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Abstract
Local differential privacy (LDP) is an efficient solution for providing

privacy to client’s sensitive data while simultaneously releasing

aggregate statistics without relying on a trusted central server

(aggregator) as in the central model of differential privacy. The

shuffle model with LDP provides an additional layer of privacy, by

disconnecting the link between clients and the aggregator, further

improving the utility of LDP. However, LDP has been shown to be

vulnerable to malicious clients who can perform both input and

output manipulation attacks, i.e., before and after applying the LDP

mechanism, to skew the aggregator’s results. In this work, we show

how to prevent malicious clients from compromising LDP schemes.

Specifically, we give efficient constructions to prevent both input
ánd output manipulation attacks from malicious clients for generic

LDP algorithms. Our proposed schemes for verifiable LDP (VLDP),

completely protect from output manipulation attacks, and prevent

input attacks using signed data, requiring only one-time interaction
between client and server, unlike existing alternatives [28, 33]. Most

importantly, we are the first to provide an efficient scheme for VLDP
in the shuffle model. We describe and prove secure, two schemes

for VLDP in the regular model, and one in the shuffle model. We

show that all schemes are highly practical, with client runtimes of

< 2 seconds, and server runtimes of 5–7 milliseconds per client.
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1 Introduction
Most distributed data sharing applications either assume that the

data obtained from a source is honestly obtained via the true in-

put, or deviates arbitrarily from the true input. Accordingly, one

abstracts these sources as either honest or malicious, with the re-

ceived data inheriting corresponding labels. However, we argue

that in many practical scenarios the data processing pipeline at

the source, from gathering raw input to formatted data to be sent

to a central server, has more structure which is not captured by

such a simple abstraction (see also [11]). This consists of several

sequential sub-components which pass information to one another

resulting in the final formatted data. In these cases, we may realis-

tically assume that the adversary only controls some components

of the source, rather than the entire source itself. This makes it

possible to verify the validity of the claimed raw input and any

subsequent processing on it, if the component receiving the raw

input is outside adversarial reach. Our target scenario is collection

and release of data from multiple distributed sources by a central

server using differential privacy [21]. More specifically, we focus

on the local [27] and shuffle [17] models of differential privacy (DP)

where the distributed nodes (data holders) do not trust the server

(aggregator) with their formatted inputs in the clear. On the other

hand, the server needs to ensure that the data received from the

nodes is correctly obtained from the true, raw input. The following

use cases further motivate the aforementioned threat model.

In sensor networks, the main program of a sensor device decides

from which sensors to read and what data to send in a prescribed

format to the server. The sensor device itself consists of various

sensors, which are individual hardware components (chips).
1
An

adversary could take control of the sensor device by replacing this

main program with its own malicious program, which could influ-

ence this local data processing pipeline. However, such a program

does not corrupt the physical sensors themselves, nor the raw data

it produces.

Energy companies want to obtain the total (or average) power

consumption of a group of households fitted with smart meters at
regular time intervals. This data may reveal private information

such as the sleeping patterns of house occupants [32]. Privacy to

individual households can be provided by applying LDP to smart

meter readings. Smart meters do not currently support such func-

tionality, and implementing it in all of them is not cost-efficient.

Fortunately, LDP could be applied via an app outside the smart

meter. However, as this app is outside the controlled/trusted en-

vironment, it may be malicious, i.e., it might output completely

different data, and thereby skew statistics.

Smartphones and wearables share their location via GPS sensors,

which can be used for crowd estimation to identify hotspots in the

city or to regulate crowd during busy events. Crowd estimation

does not necessarily require exact GPS coordinates of individual

devices, and a coarse-grained aggregate location distribution often

suffices. This is an excellent use case of LDP to release a histogram

of hotspots. However, naive use of LDP may allow an attacker

to send arbitrary locations, skewing the distribution. Here again

we can assume raw GPS coordinates from the device’s sensors as

being true/correct (operating system (OS) space), but the application

sending location information to the server may be malicious (user

space).

Many other applications fit this narrative, such as smartphone

(e.g., accelerometer) or smart home (e.g., temperature) sensors. Raw

values (events) from such a sensor are collected in the OS space,

before the applications running in the user space can process them

further for a given task, e.g., gesture detection. Thus, we assume a

setup where raw data is processed securely and correctly via one

component (e.g., a secure enclave, OS space, a hardware module)

before another program, possibly adversarial, further processes it

to send the formatted input to a server.

1
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Our Contributions. Assuming that the raw data is produced by

a trusted component at a node, we can attach a digital signature to
the data item. The server can then verify if a received input from a

node is correct by verifying the signature of the initial raw input,

and if subsequent processing is done correctly. Our contributions

are as follows:

• Wepropose three schemes for efficient verifiable LDP (VLDP). For

each LDP message sent to the server, the client only spends 1–3
seconds. Furthermore, the load at the server is 5–7milliseconds per
client, which can be parallelized. Similar to comparable works [28,

33], our baseline scheme requires multiple interactive rounds

between client and server. Our other, improved schemes reduce

the server load by requiring only one such round, at a very small

cost, by using randomness expansion techniques. All our schemes

protect against both input and output manipulation attacks as
defined in [28]. In the input manipulation attack, the attacker can

arbitrarily change the initial input while carrying out the rest

of the LDP algorithm faithfully. We ensure protection against

input manipulation using digital signatures with the assumption

that it is signed by a trusted component. In output manipulation,

the attacker can send arbitrary outputs to the server. We ensure

protection against this attack using verifiable randomness and

zero-knowledge proofs.

• We present the first scheme for VLDP in the shuffle model [17].
In this model a trusted shuffler shuffles the locally randomized

inputs from the nodes, with the net effect of privacy amplifi-

cation [5]. The shuffle model scheme is not a straightforward

generalization of the LDP constructions as we need to ensure

that the shuffled messages cannot be linked to specific nodes.

Our VLDP scheme in the shuffle model only adds marginal over-

head for the client: approximately 1.8 seconds versus 0.6 and

1.1 seconds for our other schemes. The computation load of the

server is even slightly decreased.

• Our VLDP protocols are designed for the 𝑘-ary randomized re-

sponse (𝑘-RR) mechanisms for both histograms and real-valued

data as described in [5]. Comparable works to ours on verifiable

differential privacy have mostly targeted binary randomized re-

sponse. In fact, as long as the randomization used in the LDP

mechanism can be approximated using a fixed number of uni-

formly random bits our protocol can accommodate it. Hence, our

solutions can be extended to many other LDP mechanisms, e.g.,
Exponential or Laplace mechanisms [21] (by using a piecewise

approximation of ln(·)). The requirement for randomization ap-

proximation using fixed uniform random bits is due to the use

of non-interactive zero knowledge proofs discussed in detail in

Section 4 and Appendix C.2.

• We implement and evaluate our protocols on two real-world

datasets: a smart meter dataset to get the approximate energy

consumption per household, and a GPS dataset to obtain the

histogram of locations. Our results show that the protocols are

highly practical and scalable. Each client takes a maximum of 2

seconds for a single LDP message, and the server only takes less

than 7 milliseconds per client. Furthermore, the communication

cost is only 200–485 bytes per client value (plus a small additional

one-time message), as we show in Section 7.3.

2 Related Work
In alignment with our scope, we restrict this discussion to protocols

for verifiable differential privacy (see also [11]), while observing

that, to the best of our knowledge, no constructions for verifiable

DP in the shuffle model can be found in existing academic literature.

Local model. The earliest work in this area appears to be on

cryptographic 𝑘-RR from Ambainis et al [2]. They mention an even

earlier work by Kikuchi et al [29], who reinvented the notion of

randomized response (RR) for voting applications and provided

cryptographic constructions to protect against cheating voters. Ac-

cording to [2] the earlier constructions from [29] are less efficient

and provide weaker security than their constructions.

The main security concern addressed by [2] is privacy of the

server (interviewer). Namely, the client (respondent) should not

know the randomized outcome of her true input, because otherwise

the respondent may end the protocol. To ensure this and to verify

that the RR mechanism is correctly computed, they propose several

protocols based on oblivious transfer, Pedersen commitments and

zero-knowledge proofs. Randomness in the protocol is guaranteed

by ensuring that the commitment parameters evaluate exactly to

the probability of the correct or wrong response, requiring this

probability to be a rational number. The communication cost there-

fore suffers for high precision. Their threat model is different from

ours since we do not require privacy of the outcome of the LDP

mechanism, and furthermore, it is not clear how their protocol can

be extended to the shuffle model. Kato, Cao and Yoshikawa [28]

extend the work from [2] to several other variants of LDP. However,

their techniques are similar and once again they assume that only

the output can be manipulated, and the user otherwise uses the true

value. Therefore, they do not ensure that the correct input is being

used, which, in our case, can be verified through digital signatures.

Furthermore, their protocols do not cover the shuffle model.

In [34], the authors propose LDP with verifiable computing to

extract binary attributes from anonymous credentials (e.g., older

than 18). These binary attributes are certified through a third party

using signatures, e.g., government or bank issued anonymous cre-

dentials. They do not give details on how this signature verification

is done. They provide detailed verifiable algorithms for binary RR

and the exponential mechanism [31] to sample attributes in a range

(e.g., the age). Unlike us, they do not provide protocols for 𝑘-RR, the

shuffle model, and their protocols are not scrutinize using rigorous

security definitions.

The closest work to ours is from [33] who tackle the problem of

releasing an attribute associatedwith a transaction in a differentially

private manner while maintaining the anonymity of a transaction

in a blockchain system for cryptocurrencies. They demonstrate

their scheme using binary RR, although they do mention that the

scheme can be generalized to non-binary attributes, without speci-

fying this further (as we show in Appendix C.2 this is not trivial).

The private attribute is signed by a registration authority, so that

it can be verified if the correct input was used in the RR mecha-

nism. They also check if the random coins used for RR are unbiased.

Verification of unbiased randomness in the RR mechanism is done

through an interactive protocol between the user and the server

which works if at least one of the two is honest. The user provides a

NIZK proof as a proof of correct application of the RR mechanism.
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Our protocol has one significant element built on their work, i.e.,

generating joint randomness. However, unlike them, our protocols

can process the RR mechanism for general 𝑘 , allowing composition

of several LDP mechanisms, protect against input manipulation, do

not require a specific blockchain infrastructure, and provide LDP

in the shuffle model. Moreover, apart from our baseline protocol,

we only require one single round of interaction between client and

server (unlike [33]), which greatly reduces the communication load

of both. This does come at the cost of a more expensive NIZK proof

for each client, but this trade-off pays off quickly (see Section 7).

Additionally, we do not suffer from the latency and scalability draw-

backs caused by their dependence on blockchain, which [33] uses

for storing the private attributes and transferring their DP versions.

Central model. The construction from Narayan et al [35] is for

verifying DP in the central model as opposed to the local model. The

main threat model tackled in their paper is a dishonest analyst who

may publish wrong results, banking on the inherent noise in DP,

which is different to ours. The work from [42] uses a similar threat

model to [35]. Randomness, however, is generated interactively

between the curator and a “reader” (an entity who is interested in

verifying the claims of the analyst). The work from [6] tackles the

problem of verifiable DP in the single curator andmultiparty setting.

In the former, one server collects all inputs from clients. The server

then provides differentially private answers to a third party, the

analyst. In the multiparty setting, multiple servers receive inputs

(secret shared) from clients and then compute the differentially

private answer to a query which is then presented to the analyst.

The servers in both settings may be actively corrupt. Verification

of inputs from the clients is limited to range checks (i.e., whether it

lies in a given range). This is unlike our schemes which operate in

the LDP setting, and allow verification of exact inputs rather than

range proofs.

Other works. Another related work to ours, but which does not

consider DP, is the ADSNARK system [4] for proving computation

on authenticated data while maintaining privacy. Like our work,

they assume a trusted source that can provide authenticated initial

data. The client is required to compute a function of this data and

send the result to the server. To verify that the client has done

the computation correctly, they propose their ADSNARK protocol

based on SNARKs. Unlike us however, their setting is not distributed,

and does not consider DP inputs from the client. Finally we would

like to point out several works showing the susceptibility of LDP to

input manipulation (or data poisoning) attacks [16, 30, 43], which

highlight the need for cryptographic solutions for the integrity of

initial data and subsequent processing like our schemes.

3 Preliminaries and Building Blocks
We describe the building blocks used in our protocols with specific

attention to zero-knowledge proofs and differential privacy in both

the local and shuffle model.

PRGs from PRFs. A pseudo-random function (PRF) family is de-

fined as a family of functions implemented by a key 𝑘 ∈ K , where
K is the key space. A function PRF(𝑘, 𝑥) from this family determin-

istically maps an input 𝑥 ∈ X to an output 𝑦 ∈ Y. For a randomly

chosen 𝑘 , PRF(𝑘, ·) should be indistinguishable from a true random

function. We can use PRFs to construction pseudo-random num-
ber generators (PRGs) following [10, Section 4.4]: if we require a

random bitstring from Yℓ
, we define ℓ distinct, fixed input values

𝑥1, . . . , 𝑥ℓ ∈ X. Subsequently, we can create a PRGwith seed 𝑘 ∈ K
as PRG(𝑘) = PRF(𝑘, 𝑥1) | | . . . | |PRF(𝑘, 𝑥ℓ ) . This PRG construction

will be implicitly used in the remainder of this work.

Commitment Schemes. A commitment scheme 𝐶 (𝑥, 𝑟 ) takes as
input a value 𝑥 and randomness 𝑟 , and outputs a commitment cm.

The pair (𝑥, 𝑟 ) is called the opening of the commitment. A secure

commitment scheme should be both hiding and binding. Binding
means that, given a commitment𝐶 (𝑥, 𝑟 ), it should be hard to output
a pair (𝑥 ′, 𝑟 ′), with 𝑥 ′ ≠ 𝑥 , such that 𝐶 (𝑥 ′, 𝑟 ′) = 𝐶 (𝑥, 𝑟 ). Hiding
implies that, given two commitments to distinct input values, it

should be hard to determine which commitment belongs to which

input value, i.e., given 𝑥0 ≠ 𝑥1 and cm𝑏 = 𝐶 (𝑥𝑏 , 𝑟 ), for a random
secret bit 𝑏 and random secret 𝑟 , it should be hard to determine 𝑏.

Digital Signature Schemes. A signature scheme Sig is a 3-tuple
of p.p.t. algorithms (KeyGen, Sign,Verify), where KeyGen is the

key generation algorithm, Sign is used to create a signature 𝜎 for

a message 𝑚, and Verify is used to assert that 𝜎 is a valid signa-

ture for𝑚. We only require that the digital signature scheme be

secure against existential forgeries under a chosen message attack
(EUF-CMA), i.e., an adversaryA should not be able to create a valid

message-signature pair (𝑚,𝜎) for a new message𝑚.

3.1 Zero-Knowledge Proofs
In our constructions, we rely upon non-interactive zero-knowledge
proofs (NIZKs). NIZKs are used to prove the existence of a secret

witness𝑤 for a given, public statement 𝑥 , such that the pair satis-

fies some NP-relation R, i.e., (𝑥,𝑤) ∈ R. Specifically, we consider
NIZKs in the common reference string (CRS) model [9, 20, 25]

(where we can also reuse this CRS for any polynomial number

of proofs), which can be defined as a 4-tuple of p.p.t. algorithms

(Setup, Prove,Verify, Sim). The Setup algorithm generates the eval-

uation ek and verification vk key pair (and a simulation trapdoor

trap) for a given relation R. Prove uses ek to create a valid proof

𝜋 for a given statement-witness pair (𝑥,𝑤), and Verify uses vk to
assert the correctness of 𝜋 for a given statement 𝑥 . Finally, the

algorithm Sim uses the simulation trapdoor trap and ek to create a

simulated proof for a statement 𝑥 .

A secure NIZK scheme should satisfy the following properties.

Completeness: given a true statement, an honest prover should be

able to convince an honest verifier. Soundness: if the statement is

false, no prover should be able to convince the verifier that it is

true. Zero-knowledge: a proof 𝜋 should reveal no information other

than the truth of the public statement 𝑥 , specifically it should leak

no information about the witness𝑤 . (Note: for our constructions

we only require honest-verifier zero-knowledge.)

However, we are not just interested in knowing that a witness

exists, we also want to confirm that the prover knows this witness.
Therefore in the remainder of our work we will look at NIZK proofs
of knowledge (NIZK-PKs), which are NIZKs that additionally also

satisfy knowledge soundness. Knowledge soundness is a stronger
version of soundness that additionally requires the existence of

an extractor EA that can produce a valid witness given complete
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access to the adversary A’s state. Formal definitions of the above

mentioned properties are given in Appendix A. In our implementa-

tion, we make use of zk-SNARKs [7]: NIZK-PK schemes that are

also succinct, i.e., the verifier runs in poly(𝜆 + |𝑥 |) time and the

proof size is poly(𝜆).

3.2 Differential Privacy
Differential privacy (DP) [21] is a formal way of describing database

privacy. It provides precise measures for how much information

about a dataset is leaked by (partial) disclosure through queries on

the dataset. Consider a database 𝑋 containing 𝑛 entries from the

domain X, i.e., 𝑋 ∈ X𝑛 . We consider two databases 𝑋,𝑋 ′ ∈ X𝑛 as

neighbors, denoted 𝑋 ∼ 𝑋 ′, if they differ in exactly one entry.

Definition 1 (Differential Privacy [21]). A randomized algorithm

M : X𝑛 → Y is (𝜖, 𝛿)-differentially private, if for all 𝑋 ∼ 𝑋 ′ ∈ X𝑛
and for all 𝑇 ⊆ Y, we have

Pr[M(𝑋 ) ∈ 𝑇 ] ≤ 𝑒𝜖 Pr
[
𝑀 (𝑋 ′) ∈ 𝑇

]
+ 𝛿.

Any (𝜖, 𝛿)-DP algorithm possesses two properties that are useful

for defining DP in the local and shuffle model, following [5]:

Lemma 1 (Post-processing [21]). If M is (𝜖, 𝛿)-DP, then for
every (deterministic or randomized)M′,M′ ◦M is also (𝜖, 𝛿)-DP.

Lemma 2 (Seqential composition [22]). IfM1, . . . ,M𝑛 are
(𝜖, 𝛿)-DP, then the composed algorithm M′ = (M1, . . . ,M𝑛) is
(𝜖′, 𝛿 ′ +𝑛𝛿)-DP for any 𝛿 ′ > 0 and 𝜖′ = 𝜖 (𝑒𝜖 −1)𝑛+𝜖

√︁
2𝑛 log(1/𝛿 ′).

Shuffle model. In the shuffle model, there are 𝑛 clients, each of

whom holds a data entry 𝑥𝑖 ∈ X. The shuffle model considers three

algorithms, following the definitions of [17]:

• A randomizer R : X → Y that takes as input a data entry 𝑥𝑖 and

outputs a value 𝑥𝑖 ∈ Y.2
• A shuffler S : Y𝑛 → Y𝑛

that takes as input a vector of 𝑛 mes-

sages and outputs these messages in a random order. Specifically,

on input (𝑥1, . . . , 𝑥𝑛), S, outputs (𝑥𝜋1
, . . . , 𝑥𝜋𝑛 ), where 𝜋 is a

uniform random permutation of [𝑛].
• An aggregator, or analyst, C : Y𝑛 → Z, that takes as input a

vector of 𝑛 messages (𝑥𝜋1
, . . . , 𝑥𝜋𝑛 ) and outputs an estimation

of 𝑓 (𝑥1, . . . , 𝑥𝑛).
As observed in [17], by Lemma 1, the shuffler S does not affect

the (𝜖, 𝛿)-DP property of the randomizer R. Therefore, if R is (𝜖, 𝛿)-
DP as a standalone algorithm, it is also (𝜖, 𝛿)-DP in the shufflemodel.

Clearly, Lemma 2 therefore also holds in the shuffle model [17].

Local Differential Privacy (LDP). When one replaces the shuffler

S by an identity function, i.e., the vector of messages is not shuf-

fled, we are left with the well-known model of local differential

privacy [27]. The purpose of the shuffle mechanism is to amplify

the privacy achievable via LDP, as we explain in Section 4. In the

remainder of this work, when we refer to an LDP algorithm, we will

only denote the local randomizer, unless explicitly stated otherwise.

2
We only consider the single-message shuffle model. The more general shuffle model

allows for an array of𝑚 messages to be output byM.

4 DP Algorithms
We consider two LDP algorithms, both of which appear in [5]. The

first locally randomizes a real-number input 𝑥 ∈ [0, 1]. The goal of
the aggregator is to output the sum of these inputs from 𝑛 users.

The second algorithm takes as input an integer 𝑥 ∈ [𝑘] for 𝑘 ≥ 2,

and locally randomizes it. The application in this case is a histogram

of values in [𝑘]. The algorithms are shown in Figure 1.

In the LDP algorithm for reals, without loss of generality, we

assume that the input 𝑥 ∈ [0, 1]. For a precision level 𝑘 , we first

encode 𝑥 as an integer as follows [5]:

𝑥 = ⌊𝑥𝑘⌋ + Ber(𝑥𝑘 − ⌊𝑥𝑘⌋)

It can be easily verified that encoding in this way ensures that

E(𝑥/𝑘), which is the expected value of the decoded 𝑥 , is exactly

E(𝑥). Thismakes the range of𝑥 equal to {0, 1, . . . , 𝑘}. This algorithm
is 𝜖-DP, as long as:

1 − 𝑘𝛾/(𝑘 + 1)
𝛾/(𝑘 + 1) ≤ 𝑒𝜖

Equating the left hand side to right hand side, we get:

𝛾 =
𝑘 + 1
𝑒𝜖 + 𝑘 .

Thus, we can set 𝛾 to this value given 𝜖 and 𝑘 . If R is (𝜖, 𝛿)-LDP,
then the mechanismM : X𝑛 → Y𝑛

defined asM(𝑥1, . . . , 𝑥𝑛) =
(R(𝑥1), . . . ,R(𝑥𝑛)) is also (𝜖, 𝛿)-DP.

Aggregator. The aggregator for the LDP histogram algorithm,

simply outputs the histogram, i.e., the number of inputs for each

𝑖 ∈ [𝑘]. For the LDP algorithm for reals, the aggregator needs to

do a de-biasing step. Let 𝑥𝑖 be the input of user 𝑖 , let 𝑥𝑖 be the same

input with precision 𝑘 , and 𝑥𝑖 be the input received from user 𝑖

through the LDP algorithm. Then, as shown in Appendix C.1, the

aggregator outputs:

1

1 − 𝛾

(∑𝑛
𝑖=1 𝑥𝑖

𝑘
− 𝛾𝑛

2

)
,

as the estimate of
1

𝑘

∑𝑛
𝑖=1 𝑥𝑖 [5], which itself estimates

∑𝑛
𝑖=1 𝑥𝑖 .

Shuffle Model. In the shuffle model, the inputs from all parties

are first shuffled randomly, and then given to the aggregator. This

results in privacy amplification as the aggregator now does not

know which input belongs to which user. The (single-message)

shuffle model of DP employs a shuffler S : Y𝑛 → Y𝑛
which is

a random permutation of its inputs. The algorithmM : S ◦ R𝑛 :

X𝑛 → Y𝑛
then provides (𝜖, 𝛿)-DP against the curator, but with the

advantage that the local randomizer need only be (𝜖0, 0)-LDP, with
𝜖0 greater than 𝜖 . Ignoring logarithmic terms, 𝜖0 is proportional

to 𝑛 and inversely proportional to 𝛿 . Given a value of 𝜖, 𝛿 and 𝑛,

we can use the script provided by [5] to obtain a value of 𝜖0 which

uses a tighter analysis than given by the implicit bounds in the

paper. For instance, for the LDP histogram mechanism described

above with 𝑘 = 10, i.e., 𝑘-ary randomized response, with 𝑛 = 100

participants, 𝛿 = 10
−6

and 𝜖 = 0.1, we get 𝜖0 ≈ 1.0032 through the

Bennett bound. This means, we can use the mechanism 10 times
more than the LDP mechanism alone.
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LDP Algorithm for Reals [5]

input: 𝑘 ∈ N, 𝑥 ∈ [0, 1], 𝛾 ∈ [0, 1]
𝑥 ← ⌊𝑥𝑘 ⌋ + Ber(𝑥𝑘 − ⌊𝑥𝑘 ⌋ )
𝑏 ← Ber(𝛾 )
if 𝑏 = 0 do
𝑥̃ ← 𝑥

else
𝑥̃ ←$ {0, 1, . . . , 𝑘 }

return 𝑥̃

LDP Algorithm for Histograms [5]

input: 𝑘 ∈ N, 𝑥 ∈ [𝑘 ], 𝛾 ∈ [0, 1]
𝑏 ← Ber(𝛾 )
if 𝑏 = 0 do
𝑥̃ ← 𝑥

else
𝑥̃ ←$ {1, . . . , 𝑘 }

return 𝑥̃

Figure 1: LDP algorithms for reals and histograms.

LDP inside NIZK. To verify the above LDP algorithms inside a

NIZK circuit, we need to define how we evaluate the LDP algorithm

in a deterministic fashion, given a fixed number of uniform random

bits. It must be deterministic in the sense that we need to be able

the ‘recreate’ the random sampling inside the NIZK circuit. Next,

we observe that the NIZK proof is computed over a given, fixed,

agreed upon relation R. Therefore, the number of random bits used

should be fixed and known up front. This has the downside that

we cannot sample exactly from each distribution, but rather need

to sample from approximate distributions. We tackle both issues

simultaneously, by defining how to use a uniform random bitstring

𝜌 of length ℓ , such that the distribution of LDP.Apply(𝑥 ; 𝜌) ap-
proximately equals that of the true randomized LDP algorithm. In

Appendix C.2 we specify approximate distributions for the algo-

rithms described above, such that the statistical distance decreases

exponentially in ℓ .

5 Verifiable DP in the Local and Shuffle Model
We first sketch our system model and give a formal definition for

a VLDP scheme that is applicable to both the local and the shuffle

model. Subsequently, we elaborate the threat model and formally

describe the necessary security properties.

5.1 System model
LetVLDPPipeline denote the high-level structure of a VLDP scheme,

which describes the workings of the VLDP scheme with 1 server

and 𝑛 clients for 𝑇 time steps (one for each message). A schematic

overview is shown in Figure 2. First, GenRand ensures that the

client has the necessary inputs to construct verifiably true random

values later on. It can be seen as a sort of preprocessing, where the

client and server together generate a random value to be used at

time 𝑡 𝑗 , for 𝑗 ∈ [𝑇 ].
The process with which a client 𝑖 generates a VLDP value 𝑥

at time step 𝑡𝑥 starts with the client requesting a fresh raw input

value 𝑥 from the trusted environment. In response, the trusted

environment returns a signed input value 𝑥 with signature 𝜎𝑥 =

Sig.Signsk𝑖 (𝑥 | |𝑡𝑥 ), where sk𝑖 is the secret key of the trusted en-

vironment of the 𝑖-th client, which we assume has already been

generated beforehand. This signature can be verified using pk𝑖 . Sub-
sequently, the client 𝑖 calls Randomize to apply verifiable LDP to 𝑥

and obtain 𝑥 and a correctness proof 𝜋 , both of which are sent to the

shuffler (or directly to the server in the local model). The shuffler

collects all messages ((𝑥1, 𝜋1), (𝑥2, 𝜋2), . . . , (𝑥𝑛, 𝜋𝑛)) and forwards

these in a random order ((𝑥?1 , 𝜋?1 ), (𝑥?2 , 𝜋?2 ), . . . , (𝑥?𝑛 , 𝜋?𝑛 )) to the
server, thereby ensuring that the server cannot determine which

message belongs to which client.

For each received (𝑥?𝑖 , 𝜋?𝑖 ), the server runs Verify, to ensure that
𝑥?𝑖 is created from a value 𝑥 signed by a valid pk

?𝑖
, using a true

random value. Finally, the server uses all valid values (𝑥?1 , . . . , 𝑥?𝑛 )
to compute and publish its desired output 𝑓 (𝑥?1 , . . . , 𝑥?𝑛 ).

Definition 2 (VLDP Scheme). A VLDP scheme for an LDP algo-

rithm LDP.Apply : X → Y is a 5-tuple of p.p.t. algorithmsVLDP
for any number 𝑛 ≥ 1 of clients and one prover:

• Setup(1𝜆) → pp: Given the security parameter 𝜆, this algorithm

returns public parameters pp. This is a tuple containing theNIZK
relation R, parameters of a public key signature scheme pp

sig

and a commitment scheme pp
comm

. Optionally, it also returns a

vector ®𝑠 of 𝑇 PRF seeds.

• KeyGen(pp) → (ek, vk, pk𝑠 , sk𝑠 , 𝐿): Given the public parameters

pp, this algorithm returns the evaluation ek and verification key

vk for the NIZK proof, and the server’s public pk𝑠 and secret sk𝑠
signature keys, together with a list 𝐿. This list is populated with

the identities of clients that have already been processed in a

given time period.

• GenRand(pp, aux) → out𝑐 : This interactive protocol between
a single client and server takes as input the public parameters

pp and optional auxiliary information. The output of the client

is defined as out𝑐 , which contains client generated randomness,

commitment to this randomness, server generated randomness,

and a server signed signature binding the server generated ran-

domness with the commitment to client’s randomness.

• Randomize(pp, ek, 𝑡 𝑗 , out𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑥 ) → (𝑥, 𝜋, 𝜏𝑥 ): The client 𝑖

uses pp, ek, a timestamp 𝑡 𝑗 , its output from theGenRand protocol
out𝑐 , the true input value 𝑥 with timestamp 𝑡𝑥 and their signature

𝜎𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥 ) to compute an LDP value 𝑥 , aNIZK proof

𝜋 , and a vector of public values 𝜏𝑥 .

• Verify(pp, vk, 𝑡 𝑗 , 𝑥, 𝜋, 𝜏𝑥 ) → 𝑥 ∪ ⊥: The server uses pp, ek, a
timestamp 𝑡 𝑗 , out𝑠 ,𝑥 , 𝜋 , and 𝜏𝑥 to verifywhether𝑥 was computed

honestly. It returns 𝑥 if this is the case and ⊥ otherwise.

5.2 Threat model
There are three types of actors in the shuffle model: clients, shuffler

and server. The shuffler can be ignored for the local model. We

describe our threat model according to each actor.

Clients: We assume that all client programs may potentially be-

have maliciously, or collude with other clients, meaning that they

could deviate from our scheme arbitrarily, or attempt to use false

input data. However, client programs have no control over the

trusted environment and can only obtain signed input data 𝑥 from

it, with signature 𝜎𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥 ). sk𝑖 is contained inside

the trusted environment, and cannot be accessed by the potentially

malicious client program. Recall that we use the term trusted envi-

ronment to mean any controlled environment outside adversarial

reach such as a secure enclave, OS space, or hardware module.

Server: The server is assumed to behave semi-honestly, i.e., it
will not deviate from the scheme, but does try to obtain as much

information as possible within the bounds set by the scheme. More-

over, the server is assumed to be a non-colluding entity. Finally, we
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Figure 2: Systemmodel for the VLDPPipeline in the shuffle model. When using the ‘regular’ local model, the shuffler is removed
and the messages of step 3 are sent directly to the server instead.

assume that the server can verify which pk𝑖 ’s are known, trusted
public keys belonging to a trusted environment, e.g., via a public

key infrastructure or whitelist of trusted keys.

Shuffler: For the scheme in the shuffle model we assume that

the shuffler is an honest-but-curious, independent, non-colluding
party. In this work, for the sake of clarity, we will assume that the

shuffler is a trusted third party. In practice, different methods exist

for implementing a shuffler, e.g., using mixnets. We discuss these in

Appendix D. The actual choice of implementation for the shuffler is

out of scope for this work, as our focus lies on constructing efficient,

implementation-agnostic, secure VLDP schemes for the local and

shuffle model. Note that it is common for works in the shuffle model

to leave this discussion out of scope [5, 17].

5.3 Security definitions
A VLDP scheme should satisfy at least completeness, soundness, and
zero-knowledgeness. Below, we provide the formal definitions of

all these properties. The experiments used in the definitions are

detailed in Appendix E, together with our formal security proofs.

Completeness guarantees that for any authenticated input 𝑥 ,

created in the right time interval, the output of an honest client

will be accepted by an honest server with probability 1.

Definition 3 (Completeness). A scheme VLDP for an LDP

method LDP.Apply : X → Y with security parameter 𝜆 is com-

plete if for any 𝑛 = poly(𝜆), any 𝑇 = poly(𝜆), and for all p.p.t. A,

we have Pr

[
⊥ ∈ ExpComp

A (1𝜆, 𝑛,𝑇 )
]
≤ negl(𝜆), with ExpComp

A as

defined in Figure 9.

On the other hand, soundness guarantees that no dishonest client

can make a server accept an output, that is not an honest random-

ization of an authentic input 𝑥 , except with negligible probability.

Definition 4 (Soundness). A schemeVLDP for an LDP method

LDP.Apply : X → Y with security parameter 𝜆 is sound if, for any

𝑛 = poly(𝜆), any 𝑇 = poly(𝜆), for all p.p.t. A, and ∀(𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 ) ∈

X × Y, we have���Pr[ExpSnd-RealA,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗 ) = {𝑦𝑖, 𝑗 }𝑖, 𝑗
���

⊥ ∉ ExpSnd-RealA,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗 )
]

− Pr
[
LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗 ) = {𝑦𝑖, 𝑗 }𝑖, 𝑗

��𝜌𝑖, 𝑗 ←$ {0, 1}∗
] �� ≤ negl(𝜆),

withExpSnd-RealA as defined in Figure 11, where 𝑆∗ denotes an honest
server that the adversary can interact with.

The zero-knowledge property guarantees that the server learns

nothing about the original input value 𝑥 , other than what could

already be learned from its randomization 𝑥 .

Definition 5 (Zero-knowledge). A scheme VLDP for an LDP

method LDP.Apply : X → Y with security parameter 𝜆 is zero-

knowledge if for any 𝑛 = poly(𝜆), any 𝑇 = poly(𝜆), there exists a
p.p.t. simulator S = (S1,S2), such that for all p.p.t. adversaries A,

and ∀(𝑥𝑖, 𝑗 , 𝑦𝑖, 𝑗 ) ∈ X × Y, we have{
ExpZk-RealA (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗 ) = (·, {𝑦𝑖, 𝑗 }𝑖, 𝑗 )

}
𝑐≡
{
ExpZk-SimA,S (1𝜆, 𝑛,𝑇 , {𝑦𝑖, 𝑗 }𝑖, 𝑗 )

}
,

with ExpZk-RealA and ExpZk-SimA,S as defined in Figure 10.

Additionally, for a VLDP scheme to be secure in the shufflemodel,

we need the property of shuffle indistinguishability to hold. This

guarantees that the server cannot distinguish an output that was

sent by client 𝑖 from an output sent by client 𝑖′.

Definition 6 (Shuffle indistinguishability). A schemeVLDP for

an LDP method LDP.Apply : X → Y with security parameter

𝜆 has shuffle indistinguishability if for every p.p.t. adversary A:

2|Pr[ExpIndA (𝜆) = 1|ExpIndA (𝜆) ≠ ⊥] −
1

2
| ≤ negl(𝜆), with ExpIndA

as defined in Figure 12.
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6 Our constructions for VLDP
In this section, we present our three VLDP schemes and explain the

components that together form the respective construction of the

VLDPPipeline. Each scheme will improve upon the construction of

the previous one, culminating in an efficient VLDP scheme that can

be applied in the shuffle model, with minimal interaction between

server and clients. A formal security analysis of each scheme is

provided in Appendix E.

(1) The Base scheme achieves verifiable LDP in the local model.

Its GenRand protocol is loosely inspired by the VerRR algo-

rithm in [33]. The other algorithms are novel constructions

which together form a scheme that unlike [33] also provides

security against input manipulation attacks for authenticated

data, supports generic LDP algorithms, and does not require a

blockchain infrastructure.

(2) The Expand scheme provides the same guarantees, but only

requires the interactive GenRand protocol to be run once per

client, rather than for each new input value of each client. This

significantly decreases the computation and communication

load of the server, making the scheme suitable for sequential

composition of DP.

(3) The Shuffle scheme has the same communication efficiency as

the second version, but also achieves verifiable local differential

privacy in the shuffle model.

6.1 Base scheme
Figure 3 describes the Base scheme in detail. During the protocol

GenRand
base

, the client and server together compute the neces-

sary values to construct a true random value 𝜌 for later use in

Randomize
base

. The bit length of 𝜌 will be equal to the output of

the PRF that we use to generate 𝜌 , let |𝜌 | denote this length. In

case the required number of bits ℓ needed to evaluate LDP.Apply is

lower than |𝜌 | we can simply ignore the left-over bits. However, in

case ℓ > |𝜌 |, we need to evaluate the PRF on one or more additional

inputs, depending on ℓ , and concatenate the results. For clarity,

we assume that ℓ ≤ |𝜌 | in our scheme definitions, since it can be

extended easily using this method. In the experimental evaluation

(Section 7) we will evaluate how the performance depends on ℓ .

Now, in GenRand
base

, the client 𝑖 first generates its own random

bits 𝜌𝑐 (we explicitly show the use of a PRF in step 1 and 2 of

Figure 3 to resemble the later schemes). Subsequently, 𝑖 computes

a commitment cm𝜌𝑐
to 𝜌𝑐 , and shares this commitment along with

the public key from its trusted environment pk𝑖 , and a time marker

𝑡 𝑗 with the server. The eventual randomness will also be bound to

𝑡 𝑗 , such that the client cannot create a large batch of random values,

and then pick a specific value from this batch. That would clearly

violate the requirements for verifiable randomization.

The server first checks whether pk𝑖 indeed belongs to user 𝑖 , and
subsequently verifies that user 𝑖 did not yet construct a random

value for 𝑡 𝑗 , i.e., whether (𝑖, 𝑡 𝑗 ) ∉ 𝐿. Next, the server generates a

valid PRF seed𝑘𝑠 and computes𝜎𝑠 = Sig.Signsk𝑠 (pk𝑖 | |cm𝜌𝑐
| |𝑘𝑠 | |𝑡 𝑗 ).

The server then sends (𝑘𝑠 , 𝜎𝑠 ) to 𝑖 , who verifies 𝜎𝑠 . Note that, rather
than using a signature, the servermight instead alsomaintain a state

of (pk𝑖 , cm𝜌𝑐
) for each client and compare this state in Verify

base

later. We, however, choose this approach to minimize the storage

load for the server.

In Randomize
base

, the client computes the server part of the

randomness 𝜌𝑠 from 𝑘𝑠 , and combines the client and server parts

to obtain a true random value 𝜌 = 𝜌𝑐 ⊕ 𝜌𝑠 . Subsequently, the client
uses 𝜌 to transform 𝑥 into a differentially private value 𝑥 using

LDP.Apply. Finally, the client computes the NIZK-PK for R
base

to

attest to a number of statements: (1) the true value 𝑥 was signed

using pk𝑖 and obtained at a time 𝑡𝑥 , such that 𝑡 𝑗−1 < 𝑡𝑥 ≤ 𝑡 𝑗 ; (2) 𝜌

is a true random value, i.e., cm𝜌𝑐
= Comm(𝜌𝑐 ; 𝑟𝜌𝑐 ) and 𝜌 = 𝜌𝑐 ⊕𝜌𝑠 ;

and (3) 𝑥 is the result of LDP.Apply(𝑥 ; 𝜌).
The server receives the LDP value 𝑥 , the proof 𝜋 and the other

required public values (pk𝑖 , cm𝜌𝑐
, 𝑘𝑠 , 𝜎𝑠 ) from the client, and ver-

ifies correctness of 𝜌𝑠 , 𝜎𝑠 and 𝜋 . If both hold, it knows that 𝑥 is a

correct differentially private version of an authentic input.

Asmentioned, this scheme shows some similarities to [33]. Specif-

ically, they also let the client commit to a random value, and let the

server subsequently generate an independent random value and

bind both values using a signature under the server’s key. Next,

they combine these two random values and use that to generate a

randomized response for a single bit. Finally, they use zk-SNARKs

(a specific form of NIZK-PKs) to guarantee correctness.

The main differences between our Base scheme and [33] are

as follows. First, we allow for generic, more complex LDP algo-

rithms, rather than binary RR. Moreover, we do not require any

DLT/blockchain infrastructure for our scheme. Lastly, our scheme

works on authenticated data, unlike [33].

6.2 Randomness expansion (expand) scheme
The Base scheme requires one execution of GenRand for each call

to Randomize. For a large number of clients, this would put an

impractically large load on the server, due to the interactive nature

of GenRand. However, we can employ a more efficient version of

GenRand to minimize the number of runs to only one per client.

The Expand scheme uses Merkle trees as compact commitments to

multiple random values, in order to reduce the load on the server.

Specifically, we update step 2–4 of GenRand by creating 𝑇 com-

mitments to 𝑇 randomly generated values 𝜌
𝑗
𝑐 , for 𝑗 ∈ [𝑇 ]. Subse-

quently, we encode all these commitments inside a Merkle tree with

root rt to keep the message size constant and equivalent to that

of GenRand
base

. The remainder of GenRand
expand

is equivalent to

GenRand
base

. The main improvement is that we can now generate

𝑇 true random values with only one round of communication, with

communication and server-side cost independent of 𝑇 .

This improvement does require some changes and additional

computations for the client in Randomize
expand

. Following Sec-

tion 3, given an array of distinct, public values ®𝑠 = (𝑠1, . . . , 𝑠𝑇 ), we
can define a secure PRG as PRG(𝑘) := PRF(𝑘 | |𝑠1) | | . . . | |PRF(𝑘 | |𝑠𝑇 ).
Thus, if we consider the 𝑗-th call to Randomize

expand
, we can com-

pute the server part of the randomness (line 1) as 𝜌𝑠 = PRF(𝑘𝑠 | |𝑠 𝑗 ),
where 𝑘𝑠 is the server seed. The remainder of Randomize follows
the same structure as in Base. However, we do have to add an

additional statement to our NIZK-PK for R
expand

, verifying that

the client randomness used in the 𝑗-th call of Randomize
expand

is

indeed the 𝑗-th entry of the Merkle tree with root rt. This ensures
not only that the client uses a random value that was committed to

before seeing 𝑘𝑠 , but also ensures that the client has no choice in

which random value in the Merkle tree it uses. Allowing the client
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VLDPPipeline
base

1 : pp← Setup
base
(1𝜆 )

2 : Server computes (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen
base
(pp)

3 : for Each client 𝑖 in{1, . . . , 𝑛} (in parallel)

4 : for 𝑗 in {1, . . . ,𝑇 }

5 : Client 𝑖 obtains out𝑖,𝑗𝑐 = GenRandbase (pp, 𝑡 𝑗 )

6 : Client 𝑖 obtains fresh (𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 , 𝜎
𝑖,𝑗
𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥 ) )

7 : Client 𝑖 runs (𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 ) =

Randomizebase (pp, ek, 𝑡 𝑗 , out𝑖,𝑗𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥 )

8 : Server obtains 𝑥̃𝑖,𝑗 = Verify
base
(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 )

9 : Server computes result from all 𝑥̃𝑖,𝑗

KeyGen
base
(pp)

1 : (ek, vk) ← NIZK-PK.KeyGen(Rbase )
2 : (sk𝑠 , pk𝑠 ) ← Sig.KeyGen(pp

sig
)

3 : 𝐿 ← ∅
4 : return (ek, vk, pk𝑠 , sk𝑠 , 𝐿)

Setup
base
(1𝜆 )

1 : pp
sig
← Sig.Setup(1𝜆 )

2 : pp
comm

← Comm.Setup(1𝜆 )
3 : ®𝑡 = (𝑡0, . . . , 𝑡𝑇 )
4 : pp = (Rbase, ppsig, ppcomm

, ®𝑡 )
5 : return pp

Rbase
Given (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , cm𝜌𝑐

, 𝜌𝑠 , 𝑥̃ ) , the prover knows
(𝑡𝑥 , 𝑥, 𝜎𝑥 , 𝜌𝑐 , 𝑟𝜌𝑐 ) such that:

1 : 𝑡 𝑗−1 < 𝑡𝑥 ≤ 𝑡 𝑗

2 : Sig.Verifypk𝑖 (𝜎𝑥 , 𝑥 | |𝑡𝑥 ) = 1

3 : cm𝜌𝑐
= Comm(𝜌𝑐 ; 𝑟𝜌𝑐 )

4 : 𝜌 = 𝜌𝑐 ⊕ 𝜌𝑠

5 : 𝑥̃ = LDP.Apply(𝑥 ; 𝜌 )

GenRandbase (pp, 𝑡 𝑗 )
Client 𝑖 Server

1 : 𝑘𝑐 ←$ {0, 1}∗

2 : 𝜌𝑐 = PRF(𝑘𝑐 , 0)
3 : 𝑟𝜌𝑐 ←$ {0, 1}∗

4 : cm𝜌𝑐
= Comm(𝜌𝑐 ; 𝑟𝜌𝑐 )

(pk𝑖 , cm𝜌𝑐
, 𝑡 𝑗 )

If pk𝑖 does not belong to 𝑖 , abort

5 : If (𝑖, 𝑡 𝑗 ) ∈ 𝐿, abort
6 : 𝐿 ← 𝐿 ∪ {𝑖, 𝑡 𝑗 }
7 : 𝑘𝑠 ←$ {0, 1}∗

8 : If Sig.Verifypk𝑠 (𝜎𝑠 , pk𝑖 | |cm𝑘𝑐
| |𝑘𝑠 | |𝑡 𝑗 ) ≠ 1, abort

(𝑘𝑠 , 𝜎𝑠 ) 𝜎𝑠 = Sig.Signsk𝑠 (pk𝑖 | |cm𝜌𝑐
| |𝑘𝑠 | |𝑡 𝑗 )

9 : return out𝑗𝑐 = (𝜌𝑐 , 𝑟𝜌𝑐 , cm𝜌𝑐
, 𝑘𝑠 , 𝜎𝑠 )

Randomizebase (pp, ek, 𝑡 𝑗 , out𝑗𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑥 )
1 : 𝜌𝑠 = PRF(𝑘𝑠 , 0)
2 : 𝜌 = 𝜌𝑐 ⊕ 𝜌𝑠

3 : 𝑥̃ = LDP.Apply(𝑥 ; 𝜌 )

4 :
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , cm𝜌𝑐

, 𝜌𝑠 , 𝑥̃ )
5 : ®𝑤 = (𝑡𝑥 , 𝑥, 𝜎𝑥 , 𝜌𝑐 , 𝑟𝜌𝑐 )

6 : 𝜋 = NIZK-PK.Proveek ( ®𝜙 ; ®𝑤 )
7 : Send (𝑥̃, 𝜋, (pk𝑖 , cm𝜌𝑐

, 𝑘𝑠 , 𝜎𝑠 ) ) to server

Verify
base
(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖 , 𝜋𝑖 , 𝜏𝑖 )

1 : Parse 𝜏𝑖 = (pk𝑖 , cm𝜌𝑐
, 𝑘𝑠 , 𝜎𝑠 )

2 : If pk𝑖 does not belong to 𝑖 , abort

3 : If Sig.Verifypk𝑠 (𝜎𝑠 , pk𝑖 | |cm𝑘𝑐
| |𝑘𝑠 | |𝑡 𝑗 ) ≠ 1, abort

4 : 𝜌𝑠 = PRF(𝑘𝑠 , 0)

5 :
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , cm𝜌𝑐

, 𝜌𝑠 , 𝑥̃
𝑖 )

6 : If NIZK-PK.Verifyvk (𝜋𝑖 , ®𝜙 ) ≠ 1, abort

7 : return 𝑥̃𝑖

Figure 3: Base scheme for VLDP between one server and multiple clients.

to choose which value it uses could make it possible to influence

the value of 𝑥 , by cleverly constructing the random elements in ®𝜌𝑐 .
Due to space constraints, and the nature of the differences with

Base and Shuffle, we include a detailed definition of the Expand
scheme in Figure 6 in Appendix B.

6.3 Shuffle model scheme
An interesting question to ask is whether either of the previous

schemes also work in the shuffle model. In this model, the client

could answer more server queries within the same privacy budget,

since it decreases less quickly (see Section 4). However, we observe

that neither the Base nor the Expand scheme can be applied directly

in the shufflemodel, since the public values pk𝑖 , 𝜎𝑥 , cm𝜌𝑐
/rt, 𝑘𝑠 , and

𝜎𝑠 are the same for different runs of Randomize. This would allow

the server to easily link several messages to the same client by

simply comparing these public values.

We can solve this, by moving these values to the witness part of

the NIZK-PK statement and include the verification statements on

line 3 and 4 into R
shuffle

.
3
This transformation clearly guarantees

unlinkability of different Randomize messages of the same client.

Moreover, verifiable correctness is still guaranteed, which can be

seen intuitively as follows. First, observe that, since pk𝑖 is included

3
The statement on line 2 is implicitly guaranteed by the check during GenRand.
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VLDPPipeline
shuffle

1 : pp← Setup
shuffle

(1𝜆 )
2 : Server computes (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen

shuffle
(pp)

3 : for Each client 𝑖 (in parallel)

4 : Client obtains out𝑖𝑐 = GenRandexpand (pp)
5 : for 𝑗 in {1, . . . ,𝑇 }

6 : Client 𝑖 obtains fresh (𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 , 𝜎
𝑖,𝑗
𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥 ) )

7 : Client 𝑖 runs (𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 ) =

Randomizeexpand (pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥 )

8 : Shuffler forwards messages in random order

9 : Server obtains 𝑥̃
𝑖,𝑗
𝑢 = Verify

expand
(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 )

10 : Server computes result from all 𝑥̃𝑖,𝑗

KeyGen
shuffle

(pp)
1 : (ek, vk) ← NIZK-PK.KeyGen(Rshuffle )
2 : (sk𝑠 , pk𝑠 ) ← Sig.KeyGen(pp

sig
)

3 : 𝐿 ← ∅
4 : return (ek, vk, pk𝑠 , sk𝑠 , 𝐿)

Setup
shuffle

(1𝜆 )
1 : pp

sig
← Sig.Setup(1𝜆 )

2 : pp
comm

← Comm.Setup(1𝜆 )
3 : ®𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑇 ) ←$ {0, 1}𝜆×𝑇

4 : ®𝑡 = (𝑡0, . . . , 𝑡𝑇 )
5 : pp = (Rshuffle, ppsig, ppcomm

, ®𝑠, ®𝑡 )
6 : return pp

Rshuffle

Given (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , 𝑥̃ ) , the prover knows
(𝑡𝑥 , 𝑥, pk𝑖 , 𝜎𝑥 , 𝑘𝑐 , 𝑟𝑘𝑐 , cm𝑘𝑐

, 𝑘𝑠 , 𝜎𝑠 ) such that:

1 : 𝑡 𝑗−1 < 𝑡𝑥 ≤ 𝑡 𝑗

2 : Sig.Verifypk𝑖 (𝜎𝑥 , 𝑥 | |𝑡𝑥 ) = 1

3 : cm𝑘𝑐
= Comm(𝑘𝑐 ; 𝑟𝑘𝑐 )

4 : 𝑘 = 𝑘𝑐 ⊕ 𝑘𝑠
5 : Sig.Verifypk𝑠 (𝜎𝑠 , pk𝑖 | |cm𝑘𝑐

| |𝑘𝑠 ) = 1

6 : 𝜌 = PRF(𝑘, 𝑠 𝑗 )
7 : 𝑥̃ = LDP.Apply(𝑥 ; 𝜌 )

GenRandshuffle (pp)
Client 𝑖 Server

1 : 𝑘𝑐 ←$ {0, 1}∗

2 : 𝑟𝑘𝑐 ←$ {0, 1}∗

3 : cm𝑘𝑐
= Comm(𝑘𝑐 ; 𝑟𝑘𝑐 )

(pk𝑖 , cm𝑘𝑐
)

If pk𝑖 does not belong to 𝑖 , abort

4 : If 𝑖 ∈ 𝐿, abort
5 : 𝐿 ← 𝐿 ∪ {𝑖 }
6 : 𝑘𝑠 ←$ {0, 1}∗

7 : If Sig.Verifypk𝑠 (𝜎𝑠 , pk𝑖 | |cm𝑘𝑐
| |𝑘𝑠 ) ≠ 1, abort

(𝑘𝑠 , 𝜎𝑠 ) 𝜎𝑠 = Sig.Signsk𝑠 (pk𝑖 | |cm𝑘𝑐
| |𝑘𝑠 )

8 : return (𝑘𝑐 , 𝑟𝑘𝑐 , cm𝑘𝑐
, 𝑘𝑠 , 𝜎𝑠 )

Randomizeshuffle (pp, ek, 𝑡 𝑗 , out𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑥 )
1 : 𝑘 = 𝑘𝑐 ⊕ 𝑘𝑠
2 : 𝜌 = PRF(𝑘, 𝑠𝑖 )
3 : 𝑥̃ = LDP.Apply(𝑥 ; 𝜌 )

4 :
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , 𝑥̃ )

5 : ®𝑤 = (𝑡𝑥 , 𝑥, pk𝑖 , 𝜎𝑥 , 𝑘𝑐 , 𝑟𝑘𝑐 , cm𝑘𝑐
, 𝑘𝑠 , 𝜎𝑠 )

6 : 𝜋 = NIZK-PKshuffle .Prove( ®𝜙 ; ®𝑤 )
7 : Send (𝜋, 𝑥̃ ) to shuffler

Verify
shuffle

(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖 , 𝜋𝑖 )
1 :

®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠 𝑗 , 𝑥̃𝑖 )
2 : If NIZK-PK.Verify(𝜋𝑖 , 𝑥̃𝑖 , pk𝑠 , 𝑠𝑖 ) ≠ 1, abort

3 : return 𝑥̃𝑖

Figure 4: Shuffle scheme for efficient VLDP in the shuffle model between one server and multiple clients.

in𝜎𝑠 , andwe verify𝜎𝑠 inside theNIZK-PK forR
shuffle

, the client has

to use a pair (𝑥, 𝑡𝑥 ), signed by its own trusted environment. Second,

the inclusion of pk𝑖 inside 𝜎𝑠 also guarantees that the randomness

is bound to a specific client, and thus a set of colluding clients could

not interchange their random values.

The transformation as described above is secure in the shuffle

model, however we can still make some optimizations to reduce

the computational cost for the client. We note that by moving the

verification of 𝜌𝑠 = PRF(𝑘𝑠 | |𝑠𝑖 ) to the NIZK-PK, we can remove

the Merkle tree. This is done by having both the client and server

generate a random value for the PRF seed, respectively 𝑘𝑠 and 𝑘𝑐 .
The full PRF seed is defined as 𝑘 = 𝑘𝑐 ⊕ 𝑘𝑠 . Next, we compute a

random value 𝜌 = PRF(𝑘, 𝑠𝑖 ) and verify this inside the NIZK-PK.
By doing this, we only require one verification of a PRF rather

than requiring both a PRF verification and verifying the presence

of a commitment in a Merkle tree. We observe that we could also

have used this construction in our Expand scheme, however the

NIZK-PK for practically sized Merkle trees is more efficient than

that for a secure PRF evaluation [26].

7 Experimental Evaluation
To assess the practical performance of our constructions and to

compare different versions, we conducted various experiments on

synthetic and real data, and report the communication costs and
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computation times. We first describe our implementation of the

schemes, including how the different building blocks were instan-

tiated. This is followed by a description of the experiment setup

and results we obtained to support our efficiency and practicality

claims.

7.1 Implementation
Each scheme was implemented in Rust using the Arkworks v0.4

library [3]. This library provides efficient implementations for zk-

SNARK schemes and other cryptographic primitives with gadgets

to evaluate these primitives inside a zk-SNARK proof circuit. We

used the following instantiations for the cryptographic building

blocks used in our constructions, targeting 128-bit security:

• NIZK-PK: The Groth16 zk-SNARK [25] is used to generate the

NIZK-PKs. This specific pairing-based, circuit zk-SNARK scheme

has gained widespread adoption in real-world applications due

to its efficiency and constant proof size. We note that this scheme

does rely on a trusted setup, which, if broken, would allow any-

one to create false proofs. However, this is not an issue in our

constructions, since the server can execute this trusted setup

by itself. Furthermore, the server is assumed to behave semi-

honestly and does not collude with the clients. The zk-SNARK el-

ements are chosen to be on the BLS12-381 elliptic curve (EC) [12],
which is a known pairing-friendly curve with good (estimated

128-bit) security. Moreover, there is a known embedded curve for

BLS12-381, called Jubjub [13], which allows for efficient, secure

evaluation of EC-primitives inside zk-SNARK circuits.

• Sig: The signature schemes used by client and server are both

implemented using Schnorr signatures [39]. Specifically, we use

EC-Schnorr signatures over the Jubjub curve, due to its efficient

verification inside a zk-SNARK circuit [40]. Additionally, we use

the Blake2s-256 collision resistant hash (CRH) [37] to hash the

input message to a fixed length digest. This CRH was chosen

due to its good security (128 bits against collision attacks), and

efficient use inside a zk-SNARK.

• Comm: Our commitment scheme is instantiated using Pedersen

vector commitments [36] (with 4-bit windows) over the Jubjub

curve. This instantiation is very efficient inside a zk-SNARK cir-

cuit, is information-theoretically hiding, and targets the required

bit security for the binding property.

• PRF: We construct a PRF using keyed Blake2s-256 [37], which

gives a PRF output of 256 bits, or 32 bytes.4 Also here, Blake2s
was chosen to fit the targeted security level, whilst still being

practical inside a zk-SNARK circuit.

• MerkleTree: This primitive is only used inside the Expand scheme.

By using Pedersen commitments to instantiate Comm, we can

use these commitments directly as the leaves of the Merkle tree

due to their fixed size (which is no more than 256 bits in our

case). To compute the higher level nodes and root, we use the

Pedersen hash function [26] to hash the concatenation of both its

children. We use a Pedersen hash rather than Blake2s here, since

it is significantly more efficient inside a zk-SNARK circuit, and

has security guarantees similar to that of Groth16, thereby not

decreasing the security of our scheme. Finally, we note that the

4
Recall that we can evaluate the PRF at more than one point in situations where more

than 32 bytes of randomness is required for evaluating LDP.Apply.

tree depth 𝑑 has to be the smallest power of 2 such that 2
𝑑−1 ≥ 𝑇 ,

where 𝑇 is the total number of time steps we wish to run.

For all primitives we make use of the implementations provided

in Arkworks, where we note that the implementation of Blake2s in

Arkworks is provided by RustCrypto [41]. Our open-source code

was written in such a way that it is simple to change the currently

used primitives by other primitives of ones choosing, as long as they

are compatible with the Arkworks framework. In Appendix F.3,

we discuss alternative choices with respect to the building blocks

we used in our implementation, and how these would influence

security, efficiency, and practicality.

7.2 Experiment setup
We perform two sets of experiments to evaluate and compare the

practical performance of our constructions. The first set uses two

real datasets to evaluate and validate the performance of each

scheme in a real-world setting. The second set of experiments uses

synthetic data to evaluate the scalability of our schemes.

7.2.1 Datasets. We use two datasets in our experiments. The first

dataset is based on the Geolife GPS Trajectory dataset, from which

we extracted a dataset of 182 users with locations for 5 days divided

over 8 bins. The second Smart Meter Dataset contains real-valued
smart-meter reading from 5,567 households. For our experiments,

we consider 5 days of readings from this dataset. The first dataset

uses the LDP algorithm for histograms, whereas the second uses

the one for reals (see Figure 1). Both datasets are described in more

detail in Appendix F.1.

7.2.2 Experiments. For our experiments, we determine the median

runtime of 100 runs (after discarding three warm-up runs), of each

of the algorithms at the client and server side. Specifically, we

look at the computation time for individual clients and the server

in both the GenRand and Randomize/Verify phases. Next to this,

we also measure the byte size of all (compressed) messages. The

experiments were run on a desktop computer with Windows 10

desktop PC with a Ryzen 3600 CPU with 6 cores and 12 threads

@4.0GHz and 16GB dual-channel DDR4 RAM at 3600MHz. The

experiments were run using a stable Rust 1.77.2.

7.3 Concrete applications
For both datasets (and corresponding use cases) the timestamp is

encoded using one byte. Next to this, we use 8 bytes (64 bits) for

each random value we sample. By using 64 bits to sample a random

value from a Bernoulli or Discrete (with 𝑘 ≪ 2
64
) distribution, we

sample from approximated distributions that are statistically close

to the true distributions. Thus, for the Geolife GPS dataset, i.e.,

histogram, we require 16 bytes of randomness (|𝜌 | = 16). For the

smart meter dataset, i.e., real valued data, we require 24 bytes of ran-

domness (|𝜌 | = 24), 8 bytes each for the two Bernoulli distributions

and another 8 bytes for the uniform distribution. Both are below

the 32 bytes that we get as output from one PRF evaluation. We

expect this to be the case for most real-world applications of LDP.
Nonetheless, our general experiments in the next section evaluate

the computation times and message sizes for larger randomness

requirements. The performance of our schemes is not impacted

by any particular value of 𝜖 and 𝛿 used in the DP mechanism. For
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Dataset Scheme

Client Server Communication NIZK-PK

GenRand-1 GenRand-2 Randomize GenRand Verify GenRand-1 GenRand-2 Randomize |ek | |vk | # constraints

Geolife

GPS

Base 0.218 ms 0.302 ms 0.610 s 2.494 ms 3.454 ms 65 B 96 B 360 B 16.1 MB 776 B 55 884

Expand 3.033 ms 0.267 ms 1.213 s 2.005 ms 4.425 ms 64 B 96 B 360 B 23.4 MB 824 B 74 322

Shuffle 0.230 ms 0.305 ms 1.798 s 2.413 ms 2.680 ms 64 B 96 B 200 B 53.2 MB 728 B 173 460

Smart

meter

Base 0.223 ms 0.213 ms 0.619 s 2.146 ms 3.484 ms 65 B 96 B 360 B 16.3 MB 776 B 56 903

Expand 2.475 ms 0.211 ms 1.106 s 1.271 ms 3.540 ms 64 B 96 B 360 B 23.7 MB 824 B 75 341

Shuffle 0.225 ms 0.293 ms 1.821 s 2.119 ms 2.659 ms 64 B 96 B 200 B 53.3 MB 728 B 174 095

Table 1: Performance metrics of all schemes for two real-world applications: client and server computation and communication
costs of a single evaluation of an algorithm/protocol and byte size of ek and vk and number of constraints in the NIZK-PK.

Dataset Scheme

Client Server

GenRand-1 GenRand-2 Rand. GenRand Verify

Geolife

GPS

Base 1.092 ms 1.508 ms 3.032 s 2.392 s 3.316 s

Expand 3.033 ms 0.267 ms 6.045 s 0.385 s 4.425 s

Shuffle 0.230 ms 0.305 ms 8.973 s 0.463 s 2.572 s

Smart

meter

Base 1.113 ms 1.064 ms 3.078 s 59.734 s 96.977 s

Expand 2.475 ms 0.211 ms 5.510 s 7.076 s 98.536 s

Shuffle 0.225 ms 0.293 ms 9.090 s 11.796 s 74.999 s

Table 2: Total computation time for both applications, over
all time steps (𝑇 = 5) (and for the server also over all clients).

completeness, we shall use 5 runs of the LDP mechanism, with the

privacy budget per run, i.e., 𝜖0, determined as in Section 4. Finally,

we note that for the Expand scheme we used a Merkle tree of depth

𝑑MT = 4, i.e., it has 2
4−1 = 8 leaves, since we run both datasets for

𝑇 = 5 time steps.

Results. We show the median computation times and message

sizes for a single run of each algorithm/protocol in Table 1. This

table also includes the size of the NIZK-PK evaluation/verification

key, and the number of constraints. The evaluation key is relatively

large, several megabytes (MB), and needs to be communicated with

each client. Fortunately, its generation is part of the setup and can

be communicated as part of the public parameters long before the

actual protocol evaluation starts. The number of constraints gives

an implementation-independent view on the proof generation and

verification costs and is the most fair way to compare different

schemes. Especially, since proof generation and verification are the

dominating factors in Randomize and Verify. To better understand

the cost in both use cases, we report the overall computation time

for the server and of each individual client in Table 2.

Regarding the communication costs of Base, we see that each
client sends (65 + 360)𝑇 = 2, 125 bytes (B) to the server, and re-

ceives 96𝑇 = 480 bytes. In the Expand scheme, this reduces to

64 + 360𝑇 = 1, 864 sent and 96 received bytes. For the Shuffle
scheme, the amount of bytes sent by each client reduces further to

only 64 + 200𝑇 = 1, 064 bytes.

Moreover, we observe that the Base scheme puts a much higher

load on the server, in both computation and communication
5
costs,

in the GenRand phase. This is due to the fact that this phase needs

to be run again for each time step. Expand requires slightly more

5
Since GenRand has to be run once per time step 𝑡 𝑗 , instead of once overall, Base has
𝑇 times the communication cost of the other schemes for GenRand.

computational effort from each client, however, this is negligible

when compared to the reduction in server computation time, and

overall communication costs. The Shuffle scheme requires least

effort in this phase, but puts clearly higher cost on the client in

Verify. It should be noted, however, that the computational cost for

the client is very practical and lies in the 0.5–2 seconds range for

all schemes. Moreover, the computation and communication costs

of Verify are significantly lower for Shuffle, which makes it more

attractive even in the ‘regular’ local model. We remark that the

results shown in Table 2 do not contain any optimizations on the

server side, e.g. parallelization. Hence, the server’s runtime could

be further reduced by, e.g., distributing the client messages over

different processes.

7.4 General performance
The amount of randomness required for LDP.Apply will have the
largest influence on the computation costs. Thus, we vary |𝜌 | in
steps of 32, which is the output size of our choice of PRF, i.e., smaller

step sizes will show negligible differences in performance. Next

to this, we investigate the performance of the Expand scheme for

different Merkle tree depths. We will vary 𝑑MT between 2 and 11,

i.e., from 2 to 1,024 leaves, which should be more than sufficient

in realistic settings (a total of 1,024 sequential compositions of the

LDP/shuffle mechanisms). In all experiments, we use randomly

generated data, and encode the timestamps and input values using

8 bytes, which is similar to byte sizes that are often used in practice.

Results. First, we observe that the communication size is inde-

pendent of both |𝜌 | and 𝑑MT, and thus only look at the influence

on the runtime. Figure 5 shows the relation between the number

of constraints and the computation times for the phases that are

influenced by changing |𝜌 |. We observe that an increase of |𝜌 | leads
to a significant increase in the constraint count and duration of

Randomize for the Shuffle scheme. However, even for as much as

1,024 bytes of randomness, the computation time remains below 8

seconds, which is still very practical. With 1,024 bytes, one could

sample 128 random values with the same statistical distance (∼2−64)
that we have, or 64 with half that distance. Note that increasing

𝑘 will at most require one or two extra random bytes per random

sampling step, to maintain the same precision. Additionally, we

observe a significant, but approximately linear, increase in com-

putation time for the client in GenRand. Since the duration is in

the millisecond range, this will not cause any practical issues. Fi-

nally, we see a linear increase in the verification time for the server.

However, this verification time is so small, that it will not form
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Figure 5: Graphs detailing the influence of |𝜌 | on the number of constraints (topleft), runtime for the client in
GenerateRandomness (topright) & Randomize (bottomright), and runtime for the server in Verify (bottomleft).

a limiting factor. For the Expand scheme, we observe a linear in-

crease of the number of constraints and an exponential increase of

the duration of GenRand in 𝑑MT (Figure 14 in Appendix F.2). This

clearly agrees with the fact that the amount of random values grows

exponentially in 𝑑MT. The increase in runtime for Randomize is
also approximately linear, and only takes around 2 seconds for a

Merkle tree with 1,024 random values.

7.5 Comparison
In conclusion, we see that the total runtime of each of our schemes

scales approximately linearly in the amount of randomness required,

for both client and server, and that the runtime of each schemes is

very practical for realistically sized parameters. Clearly, the Shuffle
scheme has the lowest communication cost and server load, in

addition to being secure in the shuffle model. Conversely, Expand
puts a smaller load on the client, and slightly higher on the server,

but is not secure in the shuffle model. Finally, the Base protocol
puts a comparatively high communication and computation load on

the server, and in all but some cases performs worse than Expand.
For comparison with related work, we consider [33] which is

the work closest to our construction. As mentioned, the number

of constraints provides a fair comparison for different schemes.

Their scheme requires two NIZK-PK proofs for one transfer of LDP

values. For one input their proofs have 9,769 and 12,882 constraints,

i.e., the combined number of constraints is around 2.5—7.5 times

smaller than our scheme, which means the computational effort

for both client and server will also be smaller by a similar factor.

However, the underlying blockchain structure used in [33] will

also come with its own latency and scalability issues, which our

scheme does not suffer from. Moreover, their scheme does not

consider authenticated inputs, nor does it work in the shuffle model.

On top of that, it is only evaluated for binary RR, which is much

simpler than our construction. Finally, [33] does not discuss the

performance of their approach toGenRand. However, as it is similar

in nature to GenRand
base

, it will suffer from the same drawbacks

when compared to Expand and Shuffle.

8 Conclusion
In this work, we showed how to construct verifiable LDP schemes

for both the local and, most interestingly, the shuffle model, which

guarantee security against data manipulation attacks. Experimental

evaluation of our schemes on realistic use cases underscores their

practicality. Especially the Expand and Shuffle schemes put a very

low load (5–7 ms) on the server, whilst keeping client computation

times down to < 2 seconds. Moreover, we showed the scalability

of our schemes using generic benchmarks. Finally, we believe that

our schemes can be efficiently implemented for a wide variety of

LDP algorithms, due to the generic design of our schemes and the

capabilities of modern NIZK-PK schemes, such as zk-SNARKs.
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A Formal definitions for NIZKs
A NIZK scheme can be formally defined as follows.

Definition 7 (NIZK). We say that (Setup, Prove,Verify, Sim) is a
NIZK scheme with security parameter 𝜆 for a relation R if it has

the following properties:

Completeness: Given a true statement, an honest prover should be

able to convince an honest verifier, i.e., ∀(𝑥,𝑤) ∈ R:

Pr[Verify(vk, 𝑥, 𝜋) ≠ 1|
(ek, vk, trap) ← Setup; 𝜋 ← Prove(ek, 𝑥,𝑤)] ≤ negl(𝜆).

Soundness: If the statement is false, no prover should be able to

convince the verifier that it is true, i.e., for all p.p.t. adversaries A:

Pr[Verify(vk, 𝑥, 𝜋) = 1 ∧ ∀𝑤 : (𝑥,𝑤) ∉ R |
(ek, vk, trap) ← Setup; (𝑥, 𝜋) ← A(ek, vk)] ≤ negl(𝜆).

Zero-knowledge: A proof 𝜋 should reveal no information other than

the truth of the public statement 𝑥 , specifically it should leak no

information about the witness𝑤 , i.e., for all (𝑥,𝑤) ∈ R:

{(ek, vk, trap, 𝑥, 𝜋) | (ek, vk, trap) ← Setup;𝜋 ← Prove(ek, 𝑥,𝑤)}
𝑐≡ {(ek, vk, trap, 𝑥, 𝜋) | (ek, vk, trap) ← Setup;𝜋 ← Sim(trap, 𝑥)}

A NIZK-PK scheme requires the same properties as a NIZK
scheme, but additionally also requires knowledge soundness.

Definition 8 (NIZK-PK). We say that (Setup, Prove,Verify, Sim)
is a NIZK-PK scheme with security parameter 𝜆 for a relation R if

it is a NIZK that additionally satisfies knowledge soundness:
There exists an extractor EA that can produce a valid witness

given complete access to the adversary’s A state, i.e., for all p.p.t.

adversaries A, there exists a p.p.t. extractor EA such that:

Pr[Verify(vk, 𝑥, 𝜋) = 1 ∧ (𝑥,𝑤) ∉ R | (ek, vk, trap) ← Setup;

(𝑥, 𝜋) ← A(ek, vk);𝑤 ← EA (ek, vk, trap, 𝑥)] ≤ negl(𝜆) .

B Expand protocol
The precise definition of the Expand scheme is shown in Figure 6.

C Appendix to Section 4
C.1 De-Biased Output
Let 𝑋𝑖 denote the random variable representing user 𝑖’s output

after running the LDP algorithm for reals. Let 𝑋 =
∑𝑛
𝑖 𝑋𝑖 . We are

interested in finding:

E(𝑋 ) =
𝑛∑︁
𝑖=1

E(𝑋𝑖 )

Let 𝑝 𝑗 be the probability that user 𝑖 outputs 𝑗 ∈ {0, 1, . . . , 𝑘}. Let 𝑞 𝑗
be the true probability of any user having input 𝑗 . Then,

𝑝 𝑗 =

(
1 − 𝛾 + 𝛾

𝑘 + 1

)
𝑞 𝑗 +

𝛾

𝑘 + 1 (1 − 𝑞 𝑗 )

= (1 − 𝛾)𝑞 𝑗 +
𝛾

𝑘 + 1
Then

E(𝑋𝑖 ) =
𝑘∑︁
𝑗=0

𝑗𝑝 𝑗

=

𝑘∑︁
𝑗=0

𝑗

(
(1 − 𝛾)𝑞 𝑗 +

𝛾

𝑘 + 1

)
= (1 − 𝛾)©­«

𝑘∑︁
𝑗=0

𝑗𝑞 𝑗
ª®¬ + 𝛾𝑘2

= (1 − 𝛾)𝜇 + 𝛾𝑘
2

where 𝜇 =
∑𝑘

𝑗=0 𝑗𝑞 𝑗 is the true expected input of any user. Thus,

E(𝑋 ) = 𝑛

(
(1 − 𝛾)𝜇 + 𝛾𝑘

2

)
⇒ 𝑛𝜇

𝑘
=

1

1 − 𝛾

(
E(𝑋 )
𝑘
− 𝛾𝑛

2

)
.

Therefore, the expected value of the sum to precision 𝑘 output by

the LDP algorithm, i.e., E(𝑋 )/𝑘 , gives us the expectation of the sum

of true inputs to precision 𝑘 , i.e., 𝑛𝜇/𝑘 . Thus, given the sum of these

values for a sample, we can estimate the true sum as above.

C.2 LDP inside NIZK
As discussed in Section 4, we should be able to perform random

sampling given a fixed number of random bits.

Example. To better explain this requirement, consider the exam-

ple where we sample a random element from {0, 1, 2} using uniform
random bits. In practice, an often used method to achieve this is

to sample two random bits, and map this as follows 00→ 0; 01→
1; 10→ 2. If the random bits are 11 we sample two new random bits

and repeat the process, until we terminate.
6
This process terminates

(with probability 1), after a finite number steps. However, due the

variable requirement of random bits, we cannot use this sampling

method inside aNIZK proof. When considering this more closely, it

becomes evident that there is no way to sample a random element

from {0, 1, 2} using a fixed number of random bits. This problem

occurs in many random sampling problems, but can fortunately

easily be solved, by sampling from an approximate distribution that

is statistically close to the true distribution.

For this example, we can sample an ℓ-bit number 𝜌 , such that

2
ℓ
is sufficiently large. Subsequently, we determine 3 intervals:

[0, ⌊2ℓ/3⌋), [2ℓ/3, 2 · ⌊2ℓ/3⌋), and [2 · ⌊2ℓ/3⌋, 2ℓ − 1], and if 𝜌 is part

of the 𝑗-th interval, we return 𝑗 as our random sample. Observe,

that all but the last interval have the exact same size of ⌊2ℓ/3⌋,
and only the final interval contains 2

ℓ − 3 · ⌊2ℓ/3⌋ ≤ 2 additional

elements. Thus, for sufficiently large ℓ , the distribution generated

6
While the actual method might vary in practice, this simple version that we present

here, is sufficient to describe the problem in the context of NIZK proofs.

https://www.scitepress.org/PublicationsDetail.aspx?ID=HUXWvgGpS1M=&t=1
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VLDPPipeline
expand

1 : pp← Setup
expand

(1𝜆 )
2 : Server computes (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen

expand
(pp)

3 : for Each client 𝑖 (in parallel)

4 : Client obtains out𝑖𝑐 = GenRandexpand (pp)
5 : for 𝑗 in {1, . . . ,𝑇 }

6 : Client 𝑖 obtains fresh (𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 , 𝜎
𝑖,𝑗
𝑥 = Sig.Signsk𝑖 (𝑥 | |𝑡𝑥 ) )

7 : Client 𝑖 runs (𝑡 𝑗 , 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 ) =

Randomizeexpand (pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡
𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥 )

8 : Server obtains 𝑥̃
𝑖,𝑗
𝑢 = Verify

expand
(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 )

9 : Server computes result from all 𝑥̃
𝑖,𝑗
𝑢

KeyGen
expand

(pp)
1 : (ek, vk) ← NIZK-PK.KeyGen(Rexpand )
2 : (sk𝑠 , pk𝑠 ) ← Sig.KeyGen(pp

sig
)

3 : pp = (pk𝑠 , ppnizk, ppsig, ppcomm
, ®𝑠 )

4 : 𝐿 ← ∅
5 : return (ek, vk, pk𝑠 , sk𝑠 , 𝐿)

Setup
expand

(1𝜆 )
1 : pp

sig
← Sig.Setup(1𝜆 )

2 : pp
comm

← Comm.Setup(1𝜆 )
3 : ®𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑇 ) ←$ {0, 1}𝜆×𝑇

4 : ®𝑡 = (𝑡0, . . . , 𝑡𝑇 )
5 : pp = (Rexpand, ppsig, ppcomm

, ®𝑠, ®𝑡 )
6 : return pp

Rexpand
Given (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , 𝑗, rt, 𝜌𝑠 , 𝑥̃ ) , the prover knows

(𝑡𝑥 , 𝑥, 𝜎𝑥 , 𝜌 𝑗
𝑐 , 𝑟

𝑗
𝜌𝑐 , cm

𝑗
𝜌𝑐 ) such that:

1 : 𝑡 𝑗−1 < 𝑡𝑥 ≤ 𝑡 𝑗

2 : Sig.Verifypk𝑖 (𝜎𝑥 , 𝑥 | |𝑡𝑥 ) = 1

3 : cm𝑗
𝜌𝑐 = Comm(𝜌 𝑗

𝑐 ; 𝑟
𝑗
𝜌𝑐 )

4 : cm𝑗
𝜌𝑐 is 𝑗 -th leaf ofMerkleTree with root rt

5 : 𝜌 = 𝜌
𝑗
𝑐 ⊕ 𝜌𝑠

6 : 𝑥̃ = LDP.Apply(𝑥 ; 𝜌 )

GenRandexpand (pp)
Client 𝑖 Server

1 : 𝑘𝑐 ←$ {0, 1}∗

2 : ®𝜌𝑐 = (PRF(𝑘𝑐 , 1), PRF(𝑘𝑐 , 2), . . . , PRF(𝑘𝑐 ,𝑇 ) )
3 : ®𝑟𝜌𝑐 ←$ {0, 1}𝑇 ×∗

4 : ®cm𝜌𝑐
= (Comm(𝜌1

𝑐 ; 𝑟
1

𝜌𝑐
), . . . ,Comm(𝜌𝑇𝑐 ; 𝑟𝑇𝜌𝑐 ) )

5 : rt = MerkleTree( ®cm𝜌𝑐
) (pk𝑖 , rt) If pk𝑖 does not belong to 𝑖 , abort

6 : If 𝑖 ∈ 𝐿, abort
7 : 𝐿 ← 𝐿 ∪ {𝑖 }
8 : 𝑘𝑠 ←$ {0, 1}∗

9 : If Sig.Verifypk𝑠 (𝜎𝑠 , pk𝑖 | |rt | |𝑘𝑠 ) ≠ 1, abort
(𝑘𝑠 , 𝜎𝑠 ) 𝜎𝑠 = Sig.Signsk𝑠 (pk𝑖 | |rt | |𝑘𝑠 )

10 : return ( ®𝜌𝑐 , ®𝑟𝜌𝑐 , ®cm𝜌𝑐
, rt, 𝑘𝑠 , 𝜎𝑠 )

Randomizeexpand (pp, ek, 𝑡 𝑗 , out𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑥 )
1 : 𝜌𝑠 = PRF(𝑘𝑠 | |𝑠 𝑗 )

2 : 𝜌 = 𝜌
𝑗
𝑐 ⊕ 𝜌𝑠

3 : 𝑥̃ = LDP.Apply(𝑥, 𝜌 )

4 :
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , 𝑗, rt, 𝜌𝑠 , 𝑥̃ )

5 : ®𝑤 = (𝑡𝑥 , 𝑥, 𝜎𝑥 , 𝜌 𝑗
𝑐 , 𝑟

𝑗
𝜌𝑐 , cm

𝑗
𝜌𝑐 )

6 : 𝜋 = NIZK-PK.Proveek ( ®𝜙 ; ®𝑤 )
7 : Send (𝑥̃, 𝜋, (pk𝑖 , rt, 𝑘𝑠 , 𝜎𝑠 ) ) to server

Verify
expand

(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖 , 𝜋𝑖 , 𝜏𝑖 )
1 : Parse 𝜏𝑖 = (pk𝑖 , rt, 𝑘𝑠 , 𝜎𝑠 , ) from client 𝑖

2 : If pk𝑖 does not belong to 𝑖 , abort

3 : If Sig.Verifysk𝑠 (𝜎𝑠 , pk𝑖 | |rt | |𝑘𝑠 ) ≠ 1, abort

4 : 𝜌𝑠 = PRF(𝑘𝑠 | |𝑠 𝑗 )

5 :
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑖 , 𝑗, rt, 𝜌𝑠 , 𝑥̃𝑖 )

6 : If NIZK-PK.Verifyvk (𝜋𝑖 , ®𝜙 ) ≠ 1, abort

7 : return 𝑥̃𝑖

Figure 6: Expand scheme for VLDP between one server and multiple clients, requiring only round of GenRand per client.

by this sampling method is statistically close to the true distribution

we wish to sample from.

Our approximate sampling methods. Such approximations can

be easily defined for most well-known distributions. For the LDP

algorithms defined in Figure 1, we only need to approximate the

Bernoulli distribution and the Discrete Uniform distribution. Fig-

ure 8 shows two algorithms for sampling from these distributions.

It is evident that these sampling methods match our require-

ments, and moreover are also statistically close to the true distri-

butions, with the statistical distance decreasing exponentially in ℓ .

Using these approximate distributions, we define our approximate

LDP algorithms as in Figure 7.

Clearly, for sufficiently large bitsizes of all 𝜌 𝑗 , these algorithms

are statistically close approximations of the true LDP algorithms.

Moreover, the approximation error decreases exponentially in the

bitsize of the different 𝜌 𝑗 .
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LDP.Apply(𝑥 ; 𝜌 ) for Reals
input: 𝑘 ∈ N, 𝛾 ∈ [0, 1], 𝑥 ∈ [0, 1], 𝜌 ∈ {0, 1}∗

Split 𝜌 into (𝜌1, 𝜌2, 𝜌3 )
𝑥 ← ⌊𝑥𝑘 ⌋ + B̃er(𝑥𝑘 − ⌊𝑥𝑘 ⌋; 𝜌1 )
𝑏 ← B̃er(𝛾 ; 𝜌2 )
if 𝑏 = 0 do
𝑥̃ ← 𝑥

else

𝑥̃ ← Ũnif( [0, 𝑘 ]; 𝜌3 )
return 𝑥̃

LDP.Apply(𝑥 ; 𝜌 ) for Histograms

input: 𝑘 ∈ N, 𝛾 ∈ [0, 1], 𝑥 ∈ [𝑘 ], 𝜌 ∈ {0, 1}∗

1 : Split 𝜌 into (𝜌1, 𝜌2 )
2 : 𝑏 ← B̃er(𝛾 ; 𝜌1 )
3 : if 𝑏 = 0 do
4 : 𝑥̃ ← 𝑥

5 : else

6 : 𝑥̃ ← Ũnif( [1, 𝑘 ]; 𝜌2 )
7 : return 𝑥̃

Figure 7: Approximate LDP algorithms for reals and histograms.

B̃er(𝛾 ; 𝜌 )
input: 𝛾 ∈ [0, 1], 𝜌 ∈ {0, 1}ℓ

Interpret 𝜌 as an integer

if 𝜌 ≤ ⌊𝛾 · (2ℓ − 1) ⌋
𝑏 ← 1

else
𝑏 ← 0

return 𝑏

Ũnif( [𝑙𝑏,𝑢𝑏 ]; 𝜌 )
input: 𝑙𝑏,𝑢𝑏 ∈ Z : 𝑙𝑏 < 𝑢𝑏, 𝜌 ∈ {0, 1}ℓ

Interpret 𝜌 as an integer

Δ← ⌊2ℓ /(𝑢𝑏 − 𝑙𝑏 + 1) ⌋
for 𝑗 in{0, . . . ,𝑢𝑏 − 𝑙𝑏 − 1}
if 𝑗 · Δ ≤ 𝜌 < ( 𝑗 + 1) · Δ
return 𝑙𝑏 + 𝑗

return 𝑢𝑏

Figure 8: Algorithms for approximately sampling from the
Bernoulli and Discrete Uniform distribution.

D Implementing the Shuffler
In practice a trusted shuffler can be implemented in a number of

ways. One way to do this is by means of a mixnet, or mix net-

work. A mixnet is a network involving several parties, that takes

as input a list of messages and returns the same messages in a

randomly permuted order. Mixnets were first introduced in [15]

to realize untraceable e-mail and can be implemented in a variety

of ways. An overview can be found in, e.g., [38]. In its most basic

form, mixnets are implemented using a publicly known sequence of

servers, whose public encryption keys are also available. Any client

wishing to send a message, encrypts their message in a layered way,

i.e., like an onion, using the public keys of the servers in reverse

order. This encrypted ‘onion’ is then sent to the first server, who

batches a certain buffer and messages and then forwards this buffer

in a random order, stripping one layer of encryption. The following

servers in the sequence repeat this process, until the final server

sends the inside of the onion, the real message, to the recipient.

Implementations of mixnets that produces verifiably random per-

mutations also exist. See for example [8] for an implementation of

verifiable, oblivious shuffling using trusted hardware.

In conclusion, following also the discussion in [8], there are

three main options for implementing a true, honest-but-curious,

non-colluding shuffler. The shuffler could be (1) a single trusted

third-party; (2) a group of parties, in which trust is distributed;

(3) one or more parties using trusted hardware. The schemes as

presented in this work are implementation-agnostic, i.e., they would

work with any implementation of the shuffler.

E Security Proofs and Experiments
In this section, we provide security proofs for the three protocols,

according to our definitions in Section 5. Before, we detail the proofs,

we provide the explicit experiments in each of the definitions and

give some intuition in their construction.

E.1 Experiments
Figures 9 to 12 describe the experiments used in the security def-

initions of Section 5.3. In all experiments, we explicitly describe

the generation of the secret and public keys of each client’s trusted

environment on the second line of each experiment. In reality, this

is a step separate from our system, however, for completeness of

the experiment definitions, we explicitly define it here.

Below, we give the formal definitions of these experiments, and

provide some further intuition regarding their construction.

In the completeness experiment (Figure 9), we verify that the

output 𝑥 , with accompanying NIZK-PK proof 𝜋 , and public values

𝜏𝑥 , generated by an honest client, is accepted by an honest server,

even when an adversary A chooses the client’s inputs (𝑥, 𝑡𝑥 ).7

ExpComp

A (1𝜆, 𝑛,𝑇 )
1 : pp← Setup(1𝜆 )
2 : {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3 : (ek, vk, pk𝑠 , sk𝑠 , 𝐿) ← KeyGen(pp)
4 : out𝑖𝑐 ← GenRand(pp, aux)

5 : {𝑥𝑖,𝑗 , 𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , sk𝑠 , 𝐿, {pk𝑖 }𝑖 )

6 : if ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇 ] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

7 : return {⊤}𝑖,𝑗
8 : 𝜎

𝑖,𝑗
𝑥 ← Sig.Signsk𝑖 (𝑥

𝑖,𝑗 | |𝑡𝑖,𝑗𝑥 )

9 : 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ← Randomize(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝑡

𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥 )

10 : return {Verify(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ) }𝑖,𝑗

Figure 9: Experiment for completeness definition.

The soundness experiment (Figure 11) guarantees that no mali-

cious, possibly colluding, clients are able to return a value 𝑥 that is

7
Completeness does not guarantee correctness of 𝑥̃ . Correctness is implicitly guaran-

teed by soundness, which is defined below.
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ExpZk-RealA (1𝜆, 𝑛,𝑇 , {𝑥𝑖,𝑗 }𝑖,𝑗 )
1 : pp← Setup(1𝜆 )
2 : {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3 : (ek, vk, pk𝑠 , sk𝑠 , 𝐿, trap) ← A(pp)
4 : out𝑖𝑐 ← GenRandA (pp, aux)

5 : {𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , sk𝑠 , 𝐿)

6 : 𝜎
𝑖,𝑗
𝑥 ← Sig.Signsk𝑖 (𝑥

𝑖,𝑗 | |𝑡𝑖,𝑗𝑥 )

7 : { (𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ) }𝑖,𝑗 ← Randomize(pp, ek, 𝑡 𝑗 , out𝑖𝑐 , 𝑥𝑖,𝑗 , 𝜎

𝑖,𝑗
𝑥 )

8 : if trap is not valid trapdoor for (R, ek, vk)

9 : ∨ ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇 ] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

10 : return ⊥
11 : A ← {𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 }𝑖,𝑗
12 : return (viewA , {𝑥̃𝑖,𝑗 }𝑖,𝑗 )

ExpZk-SimA,S (1𝜆, 𝑛,𝑇 , {𝑦𝑖,𝑗 }𝑖,𝑗 ) )
1 : pp← Setup(1𝜆 )
2 : {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp, {pk𝑖 }𝑖 )
3 : (ek, vk, pk𝑠 , sk𝑠 , 𝐿, trap) ← A(pp, {pk𝑖 }𝑖 )
4 : out𝑖𝑐 ← SA1 (pp, pk𝑠 )

5 : {𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , sk𝑠 , 𝐿)

6 : { (𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ) }𝑖,𝑗 ← S2 (pp, ek, trap, 𝑡 𝑗 , out𝑖𝑐 , 𝑦𝑖,𝑗 )

7 : if trap is not valid trapdoor for (R, ek, vk)

8 : ∨ ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇 ] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

9 : return ⊥
10 : A ← {𝑦̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏𝑖,𝑗 }𝑖,𝑗
11 : return (viewA , {𝑦𝑖,𝑗 }𝑖,𝑗 )

Figure 10: Experiments for the zero-knowledge definition.

not an honest evaluation of LDP.Apply(𝑥 ; 𝜌), for a truly random,

independently sampled 𝜌 . In this experiment, the adversary is al-

lowed to choose 𝑡𝑥 and controls all clients, who may deviate from

the protocol arbitrarily. The goal of the adversary is to let the server

accept a tuple (𝑥, 𝜋, 𝜏𝑥 ), where 𝑥 is not honestly computed.

ExpSnd-RealA,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖,𝑗 }𝑖,𝑗 )
1 : pp← Setup(1𝜆 )
2 : {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3 : (ek, vk, pk𝑠 , sk𝑠 , 𝐿, {pk𝑖 }𝑖 ) ← KeyGen(pp)

4 : {𝑡𝑖,𝑗𝑥 }𝑖,𝑗 ← A(pp, ek, vk, pk𝑠 , {𝑥𝑖,𝑗 }𝑖,𝑗 )

5 : if ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇 ] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

6 : return {⊥}𝑖,𝑗
7 : 𝜎

𝑖,𝑗
𝑥 ← Sig.Signsk𝑖 (𝑥

𝑖,𝑗 | |𝑡𝑖,𝑗𝑥 )

8 : { (𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ) }𝑖,𝑗 ← A𝑆∗ (pp, ek, vk, pk𝑠 , {𝑥𝑖,𝑗 , 𝑡

𝑖,𝑗
𝑥 , 𝜎

𝑖,𝑗
𝑥 , pk𝑖 }𝑖,𝑗 )

9 : return {Verify(pp, vk, 𝑡 𝑗 , 𝑥̃𝑖,𝑗 , 𝜋𝑖,𝑗 , 𝜏
𝑖,𝑗
𝑥 ) }𝑖,𝑗

Figure 11: Experiment for soundness definition.

The experiments for zero-knowledge (Figure 10), define two

different worlds. Zk-real denotes the real world, in which the ad-

versary A acts as the server, and interacts with honest clients

(portrayed by the environment). In Zk-sim, A acts as a server also,

but instead interacts with a simulator S. This simulator pretends to

be an honest client, and should be able to generate messages with

the same distribution as an actual client would, but does not have

access to the input values (𝑥, 𝑡𝑥 ). The adversary wins this game, if

it is able to distinguish between the different worlds.

Finally, in the shuffle indistinguishability experiment (Figure 12),

the adversary A portrays the server and attempts to distinguish

between two honest clients. These honest clients, get the same

input (𝑥, 𝑡𝑥 ), chosen byA, after both having executed theGenRand
protocol with A. Subsequently, the environment only sends the

outputs of Randomize for one of the clients toA.A wins the game

if it is able to successfully determine to which client those outputs

belong.

ExpSh-IndA (𝜆)
1 : pp← Setup(1𝜆 )
2 : {sk𝑖 , pk𝑖 }𝑖 ← Sig.KeyGen(pp)
3 : (ek, vk, pk𝑠 , sk𝑠 , 𝐿, trap) ← A(pp, {pk𝑖 }𝑖 )
4 : A(pp) → 𝑡 𝑗

5 : for 𝑖 ∈ {0, 1}
6 : GenRandA (pp, 𝑡 𝑗 ) → out𝑖𝑐
7 : A(pp) → (𝑥, 𝑡𝑥 )
8 : 𝑏 ←$ {0, 1}
9 : Sig.Signsk𝑏 (𝑥, 𝑡𝑥 ) → 𝜎𝑏

𝑥

10 : Randomize(pp, ek, 𝑡 𝑗 , out𝑏𝑐 , 𝑥, 𝑡𝑥 , 𝜎𝑏
𝑥 ) → (𝑥̃𝑏 , 𝜋𝑏 , 𝜏𝑏𝑥 )

11 : A(𝑥̃𝑏 , 𝜋𝑏 , 𝜏𝑏𝑥 ) → 𝑏′

12 : if trap is not valid trapdoor for (R, ek, vk)

13 : ∨ ∃𝑖 ∈ [𝑛], 𝑗 ∈ [𝑇 ] : 𝑡𝑖,𝑗𝑥 ≤ 𝑡 𝑗−1 ∨ 𝑡𝑖,𝑗𝑥 > 𝑡 𝑗

14 : return ⊥
15 : return 𝑏′ = 𝑏

Figure 12: Experiment for shuffle indistinguishability.

E.2 Proofs
We focus on a full proof for the Shuffle scheme, as this is our

main result, and the proofs for the other schemes are analogous.

Then, for brevity, we describe proof sketches for the other schemes,

highlighting the differences with the proof for the Shuffle scheme.

Theorem 1. VLDPshuffle satisfies completeness, soundness, zero-
knowledgeness and shuffle indistinguishability, given that NIZK-PK
is secure for RBase, Comm a secure commitment scheme, PRF a se-
cure pseudo-random function, and Sig an EUF-CMA secure digital
signature scheme.

Proof. We prove the properties one by one:

(1) Completeness: We see that the scheme satisfies completeness

as long as the Randomize
shuffle

procedure outputs a valid NIZK-PK
proof 𝜋 for R

shuffle
. It therefore suffices to show that the proof for

R
shuffle

is correctly computed when all parties are honest.
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To prove this, fix an arbitrary 𝑖 ∈ [𝑛] and an arbitrary 𝑗 ∈ [𝑇 ].
First we observe that statement 1 of R

shuffle
has to hold by the

condition on 𝑡
𝑖, 𝑗
𝑥 . Statement 2 of R

shuffle
holds by construction of

𝜎
𝑖, 𝑗
𝑥 . Also, statements 3 and 5 hold, because these correspond exactly

to the computations done in GenRand
shuffle

by the honest parties.

Finally, statements 4, 6, and 7 hold by the fact that an honest party

will evaluate these correctly in Randomize
shuffle

.

Therefore, we can conclude that the proof 𝜋 will be verified

successfully, due to the fact that our NIZK-PK scheme is complete

itself, i.e., Verify
shuffle

≠ ⊥, except for some probability that is

negl(𝜆). Since, 𝑖 and 𝑗 were picked arbitrarily, and both𝑇 and 𝑛 are

poly(𝜆), we can conclude that the total probability is also negl(𝜆).

(2) Soundness: In order to prove soundness, we will describe a

series Exp
0
to Exp

3
of hybrid experiments, where Exp

0
is equal

to ExpSnd-RealA,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗 ) (from Definition 4 as defined in

Figure 11) and Exp
3
is close to the ideal. Recall, that by definition of

soundness, the adversaryA, who controls all, potentially malicious,

clients, can sendmessages to and receive corresponding replies from

an honest server S∗. We will show that all these experiments are

(computationally) indistinguishable, and thereforeVLDP
shuffle

is sound.

Exp
0
: The original experiment ExpSnd-RealA,𝑆∗ (1𝜆, 𝑛,𝑇 , {𝑥𝑖, 𝑗 }𝑖, 𝑗 ).

Exp
1
: This is the same experiment as Exp

0
, except that now we

run a p.p.t. knowledge extractor EA to obtain the witness

®𝑤 thatA used to generate the proof. We know that such an

extractor exists, due to knowledge soundness of NIZK-PK.
Now, instead of checking a proof 𝜋𝑖, 𝑗 , the verifier uses

®𝑤𝑖, 𝑗
and
®𝜙𝑖, 𝑗 to check the statements of R

shuffle
directly.

Clearly, both games are identical up to the probability that

A wins the knowledge soundness game for one of the

proofs. By knowledge soundness of NIZK-PK we know

that this probability is negligible:

| Pr[Exp
0
] − Pr[Exp

1
] | ≤ negl(𝜆).

Exp
2
: This is the same experiment as Exp

1
, except that now the

verifier asserts that the values 𝑥 and 𝑡𝑥 in ®𝑤𝑖, 𝑗
are equal

to 𝑥𝑖, 𝑗 and 𝑡
𝑖, 𝑗
𝑥 . If this is not the case, we set fail2 = true.

Clearly both games are identical up to Fail2:

| Pr[Exp
1
] − Pr[Exp

2
] | ≤ Pr[Fail2] .

Since Sig is an EUF-CMA secure signature scheme that

has been used to generate 𝜎𝑥 and A does not know sk𝑖 , it
follows that Pr[Fail2] ≤ negl(𝜆).

Exp
3
: This is the same experiment as Exp

2
, except that the server

𝑆∗ now also maintains a list 𝑅 of entries (𝑖, (pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠 )).

These entries correspond to messages (pk𝑖 , cm𝑘𝑐
) received

during occurrences of the GenRand
shuffle

protocol with

user 𝑖 . 𝑘𝑖𝑠 corresponds to the server seed 𝑘𝑠 that was gener-

ated by the server during this particular occurrence. Note,

that each user 𝑖 can only have one entry in 𝑅, due to step

4 in GenRand
shuffle

. Now, if fail2 has not been set, the

server asserts, in Verify
shuffle

, that 𝑅 indeed contains an

entry (★, (pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠 )), where (pk𝑖 , cm𝑖

𝑘𝑐
, 𝑘𝑖𝑠 ) are the cor-

responding elements of ®𝑤𝑖, 𝑗
. If this is not the case, we set

S1 (pp, pk𝑠 )
1 : 𝑘𝑐 ←$ {0, 1}∗

2 : 𝑟𝑘𝑐 ←$ {0, 1}∗

3 : cm𝑘𝑐
= Comm(𝑘𝑐 ; 𝑟𝑘𝑐 )

4 : Send (pk𝑖 , cm𝑖
𝑘𝑐
)to A as client 𝑖 .

5 : Receive (𝑘𝑠 , 𝜎𝑠 ) from A.

6 : return (𝑘𝑐 , 𝑟𝑘𝑐 , cm𝑘𝑐
, 𝑘𝑠 , 𝜎𝑠 )

S2 (pp, ek, trap, 𝑡 𝑗 , out𝑖𝑐 , 𝑦𝑖,𝑗 )

1 :
®𝜙 = (𝑡 𝑗−1, 𝑡 𝑗 , pk𝑠 , 𝑠𝑖 , 𝑦𝑖,𝑗 )

2 : 𝜋 ← Sim
nizk
(R, trap, ®𝜙 )

3 : return (𝜋, 𝑦𝑖,𝑗 )

Figure 13: Simulator S = (S1,S2) for the zero-knowledge
property proof of Theorem 1.

fail3 = true. Clearly both games are identical up to Fail3:

| Pr[Exp
2
] − Pr[Exp

3
| ≤ Pr[Fail3] .

The only way, by which Fail3 can occur, is if the client

can produce a tuple (pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠 ) with signature 𝜎𝑖𝑠 , such

that Sig.Verifypk𝑠 (𝜎
𝑖
𝑠 , pk𝑖 | |cm𝑖

𝑘𝑐
| |𝑘𝑖𝑠 ) = 1. S∗ will only have

generated one signature for each pk𝑖 , due to step 4 in

GenRand
shuffle

, and this tuple is on 𝑅. Therefore, for Fail3
to occur, the client must have forged a signature on a tu-

ple (pk′𝑖 , cm𝑖′
𝑘𝑐
, 𝑘𝑖′𝑠 ), where at least one element differs from

(pk𝑖 , cm𝑖
𝑘𝑐
, 𝑘𝑖𝑠 ). Since Sig is an EUF-CMA secure signature

scheme that has been used to generate 𝜎𝑖𝑠 and A does not

know sk𝑠 , it follows that Pr[Fail3] ≤ negl(𝜆).
Finally, we observe that if Fail3 does not occur, we are essentially

at a point where 𝑥𝑖, 𝑗 = LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖 ), where 𝜌𝑖 = PRF(𝑘𝑖𝑐 ⊕
𝑘𝑖𝑠 , 𝑠

𝑗 ). We observe that 𝑘𝑠 is chosen uniformly at random and

independently of 𝑥𝑖, 𝑗 . Moreover, 𝑘𝑖𝑠 is bound to all 𝑥𝑖, 𝑗 , since the

same public key pk𝑖 is used inside 𝜎𝑠 and for the verification of

𝜎𝑥 . Also, 𝑠
𝑗
is public and independent of all 𝑥𝑖, 𝑗 and all 𝑥𝑖, 𝑗 are

given. Next to this, 𝑘𝑐 is uniquely determined by cm𝑘𝑐
, except

with negligible probability, according to the binding property of

Comm. And, since cm𝑘𝑐
is fixed before 𝑘𝑠 is chosen uniformly at

random, 𝑘𝑐 ⊕ 𝑘𝑠 is also be a uniform random bitstring, and by the

definition of a secure PRF, 𝜌 will also be distributed at random,

except with negligible probability. Therefore it follows that the

following probability is negligible in 𝜆:

| Pr[Exp
3
] − Pr

[
LDP.Apply(𝑥𝑖, 𝑗 ; 𝜌𝑖, 𝑗 ) = {𝑦𝑖, 𝑗 }𝑖, 𝑗

��𝜌𝑖, 𝑗 ←$ {0, 1}∗
]
|.

(3) Zero-knowledge: To show that VLDP
shuffle

has the zero-

knowledge property, we will show that the joint distribution of

the output and all messages received by A in the real scheme

is indistinguishable from those generated by the simulator S =

(S1,S2) (see Figure 13). Note, that in our model we assume that

the verifier behave like an honest-but-curious adversary, and thus

follows the protocol. The first simulator algorithm S1, simulates

a client in GenRand
shuffle

, thereby also interacting with A, who

represent the server. The second simulator algorithm S2, simulates

the Randomize
shuffle

algorithm.

First, we observe that the message produced by S1 is distributed
as in the real experiment, since our server is honest-but-curious

and S1, follows the exact same steps as GenRand
shuffle

. Second, we

observe that 𝑦𝑖, 𝑗 is fixed. Third, we observe that the values in ®𝜙 are

either public or fixed, and therefore are indistinguishable between
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the real world and the simulator. Since NIZK-PK is a secure scheme

for R
shuffle

with the zero-knowledge property, and trap is a valid

trapdoor,S2 can use theNIZK-PK simulator Sim to generate a proof

𝜋 with the correct distribution, i.e., such that 𝜋 passes verification

for
®𝜙 . From these observations it follows that the joint distribution

of the real scheme and its output, is indistinguishable from that

generated by S, and therefore the scheme is zero-knowledge.

(4) Shuffle indistinguishability: To prove shuffle indistinguisha-

bility, we describe a series of hybrid experiments Exp
0
– Exp

3
,

where Exp
0
is equal to ExpSh-IndA , and Exp

3
leaves A essentially

random guessing. We will show that all these experiments are

indistinguishable, and thereforeVLDP
shuffle

satisfies shuffle in-

distinguishability.

Exp
0
: This is the original experiment ExpSh-IndA in Definition 6.

Exp
1
: This is the same experiment as Exp

0
, except that now we

also give trap as input to Randomize
shuffle

and replace the

computation of 𝜋𝑏 (step 6 in Randomize
shuffle

), by a sim-

ulated proof using the NIZK-PK simulator Sim using trap.
By the zero-knowledge property of NIZK-PK we conclude

that both experiments are indistinguishable:

| Pr[Exp
0
] − Pr[Exp

1
] | ≤ negl(𝜆).

Exp
2
: This is the same experiment as Exp

1
, except that in step 1

of Randomize
shuffle

we replace 𝑘𝑐 by a random bit-string

of the same length. We will still pass verification, since

𝜋 has been replaced by a simulated proof. Finally, by the

hiding property of Comm, A cannot distinguish between

the usage of𝑘𝑐 or some other random bitstring of the length,

except with negligible probability. Therefore, we conclude

that both experiments are indistinguishable:

| Pr[Exp
1
] − Pr[Exp

2
] | ≤ negl(𝜆).

Exp
3
: This is the same experiment as Exp

2
, except that we replace

𝜌 in step 2 of Randomize
shuffle

by a random bit-string of the

same length. We will still pass verification, since 𝜋 has been

replaced by a simulated proof. Finally, since 𝑘𝑐 was already

replaced by a uniform random bitstring, we know that 𝑘

is a uniform random bitstring, and by the fact that PRF is
secure, PRF(𝑘, 𝑠 𝑗 ) is indistinguishable from a random bit-

string of the same length. Therefore, we conclude that both

experiments are indistinguishable:

| Pr[Exp
2
] − Pr[Exp

3
] | ≤ negl(𝜆).

We observe that 𝜋𝑏 is replaced by a simulated proof in Exp
3
, i.e., 𝜋0

has the same distribution as 𝜋1. Moreover, 𝑥𝑏 = LDP.Apply(𝑥 ; 𝑟 ),
where 𝑥 is the same for both values of 𝑏 and 𝑟 is chosen uniformly

at random, i.e., 𝑥0 has the same distribution as 𝑥1. Finally, 𝜏𝑏𝑥 is

empty. Therefore (𝑥𝑏 , 𝜋𝑏 , 𝜏𝑏𝑥 ) has the same distribution for either

value of 𝑏, meaning the advantage of A in Exp
3
is essentially the

same as if A were random guessing. Thus, we conclude that

| Pr[Exp
3
] − 1

2

| ≤ negl(𝜆) .

□

Theorem 2. VLDPbase satisfies completeness, soundness, and
zero-knowledgeness, given that NIZK-PK is secure for RBase, Comm

a secure commitment scheme, PRF a secure pseudo-random function,
and Sig an EUF-CMA secure digital signature scheme.

Proof (Sketch). We prove the properties one by one:

(1) Completeness: By inspection of the protocol and completeness

of NIZK-PK.

(2) Soundness: Also here, we define a series of hybrid experi-

ments, where Exp
0
is equal to ExpSnd-RealA,𝑆∗ and Exp

3
is close to the

ideal. In Exp
1
, we again use the knowledge extractor EA to obtain

the witness ®𝑤 and verify the statements in R
base

directly. Exp
2
is

analogous to that in the proof for Theorem 1.

Exp
3
is similar to that in the proof for Theorem 1, however, 𝑅

will now contain entries ((𝑖, 𝑡 𝑗 ), (pk𝑖 , cm
𝑖, 𝑗
𝜌𝑐 , 𝑘

𝑖, 𝑗
𝑠 )). I.e., each user 𝑖

now has one entry for each 𝑡 𝑗 , rather than using the same entry for

all 𝑡 𝑗 . Analogously to before, the server now verifies, in Verify
base

that ((★, 𝑡 𝑗 ), (pk𝑖 , cm
𝑖, 𝑗

𝑘𝑐
, 𝑘

𝑖, 𝑗
𝑠 ) is on 𝑅.

Finally, analogous to the proof for Theorem 1, by the binding

property of Comm, we know that 𝜌 is sampled independently and

uniformly at random and, irrespective of A. Therefore we can

conclude soundness.

(3) Zero-knowledge: Just like in the proof for Theorem 1, S1
is identical to GenRand

base
, i.e., for all 𝑡 𝑗 it computes cm𝜌𝑐

, and

receives (𝑘𝑠 , 𝜎𝑠 ) from A.

Just like in S2, we also create a simulated proof from the state-

ment vector
®𝜙 alone.

®𝜙 consist of S2’s inputs, values from S1 and
𝜌𝑠 . S2 simply computes 𝜌𝑠 as in the real case. Note, that also here

we use 𝑦𝑖, 𝑗 for 𝑥 , rather than computing it from some signed input

𝑥 and the randomness 𝜌 .

Additionally, unlike the proof for Theorem 1, S2 outputs the

values (pk𝑖 , cm𝜌𝑐
, 𝑘𝑠 , 𝜎𝑠 ), where pk𝑖 is known and fixed, and the

other values come from S1.
Following arguments analogous to the proof for Theorem 1 and

due to zero-knowledgeness of NIZK-PK we conclude that Base is
zero-knowledge. □

Theorem 3. VLDPexpand satisfies completeness, soundness, and
zero-knowledgeness, given that NIZK-PK is secure for RBase, Comm
a secure commitment scheme, PRF a secure pseudo-random function,
Sig an EUF-CMA secure digital signature scheme, and CRH (use to
constructMerkleTree) a collision-resistant hash function.

Proof (Sketch). We prove the properties one by one:

(1) Completeness: By inspection of the protocol and completeness

of NIZK-PK.

(2) Soundness: Also here, we define a series of hybrid experi-

ments, where Exp
0
is equal to ExpSnd-RealA,𝑆∗ and Exp

3
is close to the

ideal. In Exp
1
, we again use the knowledge extractor EA to obtain

the witness ®𝑤 and verify the statements in R
expand

directly. Exp
2

is analogous to the proof for Theorem 1.

Exp
3
is analogous to that in the proof for Theorem 1, however,

cm𝜌𝑐
is replaced by rt.

Finally, analogous to the proof for Theorem 1, by the binding

property of Comm, and by collision resistance of the hash function

CRH used to construct theMerkleTree, we know that 𝜌 is uniformly
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at random, irrespective of A. Thus, we conclude that Expand is

sound.

(3) Zero-knowledge: Just like in the proof for Theorem 1, S1 acts
identical to GenRand

base
, i.e., for all 𝑡 𝑗 it computes rt, and receives

(𝑘𝑠 , 𝜎𝑠 ) from A.

Just like in S2, we also create a simulated proof from the state-

ment vector
®𝜙 alone.

®𝜙 consist of S2’s inputs, values from S1 and
𝜌𝑠 . S2 simply computes 𝜌𝑠 as in the real case. Note, that also here

we use 𝑦𝑖, 𝑗 for 𝑥 , rather than computing it from some signed input

𝑥 and the randomness 𝜌 . Additionally, unlike the proof for Theo-

rem 1, S2 outputs the values (pk𝑖 , rt, 𝑘𝑠 , 𝜎𝑠 ), where pk𝑖 is known
and fixed, and the other values come from S1.

Following arguments analogous to the proof for Theorem 1

and due to zero-knowledgeness of NIZK-PK we obtain the zero-

knowledge property for Base. □

F Appendix to Section 7
F.1 Datasets
Below, we give more detail on the datasets used to evaluate the

performance of our schemes on concrete, realistic applications.

Geolife GPS Trajectory Dataset. This is a location dataset of 182

users, collected as part of Microsoft Research Asia’s GeoLife project

over the period of 2007 to 2012.
8
Each data point contains latitude,

longitude (GPS coordinates) and altitude information of a user on

a given day. Upon inspecting the data, we found that it was very

sparse. In particular, only a small subset of users had GPS coordi-

nates recorded for any given day. We therefore decided to extract

five readings from each user from five different days, assuming

that the corresponding readings were taken from the same day. For

each day, we only took the first GPS coordinates. We then used

the Nominatim API
9
to obtain the address corresponding to each

GPS coordinate using reverse geocoding. From the address thus

returned, we retained only the postcode of each location. Most of

the postcodes were only visited by a very few users. We therefore

took the 7 top postcodes and included the rest into a single postcode

named all_others. Thus in total we have 8 postcodes per day. This
dataset is used for the LDP algorithm for histogram where the goal

is to estimate the true histogram of users in each postcode per day.

Note that we have 𝑘 = 8, where {1, . . . , 𝑘} represent the respective
postcodes in the algorithm for histograms (see Figure 1).

Smart Meter Dataset. This dataset is extracted from the smart me-

ters in London dataset.
10

Which was originally extracted from en-

ergy readings dataset of 5,567 London households which took part

in Low Carbon London project led by UK Power Networks between

2011 and 2014. More specifically, we took the daily_dataset.csv
file and take the mean energy reading from each household for the

last five days of this dataset with the last date 25/02/2014. House-

holds which did not have a mean energy reading for a particular

day are assigned mean energy of 0 for that day. Finally, we nor-

malized the readings by dividing each mean energy value by the

maximum mean energy in daily_dataset.csv which was 6.928

8
See https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-

dataset-user-guide/

9
See https://nominatim.org/

10
See https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london

kWh. This dataset is used for the LDP algorithms for reals where

the goal is to estimate the average energy reading of a household

per day, by estimating the sum of mean energy consumption across

all households and then dividing it by the number of households,

i.e., 5,567. We use a precision level of 𝑘 = 10 (see the algorithm for

reals in Figure 1) for our experiments.

F.2 Additional graphs
Figure 14 displays additional graphs showing the impact on the

number of constraints, and runtime of theGenRand andRandomize
routines as we increase the depth 𝑑MT of the Merkle tree used in

the Expand scheme. Details are discussed in Section 7.4.

F.3 Discussion on possible optimizations and
alternatives

While the experiments in Section 7 show the practicality of our

schemes, certain optimizations and/or alternative choices could

be made with respect to our implementation. Specifically, we dis-

cuss how different choices would influence the trade-off between

security, efficiency, and practicality.

Our current choices were based on primitives that provide a

strong level of security (targeting 128 bits) within practical times.

Given that our results show that performance is very practical,

efficiency improvements are not a requirement for practical adop-

tion, however may still be considered depending on the specific

requirements of the use case.

SNARK-friendly CRH. In our current implementation, we rely

on the Blake2s CRH inside our PRF, Sig scheme, and MerkleTree.
Blake2s is a standardized scheme and its security level has been

well vetted and confirmed. Moreover, it is more efficient to encode

inside a zk-SNARK circuit than alternatives with a similar security

level, e.g., SHA256. However, in some recent works we observe

an increased interest in so-called SNARK-friendly hash functions,

often algebraic hash functions that can be more efficiently com-

puted inside a circuit. Examples of such schemes are Poseidon [24],

MiMC [1], and Pedersen [26] hashes. These schemes can reduce

prover times by as much as a factor of 10 [40]. However, this often

comes at the cost of reduced security. Poseidon and MiMC are still

very novel constructs and have not yet been properly vetted by

the community. This novelty, in combination with their algebraic

construction, might give rise to unforeseen attacks, such as the

algebraic attacks shown against MiMC [23]. The Pedersen hash on

the other hand is known to be secure, but has the downside that

it relies on the discrete log assumption, whereas Blake2s requires

no such assumption. We can safely use the Pedersen hash inside

our Merkle tree, since breaking the discrete log assumption would

require efforts similar to breaking the zk-SNARK scheme we use.

On the other hand, we have chosen to not use Pedersen hashes

for our PRF and Sig schemes. The PRF is evaluated out-of-circuit
in the Base and Expand scheme anyhow, and we chose to use the

same primitive in the Shuffle scheme for comparability.

For the Sig schemes, we chose to use commonly available primi-

tives, as in many use cases the trusted environment will not provide

more novel or custom primitives, such as Pedersen or Poseidon

https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://www.microsoft.com/en-us/research/publication/geolife-gps-trajectory-dataset-user-guide/
https://nominatim.org/
https://www.kaggle.com/datasets/jeanmidev/smart-meters-in-london
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Figure 14: Influence of𝑑MT on the number of constraints (topleft), client runtime forGenRand (topright) and Randomize (bottom).

hash functions. However, in cases where such primitives are avail-

able, they could be used to improve effiency at the cost of (slightly)

decreased security and general applicability.

SNARK-friendly signatures. Next to using a different hash func-

tion to transform the input message to a fixed digest, we could have

also used a different signature scheme than Schnorr’s. However, it

should be noted that Schnorr is commonly available and already

very efficient by itself. E.g., it is around 2-2.5x times faster than

EdDSA inside a zk-SNARK circuit [40].

zk-SNARK scheme. The predominant component for our compu-

tation times is determined by the zk-SNARK scheme and the way

our constraints are encoded inside the zk-SNARK circuit.

First, we note that we implemented our constraint circuit using

readily available ‘gadgets’ from the Arkworks library. While these

gadgets are of good quality and are implemented efficiently, we

do get some more constraints than are strictly required in hand-

optimized constraint systems. These constraints might possibly be

reduced by manual inspection, however due to the large number of

constraints we expect this to be a tedious task, for whichwe only get

an (almost) negligible increase in performance. Moreover, manual

optimization of these constraints would reduce modularity of our

software implementation, which might be a significant drawback

in practice.

Next to this, one could also consider using an alternative scheme

to Groth16. For example, schemes with a universal setup (e.g., Mar-

lin [18], post-quantum security (e.g., Fractal [19]) or a transparent
setup (e.g., Fractal [19] or SuperSonic [14]) could be employed. Gen-

erally speaking, these alternatives are less efficient than Groth16,

with respect to proof generation and verification time. However, in

some use cases, universal setups can be used to prevent the server

from having to run one setup per LDP algorithm. In practice, how-

ever we do not expect this trade-off to be beneficial. Moreover, the

removal of a trusted setup is not necessary in our case, due to the

fact the we assume the server to behave semi-honestly and not

collude with any of the clients, i.e., it will not give the trapdoor to

any of the clients.
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