
PeaceFounder: centralised E2E verifiable evoting
via pseudonym braiding and history trees

Janis Erdmanis[0000−0002−8963−5963]

janiserdmanis@protonmail.org

Abstract. PeaceFounder is a centralised E2E verifiable e-voting system
that leverages pseudonym braiding and history trees. The immutability
of the bulletin board is maintained replication-free by voter’s client de-
vices with locally stored consistency-proof chains. Meanwhile, pseudonym
braiding done via an exponentiation mix before the vote allows anonymi-
sation to be transactional with a single braider at a time. In contrast to
existing E2E verifiable e-voting systems, it is much easier to deploy as the
system is fully centralised, free from threshold decryption ceremonies,
trusted setup phases and bulletin board replication. Furthermore, the
body of a vote is signed with a braided pseudonym, enabling unlimited
ballot types.

Keywords: e-voting · E2E-V · anonymous channel · ElGamal · expo-
nentiation mix · braiding · history tree

Introduction

End-to-end (E2E) verifiability and vote privacy are universally recognised as
essential requirements for e-voting systems to ensure democratic election re-
sults [12,13,2,20]. E2E verifiability allows voters to confirm that their votes are
correctly recorded and counted without trusting entities out of their control
while maintaining their vote privacy1. To break the link between the vote and
the voter, E2E verifiable voting systems typically use reencryption shuffle with
known examples such as Helios [1], CHVote [16], Belenios [5] or homomorphic
tallying such as ElectionGuard [21], many of which are available under open-
source licenses. When votes are collected in those systems at the end of the vote,
they undergo a reencryption shuffle or homomorphic tallying and end with a
threshold decryption ceremony to arrive at the final tally while allowing voters
to track their encrypted votes and the public to verify the final tally via robust
zero-knowledge proofs [28,29,17].

Despite their security benefits, deploying E2E verifiable e-voting systems is
challenging. The threshold decryption ceremony, crucial for maintaining privacy,
requires multiple independent parties to participate. This introduces logistical
1 PeaceFounder is strictly E2E verifiable only after the votes are published on the

bulletin board; before that, any delegated auditor can audit evidence internally, and
hence, the trust is in control of voters even then (see Table 1)

2 J. Erdmanis

complexities: if the threshold is too low, it risks leaking the decryption key, al-
lowing the adversary to see how each voter voted. However, if the threshold
is large, a corrupt minority could sabotage the decryption of the election re-
sults. Additionally, these systems typically assume the presence of an immutable
bulletin board to prevent the discarding of encrypted votes from undesirable vot-
ers, and they rely on internal eligibility audits to ensure participation privacy
and receipt-freeness. These technical intricacies make deploying E2E verifiable
e-voting systems less feasible for small and medium-sized communities, lead-
ing to a preference for simpler black box systems [3,14]. Wheras entrusting the
voting process to a service provider, who may reduce deployment costs, risks
compromising privacy.

The Selene system represents a significant advancement in verifiability [24].
It offers a voter assigned tracking number and displays their votes in plain next
to them after the vote. This transparency helps voters feel more confident in the
system, as they can see how their vote is counted [30]. The tracking number is
not published before the vote and is deniable thus is receipt free. However, it’s
worth noting that the threshold decryption ceremony still needs to be deployed
along with the bulletin board, making it generally suitable only for state-like
elections.

Haenni & Spycher proposed a system using verifiable identity exponentiation
mixes (braids) to anonymise voters’ public keys (identity pseudonyms), eliminat-
ing the need for a threshold decryption ceremony [18]. In such a system, the votes
are signed with a public key on a braided relative generator (pseudonym) and
delivered through an anonymous channel to the ballotbox in plain. The lack of a
decryption ceremony ensures that after voter cast their vote, the announcement
of the election result depends only on a single entity that collects the votes, mak-
ing it far more robust than depending on a multiparty ceremony. Furthermore,
the braiding is transactional and can be delegated to entirely untrusted parties,
enhancing the anonymity threshold of the number of parties that need to be
compromised to link the vote to the voter.

However, the benefits of such a system have yet to be realized, as it relies on a
trusted bulletin board that does not discard unfavourable votes. The use of repli-
cation based buletin board distributed between multiple independent parties,
offers only minor improvements over existing end-to-end verifiable systems that
rely on a threshold decryption ceremony. Furthermore, despite over a decade of
developments [23,22,24], only a single implementation has been attempted with
UniVote [15]. However, it relies on a threshold decryption ceremony to ensure
the imparity of the bulletin board and, hence, is hard to deploy. This gap has
led to the development of a new voting system, PeaceFounder, which addresses
many nuances related to usability and deployability.

The innovative approach by PeaceFounder combines pseudonym braiding
[18] with a history tree enabled bulletin board [7]. When voters cast their vote,
their devices receive inclusion proof of the vote, which can later be verified to
be binding to the tally with consistency proof. Having only a few voters who
request their device to check the proofs allows for the swift identification of a

PeaceFounder: centralised E2E verifiable evoting 3

corrupt server with publicly verifiable evidence. Thus, the immutability of the
bulletin board is guaranteed. To ensure global consistency and avoid split view
attacks, the requests are made through an anonymous channel, which is already
a present assumption in the voting system by Haenni & Spycher [18]. Thus,
once the server has assured that the vote is recorded, there is no way for it to be
removed. This allows the system to be fully centralised and, thus, makes it easy
to self-host as trusted bulletin board assumption is weakened to its availability,
which can be easily accounted for.

The system is designed around organizational voting demes to simplify mem-
ber registration and coordination of braiders. A deme is an arbitrary organisa-
tion where members can be continuously registered or terminated and can vote
upon proposals as they become available. Membership termination is achieved
by encoding terminated members in a bitmask within a proposal to prevent
them from voting at the endpoint, and employing a full braiding reset when
trust credit exceeds a threshold, thereby efficiently utilizing braiding resources
as demes grow larger. This enables braiding to be done asynchronoulsy with
other self-hosted demes worldwide and relaxes their availability requirements,
significantly advancing voters’ anonimity in the public evidence.

Primitive Review

Braids

PeaceFounder uses Haenni & Spycher’s proposed construction to form a verifi-
able exponentiation mix (braid) from ElGamal reencryption shuffle and proof of
decryption [18]. ElGamal reencryption shuffle has been well understood and of-
fers zero-knowledge proofs with the following cryptographic assumptions [28,17]:

– Hardness of discrete logarithm problem (DL) for privacy and soundness;
– Hardness of decisional Diffie-Hellman problem (DDH) for privacy;
– Cryptographically secure hash function.2

We shall define braiding as a cryptographic schema that shuffles input pseudonyms
yi = gxi and exponentiates them with a secret factor s, resulting in output
pseudonyms y′i = (gxi)s = (gs)xi = hxi on a new relative generator h = gs. Pri-
vate key owners xi can use the relative generator h to issue cryptographic signa-
tures with the new pseudonyms without being linked to the input pseudonyms.
To ensure integrity, braiding is supported with a zero-knowledge proof, repre-
sented as a knot, as shown in Fig. 1.

Let’s denote Elgamal reencryption under a public key pk as Encpk(a, b) =
(a ∗ gr, b ∗ pkr) where a, b, g, pk ∈ G are elements of a cryptographic group for
which discrete logarithm (DL) and decisional Diffie-Hellman problem (DDH)
are hard, such as modular prime groups or elliptic curves. We can define shuffle
for the ElGamal vector. {(ai, bi)} as as Shufflepk({(ai, bi)}) = Π({Encpk(ai, bi)})
2 Note that a cryptographically secure hash function is weaker than a random oracle

assumption

4 J. Erdmanis

ZKP

Fig. 1. Illustration of a braid with an associated zero-knowledge proof represented
as a knot. Input pseudonyms gxi are linked to output pseudonyms hxi via a secret
exponentiation factor s via (gxi)s = (gs)xi = hxi since h = gs.

where, with curly brackets, we denote a vector and Π It’s a permutation. In
many scenarios, the permutation can be replaced by sorting the output elements,
alleviating possible sources of errors.

The braid proof is constructed from zero-knowledge proof of shuffle and proof
of decryption. For a vector of members’ pseudonyms {yi} as elements from a
cryptographic group yi ∈ G on a relative generator g ∈ G. The braider computes
a vector of output pseudonyms with the following steps:

1. Generates a secret exponentiation factor s;
2. Computes a new relative geenrator h← gs;
3. Calculates ElGamal reencryption shuffle on the pseudonym set as {(ai, bi)} ←

Shuffleh({(1, yi)});
4. Decrypts ci ← b−s

i ;
5. Computes the resulting pseudonyms as y′i = ai/ci.

Step 3 is supplemented with a zero-knowledge proof of shuffle [28,17], whereas
steps 2 and 4 have proof of correct decryption [4]. Note that in the case of elliptic
curves, the identity element can be represented as (0, 0) which is not an element
of the curve, and thus, an exception needs to be taken when instantiating it. This
procedure was first introduced in the work of Haenni & Spycher. A Verificatum
compatible proof of shuffle [29] for step 3 and a custom implementation for proof
of decryption in steps 2 and 4 are used, both implemented in Julia and available
in the ShuffleProofs library [9].

History Trees

History trees, as first proposed by Crosby & Walach [7], an extension to Merkle
trees with an unbalanced number of entries, have emerged as a novel solution
for ensuring the immutability of bulletin boards. The most prominent examples
include transparency logs for public key certificates and the recent enhancement
of package distribution for Go programming language libraries [27].

PeaceFounder: centralised E2E verifiable evoting 5

Inclusion proofs provide efficient backtracking hash chain proofs of any record’s
inclusion in the ledger with respect to the current tree root commit. Clients can
get inclusion proofs along with records, which can assure that the record is au-
thentic, much like having a signature issued directly on the record. Consistency
proofs, on the other hand, safeguard the ledger’s immutability over time. It
proves that a current bulletin board commit retains all records from its previous
commit, with new records appended. This proof is efficient; thus, multiple clients
with unpredictable queries can ensure the ledger’s immutability.

However, an attack vector exists where a corrupt authority, capable of tracing
clients, can present different views based on the query source, known as a split
view attack. To prevent that, the orthodox solution, as proposed by Sigsum [27],
is to have a list of witnesses from which clients can ask for signatures on the
authority-issued commits to ensure global consistency.

An alternative approach used here is relying on an anonymous channel. Since
the server does not know who requests proof, if it tries to cheat, it risks sending
an inconsistent ledger commit to the client, who can make them public, resulting
in judicial actions. To achieve this, special care must be taken without revealing
the client’s internal state. Thus, the client with a fresh anonymous session first
requests the current chain commit and only then sends its local commit index to
retrieve a consistency proof. Note that in more advanced designs, as employed
in Sigsum [27,6], the client can directly request necessary hashes from the server
and thus also obfuscate commit index for which the proof is retrieved. Therefore,
a globally consistent view through an anonymous channel can be achieved with
a carefully crafted requests.

The use of anonymous channels to ensure global consistency is preferable as
it does not require adding trust assumptions about the honesty of the witnesses.
Also, client witness preferences can give away information that can help a corrupt
authority to track the voter. In practice, an anonymous channel is never perfect
and needs to be considered in relation to a potential adversary’s capabilities.
Nevertheless, the TOR project [8] has gained substantial popularity to hide in
the crowd, and the recent Arti project [26] offers excellent opportunities for
custom client application integrations.

The structure of the bulletin board

The bulletin board for PeaceFounder is split into braidchain and ballotbox
ledgers as shown in Fig. 2. The braidchain ledger (unrelated to blockchain)
contains membership registration certificates, membership termination records,
braid records and proposal records. The braidchain ledger is responsible for en-
suring correct inputs for membership pseudonyms and generators in braids and
an anchoring state within the proposal. The anchored state contains an anchor
index, tree root hash, generator, and termination bitmask for honest voters’
clients to stop terminated members from voting before the braiding is reset with
identity pseudonyms. Records can be included in the braidchain ledger if they
are compatible with its current state, which includes:

6 J. Erdmanis

Index Type

1
2-5
6-7
8

Tree Root and State Commit

Deme Record
Member Certificate
Braid Record
Proposal Record

◦ Deme UUID
◦ Cryptographic Parameters
◦ Roster: Registrar, Proposer,
 BraidChain, BallotBox

BraidChain
Ledger

TimeStamp

Tree Root and State Commit

◦ Proposal
◦ Members' Pseudonym Set

BallotBox
Ledger

Index H(Vote) Vote
Public On Hold

Fig. 2. Ilustration of buletin board structure. On the left, a braidchain ledger is shown.
It is initialised with a DemeSpec record that sets cryptographic parameters and autho-
rises entities to issue records by putting them in the roster. As new records are added,
they undergo a consistency check with the current state. If they are consistent, they
are included, and the state is updated and finalised by the braidchain controller issued
commit. When the proposal record is included in the braidchain ledger, a correspond-
ing ballotbox ledger is initialised with an anchored member pseudonym set. Any vote
that contains a correct proposal hash and is issued with a pseudonym from a member
pseudonym set is eligible for inclusion. To ensure fairness and allow revoting, only the
vote hash and ballotbox controller commitments are public during the vote, forming a
cast receipt that the ballot box controller subsequently commits in the history tree.

– A rooster issued by a guardian that includes authorised registrar, proposer,
braider, braidchain, and ballotbox identities, which can be initialised and
changed with a DemeSpec record;

– A set of member identities;
– A set of blocked identities to prevent repeated registration after termination;
– A set of current member pseudonyms;
– A current relative generator;

The state can be referenced by an index, which is used to anchor a set of member
pseudonyms for the proposal that can participate in the vote.

For every recorded proposal in the braidchain, there is a ballotbox ledger
initialised with an anchored state generator and member pseudonym set. During
the vote, only receipts with vote hash and server commitments are published
to ensure fairness and pseudonym secrecy. The history tree is constructed from
hashes of those receipts. Thus, the client can be assured about the integrity of
the received response with corresponding inclusion proof and check that their
vote and votes cast by others are still included by following up with consistency
proof later.

BraidChain Ledger

Registration The registration to the deme happens through the recording of
a membership certificate in the braidchain ledger. The protocol for registration
is as follows:

PeaceFounder: centralised E2E verifiable evoting 7

1. The potential member requests the registrar for an invite, delivered by email
or shown on the screen;

2. Upon pasting the invite into the member’s device, it retrieves a DemeSpec
record listing all relevant cryptographic parameters, generates a key pair
and sends an identity pseudonym to the registrar with HMAC authorised
request;

3. Upon receiving the request, the registrar checks that the one-time token is
valid and issues an Admission record for the identity pseudonym;

4. The client requests the current braidchain state commit where it gets the
current relative generator;

5. Using the current relative generator, the client generates a pseudonym and
constructs a Membership record containing the pseudonym, generator and
Admission record and seals it with the identity pseudonym;

6. Upon the braidchain controller receiving the membership record, it verifies
that Admission record is issued by an authorised registrar, that identity is
not in roll or a blacklist, the current generator matches what is encoded in
the membership record, and that braiding currently does not occur. If all
checks pass, the membership certificate is recorded, and the inclusion proof
is returned to the client as confirmation.

All requests within this protocol are idempotent in case of network failures and
requests can be replayed and followed up. Steps 4-6 are necessary for a catchup
phase, as braiding and membership registration are noncommutative. In case of
failure, the client repeats these steps until success unless the user aborts that.

To verify that the intended recipient has used the invite and avoid assuming
channel untapability, a document signed by members’ digital identity can be used
to confirm the registration, which is sent back to the registrar for internal records.
The document must contain the registration index at which the membership
certificate is recorded in the braidchain ledger and the invite code, which includes
the DemeSpec hash and the server route. This can be done within a reasonably
short time window, instructing the member via email or other communication
channels after registration. If the member fails to comply with such a request,
the membership can be terminated.

Termination Membership termination is necessary to keep in sync with the
organisation or allow the reissuing of credentials if those have been lost or com-
promised. Terminating membership is a challenging feat with the PeaceFounder
system. The members’ pseudonyms are entirely anonymous and can’t be re-
voked unless the key owner wants to cooperate, which we assume is not the case.
Resetting braiding from identity pseudonyms with a base generator, which al-
lows removing terminated members, faces scalability issues. The probability that
some members would need to be terminated grows linearly with the group size.
Upon reset, every member loses their anonymity threshold, protecting their pri-
vacy, and thus needs to be rebraided. However, relying on the availability of on-
demand braiders and coping with a diminished registration experience—where

8 J. Erdmanis

members may face delays in recording their membership certificates due to braid-
ing locks—is an impractical solution.

An alternative approach involves notifying affected members’ clients of their
membership termination. If the trust credit, assuming honesty from members’
clients, surpasses a specific threshold, a full braid reset is initiated. With this
hybrid way, we recognise that the result of the vote is no longer perfect and is
subject to an error bar caused by adverse influence, which has attained mem-
bers’ keys. Nevertheless, a small threshold can significantly reduce availability
requirements for external braiding and enable more braidings, increasing mem-
bers’ privacy when they vote. Also, in cases where such a compromise is un-
acceptable, the system can be extended by requiring members to register with
certified and tamper-resistant devices/smartcards.

The registrar must inform the clients that they have been terminated in a
privacy-preserving manner, and it should not be possible to filter out undesir-
able news from the registrar. If the client requests the vote on whether their
membership is terminated, it will destroy the anonymous channel over which
the vote is being cast. Doing that with separate channels would also not be an
option, as that produces a strong time correlation.

To resolve this issue, the state anchor in the proposal contains a bitmask
of all terminated membership registration indices. If the member’s client finds
their index within the bitmask, it notifies them that their membership has been
terminated. With 1kB of the bitmask, it can support 8192 braidchain records,
and employing compression can significantly improve this. As memberships are
terminated transparently and can be audited, it leaves no room for a corrupt
authority to selectively stop voters from voting on specific proposals. On the
other hand, anonymity is protected by not knowing in which bit the client is
interested.

The termination for auditing purposes is done through a Termination record
issued by the registrar and included in the braidchain. It contains a member-
ship index and a terminated identity pseudonym. When recorded, the identity
pseudonym is removed from the member identities and added to the blacklist.
The latter is essential to prevent the reuse of already-issued admissions for re-
registering to the braidchain and to avoid creating duplicate termination records.
The termination record is also used to abort the registration protocol when ad-
mission is issued, but the membership record is not registered. In such cases, the
membership index is set to 0 and does not affect the termination bitmask.

Braiding Braiding is a cryptographic scheme also known as a verifiable ex-
ponentiation mix in which input pseudonyms are exponentiated with a secret
factor and shuffled. Braiding as input takes pseudonyms, a generator, and crypto-
graphic parameters, produces an output generator and pseudonyms, and ensures
integrity with zero-knowledge proofs. The pseudonyms are unlinkable unless a
secret exponentiation factor is known or cryptographic assumptions DL or DDH
are broken. As such, it does not require client interaction and is executed solely
with a single entity.

PeaceFounder: centralised E2E verifiable evoting 9

The anonymity of the member’s pseudonym for its cast vote directly depends
on the number of parties participating in creating braids. We shall define the
anonymity threshold as a measure for each pseudonym, which tells us the least
number of parties that must be compromised to uncover the link between the
voter and the vote. The measure, though, needs to be looked into in the context
of whether parties are independent, and thus, it shows us only the maximum
security level for pseudonym anonymity one could expect.

The anonymity threshold for newly registered members is less than that of
existing members who have already been braided. This is an acceptable compro-
mise because the benefit for the adversary to infiltrate the system and spy on
the members is already significantly reduced. Thus, such an attack would not
be cost-effective and hence diminish such risks. Conversely, the authority should
do its best to increase the anonymity threshold by attempting to braid with as
many different parties as possible.

Because membership registration to the deme happens continuously, with the
ability to catch up with the current braidchain generator as described earlier,
the availability constraints for braiders are relaxed, allows braiding to occur
asynchronously from member registration and proposal submission. This allows
for establishing braiding relationships with different parties during the lifetime
of the deme, which can be initiated when another party is ready around the
globe. To make the process fair and more open, braiding can be done through a
trusted third party that acts as a broker, keeping account of each deme braiding
contributions, making it easy to obtain a sufficiently large anonymity threshold
for members’ pseudonyms of the deme.

A braid reset can be done to remove terminated memberships from member
pseudonyms that adversaries may be using. For such braid, the input pseudonyms
are taken as member identity pseudonyms and the base generator as the input
generator. As this operation degrades the anonymity of members, it can only be
done in a self-braiding issued by a local braider. After such braid, braiding can
be continued with external braiders.

The braidchain controller accepts a braid if input pseudonyms and input
generator are equal to the current member pseudonyms and current generator
unless reset when member identity pseudonyms and base generator is used in-
stead. Additionally, before the recording, the braid proof is verified with respect
to cryptographic parameters with which the deme is initialised. The braid itself
is signed by the braider with external cryptographic parameters specified in the
external deme DemeSpec record provided with the braid. This way, the authen-
ticity and independence of every braid can be evaluated from public records
that this external deme publishes, such as a public bulletin board for auditing
and some social proofs that assure the authenticity of the deme. Moreover, the
braiding offers an opportunity to advertise one’s deme and forms a decentralised
index.

Proposing A vote is officially announced with a proposal recorded in a braid-
chain ledger. The proposal record contains metadata such as title, description,

10 J. Erdmanis

and unique unified identifier (UUID), which can be used to reference proposals
in preparation phases/drafts outside the voting system. In addition, UUID can
enable the reference of the vote in a ballotbox broker, which can manage vote
collection for multiple demes, decoupling it from a particular deme’s braidchain
ledger.

The proposal also contains an anchor of the braidchain state, which sets
the relative generator, member termination bitmask, and braidchain tree root.
As votes include a hash of the proposal on which they issue their votes, which
includes the braidchain tree root, voters act as witnesses for the braidchain
ledger, cementing its immutability. It also enables efficient auditing; knowing
the ballotbox tree root announced along with the tally provides all the necessary
information to audit the bulletin board records that led to the resulting tally.
Furthermore, the tree root is shown on voters’ devices, which, in turn, also
ensures global consistency of the braidchain ledger for the voters’ clients.

Lastly, the proposal contains the opening time, closing time, ballot itself and
ballotbox collector identity authorised to issue ballotbox commits. The ballotbox
collector identity is authorised with DemeSpec record and is included in the
Proposal record. As members’ clients are thin, it enables them to know from
which authority they need to wait for confirmation without needing to keep any
other records.

An important part of election security is ensuring that every client gets the
same list of proposals. One way is to use an anonymous channel and request
a list of proposals from the server. An alternative approach is to have clients’
devices audit the braidchain using consistency proofs. Consequently, if a corrupt
authority attempted a split view attack, it would be unable to reconcile the
discrepancies at the ballot box when the tally with the ballot box tree root is
published and hence would face judicial actions.

To use such property, all proposals are tied into a linked list. The current
braidchain state commit contains the index of the last recorded proposal. The
recorded proposal includes an index of the previous one and so on. When re-
trieving proposals, the client then, along with the proposals, asks for inclusion
proofs, and thus, all is assured. To ensure that the last state commit contains an
index to the previous proposal, the client keeps a record of the commits, assuring
that no new proposal is inserted before them. If it is, then proof of blame can
be constructed and announced publicly for everyone to verify.

When a proposal record is submitted to the braidchain, it undergoes several
checks: it confirms there are no duplicate UUIDs, verifies that a current DemeSpec
record authorises the collector’s identity, ensures the anchor index points to
a braid, checks all state parameters for accuracy, and finally, verifies that an
authorised proposer issues the proposal record. Afterwards, the last proposal
index in the state commit is updated, and the ballotbox ledger is initialised with
the member pseudonyms to which the proposal is anchored.

PeaceFounder: centralised E2E verifiable evoting 11

Vote Commit
Index

Consistency
Proof

Pseudonymous Signature

◦ Proposal Hash
◦ Ballot Selection
◦ Sequence Number

Vote

Inclusion Proof

◦ Vote Hash
◦ TimeStamp
◦ Cast Index

Receipt

Receipt

Fig. 3. Ilustration of ballotbox ledger. Every vote signed by a valid pseudonym and
associated with a valid proposal hash gets recorded in the ballotbox ledger, even if it
is superseded or malformed. Upon recording, a receipt containing an inclusion proof is
returned; if the same vote is already recorded, a receipt for it is returned instead. A
timestamp ensures that malware cannot show a receipt linked to someone else’s vote.
Meanwhile, a cast index helps locate the specific vote on the ledger. Few voters make
follow-up queries to update their local consistency proof chain which ensures their
vote’s inclusion as well as votes made by others.

BallotBox Ledger

When the proposal’s opening time arrives, it becomes available for vote sub-
missions to the ballotbox ledger as ilustrated in Fig. 3. The vote starts with a
ballotbox controller generating a seed and placing it in the state commit that
prevents voters from casting a vote before the ballotbox opens. The vote con-
tains a proposal hash to ensure that every voter votes on the same proposal,
the seed received in a commit, a sequence number and the voter’s selection. A
vote is recorded as long as the proposal hash matches and is issued with a valid
seal from one of the members’ pseudonyms. This holds regardless of whether an
earlier vote with a higher sequence number has been recorded or if the selection
is filled inconsistently with the ballot.

A cast receipt and inclusion proof in the response ensures that the vote is
successfully cast. If the vote is already recorded, an inclusion proof references
that instead and hence ensures that the casting of the vote is idempotent. The
cast receipt contains a commitment to pseudonym alias, vote hash, timestamp
and cast index. A timestamp ensures that malware on the device can’t show a
receipt linked to someone else’s vote. Meanwhile, the cast index helps to locate
the specific vote on the ledger deterministically.

The alias is an integer that allows referencing a pseudonym within anchored
braid output member pseudonyms. As the clients don’t keep the braid record
on their devices, the ballotbox controller calculates it for them. Correctness is
ensured with a commitment Hash(Alias|Vote) included in the receipt, so the
pseudonym casting the vote is not leaked. The alias is delivered along a cast
receipt in response to the vote submission to the ledger.

To ensure that their vote is cast as intended, a receipt with a tracking code
is shown on the voters’ client devices as shown in Fig. 4. The tracking code is

12 J. Erdmanis

Fig. 4. Ilustration of cast receipt and tracking code. After casting a vote, the voter sees
a receipt on their client, as shown on the left, produced by [10]. The receipt contains
a pseudonym alias, timestamp, and cast index for the ballotbox ledger row. Commit
lists locally stored tree root and ledger index, which gets updated upon refresh with
the client requesting consistency proof from the ballot box controller. On the right,
a web form where a voter can put in a tracking code and see that their vote is cast
as intended is shown, which is used to make HMAC-authorised requests and uses a
proxy to ensure untraceability. The tracking code loses valididty after a short period
to preserve voters’ ability to revote undetected.

temporal and valid for a short period since the vote inclusion in the ballotbox
ledger to preserve voters’ ability to revote undetected. It is derived by truncating
Hash(0|V ote) and displaying that to the voter in Crockford base32 encoding. To
see the cast vote, within the provided time window, the voter can input the
tracking code within the corresponding static website form and get the response
about the vote using the tracking code as a token. To allow making such requests
to unprotected ballotbox servers without TLS, the HTTP requests and responses
are HMAC authorised and routed through a proxy to protect voters from a
local network observer. A 5-byte tracking code, as shown on the screen, requires
around 5TB lookup table, which, if unacceptable in a particular context, can be
augmented with the use of TLS.

If a voter is unsatisfied with their cast vote, changes their mind, or is influ-
enced by coercion or bribery, they have the option to revote. A sequence number
ensures that only the last cast vote from the device counts. If two votes with
the same pseudonym and sequence number are made, the first one recorded at
the ballotbox ledger gets counted. Thus, if a vote is cast with a compromised
key, then when the voter casts their vote from their device, its status would be
overridden when checked with a tracking code.

However, the ability to see the status of a cast vote allows adversaries to
submit their coerced votes at the end of the voting process and verify their
validity. To prevent this, the vote selection can be asymmetrically encrypted so
it is possible to mark a vote as coerced. When checked with the tracking number,
such a vote would be shown as valid unless superseded with another later-issued
coerced vote.3

3 Details on how the vote selection is encrypted and verifiably decrypted will be out-
lined in a separate short paper to not convolute existing exposition.

PeaceFounder: centralised E2E verifiable evoting 13

Another method to detect votes cast outside the device is with a tally bit-
mask that lists counted votes, included in the ballotbox commit when votes are
announced. The voter’s device then retrieves it with the consistency proof and
checks whether their last cast vote has been included in the final tally. Conse-
quently, the client alerts the voter if their cast vote has not been counted.

A history tree consistency proofs with an anonymous channel prevents a
corrupt ballotbox controller from returning a valid inclusion proof while dropping
the vote from the ledger. After the client gets inclusion proof, it can subsequently
request consistency proof with respect to the current braidchain ledger commit
at any time. As the requests are made through an anonymous channel, only a
few voters need to follow up with consistent proofs to ensure the immutability of
the ledger. Furthermore, the official announcement of the tally also includes the
ballotbox tree root, which is replicated between different mediums. That further
cements global consistency for the voter’s clients as anyone can check that the
announced tree root agrees with what is shown on their devices. If it differs, a
commit can be exported and combined with one referenced in the announced
tally as a proof of a corrupt ballotbox controller, and judicial actions can follow.

Such a check does, however, assume that the voter’s device is not infected
with malware, deceiving voters into believing their vote has been counted. For
instance, it could cast a valid vote following the voter’s own submission or vote
on behalf of the voter if it anticipates that the voter will not participate. The
latter can be detected if the malware mispredicts participation and the voter
checks the cast vote via tracking number or on the ballotbox when the votes are
published. However, using a tracking number falls short when the vote can be
indicated as coerced, treating the voter as a coercer. Therefore, both attacks can
only be detected if the votes are published on the bulletin board and the voter
checks them.

To prevent malware from deceiving voters into checking another person’s
vote, the receipt contains a timestamp when the vote has been included in the
ledger and it’s cast index. Voters can verify their own vote by locating it on
the public bulletin board using their cast index and comparing the timestamp
with the time they cast their vote. The method remains secure even during a
widespread, coordinated malware attack, as the malware cannot link multiple
voters to a single vote because it cannot influence the timing of when each voter
casts their vote. On the other hand, the pseudonym alias allows the voter to
locate other cast votes more easily and check if it corresponds to the times when
it cast votes.

Unfortunately, voters cannot prove if their votes have been compromised by
third-party malware. It is the voter’s responsibility to verify their vote and ensure
that their devices and software are free from malware, reporting any detected
incidents. Certified devices or smartcards, which require a PIN for issuing votes,
can mitigate such attack vectors when used with a tracking code, provided the
certified hardware is free from backdoors. Privacy from a corrupt vendor can
be safeguarded by generating a private key with a trusted observer in a two-
party protocol, as outlined in [4]. As client side operations for signing a vote are

14 J. Erdmanis

straightforward, requiring only a DSA signature on a relative generator listed
in a proposal, makes certified tamper resistant hardware viable for larger demes
and can be explored with further research.

The final attack vector that a corrupt ballotbox controller can use is manip-
ulating availability and ignoring undesirable votes without returning a response.
A network provider can also exploit such an attack if the votes’ selections are
not encrypted. Also, an adversary anticipating an undesirable tally may perform
a DDOS attack on the ballotbox controller, preventing voters from submitting
their votes and arriving at the official tally.

To defend against such incidents, voters can cast their votes through proxies
or monitors. These intermediaries can verify the eligibility of the vote and log
issues to record the vote in the ballotbox ledger. To ensure the effectiveness of
these logs, each proxy collaborates with others when issues arise, attempting
to form a consensus on unrecordable votes. This consensus can then serve as
evidence of corrupt authority, potentially leading to judicial action. The imparity
of proxies can be ensured by asymmetrically encrypted vote selection, which will
be outlined in a subsequent paper.

Auditing

To audit the announced tally, an auditor must first check that every voter has
arrived at the same tree root as the one announced along with the tally. Only
a few voters need to be checked, and the sample does not need to be random
either because using an anonymous channel ensures a globally consistent view.
Alternatively, this check can be performed passively by ensuring that no incon-
sistent commits have been made post-vote if a few voters have compared their
ballotbox tree root on their device with the one announced.

The next step is to check if the ballotbox controller had not purposefully
discarded votes from being recorded in the ballotbox ledger. To do so, the audi-
tor needs to be aware of the channels members voice their complaints and the
proxy/monitors they would use in case of such incidents. The auditor must verify
that the monitor lists any reported incidents and cross-check this information
with other monitors that the proxy used to route the vote. This is crucial to
prevent a conspiring minority from undermining the trust in the election results.

Finally, the bulletin board can be audited. In the most simple use, it can
be run by one command peacefounder-audit all <buletinboard> which can
be conveniently integrated into continuous integration pipelines [11]. When such
command is used, the most recent commit of the ballotbox is taken from which
auditing follows in the following order:

1. Checks that the tree root of all ballotbox records corresponds to that of the
commit;

2. Checks that the tree root encoded in the proposal anchor corresponds to
that of the braidchain at the anchored state index;

3. Checks that every record in the braidchain has been correctly authorised,
followed by auditing of the seals;

PeaceFounder: centralised E2E verifiable evoting 15

4. Checks that every braid has correct input pseudonyms and generator;
5. Verifies every braid proof;
6. The braidchain audit concludes by checking that every proposal state anchor

is correct and points to a braid record;
7. Checks the eligibility of each vote in the ballotbox and the validity of its seal.

This consequently also audits pseudonym aliases as shorthand for locating
pseudonyms within the anchored braid output pseudonym vector;

8. Finally, the state, including a tally for the ballotbox, is computed and com-
pared with the tally in the ballotbox commit.

The outcome of such an audit ensures that the auditor only needs to verify
that the tree root of the ballotbox commit matches the one announced with
the official tally, thereby ensuring the integrity of the vote, with each member
having at most one vote. Additionally, the auditor can check that members’
pseudonyms used to cast votes on proposals have a high anonymity threshold
achieved through braiding among different independent parties, thus ensuring
the anonymity of the voter.

The final part of the audit is to verify the authenticity of every member
of the deme eligible to vote. Those records are kept with the registrar and are
not available publically, as that would violate the right of privacy for freedom
of association, which is also necessary to satisfy GDPR policy. Therefore, to
audit those records, the registrar needs to provide access to them, which can
potentially expose members of the organisation. To limit potential leakage, a
verifiably random sample of members can be created using verifiable randomness
[25]. Fortunately, this type of audit can be conducted asynchronously from the
voting process and reused for multiple proposals, provided the deme’s members
remain largely unchanged.

Properties

The PeaceFounder voting system offers all key properties for E2E verifiability
[2]. Recorded as cast, cast as intended, and tallied as cast are ensured while
also enabling public verification of each vote’s eligibility without compromising
the anonymity of the voters. It also offers a limited form of receipt freeness until
votes are publicly available on the bulletin board. That can be delayed to weaken
the link between coercer/briber and their subjects.

These various properties are not universal and can be individually compro-
mised when either the voter’s client, the bulletin board, the registrar or braiders
are controlled by an adversary (see [13] for analogous analysis of existing online
voting systems). The properties for a trust also depend on whether votes are al-
ready published on the bulletin board, which can be delayed for coercion/bribery
prevention purposes. The matrix of properties and involved parties is shown in
Table 1.

When a voter casts their vote, the device shows the receipt, which contains
the cast index and timestamp when it was recorded. These can be compared with
published receipts on the bulletin board. A malicious voter’s device may deceive

16 J. Erdmanis

Property Client BBoard Registrar Braider
Recorded as cast

Cast as Intended
∗

∗

Tallied as recorded ∗ ∗

Eligibility
Anonimity one
Receipt freeness (temporal)

Table 1. Conditions under which E2E verifiability properties are ensured for the
PeaceFounder voting system. Trusted entities are represented with a green checkmark,
whereas the man in a trench coat represents entities an adversary can control while en-
suring a particular property. After the votes are published on the bulletin board, voters
no longer need to trust entities indicated with an asterisk but lose receipt freeness.

the voter by showing another receipt from the bulletin board when multiple votes
are made simultaneously. However, the deception would be exposed if the voter
compares the pseudonym alias of the vote with that published on the bulletin
board or checked with the tracking code after the cast. Therefore, the property
recorded as cast is unconditionally satisfied, even during the vote when the cast
vote has sufficient time separation from others.

After casting their vote, voters receive a tracking code displayed by their
client device. They can enter this code into a web form and retrieve their vote
within a 15-minute window from the time it was recorded, as illustrated in Fig. 4,
ensuring that their vote is cast as intended and is recorded as cast. Such a check,
however, does assume that the client’s device is not infected with malware and
does not coordinate its efforts with the bulletin board. Thus, either of them
needs to be trusted during the vote. After the votes are published on a public
bulletin board, they can be verified there, ensuring they are cast as intended
unconditionally.

A follow-up consistency proof check of a few voters, conducted through
anonymous channels on voters’ client devices, ensures that their votes and votes
cast by others remain cast as recorded. It is reinforced by announcing the final
tally along with the ballotbox tree root from which it was computed, easily repli-
cable across various mediums. The tally can be announced before votes are pub-
lished on the bulletin board. In such cases, third-party internal audits can easily
verify the resulting tally, rendering the honesty of the bulletin board optional.
Furthermore, risk-limiting tallies can be used to limit leakage [19]. Therefore,
tallied as recorded holds unconditionally in the presence of trusted third-party
internal audits, and once the votes are published on the bulletin board, those
audits are no longer necessary.

The eligibility of every vote is guaranteed by a seal issued with a pseudonym,
which is listed under the members’ pseudonyms in the proposal-anchored braid.
Auditing the braidchain ledger, which is always public, assures that there is one

PeaceFounder: centralised E2E verifiable evoting 17

corresponding membership certificate for every pseudonym. The other part is
assuring that memberships are issued to authentic members, which can be only
done by internal audits to preserve members’ right to privacy for freedom of
association. The members consent to their association with a digitally signed
document containing the invite and their registration index, which is kept with
the registrar. Therefore, eligibility holds unconditionally as long as internal au-
dits of the registrar are performed.

The voter’s anonymity comprises two properties: the unlinkability of the vote
to the voter and the untractability of the voter’s identity when it casts a vote.
Unlinkability is achieved through the use of braided pseudonyms. Since braiding
is transactional and independent of registration, it can be conducted with un-
trusted parties, provided the braid proofs are valid. This significantly broadens
the range of entities that can perform braiding. Everyone can verify the au-
thenticity of the braids, which are issued by separate parties and sealed by the
braiders, thereby preventing any corrupt authority from falsifying anonymisa-
tion. On the other hand, untraceability is assured with the help of an anonymous
channel [8]. Therefore, anonymity is maintained as long as at least one braider
is honest and no adversary has compromised the anonymous channel used by
the voter during the vote.

Elle
cti

on S
tar

ts

Ta
lly

 A
nnounce

d

Votes
 P

ublis
hed

Fairness

Receipt Freeness Public Verifiability

Fig. 5. Illustration of temporal receipt freeness in the Peacefounder voting system.
During the election period, the system maintains both receipt-freeness and fairness.
However, after the tally is published, newly submitted votes lose their fairness. The
votes themselves can be published on the buletin board later to extend the time period
for receipt-freeness, reducing the effectiveness of coercers and bribers. This comes at
the expense of delaying the audit process for publically verifying that votes have been
tallied as cast.

The receipt freeness, ensured by the ability to revote and mark votes as
coerced, is temporary and is lost once the votes are published on a public bulletin
board as shown in Fig. 5. However, an adversary must compel voters to commit
to a specific vote and prove its ownership during the vote. This can be achieved
by proxying their vote through them, the voter disclosing the combination of
cast index and pseudonym alias, or marking the ballot in a unique way, known

18 J. Erdmanis

as the Italian attack. If neither of those steps is done, after votes are published,
the voter is free to take any receipt from the bulletin board and claim that to
be their own to coercer/briber.

A measure that the authority can take is to delay the publishing of the votes
and use internal third-party audits to verify the tally. This approach reduces
the likelihood of bribery, as voters must trust that bribers will remember to
compensate them once the votes are published. It also makes it more difficult
for bribers to create network effects during voting. In cases of coercion, delaying
the publication gives subjects time to organise and document potential conse-
quences, encouraging them to defy coercers’ orders by either marking their votes
as coerced or opting to revote later.

Conclusion

This paper introduces an E2E verifiable voting system with centralised responsi-
bility and decentralised accountability via voter devices. Any misconduct results
in publishable cryptographic evidence identifying the responsible party - the reg-
istrar, proposer, bulletin board, or braider authorities - allowing judicial actions
to be taken. The system is fully centralised, enabling a single party to set up,
deploy, and collect votes. It does not require bulletin board replication and mon-
itoring for immutability, as this is ensured by voters’ devices through consistency
proofs.

Privacy is secured through braiding with multiple independent parties. As
it is transactional, it extends the scope beyond that of existing systems, which
require coordination of threshold decryption ceremonies that depend on a trusted
quorum assumption for robustness. Revoting and marking votes as coerced are
possible; however, receipt-freeness is temporary and lost once votes are published
on the bulletin board. Therefore, resistance to coercion and bribery depends on
the assumption that voters will not commit to distant outcomes, ensuring they
can freely revote or tag votes as coerced.

In the future, encryption of the vote selections will be addressed so that
votes can be marked as coerced, and the imparity of proxies/monitors will be
maintained. Proof of participation may be implemented using blind signatures
to ensure that eligible members vote, particularly in scenarios where authorities
seek to enforce voter participation. Extending the protocol with smartcards is
also an exciting avenue to explore to prevent malware interference and ensure
that terminated members cannot cast votes. Privacy from a corrupt hardware
issuer is already a solved problem via the two-party protocol outlined in [4].

The fact that the vote selections are encoded plainly offers a straight path to
support unlimited ballot types, preferential, budget constraint limited, and car-
dinal ballots. Also, apart from ballots, anonymised pseudonyms can be used to
do internal whistleblowing to ensure integrity within the organisation. More dar-
ing features can be explored, like fluid voting, where voters can change their vote
within given periods, which can make a representative lose their seat, bridging
the gap between representative and direct democracy. Or doing ballot shard-

PeaceFounder: centralised E2E verifiable evoting 19

ing where the long ballot is sharded into smaller ones assigned to member
pseudonyms in a verifiable lottery would elevate the impact of individual vot-
ers’ choices, reduce decision fatigue and hence could address the voting paradox.
All these features can enable a better democracy through vote while ensuring
integrity and voters’ privacy in foolproof deployments.

References

1. Adida, B.: Helios: Web-based open-audit voting. In: Proceedings of the 17th Con-
ference on Security Symposium. p. 335–348. SS’08, USENIX Association, USA
(2008)

2. Benaloh, J., Rivest, R.L., Ryan, P.Y.A., Stark, P.B., Teague, V., Vora,
P.L.: End-to-end verifiability. ArXiv abs/1504.03778 (2015), https://api.
semanticscholar.org/CorpusID:14314175

3. Brunet, J., Essex, A.: Online voting in ontario municipalities: A standards-based
review. In: Volkamer, M., Duenas-Cid, D., Rønne, P., Ryan, P.Y.A., Budurushi, J.,
Kulyk, O., Rodriguez Pérez, A., Spycher-Krivonosova, I. (eds.) Electronic Voting.
pp. 52–68. Springer Nature Switzerland, Cham (2023)

4. Chaum, D., Pedersen, T.P.: Wallet databases with observers. In: Brickell, E.F.
(ed.) Advances in Cryptology — CRYPTO’ 92, vol. 740, pp. 89–105. Springer
Berlin Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_7, http:
//link.springer.com/10.1007/3-540-48071-4_7, series Title: Lecture Notes in
Computer Science

5. Cortier, V., Gaudry, P., Glondu, S.: Belenios: A simple private and verifi-
able electronic voting system. In: Guttman, J.D., Landwehr, C.E., Meseguer,
J., Pavlovic, D. (eds.) Foundations of Security, Protocols, and Equa-
tional Reasoning, vol. 11565, pp. 214–238. Springer International Publish-
ing (2019). https://doi.org/10.1007/978-3-030-19052-1_14, http://link.
springer.com/10.1007/978-3-030-19052-1_14, series Title: Lecture Notes in
Computer Science

6. Cox, R.: Transparent logs for skeptical clients (2019)
7. Crosby, S.A., Wallach, D.S.: Efficient data structures for tamper-evident log-

ging. In: Proceedings of the 18th Conference on USENIX Security Symposium.
p. 317–334. SSYM’09, USENIX Association, USA (2009)

8. Dingledine, R., Mathewson, N., Syverson, P.: Tor: The Second-Generation onion
router. In: 13th USENIX Security Symposium (USENIX Security 04). USENIX
Association, San Diego, CA (Aug 2004)

9. Erdmanis, J.: ShuffleProofs.jl: Verificatum compatible verifier and prover for NIZK
proofs of shuffle. https://github.com/PeaceFounder/ShuffleProofs.jl (2022)

10. Erdmanis, J.: PeaceFounder project. https://github.com/PeaceFounder (2024)
11. Erdmanis, J.: PeaceFounderDemo: bulletin board demo audited in continuous inte-

gration pipeline. https://github.com/PeaceFounder/PeaceFounderDemo (2024)
12. Finogina, T.: Why does e-voting have to be perfect? (short article) p. 377 (10 2021)
13. Finogina, T., Cucurull Juan, J., Costa, N.: Selective comparison of verifiable on-

line voting systems. Security and Privacy (2024). https://doi.org/https://doi.
org/10.1002/spy2.394, https://onlinelibrary.wiley.com/doi/abs/10.1002/
spy2.394

14. Goodman, N., Spycher-Krivonosova, I., Essex, A., Brunet, J.: Verifiability ex-
periences in ontario’s 2022 online elections. In: Volkamer, M., Duenas-Cid, D.,

https://api.semanticscholar.org/CorpusID:14314175
https://api.semanticscholar.org/CorpusID:14314175
https://doi.org/10.1007/3-540-48071-4_7
https://doi.org/10.1007/3-540-48071-4_7
http://link.springer.com/10.1007/3-540-48071-4_7
http://link.springer.com/10.1007/3-540-48071-4_7
https://doi.org/10.1007/978-3-030-19052-1_14
https://doi.org/10.1007/978-3-030-19052-1_14
http://link.springer.com/10.1007/978-3-030-19052-1_14
http://link.springer.com/10.1007/978-3-030-19052-1_14
https://github.com/PeaceFounder/ShuffleProofs.jl
https://github.com/PeaceFounder
https://github.com/PeaceFounder/PeaceFounderDemo
https://doi.org/https://doi.org/10.1002/spy2.394
https://doi.org/https://doi.org/10.1002/spy2.394
https://doi.org/https://doi.org/10.1002/spy2.394
https://doi.org/https://doi.org/10.1002/spy2.394
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.394
https://onlinelibrary.wiley.com/doi/abs/10.1002/spy2.394

20 J. Erdmanis

Rønne, P., Ryan, P.Y.A., Budurushi, J., Kulyk, O., Rodriguez Pérez, A., Spycher-
Krivonosova, I. (eds.) Electronic Voting. pp. 87–105. Springer Nature Switzerland,
Cham (2023)

15. Haenni, R.: UniVote protocol specification (2013), https://e-voting.bfh.ch/
app/download/5874743461/specification.pdf?t=1507600656

16. Haenni, R., Koenig, R.E., Locher, P., Dubuis, E.: Chvote protocol specification.
Cryptology ePrint Archive, Paper 2017/325 (2017), https://eprint.iacr.org/
2017/325

17. Haenni, R., Locher, P., Koenig, R., Dubuis, E.: Pseudo-code algo-
rithms for verifiable re-encryption mix-nets. In: Financial Cryptogra-
phy and Data Security, vol. 10323, pp. 370–384. Springer International
Publishing (2017). https://doi.org/10.1007/978-3-319-70278-0_23,
http://link.springer.com/10.1007/978-3-319-70278-0_23, series Title:
Lecture Notes in Computer Science

18. Haenni, R., Spycher, O.: Secure internet voting on limited devices with anonymized
dsa public keys. In: Proceedings of the 2011 Conference on Electronic Voting Tech-
nology/Workshop on Trustworthy Elections. p. 8. EVT/WOTE’11, USENIX As-
sociation, USA (2011)

19. Jamroga, W., Roenne, P.B., Ryan, P.Y.A., Stark, P.B.: Risk-limiting tallies, http:
//arxiv.org/abs/1908.04947

20. Jamroga, W., Ryan, P.Y.A., Schneider, S., Schürmann, C., Stark, P.B.: A dec-
laration of software independence. In: Dougherty, D., Meseguer, J., Möder-
sheim, S.A., Rowe, P. (eds.) Protocols, Strands, and Logic: Essays Dedicated
to Joshua Guttman on the Occasion of his 66.66th Birthday, pp. 198–217.
Lecture Notes in Computer Science, Springer International Publishing (2021).
https://doi.org/10.1007/978-3-030-91631-2_11, https://doi.org/10.1007/
978-3-030-91631-2_11

21. Josh Benaloh, Michael Naehrig: ElectionGuard: Design specification,
https://github.com/microsoft/electionguard/releases/download/v2.0/
EG_Spec_2_0.pdf

22. Rakeei, M.A., Giustolisi, R., Lenzini, G.: Secure internet exams despite co-
ercion. In: DPM/CBT@ESORICS (2022), https://api.semanticscholar.org/
CorpusID:251066859

23. Ryan, P.Y.A.: Crypto Santa, pp. 543–549. Springer Berlin Heidelberg, Berlin,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49301-4_33, https://
doi.org/10.1007/978-3-662-49301-4_33

24. Ryan, P.Y.A., Rønne, P.B., Iovino, V.: Selene: Voting with transparent
verifiability and coercion-mitigation. In: Clark, J., Meiklejohn, S., Ryan,
P.Y., Wallach, D., Brenner, M., Rohloff, K. (eds.) Financial Cryptogra-
phy and Data Security, vol. 9604, pp. 176–192. Springer Berlin Heidel-
berg (2016). https://doi.org/10.1007/978-3-662-53357-4_12, http://link.
springer.com/10.1007/978-3-662-53357-4_12, series Title: Lecture Notes in
Computer Science

25. Syta, E., Jovanovic, P., Kogias, E.K., Gailly, N., Gasser, L., Khoffi, I., Fischer, M.J.,
Ford, B.: Scalable bias-resistant distributed randomness. In: 2017 IEEE Sympo-
sium on Security and Privacy (SP). pp. 444–460. IEEE (2017). https://doi.org/
10.1109/SP.2017.45, http://ieeexplore.ieee.org/document/7958592/

26. TOR Project: Arti: An implementation of Tor, in Rust. https://gitlab.
torproject.org/tpo/core/arti (2024)

https://e-voting.bfh.ch/app/download/5874743461/specification.pdf?t=1507600656
https://e-voting.bfh.ch/app/download/5874743461/specification.pdf?t=1507600656
https://eprint.iacr.org/2017/325
https://eprint.iacr.org/2017/325
https://doi.org/10.1007/978-3-319-70278-0_23
https://doi.org/10.1007/978-3-319-70278-0_23
http://link.springer.com/10.1007/978-3-319-70278-0_23
http://arxiv.org/abs/1908.04947
http://arxiv.org/abs/1908.04947
https://doi.org/10.1007/978-3-030-91631-2_11
https://doi.org/10.1007/978-3-030-91631-2_11
https://doi.org/10.1007/978-3-030-91631-2_11
https://doi.org/10.1007/978-3-030-91631-2_11
https://github.com/microsoft/electionguard/releases/download/v2.0/EG_Spec_2_0.pdf
https://github.com/microsoft/electionguard/releases/download/v2.0/EG_Spec_2_0.pdf
https://api.semanticscholar.org/CorpusID:251066859
https://api.semanticscholar.org/CorpusID:251066859
https://doi.org/10.1007/978-3-662-49301-4_33
https://doi.org/10.1007/978-3-662-49301-4_33
https://doi.org/10.1007/978-3-662-49301-4_33
https://doi.org/10.1007/978-3-662-49301-4_33
https://doi.org/10.1007/978-3-662-53357-4_12
https://doi.org/10.1007/978-3-662-53357-4_12
http://link.springer.com/10.1007/978-3-662-53357-4_12
http://link.springer.com/10.1007/978-3-662-53357-4_12
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45
https://doi.org/10.1109/SP.2017.45
http://ieeexplore.ieee.org/document/7958592/
https://gitlab.torproject.org/tpo/core/arti
https://gitlab.torproject.org/tpo/core/arti

PeaceFounder: centralised E2E verifiable evoting 21

27. Valsorda, F.: Modern transparency logs. In: Proceedings of the Real World Crypto
Symposium. International Association for Cryptologic Research, Toronto, Canada
(Mar 2024), https://iacr.org/submit/files/slides/2024/rwc/rwc2024/68/
slides.pdf

28. Wikström, D.: A sender verifiable mix-net and a new proof of a shuffle. In: Roy, B.
(ed.) Advances in Cryptology - ASIACRYPT 2005. pp. 273–292. Springer Berlin
Heidelberg, Berlin, Heidelberg (2005)

29. Wikstrom, D.: How to implement a stand-alone verifier for the verificatum mix-net.
verificatum.org (2011)

30. Zollinger, M.L., Estaji, E., Ryan, P.Y.A., Marky, K.: “just for the sake of trans-
parency”: Exploring voter mental models of verifiability. In: Krimmer, R., Volka-
mer, M., Duenas-Cid, D., Kulyk, O., Rønne, P., Solvak, M., Germann, M.
(eds.) Electronic Voting, vol. 12900, pp. 155–170. Springer International Publish-
ing (2021). https://doi.org/10.1007/978-3-030-86942-7_11, https://link.
springer.com/10.1007/978-3-030-86942-7_11, series Title: Lecture Notes in
Computer Science

https://iacr.org/submit/files/slides/2024/rwc/rwc2024/68/slides.pdf
https://iacr.org/submit/files/slides/2024/rwc/rwc2024/68/slides.pdf
https://doi.org/10.1007/978-3-030-86942-7_11
https://doi.org/10.1007/978-3-030-86942-7_11
https://link.springer.com/10.1007/978-3-030-86942-7_11
https://link.springer.com/10.1007/978-3-030-86942-7_11

	PeaceFounder: centralised E2E verifiable evoting via pseudonym braiding and history trees

