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Abstract. The literature sometimes uses slow algorithms to find minimum-

length continued-fraction differential addition chains to speed up subsequent

computations of multiples of points on elliptic curves. This paper introduces
two faster algorithms to find these chains. The first algorithm prunes more

effectively than previous algorithms. The second algorithm uses a meet-in-the-

middle approach and appears to have a limiting cost exponent below 1.

1. Introduction

Fix a positive integer n. Consider the problem of computing nP given a point P
on an elliptic curve defined over a finite field k. The operation counts below assume
that k has odd characteristic.

One traditional solution uses an addition chain for n. Another traditional solu-
tion uses a differential addition chain for n starting from 0, 1. Differential addition
chains are addition chains where every addition is accompanied by a difference: one
is allowed to add an entry to the chain only if the entry has the form a+ b where
a, b, and the difference a− b are already in the chain.

The differential addition chain in the second solution is typically longer than
the addition chain in the first solution. The compensating advantage of the sec-
ond solution is that the corresponding elliptic-curve computation can save time by
working with just one coordinate of each point.

Quantitatively, Montgomery pointed out in [16] that, for elliptic curves of the
form By2 = x3 + Ax2 + x (now called Montgomery curves), one can compute
x((a + b)P ) from x(aP ), x(bP ), and x((a − b)P ) using just 6 multiplications in k
if all x-coordinates are written as fractions, or 5 multiplications in k in the special
case of affine difference (meaning that x((a− b)P ) is represented with denominator
1), or 4 multiplications in k in the doubling case a = b, or 3 multiplications in k for
doubling an affine input. (This is not counting multiplications by constants; the
doublings also involve a multiplication by the constant (A+ 2)/4.)

A particularly easy differential addition chain to compute, given n, is a ladder.
The ladder for n obtains n by doubling n/2 if n is even, or by adding (n+ 1)/2 to
(n − 1)/2 if n is odd, with n/2 or (n + 1)/2, (n − 1)/2 obtained in the same way
recursively. The Montgomery ladder, meaning a ladder applied to a Montgomery
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curve, computes x(nP ) from x(P ) using just 9 multiplications in k per bit of n.
The input x(P ) is in affine form, and the output x(nP ) is a fraction.

For comparison, the usual addition chains (or addition-subtraction chains) to
compute nP from P involve one doubling per bit of n, plus some additions (or
subtractions) depending on n. The number of additions per bit is o(1) as n→∞,
and the Bernstein–Lange formulas [5] for doubling on an Edwards curve cost just
7 multiplications in k, so a traditional addition chain on an Edwards curve costs
(7 + o(1)) log2 n multiplications in k as n → ∞, outperforming the Montgomery
ladder—but this does not say anything about any fixed value of n. As a numerical
example, consider n = 29:

• The addition chain 1, 2, 3, 6, 7, 14, 28, 29 has 4 doublings and 3 further addi-
tions. Additions are a major contributor to the cost of computing 29P via
this chain. Even if one reduces the cost of each addition to 8 multiplications
in k using the Hisil–Wong–Carter–Dawson formulas [14] for addition of an
affine point on a twisted Edwards curve with twist −1 and does the first
(affine) doubling in 6 multiplications, this requires 51 multiplications.
• The addition-subtraction chain 1, 2, 3, 4, 8, 16, 32, 29, with 5 doublings and
2 further additions/subtractions, is only marginally less expensive at 50
multiplications.
• The ladder 0, 1, 2, 3, 4, 7, 8, 14, 15, 29 is longer but, on a Montgomery curve,
involves only 3 + 5 + 4 + 5 + 4 + 4 + 5 + 5 = 35 multiplications in k.

Furthermore, comparing to ladders is not the same as comparing to arbitrary
differential addition chains. Montgomery gave a “CFRC” algorithm in [17] to find a
differential addition chain with, at least experimentally, approximately 1.5 additions
per bit of n, while a ladder for n has 2 additions (including 1 doubling) per bit of
n (for odd n).

Define L(n) as the minimum length of a differential addition chain for n. The best

lower bound available on L(n) for most values of n is about 1/log2((1 +
√
5)/2) ≈

1.44042 additions per bit of n. More precisely, Montgomery showed in [17, Theorem
7] that if n = p1p2 · · · pj , where p1, p2, . . . , pj are primes, then n ≤ 2j−1FL(n)−j+3,
where F is the Fibonacci sequence. Montgomery reported in [17, Table 5] that the
total number of additions of ladders for small primes n was 30.3% more than this
lower bound, while CFRC was just 2.0% more than this lower bound.

The chain produced by CFRC for n is a minimum-length “continued-fraction
differential addition chain” for n; see Section 2 for definitions. Compared to ladders,
a disadvantage of continued-fraction differential addition chains is that most of their
additions on Montgomery curves use 6 multiplications in k, rather than 4 or 5.
For example, 1, 2, 3, 5, 8, 13, 21, 29 is a continued-fraction differential addition chain
involving 3 + 5 + 5 + 6 + 6 + 6 + 6 = 37 multiplications in k, slightly above the 35
multiplications in k for a ladder. Notice, however, that 6 · 1.44042 ≈ 8.64 is below
9, so one would expect chains that come close enough to 1.44 additions per bit to
use fewer multiplications in k than a ladder. Also, in situations where the input is
not provided in affine form, a ladder incurs the cost of either an initial inversion or,
for each bit of n, an extra multiplication in k.

If n is even then, given the relative cost of doublings, it is beneficial to write
n = n′2t, with n′ odd, and use the differential addition chain to compute n′P
followed by t doublings to compute nP . The algorithms in this paper do not
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require n to be odd, but we focus on odd n, and more specifically prime n, for
numerical examples.

1.1. Caveat regarding multiplication counts. Counting multiplications in k is
only a first step towards understanding performance of elliptic-curve operations.

Montgomery’s doubling formulas cost 2M +2S+1C +4A, where M,S,C,A are
the costs in k of multiplication, squaring, multiplication by a curve constant, and
addition respectively. Montgomery’s differential-addition formulas cost 4M +2S+
6A, or 3M + 2S + 6A for affine difference. A ladder costs 5M + 4S + 1C + 8A
per bit since 2A turn out to be redundant, while 1.44 differential additions cost
5.76M + 2.88S + 8.64A. One then wants to know whether saving 1.12S + 1C
outweighs losing 0.76M + 0.64A.

Switching to y2 coordinates for Edwards curves with square d (with the 2009
Bernstein–Kohel–Lange formulas; see [4]) changes 2M + 2S + 1C + 4A to 4S +
2C + 4A, changes 4M + 2S + 6A to 4M + 2S + 1C + 6A, changes 3M + 2S + 6A
to 3M + 2S + 1C + 6A, and changes 5M + 4S + 1C + 8A to 3M + 6S + 3C + 8A.
One then wants to know whether 3.12S + 1.56C outweighs 2.76M + 0.64A.

One can find papers that measure costs of operations, for example reporting
S ≈ 0.8M and A ≈ 0.1M for particular fields k. In that example, the cutoff for
C/M is about 0.072 for Montgomery curves, and about 0.21 for Edwards curves
with square d. Smaller values of C/M favor ladders, while larger values of C/M
favor shorter differential addition chains. If the 1.44 changes then these numbers
change correspondingly.

All of the numbers change again if one moves beyond elliptic curves to higher
dimensions, as in, e.g., [10].

The rest of this paper focuses on the lengths of differential addition chains, and
leaves lower-level performance analysis to future work.

1.2. Existing algorithms to search for differential addition chains. CFRC
builds a differential addition chain for n by choosing an auxiliary integer ρ coprime
to n and applying Euclid’s gcd algorithm to the pair (n, ρ). Euclid’s algorithm is
not instantaneous: the CFRC algorithm stated in [17] uses Θ((log n)2) subtractions
for an average ρ. (See [23] for more precise bounds.) One can instead compute the
length of the (n, ρ) chain by carrying out O(log n) divisions using O((log n)2) bit
operations, or, using [18] and [13], asymptotically O((log n)(log log n)2) bit opera-
tions. But the big issue is that there are Θ(n) choices of ρ to check.

Montgomery in [17, Section 7] proposed a much faster algorithm, PRAC, to find
a chain for n, but the chains produced by PRAC have disadvantages compared to
the chains produced by CFRC:

• PRAC generates a differential addition-subtraction chain, but not always
a differential addition chain.

• Even when it generates a differential addition chain, PRAC usually does
not generate a continued-fraction chain. Applying a PRAC chain uses more
complicated data flow and more storage than applying a continued-fraction
chain: compare [17, Table 4, “Action(s)” column] to Algorithm 1.

• Banegas, Bernstein, Campos, Chou, Lange, Meyer, Smith, and Sotáková
pointed out as part of “CTIDH” [2] that one can, at low cost, hide the
exact value of n in a continued-fraction chain, for contexts where that
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value is secret. Converting the evaluation of a PRAC chain to a constant-
time computation would incur higher costs. See [2, Section 2.4] for further
information on constant-time computations.
• Even in situations where all that matters is the number of additions, PRAC
finds chains that are not quite as short as the CFRC chains. For example,
[17, Table 5] says 7.7% longer than the lower bound for primes n < 106.
See also the figures in Section 5 of this paper.

A slower variant of PRAC suggested in [17, Section 8] addresses the last disadvan-
tage but not the others.

Cervantes-Vázquez, Chenu, Chi-Domı́nguez, De Feo, Rodŕıguez-Henŕıquez, and
Smith reported in [7] that for isogeny computations they had “pre-computed the
shortest differential addition chains” for all small primes—actually minimum-length
continued-fraction differential addition chains, like CFRC. The SIBC [1] library
from Adj, Chi-Domı́nguez and Rodŕıguez-Henŕıquez includes the software for this
precomputation. The chain-search algorithm is different from CFRC, with some
advantages and some disadvantages; see Section 3.1.

The CTIDH software from [2] includes improvements to the search algorithm
from [7]. For both [7] and [2], the range of primes is small enough that the search is
easily affordable in any case, but larger primes naturally appear in other isogeny-
based computations; see, e.g., [11]. It is thus interesting to consider how quickly
one can find the shortest continued-fraction differential addition chain for a given
n, and, more broadly, what tradeoffs are possible between chain-searching time and
chain length.

1.3. Contributions of this paper. This paper introduces two new algorithms
that map any given integer n ≥ 3 to a minimum-length continued-fraction differ-
ential addition chain for n.

Our first algorithm, like the previous algorithms from [7] and [2], is a low-memory
combinatorial search.1 The advantage of this algorithm is that it prunes the search
tree more effectively than the previous algorithms. Experiments suggest that the
number of search nodes for an average input n is bounded by a small constant times
n, unlike the previous algorithms.

Here is a numerical example to illustrate what this algorithm achieves. Consider
the prime divisor n = 358429848460993 ≈ 248.35 of 2448 − 1. A search through
227081419196942 ≈ 247.69 nodes, using in total 13319 core-minutes (about 8 core-
cycles per node) on a dual AMD EPYC 7742, found a 73-addition continued-fraction
differential addition chain ending in ρ, n where ρ = 221521718594876. This ρ
determines the entire chain and encodes the expensive part of the search. To
construct the full chain, simply apply Euclid’s subtractive algorithm to (n, ρ).

For comparison, the algorithm from [2] would have been thousands of times
slower. The CFRC approach of searching through all possible values of ρ would,
with some added pruning, be faster than the algorithm from [2], but would still
involve many more than n nodes.

Our second algorithm is a meet-in-the-middle search for which the only obvious
bottleneck is searching n2/3+o(1) nodes. One might even hope for a meet-in-the-
middle search to reach exponent 0.5+o(1), but the meet condition in this algorithm

1Actually, the software from [7] accumulates a list of all nodes in the search tree and is thus

not low-memory, but one can trivially eliminate this list.
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is more complicated than an equality test. A full analysis of this algorithm is
difficult, but we find many values of n < 109 for which this algorithm outperforms
the first algorithm, and the trends appear consistent with the idea that the limiting
exponent for the second algorithm is below 1.

This algorithm has a disadvantage: the algorithm’s memory usage grows simi-
larly to the number of nodes. It is not clear whether the lower-memory “golden
collision” techniques of [22] are applicable here.

Finally, we point out that generating short continued-fraction differential addi-
tion chains for a large range of n is more efficient than generating chains for one
n at a time. In our meet-in-the-middle search, the “left” part of the search can
be shared; see Section 4.7. In the extreme case that one wants to generate chains
for every small prime (which is essentially the situation in [7] and [2]), one can
enumerate all short chains as mentioned by Montgomery in [17, Section 6], but
experiments and heuristics suggest that it suffices to focus on chains having only a
small fraction of swaps.

1.4. Searches for other types of addition chains. There is a much longer his-
tory of searches for addition chains without the constraint of being differential ad-
dition chains. For systematic search algorithms, see Chin–Tsai [8], Bleichenbacher–
Flammenkamp [6], Thurber [20], Knuth [15], Clift [9], and Thurber–Clift [21]. The
algorithms from [15] and [9] reuse work across all small values of n.

One might expect searches for the shortest addition chains to be more difficult
than searches for the shortest continued-fraction differential addition chains: there
are many more choices of what to add at each step, even when known symmetries
are taken into account. On the other hand, a search for a shortest addition chain for
n can be pruned at a shorter length, and in particular at the length of an easy-to-
find addition chain for n having only slightly more than log2 n steps. The number
of nodes visited in the search from [6] is plotted in [6, Figure 8.1] for n ranging
from 211 to 219 and shows a wide variance on a logarithmic scale for each size of n,
with upper outliers ranging from about 27 to about 222 while most values are much
smaller. The average-case and worst-case exponents of the search are unclear.

The literature considers further types of chains. For example, [12] uses small-
discriminant complex multiplication to efficiently reduce single-scalar multiplication
n, P 7→ nP to double-scalar multiplication m,n, P,Q 7→ mP + nQ with half-size
scalars m,n. Even without such curve structure, sometimes applications naturally
involve double-scalar multiplication, triple-scalar multiplication, etc. Differential
addition chains for (m,n) are considered in, e.g., [19, Chapter 3] and [3]; it would
be interesting to investigate algorithms to find such chains of minimum length.

2. Preliminaries

An addition chain for an integer n is defined as a sequence of integers

1 = c0, c1, . . . , cr = n

such that, for each i ∈ {1, . . . , r}, there exist j, k ∈ {0, . . . , i − 1} such that ci =
cj + ck.

To formalize differential addition chains for n as special cases of addition chains
for n, we also start differential addition chains with 1. A differential addition
chain for n is then defined as a sequence of integers 1 = c0, c1, . . . , cr = n such
that, for each i ∈ {1, . . . , r}, there exist j, k ∈ {0, . . . , i− 1} such that ci = cj + ck
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and cj − ck ∈ {0, c0, c1, . . . , ci−1}. In other words, for each addition the difference
is already in the chain or the difference is 0.

An example of a differential addition chain for n = 29 is 1, 2, 3, 5, 8, 13, 21, 29,
where for example when 13 = 8+5 is added to the chain, we see that the difference
8− 5 = 3 is already in the chain.

A continued-fraction tuple sequence for n ≥ 3 is defined as a sequence of
tuples of three integers (a2, b2, c2), . . . , (ar, br, cr) satisfying the following conditions:
(a2, b2, c2) = (1, 2, 3); cr = n; and, for each i ∈ {3, . . . , r}, one has (ai, bi, ci) =
(bi−1, ci−1, ci−1 + bi−1) or (ai, bi, ci) = (ai−1, ci−1, ci−1 + ai−1). Notice that each
tuple satisfies ci = ai + bi.

For example, the tuples

(1, 2, 3), (2, 3, 5), (3, 5, 8), (5, 8, 13), (8, 13, 21), (8, 21, 29)

form a continued-fraction tuple sequence for n = 29. In this example, one has
(ai, bi, ci) = (bi−1, ci−1, bi−1 + ci−1) for the second, third, fourth, and fifth tuples,
and (ai, bi, ci) = (ai−1, ci−1, ai−1 + ci−1) for the sixth tuple.

A continued-fraction differential addition chain for n ≥ 3 is defined as a
chain of the form 1, 2, c2, . . . , cr = n where (a2, b2, c2), . . . , (ar, br, cr) is a continued-
fraction tuple sequence for n. In other words, the chain is 1, 2 followed by the last
entry in each tuple. To see that this is, in fact, a differential addition chain, notice
that each ai and each bi is in the chain, and that each ci is obtained as ci−1 + bi−1

with difference ci−1 − bi−1 = ai−1 already in the chain, or as ci−1 + ai−1 with
difference ci−1 − ai−1 = bi−1 already in the chain.

For example, the above differential addition chain 1, 2, 3, 5, 8, 13, 21, 29 adheres
to this constraint and is thus a continued-fraction differential addition chain for
n = 29.

Note that 1, 2, 3, 5, 8, 13, 16, 29 is also a valid differential addition chain for n =
29, but it does not adhere to the continued-fraction constraints. Specifically the 16
is not valid, since it cannot be created from (5, 8, 13) following the constraint. This
paper focuses on continued-fraction chains.

2.1. Compression. A continued-fraction tuple sequence is completely determined
by one bit at each position:

• Bit fi = 0 means (ai, bi, ci) = (bi−1, ci−1, ci−1 + bi−1).
• Bit fi = 1 means (ai, bi, ci) = (ai−1, ci−1, ci−1 + ai−1).

One can thus compress a length-r continued-fraction differential addition chain
1, 2, c2, . . . , cr to just r − 2 bits f3, . . . , fr. This compressed format is convenient
for Algorithm 1 below.

2.2. Evaluating continued-fraction differential addition chains. Given a
point P and a continued-fraction differential addition chain (in compressed form) for
n, Algorithm 1 computes nP . This algorithm uses a subroutine DBL, which doubles
a point P efficiently, and a subroutine dADD, which efficiently maps Q − P, P,Q
to Q+P . These algorithms depend on the type of elliptic curves used; for efficient
algorithms see [4].

Despite the fact that differential addition chains are usually longer than binary
addition chains, we need significantly fewer computations per bit in the compressed
chain. This algorithm only takes one doubling and one addition as a setup, followed
with one addition per bit of the chain, while the binary addition chain requires
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Algorithm 1: Multiplication-by-n map using a differential addition chain

Input : a point P , a compressed continued-fraction differential addition
chain f3, . . . , fr for n

Output: nP
1 X0 ← P

2 X1 ← DBL(P )

3 X2 ← dADD(P, P,X1)

4 for i = 3 up through r do
5 if fi = 0 then
6 (X0, X1, X2)← (X1, X2, dADD(X0, X1, X2))

7 else
8 (X0, X1, X2)← (X0, X2, dADD(X1, X0, X2))

9 return X2

one doubling and possibly one addition per bit of the chain. Furthermore, the
differential case works with fewer coordinates of each point. See Section 1.

A different way to express the inner loop in Algorithm 1 is as follows: swap
X0 with X1 if fi = 1; then set (X0, X1, X2) ← (X1, X2,dADD(X0, X1, X2)). In
situations where the exact value of n (as opposed to the chain length r) is secret,
one should carry out the conditional swap in time independent of fi, hiding whether
there was in fact a swap.

2.3. Bounds on the length. Montgomery’s bound on the length of differential
addition chains is particularly easy to prove for the special case of continued-fraction
differential addition chains, and does not require any assumptions on the factoriza-
tion of n: for every integer n ≥ 3, one has n ≤ FL∗∗∗(n)+2, where L

∗∗∗(n) is the
minimum length of a continued-fraction differential addition chain for n and F is
again the Fibonacci sequence.

Indeed, say (a2, b2, c2), . . . , (ar, br, cr) is a minimum-length continued-fraction
tuple sequence for n. By induction ai ≤ Fi, bi ≤ Fi+1, and ci ≤ Fi+2 for each i.
(For i = 2, one has a2 = 1 = F2, b2 = 2 = F3, and c2 = 3 = F4. For i ≥ 2, one
has ai−1 ≤ Fi−1 and bi−1 ≤ Fi and ci−1 ≤ Fi+1 by the inductive hypothesis; and
then (ai, bi, ci) = (bi−1, ci−1, ci−1 + bi−1), in which case ai ≤ Fi and bi ≤ Fi+1 and
ci ≤ Fi+1 + Fi = Fi+2 as desired, or (ai, bi, ci) = (ai−1, ci−1, ci−1 + ai−1), in which
case ai ≤ Fi−1 ≤ Fi and bi ≤ Fi+1 and ci ≤ Fi+1 + Fi−1 ≤ Fi+2 as desired.) In
particular, n = cr ≤ Fr+2.

This bound is tight when n is a Fibonacci number. This corresponds to a com-
pressed differential addition chain with r− 2 zeros, since then for each step the two
largest elements of the tuple are added. For example, the sequence

(1, 2, 3), (2, 3, 5), (3, 5, 8), (5, 8, 13), (8, 13, 21)

and corresponding chain 1, 2, 3, 5, 8, 13, 21 reach n = 21 with r = 6 additions; 21 is
indeed the 8th Fibonacci number.

The explicit formula Fi = (ϕi − ψi)/
√
5, where ϕ = (1 +

√
5)/2 = 1.618 . . . and

ψ = (1 −
√
5)/2 = −0.618 . . ., implies Fr+2 < (ϕr+2 + 0.24)/

√
5, which in turn

implies L∗∗∗(n) = r > logϕ(n
√
5− 0.24)− 2 > 1.44042 log2(n− 0.11)− 0.32773.
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For a trivial upper bound on L∗∗∗(n), observe that the chain 1, 2, 3, 4, 5, . . . , n
that repeatedly adds 1 is a continued-fraction differential addition chain, namely
the all-swap chain of length r = n − 1 that reaches n via tuples (1, 2, 3), (1, 3, 4),
(1, 4, 5), etc. This is not a useful upper bound in any shape or form.

Montgomery conjectures in [17, Section 6] that each n ≥ 3 has a continued-
fraction differential addition chain of length at most 1.77 log2 n+O(1). Montgomery
notes that the actual minimum length for primes n < 10000 is below 1.5 log2 n+ 1
except for n ∈ {3847, 5903}; our computations found more exceptions, such as
n = 1540631 (length 32 ≈ 1.5 log2 n+1.167), n = 64398343 (length 40 ≈ 1.5 log2 n+
1.089), and n = 160984639 (length 42 ≈ 1.5 log2 n+ 1.106).

3. Pruned left-to-right combinatorial searches

This section reviews the algorithms from the SIBC [1] and CTIDH [2] software,
and presents our first algorithm as an improvement to the algorithm from [2].

3.1. Baseline search. As a simplified variant of what the SIBC software does,
consider the following brute-force enumeration of all continued-fraction differential
addition chains of length at most 2 + ⌊1.5 log2 n⌋.

The chains are enumerated as nodes in a search tree. A length-r chain for r ≥ 2
is represented as r − 2, the tuple (ar, br, cr), and an (r − 2)-bit integer whose bits
are the chain in compressed form (see Section 2.1). The root node has r = 2 and
tuple (1, 2, 3). Each node below the maximum length has two child nodes for the
two choices of (ar+1, br+1, cr+1), so overall there are 21+⌊1.5 log2 n⌋− 1 ≈ n1.5 nodes.

It seems that, after enumerating all of the chains, one can always take a minimum-
length chain that ends with n. No examples are known for which this search fails,
i.e., for which none of the chains end with n.

The basic advantage of this algorithm over Montgomery’s CFRC is that there
are just a few arithmetic operations per chain. The basic disadvantage is that the
number of chains considered is larger, at least asymptotically. The point of the
pruning techniques covered below is to reduce the number of chains considered.

3.2. Pruning nodes that overshoot the target. The search that is actually
in the SIBC software differs in one way from the above baseline search: if a node
has cr > n, then the node is pruned, meaning that all descendants of the node are
eliminated.

Experiments show that this pruning leaves most of the nodes: i.e., most nodes
have cr much smaller than n. For example, for n = 6521, this pruning leaves more
than 90% of the 220 − 1 nodes.

To understand why this happens, consider an all-0 compressed chain (no swaps),
i.e., a Fibonacci chain, increasing by a factor approximately 1.618 at each step,
so about 1.5 log2 n steps reach about n1.04. One can check that inserting a swap
divides the end of the chain by a factor close to 1.118, in effect reducing one 1.618
factor to 1.447, although the factor can be noticeably larger or smaller if the inserted
swap is close to the end of the chain. A back-of-the-envelope estimate is then that
s swaps reduce the end of the chain from about n1.04 to about n1.04/1.1s, dropping
below n once s reaches about 0.3 log2 n. An average chain, before pruning, has
about 0.75 log2 n swaps, so presumably its end is much smaller than n.

Example: Figure 1 displays the tree of tuples considered in the SIBC software’s
recursive search for a continued-fraction chain for n = 11. The root of the tree is
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1, 2, 3
ctidh 0–3

prune 0–3

1, 3, 4
ctidh 2–3

1, 4, 5
ctidh 3

1, 5, 6
1, 6, 7 1, 7, 8 ❚

2, 3, 5
ctidh 2–3

prune 3

2, 5, 7

2, 7, 9
2, 9, 11 ✔

3, 4, 7
ctidh 3

3, 5, 8
prune 3

3, 7, 10
ctidh 3

3, 8, 11 ✔
prune 3

3, 10, 13 ✘

4, 5, 9

4, 7, 11 ✔
ctidh 3

4, 9, 13 ✘

5, 6, 11 ✔

5, 7, 12 ✘

5, 8, 13 ✘
prune 3

5, 9, 14 ✘

6, 7, 13 ✘

7, 9, 16 ✘

7, 10, 17 ✘

1

1

1

1
1

0

1

1

1

0
0

1
1

1

0
0

1

0

0
0

0

0

0

0

Figure 1. Chains considered by the SIBC search, the CTIDH
search, and this paper’s pruning algorithm for n = 11. Each node
is labeled with the tuple c− b, b, c where the chain at the node has
the form . . . , b, c. See text for further description.

the chain (1, 2, 3). Each chain in the tree has at most ⌊1.5 log2 11⌋ = 5 additions,
apart from the two to create our starting tuple (1, 2, 3). The chains with a red cross
(✘) have overshot the target n = 11, while the chain with a blue vertical rectangle
(❚) has reached the maximum number of additions, while staying strictly beneath
the target integer. The chains with a green checkmark (✔) are considered since
they end at n = 11 and they are within the length limit. The SIBC software then
simply chooses one of the chains for n of minimum length.

3.3. An incremental length search. One change from the SIBC search to the
CTIDH search is that the CTIDH search first tries chain length 0, then chain
length 1, then chain length 2, etc. As soon as a chain ending in n is found it is for
sure (one of) the shortest chain(s), so the search immediately stops, saving all of
the time for the other chains of that length and saving all of the time for longer
chains, rather than continuing to find all chains up through the maximum length.
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This also eliminates concern about the possibility of the precomputed length bound
2 + ⌊1.5 log2 n⌋ being too small.

A disadvantage is that chains encountered for any particular length are repeating
chains that were already built for earlier lengths. One expects this to lose only a
small constant factor. It would be possible, at the expense of memory, to save the
previously built chains rather than rebuilding them.

3.4. Pruning nodes that undershoot the target. There is one other change
from the SIBC search to the CTIDH search: nodes that are clearly too small are
pruned.

The test for nodes being too small considers doublings until the target length r:
a node with tuple (ai, bi, ci) is pruned if 2r−ici < n. If even with doublings we do
not reach the target then clearly all descendants of the node will undershoot. This
test relies on the target length being known; see Section 3.3.

An adaptation of the argument from Section 3.2 suggests that this pruning elim-
inates most nodes. The impact was not analyzed in [2], but our experiments show
that the CTIDH search is much faster than the SIBC search; see Section 5.

Example: Figure 1, already described in Section 3.2 as showing the tree of chains
considered in the SIBC search for the target n = 11, also shows the tuples considered
by the CTIDH search for the same target. The “ctidh” labels show which tuples are
considered by this search. Specifically, a label “ctidh 3” indicates a tuple considered
by the CTIDH search for length 3, meaning 3 additions after the starting chain
1, 2, 3; a label “ctidh 2–3” indicates a tuple considered for length 2 or 3; a label
“ctidh 0–3” indicates a tuple considered for length 0, 1, 2, or 3. In more detail:

• For length 0 or 1, the search will not make it past the first tuple (1, 2, 3),
since doubling 0 or 1 times leads to 3 or 6 respectively, which both under-
shoot the target n = 11.
• For length 2, we make it to (1, 3, 4) and (2, 3, 5), but doubling 4 and 5 once
will both lead to undershooting again.
• For length 3, we find (1, 4, 5) in the third column (two additions after the
root); doubling 5 again undershoots. We then try (3, 4, 7) in the third
column; this does not undershoot. So we continue with another addition.
This leads to the tuples (3, 7, 10), which undershoots since we are at the
maximum number of additions, and (4, 7, 11), which reaches the target.

At this point the search has found the continued-fraction chain 1, 2, 3, 4, 7, 11, which
is guaranteed to be of minimum length. The depth-first search can stop at this point
but, imitating [2], actually continues at this point with a lower length limit, so it
visits (2, 3, 5) again; this is why (2, 3, 5) is labeled “ctidh 2–3” in Figure 1 rather
than “ctidh 2”.

3.5. A more effective test for undershooting the target. Our first new al-
gorithm is based on the CTIDH algorithm. It reuses the idea of searching lengths
incrementally until a chain is found, stopping the algorithm as soon as a chain is
found. A small difference here is that we use a non-recursive depth-first search
through the available graph (based on the length we are considering at that mo-
ment), considering 0 before 1. The critical difference though is that the new algo-
rithm prunes more nodes that are guaranteed to undershoot the target.

There are no doublings in a continued-fraction differential addition chain after
the initial 1, 2. If a chain of length i reaches tuple (ai, bi, ci), then a child chain of
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length i+ 1 reaches at most 2ci (since bi ≤ ci), a descendant chain of length i+ 2
reaches at most 3ci, a descendant chain of length i + 3 reaches at most 5ci, etc.
Note the Fibonacci sequence here.

For any particular target length r, we precompute a list of bounds that the chain
at a certain length needs to have surpassed or the chain will clearly undershoot.
Specifically, if cr ≤ n − 1 then cr undershoots; if cr−1 ≤ ⌊(n− 1)/2⌋ then cr−1

undershoots; if cr−2 ≤ ⌊(n− 1)/3⌋ then cr−2 undershoots; if cr−3 ≤ ⌊(n− 1)/5⌋
then cr−3 undershoots; etc. We then prune any nodes not meeting these conditions.

It would be interesting to explore further pruning possibilities. We could prune
more nodes by accounting for bi usually being noticeably smaller than ci, although
this would involve more arithmetic. Also, the test for overshooting could account
for at least ai being added to ci at each subsequent step. Improvements to the
overshooting test could have more impact than in Section 3.2 relative to the total
number of nodes, since many nodes that undershoot have disappeared.

Example: To illustrate how our pruning algorithm works, we will again look
at the same target as the other examples, n = 11. We start with incrementing
lengths, but now per length we will first compute the list of Fibonacci-based bounds
. . . , ⌊(n− 1)/5⌋, ⌊(n− 1)/3⌋, ⌊(n− 1)/2⌋, n− 1:

• For length 0, the list of bounds is 3, 5, 10. The first (and only) chain con-
sidered here is 1, 2, 3 and since 3 ≤ 10 this will clearly undershoot.

• For length 1, the list of bounds is 2, 3, 5, 10 and again the search will im-
mediately stop at the root chain 1, 2, 3, since 3 ≤ 5.

• For length 2, the list of bounds is 1, 2, 3, 5, 10 and again the search stops
since 3 ≤ 3. Notice the improvement here compared to the CTIDH search.

• For length 3, the list of bounds is 0, 1, 2, 3, 5, 10. We will now make it past
the first step since 3 > 2. Then 2, 3, 5 is not pruned since 5 > 3. The next
tuple considered (since we consider child 0 before child 1) is 3, 5, 8, which
again is not pruned since 8 > 5. Then the next tuple 5, 8, 13 is pruned since
13 overshoots. The final tuple considered is 3, 8, 11 which then results in
the chain 1, 2, 3, 5, 8, 11.

The nodes considered here are labeled “prune” in the tree of tuples in Figure 1.

4. Meet-in-the-middle algorithm

This section presents our second algorithm. This algorithm uses a conceptu-
ally simple meet-in-the-middle (MitM) approach to search for a continued-fraction
differential addition chain for a given integer n ≥ 3.

This section actually presents two variants of the algorithm: a “left-interval”
variant and a “left-length” variant. The left-interval variant does not always find
minimum-length continued-fraction chains, although experiments show that it usu-
ally does. The left-length variant always finds minimum-length continued-fraction
chains. The abstract and introduction of this paper are referring to the left-length
variant.

4.1. Chain structure. This algorithm views a short chain in compressed form
(see Section 2.1) as the concatenation of a left side and a right side. Enumerating,
e.g., n2/3+o(1) possibilities for the left side and n1/3+o(1) possibilities for the right
side is tantamount to creating a space of n1+o(1) chains overall.
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c− b, b, c

c− b, b, c, b+ c

c− b, b, c, 2c− b

c− b, b, c, b+ c, b+ 2c

c− b, b, c, b+ c, 2b+ c

c− b, b, c, 2c− b, 3c− b

c− b, b, c, 2c− b, 3c− 2b

· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·
· · ·

0

1

0
1

0
1

0

1

0

1

0

1

0

1

Figure 2. Tree of all possible right-side chains, viewed as chains
of elements of Z[b, c] starting with c− b, b, c.

The two basic challenges addressed in this section are, first, to create short left
and right sides having appropriate sizes for the outputs of the concatenated chains
to be “random” integers around n, making it plausible that a space of n1+o(1) chains
will include a chain for n; and, second, to identify matching left-side and right-side
possibilities without writing down most of the n1+o(1) chains.

4.2. Algorithm structure. The left side of this algorithm is straightforward. We
start with (1, 2, 3) and we look at all the chains that end at a particular cutoff. The
cutoff depends on the algorithm variant and on n:

• In the left-interval variant, we enumerate chains whose final entry is in an
interval chosen based on n. The function mapping n to an interval is an
algorithm parameter. For example, one can take the interval from

⌈
n2/3

⌉
to

⌈
2n2/3

⌉
.

• In the left-length variant, we instead choose a length and enumerate chains
of that length. For example, if the goal is to find a chain for n of total
length ℓ, one can choose length ⌊2ℓ/3⌋ for the length of the left side of the
chain. (The algorithm has an outer loop searching incrementally through
ℓ, as in Section 3.3.)

With either variant, the enumeration of left-side chains uses a simple generalization
of the algorithm from Section 3; see Section 4.4 for details.

The right side and meet-in-the-middle would be very simple as well if we could use
the right bits in a compressed chain to work backwards from n to an intermediate
point. However, we only know at the right side that the chain ends on n; we do not
know any of the previous steps. CFRC addresses this by guessing many possibilities
for the step before n and then working entirely from right to left, but we do not
want to try so many guesses.

What we do know is that, after the left side produces an ending tuple (a, b, c) =
(c − b, b, c) for some integers b and c, the right side takes this input and outputs
(. . . , . . . , pb + qc), where p and q are integers determined by the right side. (For
example, the root chain c−b, b, c in Figure 2 has (p, q) = (0, 1); chain c−b, b, c, 2c−b
has (p, q) = (−1, 2); etc.) The concatenated chain outputs n exactly when pb+ qc
equals n.
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So we generate various right sides of reasonable sizes as explained in Section 4.6.
For each right side, we have p, q such that the right side maps (c − b, b, c) to
(. . . , . . . , pb + qc). Meanwhile we know (b, c) for each left side. We could now
check each left side against each right side to see whether pb+ qc equals n, but we
want to check fewer combinations.

We pick a prime modulus m. For each left side, we reduce (b, c) modulo m,
obtaining an index (b mod m, c mod m) for that chain. Then, for each right side, we
take the corresponding (p, q) and quickly locate the indices for which the following
equation holds:

bp+ cq ≡ n (mod m).

For each such index, and for each left side having that index, we then check whether
bp + cq = n also holds without the mod m. In cases where bp + cq = n, we
concatenate the left side and right side to form a chain for n.

4.3. Exponent intuition. One expects the line bp + cq ≡ n (mod m) to have
about m solutions for (b mod m, c mod m), except in rare cases such as p ≡ q ≡
n ≡ 0 (mod m) (which will certainly not happen if n is a prime larger than m). An
average right side will then consider m indices, which presumably will have only
about 1/m of the left sides, saving a factor m compared to concatenating all left
and right sides. Considering the m indices is not a bottleneck if the number of left
sides is around m2 (or larger).

In particular, if there are n2/3+o(1) left sides and n1/3+o(1) right sides, with
m ∈ n1/3+o(1), then one expects total algorithm cost to only be n2/3+o(1).

4.4. Left-hand side. Consider first the left-interval variant. The task here is
to enumerate left-side chains ending with c in a specified target interval. As in
Section 3, we combinatorially enumerate partial chains as nodes in a search tree.
We are free to prune nodes that will not be useful in building a short chain for n.

We first construct the range of accepted end points c as follows. We pick an
exponent e with 0 < e < 1, a factor f > 0, and a factor s ≥ 1. We then use the
target interval ⌈⌈fne⌉/s⌉ through ⌊⌈fne⌉s⌋.

A continued-fraction chain cannot jump by a factor more than 2 in one step,
so taking s ≈

√
2 suffices to guarantee that any desired chain will have a left side

arriving in the target interval. Our experiments take a more optimistic s = 1.1,
falling back to a larger s only if no short chains are found; this is one reason that our
experiments with the left-interval variant are not guaranteed to find the shortest
chains. Our experiments take f = 1 and e = 2/3.

After choosing a target interval, we choose a maximum length for the left-side
chain (length here meaning the number of additions on the left side after the initial
1, 2, 3), specifically ⌊1.5 log2 C⌋ where C is the maximum integer in the interval.
This limit on the length is another reason that the left-interval variant is not guar-
anteed to find the shortest chains: even if one takes s large enough to guarantee
that any desired chain has a left side arriving in the target interval, there is no
proof that the left side will do so within this length.

After making these choices, we carry out a combinatorial search for left-side
chains, pruning as in Section 3:

• A node is pruned if the chain length exceeds the specified limit.
• A node is pruned if it will clearly overshoot the top of the target interval:
specifically, if c already exceeds the top.
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• A node is pruned if it will clearly undershoot the bottom of the target
interval. Specifically, if a node has a chain of length k ending c, then a
child node of length k + 1 ends at most 2c, a grandchild node of length
k+2 ends at most 3c, a great-grandchild node of length k+3 ends at most
5c, etc., as in Section 3. We prune the node ending c if this Fibonacci chain
guarantees that descendants of the node will undershoot the target.

We gather all chains that make it through this pruning process, while remembering
the compressed form of the chain, the length of the chain, and the tuple (b, c).

For the left-length variant, the task is instead to enumerate left-side chains of
exactly a specified length. We prune a node if the chain length goes beyond that
length, and we use a Fibonacci test to prune a node if it will clearly undershoot
n. We could also test for overshooting n, but this would be useful only for left-side
lengths long enough to allow such overshooting.

4.5. Dictionaries. The next step is to create a dictionary (associative array) that
allows the left sides to be accessed according to their indices (b mod m, c mod m).
Each key in the dictionary is one of the m2 pairs of integers mod m, and stores a
list of all left sides with that index.

4.6. Right-hand side. As discussed above, the right-hand side is a bit more com-
plicated, since we only know the number we want to end up at. We enumerate
right sides starting from the tuple ((−1, 1), (1, 0), (0, 1)) to represent (c − b, b, c),
followed by the tuple ((1, 0), (0, 1), (1, 1)) to represent (b, c, b + c) or the tuple
((−1, 1), (0, 1), (−1, 2)) to represent (c − b, c, 2c − b), etc. We apply three types
of pruning to right-side chains:

• We prune (. . . , . . . , (p, q)) if it would clearly have pb+qc overshoot n. Specif-
ically, we take ranges for b, c (such ranges are known from the computation
of left-side chains), appropriately multiply and add to compute a lower
bound on pb + qc (noting that p can be negative), and prune if this lower
bound is larger than n.
• We prune (. . . , . . . , (p, q)) if it would clearly have pb + qc undershoot n.
This applies a Fibonacci test to an upper bound on pb + qc. For the left-
length variant, we use a test that is guaranteed to work, as in Section 3: the
sequence entries after pb+ qc are at most 2(pb+ qc), 3(pb+ qc), 5(pb+ qc),
8(pb + qc), etc. For the left-interval variant, we replace 2, 3, 5, 8, . . . with
1, 2, 3, 5, . . ., pruning beyond what is guaranteed to work.
• We prune (. . . , . . . , (p, q)) if the right-side chain length is beyond a maxi-
mum allowed length computed as explained below.

For the left-interval variant, we first enumerate and store left-side chains (restart-
ing with a larger s if no left-side chains are found). We then incrementally search
for total chain lengths (not counting the initial 1, 2, 3). For each total chain length,
we subtract the minimum left-side length from the total length to obtain a max-
imum length of the chains that need to be considered on the right-hand side; we
then enumerate right-side chains within that limit.

For the left-length variant, we incrementally search for total chain lengths as an
outer loop, as noted earlier. We partition each total chain length ℓ into a left-side
length ℓ0 and a right-side length ℓ−ℓ0; we then enumerate and store left-side chains,
and enumerate right-side chains. Our experiments choose ℓ0 = ⌊2ℓ/3⌋.
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With either variant, for each right side (. . . , . . . , (p, q)) that survives the pruning
(and that has exactly length ℓ − ℓ0 for the left-length variant), we compute all
indices (b mod m, c mod m) such that pb + qc ≡ n (mod m). Normally this takes
Θ(m) operations per right side.

For each such index, we check the dictionary for all left sides (b, c) having that
index. The final check for each (b, c) is whether p · b+ q · c = n.

We concatenate all left-right pairs satisfying this condition. For the left-interval
variant, this often finds multiple options for chains of different lengths; we output
the concatenation having minimum length. For the left-length variant, we stop as
soon as one pair is found satisfying this condition, since that pair is guaranteed to
have minimum length.

If no pairs satisfy this condition, we increment the total chain length and try
again. For the left-interval variant, if the total chain length reaches ⌈1.5 log2 n+ 1⌉
then we increase s and start over; as in Sections 3.1 and 3.2, this is not guaranteed to
terminate, but has not been observed to fail. The left-length variant is guaranteed
to terminate with a minimum-length continued-fraction chain.

4.7. Precomputation. Parts of this algorithm can be precomputed when multi-
ple primes are targeted that are close to each other. In this case the interval of the
left side and the boundaries on the chains of the right side are basically the same
and thus the output can be reused (or even precomputed once before starting the
computations). And since the moduli will probably also be similar, or at least one
can use the same modulus for all primes, the dictionary step can also be precom-
puted. This would mean that we have an algorithm that inputs the dictionary and
the target and outputs the final chain. This greatly reduces the time needed.

Most of this paper, including all of Section 5, instead considers one target n at
a time. The number of search nodes reported in Section 5 is the full number of
nodes for each n, not the smaller number of nodes that would appear after a shared
precomputation.

4.8. Example. This example focuses on the left-interval variant, with a brief com-
ment at the end regarding the left-length variant. The target for this example is
n = 29. For the other parameters we let e = 2/3, f = 1, and s = 1.1.

Let us start with the left side where we will search for chains which reach a
target between ⌈⌈292/3⌉/1.1⌉ = 10 and ⌊⌈292/3⌉ · 1.1⌋ = 11, with pruning similar
to Section 3. We find the following set of chains for the left side:

1, 2, 3, 5, 8, 11

1, 2, 3, 5, 7, 9, 11

1, 2, 3, 4, 7, 11

1, 2, 3, 4, 7, 10

1, 2, 3, 4, 5, 6, 11

These left-side chains . . . , b, c all have 6 ≤ b ≤ 9 and 10 ≤ c ≤ 11, giving bounds
used later on combinations such as 2b+ c.

The next step is to choose a modulus
⌊
291/3

⌋
= 3 and create a dictionary of the

left-side chains . . . , b, c indexed by (b mod 3, c mod 3). This dictionary contains the
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c− b, b, c

b+ c

2c− b

b+ 2c

2b+ c

3c− b ✘

3c− 2b ✘

2b+ 3c ✘

b+ 3c ✘

3b+ 2c ✘

3b+ c

0

1

0

1

0

1

0

1

0
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Figure 3. Right-side chains considered inside a particular com-
putation for n = 29, noting which clearly undershoot (✘) or clearly
overshoot (✘).

following:

(0, 2) : 1, 2, 3, 5, 7, 9, 11; 1, 2, 3, 4, 5, 6, 11

(1, 1) : 1, 2, 3, 4, 7, 10

(1, 2) : 1, 2, 3, 4, 7, 11

(2, 2) : 1, 2, 3, 5, 8, 11

The goal is now to search suitable right sides, and find matching combinations
of left sides and right sides. To decide how far to search within the tree of right-
side chains from Figure 2, we first choose a bound on the length of the full chain.
We start by considering chain length at most ⌈1.44 log2(29− 1)− 2.34⌉ = 5, not
counting the initial 2 additions for 1, 2, 3.

The minimum length we have found on the left side is 3, so limiting the full
chain length to at most 5 also limits the right side to length at most 5− 3 = 2. For
this length limit, the beyond-guaranteed pruning from Section 4.6 eliminates the
root node c− b, b, c of the right-side search, since it assumes that 2 steps will gain
at most a factor 2 starting from c ≤ 11.

We thus move on to considering full chain length at most 6. This limits the right
side to length at most 3. A recursive search considers the right-side chains shown in
Figure 3. There are now six right-side chains that are not discarded (c−b, b, c, 2c−b;
c−b, b, c, b+c, b+2c; c−b, b, c, b+c, 2b+c, 3b+c; and their truncations, see below).
Note that this includes some chains of length 2 or less (disregarding the first three
elements of the chain as usual). This is due to the fact that the pruning bounds
are different since we have a longer length chain.

Each of these six right-side chains has final element pb + qc for some integers
p, q. For each chain, we solve the linear equation pb+ qc ≡ n (mod 3) to obtain a
list of pairs (b mod 3, c mod 3), and we then check those indices in the dictionary.
For example, for the chain c − b, b, c, b + c, b + 2c, we solve b + 2c = 29 modulo
3, obtaining the pairs (0, 1), (1, 2), and (2, 0). One of these pairs, namely (1, 2),
appears in the dictionary, showing left-side chain 1, 2, 3, 4, 7, 11.
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Repeating this process for all right-side chains leads us to the following combi-
nations to consider:

c− b, b, c : 1, 2, 3, 5, 7, 9, 11; 1, 2, 3, 4, 5, 6, 11; 1, 2, 3, 4, 7, 11; 1, 2, 3, 5, 8, 11
c− b, b, c, b+ c : 1, 2, 3, 5, 7, 9, 11; 1, 2, 3, 4, 5, 6, 11; 1, 2, 3, 4, 7, 10

c− b, b, c, b+ c, b+ 2c : 1, 2, 3, 4, 7, 11

c− b, b, c, b+ c, 2b+ c : 1, 2, 3, 5, 7, 9, 11; 1, 2, 3, 4, 5, 6, 11

. . ., 3b+ c : 1, 2, 3, 5, 7, 9, 11; 1, 2, 3, 4, 5, 6, 11; 1, 2, 3, 4, 7, 11; 1, 2, 3, 5, 8, 11

c− b, b, c, 2c− b : 1, 2, 3, 5, 8, 11

We test each of these 15 combinations (rather than 30 combinations of 5 left-
side chains and 6 right-side chains). For example, on the last line, we compute
2c−b = 14 ̸= 29 from (b, c) = (8, 11); on the line before, we compute 3b+c = 38 ̸= 29
from (b, c) = (9, 11), we compute 3b+c = 29 from (b, c) = (6, 11), etc. Some of these
combinations give pb+qc = n as desired. We choose a minimum-length combination
having pb + qc = n: specifically, 1, 2, 3, 4, 7, 11 and c − b, b, c, b + c, b + 2c combine
to the continued-fraction chain 1, 2, 3, 4, 7, 11, 18, 29.

The left-length variant has a similar workflow to the left-interval variant above.
The main change is that, within an outer loop incrementing lengths of the entire
chain as in Section 3, the left side is accorded 2/3 of this chain, and the right side
the rest. Left-side chains are put into a dictionary as above, and right-side chains
are compared to the dictionary as above. The first chain found is guaranteed to
be a shortest continued-fraction chain (and pruning details are chosen to maintain
this guarantee). This results in the same continued-fraction chain as found in the
left-interval variant for n = 29.

5. Results and Comparisons

The following figures compare the observed performance of various algorithms
that, given a prime p, compute a chain for p. The algorithms compared here are as
follows:

• “ladder”: a straightforward computation of a ladder for the given prime p.
• “cfrc”: Montgomery’s CFRC algorithm [17, Section 5], repeated across all

choices of Montgomery’s auxiliary parameter ρ.
• “prac”: Montgomery’s PRAC algorithm [17, Section 7].
• “sibc”: the algorithm from the SIBC library [1], enumerating all continued-

fraction differential addition chains having at most 2+⌊1.5 log2 p⌋ additions,
except for pruning chains that go beyond p.

• “ctidh”: the algorithm from the CTIDH software [2], similar to “sibc” but
with incremental length searching and more pruning.

• “prune”: this paper’s low-memory algorithm, similar to “ctidh” but with
even more pruning.

• “mitm”: the left-interval variant of this paper’s MitM algorithm.
• “mitm2”: the left-length variant of this paper’s MitM algorithm.

The main features compared are (1) chain lengths and (2) the number of inter-
nal nodes visited in the algorithms. Beware that the algorithms perform different
amounts of work per node; a proper run-time comparison would require replacing
the Python implementation of each algorithm with an optimized low-level imple-
mentation.
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Figure 4. Scatterplot showing, for various small primes p, ob-
served length of chain output by various algorithms given p as
input. Horizontal axis is p. Vertical axis is additionsp/ log2 p.

Each figure selects 3450 primes p < 109; the horizontal axis in each figure is p
in log scale. Specifically, the primes used are as follows: start by setting p← 2; as
long as p < 109, find the smallest prime q ≥ p+ 1 + ⌊p/256⌋, and set p← q. This
covers all small primes p, but gradually shifts towards a geometric progression of
larger primes p. Data for “sibc”, “cfrc”, and “ctidh” is collected only for p < 104,
p < 105, and p < 106 respectively; these cutoffs are visible in, e.g., Figure 6 below.

The underlying data points were collected by a script bench.py using 11141
core-minutes of user time and 38 core-minutes of system time on a dual AMD
EPYC 7742 running at 2.245GHz (no boost) running Debian 11 with Python 3.9.2.
The script used 128 threads, together using about 200GB of RAM, and finished
in 90 minutes of real time. The graphs were produced in 10 seconds by a script
plot.py taking as input the output of bench.py. The software is available from
https://cr.yp.to/2024/dacbench-20240609.tar.gz.

Figure 4 shows chain lengths. The vertical axis is the number of additions divided
by log2 p, so each plotted point has the form (p, r/ log2 p) for some integer r. Note
that, for each r, the curve (p, r/ log2 p) is visually a hyperbola since the horizontal
axis is log scale.

The “ladder” points in the figure move up towards the asymptote 2. The long-
short pattern reflects Montgomery’s formula ⌊log2 p⌋+ ⌊log2(2p/3)⌋ from [17, Sec-
tion 2] for the ladder lengths.

https://cr.yp.to/2024/dacbench-20240609.tar.gz
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Figure 5. Running-average plot showing, for various small
primes p, observed length of chain output by various algo-
rithms given p as input. Horizontal axis is p. Vertical axis is
runningavgadditionsp/ log2 p, where runningavgadditionsp is the
average of additionsq over plotted primes q with p/2 < q ≤ p.

The “cfrc”, “sibc”, “ctidh”, “prune”, and “mitm2” points are always on top of
each other in this figure, except for the different cutoffs on p mentioned above. The
“mitm” points are occasionally higher because of how we chose parameters in the
left-interval variant of the MitM algorithm. The points for all of these algorithms
are frequently above 1.5 and frequently below 1.5. Recall from Section 1 that
differential addition chains for primes have a lower bound, which on this graph is
asymptotically the constant 1/log2((1 +

√
5)/2) ≈ 1.44042.

The “prac” points are often noticeably higher (and occasionally lower; recall
that PRAC generates differential addition-subtraction chains but not necessarily
continued-fraction differential addition chains). We did not experiment with Mont-
gomery’s suggestion of trying multiple ρ choices inside PRAC.

Figures 5 is a smoothed version of Figure 4, using a running average of chain
lengths. Specifically, instead of plotting (p, rp/ log2 p), Figure 5 plots (p, sp/ log2 p)
where sp is the average of rq over the selected primes q satisfying p/2 < q ≤ p.
One easily sees in this figure that “mitm” with our parameter choices is marginally
worse on average than “mitm2”, but by less than 1% for large p.

Figure 6 compares the number of internal nodes visited in the algorithms. The
vertical axis is (log2(1 + nodesp))/log2 p, so an algorithm with an essentially linear
number of nodes would be asymptotically at vertical position 1, and an algorithm
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Figure 6. Scatterplot showing, for various small primes p, ob-
served number of internal nodes in various algorithms given p as
input. Horizontal axis is p. Vertical axis is log2(1+nodesp) divided
by log2 p.

with an essentially quadratic number of nodes would be asymptotically at vertical
position 2.

At the bottom of the figure, “ladder” and “prac” use only a logarithmic number
of nodes, so they have an asymptote of 0. At the top of the figure, “cfrc” searches
a linear number of choices of the auxiliary parameter, and uses Θ(p(log p)2) nodes,
so it has an asymptote of 1. All three of these algorithms are noticeably above their
asymptotes because of the logarithmic factors.

Close to the top of the figure—and at the top once p passes about 103—is
“sibc”. There are about p1.5 continued-fraction differential addition chains of the
length searched by “sibc”, and most of them are searched (see Section 3.2), so
“sibc” has an asymptote of 1.5. The vertical jumps in the “sibc” graph appear
when 1.5 log2 p crosses past an integer, doubling the number of chains searched.
One can see in the figure that the rightmost “sibc” jump for p < 104 is a vertical
jump by something less than 0.1; this jump is for p ≈ 219/1.5 ≈ 6502, where
(log2 2)/log2 p ≈ 1.5/19 ≈ 0.079. Asymptotically, these jumps converge to 0.

The performance of “ctidh” and “prune” is not as easy to analyze. The figure
shows that “prune” consistently uses fewer nodes than “ctidh”, which consistently
uses fewer nodes than “sibc”, as one would expect from the structure of the al-
gorithms. It seems reasonable to conjecture that “prune” has lower asymptote 0,
and more precisely that there are infinitely many primes for which “prune” visits
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Figure 7. Running-average plot showing, for various small primes
p, observed number of internal nodes in various algorithms given p
as input. Vertical axis is log2(1+runningavgnodesp)/ log2 p, where
runningavgnodesp is the average of nodesq over plotted primes q
with p/2 < q ≤ p.

only a polylogarithmic number of nodes; for example, it is conjectured that there
are infinitely many Fibonacci primes. On the other hand, presumably most inputs
p have the following property: “prune” searches chains whose ends cover a consid-
erable fraction of all integers close to p. Perhaps it is possible to prove via such
considerations that “prune” has upper asymptote at least 1.

A similar argument suggests that “mitm” and “mitm2” have upper asymptote at
least 2/3. As p increases within the range covered by the figure, one can see “mitm”
and “mitm2” generally decreasing, often using fewer nodes than “prune” but often
using more nodes than “prune”. A sanity check of the number of nanoseconds
used by “prune”, “mitm”, and “mitm2” shows “mitm” and “mitm2” having more
overhead but still outperforming “prune” more and more often as p increases. Of
course, these experiments do not establish the asymptotics of these algorithms.

Finally, Figure 7 is a smoothed version of Figure 6, averaging the number of
nodes in the same way that Figure 5 averages chain lengths. Within the range of
the figure, “prune”, “mitm”, and “mitm2” use many more nodes than “ladder”
and “prac” but produce shorter chains; meanwhile “prune”, “mitm”, and “mitm2”
use fewer nodes than “cfrc”, “sibc”, and “ctidh”, while producing practically the
same chain length, or, in the case of “prune” and “mitm2”, exactly the same chain
length.
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