
Efficient Secret Sharing for Large-Scale Applications
Sarvar Patel

Google

New York, USA

sarvar@google.com

Giuseppe Persiano

Università di Salerno and Google

Salerno and New York, Italy and USA

giuper@gmail.com

Joon Young Seo

Google

New York, USA

jyseo@google.com

Kevin Yeo

Google and Columbia University

New York, USA

kwlyeo@google.com

ABSTRACT
Threshold secret sharing enables distributing a message to 𝑛 parties

such that no subset of fewer than 𝑡 parties can learn the message,

whereas any subset of at least 𝑡 parties can recover the message.

Despite being a fundamental primitive, secret sharing still suffers

from one significant drawback, where its message reconstruction

algorithm is computationally expensive for large privacy thresholds

𝑡 . In this paper, we aim to address this significant drawback.

We study general (𝑡, 𝑐)-ramp secret sharing schemes where the

number of parties c needed to reconstruct the secret may be larger

than 𝑡 . We present a ramp secret sharing scheme whose reconstruc-

tion time is 2-7.8x faster than prior constructions suitable against

adversaries that adaptively corrupt parties. For 𝑡 = 2
20
, our new

protocol has reconstruction time of 5 seconds whereas prior work

requires nearly half a minute. We see improvements starting from

as small as 𝑡 = 256. Furthermore, we obtain correctness threshold

as small as 𝑐 ≥ 1.05𝑡 . To obtain our construction, we first improve

the secret sharing frameworks by Cramer et al. (EUROCRYPT’15)
and Applebaum et al. (CRYPTO’23) from erasure codes. Our new

framework obtains secret sharing schemes that may be used against

adversaries with adaptive corruptions while requiring only weaker

correctness guarantees from the underlying erasure code with a

distributed generation property. Furthermore, our new framework

also maintains the linear homomorphism of the prior works. After-

wards, we present a concretely efficient erasure code from random

band matrices that satisfies the distributed generation property.

We show that our secret sharing scheme can improve many real-

world applications. In secure aggregation protocols for federated

learning, we obtain up to 22% reductions in computational cost

by replacing Shamir’s scheme with our construction. We extend

our protocol to obtain a verifiable ramp secret sharing scheme

where each party can verify the consistency of the shares. Our new

verifiable ramp secret sharing has 8.2-25.2x faster sharing and 2.7-

23.2x faster reconstruction time compared to prior works. Finally,

we present an improved distributed verifiable random function that

may be used for decentralized randomness beacons.

1 INTRODUCTION
Secret sharing, introduced by Blakley [12] and Shamir [70], consid-

ers the problem of sharing an input message𝑚 amongst 𝑛 parties.

The original works considered threshold secret sharing that guaran-
teed that any subset of at most 𝑡 − 1 parties could not learn message

𝑚, whereas any subset of at least 𝑡 parties could reconstruct𝑚.

Ramp secret sharing is a generalization of threshold secret sharing
introduced in [13] with two parameters: privacy threshold 𝑡 and
correctness threshold 𝑐 ≥ 𝑡 . Privacy of the input message𝑚 remains

identical: no subset of at most 𝑡 −1 parties can learn anything about

𝑚. For decoding, ramp schemes guarantee that any subset of at

least 𝑐 parties can reconstruct𝑚. Note that threshold schemes are

a special case of ramp schemes with 𝑐 = 𝑡 . Since ramp schemes

provide weaker recovery guarantees when 𝑐 > 𝑡 (more parties

are needed to decode the input message) one would expect more

efficient constructions than threshold schemes.

Despite being introduced more than 40 years ago, Shamir’s

scheme [70] remains widely used today in both academia and in-

dustry (some examples include Binance [60], cryptocurrency wal-

lets [11] and secure vault storage [71]). In academic works, Shamir’s

scheme is utilized in many state-of-the-art constructions includ-

ing secure aggregation [5, 16] and multi-party computation (see,

for example, [7, 23, 41]). Even though Shamir’s secret sharing is

widely used, it suffers from a significant bottleneck when scaling

to larger use cases. In particular, the message reconstruction algo-

rithm is computationally expensive as it requires interpolating a

(𝑡 − 1)-degree polynomial. Many implementations of Shamir’s se-

cret sharing utilize Lagrange interpolation using 𝑂 (𝑡2) time that is

very expensive for large choices of 𝑡 . Even if one uses more efficient

𝑂 (𝑡 log2 𝑡) polynomial interpolation [17, 73], message reconstruc-

tion in Shamir’s scheme is still very expensive for large 𝑡 as we

will show. We note that prior works have studied secret sharing

with near-linear reconstruction (such as [14, 29, 36, 54]), but the

majority have considered theoretical constructions. The only work

that considers a practical instantiation is Applebaum et al. [2] that
obtains non-negligible reconstruction error even against weaker

adversaries with static corruption.

This slow reconstruction bottleneck is unfortunately inherited

by cryptographic primitives relying on secret sharing. One exam-

ple is verifiable secret sharing (VSS) where each of the 𝑛 parties

can check the consistency of their share. State-of-the-art synchro-

nous VSS constructions [40, 51, 64, 73] build on secret sharing.

Distributed verifiable random functions (DVRF) [18, 42] are an-

other such cryptographic primitive where many constructions rely

on secret scheme to combine randomness from multiple sources.

We can also consider important applications that rely on any of

these primitives. One application is secure aggregation for feder-

ated learning [5, 16] that use secret sharing to reconstruct values

from dropout users as deployed at Google [39]. Another example is

decentralized randomness beacons [25] enabling multiple parties

1

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

to generate trusted randomness that have been deployed by Cloud-

Flare [28], DFINITY [48] and drand [35]. All these applications

inherit the slow reconstruction times of the secret sharing scheme.

1.1 Our Contributions
Our contributions in this paper are threefold. First, we present an

improved framework for constructing secret sharing from erasure

codes with weak correctness properties that still protect against

adaptive corruptions. Next, we construct a more efficient linear

erasure code from random band matrices with efficient decoding

and negligible error to obtain our secret sharing scheme RB-SS.
Finally, we use RB-SS to improve multiple applications.

Secret Sharing Framework. To build our secret sharing scheme,

we start from the framework of Cramer et al. [29] that builds linear
secret sharing from a linear erasure code and a linear universal hash

function. However, this construction required a strong correctness

guarantee of the underlying erasure code that the original input

could be recovered for any choice of erasures in the codeword. A

recent work by Applebaum et al. [2] presented a modified variant

that considered erasure codes with weaker correctness properties

and replaced the universal hash function with a custom efficient

randomness extractor. The weaker correctness guaranteed that,

for any choice of erasures, the original input could be recovered

except with some small probability. The weaker correctness require-

ments enabled the usage of more practically efficient erasure codes.

However, the modified framework of Applebaum et al. [2] comes

with the downside that reconstruction correctness guarantees only

hold against a static adversary that corrupts parties before the start

of the secret sharing scheme. In particular, it is essential that the

corruptions are chosen independently of the erasure code. In other

words, the adversary must compromise parties before the erasure

code is randomly generated in the protocol.

In our work, we present a new framework to build secret sharing

schemes that can rely on linear erasure codes with weaker correct-

ness guarantees but still provide reconstruction success against

adaptive adversaries. For this, we make the following modification.

In both prior works [2, 29], the sparse generator matrix M related

to the linear erasure code was published at the beginning of the

protocol. Instead, we take the following approach where each row

of M𝑖 is generated independently and can be presented using a

succinct representation. The succinct representation of the 𝑖-th row

is distributed to the 𝑖-th party along with their share. Critically,

the entire matrix M is never revealed. An adversary can only learn

about M by corrupting parties. Furthermore, each row of M is gen-

erated independently from all other rows. We denote this property

as distributed generation for erasure codes. With this property, we

show that an erasure code with weak correctness properties is now

sufficient to obtain constructions suitable for adaptive corruptions.

In particular, we leverage the fact that an adversary that adaptively

corrupts parties cannot learn information about rows owned by

other parties (without compromising them).

Finally, prior works suggested the usage of linear universal hash

functions [29] or a randomness extractor based on the inner product

with a small-integer vector [2]. Our framework could use either

option that would result in a linear secret sharing scheme. We also

provide a third option of using a random oracle that is slightly more

efficient at the cost of linearity. Nevertheless, we note there are

several important applications of secret sharing that do not require

linearity (such as federated learning [16]). We stress our framework

may be instantiated with any of the three options depending on

the necessity of linearity.

Linear Erasure Codes from Random Band Matrices.We will

use random band matrices [32] to build a linear erasure code with

distributed generation. In particular, we will focus on building a

distributed generator matrix where each row may be generated

independently. As originally presented, random band matrices of

dimension 𝑛 × ℓ embed a short 𝑤-length band of random entries

into a random location in each row. The remaining 𝑛 −𝑤 entries in

the row will be zero. If 𝑛 = (1 − [)ℓ for some constant [> 0, then

random band matrices have full rank 𝑛 and the associated linear

system can be solved in time 𝑂 (𝑛𝑤) with high probability [32].

We consider a variant of the random band matrix where we

study 𝑛× ℓ matrix with more rows than columns, 𝑛 > ℓ . Each row is

generated in the same way except that we now permit wrap-around

in the row. For example, if the𝑤-length band picks the last location

in the row, the last𝑤 − 1 entries of the band will appear at the start
of the row. Note, this satisfies the distributed generation property

as each row is randomly sampled independently. For any subset of

(1+𝛼)ℓ rows for some 𝛼 > 0, we show that the resulting sub-matrix

has full column rank of ℓ except with negligible probability with𝑤 =

𝑂 (_). Furthermore, we prove that Gaussian elimination can solve

the associated linear system in time 𝑂 (ℓ · _) that is corroborated
by our experimental evaluation. In our experiments, we also show

that 𝛼 = 0.05 is sufficient. Surprisingly, our modified random band

matrices require a different set of analytical techniques compared

to [32] and show our wrap-around modification is necessary.

We can use our modified random band matrix as a low-density

(sparse) generator matrix to immediately obtain an erasure code

that obtains negligible error. As the main benefit, our erasure code

has distributed generation and its the decoding algorithm is more

efficient than those in prior constructions. We note prior works

can be viewed in similar lenses using the generator matrix. For

example, Shamir’s scheme uses Reed-Solomon codes with the Van-

dermondematrix. Recent work by Applebaum et al. [2] suggest prac-
tical instantiations using low-density parity check (LDPC) matrices

that enable efficient reconstruction through a peeling algorithm

(such as [58]). A recurring theme is that random band matrices are

more efficient than both Vandermonde and peeling-based matri-

ces. For example, this phenomenon has been observed in oblivious

key-value stores [43] where random band matrix solutions [9] out-

perform Vandermonde and peeling-based solutions [43, 67]. The

same has occurred for filter data structures where ribbon filters

using random band matrices [33] outperform cuckoo filters using

peeling-based matrices [37]. Therefore, it is not surprising that our

erasure code outperforms prior schemes. We present a comparison

of practical erasure codes in Figure 1.

Secret Sharing Construction. Next, we combine our framework

and linear erasure code to obtain a (𝑡, 𝑐)-ramp secret sharing scheme,

RB-SS, with 𝑂 (𝑡_) message reconstruction for 𝑐 = 1.05𝑡 . Our ex-

periments shows that reconstruction time in RB-SS is 2-7.8x faster

than Shamir’s scheme [70] that is still the most widely used secret

sharing scheme. With 𝑡 = 2
20
, RB-SS requires 5 seconds while

2

Efficient Secret Sharing for Large-Scale Applications

Decoding

Time

Correctness

Guarantee

Error

Distributed

Generation

Reed-Solomon 𝑂 (𝑛 log2 𝑛) Strong 0 ×
Luby [58] 𝑂 (𝑛) Weak 2

−Θ(1) ×
Ours (RB) 𝑂 (𝑛 (_ + log𝑛)) Weak 2

−_ ✓

Figure 1: Comparison of practical linear erasure codes. Strong cor-
rectness means that there exists no choice of erasures that could
cause decoding failures except with the error probability. Weak cor-
rectness states that, for any choice of erasures, decoding fails with
the error probability.

Total Time

Correctness

Threshold

Error

Adaptive

Corruption

Shamir [70] 𝑂 (𝑛 log2 𝑛) 𝑐 = 𝑡 0 ✓

ANP [2] 𝑂 (𝑛) 𝑐 = 1.22𝑡 2
−Θ(1) ×

Ours (RB-SS) 𝑂 (𝑛 (_ + log𝑛)) 𝑐 = 1.05𝑡 2
−_ ✓

Figure 2: Practical secret sharing with near-linear time.

Shamir’s scheme requires nearly half a minute. Therefore, RB-SS
may be scaled towards much larger thresholds 𝑡 and more parties

𝑛 without message reconstruction becoming a bottleneck. Further-

more, we see improvements for 𝑡 as small as 256. Even though we

require a gap between the correctness and privacy thresholds of

𝑐 ≥ 1.05𝑡 , RB-SS still fits the requirements for many important

applications including federated learning, Byzantine agreement

and secure multi-party computation (MPC).

We also compare RB-SS to the practical instantiation of Apple-

baum et al. [2] that we denote as ANP. As mentioned earlier, RB-SS
may be used against adversaries with adaptive corruptions while

ANP may only be used in the setting of static corruptions. Further-

more, as acknowledged by the authors in [2], ANP only provides

non-negligible error guarantees even in the static corruption case.

In contrast, RB-SS provides provably negligible error even against

adaptive corruptions. Even with the stronger guarantees, RB-SS is

still more efficient than ANP as shown in our experimental evalua-

tion in Section 6. Finally, we note that ANP utilize peeling-based

codes that have very well known tight thresholds of success rates

(see [46, 74] for example) that mean that 𝑐 ≥ 1.22𝑡 . RB-SS is more

flexible and can be instantiated with much smaller correctness

thresholds 𝑐 ≥ 1.05𝑡 . See Figure 2 for more comparisons.

We note that Applebaum et al. [2] present other constructions
addressing these issues. In particular, they obtain negligible error

against adaptive corruptions and arbitrarily small gaps between

the privacy and correctness thresholds. To our knowledge, these

constructions remain theoretical in nature without efficient instan-

tiations in practice. Instead, we consider the practical constructions

(denoted ANP) suggested by the authors (see Section 1.4 in [2]).

Applications. First, we show that replacing Shamir’s scheme with

RB-SS in the secure aggregation protocol of Bonawitz et al. [16]
deployed at Google for federated learning [39]. As a result, we

reduce time spent for secret sharing by 3.6-6.6x. This results in a

decrease of 13%-22% in computation compared to [16].

Next, we show that RB-SS can be utilized to improve other prim-

itives. First, we extend RB-SS with the techniques of either Feld-

man [40] or Pedersen [64] to obtain verifiable ramp secret sharing

schemes (VSS). Specifically, we obtain VSS schemes with 𝜖 error

probability, verification time𝑂 (log(1/𝜖) + log 𝑡), and public param-

eters of size𝑂 (𝑡). Our VSS schemes obtains 8.2-25.2x faster sharing

and 2.7-23.2x faster reconstruction time compared to state-of-the-

art works [21, 51, 73]. Furthermore, our Pedersen-based scheme

obtains up to 9% smaller communication during dealing. As a caveat,

our VSS schemes only provide correctness guarantees against non-

adaptive adversaries. It turns out that privacy still holds even in the

adaptive setting. We leave it as an open problem to enable adaptive

correctness. See Figure 8 in Appendix C.4 for further comparisons.

Finally, we utilize our VSS to construct a distributed verifiable

random function (DVRF) that, in turn, may be used to construct

decentralized randomness beacons (DRB). As we build off our

reconstruction-efficient VSS, our DRB schemes obtains 2-6x im-

provement for each randomness generation round compared to

prior DVRF-based DRB schemes [42, 48].

2 DEFINITIONS
We will denote column vectors as v and row vectors as v⊺ . The
𝑖-th entry of v is denoted by v𝑖 . We will consider all primitives

to be one-indexed. For example, we set [𝑛] = {1, . . . , 𝑛}. For two
𝑛-length vectors v, v′ ∈ F𝑛 , we denote the dot product by v · v′ =
(v1 ·v′

1
)+. . .+(v𝑛 ·v′𝑛). For any𝑛×𝑡 matrixM ∈ F𝑛×𝑡 , we denote the

𝑖-th row of the matrix byM𝑖 for any 𝑖 ∈ [𝑛]. The 𝑗-th element ofM𝑖
byM𝑖, 𝑗 for any 𝑗 ∈ [𝑡]. We denote the matrix-vector multiplication

of M ∈ F𝑛×𝑡 and v ∈ F𝑡 as M · v = [M1 · v, . . . ,M𝑛 · v]⊺ . For a
matrixM ∈ F𝑛×𝑡 and a vector y ∈ F𝑛 , we say we solve the linear

system for M and y as finding a vector x ∈ F𝑡 such thatM · x = y.
We model all hash functions 𝐻 : 𝑋 → 𝑌 as random oracles

unless otherwise specified. Random oracles idealize hash functions

such that each output is truly random. For any 𝑥 ∈ 𝑋 , 𝐻 (𝑥) will be
a uniformly random element from 𝑌 .

2.1 Linear Erasure Codes
An erasure code consists of a pair of algorithms (Encode,Decode)
is defined over an alphabet Σ. The erasure code encodes an input

of length 𝛾 , 𝑥 ∈ Σ𝛾 , into a codeword of length [, Encode(𝑥) ∈ Σ[.
For any choice of 𝑧 erasures in the codeword Encode(𝑥), Decode
will successfully recover the input 𝑥 except with some probability

𝑝 . Note, this is the weaker correctness guarantee. A stronger cor-

rectness guarantee would be that there does not exist any choice

of 𝑧 erasures of Encode(𝑥) such that the input 𝑥 cannot be recov-

ered except with probability 𝑝 . Throughout our work, we will only

consider the weaker correctness guarantee.

All linear erasure codes can be viewed through a generator ma-

trix M of dimension [× 𝛾 . Then, Encode(𝑥) = M𝑥 is the matrix-

vector multiplication of the generator matrix M and the input 𝑥 .

Consider any subset 𝑆 ⊆ [𝛾] of erasures. LetM−𝑆 and Encode(𝑥)−𝑆
be the generator matrix and input with the corresponding erased

codeword symbols removed. For M−𝑆 , these are the rows corre-
sponding to the erased codeword symbols. Then, Decode is equiva-
lent to solving the linear systemM−𝑆 · 𝑥 = Encode(𝑥)−𝑆 for 𝑥 . The

input is successfully recovered as long as there is a unique solution

to the linear system. That is,M−𝑆 has full column rank of 𝛾 . One

can view the correctness guarantee as follows. For any choice of 𝑆 ,

M−𝑆 must have rank 𝛾 except with probability 𝑝 over the random

3

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

choice of the generator matrixM. We will consider erasure codes

through generator matrices for the remainder of the paper.

Finally, we will introduce the distributed generation property of

linear erasure codes necessary for our secret sharing framework.

In particular, we require that each row of the generator matrixM
may be generated independently from every other row. We point

readers to Section 3 for our formal definition.

2.2 Ramp Secret Sharing
We define ramp secret sharing (SS) schemes with computational

privacy following [6]. A (𝑡, 𝑐)-ramp secret sharing for message

spaceM consists of a tuple of algorithms, (Init, Share,Reconstruct).
First, Init produces public parameters pp used by all algorithms.

The dealer splits the message 𝑚 ∈ M as shares, 𝑠1, . . . , 𝑠𝑛 , to 𝑛

parties by executing Share(pp,𝑚). Afterwards, Reconstruct takes
a subset of shares and aims to output the input message 𝑚. For

subset 𝐼 ⊂ [𝑛], we denote the subset of shares by 𝑠𝐼 = {𝑠𝑖 }𝑖∈𝐼 .
A ramp secret sharing scheme against a malicious adversary that

may adaptively corrupt parties must satisfy:

(1) Privacy: An adversary adaptively corrupting at most 𝑡 − 1
parties cannot learn any information about the message.

(2) Correctness: An adversary that adaptively corrupts at

most𝑛−𝑐 parties cannot cause the reconstruction algorithm
to fail or output the wrong message when receiving any

subset of 𝑐 shares from the remaining honest parties.

In other words, no subset of 𝑡−1 parties can learn the input message

but any subset of 𝑐 honest parties can reconstruct the input message.

For formal definitions, see Appendix A.1.

Linear Homomorphism. Linearity is an important property for

many applications of secret sharing. We can consider the setting

where multiple messages𝑚,𝑚′ ∈ M are shared to 𝑛 parties such

that the 𝑖-th party receives shares 𝑠𝑖 and 𝑠
′
𝑖
. Roughly speaking,

linearity ensures that each party can add their shares 𝑠𝑖 + 𝑠′𝑖 to
obtain a new share. These new shares may be reconstructed to the

message𝑚 +𝑚′ that is the sum of the two original messages. We

will refer to such schemes as linear (ramp) secret sharing schemes.

2.3 Verifiable Secret Sharing
Ramp secret sharing assumes that the dealer computes the shares

honestly and that all players reveal the share received from the

dealer. In this section, we consider verifiable (𝑡, 𝑐)-ramp secret shar-

ing (VSS) that detects dishonest dealers and parties. We define VSS

following prior works [51, 73] that consider malicious (Byzantine)

adversaries that may corrupt the dealer as well as at most 𝑡 − 1

parties. We also add a modification for ramp access structures for

correctness. We assume all parties are connected with a broadcast

channel and any two parties (including the dealer) are connected

by a private synchronous channel.

AVSS scheme consists of the same tuple (Init, Share,Reconstruct).
However, in VSS, sharing is implemented by a protocol consisting

of multiple rounds. Our constructions will consider three round

sharing consisting of a dealing, verification and complaint round

identical to prior works [51, 73]. The general definition below ac-

commodates any number of rounds. A (𝑡, 𝑐)-VSS scheme against a

malicious adversary must satisfy the following:

(1) Privacy: An adversary that adaptively corrupts at most

𝑡 − 1 parties cannot learn anything about the message.

(2) Correctness (Honest Dealer): An adversary that statically
corrupts at most 𝑛−𝑐 parties cannot cause any honest party
to reconstruct the wrong message.

(3) Correctness (Malicious Dealer): Every honest party will

output the same message𝑚′ or ⊥, even in the presence of

an adversary that statically corrupts the dealer and at most

𝑛 − 𝑐 parties.
Any subset of 𝑡 − 1 cannot learn the message𝑚. When the dealer is

honest, every honest party should correctly reconstruct the input

message𝑚. When the dealer is malicious, every honest party will

output a consistent message𝑚′ or detect the malicious dealer by

returning ⊥. For formal definitions, we point readers to [51].

Static Corruption Correctness. Our VSS schemes maintain pri-

vacy even against adaptive adversaries. However, correctness only

holds with respect to static adversaries. In other words, an adaptive

adversary can prevent honest parties from reconstructing the secret

correctly. We leave it as an open problem to provide correctness

guarantees against adaptive adversaries.

Other Properties. Prior works have also studied secret sharing

with other properties beyond linearity and verifiability including

robustness [29, 66] and integrity [49]. The main goal of our work is

to improve computational costs that we show may be obtained for

secret sharing satisfying privacy, correctness and even verifiabililty.

We leave it as an open problem to obtain other properties.

3 LINEAR ERASURE CODES
In this section, we present our linear erasure code. First, we will

present another definition of erasure codes through generator matri-

ces that will be useful for our secret sharing framework. Afterwards,

we present our construction using random band matrices.

3.1 Distributed Generator Matrix
Throughout the rest of the paper, we will consider linear erasure

codes through the lens of their corresponding generator matrix

(see Section 2.1 for details on the relationship). We will consider a

definition of generator matrix families that enable distributed gener-
ation. A family of distributed generator matrices F consists of the

tuple F = (RandGen, ExpandRow, Solve). The random generation
algorithm, RandGen, will be responsible for sampling 𝑛 uniformly

random seeds, seed1, . . . , seed𝑛 , that will be used to randomly gen-

erate a matrix M ∈ F𝑛×ℓ with dimension 𝑛 × ℓ over a field F. In
particular, RandGen outputs (seed1, . . . , seed𝑛) such that seed𝑖 can
be used by ExpandRow to generate the 𝑖-th row ofM. By our def-

inition, each row of M is generated independently from all other

rows. Roughly speaking, RandGen simply determines the length

of each random seed generated.

The solve algorithm, Solve, will receive a sub-matrix ofM con-

sisting of a subset of rows whose indices are in subset 𝐼 ⊆ [𝑛] as
well as a vector y of length |𝐼 |. For 𝐼 = {𝑖1, . . . , 𝑖 |𝐼 | }, we define

M𝐼 =

M𝑖1

. . .

M𝑖 |𝐼 |

 .
4

Efficient Secret Sharing for Large-Scale Applications

The goal of Solve is to output a vector x such that M𝐼 · x = y.
In other words, Solve should solve the linear system associated

with the sub-matrix M𝐼 . The goal for F is to generate random

matrices M such that M𝐼 has a unique solution and that solution

may be efficiently found for sufficiently large enough subsets 𝐼 .

In other words, this allows the corresponding erasure code using

F as its generator matrix to recover the input x. We say F is a

distributed (𝐾, 𝜖)-generator matrix family if the above is true except
with probability 𝜖 for any subsets |𝐼 | ≥ 𝐾 (ℓ).

Definition 1. Let 0 ≤ 𝜖 ≤ 1 and let 𝐾 (·) be an integer function
such that 𝐾 (ℓ) ≥ ℓ , for all ℓ ≥ 1. A (𝐾, 𝜖)-distributed generator

matrix family F = (RandGen, ExpandRow, Solve) is defined as:
• (seed1, . . . , seed𝑛) ← RandGen(1_, 𝑛, ℓ) receives as input the

security parameter, the number of rows and the number of columns
ℓ and outputs 𝑛 uniformly random seeds (seed1, . . . , seed𝑛) that
succinctly encode the 𝑛 row vectors of an 𝑛 × ℓ matrixM ∈ F𝑛×ℓ .

• M𝑖 ← ExpandRow(seed𝑖) receives seed𝑖 and outputs the 𝑖-th row
vector of the matrix,M𝑖 ∈ Fℓ .

• x← Solve(M𝐼 , y𝐼) receives a sub-matrixM𝐼 ∈ F |𝐼 |×ℓ of |𝐼 | rows
with indices in 𝐼 ⊆ [𝑛] and the vector y𝐼 ∈ F |𝐼 | of length |𝐼 |. Solve
outputs a vector x of length ℓ such that M𝐼 · x = y𝐼 .

F must satisfy the following correctness requirement. For every
subset 𝐼 ⊆ [𝑛] such that |𝐼 | ≥ 𝐾 (ℓ),

Pr[M𝐼has rank ℓ | (seed1, . . . , seed𝑛) ← RandGen(1_, 𝑛, ℓ)] ≥ 1−𝜖

where M𝑖 ← ExpandRow(seed𝑖) for all 𝑖 ∈ 𝐼 . The probability is
taken over the random coin tosses of RandGen.

Note that sinceM𝐼 has |𝐼 | ≥ 𝐾 (ℓ) ≥ ℓ rows and ℓ columns,M𝐼

having rank ℓ means it has full column rank. Therefore, for every

vector y𝐼 of size |𝐼 |, the linear systemM𝐼 · x = y𝐼 has at most one

solution except with probability 𝜖 . In other words, this implies that

each y𝐼 will result in the same x except with probability 𝜖 . Going

back to erasure codes, the Solve algorithm is used to try and decode

the original input. We critically use the fact thatM𝐼 has full column

rank to ensure a unique solution x for each y𝐼 .
Finally, we did not formally introduce the notion of the efficiency

in the above definition of (𝐾, 𝜖)-generator matrix families. How-

ever, an important goal of a matrix family F is to ensure that all

algorithms are efficient. In most cases, this is more difficult with

respect to Solve that needs to solve the linear system associated to

M𝐼 . One universal way to do this is to utilize Gaussian elimination

to solve the |𝐼 | × ℓ matrix that would require 𝑂 (|𝐼 | · ℓ2) time. For

our construction, we will end up using matrix families equipped

with Solve algorithms that find solutions much faster.

Strong vs. Weak Correctness. We revisit our prior notions of

strong and weak correctness formally. For strong correctness, we

mean that there exists no choice of erasures that could cause de-

coding failures except with some probability 𝜖 . In contrast, weak

correctness guarantees that, if one chooses corruptions independent

of the matrix, decoding failures occur with some small probability.

We define erasure codes in Definition 1 with weak correctness.

Later, we show that weak correctness still suffices for adaptive

correctness in secret sharing by relying on the distributed genera-

tion property. Onemajor benefit of relying only onweak correctness

is that we obtain more efficient constructions.

Algorithm 1 RB.RandGen algorithm

Input: 1
_
: security parameter

Output: seed1, . . . , seed𝑛 : seeds to generate 𝑛 rows

for 𝑖 ∈ [𝑛] do
Randomly sample seed𝑖←{0, 1}_

return (seed1, . . . , seed𝑛)

Algorithm 2 RB.ExpandRow algorithm

Input: seed: seed to generate row

Output: v: row vector of matrix

Compute starting location 𝑥 ← 𝐻1 (seed) with 𝑥 ∈ [ℓ].
Compute𝑤-bit band b← 𝐻2 (seed) with b ∈ {0, 1}𝑤 .
Initialize v = [0]𝑡 .
for 𝑖 ∈ [𝑤] do:

Set v𝑥+𝑖−1 ← b𝑖 . ⊲ 𝑥 + 𝑖 − 1 computed mod ℓ .

return v

Algorithm 3 RB.Solve algorithm

Input: M, y: matrix and vector

Output: x: unique solution if it exists

Sort rows ofM by starting location of random band.

Execute Gaussian elimination on sortedM.

if M has full column rank then
Compute x such thatM · x = y.
return x

return ⊥

Discussion about Distributed Generation. At a high level, the

distributed generation property means that each of the 𝑛 row vec-

tors may be sampled independently. We note that knowledge of

any subset of rows of M does not reveal any information about

the remaining rows. This property will be critical to obtain secret

sharing for adaptive corruptions.

3.2 Our Construction
We present a distributed generator matrix (and, thus, linear erasure

code with distributed generation) using random band matrices.

Original Random Band Matrix Family. To construct our gen-
erator matrix family (and, thus, linear erasure code), we adapt

the random band matrix family introduced by Dietzfelbinger and

Walzer [32] that we will denote by RB. The family of 𝑛 × ℓ matrices

in RB is also parameterized by a band length that we denote by𝑤 .

The family of random bandmatrices is generated in the following

way. Each of the 𝑛 rows is generated by embedding exactly one

consecutive 𝑤-length random binary band at a random starting

location. More formally, suppose we wish to generate the 𝑖-th row

vector M𝑖 of a random band matrix M and let 𝐻1 and 𝐻2 be two

random functions. ForM𝑖 , we first pick a random column denoting

the start of the band is picked uniformly at random from the set 𝑥𝑖 ∈
[ℓ −𝑤]. Additionally, a random𝑤-bit band is generated uniformly

at random from b𝑖 ∈ {0, 1}𝑤 . Then, the first entry of b𝑖 becomes

the 𝑥𝑖 -th entry ofM𝑖 , the second entry of b𝑖 becomes the (𝑥𝑖 +1)-th
entry of M𝑖 and so forth. All ℓ −𝑤 columns outside of the random

5

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

band will be zero. Therefore, the number of non-zero entries is at

most |M|0 ≤ 𝑛 ·𝑤 as each row vector has at most𝑤 non-zero entries.

The algorithms of RB are formally described with pseudocode in

Algorithms 1, 2 and 3. We use two random functions 𝐻1 and 𝐻2

that take as input a _-bit seed and output the starting location

𝑥 ∈ [ℓ −𝑤] and a𝑤-bit random band, respectively.

Next, we describe the algorithm used to solve the linear system

associated with sub-matrices of random band matrices. Consider

any random band matrix M and any subset 𝐼 ⊆ [𝑛] of rows. The
input to Solve is the |𝐼 | × ℓ sub-matrix as well as some solution

vector y ∈ F |𝐼 | . We will rely on the fact that, for any random

band matrix M, any sub-matrix consisting of subsets of rows M𝐼 is

also a random band matrix. Therefore, we can use the algorithms

described by Dietzfelbinger and Walzer [32] to try and solve the

linear system associated to M𝐼 . The first step is to sort the rows of

M𝐼 according to the starting band location. Afterwards, standard

Gaussian elimination can be executed in an attempt to reduceM𝐼 to

row echelon form. However, the structure of random band matrices

ensure that Gaussian elimination runs much faster. In each row

reduction step, the number of non-zero entries that need to be

considered will be either or nearby the𝑤-bit band. In other words,

each of the row reduction operations will require 𝑂 (𝑤) time on

averagemeaning the entire Gaussian elimination algorithm requires

𝑂 (|𝐼 | ·𝑤) time that is faster than the time of Gaussian elimination

on arbitrary |𝐼 | × ℓ matrices that requires 𝑂 (|𝐼 |2 · ℓ).

Our Modified Random Band Matrix Family. Dietzfelbinger and
Walzer [32] analyzed random band matrices of dimension (1 −
𝛼)ℓ × ℓ with more columns than rows. Their work showed that such

random band matrices are expected to have full row rank with high

probability. For our work, we require matrices of dimension |𝐼 | × ℓ
where |𝐼 | ≥ ℓ . While these differences seem subtle, it turns out that

we must modify the algorithms and provide new proof techniques

to use random band matrices with more rows than columns.

First, we modify the sampling of random bands inM. Previously,

the starting column of a random𝑤-length band for each row vector,

M𝑖 , was chosen from [ℓ − 𝑤]. In our work, we modify this to

choose the starting column from [ℓ] with wrap-around. Suppose

the starting location was 𝑖 such that 𝑖 +𝑤 > ℓ . Then, the remaining

𝑤 − (ℓ − 𝑖) entries of the𝑤-length band will be placed starting from

the first column again. The algorithm used to solve the linear system

remains the same: first sort rows by starting location and then

execute Gaussian elimination. We will later show that this wrap-

around modification is necessary (see Appendix B). We present our

pseudocode in Algorithms 1, 2 and 3.

Next, we also need to show thatM𝐼 has full column rank to enable

recovery of the unique solution x. We show that, for any subset |𝐼 | ≥
(1 + 𝛼)ℓ for some constant 𝛼 > 0,M𝐼 has full column rank except

with probability with 2
−^

if we set the band length to be𝑤 = 𝑂 (^ +
log ℓ). Furthermore, we prove that the running time of Solve is𝑂 (ℓ ·
𝑤) for any subset |𝐼 | = (1+𝛼)ℓ except with probability𝑂 (2−^). Our
above modification is essential to ensure (1 + 𝛼)ℓ × ℓ random band

matrices have full column rank except with negligible probability.

Otherwise, it turns out that it is highly unlikely that the first few

columns will be used as a pivot during Gaussian elimination (see the

full version for further details). Furthermore, in our experiments,

we show that solving the linear systemM𝐼 (decoding) is much faster

than other known linear erasure codes (see Section 6).

To our knowledge, the above properties were not previously

known. Note that Dietzfelbinger and Walzer [32], instead, proved

properties for (1−𝛼)ℓ×ℓ random bandmatrices that wewere unable

to directly relate to our setting of (1+𝛼)ℓ × ℓ random band matrices.

For our adaptation, we have to resort to new proof techniques. We

point readers to Appendix B for the proof.

Theorem 1. The 𝑛 × ℓ random band matrix family RB with𝑤-bit
band length satisfies the following properties:

• RandGen requires 𝑂 (𝑛) time.
• ExpandRow requires 𝑂 (𝑤) time.
• EveryM ∈ RB has at most 𝑛 ·𝑤 non-zero entries.
• If 𝑤 = 𝑂 (^ + log ℓ) and 𝐾 (ℓ) = (1 + 𝛼)ℓ for some constant
𝛼 > 0, then RB is a (𝐾, 2−^)-generator matrix family. Fur-
thermore, Solve requires 𝑂 (ℓ ·𝑤) time.

Note, the above obtains a near-optimal erasure code rate requir-

ing (1+𝛼)ℓ codewords to recover the original symbol. Furthermore,

it obtains negligible error for 𝑤 = 𝑂 (^ + log ℓ). Nevertheless, RB
emits faster algorithms than the erasure codes used by Applebaum

et al. [2] that only obtain non-negligible error.

Comparison with Other Erasure Codes.We note that our linear

erasure code was built specifically with the requirements of our

secret sharing framework. In particular, we desired distributed

generation, a very fast decoding algorithm and negligible error

probability. To our knowledge, prior erasure codes used in secret

sharing do not satisfy the distributed generation property.

Reed-Solomon codes [68] used in Shamir’s scheme [70] do not

satisfy this property as rows are highly correlated. However, they

can be used to build secret sharing tolerating adaptive corruption

due to their strong correctness guarantees.

In the peeling-based codes used in practical instantiations of

ANP [2], the matrices where each row has 3 non-zero entries and

each column has 6 non-zero entries. As the rows are correlated

(by the column requirement), it does not satisfy the distributed

generation property. One could also try to extend ANP using a

different peeling-based code with a distributed generation property.

For example, one could consider slightly modified matrices with 3

non-zero entries in each row and no restrictions per column. Even

if such an approach obtains the distributed generation property,

we note it still has three drawbacks. First, the practical instantia-

tions of these codes still have non-negligible error. This translates

to adaptive correctness guarantees but with non-negligible error

in the secret sharing scheme. Secondly, this approach still require

larger gaps between correctness and privacy of 𝑐 ≥ 1.22𝑡 that is in-

herent in any peeling-based code (see [46, 74]). In contrast, random

band matrices obtain 𝑐 = 1.05𝑡 . Finally, these peeling-based codes

require more computation than random band matrices. Even when

compared with the best peeling-based code without distributed

generation, random band matrices are more computationally effi-

cient (see Section 6.1 for experimental evaluation). We expect this

to remain true when using other variants of peeling-based codes

that may achieve distributed generation. To our knowledge, we

are unaware of any techniques for extending ANP with peeling-

based codes to obtain similar guarantees achieved by random band

matrices of distributed generation, negligible error and efficiency.

6

Efficient Secret Sharing for Large-Scale Applications

Algorithm 4 F -SS.Init algorithm

Input: 1
_, 𝑛, 𝑡 : security parameter, number of parties and privacy

threshold.

Output: pp: public parameters.

Sample random function 𝐻 : F𝑡 →M.

return pp = (1_, 𝑛, 𝑐 ← 𝐾 (𝑡), 𝑡, 𝐻).

4 SECRET SHARING
We present our framework for building ramp secret sharing using

linear erasure codes. As a reminder, we build off the frameworks of

Cramer et al. [29] and Applebaum et al. [2]. However, our frame-

work is stronger as it may be used in the setting of adaptive cor-

ruptions. We also show that our framework may be instantiated to

maintain the linear homomorphism of the prior frameworks. Af-

terwards, we instantiate our framework with our generator matrix

family from Section 3.2 to obtain our secret sharing scheme.

4.1 Our Improved Framework
In this section, we construct secret sharing schemes from any (𝐾, 𝜖)-
distributed generator matrix family F . We denote the resulting

secret sharing scheme as F -SS. The formal description of F -SS
using F in a blackbox manner is presented in Algorithms 4, 5 and 6.

Let F be a (𝐾, 𝜖)-generator matrix family. The Init algorithm
of the ramp secret sharing associated with F receives the security

parameter _, the total number of parties 𝑛 and the privacy threshold

𝑡 ≤ 𝑛. The correctness threshold is set equal to 𝑐 = 𝐾 (𝑡). For
security parameter _, we assume that the message space M is

a field of size |M| = 2
_
(see later discussion for handling large

messages). All shares will contain an element from a field F of size

|F| = 2
𝑂 (_)

where we will pick the field size later. Finally, we use

a random hash function 𝐻 mapping 𝑡 field elements, F𝑡 , to the

message space,M.

Our framework enables various options for the hash function 𝐻 .

One option for𝐻 is any linear randomness extractor including those

built from universal hash functions [29] or the dot-product with a

small integer vector [2]. When 𝐻 is a linear randomness extractor

(see Definition 4 for more details), the resulting secret sharing

scheme is linear. We also provide a third option later where𝐻 could

instead be a random oracle. This slightly increases efficiency, but

will lose the linearity feature. Surprisingly, linearity is not necessary

for some important applications such as federated learning [16]

(see Section 5.3). For the remainder of this section, we assume that

the hash function 𝐻 is a linear randomness extractor.

Initialization of Public Parameters. The initialization algorithm

Init for F -SS will sample a random hash function 𝐻 : F𝑡 → M
that will be assumed to be publicly available to the dealer and all 𝑛

parties. The public parameters also contain 1
_, 𝑛, 𝑐 and 𝑡 . Note that

𝑡 can be chosen arbitrarily and the resulting correctness threshold

must satisfy 𝑐 ≥ 𝐾 (𝑡), which is a function of 𝑡 and the underlying

(𝐾, 𝜖)-generator matrix family F .
Share Construction. The goal of the Share algorithm is to con-

struct 𝑛 shares 𝑠1, . . . , 𝑠𝑛 for input message𝑚. Share picks a matrix

from family F with dimension 𝑛 × 𝑡 .

Algorithm 5 F -SS.Share algorithm
Input: 𝑚, pp: input message and public parameters.

Output: (𝑠1, . . . , 𝑠𝑛): 𝑛 shares.

Parse pp = (1_, 𝑛, 𝑐, 𝑡, 𝐻).
Sample random vector x←F𝑡
Compute mask←𝑚 + 𝐻 (x).
Compute (seed1, . . . , seed𝑛) ← F .RandGen(1_).
for 𝑖 ∈ [𝑛] do

Compute M𝑖 ← F .ExpandRow(seed𝑖).
Compute y𝑖 ← M𝑖 · x.
Set 𝑠𝑖 ← (mask, seed𝑖 , y𝑖).

return (𝑠1, . . . , 𝑠𝑛)

Algorithm 6 F -SS.Reconstruct algorithm
Input: (𝑠𝑖)𝑖∈𝐼 , pp: subset of shares and public parameters.

Output: 𝑚: reconstructed message.

Parse pp = (1_, 𝑛, 𝑐, 𝑡, 𝐻).
for 𝑖 ∈ 𝐼 do

Parse 𝑠𝑖 = (mask, seed𝑖 , y𝑖).
ComputeM𝑖 ← F .ExpandRow(seed𝑖).

Compute x← F .Solve(M𝐼 , y𝐼).
if x = ⊥ then

return ⊥
Compute𝑚 ← mask − 𝐻 (x).
return𝑚

First, the dealer generates a random vector x ∈ F𝑡 such that each

x𝑖 is a uniformly random field element from F. Using x, the dealer
will construct a masked message by computing mask =𝑚 + 𝐻 (x).
That is,mask is the sum in the fieldM of the input message𝑚 and

the output of the hash function 𝐻 on input x, 𝐻 (x). Recall that we
have chosen 𝐻 : F𝑡 → M in Init. Next, the dealer executes the
RandGen algorithm of F to produce 𝑛 seeds, (seed1, . . . , seed𝑛).
Afterwards, the dealer constructs the associated random matrix

M ∈ F𝑛×𝑡 by computing the 𝑖-th row M𝑖 ← ExpandRow(seed𝑖),
for 𝑖 ∈ [𝑛]. Note, the number of rows is equal to the number

of parties 𝑛 and the number of columns is at least the privacy

threshold 𝑡 . Finally, the dealer generates shares in the following.

The dealer computes the matrix-vector multiplication y = M · x
where y = [y1, . . . , y𝑛] ∈ F𝑛 . For all 𝑖 ∈ [𝑛], the share for the 𝑖-th
party will be 𝑠𝑖 = (mask, seed𝑖 , y𝑖). Critically, the dealer will not
publish the matrix M. Instead, each of the 𝑛 parties will receive

one row of the matrix through seed𝑖 . As a result, an adversary

with adaptive corruption parties only learns the matrix M after

compromising parties. As each row is independent of others, the

adversary cannot learn about any row of M without compromising

the party with the corresponding seed. As a result, we can leverage

this property against adaptive corruptions.

The masked message mask is the same value across all 𝑛 parties.

With a slight abuse,maskmay be viewed as a public parameter and

simply appended to pp. This would reduce each share size to only

contain seed𝑖 and the field element y𝑖 ∈ F.
Message Reconstruction. Finally, we present the message recon-

struction algorithm Reconstruct that receives the shares {𝑠𝑖 }𝑖∈𝐼 for
7

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

some subset of parties denoted by 𝐼 = {𝑖1, . . . , 𝑖 |𝐼 | } ⊆ [𝑛]. First,
Reconstruct executes ExpandRow on input the seed𝑖 𝑗 found in

share 𝑠𝑖 𝑗 , for 𝑗 ∈ [|𝐼 |], to obtain the sub-matrix M𝐼 of row vec-

tors with indices in 𝐼 . So, Reconstruct receives the masked message

mask, the sub-matrixM𝐼 and the vector y𝐼 = [y𝑖1 , . . . , y𝑖 |𝐼 |]⊺ con-

sisting of entries of y whose indices also appear in 𝐼 .

Reconstruct will solve the linear system to compute the vector x
satisfying:M𝐼 ·x = y𝐼 . To do this, we execute the Solve algorithm of

F to get x← Solve(M𝐼 , y𝐼). If F is a distributed (𝐾, 𝜖)-generator
matrix family, then we know that x satisfiesM𝐼 · x = y𝐼 and x is the
unique solution with probability at least 1 − 𝜖 as long as |𝐼 | ≥ 𝐾 (𝑡).
Therefore, we set the correctness threshold as 𝑐 ≥ 𝐾 (𝑡). To recover

the message, we compute 𝐻 (x) and retrieve𝑚 = mask − 𝐻 (x). In
practice, we instantiate 𝐻 using a hash function (such as SHA256)

and convert x ∈ F𝑡 into a string of 𝑡 · _ bits.
Correctness. For correctness, we will first assume that the under-

lying matrix family F is a (𝐾, 𝜖)-generator matrix family. Then, we

note that the only requirement for correct share reconstruction is

that the correct random vector x ∈ F𝑡 that was uniformly gener-

ated in Share is retrieved in Reconstruct. We critically utilize the

fact that an adversary that adaptively corrupts parties only learns

the matrix rows corresponding compromised parties. In particular,

the adversary cannot learn any information about rows of honest

parties. Even with an adversary that adaptively corrupts parties,

we show that Reconstruct still successfully reconstructs the secret

except with 𝜖 probability.

Theorem 2. If F is a distributed (𝐾, 𝜖)-generator matrix family,
then F -SS is an (𝑡, 𝑐)-ramp secret sharing against adaptive adver-
saries with at most 𝜖 error for any correctness threshold 𝑐 ≥ 𝐾 (𝑡).

Proof. In Reconstruct, share reconstruction is correct as long

as Solve(M𝐼 , y𝐼) outputs the same vector x that was randomly

generated in Share. As F is a (𝐾, 𝜖)-generator matrix, we know

that, for any subset 𝐼 , Pr[x = Solve(M𝐼 , y𝐼)] ≥ 1 − 𝜖 . However, this
does eliminate the fact that there may exist some subset 𝐼 such

that x ≠ Solve(M𝐼 , y𝐼). In fact, it is possible such a subset 𝐼 may be

efficiently computable if given the matrixM.

Instead, we utilize the fact that our construction reveals each

row vector M𝑖 only to the 𝑖-th party. Consider the correctness

experiment for secret sharing (see Appendix A.2). We consider a

hybrid experiment with the following modification. The challenger

will delay sampling the matrix M. The challenger will still sample

x and compute mask ← 𝑚 + 𝐻 (x). Instead, it will sample each

row as the adversary chooses to corrupt parties. For example, if the

adversary compromises the 𝑖-th party, the challenge generates seed𝑖
to compute M𝑖 ← ExpandRow(seed𝑖) and y𝑖 ← M𝑖 · y𝑖 . Finally,
the challenge will reveal (mask, seed𝑖 , y𝑖) to the adversary. We note

that the games are indistinguishable from the view of the adversary.

Clearly,mask is independent ofM and seed𝑖 is a uniformly random

string. We note that y𝑖 is essentially a linear combination with

some random vector chosen by ExpandRow(seed𝑖) as F since F
is a distributed generator matrix and each row is independently

generated. Therefore, the experiments are indistinguishable.

We consider a final hybrid experiment where the challenger

samples initially samples 𝑛 seeds: seed1, . . . , seed𝑛 . We will con-

sider the subset 𝐼 = {𝐾 (𝑡) + 1, . . . , 𝑛}. The challenge also computes

mask = 𝑚 + 𝐻 (x). As the adversary adaptively corrupts, we will

simply reveal seeds in sequence (independent of the corrupted

party’s index) and compute the corresponding share as before. The

remaining seeds seed𝐾 (𝑡)+1, . . . , seed𝑛 will be used to generate the

shares for the honest parties. As all 𝑛 seeds are uniformly random

and independent strings, we can see that this experiment is indis-

tinguishable from the prior experiment as the only difference is

that the challenger sampled the seeds ahead of time. Finally, we

note that this experiment returns 1 if and only if x = Solve(M𝐼 , y𝐼)
for the fixed subset 𝐼 = {𝐾 (𝑡) + 1, . . . , 𝑛}. As F is a distributed

(𝐾, 𝜖)-generator matrix, for the fixed subset 𝐼 = {𝐾 (𝑡) + 1, . . . , 𝑛},
we know that Pr[x ≠ Solve(M𝐼 , y𝐼)] ≤ 𝜖 completing the proof. □

Efficiency. To analyze efficiency, we consider several properties

of the matrix family F = (RandGen, ExpandRow, Solve). First, we
will assume the number of non-zero entries of any matrices that are

potential outputs ofRandGen. That is, any possiblematrix outputM
of RandGenwill contain at most 𝑧 non-zero entries, |M|0 ≤ 𝑎. As F
consists of𝑛×𝑡 matrices, we can always set 𝑎 = 𝑛 ·𝑡 as a trivial upper
bound on the norm. However, in our concrete instantiations, we will

consider explicit families F where 𝑎 is much smaller, 𝑎 ≪ 𝑛 · 𝑡 . We

also assume that the RandGen, ExpandRow and Solve algorithms

run in time 𝑓RandGen (𝑛, 𝑡), 𝑓ExpandRow (𝑡) and 𝑓Solve (𝑡) respectively.
Then, we can upper bound the running times of F -SS as follows:

Theorem 3. Suppose F = (RandGen, ExpandRow, Solve) is a
(𝐾, 𝜖)-generator matrix family such that RandGen outputs matrices
with at most 𝑎 non-zero entries and RandGen, ExpandRow and Solve
run in time 𝑓RandGen (𝑛, 𝑡), 𝑓ExpandRow (𝑡) and 𝑓Solve (𝑡) respectively.
Then, we get:

• Init: 𝑂 (_).
• Share: 𝑂 (𝑓RandGen (𝑛, 𝑡) + 𝑛 · 𝑓ExpandRow (𝑡) + 𝑎 + 𝑡).
• Reconstruct: 𝑂 (𝑡 · 𝑓ExpandRow (𝑡) + 𝑓Solve (𝑡) + 𝑡).

Privacy.We show that any adversaryA running in time poly(_, 𝑛)
and adaptively corrupt atmost 𝑡−1 parties cannot learn any informa-

tion about the input message except with negligible probability for

sufficiently large fields F andM. Roughly speaking, privacy follows

by showing the output 𝐻 (x) is shown to be a highly unpredictable

random string from the view of the adversary. This is similar to

prior works [2, 29] where they assumed 𝐻 is a randomness extrac-

tor. In particular, we assume that 𝐻 is (log |F|, 2−_)-randomness

extractor that takes an input x with min-entropy 𝐻∞ (x) ≥ log |F|.
The output 𝐻 (x) has statistical distance at most 𝛿 ≤ 2

−_
from

a uniformly random element inM. We present formal proofs in

Appendix A.2 as well as formal definitions of extractors.

Theorem 4. Suppose 𝐻 is a (log |F|, 2−_)-randomness extractor.
For any 𝑐 ≥ 𝐾 (𝑡), F -SS is a (𝑡, 𝑐)-ramp secret sharing scheme that is
𝛿-secure with 𝛿 ≤ 2

−_ against adaptive adversaries when |M| ≥ 2
_

and |F| = |M| · 22_ .

We also show that it suffices for 𝐻 to be a random oracle where

the field size |F| may be smaller where |F| = |M|.

Theorem 5. Suppose 𝐻 is a random oracle. For any 𝑐 ≥ 𝐾 (𝑡),
F -SS is a (𝑡, 𝑐)-ramp secret sharing scheme that is 𝛿-secure with
𝛿 ≤ 2

−_ (1−𝑜 (1)) against adaptive adversaries when |F| = |M| ≥ 2
_ .

8

Efficient Secret Sharing for Large-Scale Applications

We note that F -SS inherits the gap between the privacy 𝑡 and

correctness threshold 𝑐 from the rate of the underlying erasure

code. If 𝐾 (𝑡) = 𝑡 , then we can obtain a threshold scheme without

any gap. When 𝐾 (𝑡) = (1 + 𝛼)𝑡 for near-optimal rate erasure codes,

the gap becomes 𝑐 ≥ (1 + 𝛼)𝑡 .
Linearity. We show that our framework F -SS results in a linear

ramp secret sharing scheme assuming that the underlying hash

function 𝐻 is linear. In other words, we will rely on the fact that

𝐻 (x) +𝐻 (x′) = 𝐻 (x + x′). This follows similar from prior frame-

works [2, 29] using the observation that the same generator matrix

corresponding may be used to share multiple secrets. Furthermore,

both the share and reconstruction algorithms are linear. Consider

sharing any two messages𝑚,𝑚′ ∈ M using the same generator ma-

trixM. Note, this can be achieved by having each party use the same

seed𝑖 to generate their corresponding row in M. The shares of the

𝑖-th party will be 𝑠𝑖 = (mask, seed𝑖 , y𝑖) and 𝑠′𝑖 = (mask′, seed𝑖 , y′𝑖)
where the two seeds are the same. Then, we can compute sum of

shares as 𝑡𝑖 = (mask + mask′, seed𝑖 , y𝑖 + y′𝑖). That is, the sum of

the first and third components of the shares (the seed remains the

same). If one attempts to run Reconstruct on 𝑡𝐼 for a sufficiently

large subset 𝐼 ⊆ [𝑛], then the result would be the sum𝑚 +𝑚′.
Theorem 6. If 𝐻 is a linear function, then F -SS satisfies linearity.
Some options for a linear randomness extractor 𝐻 are a linear

universal hash function [29] or the dot-product with a small integer

vector [2] from prior works.

Non-Linear Hash Function. For privacy, we only require that 𝐻

is a randomness extractor. The linearity is only critical if we wish

for a linear ramp secret sharing scheme. If one does not require

linearity, we note that 𝐻 can be replaced with any non-linear hash

function such as SHA256 (modelled as a random oracle). This results

in a slightly more efficient construction at the cost of the linear

homomorphism property (see Theorem 5). In Section 5.3, we present

applications that do not require linearity.

DifferentMessage Sizes. In F -SS, the message space is size |M| =
2
_
. One could consider larger messages with more than _ bits. We

note that we can adapt the technique of Krawczyk [52]. Instead of

sharing the message directly, we derive an encryption key 𝐾 of _

bits that we share using F -SS. Each party is provided an encryption
of the message𝑚 under key 𝐾 . To retrieve the message, the parties

first reconstruct the encryption key 𝐾 using F -SS to decrypt the
message𝑚. F -SS still only shares encryption keys of _ bits.

We note the shares in F -SS still require _ bits for smaller mes-

sages (such as 1-bit messages). We leave it as an open problem to

improve share sizes in F -SS for smaller messages. Although, this

phenomenon appears in prior works such as Shamir’s schemes that

also requires shares of size log𝑛 bits for single-bit messages.

4.2 Our Construction: RB-SS
Finally, we will instantiate our final ramp secret sharing construc-

tion using the framework F -SS from Section 4.1 with our linear

erasure code F = RB in Section 3.2. Plugging in the properties of

RB into our framework, we obtain the following construction:

Theorem 7. There exists a constant 𝛼 > 0 such that for any
𝑐 ≥ (1 + 𝛼)𝑡 and band length 𝑤 = 𝑂 (^ + log 𝑡), RB-SS is a (𝑡, 𝑐)-
ramp linear secret sharing with 2

−^ error and negl(_)-security in

the random oracle model. Init runs in time 𝑂 (_), Share runs in time
𝑂 (𝑛𝑤) and Reconstruct runs in time 𝑂 (𝑡𝑤).

Choosing 𝛼 and𝑤 . For our construction, we will need to choose

concrete values of constant 𝛼 > 0 as well as the band length𝑤 =

𝑂 (^ + log 𝑡). In Appendix B.1, we use experimental evaluation to

pick 𝛼 and 𝑤 in an attempt to minimize 𝛼 = 0.05 while ensuring

error probability at most 2
−40

. For 𝛼 = 0.05, our empirical analysis

shows that it is sufficient to choose𝑤 using the equation:𝑤 (𝑡, ^) =
(0.9282 log

2
(𝑡) +^ −6.867)/0.1325. For 𝑡 = 2

10
, we may set𝑤 = 150

and for 𝑡 = 2
22
, we can use𝑤 = 400.

We picked 𝛼 = 0.05 through experimentation and balancing sev-

eral factors. One could choose any 𝛼 that would result in different

band lengths𝑤 . Larger 𝛼 would result in faster algorithms (smaller

bands), but larger correctness threshold 𝑐 = (1 + 𝛼)𝑡 . In contrast,

smaller 𝛼 results in smaller correctness threshold, but slower al-

gorithms (larger bands). We chose 𝛼 = 0.05 as a good balance of

being both faster than prior work while having more flexible cor-

rectness thresholds. This means that RB-SS has smaller correctness

thresholds of 𝑐 = 1.05𝑡 as opposed to 𝑐 ≥ 1.22𝑡 in ANP [2].

Practical Running Time. The above running time assumes that

each entry of the random band matrix is processed independently.

In practice, we rely on SIMD operations and pack multiple entries

into a single word (integer). In particular, an entire band of length

𝑤 = 𝑂 (^ + log 𝑡) can fit into 𝑂 (1) words in practice. For example,

we use band lengths of 𝑤 = 150 and 𝑤 = 400 that fits into a few

registers in standard modern architectures (where registers are at

least 64 or 128 bits in size). Similarly, we can also pack multiple

shares into the a single register to process simultaneously. This

means the total running time of Share and Reconstructwill be𝑂 (𝑛)
and 𝑂 (𝑡) word operations respectively.

Runtime Comparison with ANP [2]. Recall that the recon-

struction time of ANP [2] is 𝑂 (𝑛). In contrast, RB-SS requires

𝑂 (𝑛(^ + log 𝑡)) time that is asymptotically larger. Even with this,

we note RB-SS is faster in practice for several reasons. The core

reason ends up being memory locality. As mentioned above, the

usage of SIMD operations effectively means RB-SS requires 𝑂 (𝑛)
word operations in practice (same with ANP). Even more critical, all

the non-zero entries of the generator matrix in RB-SS are grouped

together. In contrast, ANP places three non-zero values in three

random locations in each row. The locality of RB-SS enables faster

memory access resulting in faster times in ANP. We note this phe-

nomenon where the cache locality of random band matrices results

in faster concrete times than peeling-based matrices (see [9] for

example). In Section 6, we show that RB-SS is more concretely

efficient than prior state-of-the-art schemes [2, 70].

5 APPLICATIONS
In this section, we consider applications of RB-SS to various im-

portant cryptographic primitives that utilize secret sharing. We

will consider the simplest setting for these primitives including

non-adaptive adversaries and the synchronous network model. Our

goal is to showcase that RB-SS can be used to improve applications

that already rely on secret sharing. We leave it as future work to

consider more complex settings and other properties.

9

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

Algorithm 7 F -F-VSS.Init algorithm

Input: 1
_, 𝑛, 𝑡 : security parameter, number of parties and privacy

threshold.

Output: pp: public parameters.

Sample random function 𝐻 : F𝑡 →M.

return pp← (𝐻, 1_, 𝑛, 𝑐 ← 𝐾 (𝑡), 𝑡).

Algorithm 8 F -F-VSS.Share protocol
Input: for dealer: public parameters pp and message𝑚.

Input: for party 𝑖: public parameters pp.
Output: for party 𝑖: share 𝑠𝑖 and public key pk.
Dealing round (executed by dealer):

Parse pp = (𝐻, 1_, 𝑛, 𝑐, 𝑡).
Sample random vector x← F𝑡 .
Compute pk← [𝑔x1 , . . . , 𝑔x𝑡].
Compute mask←𝑚 + 𝐻 (x).
Randomly select coin tosses 𝑅 ← {0, 1}_ .
Compute (seed1, . . . , seed𝑛) ← F .RandGen(1_ ;𝑅).
for 𝑖 ∈ [𝑛] do

Compute M𝑖 ← F .ExpandRow(seed𝑖).
Compute 𝑦𝑖 ← M𝑖 · x.
Set 𝑠𝑖 ← (𝑖, seed𝑖 , 𝑦𝑖).
Send 𝑠𝑖 to party 𝑖 over private channel.

Broadcast (pk,mask, 𝑅) to all parties.

Verification round (executed by each party 𝑖 ∈ [𝑛]):
Receive 𝑠𝑖 = (𝑖, seed𝑖 , 𝑦𝑖) and (pk,mask, 𝑅).
Compute 𝑏𝑖 ← F -F-VSS.Verify(𝑠𝑖 , pk, 𝑅).
If 𝑏𝑖 ≠ 1, broadcast a complaint.

Complaint round (executed by each party 𝑖 ∈ [𝑛]):
Let 𝐶 be the complaining parties. If |𝐶 | ≥ 𝑡 , output ⊥.
The dealer broadcasts (𝑠 𝑗) 𝑗∈𝐶 .
If F -F-VSS.Verify(𝑠 𝑗 , pk) ≠ 1, for any 𝑗 ∈ 𝐶 , output ⊥.
Otherwise, output 𝑠𝑖 .

Algorithm 9 F -F-VSS.Reconstruct algorithm
Input: pp, (𝑠𝑖)𝑖∈[𝑛] , pk,mask: public parameters, shares, public

key, and mask.

Output: 𝑚: reconstructed message.

Parse pp = (𝐻, 1_, 𝑛, 𝑐, 𝑡).
Compute subset 𝐼 ⊂ [𝑛] of size |𝐼 | = 𝑐 such that, for all 𝑖 ∈ 𝐼 ,
F -F-VSS.Verify(𝑠𝑖 , pk) = 1.

return F -SS.Reconstruct(𝑠𝐼 , pp).

5.1 Verifiable Secret Sharing
We extend our framework, F -SS, to enable verifying shares and

detecting malicious dealer behavior. We will consider the synchro-

nous setting where an adversary statically (non-adaptive) corrupts

at most 𝑡 − 1 parties and the dealer. Our construction will con-

sist of an interactive Share consisting of three rounds for dealing,
verifying and complaining (same as prior works [51, 73]) extend-

ing techniques of Feldman [40] and Pedersen [64]. See Figure 8 in

Appendix C.4 for detailed comparisons of different VSS schemes.

Algorithm 10 F -F-VSS.Verify algorithm

Input: 𝑠, pk, 𝑅: share, public key, and coin tosses.

Output: 𝑏 ∈ {0, 1}: verification output.

If 𝑠 = ⊥, return 0.

Parse 𝑠 = (𝑖, seed, 𝑦) and pk = [𝑔x1 , . . . , 𝑔x𝑡].
Run F .RandGen using coin tosses 𝑅 and check by using 𝑗 that

seed is correct.

Compute m← F .ExpandRow(seed).
Compute 𝐶 ←∏

𝑗∈[𝑡] (𝑔x𝑗)m𝑗
.

return 1 iff 𝐶 = 𝑔𝑦 .

5.1.1 Feldman-based VSS. The VSS scheme of Feldman [40] used a

discrete logarithm-based commitment that we adapt. At a high level,

we will add a commitment to the random vector x ∈ F𝑡 generated
by the dealer by broadcasting pk = [𝑔x1 , . . . , 𝑔x𝑡]. This enables each
party to verify that their shares are correctly formed. Recall that

the 𝑖-th share is 𝑠𝑖 = M𝑖 ·x for the matrixM used by the dealer. Each

party can verify that their share is well-formed by checking the

following: 𝑔𝑠𝑖 = (𝑔x1)M𝑖,1 · · · (𝑔x𝑡)M𝑖,𝑡
. The remainder of the VSS

scheme follows similarly to prior synchronous VSS schemes [51, 73].

We present the formal description of F -F-VSS in Algorithms 7-10.

Verification of a party’s share depends only on the non-zero

entries inM𝑖 .When using random bandmatrices withF = RB, each
row vector contains𝑤 = 𝑂 (^+ log 𝑡) non-zero entries. Furthermore,

all entries ofM𝑖 are zero or one. Therefore, verification only requires
𝑂 (^ + log 𝑡) group multiplications (and no exponentiations).

Theorem 8. For any 𝑐 ≥ (1+𝛼)𝑡 and if discrete logarithm is hard,
then RB-F-VSS is a (𝑡, 𝑐)-VSS in the random oracle model against
non-adaptive adversaries with error at most 2−^ .

Broadcasting M. In F -F-VSS, we broadcast the matrix M by pub-

lishing the randomness 𝑅 used to execute F .RandGen. This is nec-
essary to verify that all parties use the same matrix M. For random

band matrices F = RB, note that RB.RandGen essentially outputs

𝑛 random seeds. In practice, we can use 𝑅 as 𝑂 (_)-bit key of a

PRF 𝐹 and compute seed𝑖 ← 𝐹 (𝑅, 𝑖). This is more efficient than

broadcasting 𝑂 (𝑛) seeds or the entire matrixM.

Correctness Guarantees.Due to the fact thatMmust be broadcast,

our scheme no longer provides negligible error against adaptive

corruptions. An adaptive adversary may prevent honest parties

from reconstructing the secret correctly. We leave it as an open

problem to obtain correctness against adaptive corruptions for

verifiable secret sharing using weakly correct erasure codes.

5.1.2 Pedersen-based VSS. We present another construction based

on the VSS scheme of Pedersen [64]. In this case, there are two gen-

erators 𝑔 and ℎ. Along with the random vector x, another vector v is
generated uniformly at random for blinding. The dealer broadcasts

pk = [𝑔x1 ·ℎv1 , . . . , 𝑔x𝑡 ·ℎv𝑡]. Each share is modified to contain both

y𝑖 = M𝑖 · x and u𝑖 = M𝑖 · v. Then, each party verifies their share by

checking: 𝑔y𝑖 · ℎu𝑖 = (𝑔x1 · ℎv1)M𝑖,1 · · · (𝑔x𝑡 · ℎv𝑡)M𝑖,𝑡
. We defer the

description of F -P-VSS to Appendix C.2 in Algorithms 11-14.

Similar to F -F-VSS, we note the verification algorithm runs in

𝑂 (^ + log 𝑡) time when using random band matrices F = RB and

requires only group multiplications. Consider any 𝑔x𝑖 · ℎv𝑖 . If v𝑖
is chosen uniformly at random from Z𝑝 assuming the underlying

10

Efficient Secret Sharing for Large-Scale Applications

group as prime order 𝑝 , then we note that v𝑖 is statistically binding

for x𝑖 . In other words, it impossible to determine x𝑖 even when

x𝑖 ∈ {0, 1} is binary. We present the pseudocode in Appendix C.2.

Theorem 9. For any 𝑐 ≥ (1 + 𝛼)𝑡 , if discrete logarithm is hard for
a bilinear pairing group, then RB-P-VSS is a (𝑡, 𝑐)-VSS in the random
oracle model against non-adaptive adversaries with error at most 2−^ .

Note that RB-P-VSS is more computationally expensive than

RB-F-VSS. In particular, the dealing round and verification requires

twice as many group multiplications. We note that RB-F-VSS does

not require trusted setup unlike RB-P-VSS. In contrast, RB-P-VSS
provides the benefit of statistical binding.

5.2 Distributed Randomness Generation
Next, we show that our secret sharing scheme RB-SS can be used

to help generate randomness in distributed settings.

5.2.1 Distributed Verifiable Random Function. A (𝑡, 𝑐)-distributed
verifiable random function (DVRF) that enables any 𝑛 parties to

jointly compute the output of a verifiable random function (VRF)

on input message𝑚, even in the presence of 𝑡 − 1 corrupted parties.
We present new DVRF constructions from our verifiable secret

sharing (VSS) schemes in Section 5.1 (see Appendix D).

5.2.2 Decentralized Randomness Beacons. Finally, we note that

there is a straightforward approach to construct a decentralized

randomness beacon (DRB) using DVRF schemes as done in prior

works [25, 42, 48]. At a high level, we execute Setup of DVRF to

share secret keys across all 𝑛 parties. For round 𝑟 , we will use the

evaluation of the DVRF at input 𝑟 as the random output for round 𝑟

denoted by Ω𝑟 . To do this, each individual user broadcasts its partial
evaluation. Afterwards, the final random value can be reconstructed.

We point readers to Appendix E for more details.

5.3 Non-Homomorphic Applications
In our framework in Section 4.1, we showed that there were several

ways to instantiate the hash function used in the secret sharing

scheme. One way is to use a random oracle that would no longer en-

able linear homomorphism. The benefit of this approach is slightly

faster algorithms and smaller shares. We present some large-scale

applications that do not require homomorphism.

5.3.1 Federated Learning. In federated learning [50], the goal is to

train a global model under coordination by a central server over the

private data of many users. A core piece is secure aggregation [5, 16]

where the server learns the sum of inputs from a cohort. Secret

sharing is used to reconstruct the values of dropouts. Shares are

never algebraically manipulated before reconstruction. Therefore,

homomorphism is not necessary. The usage of RB-SS can also

increase cohort size and improve accuracy (see Appendix F).

5.3.2 Distributed Storage. Many applications (such as cryptocur-

rency wallets) rely on secret sharing to share private keys across

multiple machines so that an attacker must compromise at least

𝑡 to learn the private key. The above can be used for distributed

secure storage of any information beyond private keys. In this case,

secret sharing is only used for reconstruction amongst a subset of

machines and, thus, non-homomorphic secret sharing may be used.

The benefit of our scheme for distributed storage is that RB-SS
can enable higher privacy thresholds efficiently. Higher privacy

thresholds means that attackers must gain access to even more

machines making successful compromises more challenging.

6 EXPERIMENTAL EVALUATION
Choosing RB-SS Parameters. We use experimental evaluation to

determine parameters, 𝛼 and𝑤 , for RB-SS with error probability

𝜖 = 2
−40

(̂ = 40). In our experiments, we fix 𝛼 = 0.05 and use the

formula𝑤 (𝑡, ^) = (0.9282 log
2
(𝑡) + ^ − 6.867)/0.1325 for the band

width selection. We also plot the error probabilities and explain

how we empirically derived the function 𝑤 (𝑡, ^) in Figure 7 in

Appendix B.1. For RB-SS, we set 𝑐 = (1 + 𝛼)𝑡 = 1.05𝑡 .

Setup.We implemented RB-SS, RB-F-VSS, RB-P-VSS, RB-F-DVRF
and RB-P-DVRF in C++ using 3000 lines of code. The implementa-

tion of all hash functions are SHA256-based with 16-byte seeds. We

rely on the BoringSSL implementations of SHA256 and secp256r1

as the elliptic curve for our VSS schemes. For our DVRF schemes,

we use the implementation of 254-bit BN curves with a type-III

bilinear pairing from [55]. We ran all experiments using a Ubuntu

PC with 12 cores, 3.7 GHz Intel Xeon W-2135 and 64 GB of RAM.

Our experiments enable AVX2 and AVX-512 instruction sets with

SIMD instructions. We do not consider network costs or delays. All

reported results use single-thread execution as the average of at

least 10 trials with standard deviation less than 10% of the average.

Message Size. In our evaluation, we will only consider messages

of 𝑏 = 128 bits (i.e., 𝑏 = _ bits). This suffices as one can use the

techniques in [52] to handle larger messages by sharing a single

encryption key. Therefore, we will focus our evaluation on message

spaces of size |M| = 2
_
as the additional encryption and decryption

costs are the same for all secret sharing schemes with this technique.

6.1 Secret Sharing
We compare our construction RB-SS with prior works. We report

all results in Figure 3. For our experimental evaluation, we will

compare with the schemes of Shamir [70] and Applebaum et al. [2]
that we denote as ANP. We implemented ANP ourselves in C++ as

no public implementation was available at the time. Even though

RB-SS provides stronger guarantees against adaptive corruption,
we show that RB-SS is more efficient than ANP that only handles

static corruptions. For proper comparison, both RB-SS and ANP

use the same linear extractor described in [2].

We note there are other prior works studying near-linear time

schemes including [2, 29, 36, 54], but only Applebaum et al. [2]
consider practical instantiations. Another line of work [24, 53]

consider secret sharing using only XOR operations that are more

efficient. However, all these schemes require Ω(𝑛𝑡) time for sharing

and/or reconstruction that are already worse than Shamir’s scheme.

To our understanding, Shamir’s scheme remains the most used

secret sharing construction in practice. We consider naive evalua-

tion and FFT for sharing. For reconstruction, we consider Lagrange

interpolation and fast modular transforms [17] as done in [73]. We

rely on [56] for implementations of [17].

Share Construction. First, we note that both FFT and the share

construction of RB-SS are significantly faster than the trivial share

construction in Shamir’s scheme. Sharing with RB-SS is slightly

11

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

8 10 12 14 16 18 20 22 24

2
−4
2
−2
2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

Sharing

Shamir (Naive)

Shamir (FFT)

ANP*

RB-SS

8 10 12 14 16 18 20 22 24

2
−4
2
−2
2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

Reconstruction

Shamir (Lagrange)

Shamir (Fast [17])

ANP*

RB-SS

8 10 12 14 16 18 20 22 24

2
−4
2
−2
2
0

2
2

2
4

2
6

2
8

2
10

2
12

2
14

2
16

2
18

2
20

Total Time

Shamir (FFT & [17])

ANP*

RB-SS

Figure 3: Computational cost of secret sharing with 𝑛 = 2𝑡 . X-axis are log
2
(𝑡) and y-axis are milliseconds (ms). We denote ANP

with an asterisk(*) as it is only suitable for settings with static corruption unlike the other two constructions.

𝑛 𝑡
[16] Secret

Sharing

[16]

Total

RB-SS Secret

Sharing

RB-SS
Total

1000 300 58 329 16 281
1500 450 172 781 37 629
2000 600 401 1,477 61 1,134

Figure 4: Comparison of secure aggregation protocol [16]
plugging in RB-SS. All times reported in seconds.

slower than FFT, but the total time of RB-SS will be smaller due to

significantly faster reconstruction. We note that RB-SS has signifi-

cantly smaller sharing time that is 2.4x faster than ANP .

Message Reconstruction.We see that fast modular transforms

outperform Lagrange interpolation for larger values of 𝑡 in Shamir’s

scheme. However, both are significantly slower than the message

reconstruction scheme of RB-SS by 2-7.8x. With privacy threshold

𝑡 = 2
20
, Shamir’s scheme requires more than 28 seconds to recon-

struct the message whereas RB-SS requires less than 5 seconds.

RB-SS has 1.5-6.8x smaller total sharing and reconstruction time

starting from 𝑡 as small as 256. Finally, we note that RB-SS is 2x

faster than ANP with improvements starting from 𝑡 = 2
13
.

Total Time. In terms of total time, RB-SS is the fastest while

Shamir’s scheme is the slowest. RB-SS is up to 6.1x faster than

Shamir’s scheme in total time with improvements starting from as

small as 𝑡 = 256. RB-SS has total time that is 2.3x faster than ANP

on top of the fact that RB-SS also withstands adaptive corruptions.

Share Size.We note that our framework increases the share size

as we need to include the seed to generate the matrix row and the

masked message into each share. In practice, the masked message

can be a part of the public parameters as it is identical for all parties.

Therefore, we only increase the share size by a small 128-bit seed

that is used as input to a pseudorandom generator.

Erasure Code. We can also compare the underlying erasure code

performance. In particular, the erasure code’s encoding and decod-

ing are the majority of the computational cost in the sharing and

reconstruction of the corresponding secret sharing scheme. As a

result, we can see that our linear erasure code from random band

matrices, RB, is more efficient than the erasure codes used in [2].

6.2 Secure Aggregation for Federated Learning
We plug RB-SS into the secure aggregation implementation by

Bonawitz et al. [16]. We choose this protocol as it is deployed at

Google [39] along with a public implementation [38]. We believe us-

ing RB-SS would improve other secure aggregation protocols such

as [5]. Our results are reported in Figure 4. We consider time used in

secret sharing as well as total time. We set 𝑡 = 0.3𝑛 following prior

experiments [16]. RB-SS reduces time spent during secret sharing

by 3.6-6.6x. In turn, the total time decreases by 13%-22%. Note that

the savings increase as 𝑛 (and, thus, 𝑡 = 0.3𝑛) increases. We picked

choices of 𝑛 consistent with current cohort sizes [15]. For larger

cohort sizes 𝑛, RB-SS will provide even more improvement. The

implementation [38] uses Lagrange interpolation as opposed to the

faster algorithms in [17]. However we note that Lagrange interpola-

tion outperforms fast modular transform [17] for 𝑡 ∈ {300, 450, 600}
from Figure 3. RB-SS outperforms both algorithms in this regime.

6.3 Verifiable Secret Sharing
We compare RB-F-VSS and RB-P-VSSwith eVSS [51], SCRAPE [21],

AMT VSS [73] and DHPVSS [22]. All results are reported in Figure 5.

eVSS used improved polynomial commitments reducing time to ver-

ify shares in𝑂 (1) time, but sharing required𝑂 (𝑛𝑡) time. AMT VSS

balanced the costs requiring 𝑂 (log 𝑡) time to verify a single share

but reduced sharing time to 𝑂 (𝑛 log 𝑡). For reconstruction both

eVSS and AMT VSS may use fast interpolation [17]. We compare

with eVSS and AMT VSS using the implementations from [56]. We

implement SCRAPE and DHPVSS in C++ for comparison with the

underlying Shamir’s scheme using FFT and fast modular transforms.

See Figure 8 (Appendix C.4) for more VSS comparisons.

Sharing Time. We evaluate the time of the dealing round. As the

other two rounds depend on the number of invalid shares, we eval-

uate verification of a single share. The complaint and verification

round times can be extrapolated by the number of complaints and

verification time. The dealing time of RB-F-VSS is 8.2-25.2x smaller

than the other schemes. RB-P-VSS is twice as expensive compared

to RB-F-VSS but significantly faster than eVSS and AMT VSS. This

is not surprising as both only require 𝑡 or 2𝑡 exponentiations and

executing the sharing of RB-SS. The setup of AMT VSS [73] re-

quires executing multipoint polynomial evaluation (identical to fast

interpolation [17]) while eVSS has 𝑂 (𝑛𝑡) time setup. Sharing in

SCRAPE [21] and DHPVSS [22] require performing 4𝑛 and 3𝑛 expo-

nentiations respectively as well as Shamir’s sharing algorithm. Both

components are larger than required by RB-F-VSS and RB-P-VSS.
12

Efficient Secret Sharing for Large-Scale Applications

8 10 12 14 16 18 20
10

0

10
1

10
2

10
3

10
4

10
5

10
6

Sharing (Dealing Round)

eVSS

SCRAPE

DHPVSS

AMT VSS

RB-F-VSS
RB-P-VSS

8 10 12 14 16 18 20

0

2

4

6

8

10

12

14

16

Verification

eVSS

SCRAPE

DHPVSS

AMT VSS

RB-F-VSS & RB-P-VSS

8 10 12 14 16 18 20
10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Reconstruction

eVSS

SCRAPE

DHPVSS

AMT VSS

RB-F-VSS
RB-P-VSS

8 10 12 14 16 18 20
10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Init & Sharing (Broadcast Communication)

eVSS & AMT VSS

SCRAPE

DHPVSS

RB-F-VSS & RB-P-VSS

8 10 12 14 16 18 20
10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Sharing (Private Communication)

eVSS

SCRAPE

DHPVSS

AMT VSS

RB-F-VSS
RB-P-VSS

8 10 12 14 16 18 20
10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Init & Sharing (Total Communication)

eVSS

SCRAPE

DHPVSS

AMT VSS

RB-F-VSS
RB-P-VSS

Figure 5: Evaluation of VSS with 𝑛 = 𝑡 + 𝑐. All x-axis are log
2
(𝑡) and y-axis are milliseconds (ms) or megabytes (MB).

For verification, both RB-F-VSS and RB-P-VSS are faster. Even
though verification requires𝑂 (_+log 𝑡) groupmultiplications grow-

ing in 𝑡 , we stress that RB-F-VSS and RB-P-VSS perform no expo-

nentiations. Both RB-F-VSS and RB-P-VSS uses 5x less time than

eVSS. Note, eVSS is slower due to the use of BN curves with bilinear

pairings instead of sec256r1. As SCRAPE and DHPVSS use only

𝑂 (1) exponentiations, SCRAPE’s verification time is essentially

similar to RB-F-VSS and RB-P-VSS. As 𝑡 grows larger, SCRAPE
and DHPVSS will eventually be superior as the verification time of

RB-F-VSS and RB-P-VSS requires𝑂 (_ + log 𝑡) time. Although, this

requires very large 𝑡 with no notable difference for 𝑡 ≤ 2
20
.

Communication. We evaluate broadcast and private communi-

cation. We assume all public parameters are broadcast. RB-F-VSS
and RB-P-VSS have nearly no initialization communication as they

only need to broadcast a single hash function. In contrast, eVSS

and AMT VSS broadcast 𝑡 public keys while SCRAPE and DHPVSS

broadcast 𝑛 public keys. During sharing, both RB-F-VSS and RB-
P-VSS broadcast 𝑡 public keys while eVSS and AMT VSS broadcast

a single commitment. So, the total broadcast costs are similar for

all four primitives except for SCRAPE and DHPVSS that broadcast

𝑛 public keys meaning it has worse communication than the others.

The private communication during sharing is 𝑂 (𝑛) equivalent to
the underlying secret sharing scheme: RB-SS (for RB-F-VSS and

RB-P-VSS) or Shamir’s scheme (for eVSS and SCRAPE). The ex-

ception is AMT VSS requiring 𝑂 (𝑛 log 𝑡) private communication.

RB-F-VSS and eVSS have similar communication while SCRAPE

and DHPVSS are slightly larger due to broadcasting 𝑛 public keys.

RB-P-VSS obtains at least 9% less communication than the rest.

Message Reconstruction.We consider message reconstruction in

the best case where only 𝑡 shares need verification. If more shares

need verification, RB-F-VSS and RB-P-VSSwill provide even better

improvements due to their smaller verification times compared

to eVSS and AMT VSS. There will not be significant differences

compared to SCRAPE and DHPVSS when verifying more shares

since verification times are similar. RB-F-VSS and RB-P-VSS enjoy

2.7-23.2x faster reconstruction compared to the rest.

6.4 Distributed Verifiable Random Functions
Finally, we evaluateRB-F-DVRF compared to state-of-the-art DVRF-

based schemes. All results are in Figure 6. We compare against

DVRF-based schemes with small number of rounds. One scheme

uses threshold BLS signatures as first detailed by DFINITY [48]

that is also deployed by CloudFlare [28] and the drand project [35].

A recent work [42] considers space-time trade-offs of threshold

BLS protocols presenting GLOW-DVRF and DDH-DVRF. For our

evaluation, we use the implementations available at [34]. We omit

comparisons with RandHerd [72] as it has high round complexity

(the reason it was not used in the drand project [62]) and Strobe [4]

due to the lack of a public implementation.

Setup. We compare the total setup time for each party that in-

cludes generating all necessary information to send to other parties

and verifying inputs from other parties. In our experiments, we

choose 𝑛 = 𝑡 + 𝑐 . For RB-F-DVRF, this means 𝑛 = (2 + 𝛼)𝑡 . For
the other schemes, we use 𝑛 = 2𝑡 . We assume that all inputs ver-

ify correctly and no work is needed to handle complaints. We see

that RB-F-DVRF has significantly faster setup time than the other

schemes. This is expected as the other schemes have 𝑂 (𝑛𝑡) setup
time whereas RB-F-DVRF uses only 𝑂 (𝑛_) time during setup.

Randomness Generation Round. We consider three separate

components of randomness generation: partial evaluation, verifi-

cation of partial evaluations and final reconstruction. For partial

evaluation, we consider a single party’s computation. Similarly, for

partial verification, we consider a single share. In practice, each

round could require verifying 𝑐 shares in the best case and 𝑛 shares

13

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

4 5 6 7 8 9 10 11 12 13 14 15 16 17

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Setup (Per Party)

DFINITY-DVRF

GLOW-DVRF

DDH-DVRF

RB-F-DVRF

8 9 10 11 12 13 14 15 16 17

0

0.2

0.4

0.6

0.8

1

Partial Evaluation (Per Party)

DFINITY-DVRF

GLOW-DVRF

DDH-DVRF

RB-F-DVRF

8 9 10 11 12 13 14 15 16 17

0

0.2

0.4

0.6

0.8

1

Partial Verification (Single Share)

DFINITY-DVRF

GLOW-DVRF

DDH-DVRF

RB-F-DVRF

8 9 10 11 12 13 14 15 16 17
10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
5

10
6

Reconstruction (No Verification)

DFINITY-DVRF

GLOW-DVRF

DDH-DVRF

RB-F-DVRF

Figure 6: Computational cost of DVRF-based DRBs with 𝑛 = 𝑡 + 𝑐. All x-axis are log
2
(𝑡) and y-axis are milliseconds (ms).

in the worst case. As this is the same for all protocols, we only

benchmark verifying a single share for comparison. We see that

RB-F-DVRF has identical times to DFINITY-DVRF. GLOW-DVRF

and DDH-DVRF have higher evaluation times and either similar

or faster verification. For reconstruction, we note that the public

implementation [34] uses the secret keys to reconstruct (i.e., as-

sume that the reconstructing party is trusted). In the same setting,

RB-F-DVRF is 2-6x faster than the other constructions.

7 RELATEDWORKS
Secret Sharing. Threshold secret sharing was introduced indepen-

dently by Blakley [12] and Shamir [70]. Krawczyk [52] showed that

shares may be reduced using computational assumptions. Recent

work has considered secret sharing with efficient sharing and recon-

struction algorithms. For example, schemes with near-linear time

were studied in [2, 29, 36, 54]. To our knowledge, all of these works

are theoretical nature except for a single practical instantiation

presented in [2]. Recent work [3] ruled out the existence of 𝑂 (𝑛)
time algorithms for binary shares under certain settings. Another

line of work considers building secret sharing schemes utilizing

only XOR operations. The first XOR-based scheme [53] required

𝑂 (𝑛3𝑡3) reconstruction time. For smaller 𝑡 , [24] presented a scheme

with 𝑂 (𝑛𝑡_) sharing and reconstruction. To our knowledge, all the

schemes require at least quadratic in 𝑡 time.

Blakley and Meadows [13] presented the notion of ramp secret

sharing. A series of works have improved the share sizes of ramp

schemes [53, 57, 61] as well as studying the required share size [20].

Verifiable Secret Sharing. VSS schemes were introduced by Chor

et al. [26] where parties can verify the consistency of their shares.

Two early VSS schemes are by Feldman [40] and Pedersen [64].

More efficient VSS [8, 27, 51, 73] as well as those with stronger

properties [1, 59] were presented in recent years.

Distributed Randomness Generation. Randomness beacons

were first introduced by Rabin [65]. Many prior works have studied

decentralized randomness beacons in the trusted setup [4, 8, 18, 19,

42, 47, 72] as well as transparent setup [30, 31, 69] settings to list

some examples. We point to [25] for more details and comparisons.

Random Band Matrices. Random band matrices were first intro-

duced in [32]. Its first application was in ribbon filters [33] that

outperformed prior filter data structures (such as bloom filters). In

recent years, random band matrices have found several applications

in cryptography including keyword PIR [63], oblivious key-value

stores [9] as well as oblivious ciphertext compression [10].

8 CONCLUSIONS
We present a generic framework to build ramp secret sharing

schemes from any family of linear erasure codes with distributed

generator matrices. In particular, we present a framework allowing

one to build secret sharing schemes against adaptive corruption

from erasure codes with weak correctness guarantees. We build a

distributed generator matrix RB from random band matrices that is

more efficient than other erasure codes used in practical secret shar-

ing instantiations. Using our framework, we instantiate RB-SSwith
RB that is more efficient than prior state-of-the-art schemes. We

show RB-SS has potential implications towards many applications

by presenting improved protocols for federated learning, verifiable

secret sharing and distributed verifiable random functions.

Acknowledgements. The authors would like to thank the anony-

mous CCS reviewers for providing feedback to improve our paper.

REFERENCES
[1] Ittai Abraham, Philipp Jovanovic, Mary Maller, Sarah Meiklejohn, and Gilad

Stern. 2023. Bingo: Adaptively secure packed asynchronous verifiable secret

sharing and asynchronous distributed key generation. In CRYPTO 2023.
[2] Benny Applebaum, Oded Nir, and Benny Pinkas. 2023. How to Recover a Secret

with O(n) Additions. In CRYPTO 2023. Springer-Verlag, 236–262.
[3] Marshall Ball, Alper Çakan, and Tal Malkin. 2021. Linear threshold secret-

sharing with binary reconstruction. In 2nd Conference on Information-Theoretic
Cryptography (ITC 2021). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

[4] Donald Beaver, Konstantinos Chalkias, Mahimna Kelkar, Lefteris Kokoris Kogias,

Kevin Lewi, Ladi de Naurois, Valeria Nicolaenko, Arnab Roy, andAlberto Sonnino.

2021. STROBE: Stake-based Threshold Random Beacons. Cryptology ePrint

Archive, Paper 2021/1643. https://eprint.iacr.org/2021/1643

[5] JamesHenry Bell, Kallista A. Bonawitz, Adrià Gascón, Tancrède Lepoint, andMar-

iana Raykova. 2020. Secure Single-Server Aggregation with (Poly)Logarithmic

Overhead. In ACM CCS 2020, Jay Ligatti, Xinming Ou, Jonathan Katz, and Gio-

vanni Vigna (Eds.). ACM Press, 1253–1269. https://doi.org/10.1145/3372297.

3417885

[6] Mihir Bellare and Phillip Rogaway. 2007. Robust computational secret sharing

and a unified account of classical secret-sharing goals. In ACM CCS 2007.
[7] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-

tended Abstract). In 20th ACM STOC. ACM Press, 1–10. https://doi.org/10.1145/

62212.62213

[8] Adithya Bhat, Nibesh Shrestha, Zhongtang Luo, Aniket Kate, and Kartik Nayak.

2021. Randpiper–reconfiguration-friendly random beacons with quadratic com-

munication. In ACM CCS 2021.
[9] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Near-

Optimal Oblivious Key-Value Stores for Efficient PSI, PSU and Volume-Hiding

Multi-Maps. In USENIX Security 23. USENIX Association, Anaheim, CA, 301–318.

[10] Alexander Bienstock, Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2024. Batch

PIR and Labeled PSI with Oblivious Ciphertext Compression. In USENIX Security.
[11] Bitcoin Armory [n. d.]. https://btcarmory.com/.

[12] George Robert Blakley. 1979. Safeguarding cryptographic keys. In Managing
Requirements Knowledge, International Workshop on. IEEE Computer Society.

[13] G. R. Blakley and Catherine Meadows. 1984. Security of Ramp Schemes. In

CRYPTO’84 (LNCS, Vol. 196), G. R. Blakley and David Chaum (Eds.). Springer,

14

https://eprint.iacr.org/2021/1643
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/3372297.3417885
https://doi.org/10.1145/62212.62213
https://doi.org/10.1145/62212.62213
https://btcarmory.com/

Efficient Secret Sharing for Large-Scale Applications

Heidelberg, 242–268.

[14] Andrej Bogdanov, Yuval Ishai, Emanuele Viola, and Christopher Williamson.

2016. Bounded Indistinguishability and the Complexity of Recovering Secrets.

In CRYPTO 2016, Part III (LNCS, Vol. 9816), Matthew Robshaw and Jonathan Katz

(Eds.). Springer, Heidelberg, 593–618. https://doi.org/10.1007/978-3-662-53015-

3_21

[15] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex

Ingerman, Vladimir Ivanov, Chloe Kiddon, Jakub Konečnỳ, Stefano Mazzocchi,

Brendan McMahan, et al. 2019. Towards federated learning at scale: System

design. Proceedings of machine learning and systems 1 (2019), 374–388.
[16] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H. Brendan

McMahan, Sarvar Patel, Daniel Ramage, Aaron Segal, and Karn Seth. 2017. Prac-

tical Secure Aggregation for Privacy-Preserving Machine Learning. In ACM CCS
2017, Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu

(Eds.). ACM Press, 1175–1191. https://doi.org/10.1145/3133956.3133982

[17] Allan Borodin and Robert Moenck. 1974. Fast modular transforms. J. Comput.
System Sci. 8, 3 (1974), 366–386.

[18] Christian Cachin, Klaus Kursawe, and Victor Shoup. 2005. Random Oracles in

Constantinople: Practical Asynchronous Byzantine Agreement Using Cryptog-

raphy. Journal of Cryptology 18, 3 (July 2005), 219–246. https://doi.org/10.1007/

s00145-005-0318-0

[19] Jan Camenisch, Manu Drijvers, Timo Hanke, Yvonne-Anne Pignolet, Victor

Shoup, and Dominic Williams. 2021. Internet Computer Consensus. Cryptology

ePrint Archive, Paper 2021/632. https://eprint.iacr.org/2021/632

[20] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. 2013. Bounds on the thresh-

old gap in secret sharing and its applications. IEEE Transactions on Information
Theory 59, 9 (2013), 5600–5612.

[21] Ignacio Cascudo and Bernardo David. 2017. SCRAPE: Scalable randomness

attested by public entities. In International Conference on Applied Cryptography
and Network Security. Springer, 537–556.

[22] Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. 2022. YOLO

YOSO: Fast and Simple Encryption and Secret Sharing in the YOSO Model. In

ASIACRYPT 2022, Part I (LNCS). Springer, Heidelberg, 651–680. https://doi.org/

10.1007/978-3-031-22963-3_22

[23] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-

tionally Secure Protocols (Extended Abstract). In 20th ACM STOC. ACM Press,

11–19. https://doi.org/10.1145/62212.62214

[24] Liqun Chen, Thalia M Laing, and Keith M Martin. 2016. Efficient, XOR-based,

ideal threshold schemes. In Cryptology and Network Security: 15th International
Conference, CANS 2016, Milan, Italy, November 14-16, 2016, Proceedings. Springer.

[25] Kevin Choi, Aathira Manoj, and Joseph Bonneau. 2023. SoK: Distributed Ran-

domness Beacons. In 2023 IEEE Symposium on Security and Privacy (SP).
[26] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Ver-

ifiable Secret Sharing and Achieving Simultaneity in the Presence of Faults

(Extended Abstract). In 26th FOCS. IEEE Computer Society Press, 383–395.

https://doi.org/10.1109/SFCS.1985.64

[27] Ashish Choudhury. 2020. Optimally-resilient unconditionally-secure asynchro-

nous multi-party computation revisited. Cryptology ePrint Archive (2020).
[28] Cloudflare Randomness Beacon [n. d.]. https://developers.cloudflare.com/

randomness-beacon/.

[29] Ronald Cramer, Ivan Bjerre Damgård, Nico Döttling, Serge Fehr, and Gabriele

Spini. 2015. Linear Secret Sharing Schemes from Error Correcting Codes and

Universal Hash Functions. In EUROCRYPT 2015, Part II (LNCS, Vol. 9057), Elisabeth
Oswald and Marc Fischlin (Eds.). Springer, Heidelberg, 313–336. https://doi.org/

10.1007/978-3-662-46803-6_11

[30] Sourav Das, Vinith Krishnan, Irene Miriam Isaac, and Ling Ren. 2022. Spurt:

Scalable distributed randomness beacon with transparent setup. In 2022 IEEE
Symposium on Security and Privacy (SP). IEEE, 2502–2517.

[31] Bernardo David, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018.

Ouroboros Praos: An Adaptively-Secure, Semi-synchronous Proof-of-Stake

Blockchain. In EUROCRYPT 2018, Part II (LNCS, Vol. 10821), Jesper Buus Nielsen
and Vincent Rijmen (Eds.). Springer, Heidelberg, 66–98. https://doi.org/10.1007/

978-3-319-78375-8_3

[32] Martin Dietzfelbinger and Stefan Walzer. 2019. Efficient Gauss Elimination for

Near-Quadratic Matrices with One Short Random Block per Row, with Applica-

tions. In ESA 2019.
[33] Peter C Dillinger and Stefan Walzer. 2021. Ribbon filter: practically smaller than

Bloom and Xor. arXiv preprint arXiv:2103.02515 (2021).
[34] Distributed Verifiable Random Functions: an Enabler of Decentralized Random

Beacons [n. d.]. https://github.com/fetchai/research-dvrf.

[35] Drand: Distributed randomness beacon [n. d.]. https://drand.love.

[36] Erez Druk and Yuval Ishai. 2014. Linear-time encodable codes meeting the

gilbert-varshamov bound and their cryptographic applications. In ITCS 2014,
Moni Naor (Ed.). ACM, 169–182. https://doi.org/10.1145/2554797.2554815

[37] Bin Fan, Dave G Andersen, Michael Kaminsky, and Michael D Mitzenmacher.

2014. Cuckoo filter: Practically better than bloom. In Proceedings of the 10th ACM
International on Conference on emerging Networking Experiments and Technolo-
gies.

[38] Federated Compute Platform [n. d.]. https://github.com/google/federated-

compute.

[39] Federated Learning Blog [n. d.]. Federated Learning: Collaborative Machine

Learning without Centralized Training Data. https://ai.googleblog.com/2017/04/

federated-learning-collaborative.html.

[40] Paul Feldman. 1987. A Practical Scheme for Non-interactive Verifiable Secret

Sharing. In 28th FOCS. IEEE Computer Society Press, 427–437. https://doi.org/

10.1109/SFCS.1987.4

[41] Matthew K. Franklin and Moti Yung. 1992. Communication Complexity of

Secure Computation (Extended Abstract). In 24th ACM STOC. ACM Press, 699–

710. https://doi.org/10.1145/129712.129780

[42] David Galindo, Jia Liu, Mihair Ordean, and Jin-Mann Wong. 2021. Fully dis-

tributed verifiable random functions and their application to decentralised ran-

dom beacons. In 2021 IEEE European Symposium on Security and Privacy.
[43] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai.

2021. Oblivious Key-Value Stores and Amplification for Private Set Intersection.

In CRYPTO 2021, Part II (LNCS, Vol. 12826), Tal Malkin and Chris Peikert (Eds.).

Springer, Heidelberg, Virtual Event, 395–425. https://doi.org/10.1007/978-3-030-

84245-1_14

[44] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

Distributed Key Generation for Discrete-Log Based Cryptosystems. Journal of
Cryptology 20, 1 (Jan. 2007), 51–83. https://doi.org/10.1007/s00145-006-0347-3

[45] Michel Goemans. 2015. Chernoff bounds, and some applications. https://math.

mit.edu/~goemans/18310S15/chernoff-notes.pdf.

[46] Michael T Goodrich and Michael Mitzenmacher. 2011. Invertible bloom lookup

tables. In 2011 49th Annual Allerton Conference on Communication, Control, and
Computing (Allerton). IEEE, 792–799.

[47] Jens Groth. 2021. Non-interactive distributed key generation and key resharing.

Cryptology ePrint Archive (2021).
[48] Timo Hanke, Mahnush Movahedi, and Dominic Williams. 2018. Dfinity technol-

ogy overview series, consensus system. arXiv preprint arXiv:1805.04548 (2018).
[49] Bailey Kacsmar, Chelsea Komlo, Florian Kerschbaum, and Ian Goldberg. 2020.

Mind the Gap: Ceremonies for Applied Secret Sharing. PoPETs 2020, 2 (April
2020), 397–415. https://doi.org/10.2478/popets-2020-0033

[50] Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi

Bennis, Arjun Nitin Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cor-

mode, Rachel Cummings, et al. 2021. Advances and open problems in federated

learning. Foundations and Trends® in Machine Learning 14, 1–2 (2021), 1–210.

[51] Aniket Kate, Gregory M. Zaverucha, and Ian Goldberg. 2010. Constant-Size

Commitments to Polynomials and Their Applications. In ASIACRYPT 2010 (LNCS,
Vol. 6477), Masayuki Abe (Ed.). Springer, Heidelberg, 177–194. https://doi.org/

10.1007/978-3-642-17373-8_11

[52] Hugo Krawczyk. 1994. Secret Sharing Made Short. In CRYPTO’93 (LNCS, Vol. 773),
Douglas R. Stinson (Ed.). Springer, Heidelberg, 136–146. https://doi.org/10.1007/

3-540-48329-2_12

[53] Jun Kurihara, Shinsaku Kiyomoto, Kazuhide Fukushima, and Toshiaki Tanaka.

2008. A new (k, n)-threshold secret sharing scheme and its extension. In Infor-
mation Security: 11th International Conference, ISC 2008. Springer, 455–470.

[54] Yuan Li. 2023. Secret Sharing on Superconcentrator. arXiv preprint
arXiv:2302.04482 (2023).

[55] libff: C++ library for Finite Fields and Elliptic Curves [n. d.]. https://github.com/

scipr-lab/libff.

[56] libpolycrypto [n. d.]. https://github.com/alinush/libpolycrypto.

[57] Fuchun Lin, Mahdi Cheraghchi, Venkatesan Guruswami, Reihaneh Safavi-Naini,

and Huaxiong Wang. 2019. Secret Sharing with Binary Shares. In ITCS 2019,
Avrim Blum (Ed.), Vol. 124. LIPIcs, 53:1–53:20. https://doi.org/10.4230/LIPIcs.

ITCS.2019.53

[58] Michael G Luby, Michael Mitzenmacher, Mohammad Amin Shokrollahi, and

Daniel A Spielman. 2001. Efficient erasure correcting codes. IEEE Transactions
on Information Theory 47, 2 (2001), 569–584.

[59] Atsuki Momose, Sourav Das, and Ling Ren. 2023. On the Security of KZG

Commitment for VSS. In ACM CCS 2023.
[60] Multi-Party Threshold Signature Scheme [n. d.]. https://github.com/bnb-chain/

tss-lib.

[61] Wakaha Ogata, Kaoru Kurosawa, and Shigeo Tsujii. 1993. Nonperfect secret

sharing schemes. In Advances in Cryptology—AUSCRYPT’92: Workshop on the
Theory and Application of Cryptographic Techniques Gold Coast, Queensland,
Australia, December 13–16, 1992 Proceedings 3. Springer, 56–66.

[62] Origins of drand [n. d.]. https://drand.love/about/#origins-of-drand.

[63] Sarvar Patel, Joon Young Seo, and Kevin Yeo. 2023. Don’t be Dense: Efficient

Keyword PIR for Sparse Databases. In USENIX Security 2023.
[64] Torben P. Pedersen. 1992. Non-Interactive and Information-Theoretic Secure

Verifiable Secret Sharing. In CRYPTO’91 (LNCS, Vol. 576), Joan Feigenbaum (Ed.).

Springer, Heidelberg, 129–140. https://doi.org/10.1007/3-540-46766-1_9

[65] Michael O. Rabin. 1983. Transaction protection by beacons. J. Comput. System
Sci. 27, 2 (1983), 256–267.

[66] Tal Rabin and Michael Ben-Or. 1989. Verifiable Secret Sharing and Multiparty

Protocols with Honest Majority (Extended Abstract). In 21st ACM STOC. ACM

15

https://doi.org/10.1007/978-3-662-53015-3_21
https://doi.org/10.1007/978-3-662-53015-3_21
https://doi.org/10.1145/3133956.3133982
https://doi.org/10.1007/s00145-005-0318-0
https://doi.org/10.1007/s00145-005-0318-0
https://eprint.iacr.org/2021/632
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1145/62212.62214
https://doi.org/10.1109/SFCS.1985.64
https://developers.cloudflare.com/randomness-beacon/
https://developers.cloudflare.com/randomness-beacon/
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/978-3-662-46803-6_11
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-319-78375-8_3
https://github.com/fetchai/research-dvrf
https://drand.love
https://doi.org/10.1145/2554797.2554815
https://github.com/google/federated-compute
https://github.com/google/federated-compute
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1109/SFCS.1987.4
https://doi.org/10.1145/129712.129780
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/978-3-030-84245-1_14
https://doi.org/10.1007/s00145-006-0347-3
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://math.mit.edu/~goemans/18310S15/chernoff-notes.pdf
https://doi.org/10.2478/popets-2020-0033
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/978-3-642-17373-8_11
https://doi.org/10.1007/3-540-48329-2_12
https://doi.org/10.1007/3-540-48329-2_12
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libff
https://github.com/alinush/libpolycrypto
https://doi.org/10.4230/LIPIcs.ITCS.2019.53
https://doi.org/10.4230/LIPIcs.ITCS.2019.53
https://github.com/bnb-chain/tss-lib
https://github.com/bnb-chain/tss-lib
 https://drand.love/about/##origins-of-drand
https://doi.org/10.1007/3-540-46766-1_9

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

Press, 73–85. https://doi.org/10.1145/73007.73014

[67] Srinivasan Raghuraman and Peter Rindal. 2022. Blazing Fast PSI from Improved

OKVS and Subfield VOLE. ACM Press, 2505–2517. https://doi.org/10.1145/

3548606.3560658

[68] Irving S Reed and Gustave Solomon. 1960. Polynomial codes over certain finite

fields. Journal of the society for industrial and applied mathematics 8, 2 (1960).
[69] Philipp Schindler, Aljosha Judmayer, Nicholas Stifter, and Edgar Weippl. 2020.

Hydrand: Efficient continuous distributed randomness. In 2020 IEEE Symposium
on Security and Privacy (SP). IEEE, 73–89.

[70] Adi Shamir. 1979. How to Share a Secret. Communications of the Association for
Computing Machinery 22, 11 (Nov. 1979), 612–613.

[71] Shamir Seals [n. d.]. https://developer.hashicorp.com/vault/docs/concepts/seal#

shamir-seals.

[72] Ewa Syta, Philipp Jovanovic, Eleftherios Kokoris-Kogias, Nicolas Gailly, Linus

Gasser, Ismail Khoffi, Michael J. Fischer, and Bryan Ford. 2017. Scalable Bias-

Resistant Distributed Randomness. In 2017 IEEE Symposium on Security and
Privacy. IEEE Computer Society Press, 444–460. https://doi.org/10.1109/SP.2017.

45

[73] Alin Tomescu, Robert Chen, Yiming Zheng, Ittai Abraham, Benny Pinkas,

Guy Golan Gueta, and Srinivas Devadas. 2020. Towards scalable threshold

cryptosystems. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE.
[74] Stefan Walzer. 2021. Peeling close to the orientability threshold–spatial cou-

pling in hashing-based data structures. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA). SIAM, 2194–2211.

A RAMP SECRET SHARING
A.1 Ramp Secret Sharing Definitions

Definition 2 (Ramp Secret Sharing). A ramp secret sharing

scheme over message space M consists of the following tuple of
algorithms SS = (Init, Share,Reconstruct) such that:

• Init receives security parameter 1_ , number of parties 𝑛, cor-
rectness threshold 𝑐 ≤ 𝑛 and privacy threshold 𝑡 ≤ 𝑐 . Init
outputs public parameters pp.

• Share receives the message𝑚 ∈ M and public parameters
pp and outputs an 𝑛-tuple of shares, (𝑠1, . . . , 𝑠𝑛).

• Reconstruct receives a subset of shares 𝑠𝐼 for some subset
𝐼 ⊆ [𝑛] and public parameters pp and outputs a message
𝑚′ ∈ M.

Next, we move onto defining privacy of a ramp secret sharing

scheme SS with respect to a stateful, polynomial time adversary

A = (A1,A2,A3). Our notion of privacy corresponds to the CSS

privacy definition in [6]. We use experiments PriExp𝑏 , for 𝑏 =

0, 1, that are parametrized by the secret sharing scheme SS and by

the adversary A. In both experiments, A chooses two challenge

messages𝑚0 and𝑚1 after seeing the public parameters pp. For our
schemes, one can imagine pp to be public hash functions (random

oracles) and the choice of the challenge messages may depend on

the hash functions. Then, in PriExp𝑏 , A receives up to 𝑡 − 1 shares
of the challenge message𝑚𝑏 for adaptively corrupted parties ofA’s

choice and then, finally,A outputs one bit. We say that the scheme

is 𝛿-private if the probabilities of outputting 1 in PriExp0SS,A and

PriExp1SS,A differ at most 𝛿 .

PriExp𝑏SS,A (_, 𝑛, 𝑐, 𝑡):

(1) Challenger executes pp← Init(1_, 𝑛, 𝑐, 𝑡).
(2) Adversary picks two messages, (𝑚0,𝑚1) ← A1 (1_, pp).
(3) Challenger computes (𝑠1, . . . , 𝑠𝑛) ← Share(𝑚𝑏 , pp).
(4) Adversary A2 adaptively corrupts at most 𝑡 − 1 parties by

submitting index 𝑖 ∈ [𝑛] and receiving 𝑠𝑖 .

(5) Adversary outputs [← A3 ().
(6) Return [.

Next, we define experiment CorExp that we use to formalize the

notion of correctness of a ramp secret sharing scheme. Here we

let adversary A adaptively corrupt up to 𝑛 − 𝑐 parties and learn

their shares with the goal of forcing the remaining uncorrupted

parties to reconstruct the wrong message. We say that SS has 𝜖-

error if no adversary has probability greater than 𝜖 of succeeding.

The experiment is parameterized by the secret sharing scheme SS
and by the polynomial time stateful adversary A = (A1,A2). The
notion we obtain corresponds to the CR0 recoverability definition

in [6].

CorExpSS,A (_, 𝑛, 𝑐, 𝑡):
(1) Challenger executes pp← Init(1_, 𝑛, 𝑐, 𝑡).
(2) Adversary picks challenge message,𝑚 ← A1 (1_, pp).
(3) Challenger computes (𝑠1, . . . , 𝑠𝑛) ← Share(pp,𝑚).
(4) Adversary A2 adaptively corrupts at most 𝑛 − 𝑐 parties by

submitting index 𝑖 ∈ [𝑛] and receiving 𝑠𝑖 . Let 𝐼 ⊂ [𝑛] be
the set of parties corrupted by A2.

(5) Return 1 iff Reconstruct(pp, 𝑠 [𝑛]\𝐼) ≠𝑚.

We are now ready to define ramp secret sharing.

Definition 3 ((𝜖, 𝛿)-Ramp Secret Sharing). A ramp secret shar-
ing scheme SS = (Init, Share,Reconstruct) is a (𝑡, 𝑐)-ramp secret

sharing scheme with 𝜖-error and 𝛿-privacy if the following hold:
• Correctness: For any polynomial time adversary A and suf-

ficiently large _ and 𝑛

Pr[CorExpSS,A (_, 𝑛, 𝑐, 𝑡) = 1] ≤ 𝜖.
• Privacy: For any polynomial time adversary A and suffi-

ciently large _ and 𝑛

| Pr[PriExp0SS,A (_, 𝑛, 𝑐, 𝑡) = 1]−

Pr[PriExp1SS,A (_, 𝑛, 𝑐, 𝑡) = 1] | ≤ 𝛿.

For a ramp scheme, it is possible that 𝑐 > 𝑡 parties are needed

to reconstruct. We note that one can obtain threshold schemes by
consider (𝑡, 𝑡)-ramp schemes where 𝑐 = 𝑡 .

A.2 Proofs for Ramp Secret Sharing
All missing proofs for RB-SS are presented here. We start with

correctness and efficiency of F -SS below.

Proof of Theorem 3. We note that Init only samples a random

hash function that requires 𝑂 (_) time. For Share, we generateM
that requires𝑂 (𝑓RandGen (𝑛, 𝑡)+𝑛·𝑓ExpandRow (𝑡)) time. Generating x
requires𝑂 (𝑡) time. Computingmask requires𝑂 (𝑡) time to compute

𝐻 (x) and mask =𝑚 +𝐻 (x). Afterwards, we compute the matrix-

vector multiplication M · x that requires 𝑂 (𝑎) time. So, the total

running time of Share is 𝑂 (𝑓RandGen (𝑛, 𝑡) + 𝑛 · 𝑓ExpandRow (𝑡) +
𝑎 + 𝑡). Finally, consider Reconstruct that executes ExpandRow to

obtain M𝐼 requiring 𝑂 (𝑡 · 𝑓ExpandRow (𝑡)) time. Executing Solve
requires𝑂 (𝑓Solve (𝑡)) time. Afterwards, Reconstruct computes𝐻 (x)
and mask + 𝐻 (x) requiring 𝑂 (𝑡) time. So, the total time is 𝑂 (𝑡 ·
𝑓ExpandRow (𝑡) + 𝑓Solve (𝑡) + 𝑡). □

Proof of Theorem 7. To obtain the desired bounds, we use the

random band matrix family RB of dimension 𝑛× ℓ with band length

𝑤 = 𝑂 (^ + log ℓ) over a field F of size 2
_
and setting ℓ = 𝑡 . By

choosing the appropriate constant 𝛼 > 0, we get that RB is a

16

https://doi.org/10.1145/73007.73014
https://doi.org/10.1145/3548606.3560658
https://doi.org/10.1145/3548606.3560658
https://developer.hashicorp.com/vault/docs/concepts/seal#shamir-seals
https://developer.hashicorp.com/vault/docs/concepts/seal#shamir-seals
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45

Efficient Secret Sharing for Large-Scale Applications

((1+𝛼)𝑡, 2−^)-generator matrix. Therefore, RB-SS is a (𝑡, (1+𝛼)𝑡)-
ramp secret sharing scheme with error at most 2

−^
and security

advantage negligible in _, by Theorem 4. Finally, we obtain the

running times by plugging in the fact that every random band

matrix has at most𝑂 (𝑛𝑤) non-zero entries and that Solve executes
in 𝑂 (𝑡𝑤) time. □

Privacy. Next, we move to privacy and proving Theorem 4. Here,

we will rely on certain properties of the underlying hash function

𝐻 . Recall that we provided several options for 𝐻 . Prior works have

instantiated 𝐻 using linear universal hash functions [29] and the

dot-product with a small-integer vector [2] that are randomness

extractors. We introduced a third option where 𝐻 is a random

oracle. We will proceed in two steps. First, we show that using

𝐻 as a random oracle enables privacy. Afterwards, we extend the

framework to generality assuming that𝐻 is a randomness extractor.

If 𝐻 is a random oracle, we show that any adversary A that can

only make 𝑞 = poly(_, 𝑛) queries to 𝐻 can distinguish experiments

PriExp0𝑡,𝑛 and PriExp1𝑡,𝑛 with negligible probability for sufficiently

large choices of field sizes for F and M. Roughly speaking, we

show that 𝐻 can be viewed as a randomness extractor when 𝐻 is a

random oracle and the adversary is computationally bounded. Let

us proceed more formally.

Theorem 10. F -SS is a (𝑡, 𝐾 (𝑡))-ramp secret sharing scheme that,
for security parameter _, is 𝛿-secure with 𝛿 ≤ 𝑞2/|M| = 𝑞2/2_ when
adversary A makes at most 𝑞 queries to 𝐻 that is modeled as a
random oracle.

Proof. Let 𝐼 be the set of at most 𝑡 − 1 parties corrupted by

adversaryA and let 𝑌𝐼 be the vector of the components 𝑦𝑖 from the

shares of the corrupted parties. With a slight abuse of terminology,

we will refer to 𝑦𝑖 as the share of party 𝑖 . Let us fix a set 𝐽 of

𝑧 = 𝑡 − |𝐼 | ≥ 1 parties such that 𝑍 = 𝐼 ∪ 𝐽 has size |𝑍 | = 𝑡 and the

matrix𝑀𝑍 has rank 𝑡 .

Next we define the set X of compatible vectors in the following

way. For every sequence 𝐴 of 𝑧 ≥ 1 shares for the parties in 𝐽 , we

consider the vector 𝑌𝐴 obtaining by appending the 𝑧 shares of 𝐴

to 𝑌𝐼 and we let 𝑋𝐴 be the vector such that 𝑌𝐴 = 𝑀𝑍 · 𝑋𝐴 . Since
𝑀𝑍 has full rank, for every 𝑌𝐴 , there exists a unique such vector

𝑋𝐴 and 𝐴 ≠ 𝐴′ implies that 𝑋𝐴 ≠ 𝑋𝐴′ . Therefore, the set X of the

𝑋𝐴’s as 𝐴 ranges over the sets of 𝑧 ≥ 1 shares consists of exactly

|F|𝑧 ≥ 2
_ = |M| elements. Note also that the set X of compatible

vectors is, for any fixed 𝐼 and 𝑌𝐼 , independent of the set 𝐽 chosen

to augment 𝐼 .

Let us consider the experiment Hybrid𝑏 that coincides with

PriExp𝑏 with the exception that the restriction of 𝐻 to the set X is

one-to-one and ontoM = F_ . That is, if𝐴 ≠ 𝐴′, not only𝑋𝐴 ≠ 𝑋𝐴′

but also 𝐻 (𝑋𝐴) ≠ 𝐻 (𝑋𝐴′). Then, the views of A in Hybrid0 and
Hybrid1 coincide.

On the other hand, unless the random oracle 𝐻 is queried by

A at two points 𝑋𝐴 ≠ 𝑋𝐴′ for which 𝐻 (𝑋𝐴) = 𝐻 (𝑋𝐴′), the views
of A in PriExp𝑏 and Hybrid𝑏 also coincide. Therefore the distance

between PriExp𝑏 and Hybrid𝑏 is upper bounded by the probability

that, for random 𝐻 , two queries over compatible vectors issued by

A collide. The probability that any two queries collide is 1/|M|.
If A makes 𝑞 queries, by the union bound, the probability that at

least 2 of the 𝑞 queries collide is at most 𝑞2/2 · 1/|M|. Therefore,

the statistical distance between PriExp0𝑡,𝑛 and PriExp1𝑡,𝑛 is at most

𝑞2/|M| = 𝑞2/2_ . □

Next, we bound the adversary’s running time to finish the proof

when 𝐻 is a random oracle.

Proof of Theorem 5. Follows by Theorem 10 and observing

that a polynomial adversary makes 𝑞 ≤ poly(_, 𝑛) queries. □

The theorems above hold also for adversaries that have un-

bounded computational power but can query the random oracle on

at most poly(_, 𝑛) inputs. Finally, we note that our construction is

built against adaptive adversaries.

Next, we show that the framework yields a private secret sharing

scheme assuming that 𝐻 is any randomness extractor. We start by

defining randomness extractors as follows.

Definition 4. 𝐻 : {0, 1}𝑠 × 𝑋 → {0, 1}𝑏 is a (𝑘,𝛾)-randomness
extractor if, the random variable 𝑋 satisfies min-entropy 𝐻∞ (𝑋) ≥ 𝑘
and for uniformly random 𝑠 ∈ 𝑆 , then the statistical distance of
distributions (𝑆, 𝐻 (𝑆, 𝑋)) and (𝑈𝑠 ,𝑈𝑏) is at most 𝛾 where𝑈𝑠 and𝑈𝑏
are uniformly random strings of 𝑠 and 𝑏 bits.

Another way to view the above definition is to consider a family

of hash functions. Drawing a random hash function is equivalent

to picking a random 𝑠-bit seed. This view aligns with our construc-

tions where we sample random hash functions and do not consider

random seeds. Therefore, we will use this view where we consider

𝐻 to be randomly drawn for a hash family and omit the seed.

The proof proceeds nearly identically except we only make the

assumption that 𝐻 is a randomness extractor. Recall that the hash

function 𝐻 : F𝑡 →M receives 𝑡 field elements as input x ∈ F𝑡 and
outputs a random element 𝐻 (x) from the message space. Roughly

speaking, at least one of the 𝑡 elements will be random from the

adversary’s views meaning that the min-entropy of the input x is

𝐻∞ (x) ≥ log |F|. We suppose that 𝐻 is a (log |F|, 2−_)-randomness

extractor whose output will have statistical distance at most 2
−_

from a random element inM.

We assume that |F| ≥ |M| · 22_ . This matches prior works [2,

29] that assume randomness extractors that match the leftover

hash lemma. These extractors are able to output 𝑘 − 2_ bits whose

statistical distance is at most 2
−_

from a uniformly random string

assuming the input has min-entropy 𝑘 .

Proof of Theorem 4. The proof follows identically to the proof

of Theorem 10 with only a few modifications. First, we use the

same argument to show that the input to 𝐻 has min-entropy at

least log(|F|𝑧) ≥ log(|F|) for the 𝑧 ≥ 1 missing shares. Afterwards,

we use the property that the output of 𝐻 has statistical distance at

most 2
−_

from a random element fromM. This translates into the

statistical distance between the two privacy experiments. This is

sufficient to show that F -SS is 𝛿-secure for 𝛿 ≥ 2
−_

. □

Linearity. Finally, we prove that our framework yields linear secret

sharing schemes when the hash function 𝐻 is linear.

Proof of Theorem 6. Consider sharing two messages𝑚,𝑚′ ∈
M using the same seeds used to expand rows of the generator

matrix M. For each party 𝑖 ∈ [𝑛], they would receive shares 𝑠𝑖 =

(mask, seed𝑖 , y𝑖) and 𝑠′𝑖 = (mask′, seed𝑖 , y′𝑖) that are the distributed
17

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

outputs of Share. Next, we compute the addition of the two shares

as the following: 𝑡𝑖 = (mask +mask′, seed𝑖 , y𝑖 + y′𝑖).
Suppose that M is the generator matrix for seed1, . . . , seed𝑛 .

Then, we can see the following:

y + y′ = Mx +Mx′ = M(x + x′) .
Suppose there is a sufficiently large subset of parties 𝐼 ⊆ [𝑛] that
attempt to reconstruct using shares 𝑡𝐼 = {𝑡𝑖 }𝑖∈𝐼 . The first step of

Reconstruct attempts to solve the following linear system:

(y + y′)𝐼 = M(x + x′)𝐼
with the goal to compute x + x′. Regardless of whether we are
working with sums of shares or regular shares, the properties of M
(that is, full rank and efficiently finding a solution) remain the same.

Therefore, Reconstructwill retrieve x+x′ even when working over

sums of shares. Finally, Reconstruct will compute

mask +mask′ − 𝐻 (x + x′) = mask +mask′ − 𝐻 (x) − 𝐻 (x′)
= (mask − 𝐻 (x)) + (mask′ − 𝐻 (x′))
=𝑚 +𝑚′

where we use that 𝐻 is linear and 𝐻 (x + x′) = 𝐻 (x) + 𝐻 (x′). □

B RANDOM BAND MATRIX ANALYSIS
In this section, our goal is to analyze random band matrices with

dimension (1+𝛼)𝑡×𝑡 and band length𝑤 = 𝑂 (^+log 𝑡). In particular,
our goal is to prove that these random band matrices with more

rows than columns have full column rank of 𝑡 with probability at

least 1− 2−^ . Furthermore, solving the associated linear system can

be done very efficiently in time𝑂 (𝑡 ·𝑤). For the modified version of

Gaussian elimination that we will analyze, we refer readers back to

the description in Section 3.2. To our knowledge, these properties

were not previously known. The original work [32] focused on

random band matrices with dimension (1− 𝛼)𝑡 × 𝑡 with the goal of

proving full row rank. We are unaware of a direct reduction from

this setting of more columns to our problem with more rows.

For our analysis, we will utilize the connection between random

band matrices and coin-flipping Robin Hood hashing that was pre-

sented in [32] (this reduction was independent of the dimensions

of the random band matrix). We start by describing standard Robin

Hood hashing with 𝑛 items inserted into𝑚 entries with displace-

ment at most𝑤 −1. Each of the 𝑛 items is randomly assigned to one

of the first𝑚 −𝑤 + 1 entries. When inserting an item, it performs

linear probing from its assigned entry and its𝑤 − 1 entries to the

right. Standard Robin Hood hashing will insert the item into the

first empty entry found in the linear probing. In the coin-flipping

variant, each time an item encounters an empty entry, a random

coin is flipped to decide whether to insert the item into the empty

entry or move onto the next entry.

Dietzfelbinger and Walzer [32] showed that one can directly

relate random band matrices to coin-flipping Robin Hood hashing.

In particular, each of the 𝑛 = (1 + 𝛼)𝑡 rows may be viewed as items.

Furthermore, the 𝑡 columns may be viewed as the entries of the

hash table. Consider the 𝑖-th row of the random band matrix that

will be isomorphic to the 𝑖-th item in coin-flipping Robin Hood

hashing. Then, the starting location of the𝑤-length band for the 𝑖-

th row is equivalent to the assigned entry for the 𝑖-th item. Suppose

that the 𝑖-th item in coin-flipping Robin Hood hashing is inserted

into the 𝑗-th entry. This turns out be equivalent that the 𝑖-th row

in the Gaussian elimination using the 𝑗-th column as the pivot. As

a result, we can use coin-flipping Robin Hood hashing to directly

analyze random band matrices.

Lemma 1. Pick a sufficiently large constant 𝛼 > 0 and let 𝑤 =

𝑂 (^ + log 𝑡). Then, a (1+𝛼)𝑡 ×𝑡 random band matrix has full column
rank of 𝑡 except with probability at most 2−^ .

Proof. We will first rely on Lemma 3 in [32] that enables us

to analyze the column rank of random band matrices through the

success of coin-flipping Robin Hood hashing. In particular, each of

the (1+𝛼)𝑡 rows may be viewed as items to be inserted and each of

the 𝑡 columns may be viewed as hash table entries. If the 𝑖-th item is

placed into the 𝑗-th entry, this is equivalent to the pivot of the 𝑖-th

row of the random band matrix being the 𝑗-th column. Therefore,

it suffices for us to prove that by inserting at most (1 + 𝛼)𝑡 items in

coin-flipping Robin Hood hashing, each of the 𝑡 entries becomes

occupied. This is equivalent to each of the 𝑡 columns being picked

as a pivot by one row. This immediately implies that the (1+𝛼)𝑡 × 𝑡
random band matrix has full column rank.

Consider the 𝑗-th column for any 𝑗 ∈ [𝑡]. We will analyze the

probability that coin-flipping Robin Hood hashing with (1 + 𝛼)𝑡
items will never insert an item into the 𝑗-th entry. First, we analyze

the number of items that are candidates to be inserted into the 𝑗-th

entry. This set of candidates are those items that are assigned to

positions in the set 𝑆 = { 𝑗 −𝑤 + 1, 𝑗 −𝑤 + 2, . . . , 𝑗} ⊂ [𝑡]. Note that
all entries in 𝑆 are computed modulo 𝑡 (the number of columns) to

incorporate wrap-around. The probability that an item is assigned

to a position in the set 𝑆 is at most |𝑆 |/(𝑡 −𝑤) = 𝑤/(𝑡 −𝑤) ≥ 𝑤/𝑡 .
Denote the random variable be such that 𝑋𝑖 = 1 if and only if the

𝑖-th item is assigned to an entry in 𝑆 . Otherwise, 𝑋𝑖 = 0. Note that

Pr[𝑋𝑖] ≥ 𝑛/𝑤 for all 𝑖 ∈ [(1 + 𝛼)𝑡]. Let 𝑋 = 𝑋1 + . . . + 𝑋 (1+𝛼)𝑡 .
Then, the expected value is ` = E[𝑋] ≥ (1+𝛼)𝑡 · (𝑤/𝑡) = (1+𝛼)𝑤 .

By the Chernoff bound (see [45] as an example for the statement),

we get that

Pr[𝑋 < (1 − 𝛽)`] ≤ 𝑒−(`𝛽
2)/2 .

By picking𝑤 = 𝑂 (^ + log 𝑡) sufficiently large, we can get that

Pr[𝑋 < 𝑤 + ^ + log 𝑡] ≤ 2
−^−log 𝑡−1 .

In other words, we pick𝑤 such that (1+𝛼) (1− 𝛽)𝑤 ≥ 𝑤 +^ + log 𝑡
and 𝑒−(`𝛽

2)/2 ≤ 2
−^−log 𝑡−1

. For now, let us assume that 𝑋 ≥
𝑤 +^ + log 𝑡 . In the worst case,𝑤 − 1 of these items will be inserted

in columns before the 𝑗-th column. Therefore, at least ^ + log 𝑡 + 1
items will arrive at the 𝑗-th column. The probability that none of

these ^ + log 𝑡 + 1 items will be inserted into the 𝑗-th column is at

most 2
−^−log 𝑡−1

. Therefore, the probability that the 𝑗-th column is

empty after inserting (1+𝛼)𝑡 items is at most 2
−^−log 𝑡

. Finally, we

take a union bound over all 𝑡 entries to get that any of the 𝑡 entries

are empty is at most 𝑡 · 2−^−log 𝑡 ≤ 2
−^

completing the proof. □

Necessity of Modification. Recall that we modified the random

band matrices from [32] such that starting locations for bands are

chosen uniformly at random from [𝑡] and the𝑤-length bands may

wrap-around from the last column to the first column. Suppose

we considered the original approach to simply sample the starting

location uniformly at random from [𝑡 −𝑤] without wrap-around.
Consider the first column. Note, the probability that any of the

18

Efficient Secret Sharing for Large-Scale Applications

(1 + 𝛼)𝑡 rows will pick the first column as the starting location is

1/𝑡 . Therefore, the probability that no row picks the first column

as the starting location is(
1 − 1

𝑡

) (1+𝛼)𝑡
= 𝑒−(1+𝛼) .

In other words, the probability that none of the (1+𝛼)𝑡 rows chooses
the first column as the starting location is constant as 𝛼 is constant.

In this case, it is impossible for the resulting matrix to have full

column rank. Therefore, our modification with wrap-arounds was

necessary to ensure full column rank.

Next, we prove that the running time of Gaussian elimination af-

ter sorting rows by the start location of the random band is efficient.

In particular, we show that (1 + 𝛼)𝑡 × 𝑡 dimension random band

matrices may be converted into row echelon form using Gaussian

elimination in time𝑂 (𝑡 ·𝑤) where𝑤 is the length of the band. Once

again, the prior analysis in [32] only proves this for (1 − 𝛼)𝑡 × 𝑡
dimension random band matrices. We are unaware of a way to

utilize the analysis in [32] directly. Instead, we prove this same

fact for (1 + 𝛼)𝑡 × 𝑡 random band matrices using a different proof

technique relying on the fact that (1+𝛼)𝑡 ×𝑡 random band matrices

almost always have full column rank.

Lemma 2. Pick a sufficient large constant 𝛼 > 0 and let𝑤 = 𝑂 (^ +
log 𝑡) such that𝑤 ≤ 𝑡/2. Suppose that the word size is Ω(^ + log 𝑡).
Then, a (1 + 𝛼)𝑡 × 𝑡 random band matrix may be reduced to row
echelon form using Gaussian elimination after sorting rows by band
start location in time 𝑂 (𝑡𝑤) except with probability at most 2−^+1.

Proof. First, we apply Lemma 1. By picking constant 𝛼 > 0

and 𝑤 = 𝑂 (^ + log 𝑡) appropriately, we can guarantee that (1 +
𝛼)𝑡 × 𝑡 random band matrices have full column rank except with

probability at most 2
−^

. From now on, we assume the random band

matrix has full column rank.

Next, we apply the following observation. Consider the 𝑗-th

column for any 𝑗 ∈ [𝑡]. As soon as the 𝑖-th row, for some 𝑖 ∈
[(1 + 𝛼)𝑡], chooses the 𝑗-th column as a pivot, then we know that

all other rows following the 𝑖-th row will always have a zero in the

𝑗-th column. Therefore, we simply need to bound the number of

rows that may have non-zero entries in the 𝑗-th column before the

𝑖-th row uses the 𝑗-th column as the pivot.

To do this, we use a similar approach as done in our prior proof

of Lemma 1 for most columns. Fix the 𝑗-th column for any 𝑗 ∈ [𝑡]
such that 𝑗 ≥ 𝑤 . In other words, we consider columns where

every row with a non-zero entry in the 𝑗-th column will not wrap-

around from the last column to the first column. Then, we can

clearly see that only rows where the starting location is in the set

𝑆 = { 𝑗 −𝑤 + 1, 𝑗 −𝑤 + 2, . . . , 𝑗} ⊂ [𝑡] may have a non-zero entry

in the 𝑗-th column. Clearly, the 𝑗 ′-th row where 𝑗 ′ < 𝑗 −𝑤 + 1 will
not have a zero entry as the random band appears strictly before

the 𝑗-th column. For the 𝑗 ′-th where 𝑗 ′ > 𝑗 , we already assumed

that the matrix has full column rank. Therefore, some row with a

starting location in 𝑆 will already have chosen the 𝑗-th column as

the pivot. Therefore, the 𝑗 ′-th row where 𝑗 ′ > 𝑗 will also have a

zero entry in the 𝑗-th column. As 𝑗 ≥ 𝑤 , we know that these rows

will be processed consecutively during Gaussian elimination after

sorting rows by their starting location. Therefore, we simply need

to bound the total number of rows with starting locations in 𝑆 .

First, we denote 𝑋𝑖 to be the random binary variable denoting

whether the 𝑖-th row has a starting location in 𝑆 . If the 𝑖-th row

has a starting location in 𝑆 , we set 𝑋𝑖 = 1. Otherwise, we set

𝑋𝑖 = 0. Note, Pr[𝑋𝑖 = 1] = |𝑆 |/(𝑡 −𝑤) = 𝑤/(𝑡 −𝑤) ≤ 2𝑤/𝑡 as we
assumed that 𝑤 ≤ 𝑡/2. Set 𝑋 = 𝑋1 + . . . + 𝑋 (1+𝛼)𝑡 and we know

that ` = E[𝑋] ≤ (1 + 𝛼)𝑡 · (2𝑤/𝑡) = 2(1 + 𝛼)𝑤 . Finally, we apply
the Chernoff bound (see [45] for example) and get that

Pr[𝑋 > (1 + 𝛽)`] < 𝑒−(`𝛽
2)/(2+𝛽)

for any constant 𝛽 > 0. Once again, we pick𝑤 = 𝑂 (^ + log 𝑡) and
𝛽 sufficiently large such that

Pr[𝑋 > 𝛾𝑤] < 2
−^−log 𝑡

for some constant 𝛾 > 0. Therefore, we know that the number

of rows that will process the 𝑗-th column is at most 𝑂 (𝑤) except
with probability 2

−^−log 𝑡
. Applying a union bound across all 𝑡

columns, we get that all columns will be processed by at most

𝑂 (𝑤) rows except with probability 𝑡 · 2−^−log 𝑡 ≤ 2
−^

. Since each

of the 𝑂 (𝑤) rows processes the 𝑗-th column 𝑂 (𝑤) times, the 𝑗-th

column is processed 𝑂 (𝑤2) times. In other words, the last 𝑡 − 𝑤
columns are processed 𝑂 (𝑡𝑤2) times in total. Since the word size

is Ω(^ + log 𝑡) = Ω(𝑤) and each band row fits in 𝑂 (1) words,
performing a row reduction takes 𝑂 (1) time. Noting that each row

reduction processes 𝑤 columns, we get that the running time is

𝑂 (𝑡𝑤). For the final probability, recall that we conditioned on the

fact that the random matrix has full column rank. Therefore, the

algorithm has running time at most 𝑂 (𝑡𝑤) except with probability

at most 2
−^+1

.

Finally, we handle the first𝑤 columns. We cannot use the argu-

ment above as the set of rows that may contain a non-zero entry

in the first𝑤 columns are not processed consecutively. However,

we note that the worst case is that each of these 𝑤 columns are

processed in all (1 + 𝛼)𝑡 = 𝑂 (𝑡) rows only adding an additional

𝑂 (𝑡𝑤) computational cost. □

In the above lemma, we made the assumption that each 𝑤-bit

length band fits into 𝑂 (1) words. Note, this mirrors our practical

evaluation since 𝑤 ≤ 400 for all our experimented values and

modern machines have word sizes (registers) of at least 64 bits,

but more reasonably 128-256 bits. Furthermore, we note this is

a reasonable comparison with other algorithms such as the fast

polynomial interpolation algorithm in [17] that assumes 𝑂 (1) time

for multiplications of two word-sized integers.

Finally, we prove the main result about random band matrix

families, RB, that we needed in Section 3.2.

Proof of Theorem 1. Note thatRandGen requires𝑂 (𝑛) to gen-
erate all 𝑂 (𝑛) seeds. ExpandRow requires 𝑂 (𝑤) time to generate

the single𝑤-bit band in each row. The fact that RB is a distributed

((1+𝛼)𝑡, 2−^)-generator matrix follows directly from Lemma 1. The

running time of the algorithm follows directly from Lemma 2. □

B.1 RB-SS Parameters
In Figure 7, for 𝛼 = 0.05 and various values of 𝑡 , we plot the graphs

of 𝑤 versus ^, where the error probability 𝜖 equals 2
−^

. All ex-

perimental data points were collected using at least 2
13

runs and

up to 2
25

runs. Solid lines are constructed from experimental data

19

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

64 128 196 256 320 384

0

5

10

15

20

25

30

35

40

Band length (𝑤)

^
=
l
o
g
2
(1
/𝜖
)

Failure probability for 𝛼 = 0.05

𝑡 = 2
10

𝑡 = 2
12

𝑡 = 2
14

𝑡 = 2
16

𝑡 = 2
18

𝑡 = 2
20

𝑡 = 2
22

8 10 12 14 16 18 20 22 24

−14

−12

−10

−8

−6

−4

−2

0

log
2
(𝑡)

𝑔
(𝑡)

𝑔(𝑡) for 𝛼 = 0.05

Figure 7: Left graph plots log error probability based on𝑤 . Right graph plots 𝑔(𝑡) when plugging in data points from left graph
into ^ = 0.1325𝑤 + 𝑔(𝑡).

points, and dotted lines are plotted as pessimistic approximation

of the underlying function. From the plot, we observe that failure

probability is a superlinear function (for small 𝑡) with respect to

the band width, and converges to a linear function as 𝑡 gets larger.

In particular, for 𝑡 = 2
18, 220 and 2

22
, a line with slope 0.1325 pro-

vides good approximations on a lower bound on the necessary band

length𝑤 for a certain security parameter.

For a fixed 𝑡 , we will approximate the underlying function as a

linear function with slope 0.1325. Assuming the underlying func-

tion is a superlinear function (as shown in Figure 7), this will give

us pessimistic approximation of ^. In other words, the linear func-

tion is a base line for the minimum of some choice of𝑤 to obtain

specific ^, but it may actually obtain even larger values of ^. We

will approximate as ^ (𝑤, 𝑡) = 0.1325𝑤 + 𝑔(𝑡) where 𝑔(𝑡) is the
y-intercept. For each 𝑡 , we then solve for 𝑔(𝑡) by plugging in the

first data point to equation ^ = 0.1325𝑤 + 𝑔(𝑡). We plot these val-

ues in Figure 7. We observe that the function looks like a linear

function with respect to log
2
(𝑡). Using linear regression, we obtain

𝑔(𝑡) = −0.9282 log
2
(𝑡) + 6.867. Thus, we obtain approximation

^ (𝑤, 𝑡) = 0.1325𝑤 − 0.9282 log
2
(𝑡) + 6.867.

As a sanity check, we plug in the data point 𝑡 = 2
20
,𝑤 = 144 into

the previous equation and get ^ = 7.383 which is not far from the

actual value 7.49 from the experiment. For smaller 𝑡 , by plugging

in the data point 𝑡 = 2
14,𝑤 = 88 we obtain ^ = 5.532 whereas the

experiment gave us ^ = 6.28. The calculated value is smaller than

the data point but still shows that ^ (𝑤, 𝑡) is suitable as a pessimistic

approximation.

To find a suitable band width 𝑤 with respect to 𝑡 and ^, we

rearrange the equation to obtain 𝑤 (𝑡, ^) = (0.9282 log
2
(𝑡) + ^ −

6.867)/0.1325. Finally, we note that this corroborates with Theo-

rem 1 proving that𝑤 = 𝑂 (^ + log 𝑡) is sufficient to obtain 2
−^

error

probability.

Other Choices of 𝛼 . For other values of 𝛼 , we expect the plots
to look similar to Figure 7, except for the "steepness" of the func-

tions. In particular, larger the 𝛼 , steeper the functions would look.

Intuitively, with 𝑡 and 𝑤 fixed, larger values of 𝛼 would result in

the matrix to have full column rank with higher probability. This

implies a smaller𝑤 is sufficient to obtain a fixed error probability

of 𝜖 = 2
−^

.

C VERIFIABLE SECRET SHARING
C.1 Verifiable Secret Sharing Definitions

Definition 5 (Verifiable Ramp Secret Sharing). A (𝑡, 𝑐)-VSS
overmessage spaceM consists of a tuple vSS = (Init, Share,Reconstruct)
such that:

• Init receives security parameter 1_ , number of parties 𝑛, cor-
rectness threshold 𝑐 ≤ 𝑛, and privacy threshold 𝑡 ≤ 𝑐 , and
outputs public parameters pp.

• Share is an interactive protocol between the dealer and 𝑛 par-
ties. The dealer and the 𝑛 parties receive the public parameters
pp. The dealer also receives message𝑚 ∈ M as an additional
private input. The private output of party 𝑖 is either a share
𝑠𝑖 or ⊥. In the latter case, we say that party 𝑖 has disqualified
the dealer.

• Reconstruct receives a subset of shares 𝑠𝐼 for some subset
𝐼 ⊆ [𝑛] and public parameters pp, and outputs a message
𝑚′ ∈ M or ⊥ where the latter detects malicious behavior.

A VSS scheme vSSmust satisfy the privacy notion which we for-

malize by experiments vPriExp𝑏vSS,A , for 𝑏 = 0, 1 and a probabilistic

polynomial time adversary A = (A1,A2,A3). The experiment is

similar to PriExp𝑏 with the only exception that Share is now an

interactive protocol. For the privacy requirement, we assume that

the dealer is honest as, otherwise, an adversarial dealer receive the

message in plaintext as input.

vPriExp𝑏vSS,A (_, 𝑛, 𝑐, 𝑡):

(1) Challenger executes pp← Init(1_, 𝑛, 𝑐, 𝑡).
(2) Adversary picks two messages, (𝑚0,𝑚1) ← A1 (1_, pp).
(3) Challenger executes Share on input (pp,𝑚𝑏) with the 𝑛

players, at most 𝑡 − 1 of which can be adaptively corrupted

by adversary A2.

(4) Return [← A3 ().

For privacy, a VSS must still satisfy the original correctness

guarantees of secret sharing with an honest dealer. Additionally, it

must satisfy a stronger correctness notion if the dealer is corrupted

by the adversary. In this case, any subset of 𝑐 honest parties must

give the same output that could be a message𝑚′ or ⊥. The two
conditions above must hold even if a static adversary corrupts up

to 𝑛 − 𝑐 parties. Formally, we have the following experiment for the

20

Efficient Secret Sharing for Large-Scale Applications

Algorithm 11 F -P-VSS.Init algorithm

Input: 1
_, 𝑛, 𝑡 : security parameter, number of parties and privacy

threshold.

Output: pp: public parameters.

Randomly select 𝑔, ℎ ← G.
Sample random function 𝐻 : F𝑡 →M.

return pp = (𝐻, 1_, 𝑛, 𝑐 ← 𝐾 (𝑡), 𝑡, 𝑔, ℎ).

strong correctness notion for VSS with respect to any polynomial

time adversary A = (A1,A2).
vCorExpvSS,A (_, 𝑛, 𝑐, 𝑡):

(1) Challenger executes pp← Init(1_, 𝑛, 𝑐, 𝑡).
(2) A1 (pp) decides whether to corrupt the dealer and decides

on the set of at most 𝑛 − 𝑐 corrupted parties.

If the dealer is not corrupted, A1 outputs also a message

𝑚 ∈ M.

(3) The Share protocol is executed. During the execution, A2

can maliciously interact as any corrupted party, including

the dealer if corrupted.

If instead the dealer is not corrupted, it takes part to Share
using𝑚 and pp as input.

(4) All parties broadcast their shares. Each honest party exe-

cutes the Reconstruct algorithm and computes its output.

(5) If the dealer is corrupt, the experiment returns 1 unless

all honest parties give the same output (that could be any

message or ⊥).
(6) If the dealer is not corrupt, the experiment returns 1 unless

all honest parties give𝑚 as output.

In other words, an adversary wins the above game if it can

force at least one honest party to output an inconsistent message

without detecting a malicious dealer (denoted by ⊥). Using the

above experiment, we can define a VSS scheme as follows:

Definition 6 ((𝜖, 𝛿)-Verifiable Ramp Secret Sharing). A
ramp secret sharing scheme SS = (Init, Share,Reconstruct) is a (𝑡, 𝑐)-
verifiable ramp secret sharing scheme with 𝜖-error and 𝛿-privacy if
the following hold:

• Correctness: For any polynomial time adversary A and suf-
ficiently large _ and 𝑛

Pr[vCorExpSS,A (_, 𝑛, 𝑐, 𝑡) = 1] ≤ 𝜖.
• Privacy: For any polynomial time adversary A and suffi-

ciently large _ and 𝑛

| Pr[vPriExp0SS,A (_, 𝑛, 𝑐, 𝑡) = 1]−

Pr[vPriExp1SS,A (_, 𝑛, 𝑐, 𝑡) = 1] | ≤ 𝛿.

C.2 Pedersen-based Verifiable Secret Sharing
We present the formal description and pseudocode for our Pedersen-

based VSS, F -P-VSS, in Algorithms 11-14. See Section 5.1.2 for

detailed description. We also present the proofs associated with the

VSS scheme based Pedersen commitments.

Proof of Theorem 9. Let RB be the (𝐾, 𝜖)-generator matrix family.

The adversary can corrupt at most (𝑡 −1) players and for RB-P-VSS
we need 𝑐 = (1 + 𝛼)𝑡 honest players to reconstruct.

Algorithm 12 F -P-VSS.Share protocol
Input: for dealer: public parameters pp and message𝑚.

Input: for party 𝑖: public parameters pp.
Output: for party 𝑖: share 𝑠𝑖 and public key pk.
Dealing round (executed by dealer):

Parse pp = (𝐻, 1_, 𝑛, 𝑐, 𝑡, 𝑔, ℎ).
Sample random vectors x, v← F𝑡 .
Set pk = [𝑔x1 · ℎv1 , . . . , 𝑔x𝑡 · ℎv𝑡].
Compute mask←𝑚 + 𝐻 (x).
Randomly select coin tosses 𝑅 ← {0, 1}_ .
Compute (seed1, . . . , seed𝑛) ← F .RandGen(1_ ;𝑅).
for 𝑖 ∈ [𝑛] do

Compute M𝑖 ← F .ExpandRow(seed𝑖).
Compute 𝑦𝑖 ← M𝑖 · x and 𝑢𝑖 ← M𝑖 · v.
Set 𝑠𝑖 ← (𝑖, seed𝑖 , 𝑦𝑖 , 𝑢𝑖).
Send 𝑠𝑖 to party 𝑖 over private channel.

Broadcast (pk,mask, 𝑅) to all parties.

Verification round (executed by each party 𝑖 ∈ [𝑛]):
Receive 𝑠𝑖 and (pk,mask, 𝑅).
Compute 𝑏𝑖 ← F -P-VSS.Verify(𝑠𝑖 , pk, 𝑅).
If 𝑏𝑖 ≠ 1, broadcast a complaint.

Complaint round (executed by each party 𝑖 ∈ [𝑛]):
Let 𝐶 be the complaining parties. If |𝐶 | ≥ 𝑡 , output ⊥.
The dealer broadcasts (𝑠 𝑗) 𝑗∈𝐶 .
If F -P-VSS.Verify(𝑠 𝑗 , pk, 𝑅) ≠ 1 for any 𝑗 ∈ 𝐶 , output ⊥. Other-
wise, output 𝑠𝑖 .

Algorithm 13 F -P-VSS.Reconstruct algorithm
Input: pp, (𝑠 𝑗) 𝑗∈[𝑛] , pk,mask: public parameters, shares, public

key, and mask.

Output: 𝑚: reconstructed message.

Parse pp = (𝐻, 1_, 𝑛, 𝑐, 𝑡, 𝑔, ℎ).
Compute subset 𝐽 ⊂ [𝑛] of size |𝐽 | = 𝑐 such that, for all 𝑗 ∈ 𝐽 ,
F -P-VSS.Verify(𝑠 𝑗 , pk) = 1.

Let 𝑌𝐽 be the set of (seed𝑗 , 𝑦 𝑗) from 𝑠 𝑗 = (seed𝑗 , y𝑗 , z𝑗)
return F -SS.Reconstruct(𝑠 𝐽 , pp).

Algorithm 14 F -P-VSS.Verify algorithm

Input: 𝑠, pk, 𝑅: share, public key, and coin tosses.

Output: 𝑏 ∈ {0, 1}: verification output.

If 𝑠 =⊥, then return 0.

Parse 𝑠 = (𝑗, seed, 𝑦,𝑢).
Run F .RandGen using coin tosses 𝑅 and check by using 𝑗 that

seed is correct. If not, return 0.

Parse pk = [𝑔x1 · ℎv1 , . . . , 𝑔x𝑡 · ℎv𝑡].
Compute m← F .ExpandRow(seed).
Compute 𝐶 ←∏

𝑗∈[𝑡] (𝑔x𝑗 · ℎv𝑗)M𝑗
.

return 1 iff 𝐶 = 𝑔𝑦 · ℎ𝑢 .

Correctness. For a dealer to be disqualified, at least one honest

party must file a complaint. This implies that a honest dealer will

21

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

not be disqualified during the Share protocol. If the dealer is not dis-
qualified then every honest party 𝑖 has a share 𝑠𝑖 that passes the ver-

ification and thus 𝑠𝑖 ≠⊥. Let us now consider the Reconstruct algo-
rithm.We observe that, for every party 𝑖 , only the share 𝑠𝑖 = (y𝑖 , u𝑖)
produced by the dealer will pass the Verify algorithm. Indeed note

that pk and row M𝑖 (all this information is public) determine the

commitment 𝐶𝑖 of y𝑖 with randomness u𝑖 and, by the computa-

tional binding property, no adversary can open𝐶𝑖 as y′𝑖 ≠ y𝑖 , under
the discrete log assumption. Therefore malformed shares can be

identified and, since the adversary can corrupt at most 𝑛 −𝑐 parties,
at least 𝑐 parties contribute their honest shares. By the property of

the RB family, if the probability that reconstructions fails is thus

most 𝜖 .

Privacy. The proof of privacy is similar to the one of Theorem 4

with the difference that the adversary’s view also contains pk con-

sisting of 𝑡 commitments pk
1
, . . . , pk𝑡 . As a reminder, the first step

of the proof of Theorem 4 consists in showing that given 𝑡 − 1

shares, for each possible value 𝐴 of the missing 𝑧 ≥ 1 shares, there

exists a unique vector x𝐴 that is consistent with the view of the

adversary; in the case of Theorem 10, the view consists of the 𝑡 − 1
shares. Moreover, no two values 𝑎 ≠ 𝑎′ have the same vector; that

is x𝑎 ≠ x𝑎′ . If we assume that the random oracle 𝐻 is one-to-one

and onto on the set of vectors x𝑎 , then the adversary has no ad-

vantage in distinguishing 𝑚0 from 𝑚1; the proof terminates by

showing that a random oracle that is queried 𝑞 times will show this

exact behaviour except with probability 𝑂 (𝑞2/|F|). Therefore, the
adversary’s distinguishing probability is 𝑂 (𝑞2/|F|).

To prove privacy of F -P-VSS, we will thus show that, given

any 𝑡 − 1 shares and the public key pk, for each possible choice

of the missing 𝑧 + 1 shares, there exists a unique vector x𝐴 and a

unique vector v𝐴 consistent with the adversary’s view. Moreover

the vectors x𝐴 and v𝐴 are different for different 𝐴. Having proved

this property, then the proof continues as for Theorem 10.

Let (𝑔, ℎ) be the pair used to compute the Pedersen’s commit-

ments and let 𝑑 be such that ℎ = 𝑔𝑑 . Suppose that the adversary

has shares 𝑠𝑖 = (𝑦𝑖 , 𝑢𝑖) for 𝑖 ∈ 𝐼 , with |𝐼 | = 𝑡 − 1, and we assume

that the ((𝑡 − 1) × 𝑡)-matrixM𝐼 has full rank 𝑡 − 1. We denote by 𝑌𝐼
the vector [𝑦𝑖]𝑖∈𝐼 . In addition to the shares, the adversary has also

the public information pk = [pk
1
, . . . , pk𝑡] and we let 𝑎 𝑗 be such

that pk𝑗 = 𝑔
𝑎 𝑗
, for 𝑗 = 1, . . . , 𝑡 . Since the shares have been correctly

computed, the verification is successful and thus we have that, for

𝑖 ∈ 𝐼 , ∑𝑡𝑗=1M𝑖, 𝑗 · 𝑎 𝑗 = 𝑦𝑖 + 𝑑 · 𝑢𝑖 . Now let 𝐽 be a set of 𝑧 + 1 parties
with 𝐽 ∩ 𝐼 = ∅ so that 𝐾 = 𝐼 ∪ 𝐽 has cardinality 𝑡 . Moreover, let us

assume that the (𝑡 × 𝑡)-matrix M𝐾 has full rank. For a fixed vector

𝐴 of length 𝑧 + 1 consisting of one value 𝑦 𝑗 ∈ F for each 𝑗 ∈ 𝐽 ,
we let 𝑌𝐴 be the vector of length 𝑡 obtained by appending 𝐴 to the

vector 𝑌𝐼 . Then, by the full rank ofM𝐾 , there exists a unique vector

x𝐴 such thatM𝐾 · x𝐴 = 𝑌𝐴 . Now, define the vector v𝐴 of length 𝑡

by setting v𝑗 = (𝑎 𝑗 − x𝑗)/𝑑 , for 𝑗 ∈ 𝐾 . Note that this guarantees
that 𝑔x𝑗 · ℎv𝑗 = 𝑔x𝑗+𝑑v𝑗 = 𝑔𝑎 𝑗 = pk𝑗 which implies that x𝐴 and v𝐴
are compatible with pk𝑗 . Finally, let 𝑍

′ = M𝐾 · v𝐴 . Observe that,

for 𝑖 ∈ 𝐼 , we have

𝑢′𝑖 =
𝑡∑︁

𝑘∈𝐾
M𝑖,𝑘v𝑘

=
1

𝑑

©«
𝑡∑︁
𝑗∈𝐼

M𝑖, 𝑗𝑎 𝑗 −
∑︁
𝑗∈𝐾

M𝑖, 𝑗x𝑗
ª®¬

=
1

𝑑
(𝑦𝑖 + 𝑑𝑢𝑖 − 𝑦𝑖) = 𝑢𝑖

which implies that the 𝑢′
𝑖
obtained from v𝐴 are compatible with

the ones found in the shares from 𝐼 .

C.3 Feldman-based Verifiable Secret Sharing
Let F be a generator matrix family. In this section, we give more de-

tails about F -F-VSS that uses the deterministic commitment based

on discrete logarithm and is inspired by Feldman’s VSS [40] but it

differs from it in a crucial aspect.

LetG be a group of prime order 𝑝 in which the discrete logarithm

is hard and let 𝑔 be a generator of G. We consider the deterministic

commitment algorithm that commits to a value 𝑠 by computing

𝐶 = 𝑔𝑠 . Note that the commitment function is linear in the sense

that com(𝑠0) · com(𝑠1) = com(𝑠0 + 𝑠1) and that com(𝑠)𝑟 = com(𝑟 · 𝑠).
Because of linearity, the commitments 𝐶1 = 𝑔𝑥1 , . . . ,𝐶𝑡 = 𝑔𝑥𝑡 of

the components of x are sufficient to construct the commitment

of each 𝑦𝑖 and thus each player can check the validity of 𝑦𝑖 re-

ceived as part of the share and thus correctness is guaranteed. The

commitment is perfectly binding (that is, unlike Pedersen’s, the

commitment uniquely determines the value committed) and this

can be used to prove soundness in a straightforward way. For the

privacy requirement, we note that the commitment is not even

computationally hiding as it is trivial to distinguish a commitment

of 𝑠0 from a commitment of 𝑠1. On the other hand, the commitment

is one-way secure (given a commitment it is difficult to extract the

committed value) and this should be sufficient as, roughly speaking,

the messages committed, the components of x, have sufficiently

large entropy, even conditioned on 𝑡 − 1 shares and, more impor-

tantly, are chosen independently from the secret being shared. We

note that is not the case for Feldman’s VSS [40]. There, the VSS

was constructed on top of Shamir’s secret sharing scheme which

implies that the commitments of the coefficients of the polynomial

(that play a role analogous to the vector x in our construction)

included a commitment to the secret being shared. Therefore, the

construction of [40] needed to resort to a randomized commitment

based on discrete logarithm.

Next we sketch the proof of Theorem 8. Let A be an adversary

that receives shares 𝑠𝑖 = (mask𝑖 , seed𝑖 , 𝑖, 𝑦𝑖) for 𝑖 ∈ 𝐼 , with |𝐼 | = 𝑡−1,
and pubV = (mask,𝐶1, . . . ,𝐶𝑡). Recall that we only consider non-

adaptive adversariesA here. Let x be the vector such that𝐶 𝑗 = 𝑔
x𝑗
,

for 𝑗 = 1, . . . , 𝑡 . Note that, since the shares have been correctly

constructed, we have that 𝑦𝑖 =
∑𝑡
𝑗=1M𝑖, 𝑗 · 𝑏𝑥 𝑗 , for all 𝑖 ∈ 𝐼 , where

M𝑖 = ExpandRow(seed𝑖).
Now observe that if A does not query the random oracle on

x then mask hides𝑚𝑏 information theoretically. Indeed, mask =

𝑚𝑏 +𝐻 (x) and 𝐻 (x) is randomly chosen over F. On the other hand,

any probabilistic polynomial-time adversary A that receives in

22

Efficient Secret Sharing for Large-Scale Applications

Scheme

Trusted

Setup

Dealing

Round Time

Verification

Round Time

Complaint

Round Time

Recons. Time

(No Verification)

Init Comm.

(Broadcast)

Dealing Comm.

(Broadcast)

Dealing Comm.

(Private)

Feldman [40] × 𝑂 (𝑛 log 𝑡) 𝑂 (𝑡) 𝑂 (𝑡2) 𝑂 (𝑡 log2 𝑡) 𝑂 (1) 𝑂 (𝑡) 𝑂 (𝑛)
Pedersen [64] ✓ 𝑂 (𝑛 log 𝑡) 𝑂 (𝑡) 𝑂 (𝑡2) 𝑂 (𝑡 log2 𝑡) 𝑂 (1) 𝑂 (𝑡) 𝑂 (𝑛)
eVSS [51] ✓ 𝑂 (𝑛𝑡) 𝑂 (1) 𝑂 (𝑡) 𝑂 (𝑡 log2 𝑡) 𝑂 (𝑡) 𝑂 (1) 𝑂 (𝑛)
SCRAPE [21] ✓ 𝑂 (𝑛) 𝑂 (1) 𝑂 (𝑡) 𝑂 (𝑡 log2 𝑡) 𝑂 (𝑛) 𝑂 (𝑛) 𝑂 (𝑛)
AMT VSS [73] ✓ 𝑂 (𝑛 log 𝑡) 𝑂 (log 𝑡) 𝑂 (𝑡 log 𝑡) 𝑂 (𝑡 log2 𝑡) 𝑂 (𝑡) 𝑂 (1) 𝑂 (𝑛 log 𝑡)
RB-F-VSS × 𝑂 (𝑛_) 𝑂 (_) 𝑂 (𝑡_) 𝑂 (𝑡_) 𝑂 (1) 𝑂 (𝑡) 𝑂 (𝑛)
RB-P-VSS ✓ 𝑂 (𝑛_) 𝑂 (_) 𝑂 (𝑡_) 𝑂 (𝑡_) 𝑂 (1) 𝑂 (𝑡) 𝑂 (𝑛)

Figure 8: Comparison of per-player or dealer worst-case asymptotic costs of VSS schemes.

input 𝑡 − 1 shares (𝑠𝑖)𝑖∈𝐼 and pubV and queries 𝐻 on x with non-

negligible probability can be used to solve the discrete logarithm

problem. Privacy follows by combining the two observations. Let

us now sketch a proof for the second observation.

Suppose that A is a polynomial-time algorithm that, on input

𝑡 − 1 shares and commitments 𝐶1, . . . ,𝐶𝑡 of the components of x,
queries 𝐻 on x with non-negligible probability. Now consider the

following probabilistic polynomial-time algorithm B that receives

in input a challenge for the discrete logarithm problem consisting of

a generator 𝑔 and𝐶 = 𝑔𝑥 with a random 𝑥 . B runsA and simulates

vPriExp𝑏𝑛,𝑡 forA as follows. Note that allA’s random oracle queries

are handled by B. As a first step A outputs𝑚0,𝑚1 and 𝐼 . Then B
randomly chooses seed𝑖 , computesM𝑖 = ExpandRow(seed𝑖), and
randomly chooses 𝑦𝑖 , for 𝑖 ∈ 𝐼 . Then B sets 𝐶1 = 𝐶 and computes

𝐶2, . . . ,𝐶𝑡 so that 𝑦𝑖 =
∑𝑡
𝑗=1M𝑖, 𝑗 · x𝑗 , for all 𝑖 ∈ 𝐼 , where x𝑗 is

the discrete logarithm of 𝐶 𝑗 . B can construct the commitments by

solving the system of 𝑡 − 1 equations 𝑦𝑖 =
∑𝑡
𝑗=1M𝑖, 𝑗 · x𝑗 for 𝑖 ∈ 𝐼 in

the 𝑡 unknowns x1, . . . , x𝑡 using x1 as a parameter. In other words,

each x𝑗 , for 𝑗 > 1, is expressed as a linear functions of x1 with coef-

ficients from the 𝑦𝑖 ’s. Then𝐶 𝑗 = 𝑔
x𝑗

is computed using the 𝑦𝑖 ’s and

the challenge 𝐶 = 𝐶1 received in input. Finally, B picks a random

mask ← F and constructs the shares 𝑠𝑖 = (mask, 𝑖, seed𝑖 , 𝑦𝑖) for
𝑖 ∈ 𝐼 and public verification information pubV = (mask,𝐶1, . . . ,𝐶𝑡)
for A. Note that shares and pubV have the same distribution as in

vPriExp0𝑛,𝑡 and vPriExp1𝑛,𝑡 . Then B monitors the queries x′ for 𝐻
and for each queries B checks if 𝑔x

′
1 = 𝐶 . If the check is successful,

B stops and outputs x′
1
. Note that if A has a non-negligible proba-

bility of querying for vector x committed to by 𝐶1, . . . ,𝐶𝑡 then B
has the same non-negligible probability of computing the discrete

logarithm of 𝐶 to the base 𝑔 that would be a contradiction.

By instantiating F with the random band matrix family RB, we
obtain a VSS with very efficient verification (see the discussion for

RB-VSS with Pedersen).

Note that, unlike the proofs of Theorem 4 and Theorem 9, the

proof of privacy for F -F-VSS crucially uses the fact that not only

the number 𝑞 of A’s queries to the random oracle is polynomial

but also that A’s running time is polynomially bounded.

C.4 Verifiable Secret Sharing Comparison
We present a comparison of the asymptotic costs of VSS schemes

in Figure 8. We assume all schemes utilize FFT for polynomial

evaluation and fast interpolation [17] for polynomial interpolation

where applicable. We assume all public parameters are broadcast

during initialization.

D DISTRIBUTED VERIFIABLE RANDOM
FUNCTIONS

D.1 Definition
In this section, we define the notion of a (𝑡, 𝑐)-distributed verifi-
able random function (DVRF) that enables any 𝑛 parties to jointly

compute the output of a verifiable random function (VRF) on input

message𝑚, even in the presence of 𝑡 − 1 corrupted parties. A DVRF

first runs an initial setup phase to generate a secret share and a

public key for each of the 𝑛 parties. Afterwards, the parties can

jointly compute the output of a verifiable random function (VRF) on

input𝑚. To do this, each party will individually compute a partial

evaluation on input𝑚 and each partial evaluation may be individ-

ually verified using public keys. Finally, any 𝑐 partial evaluations

that were successfully verified can be combined to construct the

final output. We adapt our definition of DVRF with respect to the

ramp threshold structure. The adversary statically corrupts at most

𝑡 − 1 parties, but at least 𝑐 parties are required to generate random

values. Therefore, we will assume that 𝑛 ≥ 𝑐 + 𝑡 − 1 to guarantee

there are at least 𝑐 honest parties.

A (𝑡, 𝑐)-DVRF scheme is required to satisfy the following prop-

erties against a malicious, static adversary:

(1) Consistency: Any subset of 𝑐 correctly verified partial

evaluations for input𝑚 reconstructs to the same output.

(2) Robustness: An adversary corrupting at most 𝑡 − 1 parties
cannot cause the reconstruction protocol to abort early or

output ⊥ on any input.

(3) Uniqueness: For every input𝑚, there exists a unique out-

put 𝑦 such that reconstruction always outputs 𝑦.

(4) Pseudorandomness: For any input, an adversary corrupt-

ing at most 𝑡 − 1 parties cannot distinguish between the

output of the reconstruction algorithm and the output of a

truly random function.

For formal definitions, we point to prior works [18, 42].

Finally, we also consider (𝑡, 𝑐)-decentralized randomness beacons
(DRB)where𝑛 parties wish to jointly generate random values. Any 𝑐

parties should reconstruct the randomness while at most 𝑡−1 parties
cannot learn the randomness or influence the random outputs. We

note that DRBs can be built from DVRFs in a straightforward way.

We present formal definitions in Appendix E.

23

Sarvar Patel, Giuseppe Persiano, Joon Young Seo, and Kevin Yeo

D.2 Our Construction
We show that DVRF schemes may be built from each of F -F-VSS
and F -P-VSS. Each DVRF is obtained by running 𝑛 parallel execu-

tions of a VSS scheme. Afterwards, the reconstruction algorithm can

be adapted to enable verified evaluations. We start by presenting

F -F-DVRF from F -F-VSS. The pseudocode of F -F-DVRF may be

found in Appendix D.2. We present an informal description below.

We consider a DVRF with ℓin-bit inputs 𝑚 returning ℓout-bit

values 𝑣 . Our construction uses a prime-order cyclic group G with

generator 𝑔, equipped with a non-degenerate bilinear function

e : G × G→ G𝑇 that maps pairs of elements from G to the target

group G𝑇 . We also use hash 𝐻 ′ mapping ℓin-bit strings to G.
During Init, a random matrix M is selected according to a dis-

tributed generator matrix family F . For Setup, the main idea is for

each party 𝑖 to select a random vector x𝑖 and to verifiably share

it to the other 𝑛 − 1 parties using F -F-VSS with the matrix M
from Init. In other words, each party 𝑖 will send 𝑠𝑖

𝑗
= M𝑗 · x𝑖 to

party 𝑗 . At the end of Setup, all honest parties agree on a set 𝑄

of non-disqualified parties. The final secret is x =
∑
𝑖∈𝑄 x𝑖 and

the final share for party 𝑗 will be the sum of shares for all non-

disqualified parties in 𝑄 , 𝑠 𝑗 =
∑
𝑖∈𝑄 𝑠

𝑖
𝑗
. Note that this still satisfies∑

𝑖∈𝑄 M𝑗 · x𝑖 = M𝑗 ·
∑
𝑖∈𝑄 x𝑖 = M𝑗 · 𝑠 𝑗 . In other words, if one

executes F -F-VSS.Reconstruct with 𝑐 correctly-formed shares, the

output would be x =
∑
𝑖∈𝑄 x𝑖 . Finally, we note that each party can

also compute public keys pk𝑗 = 𝑔
𝑠 𝑗

for all non-disqualified parties

𝑗 ∈ 𝑄 .
For partial evaluation on input𝑚, each party will hash the input

𝑚 to the group G, 𝐻 ′ (𝑚) and and return 𝑦 𝑗 = 𝐻 ′ (𝑚)𝑠 𝑗 using its

secret 𝑠 𝑗 . To verify a partial evaluation, a party can use the public

key pk𝑗 = 𝑔
𝑠 𝑗

by checking whether e(𝑦 𝑗 , 𝑔) = e(𝐻 ′ (𝑚), pk𝑗). Note
this succeeds iff 𝑦 𝑗 = 𝐻

′ (𝑚)𝑠 𝑗 as pk𝑗 = 𝑔𝑠 𝑗 .
Finally, we adapt the reconstruction from F -F-VSS to enable

combining partial evaluations on input𝑚 without revealing the

secret x. To do this, we execute the F -F-VSS.Reconstruct in the

exponent using 𝑦 𝑗 = 𝐻 ′ (𝑚)𝑠 𝑗 as the shares. We execute recon-

struction except for the final hash evaluation. At this point in

the reconstruction algorithm, one obtains [𝐻 ′ (𝑚)x1 , . . . , 𝐻 ′ (𝑚)x𝑡]
where x was the original secret. The final random value will be

𝐻 (𝐻 ′ (𝑚)x1 , . . . , 𝐻 ′ (𝑚)x𝑡). Using the same privacy argument from

F -SS, an adversary with 𝑡 − 1 input shares will be unable to predict
the final random value without the final missing share.

Unbiasiability. Prior work [44] showed that building discrete

logarithm-based distributed key generation from parallel execu-

tions of Feldman’s VSS results in biased secrets. In particular, these

constructions must output 𝑠 and 𝑔𝑠 . They showed that 𝑔𝑠 is not

uniformly random, but 𝑠 is uniformly random. This same issue does

not appear in our DVRF as we output 𝑠 that is uniformly random.

Pedersen DVRF.We note a similar approach can be used to con-

struct a DVRF using our Pedersen-based VSS, F -P-VSS. Using the

same extension to DVRF, we can obtain F -P-DVRF. The main ben-

efit of F -P-DVRF is the statistical guarantees of the commitments.

However, there will be no significant improvement during partial

evaluation or reconstruction. So, there will be no improvement

for randomness generation in DRB schemes. Thus, we omit the

description of the Pedersen DVRF.

Algorithm 15 F -F-DVRF.Init algorithm

Input: 1
_, 𝑛, 𝑡, ℓin, ℓout: security parameter, number of parties, pri-

vacy threshold, and input and output length.

Output: pp: public parameters.

Sample random function 𝐻 : G𝑡 → {0, 1}ℓout .
Sample random function 𝐻 ′ : {0, 1}ℓin → G.
Sample coin tosses 𝑅 ← {0, 1}_ for F .RandGen.
return pp← (1, _, 𝐻, 𝐻 ′, 𝑛, 𝑡, 𝑐 ← 𝐾 (𝑡), 𝑅).

Algorithm 16 F -F-DVRF.Setup protocol

Input: pp, 1_ : public parameters and security parameter.

Output: for party 𝑖 , (𝑠𝑖 , pk1, . . . , pk𝑛): one share and 𝑛 public keys.

Dealing round (executed by each party 𝑖 ∈ [𝑛]):
Parse pp = (1_, 𝐻, 𝐻 ′, 𝑛, 𝑡, 𝑐, 𝑅).
Sample random vector x𝑖 ← F𝑡 .
Compute and broadcast 𝑔x

𝑖
= [𝑔x𝑖1 , . . . , 𝑔x𝑖𝑡].

Compute (seed1, . . . , seed𝑛) ← F .RandGen(1_ ;𝑅).
for 𝑗 ∈ [𝑛] do

Compute M𝑗 ← F .ExpandRow(seed𝑗).
Compute y𝑖

𝑗
← M𝑗 · x𝑖 .

Send 𝑠𝑖
𝑗
← y𝑖

𝑗
to party 𝑗 over private channel.

Verification round (executed by each party 𝑖 ∈ [𝑛]):
for 𝑗 ∈ [𝑛] do

If F -F-VSS.Verify((𝑖, seed𝑖 , 𝑠 𝑗𝑖), 𝑔
x𝑗 , 𝑅) ≠ 1, broadcast a com-

plaint for party 𝑗 .

Complaint round (executed by each party 𝑖 ∈ [𝑛]):
Let 𝐶 𝑗 be the parties complaining about party 𝑗 ∈ [𝑛].
for 𝑗 ∈ 𝐶𝑖 do

Broadcast 𝑠𝑖
𝑗
.

Set 𝑄 = [𝑛].
for 𝑗 ∈ [𝑛] do

If |𝐶 𝑗 | ≥ 𝑡 , disqualify 𝑗 , 𝑄 ← 𝑄 \ { 𝑗} and pk𝑗 ←⊥.
for 𝑗 ∈ 𝑄 do

for 𝑘 ∈ 𝐶 𝑗 do
If F -F-VSS.Verify((𝑘, 𝑠 𝑗

𝑘
, seed𝑘), 𝑔x

𝑗
, 𝑅) ≠ 1, disqualify 𝑗 ,

𝑄 = 𝑄 \ { 𝑗} and pk𝑗 ←⊥.
Set 𝑠𝑖 ←

∑
𝑗∈𝑄 𝑠

𝑗
𝑖
.

for 𝑗 ∈ 𝑄 do
Compute M𝑗 ← F .ExpandRow(seed𝑗).
Set pk𝑗 ←

∏
𝑎∈[𝑡]

∏
𝑗∈𝑄 (𝑔x

𝑗
𝑎)M𝑗,𝑎

. ⊲ pk𝑗 = 𝑔
𝑠 𝑗

Algorithm 17 F -F-DVRF.PartialEval algorithm
Input: 𝑚, 𝑠: input and share.

Output: 𝑦: partial output.
return 𝑦 ← 𝐻 ′ (𝑚)𝑠 .

E DECENTRALIZED RANDOMNESS BEACONS
We consider (𝑡, 𝑐)-decentralized randomness beacons (DRB) where 𝑛
parties wish to jointly generate random values. In particular, the

outputs should be computationally indistinguishable from random

24

Efficient Secret Sharing for Large-Scale Applications

Algorithm 18 F -F-DVRF.PartialVerify algorithm

Input: 𝑚,𝑦, pk: input, partial output and public key.

Output: 𝑏 ∈ {0, 1}: verification output.

return 1 iff e(𝐻 ′ (𝑚), pk) = 𝑒 (𝑦,𝑔).

Algorithm 19 F -F-DVRF.Reconstruct algorithm
Input: 𝑚, (𝑦 𝑗 , pk𝑗) 𝑗∈ 𝐽 : input, partial evaluations and public keys.

Output: 𝑦: output.
Compute subset 𝐼 ⊂ 𝐽 such that |𝐼 | = 𝑐 and, for all 𝑗 ∈ 𝐼 , F -
F-DVRF.PartialVerify(𝑦 𝑗 , pk𝑗) = 1.

Execute F -SS.Reconstruct in the exponent until the final hash

function to obtain 𝐻 ′ (𝑚)x1 , . . . , 𝐻 ′ (𝑚)x𝑡 .
return 𝑦 ← 𝐻 (𝐻 ′ (𝑥)x1 , . . . , 𝐻 ′ (𝑥)x𝑡).

even in the presence of a malicious adversary that corrupts 𝑡 − 1
parties. DRB schemes operate in rounds where the 𝑛 parties will

generate fresh random outputs in each round. We denote the output

of the 𝑟 -th round as Ω𝑟 . Once again, we adapt DRB to ramp thresh-

old structures by requiring 𝑐 parties to generate random values

each round. Therefore, we will assume that 𝑛 ≥ 𝑐 + 𝑡 − 1 so there
will be at least 𝑐 honest parties.

A (𝑡, 𝑐)-DRB scheme in the synchronous setting against mali-

cious, static adversaries must satisfy these properties:

(1) Unbiasability: An adversary corrupting at most 𝑡 − 1 par-
ties cannot distinguish between the outputs of the DRB

protocol with only honest parties and the DRB protocol

executed with the corrupted parties.

(2) Liveness: An adversary corrupting at most 𝑛 − 𝑐 parties
cannot cause the DRB scheme to abort early or output

Ω𝑟 = ⊥ in any round 𝑟 .

(3) Unpredictability: Given the output of the 𝑟 -th round Ω𝑟 ,
an adversary corrupting at most 𝑡 −1 parties cannot predict
any property about the output of the 𝑟 ′-th round Ω𝑟 ′ for
any round 𝑟 ′ ≥ 𝑟 + 1.

For formal definitions, we refer readers to [25].

DRB and DVRF. We note that the definitions of decentralized

random beacons (DRB) and distributed verifiable random functions

(DVRF) are similar. In fact, there is a straightforward to build DBR

schemes using a DVRFwhere the output of round 𝑟 is the evaluation

of the DVRF on input 𝑟 used in prior works [25, 42].

Other DRB Protocols. There are other DRB schemes using primi-

tives other than DVRFs. See [25] for more comparisons. As these

DRB schemes still rely on Shamir’s scheme, we believe our tech-

niques may be used to improve their computational cost as well.

However, we leave this to future work.

Unpredictability with Network Delay. Prior works have consid-
ered unpredictability definitions with network delays of Δ. See [25]
for full definitions.

• 𝛼-intra-unpredictability: An adversary cannot predict

the output of round 𝑟 at 𝛼 time units before the end of round

𝑟 .

• 𝛽-inter-unpredicability: An adversary cannot predict the

output of round 𝑟 + 𝛽′ for any 𝛽′ ≥ 𝛽 at the end of round 𝑟 .

It is straightforward to show that F -F-DVRF satisfies the notions
of𝑂 (Δ)-intra-unpredictability and 1-inter-predictability in the pres-
ence of Δ network delay. This is identical to other DVRF-based DRB

schemes [42, 48].

F NON-HOMOMORPHIC APPLICATIONS
Federated Learning. A significant benefit of using RB-SS is that

federated learning may use larger cohorts without sacrificing effi-

ciency. Current systems use cohorts of size in the 100-10,000 [15]

where share reconstruction is performed by surviving users in each

cohort. RB-SS would enable scaling to larger cohorts without share
reconstruction becoming a bottleneck. In turn, larger cohorts sig-

nificantly reduce the impact of dropouts for federated learning. To

see this, suppose there are 𝑛 users, 25% dropout rates and we wish

to report results when no more than half users dropout from any

cohort. If there are 𝑛/100 cohorts of size 100, 51 users can drop from

𝑔 = ⌊𝑛/(4 · 51)⌋ different cohorts. As a result, the contributions of
100 · 𝑔 users are lost. In contrast, if all 𝑛 users were in one cohort,

no individual’s contribution would be lost. We use RB-SS to scale

to larger cohorts (see Section 6.2 for the experimental evaluation).

25

	Abstract
	1 Introduction
	1.1 Our Contributions

	2 Definitions
	2.1 Linear Erasure Codes
	2.2 Ramp Secret Sharing
	2.3 Verifiable Secret Sharing

	3 Linear Erasure Codes
	3.1 Distributed Generator Matrix
	3.2 Our Construction

	4 Secret Sharing
	4.1 Our Improved Framework
	4.2 Our Construction: RB-SS

	5 Applications
	5.1 Verifiable Secret Sharing
	5.2 Distributed Randomness Generation
	5.3 Non-Homomorphic Applications

	6 Experimental Evaluation
	6.1 Secret Sharing
	6.2 Secure Aggregation for Federated Learning
	6.3 Verifiable Secret Sharing
	6.4 Distributed Verifiable Random Functions

	7 Related Works
	8 Conclusions
	References
	A Ramp Secret Sharing
	A.1 Ramp Secret Sharing Definitions
	A.2 Proofs for Ramp Secret Sharing

	B Random Band Matrix Analysis
	B.1 RB-SS Parameters

	C Verifiable Secret Sharing
	C.1 Verifiable Secret Sharing Definitions
	C.2 Pedersen-based Verifiable Secret Sharing
	C.3 Feldman-based Verifiable Secret Sharing
	C.4 Verifiable Secret Sharing Comparison

	D Distributed Verifiable Random Functions
	D.1 Definition
	D.2 Our Construction

	E Decentralized Randomness Beacons
	F Non-Homomorphic Applications

