · q(0, 0, x) · h(0, 0, x) +

(1− r1)2 · r1· p(0, 0, x) · q(1, 0, x) · h(0, 0, x) +

(1− r1)2 · r1· p(1, 0, x) · q(0, 0, x) · h(0, 0, x) +

(1− r1) · r21· p(1, 0, x) · q(1, 0, x) · h(0, 0, x) +

(1− r1)2 · r1· p(0, 0, x) · q(0, 0, x) · h(1, 0, x) +

(1− r1) · r21· p(0, 0, x) · q(1, 0, x) · h(1, 0, x) +

(1− r1) · r21· p(1, 0, x) · q(0, 0, x) · h(1, 0, x) +

r31· p(1, 0, x) · q(1, 0, x) · h(1, 0, x).

Hence, every term equals a previously-computed product, times either r31, r21(1− r1), r1(1− r1)2, or (1− r1)3.

Computing s2(2) and s2(3). Computing s2(2), however, involves additional products, namely all those
of the form p(y) · q(y′) · h(y′′), where y, y′, and y′ may or may not disagree on their first two bits. This is

17

16n · bb terms in total (since for every one of the 4n possible choices of y, y′, there are four new inputs y′′

such that the prover must compute p(y) · q(y′) · h(y′′)). Specifically,

s2(2)=
∑

x∈{0,1}`−2

p(r1, 2, x) · q(r1, 2, x) · h(r1, 2, x)

=
∑

x∈{0,1}`−2

((1− r1) · p(0, 2, x) + r1 · p(1, 2, x)) ·
((1− r1) · q(0, 2, x) + r1 · q(1, 2, x)) ·
((1− r1) · h(0, 2, x) + r1 · h(1, 2, x)) .

This expression can be written as

s2(2) :=
∑

x∈{0,1}`−2

F (x) ·G(x) ·H(x)

where

F (x) = ((1− r1) · ((1− 2)p(0, 0, x) + 2p(0, 1, x)) + r1 · ((1− 2)p(1, 0, x) + 2p(1, 1, x))) ,

G(x) = ((1− r1) · ((1− 2)q(0, 0, x) + 2q(0, 1, x)) + r1 · ((1− 2)q(1, 0, x) + 2q(1, 1, x))) ,

H(x) = ((1− r1) · ((1− 2)h(0, 0, x) + 2h(0, 1, x)) + r1 · ((1− 2)h(1, 0, x) + 2h(1, 1, x))) .

Applying the distributive law expresses F (x) ·G(x) ·H(x) (for x ∈ {0, 1}`−2) as the desired sum of 64 different
products of evaluations of p, q, and h (each multiplied by r31, r21(1− r1), r1(1− r1)2, or (1− r1)3). Across all
such x, this indeed results in 64 · (n/4) = 16n products of the form p(y) · q(y′) · q(y′′) in total.

Optimizing computation of s2(2) and s2(3). However, several of the terms (or partial products thereof)
have already been computed in round one. Specifically, p(y) · q(y′) · h(y′′) is already stored in C ′ so long as
y, y′, and y′′ all agree in their second bit. This captures 4n out of the 16n terms. For the remaining 12n
terms, if y and y′ agree on their second bit14 then C already stores p(y) · q(y′) and hence just one more
multiplication is required to compute p(y) · q(y′) · h(y′′) (and the algorithm appends the result to C ′). If y
and y′ do not agree on their second bit, then two multiplications are required, one to compute p(y) · q(y′)
(which the algorithm appends to C) and one to multiply the result by h(y′′) (the algorithm appends the result
to C ′). In total, this is 12n+ 2n = 14n bb multiplications. Here, the 2n term captures the multiplications
required in total to compute the relevant products appended to C, and the 12n term captures the additional
multiplications required to compute the additional entries of C ′.

The prover stores all products (including partial products p(y) · q(y′)) in round two. That is, the prover
expands the size of the data structure C to 4n, so that C stores all products of the form p(y) · q(y′), where
y ranges over {0, 1}` and y′ ranges over the four vectors in {0, 1}` that agree with y in all but the first
two coordinates. The prover similarly ensures that C ′ has size 16n, containing all products of the form
p(y) · q(y′) · q(y′′) where y, y′, and y′′ agree in all but the first two coordinates.

As with s1(3), s2(3) can be computed without any additional multiplications.

Round i. In round i > 2, the prover can always compute si(0) and si(1) given products computed and
stored in the data structure C ′ during the previous round. For degree d = 3, the total cost is at most
2 · (d− 1) + (d+ 1) + (d+ 1)i−1 ee multiplications to compute all (d+ 1)i−1 relevant products of powers of
r1, (1− r1), r2, (1− r2), . . . , ri−1, (1− ri−1), and (d+ 1)i−1 be multiplications to multiply the results by the
appropriate sums of entries of C ′. Here, 2 · (d− 1) counts the number of multiplications needed to compute
the first d powers of ri and (1− ri), d+ 1 counts the number of multiplications needed to derive rji · (1− ri)i−j
for j = 0, . . . , d, and (d+ 1)i−1 counts the number of multiplications needed to derive every possible product
of these values across variables 1, . . . , i− 1 (given that all possible products for the first i− 2 variables were
computed and stored via previous rounds).

Computing si(2) and si(3) requires an additional
(
2i−1 + (4i − 4i−1)

)
· n bb multiplications to update the

entries of C and C ′.
144n out of the remaining 12n terms agree on their second bit.

18

4.1.3 Algorithm 3 for general d.

Algorithm description. Suppose g(x) = p1(x) · p2(x) · · · · · pd(x). For general d, the algorithm is closely
analogous to the degree-3 case. Rather than maintaining two arrays C and C ′ as in the case d = 3, the
prover will maintain d− 1 arrays C2, . . . , Cd. At the end of each round j, Ci will store all relevant products
of the form p1(y(1)) · p2(y(2)) · · · · · pi(y(i)), where y(1) . . . , y(i) ∈ {0, 1}` agree in their last `− j entries. The
same reasoning as for the degree d = 3 case explains that si(0), . . . , si(d) are each a linear combination of
these values, with the coefficients in the linear combinations given by products of appropriate powers of
r1, (1− r1), . . . , rj , (1− rj). The number of ee and be multiplications needed to compute these coefficients
across the entirety of the first j rounds is at most (d− 1)j + (d+ 1)j .

Completing the cost analysis. In each round, the arrays are updated one at a time, starting with C2 and
proceeding to Cd. The cost of updating the i’th array in round j is 2ji − 2j(i−1) bb multiplications. Indeed,
in round j, array Ci grows from size 2(i−1)j to 2ij , and each new element can be computed by multiplying an
already-computed element of Ci−1 by pi(y

(i)) for some y(i) ∈ {0, 1}`.

Thus, the cost for applying this algorithm for the first j rounds is (d − 1)j + (d + 1)j ee multiplications,
(d+ 1)j be multiplications, plus the number of bb multiplications is(

(d− 1) + 2j + 4j + 8j + · · ·+ 2(d−1)j
)
n. (17)

4.2 Algorithm 4

The round polynomial computation for sum-check involves multiplication of multilinear polynomials. Due to
multilinearity, each of the polynomials being multiplied can be expressed as a linear combination of base-field
elements. To multiply these multilinear polynomials, Algorithm 3 uses the schoolbook multiplication algorithm.
The main idea of Algorithm 4 is to use the Toom-Cook multiplication algorithm to further minimize the
number of base-field multiplications.

Toom-Cook Multiplication. Let p(x) and q(x) be two univariate polynomials of the form

p(x) = (1− x) · a0 + x · a1,
q(x) = (1− x) · b0 + x · b1,

such that the coefficients a0, a1, b0, b1 ∈ B are base-field elements. The objective is to compute r(y) = p(y)·q(y)
for some y ∈ F. The degree d of the resulting polynomial r(x) is 2. The Toom-Cook approach is to evaluate
p(·) and q(·) at (d+ 1) = 3 points, multiply those evaluations for each point and then interpolate to get the
monomial form of the resulting polynomial r(x). For d = 2, we choose the set of evaluation points to be
E = {0, 1,∞}15. Thus, we compute the evaluations of r as:

r(0) = p(0) · q(0) = a0 · b0,
r(1) = p(1) · q(1) = a1 · b1,
r(∞) = p(∞) · q(∞) = (a1 − a0) · (b1 − b0).

Computing each evaluation requires (d− 1) = 1 multiplications in the base-field. So computing all evaluations
of r on the given evaluation set requires (d + 1)(d − 1) = 3 multiplications in the base-field. To get the
monomial form of r(x) = r0 + r1 ·x+ r2 ·x2, we multiply the evaluations with an interpolation matrix Id ≡ I2.r0r1

r2

 :=

 1 0 0
−1 1 −1
0 0 1

︸ ︷︷ ︸

I2

 r(0)
r(1)
r(∞)

15To “evaluate” a polynomial p(x) at infinity actually means to compute limx→∞
p(x)

xdeg(p)
. This implies that p(∞) is always

the value of its highest-degree coefficient.

19

We can evaluate the polynomial r on y ∈ F by linearly combining its evaluations without having to compute
the monomial form, i.e.,

r(y) =
[
1 y y2

] r0r1
r2

 =
[
1 y y2

] 1 0 0
−1 1 −1
0 0 1

 r(0)
r(1)
r(∞)

 =
[
(y − 1) y (y2 − y)

] r(0)
r(1)
r(∞)

 .
To simplify notation, we define the interpolation maps

L1(y) := (y − 1), L2(y) := y, L3(y) := (y2 − y), (18)

and define evaluation maps Pj(a, b) := (1 − ej) · a + ej · b for ej ∈ E for each j ∈ {1, 2, 3}. Using
these evaluation maps, we can write the evaluations at x = 0 as p(0) = P1(a0, a1) and q(0) = P1(b0, b1)
and thus r(0) = p(0) · q(0) = P1(a0, a1) · P1(b0, b1). Similarly, we have r(1) = P2(a0, a1) · P2(b0, b1) and
r(∞) = P3(a0, a1) · P3(b0, b1). Therefore, we can write r(y) as

r(y) =
[
(y − 1) y (y2 − y)

] r(0)
r(1)
r(∞)

 =

3∑
j=1

Lj(y) ·
(
Pj(a0, a1) · Pj(b0, b1)

)
. (19)

Therefore, we can compute r(y) with 3 base-field multiplications. For the same setting, the Karatsuba
method also requires 3 base-field multiplications. The advantage of the Took-Cook16 algorithm is that it
neatly generalizes for multiplication of more than two polynomials of arbitrary degree. In fact, the Karatsuba
algorithm is a special case of the Toom-Cook algorithm for d = 2.

On multiplying d univariate polynomials p1, p2, . . . , pd each of degree 1, the degree of the resulting polynomials
is d. In this case, we need to choose an evaluation set E of size (d + 1). The total number of base-field
multiplications required to compute the polynomial product is (d + 1)(d − 1). Expression (19) trivially
generalises17 for the multiplying d polynomials as

r(y) =
1

∆d
·

d∑
j=1

Lj(y) ·
m∏

k=1

Pj(ak,0, ak,1). (20)

where pk(x) = (1− x) · ak,0 + x · ak,1 for k ∈ {1, 2, . . . , d} and ∆d = (d− 1)! is an integer constant.

4.2.1 Details of Algorithm 4 when d = 2.

Let p1(x) and p2(x) be multilinear polynomials defined over the base-field B. Similarly to algorithm 3, we
start by pre-computing the product p1(x) · p2(x) for all x ∈ {0, 1}` and store it in an array C. This costs
n · bb multiplications.

Round 1. To compute the first round polynomial s1, we define G1(c, x) for x ∈ {0, 1}`−1 as

G1(c, x) :=

2∏
k=1

pk(c, x) =

2∏
k=1

((1− c) · pk(0, x) + c · pk(1, x)) .

Using Expression (19) for multiplying two polynomials using Toom-Cook multiplication,

G1(c, x) =

3∑
j1=1

Lj1(c) ·
2∏

k=1

Pj1 (pk(0, x), pk(1, x)) .

16Conventionally, Toom-Cook is a multiplication algorithm for multiplying two large integers. In our case, we extend the
Toom-Cook framework to efficiently multiply more than two linear polynomials.

17For d > 2, the interpolation matrix Id typically contains rational numbers. Dealing with rational numbers in fields requires
inversion operations. To avoid any rational numbers in the interpolation maps, we multiply the interpolation matrix by a
constant ∆d := (d− 1)! and thus a term of 1

∆d
appears in the expression of r(y).

20

The interpolation maps L1, L2, L3 are defined in the Expression (18) and the evaluation maps are P1(a, b) =
a, P2(a, b) = b and P3(a, b) = (b− a). Since P1 and P2 are identity maps over a and b, we have

2∏
k=1

P1(pk(0, x), pk(1, x)) =

2∏
k=1

pk(0, x) ≡ C[0, x],

2∏
k=1

P2(pk(0, x), pk(1, x)) =

2∏
k=1

pk(1, x) ≡ C[1, x].

Thus, we do not need to recompute the products corresponding to j1 ∈ {1, 2} for the first round. The only
additional product we need to compute is for j1 = 3 and we store it in a new array S1 as

S1(x) :=

2∏
k=1

(pk(1, x)− pk(0, x))

for each x ∈ {0, 1}`−1. This requires n/2 bb multiplications. Given G1(c, x) for x ∈ {0, 1}`−1, the first round
polynomial can be computed as

s1(c) :=
∑

x∈{0,1}`−1

G1(c, x).

Round 2. We define G2(c, x) for x ∈ {0, 1}`−2 as

G2(c, x) :=

2∏
k=1

pk(r1, c, x),

=

2∏
k=1

((1− c) · pk(r1, 0, x) + c · pk(r1, 1, x)) , (using Lemma 1)

=

3∑
j1=1

Lj1(c) ·
2∏

k=1

Pj1 (pk(r1, 0, x), pk(r1, 1, x)) . (using Equation (19) with y = c)

We can then unroll the evaluation maps Pj1 (pk(r1, 0, x), pk(r1, 1, x)) recursively as

Pj1 (pk(r1, 0, x), pk(r1, 1, x)) = ēj1 · pk(r1, 0, x) + ej1 · pk(r1, 1, x)

= ēj1 · (r̄1 · pk(0, 0, x) + r1 · pk(1, 0, x)) + ej1 · (r̄1 · pk(0, 1, x) + r1 · pk(1, 1, x))

= r̄1 · (ēj1 · pk(0, 0, x) + ej1 · pk(0, 1, x)) + r1 · (ēj1 · pk(1, 0, x) + ej1 · pk(1, 1, x))

= r̄1 · Pj1(pk(0, 0, x), pk(0, 1, x)) + r1 · Pj1(pk(1, 0, x), pk(1, 1, x))

where b̄ := (1− b). Plugging this back into the expression of G2(c, x), we get

G2(c, x) =

3∑
j1=1

Lj1(c) ·
2∏

k=1

Pj1 (pk(r1, 0, x), pk(r1, 1, x))

=

3∑
j1=1

Lj1(c) ·
2∏

k=1

(r̄1 · Pj1(pk(0, 0, x), pk(0, 1, x)) + r1 · Pj1(pk(1, 0, x), pk(1, 1, x)))

Again using Expression (19) for multiplying two polynomials and setting y = r1,

G2(c, x) =

3∑
j1=1

3∑
j2=1

Lj1(c) · Lj2(r1) ·
2∏

k=1

merkle2(pk, j1, j2), (21)

where merkle2(pk, j1, j2) denotes the result of recursive application of the linear maps Pj1 , Pj2 in a merkle-tree
like fashion on pk (see Figure 1).

21

Pj2

Pj1

pk(0, 0, x) pk(0, 1, x)

Pj1

pk(1, 0, x) pk(1, 1, x)

Figure 1: Merkle-tree structure for round 2 computation with linear maps Pj1 and Pj2 at respective levels.

Similarly to the first round, we can reuse some of the computation from the previous rounds. For j2 ∈ {1, 2, 3}
and j1 = {1, 2} we can simplify the products as shown in Table 1. Hence, we compute the remainder of
9− 6 = 3 products and store them in a new array S2. This costs 3 · 2`−2 = 3n/4 bb multiplications. The
second round polynomial can be computed as

s2(c) :=
∑

x∈{0,1}`−2

G2(c, x)

.

Table 1: Product terms in round 2 that also appeared in round 1 for each x ∈ {0, 1}`−2.

j2 j1 Product Equals

1 1
∏2

k=1 pk(0, 0, x) C[0, 0, x]

1 2
∏2

k=1 pk(0, 1, x) C[0, 1, x]

2 1
∏2

k=1 pk(1, 0, x) C[1, 0, x]

2 2
∏2

k=1 pk(1, 1, x) C[1, 1, x]

3 1
∏2

k=1(pk(0, 0, x)− pk(1, 0, x)) S1[0, x]

3 2
∏2

k=1(pk(0, 1, x)− pk(1, 1, x)) S1[1, x]

Round i. Following the expression (23) of G2(c, x), define Gi(c, x) for round i

Gi(c, x) :=

2∏
k=1

pk(r1, r2, . . . , ri−1, c, x)

=

2∏
k=1

(c̄ · pk(r1, . . . , ri−1, 0, x) + c · pk(r1, . . . , ri−1, 1, x))

=

3∑
j1=1

Lj1(c) ·
2∏

k=1

Pj1 (pk(r1, . . . , ri−1, 0, x), pk(r1, . . . , ri−1, 1, x)) .

Owing to Lemma 3, the polynomial

Fk(r1, . . . , ri−1) := Pj1 (pk(r1, . . . , ri−1, 0, x), pk(r1, . . . , ri−1, 1, x))

is multilinear in (r1, r2, . . . , ri−1) ∈ Fi−1 for k ∈ {1, 2}. Using equation (19), we write

2∏
k=1

Fk(r1, r2, . . . , ri−1) =

3∑
j2=1

Lj2(ri−1) ·
2∏

k=1

Pj2(Fk(r1, . . . , ri−2, 0), Fk(r1, . . . , ri−2, 1)).

22

Substituting this product in the expression of Gi(c, x), we get

Gi(c, x) =

3∑
j1=1

3∑
j2=1

Lj1(c)Lj2(ri−1) ·
2∏

k=1

Pj2 (Fk(r1, . . . , ri−2, 0), Fk(r1, . . . , ri−2, 1)) .

We can now repeat the same process of invoking Lemma 3 followed by Equation (19) sequentially on each of
the remaining variables (ri−2, . . . , r1) to get:

Gi(c, x) =

3∑
j1=1

3∑
j2=1

. . .

3∑
ji=1

Lji(r1) · · ·Lj2(ri−1) · Lj1(c) ·
2∏

k=1

merklei(pk, j1, . . . , ji) (22)

where merklei(fi, j1, . . . , ji) denotes recursive application of the linear maps Pj1 , Pj2 , . . . , Pji in a merkle-tree
like fashion on the polynomial pk. See Figure 2 for an illustration.

Pji

Pji−1

Pji−2

...

Pj1

pk(0̂, ·) pk(1̂, ·)

.

Pj1

pk(2̂, ·) pk(3̂, ·)

Pji−2

...

Pj1

pk(4̂, ·) pk(5̂, ·)

.

Pj1

pk(6̂, ·) pk(7̂, ·)

Pji−1

Pji−2

...

Pj1

pk(∗̂, ·) pk(∗̂, ·)

.

Pj1

pk(∗̂, ·) pk(∗̂, ·)

Pji−2

...

Pj1

pk(∗̂, ·) pk(∗̂, ·)

.

Pj1

pk(∗̂, ·) pk(N̂ − 1, ·)

Figure 2: Merkle-tree structure for round i computation. Note m̂ denotes the i-bit representation of an integer m.

4.2.2 Details of Algorithm 4 when d = 3.

Let p1(x), p2(x), p3(x) be the multilinear polynomials. We start by computing the the product p1(x) · p2(x) ·
p3(x) for all x ∈ {0, 1}` and store it in an array C. This costs 2n · bb multiplications.

The algorithm for d = 3 closely follows the d = 2 case with the evaluation set now being E = {0, 1,−1,∞}.
The evaluation maps Pj and the interpolation maps Lj for each j ∈ {1, 2, 3, 4} change accordingly.

P1(a, b) = a, P2(a, b) = b, P3(a, b) = 2a− b, P4(a, b) = b− a,
L1(y) := 2 · (1− y2), L2(y) := (y2 + y), L3(y) := (y2 − y), L4(y) := 2 · (y3 − y).

Round 1. We define G1(c, x) for x ∈ {0, 1}`−1 as

G1(c, x) :=

3∏
k=1

pk(c, x) =

3∏
k=1

((1− c) · pk(0, x) + c · pk(1, x)) .

=
1

2
·

4∑
j1=1

Lj1(c) ·
3∏

k=1

Pj1 (pk(0, x), pk(1, x)) . (from Equation (20))

As the evaluation maps P1 and P2 are identity maps, we don’t need to recompute the products corresponding
to j1 ∈ {1, 2}. For j1 ∈ {3, 4}, we compute two 3-way products and store them in arrays A1 and S1 respectively

A1(x) :=

3∏
k=1

(2pk(0, x)− pk(1, x)), S1(x) :=

3∏
k=1

(pk(1, x)− pk(0, x)),

23

for each x ∈ {0, 1}`−1. This requires 2 · 2 · 2`−1 = 2n · bb multiplications. Since G1(c, x) has a multiplicand of
1/2, the first round polynomial s1(c) would also carry over the same multiplicand. Multiplication by a factor
of 2−1 could become an overhead cost for the prover. The prover can avoid this cost by sending a modified
round polynomial s′1(c) = 2 · s1(c).

Round 2. We define G2(c, x) for x ∈ {0, 1}`−2 as

G2(c, x) :=

3∏
k=1

pk(r1, c, x) =

3∏
k=1

((1− c) · pk(r1, 0, x) + c · pk(r1, 1, x))

=
1

2
·

4∑
j1=1

Lj1(c) ·
3∏

k=1

Pj1 (pk(r1, 0, x), pk(r1, 1, x)) (from Equation (20))

Similarly to the second round of the d = 2 case, unrolling Pj1 (pk(r1, 0, x), pk(r1, 1, x)) recursively, we get

G2(c, x) =
1

22

4∑
j1=1

4∑
j2=1

Lj1(c) · Lj2(r1) ·
3∏

k=1

merkle2(pk, j1, j2) (23)

where merkle2(pk, j1, j2) denotes the result of recursive application of the linear maps Pj1 , Pj2 in a merkle-tree
like fashion on pk (see Figure 1).

We can reuse some of the computation from the previous rounds, i.e., for j2 ∈ {1, 2, 3, 4} and j1 = {1, 2} we
can simplify the products as shown in Table 2. Hence, we compute the remainder of 16− 8 = 8 products and
store them in arrays A2 and S2. This costs 8 · 2 · 2`−2 · bb multiplications. The second round polynomial can
be computed as

s2(c) :=
∑

x∈{0,1}`−2

G2(c, x).

The prover again sends a modified round polynomial s′2(c) = 22 · s2(c) to avoid multiplying by the scaling
factor 2−2 as per equation (23).

Table 2: Product terms in round 2 that also appeared in round 1 for x ∈ {0, 1}`−2.

j2 j1 Product Equals

1 1
∏3

k=1 pk(0, 0, x) C[0, 0, x]

1 2
∏3

k=1 pk(0, 1, x) C[0, 1, x]

2 1
∏3

k=1 pk(1, 0, x) C[1, 0, x]

2 2
∏3

k=1 pk(1, 1, x) C[1, 1, x]

3 1
∏3

k=1(2pk(0, 0, x)− pk(1, 0, x)) A1[0, x]

3 2
∏3

k=1(2pk(0, 1, x)− pk(1, 1, x)) A1[1, x]

4 1
∏3

k=1(pk(1, 0, x)− pk(0, 0, x)) S1[0, x]

4 2
∏3

k=1(pk(1, 1, x)− pk(0, 1, x)) S1[1, x]

Round i. Following the expression (23) of G2(c, x), define Gi(c, x) for round i

Gi(c, x) :=

3∏
k=1

pk(r1, r2, . . . , ri−1, c, x),

=

3∏
k=1

(c̄ · pk(r1, . . . , ri−1, 0, x) + c · pk(r1, . . . , ri−1, 1, x)) ,

24

Using Equation (20), we get

Gi(c, x) =
1

2

4∑
j1=1

Lj1(c) ·
3∏

k=1

Pj1 (pk(r1, . . . , ri−1, 0, x), pk(r1, . . . , ri−1, 1, x)) .

Similarly to the round i of the d = 2 case, on recursively applying Lemma 3 followed by the Toom-Cook
multiplication from Equation (20) for each of the variables ri−1, ri−2, . . . , r1, we get

Gi(c, x) =
1

2i

4∑
j1=1

4∑
j2=1

. . .

4∑
ji=1

Lji(r1) · · ·Lj2(ri−1) · Lj1(c) ·
3∏

k=1

merklei(pk, j1, . . . , ji) (24)

where merklei(pk, j1, . . . , ji) denotes recursive application of the linear maps Pj1 , Pj2 , . . . , Pji in a merkle-tree
like fashion. See Figure 2 for an illustration. Lastly, the prover computes the p-th round polynomial as

si(c) :=
∑

x∈{0,1}`−i

Gi(c, x).

To avoid multiplying with this scalar 2−i ∈ B in Equation (24), the prover sends a modified round polynomial
s′i(c) := 2i · si(c). The verifier check for round i is modified as follows.

si(ri)
?
= si−1(0) + si−1(1),

=⇒ 2i · si(ri)
?
= 2i · (si−1(0) + si−1(1)),

=⇒ s′i(ri)
?
= 2 · (s′i−1(0) + s′i−1(1)). (25)

where s′i−1 and s′i are the round polynomials sent by the prover in rounds (i−1) and i respectively, and ri ∈ F
is the verifier challenge in round i. Note that the only additional work the verifier has to do in equation (25)
is multiplication by the constant 2.

Total Computation. We start by computing the products p1(x) · p2(x) · p3(x) for each x ∈ {0, 1}` which

costs n 3-way products. In round i, we additionally compute 4i

2 ·
n
2i bb multiplications. Thus, the total

number of bb multiplications is:

(d− 1) ·

(
1 +

∑̀
i=1

2i−1

)
· n.

4.2.3 Algorithm 4 for general d

Let p1(x), p2(x), . . . , pd(x) be d multilinear polynomials. The analysis for the round polynomial computation
for a general d follows the d = 3 case closely. Instead of 3-way products in the d = 3 case, we need to
pre-compute d-way products for general d. For example, the expression of Gi(c, x) for round i for general d
takes the form

Gi(c, x) =
1

∆i
d

·
d+1∑
j1=1

· · ·
d+1∑
ji=1

Ljk(ri−k) · · ·Lj2(ri−1) · Lj1(c) ·
d∏

k=1

merklei(pk, j1, . . . , ji)

where merklei(pk, j1, . . . , ji) is the same recursive merkle tree structure with the layers (starting from leaves)
that apply the linear maps Pj1 , Pj2 , . . . , Pji respectively (see Figure 2). Similarly to the d = 3 case, in round
i, the prover sends a modified round polynomial s′i(c) := ∆i

d · si(c) where si(c) =
∑

x∈{0,1}`−i Gi(c, x). The
verification check in round i, therefore, changes to

s′i(ri)
?
= ∆d · (s′i−1(0) + s′i−1(1)). (26)

25

Total Computation. In round i, given a set of indices (j1, j2, . . . , ji) ∈ {0, 1, . . . , d}i, the expression
merklei(fi, j1, . . . , ji) is a d-way product, and hence it can be computed with (d− 1) bb multiplications. We
need to compute such d-way products for each (j1, j2, . . . , ji) ∈ {0, 1, . . . , d}i and x ∈ {0, 1}`−i, and hence
the total number of bb multiplications needed in round i would be (d− 1) · (d+ 1)i · 2`−i. But similarly to
the d = 3 case, we can re-use computations from round (i− 1) in round i. The product terms corresponding
to j1 ∈ {0, d} and (j2, . . . , ji) ∈ {0, 1, . . . , d}i−1 and x ∈ {0, 1}`−i can be re-used (see Table 2). Therefore,
the total number of bb multiplications required in round i is

(d− 1) ·
(
(d+ 1)i · 2`−i − 2(d+ 1)i−1 · 2`−i

)
= (d− 1) · (d+ 1)i ·

(
1− 2

d+ 1

)
· 2`−i,

= (d− 1) · (d+ 1)i ·
(
d− 1

d+ 1

)
· 2`−i.

= (d− 1) ·
(
d+ 1

2

)i

·
(
d− 1

d+ 1

)
· n.

and the total number of bb multiplications across all rounds would be

(d− 1) ·

(
1 +

(d− 1)

(d+ 1)
·
∑̀
i=1

(
d+ 1

2

)i
)
· n.

4.3 Comparison of Algorithms 3 and 4

The design of both algorithms 3 and 4 is based on the idea of minimizing extension-field multiplications at
the cost of additional base-field multiplications. Algorithm 3 uses schoolbook multiplication to recursively
expand the round polynomial while Algorithm 4 uses Toom-Cook multiplication for the same. Therefore,
Algorithm 4 requires much less bb multiplications than Algorithm 3. The number of ee and be multiplications
is the same for both these algorithms. An important advantage of Algorithm 4 is that it requires much less
memory to store the witness products than Algorithm 3. This could become crucial when we need sum-check
provers in memory-limited environments. We discuss the key differences of the two algorithms in terms of the
memory requirements and the computational costs.

Memory. Algorithms 3 and 4 both demand significant memory to store the arrays containing products
of the base-field elements. To avoid the storage requirements of these algorithms becoming prohibitive, we
assume that we run these algorithms only upto round i < `. For degree d, Algorithm 3 maintains (d−1) arrays
C2, . . . , Cd and the array Ck contains 2(k−1)·i · n base-field elements at the end of round i for k ∈ {2, . . . , d}.
Therefore, at the end of round i with Algorithm 3, the total number of base-field products we need to store is:

d∑
k=2

(
2i
)(k−1) · n ≤ 2i·d · n.

For Algorithm 4, in round i, given a set of indices (j1, . . . , ji) ∈ {0, 1, . . . , d}i and x ∈ {0, 1}`−i, the witness

product is
∏d

k=0 merklei(fi, j1, . . . , ji). Thus, the total number of base-field products we need to store is

(d+ 1)i · n
2i
.

Clearly, the memory requirement of both the algorithms grows linearly with the sum-check instance size n.
Next, we discuss a simple but important optimization to make the memory requirement independent of n
and only depend on the round i and degree d.

Optimizing Memory. For both Algorithms 3 and 4, the key idea is to compute round polynomials as a
linear combination between the pre-computed base-field products (computed using witness polynomials) and
the extension-field products (computed using round challenges). We can reduce the memory required to store
the pre-computed products by computing inner products instead of hadamard products of the witness terms.

26

In round i, the round polynomial si(c) typically can be expressed as

si(c) :=
∑

x∈{0,1}`−i

∑
j1

· · ·
∑
ji

Ci(j1, . . . , ji, r1, . . . , ri−1, c)︸ ︷︷ ︸
Challenge term

·Wi(j1, . . . , ji, x)︸ ︷︷ ︸
Witness term

,

for (j1, j2, . . . , ji) ∈ {0, 1, . . . , d}i. The challenge term Ci(j1, . . . , ji, r1, . . . , ri−1, c) does not depend on x and
therefore, we can write

si(c) :=
∑
j1

· · ·
∑
ji

Ci(j1, . . . , ji, r1, . . . , ri−1, c) ·
∑

x∈{0,1}`−i

Wi(j1, . . . , ji, x)

︸ ︷︷ ︸
New witness term

.

Instead of storing Wi(j1, . . . , ji, x) for each x ∈ {0, 1}`−i, we can store the inner-product18

W ′i (j1, . . . , ji) =
∑

x∈{0,1}`−i

Wi(j1, . . . , ji, x).

Thus, the number of products we need to store in Algorithms 3 and 4 is (2d)i and (d + 1)i respectively.
Notice that the new memory requirement of both algorithms is independent of n. Furthermore, the products
computed for round i can be reused (without new multiplications) in all rounds prior to round i.

We plot the theoretical memory requirements of both algorithms in Figure 3. We consider the Babybear
field [BG23] for our analysis, so one base-field element requires 4 bytes of storage. For p = 10, we observe
that Algorithm 4 requires a mere 4 MB memory while Algorithm 3 requires 4.2 GB of memory to store
the pre-computed products. As i increases, Algorithm 4 outperforms Algorithm 3 in terms of the memory
required to store the pre-computed witness products. Thus, for memory-constrained provers, Algorithm 4
allows for many more rounds to be processed using pre-computation as compared to Algorithm 3.

Figure 3: Pre-computed array memory (KB)

0 5 10 15 20
10−4

102

108

1014

1020

105

103

Round p −→

Algorithm 3, d = 3
Algorithm 4, d = 3

Figure 4: Number of bb multiplications

0 5 10 15 20
105

1010

1015

1020

1025

104.5

107

Round p ≤ ` −→

Algo. 3, d = 3
Algo. 4, d = 3
Algo. 3, d = 4
Algo. 4, d = 4

bb multiplications. The number of base-field multiplications is determined by the number of witness
products that we need to pre-compute for both Algorithms 3 and 4. As discussed in the memory optimization
section, we can pre-compute all the witness products for the round polynomial computation in round i and
use them for rounds 1 through i. Therefore, the total number of such witness products is 2i·d and (d+ 1)i for
Algorithms 3 and 4 respectively. Each such witness product is a result of inner-product of size 2`−i consisting
of d witness terms, requiring a total of (d − 1) · 2`−i · bb multiplications. Hence, the total number of bb
multiplications required for Algorithms 3 and 4 is (d− 1) · 2i·d · 2`−i and (d− 1) · (d+ 1)i · 2`−i respectively.

18Typically, inner-product refers to the sum of element-wise products of two vectors. In this case, we use the term “inner-product”
more generally to denote the sum of element-wise products of more than two vectors.

27

We plot the analytical number of bb multiplications for both algorithms for a fixed instance size ` = 20 in
Figure 4. As i increases, the number of bb multiplications grow faster for Algorithm 3 than Algorithm 4. For
degree d = 3 and p = 15, the number of bb multiplications in Algorithm 4 is four orders of magnitude lesser
than that of Algorithm 3. As the degree d increases, the difference between the number of bb multiplications
in both the algorithms widens further. For the same p = 15 but degree d = 4, the number of bb multiplications
in Algorithm 4 is 7 orders of magnitude lesser than that of Algorithm 3.

ee and be multiplications. In round i of Algorithm 3 (and 4), given the challenge ri−1 ∈ F from the
previous round, we first need to compute (1 − ri−1)d−j · rji−1 for each j ∈ {0, 1, . . . , d}. We use binomial
expansion to efficiently compute them.

(1− ri−1)d−j · rji−1 = rji−1 −
(
d− j

1

)
· rj+1

i−1 − . . .+
(
d− j
d− j

)
· rdi−1.

Thus, the challenge terms can be computed as a linear combination of the powers of the challenges rji−1
for j = 0, 1, . . . , d. The binomial expansion constants

(
d−j
k

)
for k ∈ {0, 1, . . . , d− j}, j ∈ {0, 1, . . . , d} would

typically be small integers for small degree d. So we ignore the cost of multiplying the challenge powers with
these constants. Thus, computing the powers of a given challenge requires (d− 1) · ee multiplications.

In Algorithm 4, we need to additionally compute the interpolation maps using the challenge terms. The
magnitude of the integers in the interpolation matrix can also considered to be small integers for a small
degree d. Thus, we consider the cost of computing interpolation maps to be negligible for the prover. Once we
have computed the challenge terms in round i of Algorithm 3 (and 4), we need (d+ 1)i−1 · ee multiplications
to derive every possible product across variables 1, . . . , i− 1. Thus, the total number of ee multiplications in
round i is (d− 1) + (d+ 1)i−1 for both Algorithm 3 and 4. Analogously, we need (d+ 1)i−1 ·be multiplications
to multiply the results of the challenge products with the corresponding witness terms in both the algorithms.

5 Optimizing costs when bb, be multiplications are “free”

When the goal is to minimize the number of ee multiplications, with be and bb multiplications considered
free, it is optimal to use Algorithm 3 or 4 for the early rounds of sum-check, then switch to Algorithm 2,
then to Algorithm 1.

How to implement the switch from Algorithm 2 to Algorithm 1. The prover can switch from
Algorithm 2 to Algorithm 1 at the end of round i by computing the contents of all d arrays from Algorithm 1
at the end of round i of the protocol (i.e., immediately after ri has been bound). This requires (n− n/2i) · be
multiplications per array (of course, the precise number is not important if we are ignoring the cost of be
multiplications).

For example, consider the case that d = 2 so there are two arrays A and B. Then after round 1, for each
x ∈ {0, 1}`−1,

A[x] = r1 · p(1, x) + (1− r1) · p(0, x) = p(0, x) + r1(p(1, x)− p(0, x)),

which can be computed with n/2 be multiplications. And after round 2, for each x ∈ {0, 1}`−2,

A[x] = r1r2 · p(1, 1, x) + r1r̄2 · p(1, 0, x) + r̄1r2 · p(0, 1, x) + r̄1r̄2 · p(0, 0, x)

= r1r2 · (p(1, 1, x)−p(1, 0, x)−p(0, 1, x) + p(0, 0, x)) +

r1 · (p(1, 0, x)−p(0, 0, x)) + r2 · (p(0, 1, x)−p(0, 0, x))+p(0, 0, x).

For general rounds i > 2, for each x ∈ {0, 1}`−i, at the end of round i of Algorithm 1, A[x] can be expressed
as a sum of 2i terms, each involving a multiplication by an extension field element (a product of a subset of
{r1, . . . , ri}, where the empty product equals 1) and a base field element (obtained as a sum of at most 2i

evaluations of p). This means all entries of A can be computed at the end of round i with (1− 1/2i) · n be
multiplications in total.

28

The optimal round to switch from Algorithm 2 to Algorithm 1. If the switchover happens at the
end of round j, then for rounds R = j + 1, . . . , `, the number of ee multiplications that the Algorithm 1
prover performs across rounds j + 1, . . . , ` is:

d(d− 1)n
∑̀

R=j+1

1/2R ≤
(
d2/2j

)
· n.

Accordingly, the optimal round i for switching from Algorithm 2 to Algorithm 1 is roughly the i satisfying
d2n/2i = d(d− 1)2i, which means i ≈ `/2.

The optimal round to switch from Algorithm 3 (or 4) to Algorithm 2. If the switch from Algorithm
3 to Algorithm 2 occurs at the end of round j, then the total number of ee multiplications performed is:

(d− 1)j + (d+ 1)j +

 `/2∑
i=j+1

(d2 − d)n

2i
+ 2i−1

+

 ∑̀
i=`/2+1

d2n

2i

 .

Hence, the optimal switchover round j, for switching from Algorithm 3 to Algorithm 2, is roughly the j
satisfying (d+ 1)j = (d2 − d)n/2j , which means

j ≈ log(n)/(1 + log(d+ 1)).

In this case, for constant d the total number of ee multiplications is O(n1−1/(1+log(d+1))). For example, if
d = 3, this is O(n2/3) and if d = 16, then this is about O(n0.803). In particular, for any constant degree d, we
reduce the number of ee multiplications to be sublinear in the number n of terms being summed.

Savings over prior work. The best prior algorithm (the combination of Algorithms 1 and 2 discussed in
Remark 1) required roughly d(d− 1) · n/2 ee multiplications. For d = 3 we have reduced the prover’s cost by
a factor of about Θ(n1/3).

Concretely, the savings can be several orders of magnitude. For example, for d = 3 and for reasonable values
of n (say, 220 ≤ n ≤ 230), we improve the prover time relative to prior algorithms by a factor of several
hundred. Specifically, when n = 230, our new algorithm does 7.47 million extension field multiplications,
while Algorithm 1 alone would do 3 · 230 of them. This is a savings of over 430×. For n = 224, our algorithm
does 434,000 ee multiplications, versus 3 · 224 for Algorithm 1 alone. The savings is therefore still larger than
a factor of 115.

In practice, the high space complexity of Algorithm 3 may necessitate switching to Algorithm 2 earlier
than round log(n)/(1 + log2(d+ 1)). Fortunately, most of the savings over prior work comes from the first
few rounds, as the number of ee multiplications falls geometrically as the switchover round increases. For
memory-constrained provers, switching from Algorithm 4 to Algorithm 1 can occur later than switching from
Algorithm 3 to Algorithm 1 because Algorithm 4 requires significantly less memory than Algorithm 3.

6 Optimizing costs when bb, be multiplication aren’t free

When be multiplications are not free, and Karatsuba’s algorithm is used for ee multiplications, it typically
does not make sense to use Algorithm 2, as the savings in ee multiplications relative to Algorithm 1 does not
compensate for the increased number of be multiplications. So in this case, the optimal combination is to
switch straight from Algorithm 3 or 4 to Algorithm 1. In the following sections, we determine at what point
it is best to switch (in the case d = 2 we also slightly optimize the cost of implementing the switch). We then
calculate how much the resulting algorithm improves over Algorithm 1 alone.

29

6.1 The case of degree d = 2

An extra optimization when switching to Algorithm 1. If the switchover from Algorithm 3 to
Algorithm 1 happens at the end of round j, then per Remark 2, the cost of round j can be reduced by a factor
of two, from 2j−1n bb multiplications, to 2j−2 bb multiplications. This is because the reason for computing
extra cross terms p(x) · q(x̄) in round j that were not already computed by round j− 1 is to make use of those
cross terms in future rounds, so if the switch-over happens at the end of round j then there is no point to
computing these cross terms. For example, in the case j = 2, the round polynomial s2(2) can be expressed as∑

x∈{0,1}`−2

G(x) ·H(x)

where G(x) is of the form w(x) + r1z(x) and H(x) is of the form w′(x) + r1z
′(x) for some base field elements

w(x), z(x), w′(x), z′(x). Hence,

s2(2) =

 ∑
x∈{0,1}`−2

w(x) · w′(x)

+ r1 ·

 ∑
x∈{0,1}`−2

w(x) · z′(x) + z(x)w′(x)

+ r21

 ∑
x∈{0,1}`−2

z(x)z′(x)

 .

This therefore entails the prover computing four bb multiplications for each of the n/4 terms of the sum, a
factor-2 improvement over the 2n bb multiplications required to compute the extra cross terms that would
otherwise be added to the data structure C in round j.

Total costs of combining Algorithms 1 and 3. In summary, if the switchover to Algorithm 3 occurs
at the end of round j, the total prover cost for the remaining rounds is 4n/2j ee multiplications, plus(
n+

(∑j
i=1 2i−1 · n

)
− 2j−2n

)
· bb = (3/4) · 2j · n · bb from the first j rounds, plus (2 · n − n/2j) be

multiplications to compute the A and B arrays used in Algorithm 1 at the end of round j.19 Thus, the total
prover cost will be:

(3/4) · 2j · n · bb + (2 · n− n/2j + 3j) · be + ((4/2j) · n+ (j + 3j)) · ee. (27)

Optimal choice of switchover. The optimal choice of switchover round j occurs roughly when setting

(3/4) · 2j+1 · n · bb =
(
4n/2j

)
ee⇐⇒ ee = (3/8)22j · bb⇐⇒ j =

log((8/3) · ee/bb)

2

If using a degree k extension and Karatsuba’s algorithm for extension field multiplication, then ee ≈ k1.5849 ·bb,
and the above simplifies to

j =
1.5849 · log(k) + log(8/3)

2
.

See Table 3 for concretely optimal switchover rounds.

As the extension degree k approaches infinity, the optimal switchover occurs roughly at round .8 · log k. This
more or less replaces the 2 · n ee multiplications of Algorithm 1 with roughly 2n/2.8 log(k) ee multiplications,
a savings of roughly a factor of k0.8. However, most the savings come from the first few rounds.

6.2 The case of general d

For general degrees d, per Equation (17), if one switches from Algorithm 3 to Algorithm 1 at the end of
round j, the total prover cost will be:

19Algorithm 3 also incurs at most an additional j + 3j ee and be multiplications in total over the first j rounds, per Equation
(15). We include these terms in Expression (27) for completeness, but they will not be a major contributor to costs for values of
j relevant to this section of the manuscript. This is because per Table 3, the optimal switchover round j is at most 9 and we are
generally interested in sums with at least 2` ≥ 220 terms.

30

Extension degree 4 8 16 32 64 128 256

Optimal switchover round j 3 4 4 5 6 7 8

Prover cost in ee mults per term of sum 2.0 1.27 0.78 0.483 0.302 0.192 0.122

Prover cost in bb mults per term of sum 18 34 63 117 220 420 800

Prover cost in ee mults for Algorithm 1 2.61 2.35 2.21 2.14 2.09 2.06 2.04

Factor improvement over Algorithm 1 1.31 1.85 2.83 4.43 6.92 10.8 16.7

Table 3: Cost of our prover implementation combining Algorithms 1 and 3, for d = 2, in terms of number of
ee multiplications. We assume that be and ee multiplications are respectively k and k1.585 times costlier than
bb multiplications.

((
(d− 1) + 2j + 4j + 8j + · · ·+ 2(d−1)j

)
n
)
bb +

(
d(1− 1/2j)n

)
· be +

(
(d2/2j)n

)
· ee,

plus (at most) an additional (d−1)j+(d+1)j be and ee multiplications. These last quantities are independent
of n (so long as the switchover round j is independent of n) and will not be a significant contributor to costs
for values of j relevant to this section.

This can be compared to the cost of Algorithm 1 alone, which recall (Equation (12)) is roughly:

((d2 − 1)n/2) · bb + (dn/2) · be + (d2/2) · n · ee.

For degree d = 3, we numerically calculate the optimal switchover round and improvement factor in Table 4.
The improvement is a relatively modest factor of 1.89 for extension degree k = 16, but grows to a substantial
factor of 5.4 for k = 128.

Extension degree k = 8 k = 16 k = 32 k = 64 k = 128

Optimal switchover round j 2 3 3 4 4

Prover cost in ee mults per term of sum 3.73 2.56 1.77 1.19 0.85

Algorithm 1 prover costs (ee mults per term) 5.1 4.85 4.71 4.64 4.59

Factor improvement over Algorithm 1 alone 1.37 1.89 2.66 3.9 5.4

Table 4: Cost of Algorithm 3 (combined with Algorithm 1) for d = 3 in terms of number of ee multiplications,
assuming ee multiplications are k1.585 times more expensive than bb multiplications, k times more expensive
than be multiplications.

7 Implementation and Experiments

We implement the sum-check prover with all algorithms in our paper to compare the run times of the four
algorithms20. Our implementation can be instantiated with any finite field and its extensions of any degree.
However, we use arkworks [ac22] as the back-end for finite-field arithmetic and field-extension arithmetic.
Arkworks is optimized to support finite-field arithmetic for fields with characteristic more than or equal to 64.
In other words, field elements are represented as 64-bit integers. Therefore, although it is possible to define a
field with characteristic 32 (or less) in Arkworks, each field element is cast as a 64-bit integer which leads to

20Our code is available at: https://github.com/ingonyama-zk/smallfield-super-sumcheck.

31

https://github.com/ingonyama-zk/smallfield-super-sumcheck

inefficiencies in field multiplications. Further, arkworks does not support field extensions of degree more than
four. Considering these practical constraints, we benchmark our implementation with the Babybear field
and its degree-4 extension. Our implementation also supports switching back to the Algorithm 1 after using
Algorithm 3 or 4 for the first j rounds.

We plot the running times of the sum-check prover with the instance-size ` for all algorithms as shown in
Figure 5. We use Algorithms 3 and 4 for the first j = 6 rounds and then switch back to Algorithm 1. We
benchmark the prover run times for degree d = 4 on an Intel i7 processor with 6 cores running at 2.6 GHz.
We analyze the running times of different algorithms on single-core and six-core configurations to understand
performance differences and potential multi-threading improvements. First, we measure single-core running
times to establish a baseline, showing each algorithm’s inherent computational complexity without parallel
processing. Then, we measure six-core running times. These are naturally lower due to parallel execution,
achieved solely through compiler-level optimizations without manual adjustments.

Figure 5: Running times (in ms) of all four algorithms w.r.t ` for degree d = 4 and j = 6

8 10 12 14 16 18 20
101

103

105

107

109
Single core configuration

8 10 12 14 16 18 20
100

102

104

106

108
Six core configuration

Algo. 1 Algo. 2 Algo. 3 Algo. 4

In both configurations, the running times of all algorithms increase linearly with `, except for Algorithm 2
in the six-core setup. Algorithm 4 outperforms Algorithm 3, being 5 to 10 times faster due to reduced bb
multiplications. However, the existing Algorithms 1 and 2 surprisingly perform better than the optimized
Algorithms 3 and 4. This can be attributed to two main factors:

• Parallelizability: Algorithms 3 and 4 are designed for parallel execution, but our implementation lacks
manual parallel processing optimizations. About 90% of the runtime for these algorithms is spent
on computing the base-field products for all rounds, which can be heavily parallelized. Conversely,
Algorithms 1 and 2 benefit from Rust compiler optimizations for multi-core usage. For example, with
` = 16, Algorithm 1’s single-core runtime is approximately 60 times slower than its six-core runtime,
whereas Algorithm 4’s is only 13 times slower. This indicates a narrowing performance gap with
multi-threading, suggesting significant potential for further improvements.

• Field choice: We benchmarked using the degree-4 extension of the Babybear field due to the arkworks
backend constraints. Algorithms 3 and 4 are expected to perform better when extension-field multiplica-
tions are much costlier than base-field multiplications. For Babybear in Arkworks, an ee multiplication
is 10 times slower than a bb multiplication. In binary fields, this disparity is much greater. For example,
with GF[2] as the base field and a degree-128 extension, an ee multiplication can be ≈ 104 times slower
than a bb multiplication [tea23].

32

Analytical Runtime Analysis. Our implementation does not yet support binary fields. To compare the
performance of Algorithms 3 and 4 against the existing algorithms for binary fields, we analytically estimate
the running times of all four algorithms. Specifically, we record the unit running times of each of the bb, be
and ee multiplications, i.e., the time required to run a single multiplication operation. Next, we calculate the
exact number of bb, be and ee multiplications required in each algorithm for different configurations of the
instance size `, degree d and switchover round j. To compute the analytical runtimes, we simply multiply the
number of multiplications with the unit time for that type of multiplication and sum over the timings for all
three multiplication types: bb, be and ee.

We plot the analytically estimated running times of all four algorithms in Figure 6. On the left side, we plot
the running times with respect to the instance size `, for a constant degree d = 4 and switchover happens at
round j = 6. Algorithm 4 performs better than all other algorithms by at least an order of magnitude, owing
to significantly less number of bb and ee multiplications. Algorithm 3, on the other hand, performs worse
than the existing algorithms. This is due to exhorbitantly high number of bb multiplications (in the range of
billions) as against relatively fewer (in thousands) ee multiplications in the existing algorithms.

On the right side, we plot the factor improvement21 of Algorithms 3 and 4 over Algorithm 1 with respect to
the switchover round j for a fixed instance size ` = 20 and degree d ∈ {3, 4, 5}. The solid lines represent the
d = 3 case, the dashed lines represent d = 4 case and the dotted lines represent d = 5 case. The key insights
from this plot are as follows.

1. The runtimes of Algorithms 3 and 4 are sensitive to the switchover round j and perform better than
Algorithm 1 only upto a specific switchover round j. The factor improvement plots exhibit a parabolic
trend with respect to the switchover round j. For instance with degree d = 3, Algorithm 4 has a
factor improvement greater than one only when j ≤ 11. Analogously, this range reduces to j ≤ 7 for
Algorithm 3 for the same degree d = 3.

2. Algorithm 4 outperforms Algorithm 3 in terms of the factor improvement over Algorithm 1. For degree
d = 3, the peak factor improvement (at j = 8) of Algorithm 4 is almost 5 times better than the peak
factor improvement of Algorithm 3 (at j = 5). For d = 4, this ratio increases to almost 7 times. This
can be attributed to the fact that the number of bb multiplications in Algorithm 3 grow exponentially
with degree d while it grows “subexponentially” in Algorithm 4.

3. For a given degree d, the peak factor improvement for Algorithm 4 occurs at a later switchover round j
than that of Algorithm 3. For example with d = 4, ideal switchover for Algorithm 4 is j = 7 while that
for Algorithm 3 is j = 4. Thus, Algorithm 4 allows not just a better performance but also more rounds
to be processed before we switch to Algorithm 1.

4. Lastly, we notice that as degree d inceases, the factor improvement plots shrink and the permissible
range of switchover round j reduces. Algorithms 3 and 4 start giving diminishing returns when the
increased number of bb multiplications they require far outweight the reduced ee multiplications.

Acknowledgments. We are grateful to Ben Diamond and Jim Posen for patiently explaining the computa-
tional implications of tower field constructions, for identifying the benefits of Algorithm 2 when working over
fields of small characteristic, and for many conversations surrounding this work and their recent manuscript
[DP23b].

Disclosures. Justin Thaler is a Research Partner at a16z crypto and is an investor in various blockchain-
based platforms, as well as in the crypto ecosystem more broadly (for general a16z disclosures, see https:

//www.a16z.com/disclosures/.)

21The factor improvement of Algorithm 3 (or 4) over Algorithm 1 is the ratio of analytically estimated runtime of Algorithm 1
and Algorithm 3 (or 4). Higher the factor improvement, better is the performance of Algorithm 3 (or 4) relative to Algorithm 1.

33

https: //www.a16z.com/disclosures/
https: //www.a16z.com/disclosures/

Figure 6: Analytically estimated running times (in seconds) of all four algorithms for degree-128 extension of GF[2] in
different configurations.

10 12 14 16 18 20 22

10−2

10−1

100

101

102

103

Time vs ` for fixed d = 4 and j = 6

Algo. 1

Algo. 2

Algo. 3

Algo. 4

2 4 6 8 10 12
10−1

100

101

102

y = 1

5x

7x

Factor improvement vs j for fixed ` = 20

Algo. 4

Algo. 3

d = 3
- - - - d = 4
······ d = 5

References

[ac22] arkworks contributors. arkworks zksnark ecosystem, 2022.

[AFK22] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-round
interactive proofs. In Theory of Cryptography Conference, pages 113–142. Springer, 2022.

[AST23] Arasu Arun, Srinath Setty, and Justin Thaler. Jolt: Snarks for virtual machines via lookups.
Cryptology ePrint Archive, 2023.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Fast Reed-Solomon interactive
oracle proofs of proximity. In ICALP, 2018.

[BG23] Jeremy Bruestle and Paul Gafni. Risc zero zkvm: scalable, transparent arguments of riscv integrity,
2023. https://dev.risczero.com/proof-system-in-detail.pdf.

[CMT12] Graham Cormode, Michael Mitzenmacher, and Justin Thaler. Practical verified computation
with streaming interactive proofs. In ITCS, 2012.

[CTY11] Graham Cormode, Justin Thaler, and Ke Yi. Verifying computations with streaming interactive
proofs. Proc. VLDB Endow., 5(1):25–36, 2011.

[DP23a] Benjamin E. Diamond and Jim Posen. Personal communication, 2023.

[DP23b] Benjamin E. Diamond and Jim Posen. Succinct arguments over towers of binary fields. Cryptology
ePrint Archive, Paper 2023/1784, 2023. https://eprint.iacr.org/2023/1784.

[DP24] Benjamin E. Diamond and Jim Posen. Polylogarithmic proofs for multilinears over binary towers.
Cryptology ePrint Archive, Paper 2024/504, 2024. https://eprint.iacr.org/2024/504.

[DT24] Quang Dao and Justin Thaler. Constraint-packing and the sum-check protocol over binary tower
fields. 2024.

[EMGI11] Nadia El Mrabet, Aurore Guillevic, and Sorina Ionica. Efficient multiplication in finite field
extensions of degree 5. In Progress in Cryptology–AFRICACRYPT 2011: 4th International
Conference on Cryptology in Africa, Dakar, Senegal, July 5-7, 2011. Proceedings 4, pages 188–205.
Springer, 2011.

[FP97] John L Fan and Christof Paar. On efficient inversion in tower fields of characteristic two. In
Proceedings of IEEE International Symposium on Information Theory, page 20. IEEE, 1997.

34

https://dev.risczero.com/proof-system-in-detail.pdf
https://eprint.iacr.org/2023/1784
https://eprint.iacr.org/2024/504

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and Markus Schofnegger.
Poseidon: A new hash function for Zero-Knowledge proof systems. In 30th USENIX Security
Symposium (USENIX Security 21), pages 519–535, 2021.

[Gru24] Angus Gruen. Some improvements for the piop for zerocheck. Cryptology ePrint Archive, 2024.

[LFKN90] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive
proof systems. In FOCS, October 1990.

[STW23] Srinath Setty, Justin Thaler, and Riad Wahby. Unlocking the lookup singularity with Lasso.
Cryptology ePrint Archive, Paper 2023/1216, 2023. https://eprint.iacr.org/2023/1216.

[tea23] The Irreducible team. Binius: Rust implementation of Snark over towers of binary fields, 2023.
https://gitlab.com/IrreducibleOSS/binius.

[Tha13] Justin Thaler. Time-optimal interactive proofs for circuit evaluation. In CRYPTO, 2013.

[Tha22] Justin Thaler. Proofs, arguments, and zero-knowledge. Foundations and Trends in Privacy and
Security, 4(2–4):117–660, 2022.

[VSBW13] Victor Vu, Srinath Setty, Andrew J. Blumberg, and Michael Walfish. A hybrid architecture for
verifiable computation. In Proceedings of the IEEE Symposium on Security and Privacy (S&P),
2013.

[Wie88] Doug Wiedemann. An iterated quadratic extension of GF(2). Fibonacci Quart, 26(4):290–295,
1988.

35

https://eprint.iacr.org/2023/1216
https://gitlab.com/IrreducibleOSS/binius

	Introduction
	Preliminaries
	Background on extension fields
	Tower fields vs. the standard monomial basis.
	Multiplication algorithms for extension fields
	Notation for costs of field multiplications

	Background on the sum-check protocol
	Key lemmas for multilinear polynomials

	Existing algorithms: Algorithms 1 and 2
	Algorithm 1
	The case of d=2.
	Algorithm 1 for general degrees d.

	Algorithm 2
	The case of d=2.
	Algorithm 2 for general degrees d.

	Optimized provers for extension fields: Algorithms 3 and 4
	Algorithm 3
	Details of Algorithm 3 when d=2.
	Algorithm 3 when d=3.
	Algorithm 3 for general d.

	Algorithm 4
	Details of Algorithm 4 when d = 2.
	Details of Algorithm 4 when d = 3.
	Algorithm 4 for general d

	Comparison of Algorithms 3 and 4

	Optimizing costs when bb, be multiplications are ``free''
	Optimizing costs when bb, be multiplication aren't free
	The case of degree d=2
	The case of general d

	Implementation and Experiments

