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Abstract

Common random string model is a popular model in classical cryptography. We study a quantum ana-
logue of this model called the common Haar state (CHS) model. In this model, every party participating
in the cryptographic system receives many copies of one or more i.i.d Haar random states.

We study feasibility and limitations of cryptographic primitives in this model and its variants:

• We present a construction of pseudorandom function-like states with security against computation-
ally unbounded adversaries, as long as the adversaries only receive (a priori) bounded number of
copies. By suitably instantiating the CHS model, we obtain a new approach to construct pseudo-
random function-like states in the plain model.

• We present separations between pseudorandom function-like states (with super-logarithmic length)
and quantum cryptographic primitives, such as interactive key agreement and bit commitment,
with classical communication. To show these separations, we prove new results on the indistin-
guishability of identical versus independent Haar states against LOCC (local operations, classical
communication) adversaries.
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1 Introduction
In classical cryptography, the common random string and the common reference string models were primarily
introduced to tackle cryptographic tasks that were impossible to achieve in the plain model. In the common
reference string model, there is a trusted setup who produces a string that every party has access to. In
the common random string model, the common string available to all the parties is sampled uniformly at
random. Due to the lack of structure required from the common random string model, it is in general
the more desirable model of the two. There have been many constructions proposed over the years in
these two models, including non-interactive zero-knowledge [BFM19], secure computation with universal
composition [CF01; CLOS02] and two-round secure computation [GS22; BL18].

It is a worthy pursuit to study similar models for quantum cryptographic protocols. In the quantum
world, there is an option to define models that are intrinsically quantum in nature. For instance, we could
define a model wherein a trusted setup produces a quantum state and every party participating in the
cryptographic system receives one or more copies of this quantum state. Indeed, two works by Morimae,
Nehoran and Yamakawa [MNY23] and Qian [Qia23] consider this model, termed as the common reference
quantum state model (CRQS). They proposed a construction of unconditionally secure commitments in
this model. Quantum commitments is a foundational notion in quantum cryptography. In recent years,
quantum commitments have been extensively studied [AQY22; MY21; AGQY22; MY23; BCQ23; Bra23]
due to its implication to secure computation [BCKM21; GLSV21]. The fact that information-theoretically
secure commitments are impossible in the plain model [LC97; May97; CLM23] renders the contributions
of [MNY23; Qia23] particularly interesting.

Common Haar State Model. While CRQS is a quantum analogue of the common reference string
model, in a similar vein, we can ask if there is a quantum analogue of the common random string model. We
consider a novel model called the common Haar state model (CHS). In this model, every party in the system
(including the adversary) receives many copies of many i.i.d Haar states. We believe that the CHS model
is more pragmatic than the CRQS model owing to the fact that we do not require any structure from the
common public state. This raises the possibility of avoiding a trusted setup altogether and instead we could
rely upon naturally occuring physical processes to obtain the Haar states. This model was also recently
introduced in an independent and concurrent recent work1 by Chen, Coladangelo and Sattath [CCS24]
(henceforth, referred to as CCS).

There are three reasons to study this model. Firstly, this model allows us to bypass impossibility results
in the plain model. For instance, as we will see later, primitives that require computational assumptions
in the plain model, can instead be designed with information-theoretic security in the CHS model. Second,
perhaps a less intuitive reason, is that the constructions proposed in this model can, in some cases, be
adopted to obtain constructions in the plain model by instantiating the Haar states either using state
designs or pseudorandom state generators (PRSGs) [JLS18]. This leads to a modular approach of designing
cryptographic primitives from PRS: first design the primitive in the CHS model and then instantiate the
common Haar state using PRS. Finally, this model can be leveraged to demonstrate separations between
different quantum cryptographic primitives.

1.1 Our Results
We explore both feasibility results and black-box separations in the CHS model.

1.1.1 Feasibility Results

Pseudorandom Function-Like States with Statistical Security. We study the possibility of designing
pseudorandom function-like state generators (PRFSGs), introduced by Ananth, Qian and Yuen [AQY22],
with statistical security in the CHS model. Roughly speaking, a PRFSG is an efficient keyed quantum circuit

1We refer the reader to Appendix A.2 for a comparison with CCS.
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that can be used to produce many pseudorandom states. We refer the reader to Appendix A.1 for a detailed
discussion on the different notions of pseudorandomness in the quantum world.

We are interested in designing (λ,m, n, t)-PRFSGs in the setting when n ≥ λ and m = Ω(log(λ)), where
λ is the key length, m is the input length, n is the output length (and also the number of the qubits in
the common Haar state) and t is the maximum number of queries that can be requested by the adversary.
However, in the CHS model, we can in fact achieve statistical security.

We show the following.

Theorem 1.1 (Informal). There is a statistically secure (λ,m, n, ℓ)-PRFSG in the CHS model, for m = λc,
n ≥ λ and ℓ = O

(
λ1−c

log(λ)1+ε

)
, for any constant ε > 0 and for all c ∈ [0, 1).

CCS is the only other work that has studied pseudorandomness in the CHS model. There are a few advantages
of our result over CCS:

• Our theorem subsumes and generalizes the result of CCS who showed (λ, n, t)-PRSGs exists in their
model, where the output length is larger than the key length, i.e., n > λ and moreover, when t = 1
with t being the number of copies of the PRS state given to the adversary.

• Our construction, when restricted to the case of PRSGs, is slightly simpler than CCS: in CCS, on a
subset of qubits of the Haar state, a random Pauli operator is applied whereas in our case a random
Pauli Z operator is applied. Our construction of PRFSG uses the seminal Goldreich-Goldwasser-Micali
approach [GGM86] to go from one-query security to many-query security.

• They propose novel sophisticated tools in their analysis whereas our analysis is arguably more elemen-
tary using well known facts about symmetric subspaces.

• Finally, we can achieve arbitrary stretch whereas it is unclear whether this is also achieved by CCS.

As a side contribution, the proof of our PRSG construction also simplifies the proof of the quantum public-
key construction of Coladangelo [Col23]; this is due to the fact the core lemma proven in [Col23] is implied
by the above theorem.

Interestingly, the above theorem has implications for computationally secure pseudorandomness in the
plain model. Specifically, we obtain the following corollary by instantiating the CHS model using stretch
PRSGs:

Corollary 1.2. Assuming (λ, n, ℓ)-PRSGs, there exists (λ′,m, n, t)-PRFSGs, where n > λ′ > λ, m = λc

and ℓ = O
(

λ1−c

log(λ)1+ε

)
, for any constant ε > 0 and c ∈ [0, 1).

Prior to our work, stretch PRFSGs for super-logarithmic input length, even in the bounded query setting,
was only known from one-way functions [AQY22]. This complements the work of [AQY22] who showed a
construction of PRFSGs for logarithmic input length from PRSGs.

Interestingly, the state generators in both works (CCS and ours) only consume one copy of a single Haar
state. In this special case, it is interesting to understand whether we can extend our result to the setting
when the adversary receives λ

log(λ) copies or more. We show this is not possible.

Theorem 1.3 (Informal). There does not exist a secure (λ,m, n, ℓ)-PRFSG, for any m ≥ 1, in the CHS
model, where n = ω(log(λ)) and ℓ = Ω

(
λ

log(λ)

)
.

CCS also proved a lower bound where they showed that unbounded copy pseudorandom states do not exist.
Their negative result is stronger in the sense that they rule out PRSGs who use up many copies of the
Haar states from the CHRS and thus, their work gives a clean separation between 1-copy stretch PRS and
unbounded copy PRS which was not known before. On the other hand, for the special case when the PRFSG
takes only one copy of the Haar state, we believe our result yields better parameters.
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Commitments. In addition to pseudorandomness, we also study the possibility of constructing other
cryptographic primitives in the CHS model. We show the following:

Theorem 1.4 (Informal). There is an unconditionally secure bit commitment scheme in the CHS model.

Both our construction and the commitments scheme proposed by CCS are different although they share
strong similarities.

1.1.2 Black-Box Separations

LOCC Indistinguishability. We separate pseudorandom function-like states and quantum cryptographic
primitives with classical communication using a variant of the CHS model. At the heart of our separations
is a novel result that proves indistinguishability of identical versus independent Haar states against LOCC
(local operations, classical communication) adversaries. More precisely, (A,B) is an LOCC adversary if A
and B are quantum algorithms who can communicate with each other via only classical communication
channels. It is important that A and B do not share any entanglement. Moreover, we restrict our attention
to LOCC distinguishers which are LOCC adversaries of the form (A,B) where A does not output anything
whereas B outputs a single bit. We say that a LOCC distinguisher (A,B) can distinguish two states ρAB
and σAB with probability at most ε, referred to as ε-LOCC indistinguishability, where A receives the register
A and B receives the register B, if |Pr [1← (A,B)(ρAB)]− Pr [1← (A,B)(σAB)] | = ε. Of particular interest
is the case when

ρAB = E
|ψ⟩←Hn

[
(|ψ⟩⊗t)A ⊗ (|ψ⟩⊗t)B

]
, σAB = E

|ψ⟩←Hn,
|ϕ⟩←Hn

[
(|ψ⟩⊗t)A ⊗ (|ϕ⟩⊗t)B

]
Here,Hn denotes the Haar distribution on n-qubit quantum states and t is polynomial in n. A couple of works
by Harrow [Har23] and Chen, Cotler, Huang and Li [CCHL22] prove that the LOCC indistinguishability of
ρAB and σAB is negligible in n in the case when t = 1. In this work, we extend to the case when t is arbitrary.

Theorem 1.5. ρAB and σAB (defined above) are ε-LOCC indistinguishable, where ε = O
(
t2

2n

)
.

We also show that the above bound is tight by demonstrating an LOCC distinguisher whose distinguishing
probability is Θ( t

2

2n ).
Recently, Ananth, Kaleoglu and Yuen [AKY24] prove the indistinguishability of ρAB and σAB in the dual

setting, against non-local adversaries that can share entanglement but cannot communicate.
The above theorem can easily be extended to the multi-party setting where either all the parties get

(many copies of) the same Haar state or they receive i.i.d Haar states.

Separations. We use Theorem 1.5 to show that some quantum cryptographic primitives with classical
communication are impossible in the CHS model. Let us develop some intuition towards proving such a
statement. Suppose there are two or more parties participating in a quantum cryptographic protocol with
classical communication in the CHS model. By definition, all the parties would receive many, say t, copies of
|ψ⟩, where |ψ⟩ is sampled from the Haar distribution. Since the parties can only exchange classical messages,
thanks to Theorem 1.5, without affecting correctness or security we can modify the protocol wherein for
each party, say Pi, a Haar state |ψi⟩ is sampled and t copies of |ψi⟩ is given to Pi. From this, we can extract
a quantum cryptographic primitive in the plain model since each party can sample a Haar state on its own.
In conclusion, quantum cryptographic primitives with classical communication in the CHS model can be
turned into their counterparts in the plain model.

This gives a natural recipe for proving impossibility results in the CHS model. We apply this recipe to
obtain impossibility results for interactive key agreements and interactive commitments.

Theorem 1.6. Interactive quantum key agreement and interactive quantum commitment protocols, with
classical communication, are impossible in the CHS model.
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We extend the above theorem to separate interactive quantum key agreement and interactive quantum
commitments from pseudorandom function-like state generators. The separations are obtained by considering
a variant of the CHS model where the adversary does not get access to many copies of one Haar state but
instead gets access to infinitely many input-less oracles2

{
{Gk,x}k,x∈{0,1}λ

}
λ∈N such that each Gk,x produces

a copy of a Haar state |ψk,x⟩. In this model, it is easy to construct pseudorandom function-like states.
However, an extension of Theorem 1.6 rules out the possibility of interactive quantum key agreement and
quantum commitments with classical communication in this variant. Thus, we have the following.

Theorem 1.7. There does not exist a black-box reduction from interactive quantum key agreement and
quantum commitments with classical communication to pseudorandom function-like states.

Prior work by Chung, Goldin and Gray [CGG24] extensively studies the separations between quantum
cryptographic primitives with classical communication and different quantum pseudorandomness notions.
However, their framework did not capture the above result.

Prior works by [ACC+22; CLM23; LLLL24] ruled out quantum key agreements and non-interactive
commitments with classical communication from post-quantum one-way functions. However, their separation
was either based on a conjecture or in a restricted setting whereas our result is unconditional. This makes
our result incomparable with the results from [ACC+22; CLM23; LLLL24]. Our work follows a long line of
recent works [HY20; ACC+22; AHY23; CLM23; ACH+23; BGVV+23; BM+24; CM24] that make progress
in understanding the landscape of black-box separations in quantum cryptography.

2 Technical Overview

2.1 Pseudorandomness in the CHS Model
Warmup: Pseudorandom State Generators (PRSGs). As a warmup, we first study 1-copy PRSG in
the CHS model. Consider the following construction: Gk(|ϑ⟩) := (Zk⊗In−λ)|ϑ⟩, where Zk = Zk1⊗· · ·⊗Zkλ ,
k = k1 · · · kλ ∈ {0, 1}λ and In−λ is an identity operator on n−λ qubits. In other words, Gk applies a random
Pauli Z operator only on the first λ qubits and does not touch the rest. Note that this construction already
satisfies the stretch property (i.e. the output length is larger than the key length).

Let us consider the case when the adversary receives just one copy of |ϑ⟩ and is expected to distinguish
Gk(|ϑ⟩) versus an independent Haar state |φ⟩. Formally, we would like to argue that the following states are
close.

ρ := E
k←{0,1}λ
|ϑ⟩←Hn

[Gk(|ϑ⟩)⊗ |ϑ⟩⟨ϑ|] and σ :=
I

2n
⊗ I

2n
.

By the properties of the symmetric subspace, the following holds:

E
|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗2

]
≈ε E

x,y←[2n],x1 ̸=y1

[
1

2
(|xy⟩⟨xy|+ |xy⟩⟨yx|+ |yx⟩⟨xy|+ |yx⟩⟨yx|)

]
,

where ε is negligible in n and the notation x1 (respectively, y1) denotes the first λ bits of x (respectively,
y). Now, applying a random Z operator on the first λ qubits tantamounts to measuring the first λ qubits
in the computational basis. Given the fact that x1 ̸= y1, this measurement unentangles the last n qubits.
Thus, the result is a state of the form Ex,y←[2n],x1 ̸=y1

[
1
2 |x⟩⟨x| ⊗ |y⟩⟨y|+

1
2 |y⟩⟨y| ⊗ |x⟩⟨x|

]
. This state is in

turn close to I
2n ⊗

I
2n .

Generalizing to Many Copies of the CHS. Next, we to generalize the above approach to even when
polynomially many copies of the CHS are provided. Formally, we would like to argue that the following two

2We note that [Kre21] made similar use of infinitely many oracles to prove a separation between pseudorandom states and
one-way functions.
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states are close.

ρ := E
k←{0,1}λ
|ϑ⟩←Hn

[
Gk(|ϑ⟩)⊗ |ϑ⟩⟨ϑ|⊗t

]
and σ := E

|φ⟩←Hn

|ϑ⟩←Hn

[
|φ⟩⟨φ| ⊗ |ϑ⟩⟨ϑ|⊗t

]
,

where t is some polynomial of n. Note that, by the property of the Haar distribution, we can simplify σ to

σ =
I

2n
⊗ E
T←[0:t]N

|T ⟩⟨T |,

where |T ⟩ is a type state3 and N = 2n. Note that by the properties of the symmetric subspace,

E
|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t+1

]
≈ε E

T←[0:t+1]N

T is λ-prefix collision-free

|T ⟩⟨T |,

where ε is negligible in n and T is λ-prefix collision-free if T ∈ {0, 1}N and for any x, y ∈ T 4 with x ̸= y
implies x1 ̸= y1, where the notation x1 (respectively, y1) denotes the first λ bits of x (respectively, y). Note
that, any λ-prefix collision-free type T ,

|T ⟩ = 1√(
t+1
t

) ∑
x∈T
|x⟩|T \ {x}⟩.

Again, applying a random Z operator on the first λ qubits tantamounts to measuring the first λ qubits in
the computational basis. Given the fact that T is λ-prefix collision-free, this measurement unentangles the
first n qubits. Thus, the result is a state of the form

E
T←[0:t+1]N

T is λ-prefix collision-free
x←T

[|x⟩⟨x| ⊗ |T \ {x}⟩⟨T \ {x}|] .

This state is in turn close to I
2n ⊗ ET←[0:t]N |T ⟩⟨T |.

Generalizing to ℓ-copy PRSG. Finally, we generalize this ℓ-copy PRSG. Formally, we would like to
argue that the following two states are close.

ρ := E
k←{0,1}λ
|ϑ⟩←Hn

[
Gk(|ϑ⟩)⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
and σ := E

|φ⟩←Hn

|ϑ⟩←Hn

[
|φ⟩⟨φ|⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
,

where ℓ, t is some polynomial of n. Note that, by the property of the Haar distribution, we can simplify σ to

σ = E
T1←[0:ℓ]N

|T1⟩⟨T1| ⊗ E
T2←[0:t]N

|T2⟩⟨T2|,

where |T1⟩, |T2⟩ are type states and N = 2n. Note that, similar to the last case, we can still write,

E
|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t+ℓ

]
≈ε E

T←[0:t+ℓ]N

T is λ-prefix collision-free

|T ⟩⟨T |,

and any λ-prefix collision-free type T ,

|T ⟩ = 1√(
t+ℓ
ℓ

) ∑
T1⊂T
|T1|=ℓ

|T1⟩|T \ T1⟩.

3We encourage readers unfamiliar with type states to refer to Definition 3.8.
4Since T ∈ {0, 1}N , we can treat it as a set, in particular the set associated to T is {i : T [i] = 1}.
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Ideally, we would want the application of (Zk ⊗ In−λ)⊗ℓ to unentangle |T1⟩ from |T \ T1⟩. This is equivalent
to meauring the first ℓ registers in the type basis. This is in general not true, not true. Hence, we settle for
the next best thing, which is the finding a "dense-enough"5 subset of λ-prefix collision-free type such that
(Zk ⊗ In−λ)⊗ℓ to unentangle |T1⟩ from |T \ T1⟩. We find this subset to be "λ-prefix ℓ-fold collision-free"
types.

We say that a λ-prefix collision-free type T is "λ-prefix ℓ-fold collision-free" if for all pairs of ℓ sized subsets
T1, T2 ⊂ T , ⊕x∈T1x = ⊕x∈T2x only if T1 = T2. We start by noting that this subset is only "dense-enough"
if ℓ = O

(
λ

log(λ)1+ε

)
, for any constant ε > 0.6

Next, we show that for these λ-prefix ℓ-fold collision-free types states, applying a random (Zk ⊗ In−λ)⊗ℓ
is equivalent to meauring the first ℓ registers in the type basis. This is because (Zk ⊗ In−λ)⊗ℓ on a type
state |T1⟩ is equivalent to adding a phase of (−1)k·(⊕x∈T1

x). Hence,

E
k

[
(Zk ⊗ In−λ)⊗ℓ ⊗ Itn|T ⟩⟨T |(Zk ⊗ In−λ)⊗ℓ ⊗ Itn

]
= E

k

 1(
t+ℓ
ℓ

) ∑
T1,T2⊂T
|T1|=|T2|=ℓ

(−1)k·(⊕x∈T1
x
⊕
⊕y∈T2

y)|T1⟩|T \ T1⟩⟨T2|⟨T \ T2|

 ,
which for λ-prefix ℓ-fold collision-free types states is non-zero only if T1 = T2, giving us

E
k

[
(Zk ⊗ In−λ)⊗ℓ ⊗ Itn|T ⟩⟨T |(Zk ⊗ In−λ)⊗ℓ ⊗ Itn

]
= E

T1⊂T
|T1|=ℓ

[|T1⟩⟨T1| ⊗ |T \ T1⟩⟨T \ T1|] .

Over expectation over all λ-prefix ℓ-fold collision-free types states, this state is close to ET1←[0:ℓ]N |T1⟩⟨T1| ⊗
ET2←[0:t]N |T2⟩⟨T2|.

Limitations. To complement our result, we show that a t-copy PRSG is impossible in the CHS model, for
ℓ = O

(
λ

log(λ)

)
(for a restricted class of PRSG constructs which only takes one copy of the common Haar

state). We show this by showing that the rank of σ grows much faster than the rank of ρ, hence, a simple
distinguisher is a projector on the eigenspace of ρ. In particular, let G̃k(ϑ) be the PRSG. Then define

ρ := E
k←{0,1}λ
|ϑ⟩←Hn

[
G̃k(|ϑ⟩)⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
and σ := E

|φ⟩←Hn

|ϑ⟩←Hn

[
|φ⟩⟨φ|⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
Now since G̃k(|ϑ⟩) is a PRSG, its output is negligibly close to a pure state. This means that the rank of
ρ ≤ 2λ

(
2n+t+ℓ−1

t+ℓ

)
. In contrast, the rank of σ =

(
2n+ℓ−1

ℓ

)(
2n+t−1

t

)
. Note that, for t = λ3 and ℓ = λ/ log(λ),

rank(ρ)/ rank(σ) = negl. Hence, we can find a distinguisher. Here the distinguisher just projects onto the
eigenspace of ρ, ρ gets accepted with probability 1 but σ gets accepted with probability negl, hence giving a
disguisher. Since PRFSs imply PRSs (by setting c = 0), achieving an ℓ-query statistical PRFS in the CHS
model for ℓ = Ω(λ/ log(λ)) is impossible.

Pseudorandom Function-like State Generators. Next we extend this idea from PRSGs to achieve
PRFSGs. We take inspiration from the seminal Goldreich-Goldwasser-Micali approach [GGM86]. In partic-
ular, on the key K = (k01, . . . , k

0
m, k

1
1, . . . , k

1
m) ∈ {0, 1}2λ′m and the input x = (x1, . . . , xm) ∈ {0, 1}m, define

the PRFSG GK(x, |ϑ⟩) as follows: GK(x, |ϑ⟩) = (Z
⊕m

i=1 k
xi
i ⊗ In−λ′)|ϑ⟩. Formally, the following two states

are close:
ρ := E

K←{0,1}2mλ′

|ϑ⟩←Hn

[
⊗qi=1GK(xi, |ϑ⟩)⊗ℓi ⊗ |ϑ⟩⟨ϑ|⊗t

]
,

5Here, by dense-enough, we mean when picking a random type from λ-prefix collision-free, it lies in this subset with
probability 1− negl.

6Later, in the impossibility result, we show that this is infact the best we can hope for as a larger subset would bypass the
impossibility result.
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and
σ := E

∀i∈[q],|φi⟩←Hn

|ϑ⟩←Hn

[
⊗qi=1|φi⟩⟨φi|

⊗ℓi ⊗ |ϑ⟩⟨ϑ|⊗t
]
,

for all x1, . . . ,xq ∈ {0, 1}m and ℓ1, . . . , ℓq such that
∑q
i=1 ℓi = ℓ, for ℓ = O

(
λ1−c

log(λ)1+ε

)
and m = λc, for any

constant ε > 0 and c ∈ [0, 1).
Just as before, we can write σ as follows:

σ =

q⊗
i=1

E
Ti←[0:ℓi]N

|Ti⟩⟨Ti| ⊗ E
T̃←[0:t]N

|T̃ ⟩⟨T̃ |,

where Ti’s and T̃ are type states and N = 2n. Note that, similar to the last case, we can still write,

E
|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t+ℓ

]
≈ε E

T←[0:t+ℓ]N

T is λ-prefix ℓ-fold collision-free

|T ⟩⟨T |,

and any λ-prefix ℓ-fold collision-free type T ,

|T ⟩ = 1√(
t+ℓ
ℓ

) ∑
T1⊂T
|T1|=ℓ

|T1⟩|T \ T1⟩.

Now, after application of one layer of (Zk⊗ In−λ)⊗ℓ, we know that |T1⟩ unentagles from |T \T1⟩. We extend
this idea to show that even for a tensor of type states, applying (Zk ⊗ In−λ)⊗ℓ̃i on parts of each type state
still unentangles each of them as long as all the type states are λ-prefix ℓ-fold collision-free type and thier
combined set is still λ-prefix ℓ-fold collision-free. Formally, we show the following: Let ℓ̃1, . . . , ℓ̃q ∈ N, and
t1, . . . , tq ∈ N such that

∑q
i=1 ℓ̃i = ℓ̃ and

∑q
i=1 ti = t. Then for any λ-prefix ℓ̃-fold collision-free type T and

any mutually disjoint sets T1, . . . , Tq satisfying
⋃q
i=1 Ti = T and |Ti| = ti + ℓ̃i for all i ∈ [q],

E
k←{0,1}n

[
q⊗
i=1

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)
|Ti⟩⟨Ti|

((
Zk ⊗ Im

)⊗ℓ̃i ⊗ I⊗tin+m

)]

=

q⊗
i=1

E
Xi⊂Ti

|Xi|=ℓ̃i

[|Xi⟩⟨Xi| ⊗ |Ti \Xi⟩⟨Ti \Xi|] .

Hence, applying each layer (Zk
b
i ⊗ In−λ) unentagles all type states into two halfs. Hence, by repeated

application, we get

ρ ≈ε E
T←[0:t+ℓ]N

T is λ-prefix ℓ-fold collision-free

E
(T1,T2,...,Tq,T̂ )

[
q⊗
i=1

|Ti⟩⟨Ti| ⊗ |T̂ ⟩⟨T̂ |

]
,

where (T1, T2, . . . , Tq, T̂ ) are sampled as follows: for i = 1, 2, . . . , q, sample an ℓi-subset from T \ (
⋃i−1
j=1 Tj)

uniformly and let T̂ := T \ (
⋃q
j=1 Tj). Over expectation over all λ-prefix ℓ-fold collision-free types states,

this state is close to σ.

2.2 Quantum Bit Commitments
With t-copy PRSG in hand, we construct a statistically-hiding, statistically-binding commitment scheme in
the CHS model. Our scheme draws inspiration from the quantum commitment scheme introduced in [MY21;
MNY23] that builds quantum bit commitments from t-copy PRSG.
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In particular, to commit to b = 0, the committer creates a superposition over all keys of the PRSG in
the decommitment register and runs the PRSG in superposition over this register. The commiter sets this
as the commitment register. To commit to b = 1, the committer creates a maximally entagled state over the
commitment and the decommitment register. Formally,

|ψ0⟩CiRi
:=

1√
2λ

∑
k∈{0,1}λ

Gk(|ϑ⟩)Ci
|k||0n−λ⟩Ri

and
|ψ1⟩CiRi

:=
1√
2n

∑
j∈{0,1}n

|j⟩Ci
|j⟩Ri

,

where, (C1, . . . ,Cp) is the commitment register and (R1, . . . ,Rp) is the reveal register.
To achieve hiding, our scheme relies on the pseudorandomness property of the PRSG. In particular, the

commitment is very close to one where the keys are distinct for all (Ci,Ri), in this case, one copy of PRS is
indistinguishable from a maximally mixed state. 7

Unlike the approach in [MY21], our construction is not of the canonical form [Yan22]. To achieve binding,
the receiver performs multiple SWAP tests. In particular, we show that since the rank of the commitment
registers is exponentially separated, multiple swaps tests can distinguish between the two.

2.3 Black-Box Separations
LOCC Indistinguishability. The notion of LOCC indistinguishability is well-studied and is referred
to as quantum data hiding by quantum information theorists [BDF+99; DLT02; EW02; Gea02; HLS05;
MWW09; CLMO13; PNC14; CH14; CLM+14; HBAB19]. In this setting, there is a challenger, two (possibly
entangled and mixed) bipartite quantum states ρAB and σAB, and a computationally unbounded, two-party
distinguisher (Alice, Bob) who are spatially separated and without pre-shared entanglement. The challenger
picks a quantum state from {ρAB, σAB} uniformly at random and sends register A to Alice and register B
to Bob respectively. The task of Alice and Bob is to distinguish whether they are given ρAB or σAB by
performing local operations and communicating classically. We call such distinguishers LOCC adversaries.

We focus on the case where Alice and Bob each receive t = poly(λ) copies of |ψ⟩A and |ϕ⟩B, where |ψ⟩
and |ϕ⟩ are either two identical or i.i.d. Haar states of length n = ω(log(λ)). Explicitly, the two input states
are

ρAB = E
|ψ⟩←Hn

[
|ψ⟩⟨ψ|⊗tA ⊗ |ψ⟩⟨ψ|

⊗t
B

]
,

σAB = E
|ψ⟩←Hn

[
|ψ⟩⟨ψ|⊗tA

]
⊗ E
|ϕ⟩←Hn

[
|ϕ⟩⟨ϕ|⊗tB

]
.

Note that if global measurements are allowed, performing SWAP tests can easily distinguish them. As one of
our main technical contributions, we show that for any LOCC adversary, the advantage of distinguishing ρAB
from σAB is negligible in λ. Before we explain the proof, we compare our theorem with [Har23, Theorem 8].
In short, the theorems are incomparable. Our setting is stronger in the sense that the LOCC adversary both
obtain polynomial copies of the input, while [Har23, Theorem 8] studies the single-copy setting. However,
[Har23, Theorem 8] is more general since it holds for a family of input states, whereas the input in our setting
is fixed to ρAB and σAB, which are belong to the family. We refer the readers to Remark 7.12 for a detailed
discussion.

Toward the proof, we start by using the following common technique in proving LOCC indistinguisha-
bility: the set of LOCC measurements is a (proper) subset of the set of all positive partial transpose (PPT)
measurements [CLM+14]. Hence, it is sufficient to upper bound the maximum distinguishing advantage over
two-outcome PPT measurements, i.e., {MAB, IAB −MAB} such that 0 ⪯ MAB ⪯ IAB and 0 ⪯ MΓB

AB ⪯ IAB,
where MΓB

AB denote the partial transpose of MAB with respect to B. Next, from the basic properties of partial
7Note that this still needs multi-key security which is not trivial in the CHS model, since all the PRS generaltors share the

same Haar state for randomness. But we prove that our construction satisfies multikey security.
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transpose and trace norm, we show that the distinguishing advantage is bounded by the trace norm between
ρΓB

AB and σΓB

AB.
The most technical part of the proof is to upper bound the quantity

∥∥∥ρΓB

AB − σ
ΓB

AB

∥∥∥
1
. We point out that

the partial transpose of a density matrix might not be a positive semidefinite matrix. Our first step is to
expand ρAB and σAB in the type basis as follows:

ρAB = E
T←[0:2t]d

[|T ⟩⟨T |AB] ,

σAB = E
SA←[0:t]d

[|SA⟩⟨SA|A]⊗ E
SB←[0:t]d

[|SB⟩⟨SB |B] ,

where d := 2n. Next, we further conditioned on the events that (1) T, SA and SB each have no repeated
elements (2) SA and SB have no identical elements. From the collision bound, doing so only incurs an
additional error of O(t2/d) = negl(λ). Therefore, we can now treat T, SA and SB as sets. It suffices to prove
that

∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1

is negligible in λ, where

ρ̃AB := E
T←([d]2t)

[|T ⟩⟨T |AB] ,

σ̃AB := E
SA,SB←([d]t ):SA ̸=SB

[|SA⟩⟨SA|A ⊗ |SB⟩⟨SB |B] .

Observe that the σ̃ΓB

AB = σ̃AB. To obtain a simpler expression of ρ̃ΓB

AB , we rely on the following useful identity
for bi-partitioning the type states:

|T ⟩AB =
∑

X∈(Tt)

1√(
2t
t

) |T \X⟩A ⊗ |X⟩B.
Hence, the partial transpose of ρ̃AB can be written as

ρ̃ΓB

AB = E
T←([d]2t)

 1(
2t
t

) ∑
X,Y ∈(Tt)

|T \X⟩⟨T \ Y |A ⊗ |Y ⟩⟨X|B

 .
If X = Y , then the term is the tensor product of two disjoint sets |T \X⟩⟨T \X|A ⊗ |X⟩⟨X|B. Such a term
will be canceled out by the corresponding term in σ̃ΓB

AB since they have equal coefficients. Therefore, the
difference between them is the following matrix with mismatched X and Y :

ρ̃ΓB

AB − σ̃
ΓB

AB = E
T←([d]2t)

 1(
2t
t

) ∑
X,Y ∈(Tt):X ̸=Y

|T \X⟩⟨T \ Y |A ⊗ |Y ⟩⟨X|B

 .
We continue to simplify it by applying a double-counting argument. Every tuple of sets (T,X, Y ) uniquely
determines a tuple of mutually disjoint sets (C, I,X ′, Y ′) satisfying C = T \ (X ∪ Y ) (C for the complement
of X ∪ Y ), I = X ∩ Y (I for intersection), X ′ = X \ I and Y ′ = Y \ I. Hence, T \X = C ⊎ Y ′, Y = I ⊎ Y ′,
T \ Y = C ⊎X ′, and X = I ⊎X ′ where ⊎ denotes the disjoint union. By further classifying the summands
according to s := |C| = |I| ∈ {0, 1, . . . , t− 1} (note that then |X ′| = |Y ′| = t− s), we have

∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1
=

1(
d
2t

)(
2t
t

)
∥∥∥∥∥∥∥∥∥
t−1∑
s=0

∑
C∈([d]s )

∑
I∈([d]\Cs )

∑
X′,Y ′∈([d]\(C⊎I)

t−s ):
X′∩Y ′=∅

|C ⊎ Y ′⟩A|I ⊎ Y ′⟩B⟨C ⊎X ′|A⟨I ⊎X ′|B

∥∥∥∥∥∥∥∥∥
1

11



≤ 1(
d
2t

)(
2t
t

) t−1∑
s=0

∑
C∈([d]s )

∑
I∈([d]\Cs )

∥∥∥∥∥ ∑
X′,Y ′∈([d]\(C⊎I)

t−s ):
X′∩Y ′=∅

|C ⊎ Y ′⟩A|I ⊎ Y ′⟩B⟨C ⊎X ′|A⟨I ⊎X ′|B

︸ ︷︷ ︸
=:KC,I

∥∥∥∥∥
1

,

where the inequality follows from the triangle inequality. We observe that the matrix KC,I has the same
structure as the adjacency matrix of Kneser graphs. Here, we recall the definition of Kneser graphs. For
v, k ∈ N, the Kneser graph K(v, k) is the graph whose vertices correspond to the k-element subsets of the set
[v], and two vertices are adjacent if and only if the two corresponding sets are disjoint. Therefore, for every
(C, I), the matrix KC,I is isospectral to the adjacency matrix of the Kneser graph K(d− |C| − |I|, t− |I|).
Finally, we employ the well-studied spectral property of Kneser graphs as a black box to obtain an O(t2/d) =

negl(λ) upper bound for
∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1
.

Furthermore, we show the tightness of the theorem by constructing an optimal LOCC distinguisher that
achieves the same advantage. The strategy is simple: Alice and Bob each individually measure every copy
of their input in the computational basis and obtain a total of 2t outcomes. Then, they output 1 if there is
any collision among these 2t outcomes.

Impossibility Results in the CHS model. With the LOCC Haar indistinguishability theorem in hand,
we investigate the limits of the CHS model when the communication between the parties is classical. We
show that the several impossibility results of information-theoretically secure schemes in the plain model can
be generically lifted to the CHS model, even when the adversary does not receive any common Haar state.
We emphasize that there is no classical counterpart in the CRS model. If the adversary is not given the
CRS, then many information-theoretically secure schemes do exist, such as key agreements.

As common in proving impossibilities, our approach is to convert schemes in the CHS model to those in
the plain model. The transform is simple: in the new scheme, the parties each sample polynomially many
copies of the Haar state independently and run the original scheme. Crucially, despite the inconsistency in
their Haar states, the new scheme still satisfies completeness thanks to the LOCC Haar indistinguishability.
A caveat is that sampling Haar states is time-inefficient. However, since the impossibilities in the plain
model are still valid if the (honest) algorithms in the scheme are time-inefficient, doing so is acceptable for
the sake of showing impossibilities.

Separation Results. We separate many important primitives from (λ, ω(log(λ)))-PRSG. Since (λ, ω(log(λ)))-
PRSGs do not exist in the CHS model, we need to “strengthen” the oracle in order to prove separations.
For every security parameter λ ∈ N, we define the oracle as {Gk}k∈{0,1}λ where each Gk is an isometry that
takes no input and outputs an i.i.d. Haar state |ψk⟩.

Relative to this oracle, the implementation of the PRSG is straightforward: the output on k of any
length λ ∈ N is |ψk⟩. The security directly follows from the hardness of unstructured search. To prove the
non-existence of QCCC schemes, we employ a two step approach. First, showing that a scheme with respect
to this oracle can be transformed to schemes with respect to a much weaker oracle. Second, showing that
this much weaker oracle does not give much extra power over the plain model. Formally: First, similar to
the previous section, we show that due to the LOCC indistinguishability, the parties can sample all "large"
quantum states on their own, and the correctness and security is only "polynomially" affected8. This means
that any scheme with respect this this oracle can be turned into a scheme with respect to an oracle with
only short (constant times logarithmic) Haar states. Second, for short (constant times logarithmic) quantum
states, we show that this oracle does not give much extra power since an adversary can learn the oracle
completely. This is because for short-enough states, the adversary can run tomography on polynomial
queries and learn the state with upto polynomial inverse polynomial error. Hence, adversary can simulate

8Since the Haar indistinguishability has a factor of O(t2/d), as long as t2/d is inverse-polynomial, we do not incur a lot of
loss.
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both parties post-selecting on a transcript to learn any secret9. This means that any scheme secure in the
presence of this oracle can be transformed into another scheme that is secure in the plain model.

Lastly, we observe that by considering a generalized oracle, namely {Gk,x}k,x∈{0,1}λ , we can show that
(classically accessible) PRFSGs with super-logarithmic input length exist. We can extend the impossibility
of QCCC commitments to hold in the presence of the generalized oracle as well. Thus, we can separate
PRFS and QCCC commitments.

3 Preliminaries
We denote the security parameter by λ. We assume that the reader is familiar with the fundamentals of
quantum computing covered in [NC10].

3.1 Notation
• We use [n] to denote {1, . . . , n} and [0 : n] to denote {0, 1, . . . , n}.

• For any finite set T and any integer 0 ≤ k ≤ |T |, we denote by
(
T
k

)
the set of all k-size subsets of T .

• For any finite set T , we use the notation x← T to indicate that x is sampled uniformly from T .

• We denote by St the symmetric group of degree t.

• For any set A and t ∈ N, we denote by At the t-fold Cartesian product of A.

• For σ ∈ St and v = (v1, . . . , vt), we define σ(v) := (vσ(1), . . . , vσ(t)).

• We denote by D(H) the set of density matrices in the Hilbert space H.

• Let ρAB ∈ D(HA ⊗ HB), by TrB(ρAB) ∈ D(HA) we denote the reduced density matrix by taking
partial trace over B.

• We denote by TD(ρ, ρ′) := 1
2∥ρ− ρ

′∥1 the trace distance between quantum states ρ, ρ′, where ∥X∥1 =

Tr
(√

X†X
)

denotes the trace norm.

• For any matrices A,B, we write A ⪯ B to indicate that B −A is positive semi-definite.

• For any Hermitian matrix O, the trace norm of O has the following variational definition:

∥O∥1 = max
−I⪯M⪯I

Tr(MO).

Furthermore, if Tr(O) = 0 then ∥O∥1 = 2 ·max0⪯M⪯I Tr(MO).

• We denote the Haar measure over n qubits by Hn.

• For any matrix MAB =
∑
i,j,k,ℓ αijkℓ|i⟩⟨j|A ⊗ |k⟩⟨ℓ|B on registers (A,B), by MΓB

AB we denote its partial
transpose with respect to register B, i.e., MΓB

AB =
∑
i,j,k,ℓ αijkℓ|i⟩⟨j|A ⊗ |ℓ⟩⟨k|B.10

9Note that since the adversary does not need to efficient, as long as they have the description of this oracle, they can
post-select on the transcript.

10Note that the (partial) transpose operation needs to be defined with respect to to an orthogonal basis. Throughout this
work, it is always defined with respect to to the computational basis.
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3.2 Common Haar State Model
The Common Haar State (CHS) model is related to the Common Reference Quantum State (CRQS)
model [MNY23]. In this model, all parties receive polynomially many copies of a single quantum state
sampled from the Haar distribution. Recently, another work of Chen et.al. [CCS24] studied a similar model
called the Common Haar Random State (CHRS) model. In the CHRS model, every party receives polyno-
mially many copies of polynomially many i.i.d. Haar states.

We define another variant of the CHS model called the Keyed Common Haar State Model. In this model,
all parties (once the security parameter is set to λ) have access to the oracle (called the Keyed Common
Haar State Oracle) Gλ := {Gk}k∈{0,1}λ as follows. For every k ∈ {0, 1}λ, the oracle Gk is a Haar isometry
that maps any state |ψ⟩ to |ψ⟩|ϑk⟩, where |ϑk⟩ is a Haar state of length n(λ) = ω(log(λ)).

While the above variant is harder to instantiate (hence not useful for constructions), is a natural candidate
for black-box separations as seen is Section 9.

3.2.1 Pseudorandom State (PRS) Generators in the CHS model

Definition 3.1 (Statistically secure (λ, n, ℓ)-pseudorandom state generators in the CHS model). We say
that a QPT algorithm G is a statistically secure (λ, n, ℓ)-pseudorandom state generator (PRSG) in the CHS
model if the following holds:

• State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where Gk denotes G(k, ·)) is
a quantum channel such that for every n(λ)-qubit state |ϑ⟩,

Gk(|ϑ⟩⟨ϑ|) = |ϑk⟩⟨ϑk|,

for some n(λ)-qubit state |ϑk⟩. We sometimes write Gk(|ϑ⟩) for brevity.11

• ℓ-copy Pseudorandomness: For any polynomial t(·) and any non-uniform, unbounded adversary
A = {Aλ}λ∈N, there exists a negligible function negl(·) such that:∣∣∣∣∣ Pr

k←{0,1}λ
|ϑ⟩←Hn(λ)

[
Aλ

(
Gk(|ϑ⟩)⊗ℓ(λ) ⊗ |ϑ⟩⟨ϑ|⊗t(λ)

)
= 1
]

− Pr
|φ⟩←Hn(λ)

|ϑ⟩←Hn(λ)

[
Aλ

(
|φ⟩⟨φ|⊗ℓ(λ) ⊗ |ϑ⟩⟨ϑ|⊗t(λ)

)
= 1
] ∣∣∣∣∣ ≤ negl(λ).

If G satisfies ℓ-copy pseudorandomness for every polynomial ℓ(·) then we drop ℓ from the notation and simply
denote it to be a (λ, n)-PRSG.

We define a stronger definition below called multi-key ℓ-copy PRS generators. Looking ahead, our construc-
tion of PRS in Section 4.2 satisfies this definition.

Definition 3.2 (Multi-key statistically secure (λ, n, ℓ)-pseudorandom state generators in the CHS model).
We say that a QPT algorithm G is a multi-key statistically secure (λ, n, ℓ)-pseudorandom state generator in
the CHS model if the following holds:

11More generally, the generation algorithm could take multiple copies of the common Haar state as input or output a state of
different size compared to the common Haar state. Here, we focus on a restricted class of generators that only require a single
copy of the common Haar state as input, and the output of the generator matches the size of the common Haar states.
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• State Generation: For any λ ∈ N and k ∈ {0, 1}λ, the algorithm Gk (where Gk denotes G(k, ·)) is
a quantum channel such that for every n(λ)-qubit state |ϑ⟩,

Gk(|ϑ⟩⟨ϑ|) = |ϑk⟩⟨ϑk|,

for some n(λ)-qubit state |ϑk⟩. We sometimes write Gk(|ϑ⟩) for brevity.

• Multi-key ℓ-copy Pseudorandomness: For any polynomial t(·), p(·) and any non-uniform, un-
bounded adversary A = {Aλ}λ∈N, there exists a negligible function negl(·) such that:

∣∣∣∣∣ Pr
k1,...,kp(λ)←{0,1}λ
|ϑ⟩←Hn(λ)

Aλ
p(λ)⊗
i=1

Gki(|ϑ⟩)⊗ℓ(λ) ⊗ |ϑ⟩⟨ϑ|⊗t(λ)
 = 1



− Pr
|φ1⟩,...,|φp(λ)⟩←Hn(λ)

|ϑ⟩←Hn(λ)

Aλ
p(λ)⊗
i=1

|φi⟩⟨φi|⊗ℓ(λ) ⊗ |ϑ⟩⟨ϑ|⊗t(λ)
 = 1

 ∣∣∣∣∣ ≤ negl(λ).

If G satisfies multi-key ℓ-copy pseudorandomness for every polynomial ℓ(·) then we drop ℓ from the notation
and simply denote it to be a multi-key (λ, n)-PRSG.

Remark 3.3. Note that in the plain model, PRS implies multi-key PRS because the pseudorandom state
generator does not share randomness for different keys. It is not clear whether this holds in the CHS model
as the different executions of the pseudorandom state generator share the same common Haar state.

3.2.2 Pseudorandom Function-Like State (PRFS) Generators in the CHS model

Definition 3.4 (Statistical selectively secure (λ,m, n, ℓ)-PRFS generators). We say that a QPT algorithm
G is a statistical selectively secure (λ,m, n, ℓ)-PRFS generator in the CHS model if the following holds:

• State Generation: For any λ ∈ N, k ∈ {0, 1}λ and x ∈ {0, 1}m(λ), where m(λ) is the input length,
the algorithm Gk,x (where Gk,x denotes G(k, x, ·)) is a quantum channel such that for every n(λ)-qubit
state |ϑ⟩,

Gk,x(|ϑ⟩⟨ϑ|) = |ϑk,x⟩⟨ϑk,x|,

for some n(λ)-qubit state |ϑk,x⟩. We sometimes write Gk,x(|ϑ⟩) or Gk(x, |ϑ⟩) for brevity.

• ℓ-query Selective Security: For any polynomial t(·), any non-uniform, unbounded adversary A =
{Aλ}λ∈N, and any tuple of (possibly repeated) m(λ)-bit indices (x1, . . . , xℓ(λ)), there exists a negligible
function negl(·) such that for all λ ∈ N,

∣∣∣∣∣ Pr
k←{0,1}λ,|ϑ⟩←Hn(λ)

Aλ
x1, . . . , xℓ(λ), ℓ(λ)⊗

i=1

G(k, xi, |ϑ⟩)⊗ |ϑ⟩⟨ϑ|⊗t(λ)
 = 1


− Pr
∀x∈{0,1}m(λ), |φx⟩←Hn(λ),

|ϑ⟩←Hn(λ)

Aλ
x1, . . . , xℓ(λ), ℓ(λ)⊗

i=1

|φxi
⟩⟨φxi

| ⊗ |ϑ⟩⟨ϑ|⊗t(λ)
 = 1

 ∣∣∣∣∣ ≤ negl(λ).

If G satisfies ℓ-query selective security for every polynomial ℓ(·), we drop ℓ from the notation and say that
G is a (λ,m, n)-PRFS generator.
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3.2.3 Quantum Commitments in the CHS model

Definition 3.5 (Quantum commitments in the CHS model). A (non-interactive) quantum commitment
scheme in the CHS model is given by a tuple of the committer C and receiver R parameterized by a polynomial
p(·), both of which are uniform QPT algorithms. Let |ϑ⟩ be the n(λ)-qubit common Haar state. The scheme
is divided into two phases: the commit phase, and the reveal phase as follows:

• Commit phase: C takes |ϑ⟩⊗p(λ) and a bit b ∈ {0, 1} to commit as input, generates a quantum state
on registers C and R, and sends the register C to R.

• Reveal phase: C sends b and the register R to R. R takes |ϑ⟩⊗p(λ) and (b,C,R) given by C as input,
and outputs b if it accepts and otherwise outputs ⊥.

Definition 3.6 (Poly-copy statistical hiding). A quantum commitment scheme (C,R) in the CHS model
satisfies poly-copy statistical hiding if for any non-uniform, unbounded malicious receiver R∗ = {R∗λ}λ∈N,
and any polynomial t(·), there exists a negligible function negl(·) such that∣∣∣∣∣Pr[R∗λ(|ϑ⟩⊗t(λ),TrR(σCR)) = 1 :

|ϑ⟩←Hn(λ),

σCR←Ccom(|ϑ⟩⊗p(λ),0)

]
− Pr

[
R∗λ(|ϑ⟩⊗t(λ),TrR(σCR)) = 1 :

|ϑ⟩←Hn(λ),

σCR←Ccom(|ϑ⟩⊗p(λ),1)

]∣∣∣∣∣ ≤ negl(λ),

where Ccom is the commit phase of C.

Definition 3.7 (Statistical sum-binding). A quantum commitment scheme (C,R) in the CHS model satisfies
statistical sum-binding if the following holds. For any pair of non-uniform, unbounded malicious senders C∗0
and C∗1 that take |ϑ⟩⊗T (λ) for arbitrary large T (·) as input and work in the same way in the commit phase,
if we let pb to be the probability that R accepts the revealed bit b in the interaction with C∗b for b ∈ {0, 1},
then we have

p0 + p1 ≤ 1 + negl(λ).

3.3 Symmetric Subspaces, Type States, and Haar States
The proofs of facts and lemmas stated in this subsection can be found in [Har13]. Let v = (v1, . . . , vt) ∈ At
for some finite set A. Let |A| = N . Define type(v) ∈ [0 : t]N to be the type vector such that the ith entry
of type(v) equals the number of occurrences of i ∈ [N ] in v.12 In this work, by T ∈ [0 : t]N we implicitly
assume that

∑
i∈[N ] Ti = t. For T ∈ [0 : t]N , we denote by mset(T ) the multiset uniquely determined by T .

That is, the multiplicity of i ∈ mset(T ) equals Ti for all i ∈ [N ]. We write T ← [0 : t]N to mean sampling T
uniformly from [0 : t]N conditioned on

∑
i∈[N ] Ti = t. We write v ∈ T to mean v ∈ At satisfies type(v) = T .

In this work, we will focus on collision-free types T which satisfy Ti ∈ {0, 1} for all i ∈ [N ]. A collision-
free type T can be naturally treated as a set and we write v← T to mean sampling a uniform v conditioned
on type(v) = T .

Definition 3.8 (Type states). Let T ∈ [0 : t]N , we define the type states:

|T ⟩ :=

√∏
i∈[N ] Ti!

t!

∑
v∈T
|v⟩.

If T is collision-free, then it can be simplified to

|T ⟩ = 1√
t!

∑
v∈T
|v⟩.

12We identify [0 : t]N as [0 : t]A.
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Furthermore, it has the following useful expression

|T ⟩⟨T | = 1

t!

∑
v,u∈T

|v⟩⟨u| = E
v←T

[∑
σ∈St

|v⟩⟨σ(v)|

]
. (1)

Lemma 3.9 (Average of copies of Haar-random states). For all N, t ∈ N, we have

E
|ϑ⟩←H(CN )

|ϑ⟩⟨ϑ|⊗t = E
T←[0:t]N

|T ⟩⟨T |.

3.4 Quantum Black-Box Reductions
We recall the definition of fully black-box reductions [RTV04; BBF13] and their quantum analogue. The
definitions below are taken verbatim from [HY20].

Definition 3.10 (Quantum primitives). A quantum primitive P is a pair (FP ,RP), where FP is a set of
quantum algorithms I, and RP is a relation over pairs (I,A) of quantum algorithms I ∈ FP and A. A
quantum algorithm I implements P or is an implementation of P if I ∈ FP . If I ∈ FP is efficient, then
I is an efficient implementation of P. A quantum algorithm A P-breaks I ∈ FP if (I,A) ∈ RP . A secure
implementation of P is an implementation I of P such that no efficient quantum algorithm P-breaks I. The
primitive P quantumly exists if there exists an efficient and secure implementation of P.

Definition 3.11 (Quantum primitives relative to oracle). Let P = (FP ,RP) be a quantum primitive, and
O be a quantum oracle. An oracle quantum algorithm I implements P relative to O or is an implementation
of P relative to O if IO ∈ FP . If IO ∈ FP is efficient, then I is an efficient implementation of P relative
to O. A quantum algorithm A P-breaks I ∈ FP relative to O if (IO,AO) ∈ RP . A secure implementation
of P is an implementation I of P relative to O such that no efficient quantum algorithm P-breaks I relative
to O. The primitive P quantumly exists relative to O if there exists an efficient and secure implementation
of P relative to O.

Definition 3.12 (Quantum fully black-box reductions). A pair (C, S) of efficient oracle quantum algorithms
is a quantum fully-black-box reduction from a quantum primitive P = (FP ,RP) to a quantum primitive
Q = (FQ,RQ) if the following two conditions are satisfied:

1. (Correctness.) For every implementation I ∈ FQ, we have CI ∈ FP .

2. (Security.) For every implementation I ∈ FQ and every quantum algorithm A, if A P-breaks CI ,
then SA,I Q-breaks I.

4 Warmup: Statistical Stretch PRS Generators in the CHS model
We present a construction of multi-key PRS generator with statistical security in the CHS model.

Theorem 4.1. There exists a multi-key (λ, n, ℓ)-statistical PRS generator in the CHS model, where n ≥ λ

and ℓ = O(λ/ log(λ)
1+ε

) for any constant ε > 0.

The proof can be found in Section 4.2. Later, we prove the optimality of our construction in Section 4.3.
Specifically, we show that any (λ, n, ℓ)-statistical PRS generator cannot simultaneously satisfy n = ω(log(λ))
and ℓ = Ω(λ/ log(λ)).
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4.1 Useful Lemmas
At a high level, the proof follows the template of [AGQY22; AGKL23]: we do the analysis in the symmetric
subspace. First, we identify a nice property of type vectors such that (1) a randomly sampled type satisfies
this property with overwhelming probability and (2) the PRS generation algorithm behaves well on every
type state having this property. We identify these type vectors as ℓ-fold collision-free types (which are a
generalization of distinct types [AGQY22; AGKL23]).

Definition 4.2 (ℓ-fold n-prefix collision-free types). Let n,m, t, ℓ ∈ N such that t ≥ ℓ and T ∈ [0 : t]2
n+m

is a type vector. We say that T is ℓ-fold n-prefix collision-free if for all pairs of ℓ-subsets13 S, T ⊆ mset(T ),
the first n bits of

⊕
x∈S x ∈ {0, 1}n+m is identical to that of

⊕
y∈T y ∈ {0, 1}n+m if and only if S = T .

We define I(ℓ)n,m(t) := {T ∈ [0 : t]2
n+m

: T is ℓ-fold n-prefix collision-free} as the set of all ℓ-fold n-prefix
collision-free type vectors.

When t > ℓ, one can easily verify that ℓ-fold n-prefix collision-freeness implies the standard collision-freeness.
Also note that when t > 2ℓ, ℓ-fold n-prefix collision-freeness implies i-fold n-prefix collision-freeness for all
i ≤ ℓ.

Next, we show that a random type is ℓ-fold n-prefix collision-free with high probability.

Lemma 4.3. PrT←[0:t]2n+m [T ∈ I(ℓ)n,m(t)] = 1−O(t2ℓ/(2n − 2ℓ)).

Proof. First, sampling T ← [0 : t]2
n+m

uniformly is O(t2/2n+m)-close to sampling a uniform collision-free T
from [0 : t]2

n+m

by the collision bound.

Furthermore, sampling a uniform collision-free T from [0 : t]2
n+m

is equivalent to sampling t elements
x1, x2, . . . , xt one by one from {0, 1}n+m conditioned on them being distinct and setting T such that
mset(T ) = {x1, . . . , xt}. Hence, it suffices to show that sampling t elements x1, x2, . . . , xt one by one from
{0, 1}n+m conditioned on them being distinct results in an ℓ-fold n-prefix collision-free set with probability
1−O(t2ℓ/2n).

For any two distinct ℓ-subsets of indices S ̸= T ⊆ [t], let BadS,T denote the event that the first n bits of⊕
i∈S xi is the same as that of

⊕
j∈T xj . Then the following holds:

Pr
[
BadS,T : x1,x2,...,xt←{0,1}n+m

x1,x2,...,xt are distinct

]
= O(1/(2n − 2ℓ)).

This is because we can first sample |S ∪ T | − 1 elements (in S ∪ T ) except one with indices in S \ T . Then
BadS,T occurs only if the first n bits of the last sample is equal to the first n bits of the bitwise XOR of all
other elements in S with all elements in T , which happens with probability at most O(1/(2n − 2ℓ)).

By a union bound, we have T ∈ I(ℓ)n,m(t) with probability at least 1−
(
O(t2/2n+m) +

(
t
ℓ

)2 ·O(1/(2n − 2ℓ))
)
=

1−O(t2ℓ/(2n − 2ℓ)).

Finally, the following two lemmas show that applying random Pauli-Z on any ℓ-fold n-prefix collision-free
type state is equivalent to a “classical” probabilistic process14.

Lemma 4.4. For any v ∈ {0, 1}(n+m)(t+ℓ) such that type(v) ∈ I(ℓ)n,m(t+ ℓ) and σ ∈ St+ℓ, define

Av,σ := E
k←{0,1}n

[((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗tn+m) |v⟩⟨σ(v)|((Zk ⊗ Im)⊗ℓ ⊗ I⊗tn+m)] .
Then Av,σ = |v⟩⟨σ(v)| if σ maps [ℓ] to [ℓ]; otherwise, Av,σ = 0.

13Here we allow the subsets to contain duplicate elements.
14We say that this is a “classical” probabilistic process because we can write the resulting density matrix as direct sum of

matrices with classical descriptions with weights chosen by a completely classical process. This means that we can simualte
this process by first doing a completely classical sampling process followed by a state preparation.
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Proof. Suppose v = (v1||w1, . . . , vt+ℓ||wt+ℓ) ∈ {0, 1}(n+m)(t+ℓ) with vi ∈ {0, 1}n and wi ∈ {0, 1}m for all
i ∈ [t]. First, a direct calculation yields:((

Zk ⊗ Im
)⊗ℓ ⊗ I⊗tn+m) |v⟩⟨σ(v)|((Zk ⊗ Im)⊗ℓ ⊗ I⊗tn+m) = (−1)⟨k,

⊕ℓ
i=1(vi⊕vσ(i))⟩|v⟩⟨σ(v)|.

Therefore, after averaging over k,

Av,σ = E
k←{0,1}n

[
(−1)⟨k,

⊕ℓ
i=1(vi⊕vσ(i))⟩

]
|v⟩⟨σ(v)| =

{
|v⟩⟨σ(v)| if

⊕ℓ
i=1(vi ⊕ vσ(i)) = 0

0 otherwise.

Since type(v) ∈ I(ℓ)n,m(t+ ℓ), the condition
⊕ℓ

i=1 vi =
⊕ℓ

i=1 vσ(i) holds if and only if the two sets {1, 2, . . . , ℓ}
and {σ(1), σ(2), . . . , σ(ℓ)} are identical.

The following lemma lies at the technical heart of this section. It states that the action of applying random
Zk on ℓ-fold n-prefix collision-free types T 15 has the following “classical” probabilistic interpretation: the
output is identically distributed to first uniformly sampling an ℓ-subset X from T and then generating
|X⟩⟨X| ⊗ |T \X⟩⟨T \X|.

Lemma 4.5. For any T ∈ I(ℓ)n,m(t+ ℓ),

E
k←{0,1}n

[((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗tn+m) |T ⟩⟨T |((Zk ⊗ Im)⊗ℓ ⊗ I⊗tn+m)] = E
X←(Tℓ)

[|X⟩⟨X| ⊗ |T \X⟩⟨T \X|] .

Proof. We first use the expression in Equation (1) on the left-hand side:

LHS = E
v←T

[∑
σ∈St

E
k←{0,1}n

[((
Zk ⊗ Im

)⊗ℓ ⊗ I⊗tn+m) |v⟩⟨σ(v)|((Zk ⊗ Im)⊗ℓ ⊗ I⊗tn+m)]
]
. (2)

Then from the previous lemma (Lemma 4.4)

(2) = E
v←T

 ∑
σ1∈Sℓ,σ2∈St

|v⟩⟨σ1 ◦ σ2(v)|


= E

v←T

[ ∑
σ1∈Sℓ

|v[1:ℓ]⟩⟨σ1(v[1:ℓ])| ⊗
∑
σ2∈St

|v[ℓ+1:ℓ+t]⟩⟨σ2(v[ℓ+1:ℓ+t])|

]

= E

[ ∑
σ1∈Sℓ

|v1⟩⟨σ1(v1)| ⊗
∑
σ2∈St

|v2⟩⟨σ2(v2)| :
X←(Tℓ),
v1←X,

v2←T\X

]
= E
X←(Tℓ)

[|X⟩⟨X| ⊗ |T \X⟩⟨T \X|] .

For the first equality, we use Lemma 4.4 and decompose σ = σ1 ◦ σ2 for some σ1, σ2 such that σ1(x) = x for
all x ∈ {ℓ+1, ℓ+2, · · · , ℓ+ t} and σ2(y) = y for all y ∈ {1, 2, · · · , ℓ}. Since all ℓ+1, ℓ+2, · · · , ℓ+ t are fixed
points of σ1, we can view it as an element in Sℓ. Similarly, we view σ2(y) as an element in St. The second
equality follows by denoting the first ℓ part of v by v[1:ℓ] and the last t part of v by v[ℓ+1:ℓ+t]. The third
equality holds because sampling a tuple v from T is equivalent to sampling an ℓ-subset X from T followed
by ordering to elements in X and T \X.

15Since T is collision-free, we will treat it as a set.
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4.2 Construction
In this section, we assume that the length of the common Haar state satisfies n = n(λ) ≥ λ for all λ ∈ N.
We define the construction as follows: on input k ∈ {0, 1}λ and a single copy of the common Haar state |ϑ⟩,

Gk(|ϑ⟩) := (Zk ⊗ In−λ)|ϑ⟩.

Lemma 4.6 (ℓ-copy pseudorandomness). Let G be as defined above. Let

ρ := E
k←{0,1}λ
|ϑ⟩←Hn

[
Gk(|ϑ⟩)⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
and σ := E

|φ⟩←Hn

|ϑ⟩←Hn

[
|φ⟩⟨φ|⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗t

]
.

Then TD (ρ, σ) = O
(

(ℓ+t)2ℓ

2λ

)
.

Proof. We prove this via a hybrid argument:

Hybrid 1. Sample T ← [0 : ℓ+ t]2
n

. Sample k ← {0, 1}λ. Output ((Zk ⊗ In−λ)⊗ℓ ⊗ I⊗tn )|T ⟩.

Hybrid 2. Sample T ← [0 : ℓ + t]2
n

uniformly conditioned on T ∈ I(ℓ)λ,n−λ(ℓ + t). Sample k ← {0, 1}λ.
Output ((Zk ⊗ In−λ)⊗ℓ ⊗ I⊗tn )|T ⟩.

Hybrid 3: Sample T ← [0 : ℓ+ t]2
n

uniformly conditioned on T ∈ I(ℓ)λ,n−λ(ℓ+ t). Sample a uniform ℓ-subset
T1 from T . Output |T1⟩ ⊗ |T \ T1⟩.

Hybrid 4. Sample T ← [0 : ℓ+ t]2
n

. Sample a uniform ℓ-subset T1 from T .16 Output |T1⟩ ⊗ |T \ T1⟩.

Hybrid 5. Sample a collision-free T from [0 : ℓ + t]2
n

. Sample a uniform ℓ-subset T1 from T . Output
|T1⟩ ⊗ |T \ T1⟩.

Hybrid 6. Sample a uniform collision-free T1 from [0 : ℓ]2
n

. Sample a uniform collision-free T2 from [0 : t]2
n

conditioned on T1 and T2 have no common elements. Output |T1⟩ ⊗ |T2⟩.

Hybrid 7. Sample a uniform collision-free T1 from [0 : ℓ]2
n

. Sample a uniform collision-free T2 from
[0 : t]2

n

. Output |T1⟩ ⊗ |T2⟩.

Hybrid 8. Sample T1 ← [0 : ℓ]2
n

. Sample T2 ← [0 : t]2
n

. Output |T1⟩ ⊗ |T2⟩.

Indistinuishability of Hybrids.

• By Lemma 4.3, the trace distance between Hybrid 1 and Hybrid 2 is O((t+ ℓ)2ℓ/2λ).

• From Lemma 4.5, the output of Hybrid 2 is

E
T←[0:ℓ+t]2

n
:

T∈I(ℓ)λ,n−λ(ℓ+t)

E
T1←(Tℓ)

[|T1⟩⟨T1| ⊗ |T \ T1⟩⟨T \ T1|] .

Hence, Hybrid 2 is equivalent to Hybrid 3.

• Again by Lemma 4.3, the trace distance between Hybrid 3 and Hybrid 4 is O((t+ ℓ)2ℓ/2λ).
16Since T might have collisions, T1 is allowed to contain duplicate elements.

20



• The trace distance between Hybrid 4 and Hybrid 5 is O((t+ ℓ)2/2n) by the collision bound.

• Hybrid 5 and Hybrid 6 are equivalent.

• The trace distance between Hybrid 6 and Hybrid 7 is O(tℓ/2n).

• Finally, the trace distance between Hybrid 7 and Hybrid 8 is O((t2 + ℓ2)/2n) by the collision bound.

This completes the proof.

In the following, we show that our construction also satisfies multi-key ℓ-copy pseudorandomness using Lemma 4.6.

Lemma 4.7 (Multi-key ℓ-copy pseudorandomness). Let G be defined as above. Let

ρ :=

p⊗
i=1

E
|φi⟩←Hn

[
|φi⟩⟨φi|⊗ℓ

]
⊗ E
|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t

]
and σ := E

|ϑ⟩←Hn

[
p⊗
i=1

E
ki←{0,1}λ

[
Gki(|ϑ⟩)⊗ℓ

]
⊗ |ϑ⟩⟨ϑ|⊗t

]
.

Then TD (ρ, σ) = O
(
p·(pℓ+t)2ℓ

2λ

)
.

Proof. For j = 0, 1, . . . , p, we define the following (hybrid) density matrices:17

ξj :=

j⊗
i=1

E
|φi⟩←Hn

[
|φi⟩⟨φi|⊗ℓ

]
⊗ E
|ϑ⟩←Hn

 p⊗
i=j+1

E
ki←{0,1}λ

[
Gki(|ϑ⟩)⊗ℓ

]
⊗ |ϑ⟩⟨ϑ|⊗t

 .
We will complete the poof by showing that TD(ξj , ξj+1) = O

(
((p−j)·ℓ+t)2ℓ

2λ

)
for j = 0, 1, . . . , p − 1. By the

property that TD(A⊗X,A⊗ Y ) = TD(X,Y ), the trace distance between ξj and ξj+1 is identical to that of

ξ′j := E
|ϑ⟩←Hn

 p⊗
i=j+1

E
ki←{0,1}λ

[Gki(|ϑ⟩)⊗ℓ]⊗ |ϑ⟩⟨ϑ|⊗t


ξ′j+1 := E
|φj+1⟩←Hn

[
|φj+1⟩⟨φj+1|⊗ℓ

]
⊗ E
|ϑ⟩←Hn

 p⊗
i=j+2

E
ki←{0,1}λ

[Gki(|ϑ⟩)⊗ℓ]⊗ |ϑ⟩⟨ϑ|⊗t
 .

By the monotonicity of trace distance (i.e., TD(E(X), E(Y )) ≤ TD(X,Y ) for any quantum channel E) and
setting E :=

⊗p
i=j+2 Eki←{0,1}λ [Gki(·)⊗ℓ],18 we have

TD(ξ′j , ξ
′
j+1) ≤

TD

 E
kj+1←{0,1}λ,
|ϑ⟩←Hn

[
Gkj+1(|ϑ⟩)⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗(p−j−1)ℓ+t

]
, E
|φj+1⟩←Hn,
|ϑ⟩←Hn

[
|φj+1⟩⟨φj+1|⊗ℓ ⊗ |ϑ⟩⟨ϑ|⊗(p−j−1)ℓ+t

]
= O

(
((p− j)ℓ+ t)

2ℓ

2λ

)
,

where the last equality follows from Lemma 4.6. Applying the triangle inequality completes the proof.

Proof of Theorem 4.1. Our construction is a efficiently-implementable unitary channel and thus satisfies the
state generation property. Pseudorandomness follows from Lemma 4.7.

17Similar to proving the output of a classical PRG on polynomial i.i.d uniform keys is computationally indistinguishable from
polynomial i.i.d uniform strings, we can construct a security reduction to simulate these hybrids. However, since we are in the
information-theoretic setting, we instead calculate their trace distances directly.

18The channel E acts as the identity on unspecified registers.
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As a remark, Lemma 4.6 gives a simpler proof of the following theorem regarding the one-wayness of an
ensemble of quantum states in [Col23]:

Lemma 4.8 ([Col23, Lemma 5]). Consider the ensemble of states:

{ρx}x∈{0,1}n =

{
E

|ψ⟩←Hn

[
(Zx ⊗ I⊗m)|ψ⟩⟨ψ|⊗m+1(Zx ⊗ I⊗m)

]}
x∈{0,1}n

.

Then, there is a constant C > 0, such that, for any POVM {Mx}x∈{0,1}n ,

E
x←{0,1}n

Tr(Mxρx) = C ·
(
m

2n
+
m7

23n

) 1
2

.

By setting ℓ = 1, t = m,λ = n in Lemma 4.6, the ensemble of states {ρx}x∈{0,1}n is pseudorandom, which
implies its one-wayness.

In Appendix B, we further give another proof by simplifying the calculation in Lemma 4.8, which may
be of independent interest. Moreover, we eliminate the m7/23n term.

4.3 Optimality of Our PRSG Construction
In this section, if the PRS generation algorithm uses only one copy of the common Haar state, we show
that ℓ-copy statistical PRS and multi-key ℓ-copy statistical PRS are impossible for ℓ = Ω(λ/ log(λ)) and
n = ω(log(λ)).

Theorem 4.9. Statistically secure (λ, n, ℓ)-PRS is impossible in the CHS model if (a) the generation algo-
rithm uses only one copy of the common Haar state, (b) n = ω(log(λ)), (c) ℓ = Ω(λ/ log(λ)) and, (d) the
length of the common Haar state is n = ω(log(λ)).

Proof. We provve this by contradiction. Let there is a construction of such PRS G. First, from the state
generation requirement of PRS generators, G is a quantum channel that on any key and any pure state,
outputs a pure state. Hence, G is either an isometry or a replacement channel (i.e., it outputs a fixed pure
state for any input state).19

We prove Theorem 4.9 by showing that for t(λ) := λ3 and ℓ(λ) := λ/ log(λ), there exists a (computa-
tionally unbounded) adversary A such that∣∣∣∣∣∣∣ Pr

k←{0,1}λ
|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗G(k, |ϑ⟩⟨ϑ|)⊗ℓ) = 1]− Pr
|φ⟩←Hn

|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗ |φ⟩⟨φ|⊗ℓ) = 1]

∣∣∣∣∣∣∣
is non-negligible. For short, we use the following notation:

ρ0 := E
k←{0,1}λ,|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t ⊗G(k, |ϑ⟩⟨ϑ|)⊗ℓ

]
ρ1 := E

|φ⟩←Hn,|ϑ⟩←Hn

[
|ϑ⟩⟨ϑ|⊗t ⊗ |φ⟩⟨φ|⊗ℓ

]
.

The adversary A is simple: it performs a binary measurement {Π, I − Π} on input ρb for b ∈ {0, 1}, where
Π is the projection onto the eigenspace of ρ0. The rank of ρ0 and ρ1 satisfies

rank(ρ0) ≤ 2λ ·
(
2n + ℓ+ t− 1

ℓ+ t

)
and rank(ρ1) =

(
2n + ℓ− 1

ℓ

)
·
(
2n + t− 1

t

)
.

19According to the Stinespring representation, the action of any quantum channel is equivalent to appending auxiliary
registers, performing a unitary operation on the enlarged system, and (possibly) taking a partial trace over some registers. For
a bipartite entangled state, taking the partial trace over one subsystem results in a mixed state. Hence, after applying a unitary
operation, either (1) there is no partial trace and the quantum channel is an isometry, or (2) the registers over which the partial
trace is taken are not entangled with other registers, and the quantum channel is a replacement channel.
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Now, by construction, we have

Pr
k←{0,1}λ
|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗G(k, |ϑ⟩⟨ϑ|)⊗ℓ) = 1] = Tr(Πρ0) = Tr(ρ0) = 1.

On the other hand, suppose Π =
∑rank(ρ0)
i=1 |ui⟩⟨ui|, then

Pr
|φ⟩←Hn

|ϑ⟩←Hn

[A(|ϑ⟩⟨ϑ|⊗t ⊗ |φ⟩⟨φ|⊗ℓ) = 1] = Tr(Πρ1)

≤
rank(ρ0)∑
i=1

1(
2n+ℓ−1

ℓ

)(
2n+t−1

t

) · ∑
T1∈[0:ℓ]2n ,T2∈[0:t]2n

|(⟨T1| ⊗ ⟨T2|)|ui⟩|2

≤ rank(ρ0)(
2n+ℓ−1

ℓ

)(
2n+t−1

t

) =
rank(ρ0)

rank(ρ1)
.

A direct calculation yields:

rank(ρ0)

rank(ρ1)
=

2λ(
ℓ+t
ℓ

) · ℓ−1∏
i=0

(
1 +

t

2n + i

)
≤ 2λ

(1 + t
ℓ )
ℓ
·
ℓ−1∏
i=0

(
1 +

t

2n + i

)

= 2λ ·
ℓ−1∏
i=0

(
1 + t

2n+i

1 + t
ℓ

)
≤ 2λ ·

(
1 + t

2n

1 + t
ℓ

)ℓ
,

where the first inequality follows from
(
ℓ+t
ℓ

)
≥ ( ℓ+tℓ )ℓ. For n = ω(log(λ)), t = λ3 and ℓ = λ/ log(λ), we have

2λ ·
(
1 + t

2n

1 + t
ℓ

)ℓ
=

(
λ · (1 + λ3

λω(1) )

1 + λ2 log(λ)

)λ/ log(λ)
≤
(

λ · 2
λ2 log(λ)

)λ/ log(λ)
≤ 2−λ

for sufficiently large λ. Hence, the distinguishing advantage (1− 2−λ) is non-negligible. This completes the
proof.

Since multi-key pseudorandomness is stronger, we have the following immediate corollary.

Corollary 4.10. Multi-key statistically secure (λ, n, ℓ)-PRS is impossible in the CHS model if (a) the gen-
eration algorithm uses only one copy of the common Haar state, (b) n = ω(log(λ)), (c) ℓ = Ω(λ/ log(λ))
and, (d) the length of the common Haar state is n = ω(log(λ)).

5 Statistical Stretch PRFS Generators in the CHS model
In this section, we extend our techniques from Section 4.2 to construct an (λ,m, n, ℓ)-statistical PRFS in
the CHS model, where m = λc, ℓ = λ1−c/ log(λ)

1+ε, the length of the common Haar state is n ≥ λ1−c, for
any constant ε > 0 and c ∈ [0, 1). In the case when n > λ, the construction satisfies stretch property. We
prove the following theorem in Section 5.2.

Theorem 5.1. There exists an (λ,m, n, ℓ)-statistical selectively secure PRFS generator in the CHS model
where the length of the common Haar state is n(λ), m(λ) = λc, ℓ = O(λ1−c/ log(λ)

1+ε
) and n(λ) ≥ λ1−c,

for any constant ε > 0 and for any c ∈ [0, 1).

Note that since a PRS can be used to computationally instantiate CHS in the plain model, the above result
also gives us a way to get bounded-query long-input PRFS from PRS in the plain model. In more detail, we
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can start with a PRS that has stretch (i.e. n > λ) and then we can bootstrap into a PRFS for large input
length at the cost of a reduction in stretch.20

Corollary 5.2. Assuming the existence of (λ, n, ℓ)-PRS, for n > λ and ℓ = O(λ1−c/ log(λ)
1+ε

), there
exists a selectively secure (2λ,m, n, ℓ)-PRFS generator with m(λ) = λc, for any constant ε > 0 and for any
c ∈ [0, 1).

Furthermore, since PRFS imply PRS, achieving an ℓ-query statistical PRFS in the CHS model for ℓ =
Ω(λ/ log(λ)) is impossible from Theorem 4.9.

Corollary 5.3. (λ,m, n, ℓ)-statistical PRFS is impossible in the CHS model if (a) the generation algorithm
uses only one copy of the common Haar state, (b) ℓ = Ω(λ/ log(λ)), (c) the length of the common Haar state
is n and, (d) n = ω(log(λ)).

We introduce several lemmas before proving Theorem 5.1.

5.1 Useful Lemmas
The following two lemmas are generalizations of the lemmas in Section 4. In particular, they state that even
after splitting an ℓ-fold n-prefix collision-free type vector into q subvectors, the action of a random Pauli-Z
still can be seen as a “classical” probabilistic process.

Lemma 5.4 (Generalization of Lemma 4.4). Let ℓ, n,m, q, t ∈ N, ℓ1, . . . , ℓq ∈ N, and t1, . . . , tq ∈ N such
that

∑q
i=1 ℓi = ℓ and

∑q
i=1 ti = t. For any v ∈ {0, 1}(n+m)(ℓ+t) such that type(v) ∈ I(ℓ)n,m(ℓ + t), where

v = (v1, . . . ,vq) and vi ∈ {0, 1}(n+m)(ℓi+ti) for i ∈ [q], and any σ1 ∈ Sℓ1+t1 , σ2 ∈ Sℓ2+t2 , · · · , σq ∈ Sℓq+tq ,
define the matrix

Av,{σi}i∈[q]
:= E

k←{0,1}n

[
q⊗
i=1

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)
|vi⟩⟨σi(vi)|

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)]
.

Then Av,{σi}i∈[q]
=
⊗q

i=1|vi⟩⟨σi(vi)| if for all i ∈ [q], σi maps [ℓi] to [ℓi]; otherwise, Av,{σi}i∈[q]
= 0.

Proof. Suppose for all i ∈ [q] and j ∈ [ℓi + ti], vi = (vi1||wi1, . . . , viℓi+ti ||w
i
ℓi+ti

) ∈ {0, 1}(n+m)(ℓi+ti) with
vj ∈ {0, 1}n and wj ∈ {0, 1}m. A direct calculation yields((

Zk ⊗ Im
)⊗ℓi ⊗ I⊗tin+m

)
|vi⟩⟨σi(vi)|

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)
= (−1)⟨k,

⊕ℓi
j=1(v

i
j⊕v

i
σi(j)

)⟩|vi⟩⟨σi(vi)|.

After averaging over k,

Av,{σi}i∈[q]
= E
k←{0,1}n

[
(−1)⟨k,

⊕q
i=1

⊕ℓi
j=1(v

i
j⊕v

i
σi(j)

)⟩
]
·

q⊗
i=1

|vi⟩⟨σi(vi)|

=

{⊗q
i=1|vi⟩⟨σi(vi)| if

⊕q
i=1

⊕ℓi
j=1(v

i
j ⊕ viσi(j)

) = 0

0 otherwise.

Since type(v) ∈ I(ℓ)n,m(t + ℓ), the condition
⊕q

i=1

⊕ℓi
j=1 v

i
j =

⊕q
i=1

⊕ℓi
j=1 v

i
σi(j)

holds if and only if the two
sets {(i, j) : i ∈ [q], j ∈ [ℓi]} and {(i, σi(j)) : i ∈ [q], j ∈ [ℓi]} are identical. The latter is equivalent to the
condition: {σi(j)) : j ∈ [ℓi]} = [ℓj ] for every i ∈ [q]. The proof is now complete.

20Formally, let GPRS is a (λ, n, ℓ)-PRS and G(k, x, |ϕ⟩) is (λ,m, n, ℓ)-statistical selectively secure PRFS generator in the
CHS model with n > λ, ℓ = O(λ1−c/ log(λ)1+ε) and m(λ) = λc, then for K = (k1, k2) ∈ {0, 1}λ × {0, 1}λ we can define
GPRFS(k, x) := G(k1, x,GPRS(k2)) as the (2λ,m, n, ℓ)-PRFS generator.
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Lemma 5.5 (Generalization of Lemma 4.5). Let ℓ, n,m, q, t ∈ N, ℓ1, . . . , ℓq ∈ N, and t1, . . . , tq ∈ N such that∑q
i=1 ℓi = ℓ and

∑q
i=1 ti = t. For any T ∈ I(ℓ)n,m(t + ℓ) and any mutually disjoint sets T1, . . . , Tq satisfying⋃q

i=1 Ti = T and |Ti| = ti + ℓi for all i ∈ [q],

E
k←{0,1}n

[
q⊗
i=1

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)
|Ti⟩⟨Ti|

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)]

=

q⊗
i=1

E
Xi←(Ti

ℓi
)
[|Xi⟩⟨Xi| ⊗ |Ti \Xi⟩⟨Ti \Xi|] .

Proof. By Equation (1), the left-hand side equals

E
∀i∈[q],vi←Ti

 ∑
∀i∈[q],σi∈Sti+ℓi

E
k←{0,1}n

[
q⊗
i=1

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)
|vi⟩⟨σi(vi)|

((
Zk ⊗ Im

)⊗ℓi ⊗ I⊗tin+m

)] .
(3)

Then from the previous lemma (Lemma 5.4)

(3) = E
∀i∈[q],vi←Ti

 ∑
∀i∈[q],σ1

i∈Sℓi
,σ2

i∈Sti

q⊗
i=1

|vi⟩⟨σ1
i ◦ σ2

i (v
i)|


=

q⊗
i=1

E
vi←Ti

 ∑
σ1
i∈Sℓi

,σ2
i∈Sti

|vi⟩⟨σ1
i ◦ σ2

i (v
i)|


=

q⊗
i=1

E
vi←Ti

 ∑
σ1
i∈Sℓi

|vi[1:ℓ]⟩⟨σ
1
i (v

i
[1:ℓi]

)| ⊗
∑

σ2
i∈Sti

|vi[ℓi+1:ti+ℓi]
⟩⟨σ2

i (v
i
[ℓi+1:ti+ℓi]

)|


=

q⊗
i=1

E

 ∑
σ1
i∈Sℓi

|vi1⟩⟨σ1
i (v

i
1)| ⊗

∑
σ2
i∈Sti

|vi2⟩⟨σ2
i (v

i
2)| :

Xi←(Ti
ℓi
),

vi
1←Xi,

vi
2←Ti\Xi


=

q⊗
i=1

E
Xi←(Ti

ℓi
)
[|Xi⟩⟨Xi| ⊗ |Ti \Xi⟩⟨Ti \Xi|] .

For the first equality, we use Lemma 5.4 and decompose for each i ∈ [q], σi = σ1
i ◦ σ2

i for some σ1
i , σ

2
i such

that σ1
i (x) = x for all x ∈ {ℓi + 1, ℓi + 2, · · · , ℓi + ti} and σ2

i (y) = y for all y ∈ {1, 2, · · · , ℓi}. Similar
to Lemma 4.5, we can view them as elements in Sℓi and Sti . The second equality follows from linearity
of trace. The third equality follows by denoting for each i ∈ [q], the first ℓi part of vi by vi[1:ℓ] and the
last ti part of vi by vi[ℓi+1:ℓi+ti]

. The fourth equality holds because for each i ∈ [q], sampling vi from Ti is
equivalent to sampling an ℓi-subset Xi from Ti followed by ordering the elements in Xi and Ti \Xi.

5.2 Construction
We extend the techniques used in Section 4.2 to construct a statistical PRFS in Figure 1. The construction
samples a uniform key for each position of the input being zero or one. Applying this to the common Haar
state gives us the output of the PRFS. The details can be seen in Figure 1. Thoughout this section, one
should think of m = λc and λ′ = λ1−c for some constant c ∈ [0, 1).
The main property of the construction that makes it a PRFS is its ability to disentangles any type state in
I(ℓ)λ′,n−λ′(ℓ + t) into a probabilistic mixture of disjoint subsets of the type. Formally, we show the following
lemma:
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Given the common Haar state |ϑ⟩, on the key K = (k01, . . . , k
0
m, k

1
1, . . . , k

1
m) ∈ {0, 1}2λ′m and the input

x = (x1, . . . , xm) ∈ {0, 1}m, define G(K,x, |ϑ⟩) as follows:

• |ψK,x⟩ = G(K,x, |ϑ⟩) = (Z
⊕m

i=1 k
xi
i ⊗ In−λ′)|ϑ⟩.

• Output |ψK,x⟩.

Figure 1: PRFS in the CHS model

Lemma 5.6. Let G be defined as in Figure 1. Let q, t ∈ N, ℓ1, . . . , ℓq ∈ N such that
∑q
i=1 ℓi = ℓ. Let

x1, . . . ,xq ∈ {0, 1}m with xi ̸= xj for all i ̸= j ∈ [q]. For any T ∈ I(ℓ)λ′,n−λ′(ℓ + t), the following density
matrices are equal:

ρ := E
K←{0,1}2mλ′

[(
q⊗
i=1

GK(xi, ·)⊗ℓi ⊗ I⊗t
)
|T ⟩⟨T |

]

σ := E
(T1,T2,...,Tq,T̂ )

[
q⊗
i=1

|Ti⟩⟨Ti| ⊗ |T̂ ⟩⟨T̂ |

]
where we omit the Hermitian conjugate of the unitary in ρ and identify it as a quantum channel; (T1, T2, . . . ,
Tq, T̂ ) in σ are sampled as follows: for i = 1, 2, . . . , q, recursively sample an ℓi-subset from T \ (

⋃i−1
j=1 Tj)

uniformly at random and let T̂ := T \ (
⋃q
j=1 Tj).

Proof. We define the following notation: Let ℓ : {0, 1}∗ → N, such that for all i ∈ [m], y ∈ {0, 1}i,
ℓ(y) =

∑
j∈[q]:

xj
[1:i]

=y

ℓj . Then we start by simplifying ρ:

ρ = E
K←{0,1}2mλ′

 q⊗
j=1

GK(xj , ·)⊗ℓj ⊗ I⊗t
 |T ⟩⟨T |


= E
K←{0,1}2mλ′

 q⊗
j=1

(
Z

⊕m
i=1 k

x
j
i

i ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

 |T ⟩⟨T |


= E
K←{0,1}2mλ′

 q⊗
j=1

(
Zk

x
j
m

m ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

 · · ·
 q⊗

j=1

(
Zk

x
j
1

1 ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

 |T ⟩⟨T |


= E
k0m,k

1
m←{0,1}λ

′

 q⊗
j=1

(
Zk

x
j
m

m ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

 · · · E
k01,k

1
1←{0,1}λ

′

 q⊗
j=1

(
Zk

x
j
1

1 ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

 |T ⟩⟨T |
 ,

where the first equality is by definition of ρ, second equality is by definition of G, third equality is because
Zk1⊕k2 = Zk1Zk2 and fourth equality is by linearity of expectation. We define for i ∈ [q], the following
channels Ci:

Ci(·) = E
k0i ,k

1
i←{0,1}λ

′


 q⊗
j=1

(
Zk

x
j
i

i ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

 ·
 q⊗

j=1

(
Zk

x
j
i

i ⊗ In−λ′

)⊗ℓj
⊗ I⊗t

†
 ,

then ρ = Cm(Cm−1(. . . C1(|T ⟩⟨T |) . . .)).
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We define ({Tx}x∈{0,1}i , T̂ ) ← µi as follow: For all x ∈ {0, 1}i, sample an ℓ(x)-subset from T \ (
⋃x
y=0 Ty)

uniformly and let T̂ := T \ (
⋃2i

y=0 Ty).
We start by computing C1(|T ⟩⟨T |), by Lemma 5.5,

C1(|T ⟩⟨T |) = E
({Tx}x∈{0,1},T̂ )←µ1

 ⊗
b∈{0,1}

|Tb⟩⟨Tb| ⊗ |T̂ ⟩⟨T̂ |

 .
In fact, for all i ∈ [q],

Ci(Ci−1(. . . C1(|T ⟩⟨T |) . . .)) = E
({Ty}y∈{0,1}i ,T̂ )←µi

 ⊗
y∈{0,1}i

|Ty⟩⟨Ty| ⊗ |T̂ ⟩⟨T̂ |

 .
We can show the above by induction on i. Assume that for some i ∈ [q],

Ci(Ci−1(. . . C1(|T ⟩⟨T |) . . .)) = E
({Ty}y∈{0,1}i ,T̂ )←µi

 ⊗
y∈{0,1}i

|Ty⟩⟨Ty| ⊗ |T̂ ⟩⟨T̂ |

 ,
then for i+ 1 ∈ [q],

Ci+1(Ci(. . . C1(|T ⟩⟨T |) . . .))

= Ci+1

 E
({Ty}y∈{0,1}i ,T̂ )←µi

 ⊗
y∈{0,1}i

|Ty⟩⟨Ty| ⊗ |T̂ ⟩⟨T̂ |


= E

({Ty}y∈{0,1}i ,T̂ )←µi

 E
k0i+1,k

1
i+1

 ⊗
y∈{0,1}i

((
Zk

0
i+1 ⊗ In−λ′

)⊗ℓ(y0)
⊗
(
Zk

1
i+1 ⊗ In−λ′

)⊗ℓ(y1)
|Ty⟩⟨Ty|

)
⊗ |T̂ ⟩⟨T̂ |


= E

({Ty}y∈{0,1}i+1 ,T̂ )←µi+1

 ⊗
y∈{0,1}i+1

|Ty⟩⟨Ty| ⊗ |T̂ ⟩⟨T̂ |

 ,
where the first equality is by the induction hypothesis, the second equality is by the definition of Ci+1 and
the third equality is by Lemma 5.4.
Hence, we get

ρ = Cm(Cm−1(. . . C1(|T ⟩⟨T |) . . .)) = E
({Tx}x∈{0,1}m ,T̂ )←µm

 ⊗
y∈{0,1}m

|Ty⟩⟨Ty| ⊗ |T̂ ⟩⟨T̂ |

 .
Ignoring the y ∈ {0, 1}m for which ℓ(y) = 0, we get

ρ = E
(T1,T2,...,Tq,T̂ )

[
q⊗
i=1

|Ti⟩⟨Ti| ⊗ |T̂ ⟩⟨T̂ |

]
,

where (T1, T2, . . . , Tq, T̂ ) are sampled as follows: for i = 1, 2, . . . , q, sample an ℓi-subset from T \ (
⋃i−1
j=1 Tj)

uniformly and let T̂ := T \ (
⋃q
j=1 Tj). Hence, ρ = σ.

Lemma 5.7 (Pseudorandomness). Let G be as defined above. Let q, t ∈ N, let ℓ1, . . . , ℓq ∈ N be such that∑q
i=1 ℓi = ℓ. Let x1, . . . ,xq ∈ {0, 1}m. Let

ρ := E
K←{0,1}2mλ′

|ϑ⟩←Hn

[
⊗qi=1GK(xi, |ϑ⟩)⊗ℓi ⊗ |ϑ⟩⟨ϑ|⊗t

]
,
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and
σ := E

∀i∈[q],|φi⟩←Hn

|ϑ⟩←Hn

[
⊗qi=1|φi⟩⟨φi|

⊗ℓi ⊗ |ϑ⟩⟨ϑ|⊗t
]
.

Then TD (ρ, σ) = O
(

(ℓ+t)2ℓ

2λ′

)
.

Proof. We prove this using hybrid arguments:

Hybrid 1. Sample T ← [0 : ℓ + t]2
n

. Sample K ← {0, 1}2mλ′
. Output (

⊗q
j=1(Z

⊕m
i=1k

x
j
i

i ⊗ In−λ′)⊗ℓj ⊗
I⊗tn )|T ⟩.

Hybrid 2. Sample T ← [0 : ℓ+ t]2
n

uniformly conditioned on T ∈ I(ℓ)λ′,n−λ′(ℓ+ t). Sample K ← {0, 1}2mλ′
.

Output (
⊗q

j=1(Z
⊕m

i=1k
x
j
i

i ⊗ In−λ′)⊗ℓj ⊗ I⊗tn )|T ⟩.

Hybrid 3: Sample T ← [0 : ℓ + t]2
n

uniformly conditioned on T ∈ I(ℓ)λ′,n−λ′(ℓ + t). Sample a uniform for
all j ∈ [q], ℓj-subsets Tj from T such that for any j ̸= j′ ∈ [q], Tj ∩ Tj′ = ∅. Define T̃ =

⋃q
j=1 Tj . Output⊗q

j=1|Tj⟩ ⊗ |T \ T̃ ⟩.

Hybrid 4. Sample T ← [0 : ℓ + t]2
n

. For all j ∈ [q], sample a uniform ℓj-subset Tj from T \
⋃j−1
i=1 Tj .

21

Output
⊗q

j=1|Tj⟩ ⊗ |T \
⋃q
j=1 Ti⟩.

Hybrid 5. Sample a collision-free T from [0 : ℓ+ t]2
n

. Sample a uniform for all j ∈ [q], ℓj-subsets Tj from
T such that for any j ̸= j′ ∈ [q], Tj ∩ Tj′ = ∅. Define T̃ =

⋃q
j=1 Tj . Output

⊗q
j=1|Tj⟩ ⊗ |T \ T̃ ⟩.

Hybrid 6. For all j ∈ [q], sample uniform collision-free Tj from [0 : ℓj ]
2n conditioned on Tj and

⋃j−1
i=1 Tj

have no common elements. Sample a uniform collision-free T̂ from [0 : t]2
n

conditioned on
⋃q
j=1 Tj and T̂

have no common elements. Output
⊗q

j=1|Tj⟩ ⊗ |T̂ ⟩.

Hybrid 7.y, for y ∈ [0 : q − 1]. For all j ∈ [q − y], sample uniform collision-free Tj from [0 : ℓj ]
2n

conditioned on Tj and
⋃j−1
i=1 Tj have no common elements. For all j ∈ [q − y + 1 : q], sample a uniform

collision-free Tj from [0 : ℓj ]
2n . Sample a uniform collision-free T̂ from [0 : t]2

n

. Output
⊗q

j=1|Tj⟩ ⊗ |T̂ ⟩.

Hybrid 8. For all j ∈ [q], sample Tj ← [0 : ℓj ]
2n . Sample T̂ ← [0 : t]2

n

. Output
⊗q

j=1|Tj⟩ ⊗ |T̂ ⟩.

Indistinuishability of Hybrids.

• By Lemma 4.3, the trace distance between Hybrid 1 and Hybrid 2 is O((t+ ℓ)2ℓ/2λ
′
).

• From Lemma 5.6, the output of Hybrid 2 is equivalent to Hybrid 3.

• By Lemma 4.3, the trace distance between Hybrid 3 and Hybrid 4 is O((t+ ℓ)2ℓ/2λ
′
).

• The trace distance between Hybrid 4 and Hybrid 5 is O((t+ ℓ)2/2n) by collision bound.

• Hybrid 5 and Hybrid 6 are equivalent.

• The trace distance between Hybrid 6 and Hybrid 7.0 is O(tℓ/2n).
21Since T might have collisions, Tj is allowed to contain duplicate elements.
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• For y ∈ [0 : q−2], the trace distance between Hybrid 7.y and Hybrid 7.(y+1) is O(ℓq−y(
∑q−y−1
j=1 ℓj)/2

n).

• Finally, the trace distance between Hybrid 7 and Hybrid 8 is O((t2 +
∑q
j=1 ℓ

2
j )/2

n) by collision bound.

This completes the proof.

Remark 5.8. Note that the above construction is still secure if we set k1i = 0 for all i ∈ [2 : m]. This slightly
reduces the key length from 2mλ′ to (m+ 1)λ′.

6 Quantum Commitments in the CHS model
In this section, we construct a commitment scheme that satisfies poly-copy statistical hiding and statis-
tical sum-biding in the CHS model. The scheme is inspired by the quantum commitment scheme pro-
posed in [MY21; MNY23]. In contrast to the scheme in [MY21], our construction is not of the canonical
form [Yan22]. To achieve binding, similar to [MNY23], the receiver needs to perform several SWAP tests.
To achieve hiding, our scheme relies on the multi-key pseudorandomness property in Lemma 4.7.

6.1 Construction
We assume that n(λ) ≥ λ+1 for all λ ∈ N. Our construction, parameterized by the polynomial p = p(λ) := λ,
is shown in Figure 2.

Theorem 6.1. The construction in Figure 2 is a quantum commitment in the CHS model.

Commit phase: The sender Cλ on input b ∈ {0, 1} does the following:

• Use p copies of the common Haar state |ϑ⟩ to prepare the state |Ψb⟩CR :=
⊗p

i=1|ψb⟩CiRi
, where

|ψ0⟩CiRi
:=

1√
2λ

∑
k∈{0,1}λ

(Zk ⊗ In−λ)|ϑ⟩Ci
|k||0n−λ⟩Ri

and
|ψ1⟩CiRi :=

1√
2n

∑
j∈{0,1}n

|j⟩Ci |j⟩Ri ,

and C := (C1,C2, . . . ,Cp) and R := (R1,R2, . . . ,Rp).

• Send register C to the receiver.

Reveal phase:

• The sender sends b and register R to the receiver.

• The receiver prepares the state |Ψb⟩C′R′ =
⊗p

i=1|ψb⟩C′
iR

′
i

by using p copies of the common Haar
state |ϑ⟩, where C′ := (C′1,C

′
2, . . . ,C

′
p) and R′ := (R′1,R

′
2, . . . ,R

′
p) are receiver’s registers.

• For i ∈ [p], the receiver performs the SWAP test between registers (Ci,Ri) and (C′i,R
′
i).

• The receiver outputs b if all SWAP tests accept; otherwise, outputs ⊥.

Figure 2: Quantum commitment scheme in the CHS model
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6.2 Proving Hiding and Binding
Now, we prove Theorem 6.1.

Proof of Theorem 6.1. Clearly, the construction has perfect correctness.

Poly-copy statistical hiding. It follows immediately from Lemma 4.7 by setting ℓ = 1.

Statistical sum binding. For any (fixed) common Haar state |ϑ⟩ and i ∈ [p], it holds that

F (TrRi
(|ψ0⟩⟨ψ0|CiRi

),TrRi
(|ψ1⟩⟨ψ1|CiRi

))

=F


1

2λ

∑
k∈{0,1}λ

(Zk ⊗ In−λ)|ϑ⟩⟨ϑ|Ci(Z
k ⊗ In−λ)︸ ︷︷ ︸

=:ρ0

,
ICi

2n


=2−n · Tr(√ρ0)2

≤2−n · rank(√ρ0) · Tr(ρ0)
≤2−n · 2λ · 1 = 2−(n−λ), (4)

where the second equality is by the definition of fidelity F (ρ, σ) =
(
Tr
(√√

ρσ
√
ρ
))2; the first inequality

follows from Tr(ρ)
2 ≤ rank(ρ) · Tr

(
ρ2
)

for ρ ⪰ 0; the second inequality is because rank(
√
ρ) = rank(ρ) for

ρ ⪰ 0 and rank(X + Y ) ≤ rank(X) + rank(Y ).
Let M (b)

CR be the POVM operator corresponding to that the receiver outputs b (i.e., all the SWAP tests
accept),

M
(b)
CR :=

⊗
i∈[p]

(
ICiRi

+ |ψb⟩⟨ψb|CiRi
)

2

)
= E
S⊆[p]

[⊗
i∈S
|ψb⟩⟨ψb|CiRi

⊗
⊗
i/∈S

ICiRi

]
,

where S is a uniformly random subset of [p]. Then the probability that the receiver outputs b is

pb := Tr

M (b)
CR TrE(U

(b)
RE |Φ⟩⟨Φ|CREU

(b)†
RE︸ ︷︷ ︸

=:ρ
(b)
CR

)


= E
S⊆[p]

[
Tr

(⊗
i∈S
|ψb⟩⟨ψb|CiRi

⊗
⊗
i/∈S

ICiRi
· ρ(b)CR

)]

= E
S⊆[p]

F
(⊗
i∈S
|ψb⟩⟨ψb|CiRi ,TrCiRi:i/∈S(ρ

(b)
CR)

)
︸ ︷︷ ︸

=:pb,S

 ,

where E is the sender’s internal register, |Φ⟩CRE is the malicious sender’s initial state that might depend on
|ϑ⟩ (we omit the dependence for simplicity), and U

(b)
RE is the malicious sender’s attacking unitary for b; we

plug in the definition of M (b)
CR and use the short-hand notation ρ(b)CR to obtain the second equality.

For any fixed S ⊆ [p], we have

p0,S + p1,S
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= F

(⊗
i∈S
|ψ0⟩⟨ψ0|CiRi ,TrCiRi:i/∈S(ρ

(0)
CR )

)
+ F

(⊗
i∈S
|ψ1⟩⟨ψ1|CiRi ,TrCiRi:i/∈S(ρ

(1)
CR )

)

≤ F

(⊗
i∈S

TrRi
(|ψ0⟩⟨ψ0|CiRi

),TrCi:i/∈S TrR(ρ
(0)
CR )

)
+ F

(⊗
i∈S

TrRi
(|ψ1⟩⟨ψ1|CiRi

),TrCi:i/∈S TrR(ρ
(1)
CR )

)

≤ 1 + F

(⊗
i∈S

TrRi(|ψ0⟩⟨ψ0|CiRi),
⊗
i∈S

TrRi(|ψ1⟩⟨ψ1|CiRi)

)1/2

= 1 +
⊗
i∈S

F (TrRi
(|ψ0⟩⟨ψ0|CiRi

),TrRi
(|ψ1⟩⟨ψ1|CiRi

))
1/2 ≤ 1 + 2

−|S|(n−λ)
2 ,

where the first inequality follows from the fact that taking a partial trace won’t decrease the fidelity; the
second inequality is because TrR(ρ

(0)
CR ) = TrR(ρ

(1)
CR ) and F (ρ, ξ)+F (σ, ξ) ≤ 1+

√
F (ρ, σ) [NS03]; the last equal-

ity follows from the fact that F (
⊗

i ρi,
⊗

i σi) =
∏
i F (ρi, σi); the last inequality follows from Equation (4).

Finally, we bound the probability p0 + p1 as follows:

p0 + p1 = E
S⊆[p]

[p0,S + p1,S ] ≤ 1 + E
S⊆[p]

[
2

−|S|(n−λ)
2

]
= 1 + 2−p ·

t∑
s=0

(
p

s

)
2

−s(n−λ)
2

= 1 +

(
1 + 2

−(n−λ)
2

2

)p
= 1 + negl(λ),

since we set n(λ) ≥ λ+ 1 and p(λ) = λ = ω(log(λ)).

7 LOCC Indistinguishability
In this section, we prove our main technical theorem for proving impossibilities and separations in Section 8
and Section 9.

7.1 Definitions
Definition 7.1 (LOCC adversaries). An LOCC adversary is a tuple (A,B), where A and B are spatially sep-
arated, non-uniform, and computationally unbounded quantum algorithms without pre-shared entanglement.
In addition, A and B can only perform local operations on their registers and communicate classically.

Definition 7.2 (LOCC Indistinguishability). We say that two density matrices (ρAB, σAB) are ε-LOCC
indistinguishable if for any LOCC adversary (A,B) with A taking as input register A and B taking as input
register B, the probability that B outputs 1 satisfies22

|Pr[(A,B)(ρAB) = 1]− Pr[(A,B)(σAB) = 1]| ≤ ε.

If ε(·) is negligible, then we simply say that (ρAB, σAB) are LOCC indistinguishable.

It is well-known that the class of operations having positive partial transpose (PPT) is a strict superset of
the class of LOCC operations (see, e.g., [DLT02; EW02; CLM+14; Har23]). Hence, it suffices to consider
the maximum distinguishing advantage over PPT measurements.

Lemma 7.3. For any two density matrices ρAB, σAB and ε ≥ 0, (ρAB, σAB) are ε-LOCC indistinguishable if

sup
MAB:0⪯MAB⪯I
∧0⪯MΓB

AB ⪯I

|Tr(MAB(ρAB − σAB))| ≤ ε.

22Since (A,B) are allowed to communicate and we do not care about communication complexity, it is without loss of generality
to assume that B outputs the bit.
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We can extend the LOCC indistinguishability into the multi-party setting.

Definition 7.4 (m-party LOCC adversaries). An m-party LOCC adversary is an m-tuple (P1,P2, . . . ,Pm),
where each Pi is a non-uniform, computationally unbounded quantum algorithms and every distinct pair
(Pi,Pj) is spatially separated and without pre-shared entanglement. In addition, every party can only perform
local operations on their registers and communicate classically.

Definition 7.5 (m-party LOCC Indistinguishability). We say that two density matrices (ρP, σP) on register
P = (P1,P2, . . . ,Pm) are (m, ε)-LOCC indistinguishable if for any m-party LOCC adversary (P1,P2, . . . ,Pm)
with each Pi taking as input register Pi, the probability that Pm outputs 1 satisfies

|Pr[(P1,P2, . . . ,Pm)(ρP) = 1]− Pr[(P1,P2, . . . ,Pm)(σP) = 1]| ≤ ε.

7.2 LOCC Haar Indistinguishability
We first introduce several useful lemmas.

Lemma 7.6. For any d ∈ N, any set T ⊆ [d] and any integer 0 ≤ x ≤ |T |, the type state |T ⟩ can be written
as

|T ⟩AB =
∑

X∈(Tx)

1√(|T |
x

) |X⟩A ⊗ |T \X⟩B,
where register A contains the first x qudits and register B contains the last |T | − x qudits.

Proof. For every X ∈
(
T
x

)
, the inner product of |X⟩A ⊗ |T \X⟩B and |T ⟩AB is 1√

x!(|T | − x)!

∑
x∈X,y∈T\X

⟨x|A ⊗ ⟨y|B

( 1√
T !

∑
v∈T
|v⟩AB

)
=

√
x!(|T | − x)!

T !
=

1√(|T |
x

) .
Moreover, |X⟩A ⊗ |T \X⟩B and |X ′⟩A ⊗ |T \X ′⟩B are orthogonal for every pair X ̸= X ′ ∈

(
T
x

)
. Since |T ⟩ is

normalized, the equality holds.

Kneser graphs. For any v, k ∈ N, the Kneser graph K(v, k) is the graph whose vertices correspond to
the k-element subsets of the set [v], and two vertices are adjacent if and only if the two corresponding sets
are disjoint.

Lemma 7.7 ([LW12, Theorem 1]). For any v, k ∈ N such that v ≥ 2k + 1, the sum of absolute eigenvalues
of the adjacency matrix of K(v, k) (which is equal to its 1-norm) is

2k(v − 1)(v − 3) . . . (v − 2k + 1)

k!
.

The following lemma is the crux for proving Theorem 7.9.

Lemma 7.8. Let ρ̃AB := E
T←([d]2t)

[|T ⟩⟨T |AB] and σ̃AB := E
SA,SB←([d]t ):SA ̸=SB

[|SA⟩⟨SA|A ⊗ |SB⟩⟨SB |B]. Then

we have
∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1
≤ O(t2/d).

Proof. By Lemma 7.6, we can expand ρ̃ as follows:

ρ̃AB =
1(

d
2t

)(
2t
t

) ∑
T∈([d]2t)

∑
X,Y ∈(Tt)

|T \X⟩⟨T \ Y |A ⊗ |X⟩⟨Y |B.
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On the other hand, we have

σ̃AB =
1(

d
t

)(
d−t
t

) ∑
SA,SB∈([d]t ):
SA ̸=SB

|SA⟩⟨SA|A ⊗ |SB⟩⟨SB |B =
1(

d
2t

)(
2t
t

) ∑
SA,SB∈([d]t ):
SA ̸=SB

|SA⟩⟨SA|A ⊗ |SB⟩⟨SB |B.

Taking partial transpose with respect to B, we have σ̃ΓB

AB = σ̃AB and

ρ̃ΓB

AB =
1(

d
2t

)(
2t
t

) ∑
T∈([d]2t)

∑
X,Y ∈(Tt)

|T \X⟩⟨T \ Y |A ⊗ |Y ⟩⟨X|B

= σ̃ΓB

AB +
1(

d
2t

)(
2t
t

) ∑
T∈([d]2t)

∑
X,Y ∈(Tt):
X ̸=Y

|T \X⟩⟨T \ Y |A ⊗ |Y ⟩⟨X|B.

where the second equality is because when X = Y ,∑
T∈([d]2t)

∑
X∈(Tt)

|T \X⟩⟨T \X|A ⊗ |X⟩⟨X|B =
∑

SA,SB∈([d]t ):SA ̸=SB

|SA⟩⟨SA|A ⊗ |SB⟩⟨SB |B.

Hence, we have

∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1
=

1(
d
2t

)(
2t
t

)
∥∥∥∥∥∥∥∥∥
∑

T∈([d]2t)

∑
X,Y ∈(Tt):
X ̸=Y

|T \X⟩⟨T \ Y |A ⊗ |Y ⟩⟨X|B

∥∥∥∥∥∥∥∥∥
1

.

Now, we will apply a double-counting argument. Each (T,X, Y ) can uniquely correspond to a tuple of
mutually disjoint sets (C, I,X ′, Y ′) satisfying C = T \ (X ∪Y ) (C denotes complement of X ∪Y ), I = X ∩Y
(I denotes intersection), X ′ = X \ I and Y ′ = Y \ I. Hence, T \X = C ⊎ Y ′, Y = I ⊎ Y ′, T \ Y = C ⊎X ′,
and X = I ⊎ X ′ where ⊎ denotes the disjoint union. By further classifying the summands according to
s := |C| = |I| ∈ {0, 1, . . . , t− 1} (note that then |X ′| = |Y ′| = t− s), we have

∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1
=

1(
d
2t

)(
2t
t

)
∥∥∥∥∥∥∥∥∥
t−1∑
s=0

∑
C∈([d]s )

∑
I∈([d]\Cs )

∑
X′,Y ′∈([d]\(C⊎I)

t−s ):
X′∩Y ′=∅

|C ⊎ Y ′⟩A|I ⊎ Y ′⟩B⟨C ⊎X ′|A⟨I ⊎X ′|B

∥∥∥∥∥∥∥∥∥
1

≤ 1(
d
2t

)(
2t
t

) t−1∑
s=0

∑
C∈([d]s )

∑
I∈([d]\Cs )

∥∥∥∥∥ ∑
X′,Y ′∈([d]\(C⊎I)

t−s ):
X′∩Y ′=∅

|C ⊎ Y ′⟩A|I ⊎ Y ′⟩B⟨C ⊎X ′|A⟨I ⊎X ′|B

︸ ︷︷ ︸
=:KC,I

∥∥∥∥∥
1

, (∗)

where the inequality follows from the triangle inequality. Observe that for every (C, I), the matrix KC,I

is isospectral23 to the adjacency matrix of the Kneser graph K(d − 2s, t − s). By Lemma 7.7, we continue
bounding the above inequality:

(∗) = 1(
d
2t

)(
2t
t

) t−1∑
s=0

(
d

s

)(
d− s
s

)
2t−s(d− 2s− 1)(d− 2s− 3) . . . (d− 2t+ 1)

(t− s)!

23Two matrices are isospectral to one another if they have the same set of non-zero eigenvalues, including multiplicities.
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=

t−1∑
s=0

2t−s
(
t!
s!

)2
(t− s)!(d− 2s)(d− 2s− 2) . . . (d− 2t+ 2)

≤
t−1∑
s=0

2t−s · t2(t−s)

(t− s)!(d− 2t+ 2)t−s
. (∗∗)

By letting k := t− s, we finally have

(∗∗) =
t∑

k=1

( 2t2

d−2t+2 )
k

k!
≤ exp

(
2t2

d− 2t+ 2

)
− 1 = O

(
t2

d

)
.

Theorem 7.9 (LOCC Haar Indistinguishability). Let ρAB := E|ψ⟩←Hn

[
|ψ⟩⟨ψ|⊗tA ⊗ |ψ⟩⟨ψ|

⊗t
B

]
and σAB :=

E|ψ⟩←Hn

[
|ψ⟩⟨ψ|⊗tA

]
⊗ E|ϕ⟩←Hn

[
|ϕ⟩⟨ϕ|⊗tB

]
. Then ρAB and σAB are O(t2/2n)-LOCC indistinguishable.

Proof. Let ρ̃AB and σ̃AB be defined as in Lemma 7.8. By the collision bound, both (ρAB, ρ̃AB), and (σAB, σ̃AB)
are O(t2/d)-close in trace distance, which trivially implies their O(t2/d)-LOCC indistinguishability. Thus,
if suffices to show that ρ̃AB and σ̃AB are O(t2/d)-LOCC indistinguishable. From Lemma 7.3, the LOCC
distinguishing advantage of ρ̃AB and σ̃AB can be upper bounded by

sup
MAB:0⪯MAB⪯I
∧0⪯MΓB

AB ⪯I

|Tr(MAB(ρ̃AB − σ̃AB))|

≤ sup
MAB:0⪯M

ΓB
AB ⪯I

|Tr(MAB(ρ̃AB − σ̃AB))|

= sup
MAB:0⪯M

ΓB
AB ⪯I

|Tr
(
MΓB

AB(ρ̃
ΓB

AB − σ̃
ΓB

AB)
)
|

= sup
MAB:0⪯MAB⪯I

|Tr
(
MAB(ρ̃

ΓB

AB − σ̃
ΓB

AB)
)
|

=
1

2

∥∥∥ρ̃ΓB

AB − σ̃
ΓB

AB

∥∥∥
1
.

The first inequality holds because we omit the constraint 0 ⪯ MAB ⪯ I. The first equality follows from the
fact that Tr(PABQAB) = Tr

(
PΓB

ABQ
ΓB

AB

)
for all matrices PAB, QAB. Since ρ̃ΓB

AB− σ̃
ΓB

AB is Hermitian and has trace
zero, the last equality follows from the variational definition of trace norm. Applying Lemma 7.8 completes
the proof.

To prove the separations in Section 9, we rely on the following generalization of Theorem 7.9 which
states the LOCC indistinguishability when (A,B) are further given many i.i.d. input instances with different
lengths.

Corollary 7.10. For positive integers s, t, n1, n2, . . . , ns, define

ρAB :=

s⊗
i=1

E
|ψi⟩←Hni

[(
|ψi⟩⟨ψi|⊗t

)
Ai
⊗
(
|ψi⟩⟨ψi|⊗t

)
Bi

]

σAB :=

s⊗
i=1

E
|ψi⟩←Hni

[(
|ψi⟩⟨ψi|⊗t

)
Ai

]
⊗

s⊗
i=1

E
|ϕi⟩←Hni

[(
|ϕi⟩⟨ϕi|⊗t

)
Bi

]
,

where A = (A1,A2, . . . ,As) and B = (B1,B2, . . . ,Bs). Then ρAB and σAB are O
(∑s

i=1 t
2/2ni

)
-LOCC indis-

tinguishable.
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Proof. For 0 ≤ k ≤ s, we define the (hybrid) state

ξk :=

k⊗
i=1

E
|ψi⟩←Hni

[(
|ψi⟩⟨ψi|⊗t

)
Ai
⊗
(
|ψi⟩⟨ψi|⊗t

)
Bi

]
⊗

s⊗
j=k+1

(
E

|ψj⟩←Hnj

[
|ψj⟩⟨ψj |⊗tAj

]
⊗ E
|ϕj⟩←Hnj

[
|ϕj⟩⟨ϕj |⊗tBj

])
.

Note that ξ0 = ρ and ξs = σ. By the triangle inequality, we have

sup
(A,B)

|Pr[(A,B)(ρ) = 1]− Pr[(A,B)(σ) = 1]| ≤
s−1∑
k=0

sup
(A,B)

|Pr[(A,B)(ξk) = 1]− Pr[(A,B)(ξk+1) = 1]| ,

where the supremum is over all LOCC adversary. We will show that for each k,

sup
(A,B)

|Pr[(A,B)(ξk) = 1]− Pr[(A,B)(ξk+1) = 1]| = sup
(A,B)

∣∣∣∣Pr
[
(A,B)

(
E

|ψ⟩←Hnk+1

[
|ψ⟩⟨ψ|⊗tA ⊗ |ψ⟩⟨ψ|

⊗t
B

])
= 1

]

− Pr

[
(A,B)

(
E

|ψ⟩←Hnk+1

[
|ψ⟩⟨ψ|⊗tA

]
⊗ E
|ϕ⟩←Hnk+1

[
|ϕ⟩⟨ϕ|⊗tB

])
= 1

]∣∣∣∣,
which then completes the proof by Theorem 7.9. It is easy to see that the LHS is at least as large as the
RHS since (A,B) on the LHS can simply discard all input registers except for (Ak+1,Bk+1). To see that the
RHS is at least as large as the LHS, for every (A,B) on the LHS, we define (A′, B′) on the RHS based on
(A,B) as follows. For 0 ≤ i ≤ k, A′ samples the classical description of i.i.d. ni-qubit Haar states |ψi⟩ and
sends them to B′.24 They then prepare t copies of the quantum state |ψi⟩ according to the description on
registers Ai and Bi respectively. For k + 2 ≤ j ≤ s, A′ and B′ each locally sample t copies of i.i.d. nj-qubit
Haar state |ψj⟩ and |ϕj⟩ on registers Aj and Bj respectively. They then embed their input on registers Ak+1

and Bk+1, and run (A,B) respectively. Since the input of (A,B) is exactly ξk or ξk+1, (A′, B′) have the
same advantage as that of (A,B).

Moreover, we have the following corollary regarding the multi-party LOCC indistinguishability.

Corollary 7.11. Let ρP := E|ψ⟩←Hn

[⊗m
i=1|ψ⟩⟨ψ|

⊗t
Pi

]
and σP :=

⊗m
i=1 E|ψi⟩←Hn

[
|ψi⟩⟨ψi|⊗tPi

]
where register

P = (P1,P2, . . . ,Pm). Then ρP and σP are (m,O(m2t2/2n))-LOCC indistinguishable.

Proof. Similar to the proof of Corollary 7.10, we prove it via a hybrid argument. Without loss of generality, we
can assume thatm is a power of 2, i.e.,m = 2r. Otherwise, by the monotonicity of LOCC indistinguishability,
we can instead consider the smallest power of 2 that is greater than or equal to m, which only increases the
advantage by a constant factor. Define the following states for k ∈ {0, 1, . . . , r}:

ξk :=

2r−k−1⊗
i=0

E
|ψi⟩←Hn

 2k⊗
j=1

|ψi⟩⟨ψi|⊗tP
i2k+j

 .
For each ξk, there are 2r−k blocks, each corresponding to a Haar state. Within the i-th block, there are 2k

parties holding t-copies of the same state |ψi⟩. By construction, ξr = ρ and ξ0 = σ. We will show that the
LOCC distinguishing advantage between ξk and ξk+1 is O

(
m2kt2

2n

)
. This would then implies that the LOCC

distinguishing advantage between ρ and σ is
∑r−1
k=0O

(
m2kt2

2n

)
= O

(
m2t2

2n

)
.

To prove the closeness between ξk and ξk+1, we introduce sub-hybrids ξk,ℓ for ℓ ∈ {0, 1, . . . , 2r−k}. In
ξk,ℓ, the first ℓ blocks are all “split in half”. That is, for any i ∈ {1, 2, . . . , ℓ}, in the i-th block, the first
2k−1 parties are holding t-copies of |ψi,0⟩ and the other 2k−1 parties are holding t-copies of |ψi,1⟩. For any

24Note that (A′, B′) are information-theoretic and thus the description can approximate the Haar state with arbitrarily small
error.
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i ∈ {ℓ+ 1, ℓ+ 2, . . . , 2r−k}, in the i-th block, all 2k parties are holding t-copies of the same |ψi⟩. Hence, the
only difference between ξk,ℓ and ξk,ℓ+1 is in the (ℓ + 1)-th block — in the former all 2k parties are holding
t-copies of the same |ψℓ+1⟩, whereas in the latter the first 2k−1 parties are holding t-copies of |ψℓ+1,0⟩ and
the other 2k−1 parties are holding t-copies of |ψℓ+1,1⟩. Now, we can view the first 2k−1 parties and the other
2k−1 parties as two entities. By Theorem 7.9 and setting the number of copies each party receives as 2k−1t,
the LOCC distinguishing advantage between ξk,ℓ and ξk,ℓ+1 is O

(
(2k−1t)2

2n

)
. This implies that the LOCC

distinguishing advantage between ξk and ξk+1 is O
(

2r−k(2k−1t)2

2n

)
= O

(
2r+kt2

2n

)
= O

(
m2kt2

2n

)
as desired.

Remark 7.12. We compare Corollary 7.11 with [Har23, Theorem 8]. Although both theorems address multi-
party LOCC indistinguishability, they are incomparable for the following reasons. Corollary 7.11 is stronger
in the sense that each party receives t copies of the states, as opposed to the single-copy setting in [Har23,
Theorem 8]. Moreover, when t = 1, Corollary 7.11 implies an O(m2/2n) bound which is better than the
O(m2/

√
2n) bound given by [Har23, Theorem 8]. On the other hand, the statement of [Har23, Theorem 8] is

more general since their bound holds for a large family of input states. While the input states in Corollary 7.11
are fixed to ρ and σ.

7.3 An Optimal LOCC Haar distinguisher
We present an (optimal) LOCC Haar distinguisher with advantage Ω(t2/2n). Hence, the upper bound
in Theorem 7.9 is tight.

Theorem 7.13. There exists an LOCC adversary that distinguishes ρAB := E|ψ⟩←Hn

[⊗t
i=1|ψ⟩⟨ψ|Ai⊗⊗t

i=1|ψ⟩⟨ψ|Bi

]
from σAB := E|ψ⟩←Hn

[⊗t
i=1|ψ⟩⟨ψ|Ai

]
⊗ E|ϕ⟩←Hn

[⊗t
i=1|ϕ⟩⟨ϕ|Bi

]
with advantage Ω(t2/2n),

where A = (A1, . . . ,At) and B = (B1, . . . ,Bt). Moreover, the running time is polynomial in t and n.

Proof. The LOCC adversary (A,B) is defined as follows. For 1 ≤ i ≤ t, A measures register Ai in the
computational basis and obtains the outcome ai ∈ {0, 1}n. Similarly, B measures every Bi in the computa-
tional basis and obtains bi. Then B sends b1, b2, . . . , bt to A, and A outputs 1 if there is no collision among
a1, a2, . . . , at, b1, b2, . . . , bt. Let d := 2n. The distinguishing advantage can be lower bounded as follows:

Pr[(A,B)(σAB) = 1]− Pr[(A,BAB)(ρ) = 1]

= Pr
T1,T2←[0:t]d

[T1, T2 are collision-free ∧ T1, T2 are disjoint]− Pr
T←[0:2t]d

[T is collision-free]

=

(
d
t

)(
d−t
t

)(
d+t−1
t

)2 −
(
d
2t

)(
d+2t−1

2t

)
=

(
d
2t

)(
d+2t−1

2t

) ·((dt)(d−tt )(d+2t−1
2t

)(
d+t−1
t

)2( d
2t

) − 1

)

=

2t−1∏
i=0

(
1− 2t− 1

d+ i

)
·

(
t−1∏
i=0

(
1 +

t

d+ i

)
− 1

)

=

(
1−O

(
t2

d

))
·
(
1 + Ω

(
t2

d

)
− 1

)
= Ω

(
t2

d

)
,

where the first equality follows from the fact that σAB = ET1,T2←[0:t]d [|T1⟩⟨T1|A ⊗ |T2⟩⟨T2|B] and ρAB =
ET←[0:2t]d [|T ⟩⟨T |AB].

8 Impossibilities of QCCC Primitives in the CHS model
In this section, we investigate the impossibility of statistically secure quantum-computation classical-
communication (QCCC) primitives in the CHS model. A recent work by Khurana and Tomer [KT24]
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proposed the notion of one-way puzzles, which involves a QPT sampler that outputs a classical puzzle-
solution pair (Puz,Sol) satisfying a relation, which may not be efficiently computable. In addition, they
show that many QCCC primitives imply one-way puzzles. In a very recent work by Chung, Goldin and
Gray [CGG24], the authors observed that certain QCCC primitives possess an efficient verification algo-
rithm, and they defined a special class of one-way puzzles called efficiently verifiable one-way puzzles. In
particular, since we are considering impossibility results, we will focus on the following (fairly weak) form of
one-way puzzles in the CHS model.

Definition 8.1 (One-way puzzles in the CHS model). A one-way puzzle is a pair of sampling and verification
algorithms (Samp,Ver) with the following syntax. Let q = q(λ) be an arbitrary polynomial and n = n(λ) =
ω(log(λ)).

• Samp(1λ, ρ)→ (Puz,Sol), is a (possibly time-inefficient) quantum algorithm that on input the security
parameter and a 2nq-dimensional quantum state ρ (ideally, ρ will be q copies of an n-qubit Haar state),
outputs a pair of classical strings (Puz,Sol). We refer to Puz as the puzzle and Sol as its solution.

• Ver(Puz,Sol, ρ)→ ⊤ or ⊥, is a (possibly time-inefficient) quantum algorithm that on input any pair of
classical strings (Puz,Sol) and a 2nq-dimensional quantum state ρ (ideally, ρ is the same state used to
generate the puzzle), outputs either ⊤ (indicating accept) or ⊥ (indicating reject).

These satisfy the following properties.

• Completeness. The correctness guarantee states that as long as Samp and Ver get the same copy of
ρ, which in turn is q copies of an n-qubit Haar state, the output of the sampler will pass the verification
with overwhelming probability. That is,

Pr
[
Ver(Puz,Sol, |ψ⟩⊗q) = ⊤ :

|ψ⟩←Hn,

(Puz,Sol)←Samp(1λ,|ψ⟩⊗q)

]
= 1− negl(λ).

• Security. Given Puz, it is statistically infeasible to find Sol satisfying Ver(Puz,Sol) = ⊤, i.e., for every
unbounded adversary A,25

Pr

[
Ver(Puz,Sol′, |ψ⟩⊗q) = ⊤ :

|ψ⟩←Hn,

(Puz,Sol)←Samp(1λ,|ψ⟩⊗q),
Sol′←A(Puz)

]
= negl(λ).

Definition 8.2 (QCCC key agreements in the CHS model). A QCCC key agreement in the CHS model is a
two-party interactive protocol consisting of a pair of QPT algorithms (A,B) with their communication being
classical. Let q = q(λ) be an arbitrary polynomial and n = n(λ) = ω(log(λ)). A,B each take as input the
security parameter 1λ and a 2nq-dimensional quantum state (ideally, A and B each obtain q copies of an
n-qubit Haar state), and outputs classical keys kA ∈ {0, 1} and kB ∈ {0, 1} respectively.26

• Completeness. There exists a negligible function negl such that for all λ ∈ N,

Pr
[
kA = kB :

|ψ⟩←Hn,

(kA,kB ,τ)←⟨A(1λ,|ψ⟩⊗q),B(1λ,|ψ⟩⊗q)⟩

]
≥ 1− negl(λ),

where ⟨A,B⟩ denote the execution of the protocol and τ is the transcript of the protocol.

• Statistical Security. For every computationally unbounded eavesdropper E, there exists a negligible
function negl such that for all λ ∈ N,27

Pr

[
kE = kB :

|ψ⟩←Hn,

(kA,kB ,τ)←⟨A(1λ,|ψ⟩⊗q),B(1λ,|ψ⟩⊗q)⟩,
kE←E(1λ,τ)

]
≤ 1

2
+ negl(λ).

25Note that the security definition is weak in the sense that the adversary is not given any copy of the common Haar state.
26Since we are proving negative results, we assume that the key space of the key agreement is {0, 1}, i.e., a bit agreement.
27Similarly, we consider a weak security definition in which the eavesdropper is not given any common Haar state.
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There are various definitions of binding for quantum commitments in literature. Since we are showing
impossibility, we focus on sum-binding, which is implied by binding for classical commitments. Similarly, we
assume that the input space is {0, 1}, i.e., a bit commitment.

Definition 8.3 (QCCC interactive commitments in the CHS model). A QCCC commitment in the CHS
model is a two-party interactive protocol consisting of a pair of QPT algorithms (C,R), where C is the
committer and R is the receiver, with their communication being classical. Let q = q(λ) be an arbitrary
polynomial and n = n(λ) = ω(log(λ)).

• Commit Phase: In the (possibly interactive) commit phase, C takes as input the security pa-
rameter 1λ, a bit b ∈ {0, 1} and a 2nq-dimensional quantum state ρC , and R takes as input the
security parameter 1λ and a 2nq-dimensional quantum state ρR (ideally, C and R each obtain q
copies of an n-qubit Haar state). We denote the execution of the commit phase by (σCR, τ) ←
Commit⟨C(1λ, b, ρC), R(1λ, ρR)⟩, where σCR is the joint state of C and R after the commit phase,
and τ denotes the transcript in the commit phase.

• Reveal Phase: In the (possibly interactive) reveal phase, the output is µ ∈ {0, 1,⊥} indicating the
receiver’s output bit or abort. We denote the execution of the reveal phase by µ← Reveal⟨C,R, σCR, τ⟩.

The scheme satisfies the following conditions.

• Completeness. There exists a negligible function negl such that for all λ ∈ N,

Pr

µ = b :

|ψ⟩←Hn,
b←{0,1},

(σCR,τ)←Commit⟨C(1λ,b,|ψ⟩⊗q),R(1λ,|ψ⟩⊗q)⟩,
µ←Reveal⟨C,R,σCR,τ⟩,

µ∈{0,1,⊥}

 ≥ 1− negl(λ).

• Statistical Hiding. For every computationally unbounded malicious receiver R∗, there exists a neg-
ligible function negl such that for all λ ∈ N,

Pr

[
b′ = b :

|ψ⟩←Hn,
b←{0,1},

(σCR∗ ,τ)←Commit⟨C(1λ,b,|ψ⟩⊗q),R∗(1λ,|ψ⟩⊗q)⟩,
b′←R∗(σR∗ ,τ)

]
≤ 1

2
+ negl(λ),

where σR∗ denotes the state obtained by tracing out the committer’s part of the state σCR∗ .

• Statistical Binding. For every computationally unbounded malicious committer C∗, there exists a
negligible function negl such that for all λ ∈ N,

Pr

[
µ = b :

|ψ⟩←Hn,

(σC∗R,τ)←Commit⟨C∗(1λ,|ψ⟩⊗q),R(1λ,|ψ⟩⊗q)⟩,
b←{0,1},

µ←Reveal⟨C∗(b),R,σC∗R,τ⟩

]
≤ 1

2
+ negl(λ).

Theorem 8.4. There does not exist primitive P in the CHS model where P ∈ {one-way puzzles, statistically
secure QCCC key agreements, statistically hiding and statistically binding QCCC interactive commitments}.

Proof intuition. The high-level idea is to convert the scheme in the CHS model to a scheme in the plain
model. In the CHS model, given a pair of algorithms, we define the new pair of (time-inefficient) algorithms
to be identical except for their input, which consists of copies of two i.i.d Haar states. Thanks to the LOCC
Haar indistinguishability (Theorem 7.9), the expense of doing so is to only increase the completeness error
and security loss by a negligible amount. Therefore, if there were to exist a complete and secure scheme in
the CHS model, it would imply the existence of such a scheme in the plain model, contradicting the trivial
impossibility.28

28The impossibilities in the plain model still hold even when the algorithms of the primitives are time-inefficient.
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Proof of Theorem 8.4.
One-way puzzles. Suppose there exists a one-way puzzle (Samp,Ver) in the CHS model. We define
(S̃amp, Ṽer) as follows. S̃amp(1λ) simply samples q copies of a Haar state |ψ⟩ and runs Samp(1λ, |ψ⟩⊗q).
Ṽer(Puz,Sol) is defined similarly; it samples q copies of a Haar state |ϕ⟩ and then runs Ver(Puz,Sol, |ϕ⟩⊗q).
It is important to note that S̃amp and Ṽer sample the Haar states independently.

First, we claim that (S̃amp, Ṽer) has negligible completeness error. Otherwise, we construct an LOCC
distinguisher (A,B) with a non-negligible advantage for the task in Theorem 7.9. A runs Samp on the security
parameter and her input, obtains (Puz,Sol), and sends (Puz,Sol) to B. Then B runs Ver on (Puz,Sol) and his
input, and outputs 1 if the verification passes. If the input of (A,B) is ρ (defined in Theorem 7.9, i.e., each
is given q copies of the same Haar state), then the probability of B outputting 1 is equal to the completeness
of (Samp,Ver). Similarly, if the input is σ (i.e., each is given q copies of two i.i.d Haar states), then the
probability of B outputting 1 is equal to the completeness of (S̃amp, Ṽer). Hence, (A,B) has a non-negligible
advantage by the premise. However, this contradicts Theorem 7.9.

Next, we claim that (S̃amp, Ṽer) satisfies security. Suppose there is an adversary Ẽ that breaks the
security of (S̃amp, Ṽer) with a non-negligible advantage of ε̃ = ε̃(λ). We claim that Ẽ breaks the security of
(Samp,Ver) with an advantage of ε = ε(λ) satisfying |ε− ε̃| = negl(λ), which means that ε̃ is non-negligible
as well. Otherwise, suppose |ε − ε̃| is non-negligible, we can construct an LOCC distinguisher (A,B) as
follows.

• A runs Samp on the security parameter and her input to obtain (Puz,Sol). It then runs Ẽ on Puz to
obtain Sol′. Finally, it sends (Puz,Sol′) to B.

• B runs Ver on (Puz,Sol′). If the output is ⊥, it outputs 1. Otherwise, it outputs 0.

If the input of (A,B) is ρ (defined in Theorem 7.9, i.e., each is given q copies of the same Haar state), then
the probability of B outputting 1 is equal to ε. Similarly, if the input is σ (i.e., each is given q copies of two
i.i.d Haar states), then the probability of B outputting 1 is ε̃. Again, this contradicts Theorem 7.9.

So far, we have shown that (S̃amp, Ṽer) satisfies completeness and security in the plain model. However,
such a scheme cannot exist. This is because an unbounded adversary, given a puzzle, can find the solution
with the highest probability of passing the verification to break the security. Hence, we conclude that
(Samp,Ver) is not a one-way puzzle in the CHS model.

The structure of proving the impossibility of key agreements and interactive commitments is very
similar. We only describe the LOCC distinguishers and omit the full details.

Key agreements. Suppose KA = (P1, P2) is a statistically secure QCCC key agreement in the CHS model.
Define K̃A = (P̃1, P̃2) such that P̃1 (resp., P̃2) samples q copies of a Haar state and they run P1 (resp., P2).
We argue that K̃A satisfies both completeness and security.

Suppose completeness error of K̃A is inverse polynomial (in λ), we define an LOCC adversary (A,B) as
follows. Upon receiving a bipartite state on registers A and B, A (resp., B) runs P1 (resp., P2) on input 1λ

and the register A (resp., B). Then, A obtains the key kP1
and B obtains the key kP2

. They perform an
extra round of communication to check if kP1 = kP2 . Similar to the argument for one-way puzzles, it can
be shown that (A,B) can distinguish ρ and σ (defined in Theorem 7.9) with inverse polynomial probability,
which is a contradiction.

Suppose K̃A is not statistically secure. That is, there exists an eavesdropper Ẽ that can break the security
of K̃A with inverse polynomial (in λ) probability. Using Ẽ, we define an LOCC adversary (A,B), who upon
receiving a bipartite state on two registers A and B do the following.

• A runs P1 on 1λ and the register A. Similarly, B runs P2 on 1λ and the register B. Denote τ be the
transcript of the protocol.

• B runs Ẽ(τ) to obtain kE . It then checks if kE = kP2
. If so, it outputs 1. Otherwise, it outputs 0.
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Similarly, as before, we can show that (A,B) succeeds in distinguishing ρ and σ with inverse polynomial
probability, a contradiction.

So far, we have shown that K̃A is a key agreement protocol in the plain model that satisfies both
completeness and statistical security. However, such a scheme cannot exist which further means that KA
either does not satisfy completeness or security.

Interactive Commitments. Suppose Com = (C,R) is a statistically hiding and statistically binding
QCCC interactive commitment in the CHS model. We define C̃om = (C̃, R̃) as follows. Upon receiving the
input bit b ∈ {0, 1}, C̃ simply samples q copies of a Haar state |ψ⟩ and runs C on input 1λ, b and |ψ⟩⊗q.
Similarly, R̃ samples q copies of a Haar state |ϕ⟩ and runs R on input 1λ and |ϕ⟩⊗q.

Intuitively, C̃om is at least as secure as Com since the malicious party in C̃om has no information about the
other party’s Haar state as opposed to Com. Suppose C̃om is not statistically hiding. That is, there exists a
malicious receiver R̃∗ that can break the statistical hiding of C̃om with inverse polynomial (in λ) probability.
Using R̃∗, we define a malicious receiver R∗ that breaks the statistical hiding of Com. R∗ simply discards its
common Haar states and runs R̃∗. Then the distinguishing advantage of R∗ is identical to that of R̃∗, which
is a contradiction. Suppose C̃om is not statistically binding. That is, there exists a malicious receiver C̃∗ that
can break the statistical binding of C̃om with inverse polynomial (in λ) probability. Similarly, discarding the
common Haar states and using C̃∗ breaks the statistical binding of Com, which is a contradiction.

Suppose completeness error of C̃om is inverse polynomial (in λ), we define an LOCC adversary (A,B)
as follows. Upon receiving a bipartite state on registers A and B, A (resp., B) runs C (resp., R) on input
1λ, a uniform bit b ∈ {0, 1}, and the register A (resp., B). Then, B obtains µ. They perform an extra
round of communication to check if b = µ. Similar to the argument for one-way puzzles, it can be shown
that (A,B) can distinguish ρ and σ (defined in Theorem 7.9) with inverse polynomial probability, which is
a contradiction.

9 Quantum Black-Box Separation in the QCCC Model

9.1 The Separating Oracle
As is common in black-box impossibility results, we will define oracles relative to which ω(log(λ))-
PRSGs exist while QCCC key agreements and interactive commitments do not. We define the oracle
G := {{Gk}k∈{0,1}λ}λ∈N as follows. For every λ ∈ N and k ∈ {0, 1}λ, the oracle Gk is a Haar isometry
that maps any state |ψ⟩ to |ψ⟩|ϑk⟩, where |ϑk⟩ is a Haar state of length n(λ) = ω(log(λ)). The existence of
ω(log(λ))-PRSGs relative to G can be proven easily.

Lemma 9.1 ((λ, ω(log(λ)))-PRSGs exist relative to G). There exists a (λ, ω(log(λ)))-PRSG relative to G.
In particular, for any polynomial q(·) and any computationally unbounded adversary AG that takes as input
1λ and asks q(λ) quantum queries to G, the distinguishing advantage is negligible in λ.

Proof sketch. The proof is similar to the proof of [Kre21, Lemma 30]. The implementation of the PRSG
is simply the oracle G: on input k, outputs the state |ϑk⟩ generated by Gk. The security follows from the
hardness of the unstructed search problem [BBBV97].

9.2 Separating QCCC Key Agreements from (λ, ω(log(λ)))-PRSGs
Definition 9.2 (QCCC key agreements relative to oracle). A QCCC key agreement relative to an oracle O
is a two-party interactive protocol consisting of a pair of uniform quantum (possibly time-inefficient) oracle
algorithms (A,B) such that A,B each take as input the security parameter 1λ, ask q(λ) queries to the oracle
O for some polynomial q, communicate classically, and output the classical keys kA ∈ {0, 1} and kB ∈ {0, 1}
respectively. An (ε, p, δ)-QCCC key agreement relative to O satisfies the following:
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• ε-completeness. We say that a QCCC key agreement is ε-complete if the following holds for all
λ ∈ N,

Pr
[
kA = kB :

O←O,
(kA,kB ,τ)←⟨AO(1λ),BO(1λ)⟩

]
≥ 1− ε(λ),

where ⟨A,B⟩ denote the execution of the protocol and τ is the transcript of the protocol. We anticipate
that ε is negligible.

• (p, δ)-security. We say that a QCCC key agreement is (p, δ)-secure if for any computationally un-
bounded eavesdropper E that on input 1λ and transcript τ and asks at most p(λ) classical queries to
O, the following holds for all λ ∈ N,

Pr

[
kE = kB :

O←O,
(kA,kB ,τ)←⟨AO(1λ),BO(1λ)⟩,

kE←EO(1λ,τ)

]
≤ 1

2
+ δ(λ).

We anticipate that for any polynomial p, there exists a negligible δ such that the key agreement is
(p, δ)-secure.

In the plain model, completeness and security are defined similarly in the absence of an oracle. In particular,
a QCCC key agreement is an (ε, δ)-QCCC key agreement if it satisfies ε-completeness and δ-security.

Lemma 9.3 (Conditional independence). For any two-party interactive QCCC protocol (A,B) where the
party’s initial state is a product state, the joint state at the end of each round i can be written as∑

ti

pti |ti⟩⟨ti|T ⊗ ρt
i

AB,

for some partial transcripts ti := (t1, t2, . . . , ti) until round i and product states ρt
i

AB, where register T is for
storing the transcript.

Proof. We prove it by induction on rounds. Initially, the joint state is |⊥⟩⟨⊥|T⊗ρ⊥A⊗ρ⊥B by the premise, where
⊥ denotes the empty transcript. Suppose after the j-th round, the joint state is

∑
tj ptj |tj⟩⟨tj |T ⊗ ρt

j

A ⊗ ρ
tj
B .

In the (j + 1)-th round (suppose it is A’s round), A will first apply a unitary controlled by tj of the form∑
tj |tj⟩⟨tj |T⊗U

(tj)
A and then perform the measurement to generate the message tj+1 of this round. Then the

state ρt
j

A becomes
∑
tj+1
|tj+1⟩⟨tj+1|Tj+1

⊗
(
(⟨tj+1| ⊗ I)U (tj)

A ρt
j

A

(
U

(tj)
A

)†
(|tj+1⟩ ⊗ I)

)
, where register Tj+1 is

appended to the transcript register. We can write
(
(⟨tj+1| ⊗ I)U (tj)

A ρt
j

A

(
U

(tj)
A

)†
(|tj+1⟩ ⊗ I)

)
as p(tj+1|tj) ·

ρ
tj ||tj+1

A , where p(tj+1|tj) is the probability of getting the outcome tj+1 by measuring U (tj)
A ρt

j

A

(
U

(tj)
A

)†
in the

computational basis. Hence we get that the final state is∑
tj

∑
tj+1

ptjp(tj+1|tj) · |tj ||tj+1⟩⟨tj ||tj+1|T ⊗ ρ
tj ||tj+1

A ⊗ ρtjB ,

which is still a product state for any tj+1 = tj ||tj+1.

Lemma 9.4 (Impossibility of key agreements in the plain model). For any ε, δ : N→ [0, 1] and (ε, δ)-QCCC
key agreement in the plain model, it holds that ε(λ) + δ(λ) ≥ 1/2 for any λ ∈ N.

Proof. Let KA be an (ε, δ)-QCCC key agreement in the plain model that outputs (τ, kA, kB). Fix λ for the
rest of the proof. In execution of KA, equivalently, we can first sample τ , then sample kB conditioned on τ ,
and finally sample kA conditioned on (τ,B). For any fixed τ in the support, by Lemma 9.3, the joint state
of A and B is a product state. Thus, further fixing kB won’t change the marginal distribution of kA. In the
rest of the proof, we fix τ and kB .
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Consider the following eavesdropper E. Upon receiving the transcript τ , E runs the protocol coherently
and computes the post-measurement state conditioned on τ . Then E sets kE to kA computed from the final
joint state. Hence, the distribution of kE is identically distributed to the marginal distribution of kA in KA
conditioned on τ . That is, the probability of kE = kB is equal to that of kA = kB . Finally, averaging over
(τ, kB), we have the probability of kE = kB is ≥ 1 − ε(λ) = 1/2 + (1/2 − ε(λ)) from the ε-completeness of
KA. In other words, δ(λ) must be ≥ 1/2− ε(λ). Hence, we have δ(λ) + ε(λ) ≥ 1/2 for any λ ∈ N.

Theorem 9.5 (Quantum state tomography [OW16]). There exists an algorithm Tomography and a poly-
nomial pTomography satisfy the following. For any d ∈ N,∆, γ ∈ (0, 1] and d-dimensional pure quantum state
|ψ⟩⟨ψ|, given pTomography(d,∆

−1, log
(
γ−1

)
) copies of |ψ⟩⟨ψ|, Tomography outputs the classical description of

|ψ̂⟩⟨ψ̂| satisfying TD(|ψ⟩⟨ψ|, |ψ̂⟩⟨ψ̂|) ≤ ∆ with probability at least 1− γ.

Lemma 9.6 (Compling out G from KAG). If QCCC key agreements relative to G (the keyed common Haar
state oracle defined in Section 9.1) exist, then there exists an (ε, δ)-QCCC key agreement in the plain model
such that ε(λ) is an inverse polynomial and δ(λ) ≤ 0.2 for sufficiently large λ ∈ N.

Proof. Let KAG = (AG, BG) be a QCCC key agreement relative to G = {{Gk}k∈{0,1}λ}λ∈N in which A and
B each ask q(λ) = poly(λ) queries with the maximum input length of the queries being L(λ) = poly(λ).
Define Λ(λ) := ⌈log

(
q10 + L10 + λ10

)
⌉ = O(log(λ)) and the “truncated” oracle GΛ = {{Gk}k∈{0,1}i}Λi=1. We

define the following hybrid protocol K̃A
GΛ

= (ÃGΛ , B̃GΛ):

K̃A
GΛ

(1λ, ÃGΛ , B̃GΛ):

1. For every k ∈
⋃L
i=Λ+1{0, 1}i, Ã and B̃ samples |ϕAk ⟩, |ϕBk ⟩ ← H|k| respectively.

2. (ÃGΛ , B̃GΛ) runs (AG, BG) on 1λ by answering the queries as follows: Suppose A asks a query
k ∈

⋃L
i=1{0, 1}i. If |k| ≤ Λ, then Ã asks k to oracle GΛ and forwards the response. Otherwise, Ã

sends |ϕAk ⟩ to A. B̃ answers the queries of B similarly by replacing |ϕAk ⟩ with |ϕBk ⟩.

3. Ã outputs the key kA generated by A and B̃ outputs key kB generated by B.

K̃A
GΛ

is query-efficient. Since (ÃGΛ , B̃GΛ) needs to sample Haar states in Step 1, K̃A
GΛ

is not time-

efficient. However, each of ÃGΛ , B̃GΛ makes at most q queries in Step 2 in K̃A
GΛ

.

K̃A
GΛ

is 1/poly-complete. First, we prove that K̃A
GΛ

satisfies completeness. The idea is similar to the
proof of Theorem 8.4. Define LOCC distinguisher (ALOCC, BLOCC) for the task in Corollary 7.10 with the
following parameters: t = 2q, n2qi+j = Λ + i + 1 for i = 0, 1, . . . , L − Λ − 1 and j = 1, 2, . . . , 2q, and thus
s = (L− Λ) · 2q:29

1. ALOCC and BLOCC receive input register.

2. ALOCC samples oracle GΛ and sends its description to BLOCC.

3. ALOCC and BLOCC initialize lists Lℓ = {(1,⊥), (2,⊥), . . . , (2q,⊥)} for answering queries of different
lengths ℓ = Λ + 1,Λ + 2, . . . , λ (let L := {Lℓ}ℓ∈[Λ+1:L]), and runs KA(·) = (A(·), B(·)) on 1λ by lazy
evaluation and jointly maintaining the list L as follows:

In the r-th round (suppose it’s ALOCC’s round), upon received the message tr−1 and list L from BLOCC

in the (r− 1)-th round, ALOCC feeds tr−1 to A.30 Upon receiving A’s query x ∈
⋃L
i=1{0, 1}i, if |x| ≤ Λ,

29For k ∈ [s], we represent the k-th state by |ψj
i+Λ+1⟩ (|ϕji+Λ+1⟩ resp.) where i, j are determined by uniquely writing

k = 2qi+ j for i = 0, 1, . . . , L− Λ− 1 and j = 1, 2, . . . , 2q.
30In the first round (suppose it’s ALOCC’s round), ALOCC simply runs A on input the security parameter and t0 := ⊥.
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then ALOCC uses GΛ to answer the query. Otherwise, ALOCC checks if (i, x) is in L|x| for some i ∈ [2q]
(i.e., whether x has already been queried by A or B). If (i, x) ∈ L|x|, then ALOCC answers the query
using a copy of |ψi|x|⟩. Otherwise, ALOCC finds the first index i ∈ [2q] such that (i,⊥) ∈ L|x|, updates it
into (i, x), and answers the query using a copy of |ψi|x|⟩. At the end of the round, A outputs a classical
message tr. Then ALOCC sends L and tr to BLOCC.31

4. At the end of the protocol, A,B outputs the keys kA, kB respectively.

5. ALOCC sends kA to BLOCC, and BLOCC outputs 1 if kA = kB .

Hence, (A,B) asks at most 2q queries in total, (ALOCC, BLOCC) perfectly simulates either KAG or K̃A
GΛ

depending on if they obtained the same states or i.i.d. states. Hence, by Corollary 7.10 we have∣∣∣∣ Pr
KAG

[kA = kB ]− Pr
K̃A

GΛ

[kA = kB ]

∣∣∣∣ ≤ O
(

L∑
n=Λ+1

2q · (2q)
2

2n

)
≤ O

(
L · q

3

2Λ

)
,

which implies Pr
K̃A

GΛ [kA = kB ] ≥ PrKAG [kA = kB ]−O
(
Lq3/2Λ

)
= 1− 1/poly(λ) for some polynomial poly.

K̃A
GΛ

is 0.1-secure. Next, we claim that for any polynomial p and eavesdropper that asks p(λ) classical

queries to GΛ, her advantage of finding kB in K̃A
GΛ

is at most 0.1 for sufficiently large λ. For contradiction,
suppose there exist a polynomial p and an eavesdropper Ẽ that asks p(λ) classical queries to GΛ and

finds kB with advantage at least 0.1 for infinitely many λ in K̃A
GΛ

. Then we construct following the LOCC
distinguisher: (ALOCC, BLOCC) first run KAG as the previous paragraph and obtains kA, kB and the transcript
τ . Then BLOCC runs Ẽ on input the transcript τ , answers the queries by GΛ defined by themselves (without
using any input state), and obtains a key kE . BLOCC outputs 1 if kB = kE . By the same argument,

(ALOCC, BLOCC) perfectly simulates either ẼG in KAG or ẼGΛ in K̃A
GΛ

depending on if they got the same
states or i.i.d. states. Hence, by Corollary 7.10 we have∣∣∣∣ Pr

KAG
[kB = kE ]− Pr

K̃A
GΛ

[kB = kE ]

∣∣∣∣ ≤ O
(

L∑
n=Λ+1

2q · (2q)
2

2n

)
≤ O

(
L · q

3

2Λ

)
,

which implies Pr
K̃A

GΛ [kB = kE ] ≥ PrKAG [kB = kE ]−O
(
Lq3/2Λ

)
≥ 0.1−O

(
Lq3/2Λ

)
for infinitely many λ.

However, this contradicts the security of KAG.

Getting to plain model: Finally, define the following protocol KAplain(Aplain, Bplain) in the plain model:

KAplain(1
λ, Aplain, Bplain):

1. For every k ∈
⋃Λ
i=1{0, 1}i, Aplain samples |ψk⟩ ← H|k|.

2. For every k ∈
⋃Λ
i=1{0, 1}i, Aplain run Tomography (defined in Theorem 9.5) on |ψk⟩ with parameters

∆ = 2−2Λ and γ = 2−λ to obtain the classical description of |ψ̂k⟩.a

3. For every k ∈
⋃Λ
i=1{0, 1}i, Aplain sends the description of |ψ̂k⟩ to Bplain.

4. (Aplain, Bplain) define the output of the oracle ĜΛ to be {{|ψ̂k⟩}k∈{0,1}i}i∈{1,...,Λ}.

5. (Aplain, Bplain) runs K̃A
ĜΛ

on 1λ to obtain (kA, kB).

31In BLOCC’s round, B acts similarly as defined above.
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6. Aplain outputs key kA and Bplain outputs key kB respectively.
aNote that Aplain samples |ψk⟩ and thus has its classical description. Performing tomography is merely for the simplicity

of proof.

KAplain is 1/poly-complete. Define the event Good in KAplain as:

Good ≡
∧

k∈
⋃Λ

i=1{0,1}i

[
TD(|ψk⟩⟨ψk|, |ψ̂k⟩⟨ψ̂k|) ≤ ∆

]
.

From the guarantee of tomography (Theorem 9.5) and a union bound, the probability of Good happening is

at least 1 −
∑Λ
i=1 2

i · γ = 1 − negl(λ). Since Ã(·) and B̃(·) in K̃A
GΛ

(resp., K̃A
ĜΛ

) ask a total of 2q queries,
one can use {{|ψk⟩⊗2q}k∈{0,1}i}Λi=1 (resp., {{|ψ̂k⟩⊗2q}k∈{0,1}i}Λi=1) to perfectly answer A’s and B’s queries.
Hence, from the operational definition of trace distance, we have∣∣∣∣ Pr

KAplain

[kA = kB ]− Pr
K̃A

GΛ

[kA = kB ]

∣∣∣∣
≤ Pr[¬Good] + E

TD
 Λ⊗
i=1

⊗
k∈{0,1}i

|ψk⟩⟨ψk|⊗2q,
Λ⊗
i=1

⊗
k∈{0,1}i

|ψ̂k⟩⟨ψ̂k|⊗2q
 | Good


≤ Pr[¬Good] +

Λ∑
i=1

∑
k∈{0,1}i

2q · E
[
TD(|ψk⟩⟨ψk|, |ψ̂k⟩⟨ψ̂k|) | Good

]

≤ negl(λ) + 2q ·
Λ∑
i=1

2i ·∆ ≤ 1

poly′(λ)

for some polynomial poly′. Hence, the completeness of KAplain is at least

Pr
KAplain

[kA = kB ] ≥ Pr
K̃A

GΛ

[kA = kB ]−
1

poly′(λ)
= 1− 1

poly(λ)
− 1

poly′(λ)
= 1− ε(λ)

for some inverse polynomial ε, where the first equality is because K̃A
GΛ

is 1/poly(λ)-complete for some
polynomial poly.

KAplain is 0.2-secure. For contradiction, suppose there exists an eavesdropper Eplain that finds kB in KAplain

with advantage 0.2 for infinitely many λ. We construct the following eavesdropper ẼGΛ for K̃A
GΛ

by using
Eplain as follows.

ẼGΛ(1λ, τ):

1. For every k ∈
⋃Λ
i=1{0, 1}i, ask pTomography(2

|k|,∆−1, log
(
γ−1

)
) queries to Gk with parameters

∆ = 2−2Λ and γ = 2−λ to get {|ψk⟩⊗pTomography(2
|k|,∆−1,log(γ−1))}k∈⋃Λ

i=1{0,1}i
.

2. Perform Tomography (defined in Theorem 9.5) on every state obtained in the previous step to
obtain the description of {|ψ̂k⟩}k∈⋃Λ

i=1{0,1}i
.

3. Run Eplain on input τ and all the descriptions obtained by tomography, and set kE to the output
of Eplain.
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4. Output kE .

First, ẼGΛ makes at most
∑Λ
i=1 2

i ·pTomography(2
i,∆−1, log

(
γ−1

)
) = p(λ) queries for some polynomial p. Next,

in K̃A
GΛ

, the joint distribution of GΛ and the description {|ψ̂k⟩}k∈⋃Λ
i=1{0,1}i

obtained from tomography in

Step 2 of ẼGΛ is identically distributed as Steps 1 to 3 in KAplain. Now, from the correctness guarantee
of Tomography, there is a 1 − negl(λ) fraction of {|ψk⟩}k∈⋃Λ

i=1{0,1}i
and {|ψ̂k⟩}k∈⋃Λ

i=1{0,1}i
such that event

Good occurs. By the same argument in the previous paragraph, the distributions of (τ, kA, kB) generated
by (ÃGΛ , B̃GΛ) and (ÃĜΛ , B̃ĜΛ) are 1/poly′(λ)-close in statistical distance. Since Eplain takes as input τ

and {|ψ̂k⟩}k∈⋃Λ
i=1{0,1}i

, ẼGΛ breaks the security of K̃A
GΛ

with advantage at least 0.2− 1/poly′(λ) > 0.1 for

infinitely many λ, which contradicts the security of K̃A
GΛ

.

Lemma 9.7. There does not exist a secure QCCC key agreement relative to G.

Proof. It immediately follows from Lemmas 9.4 and 9.6.

Theorem 9.8. There does not exist a quantum fully black-box reduction (C, S) from QCCC key agreements
to (λ, ω(log(λ)))-PRSGs such that C only asks classical queries to the PRSG.

Proof. For the sake of contradiction, suppose (C, S) is a fully black-box reduction satisfying the conditions.
Let I be the implementation of (λ, ω(log(λ)))-PRSGs as stated in the proof of Lemma 9.1. Then CI is a
key agreement that satisfies completeness. From Lemma 9.7, there exists a poly-query adversary Ẽ that
breaks the security of the QCCC key agreement CI . Then SẼ,I by definition breaks the security of the
(λ, ω(log(λ)))-PRSG I by asking polynomially many queries to Ẽ and I, thus in total polynomial queries
to G. However, this contradicts Lemma 9.1.

9.3 Separating QCCC Interactive Commitments from (λ, ω(log(λ)))-PRSGs
Definition 9.9 (QCCC interactive commitments relative to oracle). A QCCC commitment relative to an
oracle O is a two-party interactive protocol consisting of a pair of uniform QPT oracle algorithms (C,R),
where C is the committer and R is the receiver. Let q = q(λ) be an arbitrary polynomial. Each of C and R
can ask q queries to the oracle O and are allowed to communicate classically.

• Commit phase: In the (possibly interactive) commit phase, C takes as input the security parameter
1λ and a bit b ∈ {0, 1}, and R takes as input the security parameter 1λ. We denote the execution of
the commit phase by (σCR, τ)← Commit⟨CO(1λ, b), RO(1λ)⟩, where σCR is the joint state of C and R
after the commit phase, and τ denotes the transcript in the commit phase.

• Reveal phase: In the (possibly interactive) reveal phase, the output is µ ∈ {0, 1,⊥} indicat-
ing the receiver’s output bit or abort. We denote the execution of the reveal phase by µ ←
Reveal⟨CO(1λ, b), RO(1λ), σCR, τ⟩.

The scheme satisfies the following conditions.

• ε-completeness. For all λ ∈ N,

Pr

µ = b :

O←O,
b←{0,1},

(σCR,τ)←Commit⟨CO(1λ,b),RO(1λ)⟩,
µ←Reveal⟨CO(1λ,b),RO(1λ),σCR,τ⟩,

µ∈{0,1,⊥}

 ≥ 1− ε(λ).

If ε is negligible, then we simply say that it is complete.
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• Statistical hiding. For any polynomial p and any computationally unbounded malicious receiver R∗
who asks at most p(λ) classical queries, there exists a negligible function negl such that for all λ ∈ N,

Pr

[
b′ = b :

O←O,
b←{0,1},

(σCR∗ ,τ)←Commit⟨CO(1λ,b),R∗O(1λ)⟩,
b′←R∗O(σR∗ ,τ)

]
≤ 1

2
+ negl(λ),

where σR∗ denotes the state obtained by tracing out the committer’s part of the state σCR∗ .

• Statistical binding. For any polynomial p and any computationally unbounded malicious committer
C∗ who asks p(λ) classical queries, there exists a negligible function negl such that for all λ ∈ N,

Pr

[
µ = ch :

O←O,
(σC∗R,τ)←Commit⟨C∗O(1λ),RO(1λ)⟩,

ch←{0,1},
µ←Reveal⟨C∗O(ch),RO,σC∗R,τ⟩

]
≤ 1

2
+ negl(λ).

We need the following lemma regarding total variation distance.

Lemma 9.10. Let PBT ,QBT be two discrete distributions over {0, 1} × T . Consider the following experi-
ment:

Exp.0 :

1. Sample (b, τ)← PBT .

2. If QT (τ) = 0,a then set b′ to a uniform bit.
Otherwise, set b′ to the more likely bit accord-
ing to QB|T=τ .

3. Output (b, b′, τ).

Exp.1 :

1. Sample (b, τ)← PBT .

2. Set b′ to the more likely bit according to
PB|T=τ .

3. Output (b, b′, τ).
aQT denotes the marginal distribution of QBT on T .

Then it holds that
Pr

Exp.0
[b = b′] ≥ Pr

Exp.1
[b = b′]− 3dTV(PBT ,QBT ).

Proof. Consider the following hybrid:

Hyb :

1. Sample (b, τ)← QBT .

2. If QT (τ) = 0,a then set b′ to a uniform bit. Otherwise, set b′ to the more likely bit according to
QB|T=τ .

3. Output (b, b′, τ).
aSince (b, τ) is sampled from QBT , QT (τ) is always > 0. We write it merely for the clarity of the proof.

Since a randomized function (Step 2 in Exp.0 and Hyb) cannot increase the total variation distance, we
have ∣∣∣∣ Pr

Exp.0
[b = b′]− Pr

Hyb
[b = b′]

∣∣∣∣ ≤ dTV(PBT ,QBT ),

which implies

Pr
Exp.0

[b = b′] ≥ Pr
Hyb

[b = b′]− dTV(PBT ,QBT ). (5)
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In Hyb, we have

Pr
Hyb

[b = b′] = E
τ←QT

[
1

2
+ dTV(QB|T=τ ,U1)

]
=

1

2
+
∑
τ

QT (τ) ·
1

2

∑
b∈{0,1}

∣∣∣∣Q(b)B|T=τ −
1

2

∣∣∣∣
=

1

2
+

1

2

∑
τ,b∈{0,1}

∣∣∣∣Q(b, τ)BT −
1

2
·QT (τ)

∣∣∣∣
=

1

2
+ dTV(QBT ,U1 ⊗QT ), (6)

where U1 denotes the uniform distribution on {0, 1}. Similarly, in Exp.1, we have

Pr
Exp.1

[b = b′] = E
τ←PT

[
1

2
+ dTV(PB|T=τ ,U1)

]
=

1

2
+ dTV(PBT ,U1 ⊗PT )

≤ 1

2
+ dTV(PBT ,QBT ) + dTV(QBT ,U1 ⊗QT ) + dTV(U1 ⊗QT ,U1 ⊗PT )

=
1

2
+ dTV(PBT ,QBT ) + dTV(QBT ,U1 ⊗QT ) + dTV(QT ,PT )

≤ 1

2
+ dTV(PBT ,QBT ) + dTV(QBT ,U1 ⊗QT ) + dTV(QBT ,PBT ), (7)

where the first inequality follows from the triangle inequality. From Equations (6) and (7), we have

Pr
Hyb

[b = b′] ≥ Pr
Exp.1

[b = b′]− 2dTV(PBT ,QBT ). (8)

Hence, combining Equations (5) and (8), we have

Pr
Exp.0

[b = b′] ≥ Pr
Exp.1

[b = b′]− 3dTV(PBT ,QBT ).

Lemma 9.11. There does not exist a QCCC interactive commitment relative to G.

Proof. For the sake of contradiction, suppose ComG = (CG, RG) is a QCCC interactive commitment relative
to G, where q(λ) = poly(λ) is the number of queries asked by C and R respectively and L(λ) = poly(λ) is
the maximum input length of the queries. Define the function Λ(λ) := ⌈log

(
q10 + L10 + λ10

)
⌉ = O(log(λ))

and the truncated oracle GΛ = {{Gk}k∈{0,1}i}Λi=1. The proof consists of two major parts. First, we will

show that ComG can be converted to a QCCC interactive commitment C̃om
GΛ

relative to GΛ. Next, we will
show that any QCCC interactive commitment relative to GΛ cannot satisfy completeness, statistical hiding,
and statistical binding simultaneously.

Converting ComG to C̃om
GΛ

. We define the following scheme C̃om
GΛ

= (C̃GΛ , R̃GΛ) relative to GΛ:

C̃om
GΛ

(1λ, C̃GΛ , R̃GΛ):

1. For every k ∈
⋃L
i=Λ+1{0, 1}i, C̃ and R̃ samples |ϕCk ⟩, |ϕRk ⟩ ← H|k| respectively.

2. On input 1λ and b, C̃GΛ runs C(·)(1λ, b) by answering the queries as follows. Suppose C asks a
query k ∈

⋃L
i=1{0, 1}i. If |k| ≤ Λ, then C̃ ask k to oracle GΛ and forward the response. Otherwise,
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C̃ sends |ϕCk ⟩ to C. On input 1λ, R̃GΛ runs R(·)(1λ) by answering R’s queries similarly, except
that it replaces |ϕCk ⟩ with |ϕRk ⟩.

C̃om
GΛ

is 1/poly-complete. This is similar to proving the completeness of K̃A
GΛ

in the proof of Lemma 9.6.

C̃om
GΛ

is statistically hiding and statistically binding. Intuitively, C̃om
GΛ

is at least as secure as
ComG because the malicious party cannot obtain any information about the Haar states of length greater
than Λ held by the other party via asking queries. To prove statistical hiding, suppose there exists a malicious
receiver (R̃∗)GΛ that breaks the statistical hiding of C̃om

GΛ

by asking polynomially many queries to GΛ,
then we construct a malicious receiver (R∗)G that breaks the statistical hiding of ComG by using (R̃∗)(·).
(R∗)G simply runs R̃∗ by answering its queries with G. Since the distributions of the (honest) committer C

in ComG and C̃ in C̃om
GΛ

are identical, the advantage of (R∗)G is equal to that of (R̃∗)GΛ . This contradicts
the premise that ComG is statistically hiding.

Similarly, to prove statistical binding, suppose there exists a malicious committer (C̃∗)GΛ that breaks

the statistical binding of C̃om
GΛ

by asking polynomially many queries to GΛ, then we construct a malicious
committer (C∗)G that breaks the statistical binding of ComG by using (C̃∗)(·). (C∗)G simply runs C̃∗ by

answering its queries with G. Since the distributions of the (honest) receiver R in ComG and R̃ in C̃om
GΛ

are identical, the advantage of (C∗)G is equal to that of (C̃∗)GΛ . This contradicts the premise that ComG is
statistically binding.

In the rest of the proof, we will show that a commitment scheme relative to GΛ cannot satisfy complete-
ness, statistical hiding, and statistical binding at the same time. Intuitively, this is because the output length
of GΛ is short, so each party can approximate the whole oracle by performing tomography using polynomi-
ally many queries. Hence, the scheme can be reduced to the plain model, modulo the error introduced by
tomography.

QCCC commitments do not exist relative to GΛ. We will show that there does not exist a complete,
statistically hiding, and statistically binding QCCC interactive commitment relative to GΛ. Toward contra-
diction, suppose C̃om

GΛ

= (C̃GΛ , R̃GΛ) is such a scheme. Consider the following malicious receiver R∗ (for
brevity, we omit the tilde ·̃ in the rest of the proof) with classical oracle access to GΛ:

R∗ in Hiding Experiment:

1. R∗ runs the commit phase honestly with C who commits to b (where b was sampled uniformly at
random by C) and obtains the transcript τ .

2. R∗ performs Tomography (defined in Theorem 9.5) with parameters ∆ = 2−2Λ and γ = 2−λ on
every output state of GΛ to obtain the description, denoted by ĜΛ.

3. If τ and ĜΛ are not consistent, then R∗ output a uniform bit b′. Otherwise, R∗ outputs the more
likely bit b′ from the distribution conditioned on (τ, ĜΛ).

For efficiency, R∗ asks polynomially many queries in Step 2. For every fixed (GΛ, ĜΛ), we denote by pR
∗

GΛ,ĜΛ

the probability that R∗ guess the committed bit correctly.

Analyze R∗. The structure of the proof is similar to proving the completeness of KAplain in Lemma 9.6.
Define the event Good in the hiding experiment as

Good ≡
∧

k∈
⋃Λ

i=1{0,1}i

[
TD(|ψk⟩⟨ψk|, |ψ̂k⟩⟨ψ̂k|) ≤ ∆

]
.
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We now consider any pair GΛ = {{|ψk⟩}k∈{0,1}i}Λi=1 and ĜΛ = {{|ψ̂k⟩}k∈{0,1}i}Λi=1 such that event Good

occurs. Let DBT |GΛ
(resp., DBT |ĜΛ

) denote the distribution of (b, τ) in the honest commit phase of C̃om

conditioned on oracle being GΛ (resp., ĜΛ). Since C̃(·) and R̃(·) in C̃om
GΛ

(resp., C̃om
ĜΛ

) ask a total of 2q
queries, one can use {{|ψk⟩⊗2q}k∈{0,1}i}Λi=1 (resp., {{|ψ̂k⟩⊗2q}k∈{0,1}i}Λi=1) to perfectly answer C̃’s and R̃’s
queries. From the operational definition of trace distance, we have

dTV(DBT |GΛ
,DBT |ĜΛ

) ≤ 2q ·
Λ∑
i=1

2i ·∆ =
1

poly(λ)

for some polynomial poly.

Define the quantity pR
∗

GΛ
which is equal to the success probability of R∗ conditioned on GΛ without tomog-

raphy error, i.e.,

pR
∗

GΛ
:=

1

2
+ E
τ←Dτ|GΛ

[
dTV(DB|GΛ,T=τ ,U1)

]
=

1

2
+
∑
τ

Pr
Commit

[τ | GΛ] · dTV(DB|GΛ,T=τ ,U1), (9)

where Commit denotes the honest commit phase of C̃om. By Lemma 9.10 (setting P ≡ DBT |GΛ
and

Q ≡ DBT |ĜΛ
), we have

pR
∗

GΛ,ĜΛ
≥ pR

∗

GΛ
− 3dTV(DBT |GΛ

,DBT |ĜΛ
) = pR

∗

GΛ
− 3

poly(λ)
. (10)

Finally, after averaging over (GΛ, ĜΛ), the probability pR∗win that R∗ guess the committed bit correctly
satisfies

pR∗win := E
GΛ,ĜΛ

[pR
∗

GΛ,ĜΛ
]

= E
GΛ

[
E
ĜΛ

[
pR

∗

GΛ,ĜΛ
| GΛ

]]
≥ E
GΛ

[
Pr
ĜΛ

[Good | GΛ] · E
ĜΛ

[
pR

∗

GΛ,ĜΛ
| GΛ ∧ Good

]]
≥ E
GΛ

[
(1− negl(λ)) ·

(
pR

∗

GΛ
− 3

poly(λ)

)]
= (1− negl(λ)) ·

(
E
GΛ

[
pR

∗

GΛ

]
− 3

poly(λ)

)
. (11)

The second inequality follows from Equation (10) and the following reason: by the correctness guarantee of
Tomography (Theorem 9.5) and a union bound, the probability of Good happening conditioned on any GΛ

is at least 1−
∑Λ
i=1 2

i · γ = 1− negl(λ).

Next, consider the following malicious committer C∗:

C∗ in Binding Experiment:

1. C∗ commits to a uniform bit b, runs the commit phase with R honestly, and generates the
transcript τ . The joint state of C∗ and R after the commit phase is ρCb,GΛ,τ

⊗ σR
GΛ,τ

.a

2. C∗ performs Tomography (defined in Theorem 9.5) with parameters ∆ = 2−2Λ and γ = 2−λ on
every output state of GΛ to obtain the description, denoted by ĜΛ.
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3. Upon receiving the challenge bit ch, C∗ computes the description of the joint state conditioned
on (ch, τ, ĜΛ), denoted by ρCR

ch,ĜΛ,τ
. If (ch, ĜΛ, τ) is inconsistent, then C∗ aborts.b

4. C∗ runs the reveal phase honestly on input ch and state ρC
ch,ĜΛ,τ

.

aFrom Lemma 9.3, the joint state is a product state. Moreover, fixing (GΛ, τ) already determines the state of R. So
it is independent of b after conditioned on (GΛ, τ).

bNote that it is equivalently to setting ρCR
ch,ĜΛ,τ

to the zero matrix in terms of calculating C∗’s success probability.

For efficiency, C∗ asks polynomially many queries in Step 2. For every fixed (GΛ, ĜΛ), the probability that
C∗ successfully opens to ch is

pC
∗

GΛ,G̃Λ
:=
∑
τ

∑
b,ch∈{0,1}

Pr
Commit

[τ | GΛ] · Pr
Commit

[b = b | τ,GΛ] · Pr
Commit

[ch = ch | b = b, τ,GΛ]

· Pr
[
Reveal⟨CGΛ(ch), RGΛ , ρC

ch,ĜΛ,τ
⊗ σR

GΛ,τ , τ⟩ = ch
]

=
∑
τ

∑
b,ch∈{0,1}

Pr
Commit

[τ | GΛ] · Pr
Commit

[b = b | τ,GΛ] ·
1

2
· Pr
[
Reveal⟨CGΛ(ch), RGΛ , ρC

ch,ĜΛ,τ
⊗ σR

GΛ,τ , τ⟩ = ch
]

since ch is sampled uniformly and independently.

Analyze C∗. Define the event Good in the same way as in the hiding experiment. For every fixed (GΛ, ĜΛ)
such that Good happens, consider the following two classical-quantum states corresponding to the joint state
of C and R right after the honest commit phase of C̃om conditioned on the oracle being GΛ and ĜΛ

respectively:

ΨGΛ
:=

∑
b∈{0,1}

∑
τ

1

2
· Pr
Commit

[τ | b = b,GΛ] · |b⟩⟨b|B ⊗ ρCb,GΛ,τ ⊗ σ
R
GΛ,τ ⊗ |τ⟩⟨τ |T,

ΨĜΛ
:=

∑
b∈{0,1}

∑
τ

1

2
· Pr
Commit

[τ | b = b, ĜΛ] · |b⟩⟨b|B ⊗ ρCb,ĜΛ,τ
⊗ σR

ĜΛ,τ
⊗ |τ⟩⟨τ |T,

where register B is the committer’s private register for storing the input and register T is the public register

for storing the transcript. Similar to the previous section, since C̃(·) and R̃(·) in C̃om
GΛ

(resp., C̃om
ĜΛ

) ask
a total of 2q queries, one can use {{|ψk⟩⊗2q}k∈{0,1}i}Λi=1 (resp., {{|ψ̂k⟩⊗2q}k∈{0,1}i}Λi=1) to perfectly answer
C̃’s and R̃’s queries. From the correctness guarantee of Tomography, we have

TD(ΨGΛ
,ΨĜΛ

) ≤ 2q ·
Λ∑
i=1

2i ·∆ =
1

poly(λ)
. (12)

In order to analyze the success probability of C∗ conditioned on (GΛ, ĜΛ), we define the following state

ΨGΛ,ĜΛ
:=

∑
b∈{0,1}

∑
τ

1

2
· Pr
Commit

[τ | b = b,GΛ] · |b⟩⟨b|B ⊗ ρCb,ĜΛ,τ
⊗ σR

GΛ,τ ⊗ |τ⟩⟨τ |T.

We claim that

TD(ΨGΛ ,ΨGΛ,G̃Λ
) ≤ 2

poly(λ)
. (13)

To prove Equation (13), we introduce the following hybrid state:

ΨHyb :=
∑

b∈{0,1}

∑
τ

1

2
· Pr
Commit

[τ | b = b, ĜΛ] · |b⟩⟨b|B ⊗ ρCb,ĜΛ,τ
⊗ σR

GΛ,τ ⊗ |τ⟩⟨τ |T.
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By the triangle inequality, we can bound Equation (13) as

TD(ΨGΛ
,ΨGΛ,ĜΛ

) ≤ TD(ΨGΛ
,ΨHyb) + TD(ΨHyb,ΨGΛ,ĜΛ

). (14)

For the first term in Equation (14), we have

TD(ΨGΛ ,ΨHyb) =
∑

b∈{0,1}

∑
τ

1

2
· TD

(
Pr

Commit
[τ | b = b,GΛ] · ρCb,GΛ,τ , Pr

Commit
[τ | b = b, ĜΛ] · ρCb,ĜΛ,τ

)
= TD(TrR(ΨGΛ

),TrR(ΨĜΛ
))

≤ TD(ΨGΛ
,ΨĜΛ

)

=
1

poly(λ)
,

where the first two equalities are because TD(
⊕

iAi,
⊕

iBi) =
∑
i TD(Ai, Bi) and the inequality is because

the trace distance won’t increase under partial trace; the inequality follows from Equation (12). Similarly,
For the first term in Equation (14), we have

TD(ΨHyb,ΨGΛ,ĜΛ
) =

∑
b∈{0,1}

∑
τ

1

2
· TD

(
Pr

Commit
[τ | b = b,GΛ], Pr

Commit
[τ | b = b, ĜΛ]

)
= TD(TrCR(ΨGΛ),TrCR(ΨĜΛ

))

≤ TD(ΨGΛ
,ΨĜΛ

)

=
1

poly(λ)
.

Thus, the proof of Equation (13) is complete.

Define the quantity pC
∗

GΛ
which is equal to the success probability of C∗ conditioned on GΛ without tomog-

raphy error:

pC
∗

GΛ
:=
∑
τ

∑
ch∈{0,1}

Pr
Commit

[τ | GΛ] ·
1

2
· Pr
[
Reveal⟨CGΛ(ch), RGΛ , ρCch,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = ch

]
.

Thus, from the operational definition of trace distance and Equation (13), we have

|pC
∗

GΛ,ĜΛ
− pC

∗

GΛ
| ≤ TD(ΨGΛ

,ΨGΛ,ĜΛ
) ≤ 2

poly(λ)
,

which implies

pC
∗

GΛ,ĜΛ
≥ pC

∗

GΛ
− 2

poly(λ)
. (15)

By a similar argument to that of Equation (11), the probability pC∗win that C∗ successfully opens to ch
satisfies

pC∗win := E
GΛ,ĜΛ

[pC
∗

GΛ,ĜΛ
] ≥ (1− negl(λ)) ·

(
E
GΛ

[
pC

∗

GΛ

]
− 2

poly(λ)

)
. (16)

Trade-off between completeness, hiding, and binding of commitments. Suppose C̃om
GΛ

satisfies
ε-completeness. In other words,

pComplete :=
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E
GΛ

∑
τ

∑
b∈{0,1}

Pr
Commit

[τ | GΛ] · Pr
Commit

[b = b | τ,GΛ] · Pr
[
Reveal⟨CGΛ(b), RGΛ , ρCb,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = b

]
≥ 1− ε. (17)

Now, for any fixed (GΛ, τ) in the support of the honest commit phase of C̃om
GΛ

, define the success proba-
bilities of R∗ and C∗ conditioned on (GΛ, τ):

pR
∗

GΛ,τ :=
1

2
+ dTV(DB|GΛ,τ ,U1) =

1

2
+

1

2

∑
b∈{0,1}

∣∣∣∣ Pr
Commit

[b = b | τ,GΛ]−
1

2

∣∣∣∣ ,
pC

∗

GΛ,τ :=
∑

ch∈{0,1}

1

2
· Pr
[
Reveal⟨CGΛ(ch), RGΛ , ρCch,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = ch

]
.

W.L.O.G, suppose PrCommit[b = 0 | τ,GΛ] =
1
2 + η and PrCommit[b = 1 | τ,GΛ] =

1
2 − η for some η ∈ [0, 0.5]

(the opposite case can be proven symmetrically). Thus, it holds that

pR
∗

GΛ,τ =
1

2
+ η.

A straightforward calculation yields

pR
∗

GΛ,τ + pC
∗

GΛ,τ

=
1

2
+ η +

∑
ch∈{0,1}

1

2
· Pr
[
Reveal⟨CGΛ(ch), RGΛ , ρCch,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = ch

]
≥ 1

2
+ η ·

(
Pr
[
Reveal⟨CGΛ(0), RGΛ , ρC0,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = 0

]
− Pr

[
Reveal⟨CGΛ(1), RGΛ , ρC1,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = 1

])
+

∑
ch∈{0,1}

1

2
· Pr
[
Reveal⟨CGΛ(ch), RGΛ , ρCch,GΛ,τ ⊗ ρ

R
GΛ,τ , τ⟩ = ch

]
=

1

2
+

(
1

2
+ η

)
Pr
[
Reveal⟨CGΛ(0), RGΛ , ρC0,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = 0

]
+

(
1

2
− η
)
Pr
[
Reveal⟨CGΛ(1), RGΛ , ρC1,GΛ,τ ⊗ σ

R
GΛ,τ , τ⟩ = 1

]
=

1

2
+

∑
b∈{0,1}

Pr
Commit

[b = b | τ,GΛ] · Pr
[
Reveal⟨CGΛ(b), RGΛ , ρCb,GΛ,τ ⊗ ρ

R
GΛ,τ , τ⟩ = b

]
. (18)

By averaging over (GΛ, τ) in Equation (18) and recalling the definition of pComplete in Equation (17), we have

E
GΛ

[pR
∗

GΛ
] + E

GΛ

[pC
∗

GΛ
] = E

GΛ,τ
[pR

∗

GΛ,τ + pC
∗

GΛ,τ ] ≥
1

2
+ pComplete ≥

3

2
− ε. (19)

Finally, combining Equations (11), (16) and (19), pR∗win, pC∗win, and ε satisfy

pR∗win + pC∗win

1− negl(λ)
+

5

poly(λ)
≥ 3

2
− ε.

After rearranging, we have(
pR∗win −

1

2

)
+

(
pC∗win −

1

2

)
+ (1− negl(λ)) · ε ≥ 1

2
− 3

2
negl(λ)− 5(1− negl(λ))

poly(λ)
.

Therefore, at least one of {pR∗win − 1/2, pC∗win − 1/2, ε} is non-negligible. That is, C̃om
GΛ

cannot satisfy
completeness, statistical hiding, and statistical binding simultaneously.
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Theorem 9.12. There does not exist a quantum fully black-box reduction (C, S) from QCCC interactive
commitments to (λ, ω(log(λ)))-PRSGs such that C only asks classical queries to the PRSG.

Proof. It is essentially the same as the proof of Theorem 9.8.

Remark 9.13. We compare our results with existing results. Note that our impossibility results only rule
out implementations that ask classical queries to the PRSG. There exist applications that need to query a
PRSG/PRFSG in superposition, e.g., quantum bit commitments [MY21], quantum PKEs [BGH+23], etc.
However, all of them require quantum communication. It is less obvious how this would be helpful in the
QCCC setting. We leave the generalization of the impossibility results as an open problem.

Next, since PRS generators can be constructed from one-way functions in a black-box way [JLS18],
one might wonder whether Theorem 9.8 is already implied by the classical separation result between key
agreements and one-way functions [IR89; BM09]. In other words, can we prove Theorem 9.8 by using a
(classical) random oracle? We pointed out that all currently known constructions of PRS generators from
one-way functions [JLS18; BS19; BS20; GB23; JMW23] require quantum oracle access. The impossibility
of QCCC key agreements in the quantum random oracle model was studied in [ACC+22], where they ruled
out perfectly-complete key agreements based on a conjecture. However, Theorem 9.8 separates imperfectly-
complete key agreements from ω(log(λ))-PRSGs without relying on any conjecture. Hence, the two results
are incomparable.

9.4 Extending the Separation Results
We observe that our technique can also separate QCCC key agreements and commitments from classically
accessible (λ,m, n)-PRFSGs with n = ω(log(λ)) and m being arbitrary. Recall that currently there is no
construction of long-input PRFSGs (i.e., m = ω(log(λ))) from PRSGs. Hence, the separation might be
strictly stronger. To prove it, we strengthen the separating oracle by increasing the number of oracles as
G = {{Gk,x}k,x∈{0,1}λ}λ∈N. In this way, G can support answering the classical query on key k and input x.
The rest of the proof is identical to the case of (λ, ω(log(λ)))-PRSGs.
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A Related Work

A.1 Quantum Pseudorandomness: State of the Art
We present the state of the art of the pseudorandomness notions in the quantum world. We will only restrict
our attention to two notions relevant to this work. The open problems will be italicized.

Pseudorandomnes State Generators (PRSGs). The concept of pseudorandom state generators
(PRSGs) was introduced in a seminal work by Ji, Liu and Song [JLS18]. Roughly speaking, it states
that any computationally bounded adversary cannot distinguish whether it receives many copies of a state
produced using a pseudorandom state generator on a uniform key versus many copies of a single Haar state.
We summarise the state of the art of PRSGs below. We use the notation (λ, n)-PRSG to denote a PRSG
with λ being the key length and n being the output length. The number of copies of the state given to the
adversary is denoted to be t. Unless otherwise stated, t will be an arbitrary polynomial in λ that is not fixed
ahead of time. If t is indeed fixed ahead of time then we denote such a notion by (λ, n, t)-PRSGs.

• n > λ (stretch): It is known that (λ, n)-PRSGs exist assuming one-way functions [JLS18; BS19; BS20]
or even pseudorandom unitaries32 [JLS18; MPSY24; CBB+24]. Even to design (λ, n, 1)-PRSG, we
need computational assumptions and in fact, (λ, n, 1)-PRSG is implied by multi-copy PRSGs with
output length Ω(log(λ)) [GJMZ23]. However, it is not known if stretch (n, λ)-PRSGs exist under
weaker assumptions, although we do have some candidates inspired from random circuits [AQY22].
There is some evidence to believe that stretch PRSGs might be weaker than any existing classical
cryptographic assumption [Kre21; LMW23].

• n ≤ λ: This can be broken down into three parameter regimes:

– n < c · log(λ), for some c ∈ R: (n, λ)-PRSGs exists unconditionally [BS20].
32An efficiently computable keyed circuit is a pseudorandom unitary if any adversary cannot distinguish whether it has oracle

access to the keyed circuit or a Haar unitary.
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– n ∈ Ω(log(λ)): for n ≥ log(λ), it was shown [AGQY22] that (λ, n)-PRSGs cannot be uncondition-
ally secure. However, assuming one-way functions, (n, λ)-PRSGs was shown to exist [JLS18; BS19;
BS20] or even pseudorandom unitaries [JLS18; MPSY24]. Designing (λ, n)-PRSGs from weaker
assumptions is an interesting direction. There seems to be a separation between n = Θ(log(λ))
and n = Ω(log(λ)) as shown in [ALY23; BM+24; CM24]. On the other hand, when t is known
ahead of time, (λ, n, t)-PRSGs with statistical security, where λ could be much larger than n, are
implied by state designs.

Pseudorandom Function-Like State Generators (PRFSGs). The notion of pseudorandom function-
like state generators (PRFSGs) was introduced in the work of [AQY22] as a quantum analogue of pseudo-
random functions. Unlike pseudorandom state generators, in the case of PRFSG, we can use the same key
to generate many pseudorandom states, indexed by classical strings. We summarise the state of the art of
PRFSGs below. We use the notation (λ,m, n)-PRFSG to denote a PRFSG with λ being the key length,
m being the input length and n being the output length. The number of copies of the state given to the
adversary is denoted to be t. Unless otherwise stated, t will be an arbitrary polynomial in λ and not fixed
ahead of time. If t is indeed fixed ahead of time then we denote such a notion by (λ,m, n, t)-PRFSGs.

• m = O(log(λ)): It is known that (λ,m, n)-PRFSGs, for some n, exist based on PRSGs.

• m = ω(log(λ)): While we know how to construct (λ,m, n)-PRFSGs from one-way functions [AGQY22],
it is not yet known that stretch (λ,m, n)-PRFSGs exist assuming PRSGs.

In the case when t is known ahead of time, unitary designs can be used to achieve statistically secure PRFSGs.

A.2 Comparison with [CCS24] and [AGL24]
The common Haar state model was concurrently introduced by [CCS24] and an earlier version of this
work [AGL24]. Even though the main theme – studying feasibility and separations in the CHS model – was
common among both the works, there were two main differences. Firstly, [CCS24] showed the feasibility of
1-copy PRSGs whereas [AGL24] showed the feasibility of bounded-copy PRSGs with simplified construction
and its analysis. Secondly, [CCS24] showed a separation between 1-copy PRS and unbounded-copy PRS
which is unique to their work.

Subsequent to both [CCS24] and [AGL24], we improved upon [AGL24] to show that even bounded-query
PRFSGs exist in the CHS model. We also demonstrate optimality, in terms of the query bound, of our
construction. We also added separation results in the revised version (Section 7, Section 8 and Section 9).

B Alternative Proof of Lemma 4.8
Proof sketch of Lemma 4.8. The first part of the proof is the same as in [Col23]. Here we introduce the
required notations and omit the details. Let d := 2n and

σ :=
∑

x∈{0,1}n
ρx =

∑
x∈{0,1}n

E
|ψ⟩←H(2n)

[
(Zx ⊗ I⊗m)|ψ⟩⟨ψ|⊗m+1(Zx ⊗ I⊗m)

]
= E
t⃗∈Id,m+1

∑
x∈{0,1}n

[
(Zx ⊗ I⊗m)|s(⃗t)⟩⟨s(⃗t)|(Zx ⊗ I⊗m)

]
=

d(
d+m
m+1

) · ∑
t⃗∈Id,m+1

∑
j∈{0,1}n

(|j⟩⟨j| ⊗ I⊗m)|s(⃗t)⟩⟨s(⃗t)|(|j⟩⟨j| ⊗ I⊗m)

=
d(

d+m
m+1

) · ∑
j∈{0,1}n

∑
0≤r≤m

∑
t⃗∈Tm

j,r

r + 1

m+ 1
|j⟩⟨j| ⊗ |s(⃗t)⟩⟨s(⃗t)|.
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So we have

σ−1/2 =

√(
d+m
m+1

)
d
·
∑

j∈{0,1}n

∑
0≤r≤m

∑
t⃗∈Tm

j,r

√
m+ 1

r + 1
|j⟩⟨j| ⊗ |s(⃗t)⟩⟨s(⃗t)|.

Note that σ−1/2 is PSD with the largest eigenvalue
∥∥σ−1/2∥∥ =

√(
d+m
m+1

)
(m+ 1)/d (when r = 0). In [Col23],

the main technicality is to show Equation (28):

E
x←{0,1}n

Tr
(
ρxσ

−1/2ρxσ
−1/2

)
≤ C ′ ·

(
m

d
+
m7

d3

)
,

where C ′ > 0 is some constant. Here, we provide an alternative and simpler proof. Since σ−1/2 and ρx are
both PSD, the matrix σ−1/2ρxσ−1/2 is PSD as well. As ρx is a density matrix, we have

Tr
(
ρx · σ−1/2ρxσ−1/2

)
≤
∥∥∥σ−1/2ρxσ−1/2∥∥∥.

Then we use the submultiplicativity of the operator norm to obtain∥∥∥σ−1/2ρxσ−1/2∥∥∥
≤
∥∥∥σ−1/2∥∥∥ · ∥∥Zx ⊗ I⊗m∥∥ · ∥∥∥∥∥ E

t⃗∈Id,m+1

|s(⃗t)⟩⟨s(⃗t)|

∥∥∥∥∥ · ∥∥Zx ⊗ I⊗m∥∥ · ∥∥∥σ−1/2∥∥∥
=
∥∥∥σ−1/2∥∥∥2 · ∥∥∥∥∥ E

t⃗∈Id,m+1

|s(⃗t)⟩⟨s(⃗t)|

∥∥∥∥∥ (unitaries have a unit operator norm)

=

(
d+m
m+1

)
· (m+ 1)

d
· 1(

d+m
m+1

) =
m+ 1

d
.

Hence, it holds that

E
x←{0,1}n

Tr
(
ρxσ

−1/2ρxσ
−1/2

)
≤ m+ 1

d
.
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