
AnonPSI: An Anonymity Assessment Framework
for PSI

Bo Jiang
TikTok Inc.

bojiang@tiktok.com

Jian Du
TikTok Inc.

jian.du@tiktok.com

Qiang Yan
TikTok Inc.

yanqiang.mr@tiktok.com

Abstract—Private Set Intersection (PSI) is a widely used
protocol that enables two parties to securely compute a function
over the intersected part of their shared datasets and has been
a significant research focus over the years. However, recent
studies have highlighted its vulnerability to Set Membership
Inference Attacks (SMIA), where an adversary might deduce an
individual’s membership by invoking multiple PSI protocols. This
presents a considerable risk, even in the most stringent versions
of PSI, which only return the cardinality of the intersection.
This paper explores the evaluation of anonymity within the PSI
context. Initially, we highlight the reasons why existing works fall
short in measuring privacy leakage, and subsequently propose
two attack strategies that address these deficiencies. Furthermore,
we provide theoretical guarantees on the performance of our
proposed methods. In addition to these, we illustrate how
the integration of auxiliary information, such as the sum of
payloads associated with members of the intersection (PSI-SUM),
can enhance attack efficiency. We conducted a comprehensive
performance evaluation of various attack strategies proposed
utilizing two real datasets. Our findings indicate that the methods
we propose markedly enhance attack efficiency when contrasted
with previous research endeavors. The effective attacking implies
that depending solely on existing PSI protocols may not provide
an adequate level of privacy assurance. It is recommended
to combine privacy-enhancing technologies synergistically to
enhance privacy protection even further.

I. INTRODUCTION

Private Set Intersection (PSI) protocols allow two parties
to securely compute a function over the intersection of their
datasets without directly revealing the intersection itself [3],
[6], [11] and have gained significant interest in the industry.
Sensitive information within the intersection, such as individ-
ual identities, attributes, and memberships at the other party,
remains unrevealed.

While the intersection set is not directly disclosed, most
two-party secure computation protocols disclose the inter-
section size may inadvertently leak membership information
[14]. PSI-CA (Private Set Intersection-Cardinality) is one such
protocol that releases the cardinality of the intersection to one
party [13], [12]. This protocol serves as an essential building

block for various applications, such as new friend recommen-
dations in online social networks [30] and contagious disease
tracking [7]. Another popular PSI protocol is PSI-SUM [16],
[20]. In addition to the cardinality of the intersection, PSI-
SUM also reveals the summation of payloads associated with
members of the intersection. One application of PSI-SUM is
the secure computation for advertising measurement between
an advertiser and an ad provider. Similar PSI protocols includ-
ing Private-ID [4] reveal the intersection size.

Recent research indicates that even the disclosure of the
intersection cardinality can introduce vulnerabilities [14]. In-
tuitively, cardinality is not independent of the identities of
individuals in the intersected set, especially when the size is
small. Therefore, these intersection size revealing protocols
enable an adversary to infer whether a targeted individual is in
the intersection or not, which is also known as the membership
information. Notably, individuals who intersect with the other
party’s set are classified as positive members, while those
outside the intersection are classified as negative members.
Depending on the application context, either or both of these
positive/negative memberships can be sensitive from a privacy
perspective as shown below. Consider, for example, a situation
involving COVID-19 testing. Individuals who have tested
positive are treated as sensitive information. Another scenario
arises when politicians seek to advance their positions and
persuade people to support a bill. They may examine existing
datasets to identify those who abstained from voting. In this
context, these non-voting individuals, representing negative
members, are deemed sensitive. In a third scenario, such as
advertising measurement [16], [20], the advertising company
would be interested in both positive and negative memberships,
which refer to an advertising conversion and non-advertising
conversion, respectively. The motivation to determine user
memberships serves two primary purposes: firstly, to tally
positive members for the targeted advertising campaign, and
secondly, to engage with negative members through a distinct
advertising campaign.

A more efficient attacker can even deduce a subset of
individuals’ membership through a small number of protocol
invocations. Such an attack is also known as Set Membership
Inference Attack (SMIA). In certain scenarios, the inference
of such information may lead to unintended consequences,
such as discrimination, targeted advertising, or even social
engineering attacks. An SMIA is initiated by the attacker being

Network and Distributed System Security (NDSS) Symposium 2024
26 February - 1 March 2024, San Diego, CA, USA
ISBN 1-891562-93-2
https://dx.doi.org/10.14722/ndss.2024.241279
www.ndss-symposium.org

one party participating in the PSI running protocol, through the
continual submission of varying input sets. Upon observing the
outputs, the adversary can infer the membership information
of targeted elements.

On the other hand, an effective SMIA is useful in measuring
the privacy protection guarantee provided by different PSI pro-
tocols and providing guidance in designing better and stricter
protocols. The effectiveness of the SMIA is typically deter-
mined by the number of individuals’ memberships inferred.
Beyond the attack efficiency, to assess the protection provided
by PSI, the attack algorithm should also be feasible and valid
under certain counterattack measures embedded in the PSI
protocol. For instance, many companies set daily limits for
database queries from the public. For example, it allows only
15 queries per day [24]. Consequently, a feasible attack should
be designed to be sufficiently efficient with a limited number
of protocol invocation times. Moreover, strict PSI protocols
are often fortified with privacy-preserving mechanisms, such
as noise-adding mechanisms based on differential privacy [10],
[9]. The attack should continue to function effectively against
such noise with high confidence.

In this paper, our principal contributions can be summarized
in three key areas:

• We introduce two strategies for implementing member-
ship inference attacks: deterministic and statistical, which
take individuals’ membership as deterministic values and
random variables respectively. Efficient attack algorithms
are proposed under each strategy, and we theoretically
illustrate the performance guarantee of each (performance
lower bound).

• We exhibit the potential of employing auxiliary infor-
mation to further augment the attack’s effectiveness. In
this regard, an efficient algorithm specifically tailored
for PSI-SUM attacks is proposed for the first time. We
amalgamate the attack algorithm in PSI-CA with an
offline summation matching algorithm, N-SUM, thereby
significantly reducing combination possibilities and en-
hancing attack efficiency.

• We assess the proposed algorithms using two real-world
datasets: COVID-tracking systems and TaoBao advertise-
ments. We rigorously test the performance and effective-
ness of these algorithms against these datasets, substan-
tiating their practical applicability. This further implies
that the PSI protocol alone may not ensure adequate pri-
vacy. It’s advisable to integrate other privacy-enhancing
technologies for strengthened privacy safeguards.

II. RELATED WORKS

The concept of Membership Inference Attack (MIA) was
introduced by Shokri et al. in 2017 [25], marking a significant
milestone in the field of machine learning security. In an MIA,
attackers leverage machine learning model outputs such as
prediction scores or confidence intervals to deduce whether a
specific data point was part of the training set. Intriguingly,
these attackers don’t require direct access to the model’s
inner workings or training data; the model’s query responses

suffice, making these attacks practicable in real-world sce-
narios where models are often deployed as services. Nasr et
al. [22] extended these attacks to collaborative deep learning
models, underscoring potential risks in the burgeoning field of
federated learning. Theoretical frameworks for comprehending
and counteracting these attacks were furnished by Yeom et
al. [29]. It’s noteworthy, however, that MIAs typically infer
a single individual’s membership through one observation,
while SMIA reasons multiple individual memberships through
a sequence of observations. MIAs generally train dedicated
models to emulate the target model’s behavior, while in SMIA,
the attacker alters the input for each protocol call and interprets
the results from observations. Defense mechanisms against
MIAs, such as adding noise to the model’s outputs [15] or
employing differential privacy mechanisms [2], [17], remain
viable for SMIA.

A distinct but related line of research pertains to link-
age attacks, which attempt to re-identify anonymized data
by correlating it with other accessible datasets. Introduced
by Latanya Sweeney in 2000 [27], linkage attacks gained
notoriety when Sweeney demonstrated the possibility of re-
identifying individuals in anonymized medical data using
publicly available voter registration lists. The rise of big data
and computational power has amplified the prominence of
linkage attacks. Notably, in 2006, Narayanan and Shmatikov
[21] de-anonymized Netflix’s movie rating data by linking
it with publicly available IMDb ratings. The emerging ubiq-
uity of linkage attacks has underscored the need for robust
anonymization techniques and highlighted the limitations of
approaches like k-anonymity [19]. SMIA in contexts such as
PSI bears similarities to linkage attacks, as it makes inferences
using data from a dependent dataset. However, while linkage
attacks typically focus on re-identifying individuals, SMIAs
target membership information. In this paper, we present an
attack algorithm for PSI-SUM that leverages side information,
akin to a linkage attack.

Recently, Guo et al. in [14] proposed an attack that enhances
the basic “toy attack” (submit one element at a time to the
PSI protocol, and observe the membership) efficiency from
O(N) to O(logN) (protocol invocation times to infer N
individuals’ membership). Nevertheless, this improved attack
possesses several limitations:

1) PSI protocols often cap invocation frequencies within a
specific number, necessitating highly efficient iteration-
based attacks to garner enough information during the
limited protocol calls. The method outlined in [14] is
inapplicable when the allowable protocol call budget is
constrained.

2) When the PSI incorporates privacy-preserving mecha-
nisms, such as differential privacy, the method in [14]
becomes impracticable due to its inability to cope with
the resultant uncertainty in the attack process.

3) The aforementioned method focuses on one PSI sce-
nario (PSI-CA), disregarding the side information that
other applications like PSI-SUM can provide. This side
information could prove instrumental during an attack.

2

In light of these limitations, our work aims to devise
a more effective and efficient attack strategy that not
only considers multiple PSI scenarios but is also capable
of handling the uncertainties introduced by privacy-
preserving mechanisms.

III. PRELIMINARIES

To provide a formal representation of the SMIA for PSI
protocols, we define the notations, attack model, and parties
involved in the PSI protocol execution. Then we introduce
some baseline algorithms for SMIA.

A. Problem formulation

In a two-party setting, let us represent the dataset of Party
1 as X = {x1, ..., x|X|} and the dataset of Party 2 as Y =
{y1, ..., y|Y|}. Here, we use | · | to denote the cardinality of a
dataset. For instance, |X| signifies the total number of elements
in Party 1’s dataset. The cardinality of the intersection between
the two datasets is represented by |X ∩ Y|.

In the context of intersection-size-revealing protocols, the
party that receives the intersection size obtains a measure of
similarity between its own dataset and the other party’s dataset.
Given that the party has the freedom to select its own dataset
for the protocol, it can strategically assess the other party’s
dataset according to its interests. A relevant question arises
when the party has a multitude of target elements: Can the
party determine the membership status of these target elements
in the other party’s dataset by taking advantage of its ability
to measure similarity?

Threat Model: We assume the attacker is from Party 1,
i.e., X belongs to the attacker, and the attacker possesses the
following capabilities. The attacker can participate in multiple
intersection-size-revealing protocols as a party. During each
protocol execution, the attacker can select its input and obtain
the intersection size (and some side information if available,
such as the summation in PSI-SUM) resulting from its input
and Y. In practical scenarios, the number of times the protocol
can be called might be limited due to time constraints or rate-
limiting mechanisms. Therefore, it is assumed that the attacker
is permitted to repeatedly engage in protocol invocations under
a query budget τ .

Depending on different purposes, the attacker may be in-
terested in different types of membership information, as we
discussed in the introduction. Here we assume the adversary
is interested in both the positive members and the negative
members. To this end, the adversary adaptively designs his
attack strategy to maximize membership information leakage.

Attacking Strategy: We consider two types of attack
strategies:

• Deterministic attack, where the adversary treats each
person’s membership as a deterministic value, and his
attack is based on narrowing down group size iteratively
and eventually landing on selected subsets which incurs a
return with a result equal to 0 (all negative) or the size of
the subset (all positive). The attack may re-identify only

1

2

3

4

1

2

3

4

Attacking process Attacker’s point of view

Fig. 1. An Illustration of deterministic hierarchical set membership inference
attack. We use ”+” to denote positive memberships, i.e., individuals in the
intersection, and ”-” to denote negative memberships, i.e., individuals in the
attacker’ set only.

a small subset of the victim set under small τ , but the
inferred memberships are accurate and deterministic.

• Statistical attack, where the attacker takes each individ-
ual’s membership as a binary random variable. His attack
is based on updating the posterior belief on these random
variables to either maximize (reasoning positive mem-
bership) or minimize (reasoning negative membership)
them until the stopping criterion is matched. This type of
attack strategy will make a guess of each membership in
the dataset, and his strategy will guarantee his guessing
accuracy above a tolerable threshold.

B. Preliminary attack algorithms

A brute-force attack involves the attacker randomly select-
ing an individual from X set and checking their membership
by invoking the protocol. The attacker then moves on to
another individual in X. To determine the membership of |X|
individuals, the attacker must make |X| protocol calls. This
approach is inefficient for two reasons: first, it requires a large
number of calls; and second, it can be easily countered by
incorporating some protocol output policies. Such as Apple’s
PSI-AD protocol, which only returns an intersection size
greater than a certain threshold.

The algorithm proposed in [14] introduces an attacker that
uses a strategy similar to binary search. It constructs a binary
tree with target elements at the root, and each non-leaf node’s
set is divided into two non-empty, disjoint subsets stored in
its child nodes. Here node denotes a subset of X, and a child
node is a subset of its parent node. The attacker then performs
a depth-first search (DFS) on the tree, invoking the protocol
with the victim to get the intersection size for each visited
node’s set. The search ends at a node where the stored set’s
size equals the received intersection size. Unvisited subtrees
are queued for future DFS.

The attack in [14] is also optimized by adopting a greedy
DFS approach. The attacker should prioritize searching sub-
trees with the highest merge probability. This probability is
positively related to the ratio of the intersection size of the
subtree’s root to the number of target elements in the subtree.
The attacker can use this ratio as a priority score to sort the
subtrees in a priority queue. By doing so, the attacker will first
run DFS on the subtree with the highest merge probability,
further improving the efficiency of the attack. An illustrative
example of this algorithm is shown in Fig. 1.

3

Call # Partition Exp.Leak

1 0 0

2 2 0.928

Call # Partition Exp.Leak

1 0 0

2 4 0.57

Fixed Partition Algorithm Dynamic Partition Algorithm

Fig. 2. A comparison of different tree partition principles in hierarchical
attacks on PSI-CA protocols.

The attack in [14] is more efficient than the toy attack due
to its binary-search-like strategy. By constructing a binary tree,
the attacker can save at least half of the protocol invocations
for every non-root layer. This is because after visiting a child
node, the return of the other child node can be deduced from
the parent node and the visited child node. The efficiency of
the baseline attack is no worse than the toy attack, and it can
even be better since it may terminate early when the current
node contains all positive or negative members, reducing the
number of invocations.

IV. DETERMINISTIC ATTACK

In this section, we propose attacks for the PSI protocols
treating each individual’s membership as deterministic values.
We first illustrate with an example showing the limitations of
the aforementioned works. Then we present our DyPathBlazer,
a dynamic programming approach for PSI-CA protocol. At the
end of this section, we show how auxiliary information in the
output improves attack efficiency and propose TreeSumExplo-
erer, an efficient attack algorithm for PSI-SUM.

A. Even v.s. uneven tree partition

One possible direction to optimize the hierarchical structural
attack is to adopt an uneven tree partition principle rather than
divide all nodes evenly. We provide more insights through the
following example.

Suppose an attacker possesses a dataset containing eight
individuals, three of whom also are positive members and the
rest of them are negative members. The adversary can request
a PSI call twice. Our exploration focuses on two distinct attack
strategies: fixed partitioning and dynamic partitioning.

In the fixed partition strategy, the adversary consistently
bisects the tree, employing one of the child nodes for the
next round. As shown in the figure, the attacker employing the
fixed partition strategy initially executes a PSI run, identifying
three positive members in their input but failing to deduce their
identities. Then, the attacker randomly selects four individuals
from the X for the second PSI run. As depicted in the
figure, two potential scenarios arise: The first scenario, with
a probability of

(
5
4

)
/
(
8
4

)
, allows the attacker to discern the

identities of four individuals. The second scenario unfolds
with a probability of

(
5
3

)(
3
1

)
/
(
8
4

)
, in which the attacker cannot

infer any identities. Following two PSI calls, the expected
number of inferred memberships is 0.57. In contrast, the
dynamic partitioning strategy involves an algorithm where the
attacker can unevenly split the current branch, which then
serves as the input for the next PSI call. The rationale is that
the attacker, understanding the constraints of their protocol
run time, opts to thoroughly identify a subset of individuals
instead of selecting a larger quantity and failing to determine
all their memberships. Case 2 from Figure 2 illustrates the
attack process using the dynamic partition strategy.

In this process, the attacker initiates a PSI run, identifies
three individuals as positive members, and then randomly
chooses two individuals for the second round. This can re-
sult in three potential outcomes: Both selected individuals
are negative members. This scenario, with a probability of(
5
2

)
/
(
8
2

)
, results in a leakage of 2. The two individuals include

one positive and one negative member, yielding no leakage.
Both selected individuals are negative. This outcome, with a
probability of

(
3
2

)
/
(
8
2

)
, results in a leakage of 2. The expected

leakage after two PSI calls is 0.928, which exceeds that of the
fixed partition scenario.

This raises a pertinent question: Given that the dynamic par-
tition algorithm can potentially enhance inference efficiency,
how can the adversary determine the optimal partition factor
(for example, 2 in the example above)? In the following
section, we introduce DyPathBlazer, a dynamic programming
solution designed to resolve this optimal partition factor issue.

B. DyPathBlazer: A bottom-up dynamic programming solution

The proposed algorithm is depicted in Alg.1 and can be
summarized as follows. The attacker requests a PSI call for X
and observes a return CX, the PSI call budget is also updated
to τ − 1. These together determine an optimal partition factor
K (the determining function will be introduced later). He then
randomly divides the tree into two child nodes. One with K
elements (denoted as left child), one with |X| −K elements
(denoted as right child). He submits a child with a shorter
length to the PSI protocol, the left child for example, and
observes an outcome CL. Then CR = CX − CL. The next
step is to compare the expected leakage of the left child and
the right child. The child node with a larger expected leakage
is treated as the parent node and waiting for K in the next
iteration. The child node with smaller expected leakage is
pushed into a priority queue. If all elements’ membership in
the current node is determined (all positive or all negative),
the algorithm makes a prediction and dequeues a node with
the highest priority as the current node. This process goes on
until the protocol call budget is exhausted or all elements’
membership in X are determined.

The selection of K is dependent on three parameters: the
number of elements in the parent node |N|, the number of
positive members of the elements CN, and the protocol run
budget τ . We define the tuple containing these three factors
as a state: (|N|, CN, τ).

4

Algorithm 1 DyPathBlazer
Input: A set X of target elements, pre-calculated Inter-

mediate results Θ, protocol invocation times τ
Output: Classified sets Zpos, Zneg .

Initialize Zpos = ∅, Zneg = ∅
CX ← PSI-CA(X,Y), τ = τ − 1.
queue ← {(|X|, CX,X)}
while queue is not empty do

(CN,N)← queue.dequeue
while 0 < CN < |N| and τ > 0 do

K = Θ(N, CN, τ)
NL

K ← N[: K], NR
K ← N[K :]

CL ← PSI-CA(NL
K ,Y), τ ← τ − 1

CR ← CN − CL

if ΓL
K ≥ ΓR

K then
(CN,N) ← (CL,NL

K)
queue.enqueue {(ΓR

K , CR,NR
K)}

else
(CN,N) ← (CR,NR

K)
queue.enqueue {(ΓL

K , CL,NL
K)}

end if
end while
if CN = |N| then Zpos ← Zpos ∪ N
else if CN = 0 then Zneg ← Zneg ∪ N
end if

end while
return Zpos, Zneg

Algorithm 2 Memo generating function
Output: Memorized space Γ and Φ.

Initialize Γ and Φ as hash tables, where the key of Γ is
(N, CN, τ), and the key of Φ is (N, CN)
Γ (1,1,0) = 1; Γ (1,0,0)=1;
Φ (1,1) = 0; Φ (1,0) = 1;
return Γ, Φ

Algorithm 3 Optimal Tree partition algorithm based on dy-
namic programming

Input: Size of the victim set N , memberships in the
victim set m, number of protocol innovation budget τ

Output: Θ, the optimal set partition principle.
return Θ(N, CN, τ) if exists.
Initiate Γ(N, CN, τ) = 0, Θ(N, CN, τ) = 0, Φ(N, CN) = N
for 1 ≤ k ≤ (N+ 1)//2 do

Calculate ΓL
k (N, CN, τ) with (4)

Calculate ΓR
k (N, CN, τ) with (5)

Γ(N, CN, τ − 1) with (6)
end for
Θ(N, CN, τ) = argmaxkΓ

k(N, CN, τ)
if Γ(N, CN, τ) ≥ N then

Φ(N, CN) = min{Φ(N, CN), τ}
end if
return Θ(N, CN, τ)

(|ℕ | ,Cℕ, τ)
State Θ(|ℕ | ,Cℕ, τ)

K

ℕL
K

PSI-CA

(⋅ , Y)CL

CL = 0 or CL = K

Update ℤpos or ℤneg

Otherwise
Update

ℕR
K

Priority Queue

ℕ

Input

Enqueue

Update

Dequeue

1

2

3
4

5

Fig. 3. DyPathBlazer model description

Note that different values of the partition factor K may
lead to different membership inference scenarios. Denote
Γk(|N|, CN, τ) as the expected membership leakage when
the partition factor is k, given the current state. Denote
Θ(|N|, CN, τ) = K as the partition rule, then:

K = argmaxkΓk(|N|, CN, τ). (1)

We remove the subscription to denote the best-case expected
leakage: Γ(|N|, CN, τ) = ΓK(|N|, CN, τ). In deriving the val-
ues of Γ, we also need to introduce another term Φ(|N|, CN),
which denotes the smallest expected protocol run time the
adversary needs to infer N target users’ identity given CN of
them are positive memberships:

Φ(|N|, CN) = min
Γ(|N|,CN,τ)≥N

τ. (2)

After the partition, the current input set is divided into two
parts with K and |N| −K elements respectively. Denote NL

K

as the first set with K elements, and NR
K as the set with the

other |N|−K elements. Then the positive members in the first
K elements, PSI-CA result of NL

K and Y can be denoted as a
random variable CL, with a probability distribution of:

Pr(CL = c) =

(
CN
c

)(|N−CN|
K−c

)(N
K

) . (3)

We next show that ΓK(N, CN, τ) can be derived by recursive
functions: After partition, the total leakage by choosing the
left child becomes:

ΓL
K(N, CN, τ) ={
ECL

[Γ(K,CL, τ − 1)], if Φ(K,CL) ≥ τ − 1,

K + ECL
[Γ(|N| −K,CN − CL, τ − Φ(K,CL))], otherwise.

(4)

5

Similarly, the total leakage by choosing the right child be-
comes:

ΓR
K(N, CN, τ) =
ECL

[Γ(|N| −K,CN − CL, τ − 1)],

if Φ(|N| −K,CN − CL) ≥ τ − 1,

|N| −K + ECL
[Γ(K,CL, τ − Φ(|N| −K,CN − CL))],

otherwise.
(5)

Then,

ΓK(|N|, CN, τ) = max
{
ΓL
K(|N|, CN, τ),Γ

R
K(|N|, CN, τ)

}
.
(6)

Intuitively, the expected membership leakage given of the cur-
rent state depends on the partition factor K. For a given k, the
algorithm chooses from the left or the right child according to
their corresponding expected leakage values: ΓL

K(|N|, CN, τ)
and ΓR

K(|N|, CN, τ). The algorithm subsequently selects the
branch with the maximum expected leakage value as the new
input of the PSI, relegating the other part to the priority queue.
The processing framework is shown in Fig.3.

Now suppose the left branch has a larger expected leakage
than the right. After dividing N into NL

K and NR
K , the algorithm

calls the PSI-CA protocol and receives an observation of the
cardinality of the intersection CL. If CL = 0, none of the
elements in the input NL

K belongs to the intersection and
Zneg = Zneg ∪NL

K . On the contrary, if CL = K, all elements
belong to the intersection and Zpos = Zpos ∪NL

K . Other than
these two cases, the new CL, together with K and τ −1 form
a new state of the attack (K,CL, τ − 1).

It is worth noting that once the expected membership
leakage for the parent node is calculated, all the expected
membership leakage of its child nodes are available, as they
are the intermediate steps in calculating the parent node. i.e.,
to calculate Γ(N, CN, τ), all Γ(N′, C ′

N, τ
′) are required, where

1 ≤ N′ ≤ N, 1 ≤ C ′
N ≤ CN and 0 < τ ′ ≤ τ . The same rule

also applies to the structure of Φ(N, CN). When the algorithm
is proceeding, any observations on the real number of positive
memberships in the current node are included. Therefore, the
policy space of Γ only needs to be calculated once offline and
can be directly used for further retrieval. This backtracking
structure of building the memorization table of Φ(N, CN) in
the dynamic programming solution is depicted in Fig. 4.

The following Theorem states the optimality of the proposed
algorithm under the hierarchical attack structure.

Theorem 1. The proposed algorithm is optimal in maximizing
the number of expected membership inferences under the
hierarchical structure.

Proof. The proof of Theorem 1 follows a simple concept
containing two steps, in the first step, we show that under
a given dividing value, the state of the membership inference
attack can be decomposed into an average (expectation) of all
possible sub-branches. Then in the second step, we show our
algorithm always selects the optimal dividing value according
to the maximum number of expectations of the inference.

(|ℕ | ,Cℕ)
(1,0)

(2,1)
(1,1)(2,0) (2,2)

(3,0) (3,2)(3,1) (3,3)

(4,0) (4,2)(4,1) (4,3) (4,4)

Fig. 4. The backtracking structure of memorization table in the dynamic
programming solution

Leakage Lowerbound We next analyze the worst-case
performance of our proposed attack algorithm. For a given
dataset, after the initial PSI call, the state variables of Γ are
available. Denote them as (|N|, CN, τ). With Θ(N, CN, τ), the
partition factor K can be determined. The uncertainty of the
attack performance comes from the randomness in picking the
K out of the |N| individuals for the following protocol call. To
derive the lower bound of the performance, here we analyze
the worst-case scenario of selection. Then the left branch
terminates if K − CL = 0 or CL = 0, and the right branch
terminates if CN − CL = 0 or N −K − CN + CL = 0. Note
that if any of these conditions approach to 0, the corresponding
branch tends to terminate. The worst-case value of CL satisfies
the following condition:

max
CL

[(K−CL)
2+C2

L+(CN−CL)
2+(|N|−K−CN+CL)

2].

(7)

Proposition 1. The worst-case sampled CL for the partition
factor K is CL = CNK/N.

Then the lower bound can be numerically derived using
the dynamic programming algorithm in DyPathBlazer with
the following modification: at each node, instead of asking
for a PSI run, the adversary calculates CL according to (7).
Therefore, the online attack algorithm can be transferred to a
local attack except for the initial protocol run.

Remark 1. Compared with the leakage lower-bound of the
attack proposed in [14], it is straightforward K = |N|/2, and
the worst case CL = CN/2.

We theoretically compare the lower bound of the member-
ship leakage of the DyPathBlazer and the algorithm in [14]
(denoted as USENIX 22) under two cases: case 1) among
100 individuals, 50 are positive members. case 2) among 100
individuals, 20 are postiive members. The comparison results
are plotted in Fig. 5.

C. TreeSumExplorer: Deterministic attack on PSI-SUM

In this part, we propose an attack algorithm to evaluate
the privacy leakage of the PSI-SUM protocol. This protocol

6

0 5 10 15 20 25 30
Protocol invocations

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
W

or
st

-c
as

e
le

ak
ag

e
lower bound of DyPathBlizer
lower bound of Guo's algorithm

0 5 10 15 20 25 30
Protocol invocations

0

20

40

60

80

100

W
or

st
-c

as
e

le
ak

ag
e

lower bound of DyPathBlizer
lower bound of Guo's algorithm

Fig. 5. Performance lower bound comparison (worst-case leakage compar-
ison) of DyPathBlazer and Guo’s algorithm in [14]. Both cases consider
a dataset of 100 individuals. Case 1) assumes 50 positive members, case
2) assumes 10 positive members. Higher lower bounds from DyPathBlazer
guarantees better efficiency in the worst-case scenario. DyPathBlazer’s lower
bound surpasses that of Guo’s algorithm lower bound, ensuring improved
efficiency in the worst-case scenario.

is a black box that receives a set X from one party and a
table Y = (yi, vi) of index-value pairs from the other party. It
internally aggregates the values associated with the indices in
the intersection X ∩ Y and gets the sum

∑
yi∈X∩Y vi . Then,

the protocol sends this sum and the intersection size |X ∩ Y|
to the party that inputs the table.

Intuitively, the leakage of the PSI-SUM should be greater
than the leakage of PSI-CA, as more information (summation
of the intersection) is observable during each protocol run. We
next summarize the steps to take advantage of this information
and conduct a more efficient privacy evaluation.

The basic idea behind this approach is to offline search all
possible combinations that match the summation result. For
example, after a protocol is called, the adversary observes the
following: input size |N|, returned number of members CN,
and the summation of the intersected members’ value SUM.
Instead of directly applying the cardinality-based attack, the
adversary is capable of traversal all possible combinations
of the CN out of |N| users in the dataset, and checking if
the summation of their data values matches SUM. So the
membership identity of these |N| users can be inferred in
one shot (best case depending on the number of possible
combinations). Such a problem is defined as an N-SUM
problem (summation of CN elements in the array, denoted
as Arr, matches a SUM) [26], and a common algorithm for
solving the N-SUM problem is summarized as follows:

• Sort the array: The Arr is sorted in ascending order.
• Check the Base Case: If CN = 2, the problem is reduced

to a 2-SUM problem. This is solved by initializing two
pointers at both ends of the array and moving them
toward each other until they meet. If the sum of the
numbers at the pointer indices equals the target, then
record this pair. The pointers are adjusted based on
whether the current sum is less than or greater than the
target.

• Handle the Recursive Case: If CN > 2, treat the problem
as an (CN − 1)-SUM problem for each element in the
array. This involves iterating over the array, and for each
element, recursively solving an (CN − 1)-SUM problem
with a new target that is equal to the original target minus

Algorithm 4 Privacy evaluation algorithm for PSI-SUM
Input: A set X of target elements, protocol invocation

times τ , maximum set size N .
Output: Predicted sets: Zpos,Zneg .

Initialize Zpos = ∅, Zneg = ∅
Find a subset N according to the computation power
while 0 < τ do

(CN,SUM)← PSI-SUM(N,Y), τ ← τ − 1
Arr = N-SUM(N,SUM, CN)
Priority ← |N|/|Arr|.
queue.enqueue {Priority, CN,SUM,N,Arr)}
while queue is not empty do

(CN,SUM,N,Arr) ← queue.dequeue()
while 1 < |Arr|, and 0 < τ do

NL = Arr[0], NR = N \ NL

(CL,SUML)← PSI-SUM(NL,Y), τ ← τ − 1
CR ← CN − CL, SUMR ← SUM− SUML

ArrL = N-SUM(NL,SUML, CL)
ArrR = N-SUM(NR,SUMR, CR)
Compute priorities according to (8)
Continue with the high-priority branch
Push low-priority branch to the queue

end while
if |Arr| = 1 then

Zpos ← Zpos ∪ Arr, Zneg ← Zneg ∪ N/Arr
end if

end while
end while
return Zpos,Zneg

the current element.
The computation complexity of the N-SUM solution de-

scribed above is O(|N|CN−1), which depends on the length of
the input and the number of positive membership individuals.
There is also a line of work improving this complexity [5],
[18], [23], however, is out of the scope of this paper.

There could be multiple combinations of users whose
summation matches SUM returned. The possibilities form a
candidate set for the input of the next iteration. The adversary,
then, randomly picks one of these combinations N′ as the input
to call for another protocol run. If the returned SUM′ matches
the previous SUM, the selected combination are all positive
memberships. Further, all memberships in N are determined.
Otherwise, the adversary has selected an incorrect combination
as input. The adversary observes and obtains two sub N-SUM
problems: a. N-SUM(N′, SUM’, CN) and b. N-SUM(N \ N′,
SUM-SUM’, CN − CN′). For each subproblem, the priority
the sub-problem a or b is calculated as follows:

Priority =
|N|
|Arr|

. (8)

The adversary selects max{Prioritya,Priorityb} and con-
tinues his inference with the branch with higher priority, then
pushes the lower priority branch to the priority queue. The
algorithm for TreeSumExplorer is summarized in the Alg. 4.

7

Upper Stopping Threshold θu

θlLower Stopping Threshold

Y

3/8
1/5

2/3

1/5

0

1 1 1

0 0

1/2

Y Y Y

Posterior Probability

Sample Scenario

Fig. 6. An illustration of statistical membership inference attack.

V. ACTBAYSIAN: STATISTICAL ATTACK ON PSI-CA

Different from the deterministic attack, where the adversary
takes each individual’s membership as constant. In the context
of a statistical attack, each individual’s membership is regarded
as a binary random variable. This allows the adversary to
design a soft-stopping criterion to finish his guessing. There-
fore, the attacker’s goal is to select subsets of X which helps
accurately infer the identity of individual members. Denote Li

as a binary random variable that Li = 1 if xi ∈ X∩Y. (Li = 0
otherwise). Then the memberships in X can be specified as
a random vector p, where p[i] denotes the probability that
Pr(Li = 1). Suppose for PSI attack runtime t ∈ [1, .., τ],
the attacker selects a subset St of X as the input of PSI,
let O1, ..., Oτ denote the release from the PSI protocol, then
Ot = |St ∩ Y|.

In this section, we propose a statistical attack algorithm
based on Bayesian posterior update and adaptive learning.
We call this algorithm ActBaysian algorithm. The active
learning process guarantees the adversary selecting the most
informative subset of St at each time t. The posterior update
process enables the adversary to update his belief on Li based
on the observations.

1) Posterior belief update: After each PSI-CA call, the
adversary observes the cardinality of the positive members
contained in the input dataset. Based on this observation,
the adversary updates their posterior belief. The update rule
follows a maximum likelihood criterion. For a given pair
of PSI input/output, denoted as St and Ot respectively, the
updated prior for each individual in the subset becomes:

p[i] =
Ot

|St|
. (9)

This update reflects the ratio of positive members observed
(Ot) to the cardinality of the input dataset (|St|). The higher the
observed positive count relative to the size of the input subset,
the higher the posterior belief assigned to each individual.

On the other hand, all sets containing St can also update
their posterior beliefs. Let S̄t be the subset such that S̄t∩St =
∅, and the result of PSI-CA(St ∪ S̄t) is known, denoted as
Otot. After observing the output Ot, the posterior belief of all
individuals’ membership in S̄t becomes:

p[i] =
Otot −Ot

|S̄t|
. (10)

This update is based on the remaining positive count
(Otot − Ot) after subtracting the observed positive count Ot

from the known total positive count Otot. The posterior belief
is calculated by dividing this remaining positive count by
the cardinality of S̄t. By updating the prior and posterior
beliefs based on the observed positive counts and known total
positive counts, the adversary can refine their belief about the
membership status of each individual in the respective subsets.
This iterative belief update process enables the adversary to
incorporate new information and adjust their inference based
on the observed results.

Stopping criterion: In the context of a statistical attack,
the adversary has the flexibility to enhance their inference
power at the cost of sacrificing some inference accuracy. This
is achieved through the use of a soft-stopping criterion, which
involves setting an upper threshold θu and a lower threshold
θl. The adversary classifies an individual’s membership as
positive if their posterior probability p[i] is greater than or
equal to θu, and as negative if p[i] is less than or equal to θl.
It is important to note that the selection of these thresholds
plays a crucial role in determining the performance of the
attack. The threshold values significantly influence the trade-
off between inference accuracy and the number of individuals’
memberships inferred: If the upper threshold θu is set close
to 1 and the lower threshold θl is set close to 0, the inference
attack achieves high accuracy. However, there may be a limited
number of individual memberships inferred. This occurs be-
cause the adversary requires a higher level of certainty before
classifying an individual as a positive or negative member.
Consequently, only individuals with posterior probabilities
close to the extremes will be confidently classified, potentially
leading to a reduced number of identified individuals. On
the other hand, if both the upper threshold θu and the lower
threshold θl are set close to 0.5, a larger proportion of indi-
viduals’ memberships can be inferred. However, the inference
accuracy may be compromised. With lower thresholds, even
samples with relatively uncertain posterior probabilities will
be classified, resulting in a higher number of individuals being
identified. Nevertheless, the trade-off is that the accuracy of
these classifications may be lower compared to using more
stringent thresholds.

2) Active learning for input set selection: The active learn-
ing contains two phases: 1. constructing candidate input sets
by comparing the absolute distance between each posterior

8

and the threshold. 2. determine the input set based on the
minimized Manhattan distance.

Minimize absolute distance: During the attack process,
the adversary aims to select individuals who are likely to
meet the stopping criterion as the input for the PSI protocol.
This selection is done in two directions: individuals whose
prior probabilities are close to the upper threshold θu and
individuals whose priors are close to the lower threshold θl.
The absolute distance between each individual’s posterior and
the upper/lower threshold is defined as follows:

dui = |p[i]− θu|
dli = |p[i]− θl|.

(11)

For a given iteration, the minimized distance in the posterior
vector is defined as dumin = mini d

u
i , and dlmin = mini d

l
i,

respectively. However, directly selecting individuals with the
highest or lowest priors introduces no randomness to the
output, potentially leading to a dead loop in the attack. To
mitigate this issue, two factors are introduced: the sampling
rate r and the tolerance factor tol.

The sampling rate and tolerance factor together determine
the grouping principles for selecting the input individuals. The
candidate input for the next iterations includes:

Su =
⋃

du
i [i]−du

min≤tol

xi · 1sample

Sl =
⋃

dl
i[i]−dl

min≤tol

xi · 1sample,
(12)

where 1sample is an indicator function that is determined
by the sampling result. Intuitively, a larger tolerance factor tol
results in grouping more individuals who are not prone to meet
the stopping criterion. This allows for a broader exploration
of individuals in the search for those whose posterior proba-
bilities may cross the thresholds. However, a larger candidate
size increases the number of individuals whose memberships
can be inferred in one iteration. On the other hand, a small
sampling rate r tends to narrow down the inference scope
quickly. The attack can rapidly infer a smaller portion of indi-
viduals with positive or negative memberships. However, this
approach may lead to decreased overall inference efficiency
since the algorithm becomes prone to depth-first search (DFS)
behavior. The choice of the sampling rate and tolerance factor
depends on the specific attack objectives and constraints. By
carefully tuning these parameters, the adversary can balance
the trade-off between the efficiency of the attack, the number
of inferences made in each iteration, and the overall accuracy
of the inference process. We present a detailed analysis in
numerical evaluation.

Minimize Manhattan distance: As the adversary keeps
calling the PSI protocol, each individual’s posteriors are push-
ing either towards θu or θl. Given a tolerant factor tol, before
each PSI call, the adversary has the choice to select from
Su and Sl as his input for the next PSI-CA call. This can

be achieved by comparing the minimized averaged Manhattan
distance between Su and θu, Sl and θl:

Du =
∑

i:xi∈Su

dui /|Su|

Dl =
∑

i:xi∈Sl

dli/|Sl|.
(13)

Then, the adversary selects the input with a smaller distance
toward the threshold. The algorithm is summarized in Alg. 5.

Algorithm 5 Statistical Membership Inference Attack
Input: Victim set X, θu upper threshold, θl lower thresh-

old, PSI call budget τ , sampling rate r, tolerance factor tol.
Output: Prediction of Zpos and Zneg

Initialize prior distribution for each user {p[i] = 0.5}Ni=1

while τ > 0 and |Zpos + Zneg| < |N| do
Su ←

⋃
{du

i [i]−du
min≤tol} xi, sampling with r

Sl ←
⋃

{dl
i[i]−dl

min≤tol} xi, sampling with r
Calculate Du, Dl with (13).
if Du ≤ Dl then

S← Su
else

S← Sl
end if
CS = PSI-CA (S,Y)
Update posteriors according to (9) and (10)
for 1 ≤ i ≤ |N| : do

Zpos = Zpos ∪ xi if p[i] < θl
Zneg = Zneg ∪ xi if p[i] > θu

end for
end while
return Zpos, Zneg

A. Error bound

The statistical attack incurs classification error correspond-
ing to the upper and the lower stopping threshold: A group of
individuals is classified as positive members if most of them
are positive members. Similarly, a group of individuals are
classified as negative members if most of them are negative
members. Specifically, we define Type I, Type II, and misclas-
sification rate for an individual xi as follows:

P e
typeI =Pr(xi ∈ X ∩ Y|xi ∈ Zneg),

P e
typeII =Pr(xi /∈ X ∩ Y|xi ∈ Zpos),

P e
mis =P e

typeIPr(xi ∈ Zneg) + P e
typeIIPr(xi ∈ Zpos).

(14)
When the stopping state containing xi is (N, CN, τ), from
algorithm 5, the upper bound of these error probabilities are
summarized in proposition 2.

Proposition 2. The probability upper bounds of Type I, Type
II error, and the misclassification rate are as follows:

P e
typeI ≤ 1− CN/|N| if θu ≤ CN/|N| ≤ 1,

P e
typeII ≤ CN/|N| if 0 ≤ CN/|N| ≤ θl,

P e
mis ≤ 1− θu + θl.

(15)

9

It is straightforward to extend the error probabilities to
correct guessing probabilities:

PTP = 1− P e
typeI ≥ CN/|N| if θu ≤ m/N ≤ 1,

PFP = 1− P e
typeII ≥ 1− CN/|N| if 0 ≤ CN/|N| ≤ θl.

(16)
where PTP stands for true positive probability and PFP stands
for false positive probability.

VI. EXPERIMENTS

In this section, we evaluate real data to compare different
attack algorithms. We divide the evaluation into two subsec-
tions, for the first part, we compare the efficiency of different
deterministic attacks, then in the second part, we show the
performance of the statistical attack.

Attacks considered For the deterministic attacks, we per-
form several membership inference attacks on PSI-CA alike
protocols. Specifically, we compare the following attack algo-
rithms: (a) baseline attack in [14] which is denoted as “Guo’s
algorithm-CA”(b) DyPathBlazer, as described in Section IV-B.
(c) TreeSumExplorer in Section IV-C, and (d) The USENIX22
solution but takes SUM as the output of the PSI denoted as
Guo’s algorithm-SUM.

For the statistical attacks, we show the impact of different
parameters on the attack efficiency and accuracy. Then we
present attack performance against Differentially Private PSI
protocols.

Datasets: We consider two real-world membership-sensitive
datasets for evaluation. The first dataset in our experiment
is Taobao’s dataset of ad display/click records [28]. This
dataset was collected on Taobao, a Chinese online shopping
platform owned by Alibaba Group. This platform allows small
businesses and individual entrepreneurs to open online retail
stores and sell their products. After data cleaning, there are
25,029,435 ad display/click records concerning 827,009 ads
and 1,061,768 individuals. The records were collected from
May 6, 2017, 00:00:00 AM to May 14, 2017, 00:00:00 AM.
This dataset is used for leakage quantification to measure ad
conversion revenue. The second dataset is COVID-19 dataset
of tested individuals in Israel4 [1]. This dataset was collected
by Israel Ministry of Health. The COVID-19 dataset includes
255,668 distinct individuals who were tested for COVID-19
from March 22, 2020, to April 30, 2020. Each individual
record has a test date. This dataset is used for the leakage
quantification in COVID-19 contact tracing.

A. Deterministic attacks

Offline attack evaluations We first consider an offline
setting using the Taobao dataset. We select a brand with id
number 185, which has 504 ads (for another set of exper-
iments, we select brand id 279 with 403 ads). Each ad is
associated with a unique price for the related product and a
list of buyers who may or may not have clicked the ad. We let
party A, the company of the brand, include the list of buyers
labeled by the total amount of money they have spent on this
company’s product. For party B, the ads platform, we assume
they possess the list of individuals who have clicked the ads

from this company. Party A requests a PSI-SUM protocol and
wants to know how many people have clicked the ads they
put on Party B’s platform before buying their products and
how much they spend on their products. On the other hand,
Party A is also interested in re-identifying the persons in the
intersection for targeted advertising. After preprocessing, there
are 22615 persons who have purchased the products from
brand 185. Among them, 4762 have clicked the ads from
this brand. For brand 279, there are 15424 persons who have
purchased the products, and 332 users have clicked the ads.

The offline attack evaluations are shown in Fig. 7, where
the membership leakage percentages using different attacks
are compared according to different protocol call limitations.
Further, we consider two subcases when the adversary is only
interested in the identity of individuals in the intersection
or those who are not in the intersection, respectively. It is
worth noting that our DyPathBlazer and TreeSumExplorer
algorithms can both be adapted to each setting by designing
different goals in the objective functions. Observe that our Dy-
PathBlzaer outperforms the attack in Guo et al. in efficiency,
while the PSI-SUM attack achieves the highest efficiency.

Online attack evaluations: In the second scenario, we
consider an online setting using the COVID-19 dataset. Party
A is a local community that provides COVID testing services.
Party B is the Lab that processes the testing results. It is
assumed that Party B directly publishes testing results to each
individual, so Party A is unclear which individual tests positive
for COVID. On the other hand, Party A keeps monitoring
the trend of total positive individuals in the community and
is also interested in inferring the identity of each positive
individual for targeted control. Party A calls for a PSI-CA
protocol with Party B daily. We evaluate different attacks for
PSI-CA protocol by comparing the total number of positive
individuals they infer according to the testing timeline.

The online attack evaluations are shown in Fig.8. Note
that we slightly modified the DyPathBlazer to estimate and
maximize only the expected number of positive members. The
dataset is assumed to be updated daily but stays the same for
one day. Party A’s maximal protocol call limit is 10 times
per day. Observe that our DyPathBlazer achieves significantly
higher efficiency compared to the Guo et al.

B. Statistical attacks

For PSI-CA without protection To illustrate the effec-
tiveness of statistical attacks on PSI-CA, we initially adopt a
similar context as with the deterministic attacks. However, we
employ the attack methodology delineated in Section V. This
algorithm is parameterized by θu, θl, tol, r, and τ . We assign
default values to each of these parameters as follows: θu = 0.9,
θl = 0.1, tol = 0.1, r = 0.5, τ = 20. Subsequently, while
maintaining other values constant, we vary each parameter in
turn and evaluate the resulting performance of the attack al-
gorithm. The performance metrics under consideration include
the number of correctly inferred individuals and the Type I and
Type II error rates. The result is shown in Table I.

10

2 4 6 8 10 12 14 16 18
of intersect operations

0

2

4

6

8

10
Pe

rc
en

ta
ge

 o
f m

em
be

rs
hi

p
le

ak
ag

e
(%

) TreeSumExplorer
DyPathBlazer
Guo's Algorithm-SUM
Guo's Algorithm-CA

2 4 6 8 10 12 14 16 18
of intersect operations

0

1

2

3

4

Po
sit

iv
e

m
em

be
rs

hi
p

le
ak

ag
e

(%
)

TreeSumExplorer(Pos)
DyPathBlazer(Pos)
Guo's Algorithm-CA(Pos)

2 4 6 8 10 12 14 16 18
of intersect operations

0

1

2

3

4

5

6

7

Ne
gt

iv
e

m
em

be
rs

hi
p

le
ak

ag
e

(%
)

TreeSumExplorer(Neg)
DyPathBlazer(Neg)
Guo's Algorithm-CA(Neg)

2 4 6 8 10 12 14 16 18
of intersect operations

0

1

2

3

4

5

Pe
rc

en
ta

ge
 o

f m
em

be
rs

hi
p

le
ak

ag
e

(%
) TreeSumExplorer

DyPathBlazer
Guo's Algorithm-SUM
Guo's Algorithm-CA

2 4 6 8 10 12 14 16 18
of intersect operations

0.0

0.1

0.2

0.3

0.4

Po
sit

iv
e

m
em

be
rs

hi
p

le
ak

ag
e

(%
)

TreeSumExplorer(Pos)
DyPathBlazer(Pos)
Guo's Algorithm-CA(Pos)

2 4 6 8 10 12 14 16 18
of intersect operations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Ne
gt

iv
e

m
em

be
rs

hi
p

le
ak

ag
e

(%
)

TreeSumExplorer(Neg)
DyPathBlazer(Neg)
Guo's Algorithm-CA(Neg)

Fig. 7. Membership information leakages in PSI-SUM under different attacks. Column 1 displays the overall membership leakage, while Column 2 represents
positive membership leakage, and Column 3 represents negative membership leakage. The first row corresponds to cases where the product company targets
the advertising company, and the second row corresponds to cases where the advertising company targets the product company.

04
-00

04
-01

04
-02

04
-03

04
-04

04
-05

04
-06

04
-07

04
-08

04
-09

04
-10

04
-11

Online intersect opertaion timestamps

0.0

0.5

1.0

1.5

2.0

2.5

Pe
rc

en
ta

ge
 o

f u
se

r m
em

be
rs

hi
p

le
ak

ag
e

(%
)

DyPathBlazer
Guo's Algorithm-CA

04
-00

04
-01

04
-02

04
-03

04
-04

04
-05

04
-06

04
-07

04
-08

04
-09

04
-10

04
-11

Online intersect opertaion timestamps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Po
sit

iv
e

us
er

 m
em

be
rs

hi
p

le
ak

ag
e

(%
) DyPathBlazer

Guo's Algorithm-CA

Fig. 8. Membership information leakages in PSI-CA under different attacks. Subcase (a) showing total membership leakage (positive member + negative
member); (b) showing positive membership leakage only

Key insights can be derived from the results. As θu in-
creases, fewer individuals are classified as positive members,
which in turn leads to a decrease in the true positive percentage
as well as the Type I error rate. In contrast, reducing θu allows
a larger number of individuals to be classified as positive.
While this results in an increase in true positive individuals
correctly inferred, it also leads to a rise in the Type I error
rate. The impact of θl mirrors this pattern. The tolerance
factor tol regulates the quantity of individuals whose priors
are updated in one PSI call. Lowering this value prompts
the algorithm to focus on exploitation, resulting in insufficient
individuals being inferred given a particular PSI call budget.
Conversely, excessively increasing this value tilts the system
towards exploration, causing a gradual narrowing of its scope
and a consequent reduction in the final count of inferred

individuals. The sampling rate r determines the proportion
of individuals to be included in the subsequent PSI input. An
even division is typically advantageous unless τ is small, in
which case a lower r accelerates the narrowing down rate,
analogous to our DyPathBlazer. Finally, for larger values of
τ , the attack is capable of inferring most of the individuals’
membership, and the error rate concurrently decreases.

For PSI-CA with Differential Privacy Recent studies have
revealed the potential to enhance the privacy guarantee of
PSI through its integration with DP. DP offers robust privacy
protection by adding calibrated random noise to the raw
response to a query, as defined in [8]. In the PSI context,
a DP-incorporated PSI-CA protocol can be seen as introduc-
ing randomness to the published intersection size, and this
randomness has been proven to achieve ϵ-DP.

11

TABLE I
STATISTICAL ATTACK: EFFECTS OF VARIOUS PARAMETERS ON RESULTS

Default θu(0.8 / 1) θl(0/0.2) tol (0 / 0.2) r (0.3 / 0.9) τ (10 / 50)

True Positive Percentage 0.08 0.14 / 0.06 0.11 / 0.02 0.05 / 0.07 0.05 / 0.04 0.02 / 0.17

True Negative Percentage 0.27 0.25 / 0.29 0.22 / 0.31 0.23 / 0.25 0.21 / 0.22 0.12 / 0.83

Type I error rate 0.083 0.15 / 0 0.09 / 0.04 0.072/ 0.084 0.084 / 0.08 0.12 /0.064

Type II error rate 0.085 0.087 / 0.092 0 / 0.17 0.082 / 0.085 0.085 / 0.082 0.16 / 0.055

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
protocol invocations

0

2

4

6

8

10

Ne
ga

tiv
e

M
em

be
rs

hi
p

Le
ak

ag
e

(%
)

ActBayesian for PSI-CA
ActBayesian for PSI-CA with DP (epsilon = 1)
ActBayesian for PSI-CA with DP (epsilon = 0.2)
TreeSumExplorer for PSI-CA
DyPathBlazer for PSI-CA

0 5 10 15 20 25 30
protocol invocations

0.0

0.2

0.4

0.6

0.8

1.0

Po
sit

iv
e

m
em

be
rs

hi
p

le
ak

ag
e

(%
)

ActBayesian for PSI-CA with DP (epsilon = 10)
ActBayesian for PSI-CA with DP (epsilon = 1)
ActBayesian for PSI-CA with DP (epsilon = 0.2)

0 5 10 15 20 25 30
protocol invocations

0

1

2

3

4

5

Ne
ga

tiv
e

M
em

be
rs

hi
p

Le
ak

ag
e

(%
)

ActBayesian for PSI-CA with DP (epsilon = 10)
ActBayesian for PSI-CA with DP (epsilon = 1)
ActBayesian for PSI-CA with DP (epsilon = 0.2)

0 5 10 15 20 25 30
protocol invocations

0

5

10

15

20

M
isc

la
ss

ifi
ca

tio
n

ra
te

 (%
)

ActBayesian for PSI-CA with DP (epsilon = 10)
ActBayesian for PSI-CA with DP (epsilon = 1)
ActBayesian for PSI-CA with DP (epsilon = 0.2)

0 5 10 15 20 25 30
protocol invocations

0

5

10

15

20

25

Ty
pe

 I
er

ro
r (

%
)

ActBayesian for PSI-CA with DP (epsilon = 10)
ActBayesian for PSI-CA with DP (epsilon = 1)
ActBayesian for PSI-CA with DP (epsilon = 0.2)

0 5 10 15 20 25 30
protocol invocations

0

5

10

15

20

25

Ty
pe

 II
 e

rro
r (

%
)

ActBayesian for PSI-CA with DP (epsilon = 10)
ActBayesian for PSI-CA with DP (epsilon = 1)
ActBayesian for PSI-CA with DP (epsilon = 0.2)

Fig. 9. Membership information leakages with statistical attack, ads company

Subsequent experiments aim to evaluate the membership
information leakage from an ϵ-DP-protected PSI protocol. We
are considering a Laplacian DP mechanism, wherein the scale
of the Laplacian noise is defined as:

λ =
∆f

ϵi
=

τ

ϵ
. (17)

In this study, we derive Equation (17) under a basic DP com-
position theorem: the composition of τ consecutive privacy-
preserving mechanisms, each satisfying ϵ-DP, complies with
τϵ-DP. We set the sensitivity of DP, ∆f (as depicted in
Equation (17)), to 1 by default, analogous to a counting query.
It is crucial to note that deterministic attacks fall short in
measuring privacy leakage under DP protection, primarily due
to their exclusion of randomness and error considerations.

We incorporate Laplacian random noise into each PSI result
in our ensuing experiments using the TaoBao dataset. We
emulate settings akin to deterministic attacks but consider
different ϵ values (1, 5, and 10) with τ = 30. Our evalu-
ations of statistical attacks under DP-protected PSI protocol
are illustrated in Fig.9. Fig. 9 features the Taobao dataset,
processed identically to Fig.7. We include prior results from
DyPathBlazer and TreeSumExplorer for comparative evalu-

ation, examining positive and negative membership leakage,
misclassification rate, and Type I and Type II errors across
different subcases. A ROC curve comparison for different
types of memberships is shown in Fig.10.

Key insights from the figures are summarized as follows:
Without DP protection, TreeSumExplorer is generally more
efficient than other attack algorithms, as the fewer combina-
tion possibilities in matching the returned SUM significantly
narrow the targeted individuals’ membership.

The statistical attack outperforms DyPathBlazer for small τ .
For these lower values, the statistical attack algorithm infers
more individual memberships, as its looser stopping criterion
surpasses DyPathBlazer in efficiency at the cost of some
accuracy. However, as τ increases, dynamic programming
algorithms reveal their superiority in optimally dividing the
input set, thus maximizing returns.

With DP protection, attack efficiency is diminished, with
the reduction corresponding to the DP mechanism’s strength
(ϵ). DP-induced randomness makes updated posteriors less
accurate, thereby decreasing inference accuracy. The error
rate in DP-protected mechanisms rises with increasing ϵ. The
misclassification rate first rises and then falls as τ increases.
Initially, fewer inferred memberships result in a lower error

12

0.02 0.04 0.06 0.08 0.10
False positive rate

0.0

0.2

0.4

0.6

0.8

Tr
ue

 p
os

iti
ve

 ra
te

Total membership ROC
Intersected membership ROC
Non-intersected membership ROC

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200
False positive rate

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Tr
ue

 p
os

iti
ve

 ra
te

Total membership ROC
Intersected membership ROC
Non-intersected membership ROC

Fig. 10. ROC curves of the ActBaysian algorithm with DP protection, ϵ = 0.2

rate. As the number of inferred members grows, the error
rate consequently increases. Eventually, as τ increases, the
randomness introduced by DP is mitigated (due to consecutive
queries weakening DP), rendering subsequent inferences more
accurate.

VII. CONCLUSION & FUTURE WORKS

Private Set Intersection (PSI) protocols that reveal the size
of the intersection may unintentionally disclose membership
information regarding each parties’ sets. While this doesn’t
directly breach the intended security assurance of PSI, which
is to maintain the confidentiality of each party’s input set, such
PSI protocols can divulge extra details about whether members
of one set are part of the other set or not.

In this study, we have delved into the realm of anonymity
assessment frameworks specifically designed for intersection-
size revealing PSI protocols. Our exploration has led to the
development of two innovative strategies for deducing individ-
ual memberships within the intersecting set. These strategies
include a deterministic attack algorithm supported by dynamic
programming, which offers a theoretical performance guar-
antee and is further enhanced through the incorporation of
side information. Additionally, we propose a statistical attack
method based on Bayesian principles derived from active
learning, which can augment information leakage with min-
imal compromise to accuracy. We also demonstrate, through
real-world data, that our proposed methodology exhibits su-
perior performance when compared to the most relevant prior
research.

Given the de-anonymization concerns associated with PSI
protocols discussed earlier, there is a pressing need for an in-
novative privacy-enhanced PSI protocol. This protocol should
aim to minimize privacy leakage in situations where two
parties must compute intersection-related statistics from their
confidential datasets.

More importantly, when considering real-world applica-
tions, the demand for multi-ID PSI is frequently encountered.
In this context, revealing the intersection size for each ID
match can potentially expose significantly more information
compared to the single-ID scenario. Effectively mitigating

membership leakage in such cases presents a more formidable
challenge and remains an open problem, especially when
factoring in practical constraints related to communication and
computation overhead in the implementation of such a PSI
system.

REFERENCES

[1] Machine learning-based prediction of covid-19 diagnosis based on
symptoms, url: https://github.com/nshomron/covidpred.

[2] Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya
Mironov, Kunal Talwar, and Li Zhang. Deep learning with differential
privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’16, page 308–318, New
York, NY, USA, 2016. Association for Computing Machinery.

[3] Rakesh Agrawal, Alexandre Evfimievski, and Ramakrishnan Srikant.
Information sharing across private databases. In Proceedings of the
2003 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’03, page 86–97, New York, NY, USA, 2003. Association for
Computing Machinery.

[4] Prasad Buddhavarapu, Andrew Knox, Payman Mohassel, Shubho Sen-
gupta, Erik Taubeneck, and Vlad Vlaskin. Private matching for
compute. Cryptology ePrint Archive, Paper 2020/599, 2020. url-
https://eprint.iacr.org/2020/599.

[5] Xi Chen, Yaonan Jin, Tim Randolph, and Rocco A. Servedio. Subset
sum in time 2n/2/poly(n), 2023.

[6] Emiliano De Cristofaro, Paolo Gasti, and Gene Tsudik. Fast and
private computation of cardinality of set intersection and union. In
Josef Pieprzyk, Ahmad-Reza Sadeghi, and Mark Manulis, editors,
Cryptology and Network Security, pages 218–231, Berlin, Heidelberg,
2012. Springer Berlin Heidelberg.

[7] Thai Duong, Duong Hieu Phan, and Ni Trieu. Catalic: Delegated
psi cardinality with applications to contact tracing. In Advances in
Cryptology – ASIACRYPT 2020: 26th International Conference on
the Theory and Application of Cryptology and Information Security,
Daejeon, South Korea, December 7–11, 2020, Proceedings, Part III, page
870–899, Berlin, Heidelberg, 2020. Springer-Verlag.

[8] Cynthia Dwork. Differential privacy. In Encyclopedia of Cryptography
and Security, 2006.

[9] Cynthia Dwork. Differential privacy: A survey of results. In Manin-
dra Agrawal, Dingzhu Du, and Zhenhua Duan, editors, Theory and
Applications of Models of Computation: 5th International Conference,
TAMC, pages 1–19. 2008.

[10] Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Calibrating noise
to sensitivity in private data analysis. In Theory of Cryptography: Third
Theory of Cryptography Conference, pages 265–284. 2006.

[11] Ellis Fenske, Akshaya Mani, Aaron Johnson, and Micah Sherr.
Distributed measurement with private set-union cardinality. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’17, page 2295–2312, New York, NY,
USA, 2017. Association for Computing Machinery.

13

[12] Michael J. Freedman, Carmit Hazay, Kobbi Nissim, and Benny Pinkas.
Efficient set intersection with simulation-based security. J. Cryptology,
29:115–155, 2016.

[13] Michael J. Freedman, Kobbi Nissim, and Benny Pinkas. Efficient private
matching and set intersection. In Christian Cachin and Jan L. Camenisch,
editors, Advances in Cryptology - EUROCRYPT 2004, pages 1–19,
Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[14] Xiaojie Guo, Ye Han, Zheli Liu, Ding Wang, Yan Jia, and Jin Li. Birds
of a feather flock together: How set bias helps to deanonymize you
via revealed intersection sizes. In 31st USENIX Security Symposium
(USENIX Security 22), pages 1487–1504, Boston, MA, August 2022.
USENIX Association.

[15] Yangsibo Huang, Zhao Song, K. Li, and Sanjeev Arora. Instahide:
Instance-hiding schemes for private distributed learning. In International
Conference on Machine Learning, 2020.

[16] Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit
Saxena, Karn Seth, Mariana Raykova, David Shanahan, and Moti
Yung. On deploying secure computing: Private intersection-sum-with-
cardinality. In 2020 IEEE European Symposium on Security and Privacy
(EuroS& P), pages 370–389, 2020.

[17] Bo Jiang, Mohamed Seif, Ravi Tandon, and Ming Li. Context-aware
local information privacy. IEEE Transactions on Information Forensics
and Security, 16:3694–3708, 2021.

[18] J. C. Lagarias and A. M. Odlyzko. Solving low density subset sum
problems. In 24th Annual Symposium on Foundations of Computer
Science (sfcs 1983), pages 1–10, 1983.

[19] Latanyasweeney. k-anonymity: A model for protecting privacy.
International Journal of Uncertainty, Fuzziness and Knowledge-Based
Systems, 10, 05 2012.

[20] Peihan Miao, Sarvar Patel, Mariana Raykova, Karn Seth, and Moti
Yung. Two-sided malicious security for private intersection-sum with
cardinality, 2020. urlhttps://eprint.iacr.org/2020/385.

[21] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of
large sparse datasets. In 2008 IEEE Symposium on Security and Privacy
(sp 2008), pages 111–125, 2008.

[22] Milad Nasr, Reza Shokri, and Amir Houmansadr. Comprehensive
privacy analysis of deep learning: Passive and active white-box inference
attacks against centralized and federated learning. In 2019 IEEE
Symposium on Security and Privacy (SP), pages 739–753, 2019.

[23] Bartosz Przydatek. A fast approximation algorithm for the subset-sum
problem. International Transactions in Operational Research, 9, 05 2000.

[24] Ryan M. Rogers, Adrian Rivera Cardoso, Koray Mancuhan, Akash
Kaura, Nikhil T. Gahlawat, Neha Jain, Paul Ko, and Parvez Ahammad.
A members first approach to enabling linkedin’s labor market insights
at scale. ArXiv, abs/2010.13981, 2020.

[25] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov.
Membership inference attacks against machine learning models. In 2017
IEEE Symposium on Security and Privacy (SP), pages 3–18, 2017.

[26] Nei Yoshihiro Soma and Paolo Toth. An exact algorithm for the subset
sum problem. European Journal of Operational Research, 136(1):57–66,
2002.

[27] Latanya Sweeney. Simple demographics often identify people uniquely.
2000.

[28] Tianchi. Taobao display advertisement click-through rate predic-
tion dataset, url: https://tianchi.aliyun.com/dataset/datadetail?dataid=56,
2018.

[29] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Pri-
vacy risk in machine learning: Analyzing the connection to overfitting.
In 2018 IEEE 31st Computer Security Foundations Symposium (CSF),
pages 268–282, 2018.

[30] Yongjun Zhao and Sherman S.M. Chow. Can you find the one for
me? In Proceedings of the 2018 Workshop on Privacy in the Electronic
Society, WPES’18, page 54–65, New York, NY, USA, 2018. Association
for Computing Machinery.

14

