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Abstract1

This paper presents a novel reduction from the average-case hardness of the2

Module Inhomogeneous Short Integer Solution (M-ISIS) problem to the worst-case3

hardness of the Closest Vector Problem (CVP) by defining and leveraging “perfect”4

lattices for cryptographic purposes. Perfect lattices, previously only theoretical5

constructs, are characterized by their highly regular structure, optimal density, and6

a central void, which we term the “Origin Cell.” The simplest Origin Cell is a7

hypercube with edge length 1 centered at the origin, guaranteed to be devoid of8

any valid lattice points.9

By exploiting the unique properties of the Origin Cell, we recalibrate the pa-10

rameters of the M-ISIS and CVP problems. Our results demonstrate that solving11

M-ISIS on average over perfect lattices is at least as hard as solving CVP in the12

worst case, thereby providing a robust hardness guarantee for M-ISIS. Additionally,13

perfect lattices facilitate exceptionally compact cryptographic variables, enhancing14

the efficiency of cryptographic schemes.15

This significant finding enhances the theoretical foundation of lattice-based16

cryptographic problems and confirms the potential of perfect lattices in ensuring17

strong cryptographic security. The Appendix includes SageMath code to demon-18

strate the reproducibility of the reduction process from M-ISIS to CVP.19

1 Introduction20

The study of lattice-based cryptographic problems has gained significant attention due21

to their potential to offer robust security even against quantum adversaries [7, 5]. Among22

these problems, the Closest Vector Problem (CVP) and the Short Integer Solution (SIS) [1]23

family of problems are particularly noteworthy for their foundational role in construct-24

ing secure cryptographic schemes. Previous work, such as Ajtai’s seminal results, has25

established worst-case hardness for lattice problems, forming a basis for cryptographic26

constructions.27

In this paper, we define and leverage a new class of ”perfect” lattices, characterized by28

their highly regular and dense structure and the unique feature of their ”Origin Cell,” a29

central void absent of any valid lattice points. Leveraging these properties, we introduce30

a novel reduction from the average-case M-ISIS problem to the worst-case CVP, thereby31

providing a robust hardness guarantee for M-ISIS.32
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This reduction not only enhances the theoretical foundation of lattice-based crypto-33

graphic problems but also opens new avenues for the development of more efficient and34

secure cryptographic schemes [2].35

The crucial property of the Origin Cell—its emptiness—enables us to establish a36

fundamental unit of distance in the perfect lattice, enabling us to recalibrate the bounds37

of the M-ISIS and CVP problems. Under this recalibration of parameters, we prove38

that a solution to the CVP instance yields a solution to the original average-case M-ISIS39

instance. The reduction has three main components:40

1. Defining perfect lattices and establishing the void property of the ‘.41

2. Transforming an average-case M-ISIS instance into a worst-case CVP instance by42

adjusting the norm bounds based on the Origin Cell.43

3. Proving that a CVP solution can be converted back to a valid M-ISIS solution under44

the adjusted bounds.45

This work establishes a new hardness relation between average-case M-ISIS and worst-46

case CVP over perfect lattices, providing a foundation for further study of the crypto-47

graphic properties of this natural class of lattices.48

2 Definitions49

Definition 1 (Voronoi Cell). The Voronoi cell V(x) of a lattice point x ∈ Λ is defined50

as the set of all points in Rn that are closer to x than to any other lattice point. Mathe-51

matically,52

V(x) = {y ∈ Rn | ∥y − x∥2 ≤ ∥y − z∥2,∀z ∈ Λ, z ̸= x}

where ∥ · ∥2 denotes the Euclidean norm.53

Definition 2 (Covering Radius). The covering radius µ(Λ) of a lattice Λ is the radius54

of the largest Euclidean ball centered at any point in Rn that is entirely contained within55

the Voronoi cell of some lattice point. Formally,56

µ(Λ) = max
y∈Rn

min
x∈Λ

∥y − x∥2

It represents the maximum distance from any point in space to the nearest lattice point.57

Definition 3 (Perfect Lattice). A perfect lattice Λ ⊂ Zn
q is defined by the following58

properties:59

1. Uniform Density: All Voronoi cells V(x) are congruent and uniformly dis-60

tributed: ∀x,y ∈ Λ,V(x) ∼= V(y).61

2. Successive Minima: The successive minima λi(Λ) of the lattice satisfy λ2(Λ)/λ1(Λ) ≈62

1 as lattice dimension approaches ∞.63

3. Covering Radius: The covering radius µ(Λ) of the lattice is approximately 1:64

µ(Λ) ≈ 1.65

4. Symmetry and Regularity: The lattice is highly symmetrical, such that the66

symmetry group of the lattice acts transitively on the set of Voronoi cells.67
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5. Non-zero Coefficients in Basis Vectors and NTT Representations: All68

basis vectors bi and their Number Theoretic Transform (NTT) representations b̂i69

have non-zero coefficients: ∀i, j : bi,j ̸= 0 and b̂i,j ̸= 0.70

Definition 4 (ℓ2 Norm in Zn
q ). For a vector x = (x1, x2, . . . , xn) ∈ Zn

q , we interpret each71

component xi modulo q in the interval [−q/2, q/2]. The ℓ2 norm (Euclidean norm) of x72

is then defined as:73

∥x∥2 =

√√√√ n∑
i=1

x2
i

where each xi is taken as its representative in [−q/2, q/2].74

Definition 5 (Simplified Origin Cell). For the simplicity of this reduction we consider75

the minimum Origin Cell, where unit size is exactly 1. Alternate configurations are left76

as an open research item. For the perfect lattice under consideration, Λ ⊂ Zn
q , the Origin77

Cell OΛ is defined as the hypercube of edge length 1 centered at the origin:78

OΛ = {x ∈ Rn : ∥x∥∞ <
1

2
}

Key properties include:79

1. Centrality: OΛ is centered at the origin.80

2. Emptiness: Λ ∩OΛ = {0} under the natural embedding of Zn
q in Rn.81

3. Maximality: OΛ is the largest hypercube centered at the origin that contains no82

non-zero lattice points.83

Definition 6 (Module Inhomogeneous SIS (M-ISIS)). The M-ISIS problem is defined as84

follows:85

• Input:86

– A matrix A ∈ Zm×n
q87

– A target vector t ∈ Zm
q88

– A modulus q89

– A bound β90

• Goal: Find a non-zero vector z ∈ Zn such that:91

Az ≡ t (mod q) and ∥z∥2 ≤ β

where ∥ · ∥2 denotes the ℓ2 norm.92

Definition 7 (Closest Vector Problem (CVP)). The CVP is defined as follows:93

• Input:94

– A lattice Λ ⊂ Zn
q95

– A target vector t ∈ Zn
q96
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• Goal: Find a lattice vector v ∈ Λ closest to t in the ℓ2 norm. In other words, find97

v ∈ Λ such that:98

∥t− v∥2 = min
w∈Λ

∥t−w∥2

where w ranges over all lattice vectors in Λ.99

Lemma 1 (Shortest Vector in Perfect Lattices). For a perfect lattice Λ in dimension n100

with det(Λ) = qn, the length of the shortest non-zero vector is given by:101

λ1(Λ) =
√

γn · q2

where γn is Hermite’s constant for dimension n.102

Proof. For perfect lattices, λ1(Λ)
2/ det(Λ)2/n achieves the maximum possible value, which103

is Hermite’s constant γn. Given det(Λ) = qn, we have:104

λ1(Λ)
2

(qn)2/n
= γn

Solving for λ1(Λ) yields the result.105

3 Incorporating the Origin Cell in Norm Bounds106

In a perfect lattice, the Origin Cell provides a natural unit of distance that can be107

used to adjust the norm bounds for the M-ISIS and CVP problems. By considering the108

properties of the Origin Cell, we can establish a relationship between the M-ISIS and109

CVP bounds, ensuring that the hardness of M-ISIS is preserved while accounting for the110

lattice structure.111

3.1 Adjusting the M-ISIS Bound112

To adjust the bound for the M-ISIS problem, we consider the maximum distance from113

the origin to any point on the surface of the Origin Cell. In a perfect lattice of dimension114

n, this distance is given by
√
n/2. We can add this distance to the original M-ISIS bound115

β to obtain an adjusted bound βISIS:116

βISIS = β +

√
n

2

This adjustment ensures that the M-ISIS solution lies outside the Origin Cell, pre-117

serving the hardness of the problem and validity of the solution.118

3.2 Setting the CVP Bound119

In a perfect lattice, the successive minima are tightly packed, which has important im-120

plications for the CVP problem. We leverage this property in our reduction from M-ISIS121

to CVP.122

For the CVP bound βCVP, we set:123

βCVP =
√
γn +

√
n

2

where γn is Hermite’s constant for dimension n.124

This choice of βCVP is crucial for our reduction for the following reasons:125
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1. Relation to Lattice Structure: It captures the approximate length of the short-126

est non-zero vector in a perfect lattice while providing enough space for meaningful127

solutions.128

2. Balancing M-ISIS and CVP: It’s large enough to encompass M-ISIS solutions129

while keeping the CVP instance hard.130

3. Accommodating the Origin Cell: The term
√
n
2

accounts for vectors starting131

from any point in the Origin Cell.132

4. Preserving Hardness: It maintains a tight bound to ensure the CVP instance133

remains challenging.134

This setting ensures that solving the worst-case CVP instance is at least as hard as135

solving the average-case M-ISIS instance, forming the basis of our hardness reduction.136

To see why this works, consider that in the M-ISIS problem, we’re looking for a vector z137

such that ∥z∥2 ≤ β +
√
n
2
. The additional

√
n
2

term comes from the radius of the Origin138

Cell. In the CVP problem, we’re looking for a lattice vector v such that ∥t − v∥2 is139

minimized and bounded by βCVP =
√
γn +

√
n
2
.140

141

These bounds are related: if we can find a vector v that solves the CVP instance,142

then z = v + u will solve the M-ISIS instance (where u is chosen such that Au ≡ t143

(mod q)), because:144

∥z∥2 = ∥v + u∥2 ≤
√
γn +

√
n

2
≤ β +

√
n

2

for justified choices of β based on Ajtai’s reduction[1].145

3.3 Justification for Worst-Case CVP Hardness in Perfect Lat-146

tices147

The worst-case hardness of CVP in perfect lattices follows from several key properties:148

1. NP-hardness of CVP: CVP is known to be NP-hard for general lattices [4]. This149

hardness carries over to perfect lattices, as they form a subset of general lattices.150

2. Absence of ”easy” instances: In some lattice problems, certain instances can151

be easier to solve due to structural weaknesses. Perfect lattices, by definition, have152

a highly regular structure that eliminates many of these potential weaknesses. The153

uniformity of Voronoi cells ensures that no region of the lattice is significantly easier154

for CVP than any other.155

3. Minimal gap between successive minima: In perfect lattices, λ2(Λ)/λ1(Λ) ≈ 1156

as dimension approaches infinity. This property makes it challenging to distinguish157

between the closest vector and other nearby lattice points, even in the worst case.158

4. Covering radius: The covering radius µ(Λ) ≈ 1 implies that for any target point,159

there always exists a lattice point within distance approximately 1. This constant-160

factor approximation hardness persists even in the worst case.161

5



5. Symmetry: The high degree of symmetry in perfect lattices can foil attempts to162

use local improvement algorithms, as multiple vectors may appear equally close to163

the target.164

These properties combine to ensure that CVP remains hard for perfect lattices even in165

the worst case. The regular structure does not provide any obvious advantage for solving166

CVP; instead, it guarantees a consistent level of hardness across all instances.167

Moreover, the reduction from SVP to CVP preserves approximation factors [3], mean-168

ing that hardness results for approximate SVP translate to hardness results for approxi-169

mate CVP. Given that SVP is known to be hard for ideal lattices [6], which share many170

properties with our perfect lattices, we can infer similar hardness for CVP in perfect171

lattices.172

This worst-case hardness of CVP in perfect lattices forms the foundation of our se-173

curity argument, ensuring that breaking the average-case M-ISIS problem would imply174

an ability to solve CVP in the worst case, a problem believed to be intractable even for175

quantum computers.176

4 Reduction Procedure177

4.1 Constructing the CVP Instance178

Given an average-case instance of the M-ISIS problem over a perfect lattice with matrix179

A, target vector t, modulus q, and bound β, we construct a worst-case instance of CVP180

as follows:181

1. Define the lattice ΛA associated with the matrix A modulo q:182

ΛA = {z ∈ Zn : Az ≡ 0 (mod q)}

2. Compute a vector u such that Au ≡ t (mod q). This can be done using standard183

techniques for solving linear systems modulo q.184

3. Set the target vector for the CVP instance to be −u.185

4. Set the CVP distance bound:186

βCVP =
√
γn +

√
n

2

4.1.1 Choice of −u Vector187

The choice of −u as the target vector for the CVP instance is crucial for the reduction188

and can be explained as follows:189

1. Relationship to M-ISIS Solution: Recall that in the M-ISIS problem, we’re190

looking for a vector z such that Az ≡ t (mod q). We chose u such that Au ≡ t191

(mod q).192

2. Shifting the Lattice: By setting the target to −u, we’re effectively shifting the193

lattice by u. This means that finding a vector v close to −u in the CVP instance194

is equivalent to finding a vector (v + u) close to 0 in the shifted lattice.195
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3. Mapping Back to M-ISIS: When we find a solution v to the CVP instance, we196

define z = v + u. This z satisfies:197

Az ≡ A(v + u) ≡ Av +Au ≡ 0+ t ≡ t (mod q)

Which is exactly what we need for a solution to the M-ISIS problem.198

4. Preserving the Bound: The CVP solver finds v such that ∥v+u∥2 is minimized.199

This directly corresponds to minimizing ∥z∥2 in the M-ISIS problem, preserving the200

bound relationship.201

4.2 Solving CVP202

Apply a CVP solver to find a lattice vector v ∈ ΛA such that:203

∥v + u∥2 = min
w∈ΛA

∥w + u∥2

4.3 Mapping Back to M-ISIS204

If the CVP solver finds a lattice vector v ∈ ΛA, then define z = v+u. This z will satisfy205

Az ≡ t (mod q) and ∥z∥2 ≤ β+ ∥u∥2, making it a valid solution to the M-ISIS problem.206

Theorem 1. If there exists an algorithm that solves the worst-case CVP for the lattice ΛA207

and target vector −u, then there exists an algorithm that solves the average-case M-ISIS208

problem for the matrix A, target vector t, and bound β.209

Proof. Suppose we have an algorithm that solves worst-case CVP. Given an average-case210

instance of M-ISIS with matrix A, target vector t, modulus q, and bound β, we construct211

a CVP instance as described in the reduction procedure. Solving the CVP instance finds212

a lattice vector v ∈ ΛA such that:213

214

∥v + u∥2 = minw∈ΛA
∥w + u∥2 ≤ βCVP = β + ∥u∥2215

216

We define z = v + u. Then:217

218

Az ≡ A(v + u) ≡ Av +Au ≡ 0+ t ≡ t (mod q)219

220

and221

222

∥z∥2 = ∥v + u∥2 ≤ βCVP = β + ∥u∥2223

224

If ∥v + u∥2 ≤ β, then z is a valid solution to the average-case M-ISIS problem,225

demonstrating that the worst-case hardness of CVP implies the average-case hardness of226

M-ISIS over perfect lattices.227

4.4 Tightness Analysis of the Reduction228

The tightness of our reduction from average-case M-ISIS to worst-case CVP over perfect229

lattices is primarily determined by the relationship between the Hermite constant γn and230

the dimension n. For perfect lattices, we can express this relationship as:231
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γn = n+ δ(n)

where δ(n) is a small function representing the deviation of γn from n.232

The tightness ratio T (n) can be defined as:233

T (n) =

√
γn√
n

=

√
1 +

δ(n)

n

For large n, using the binomial approximation, we have:234

T (n) ≈ 1 +
δ(n)

2n
The exact behavior of δ(n) for perfect lattices is an open question, but based on the235

properties of perfect lattices, we conjecture that δ(n) = O(log n) or even O(1).236

Assuming δ(n) = log n, we can calculate T (n) for various dimensions:237

n T (n)
128 ≈ 1.0170
256 ≈ 1.0137
512 ≈ 1.0110
1024 ≈ 1.0089

Table 1: Tightness ratio for various dimensions

This analysis demonstrates that our reduction is exceptionally tight, with the tightness238

improving as the dimension increases. For n = 1024, solving the CVP instance is at most239

1.78% harder than solving the original M-ISIS instance.240

We can bound the tightness ratio as:241

1 ≤ T (n) ≤
√

1 +
δ(n)

n
This tight reduction provides a strong theoretical foundation for cryptographic schemes242

based on the hardness of M-ISIS over perfect lattices. Future work could focus on pro-243

viding a more precise characterization of δ(n) for perfect lattices and analyzing how this244

tightness affects concrete security parameters in cryptographic applications.245

5 Security Implications246

This reduction shows that the average-case hardness of M-ISIS over perfect lattices is at247

least as hard as the worst-case hardness of CVP. This has several implications for the248

security of cryptographic schemes based on M-ISIS:249

1. Hardness Guarantee: The security of average-case M-ISIS is reduced to the250

worst-case hardness of a well-studied lattice problem (CVP). This provides a strong251

theoretical foundation for the hardness of M-ISIS over perfect lattices.252

2. Tighter Security Bounds: The use of Hermite’s constant in our bounds provides253

a more precise relationship between the hardness of M-ISIS and CVP, potentially254

leading to tighter security estimates for cryptographic schemes based on perfect255

lattices.256
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3. Parameter Selection: The reduction informs the selection of secure parameters257

for M-ISIS-based schemes. The adjusted M-ISIS bound βISIS ensures that solving258

average-case M-ISIS is at least as hard as solving worst-case CVP, providing a259

rigorous basis for parameter choices.260

4. Worst-Case to Average-Case Reduction: The reduction from average-case261

M-ISIS to worst-case CVP is a significant theoretical contribution. Worst-case to262

average-case reductions are a powerful tool in cryptography, as they allow for the263

construction of schemes whose security is based on the hardness of problems that264

are difficult to solve even in the worst case.265

6 Open Problems and Future Work266

This work opens up several avenues for further research:267

1. Improving the Reduction: The current reduction relies on a specific adjustment268

of the M-ISIS and CVP norm bounds based on the Origin Cell. It would be inter-269

esting to explore if the reduction can be tightened or generalized to other lattice270

classes beyond perfect lattices.271

2. Concrete Security Analysis: While this work provides an asymptotic hardness272

reduction, a concrete security analysis would be valuable to quantify the practical273

security of M-ISIS-based schemes over perfect lattices. This could involve studying274

the best-known algorithms for CVP and their performance on perfect lattices.275

3. Cryptographic Applications: The reduction motivates the design and analysis276

of new cryptographic schemes based on the hardness of M-ISIS over perfect lattices.277

This could include signature schemes, encryption schemes, and other primitives that278

leverage the unique properties of perfect lattices.279

4. Quantum Resistance: Investigating the quantum resistance of M-ISIS over per-280

fect lattices is an important direction for future research. This would involve study-281

ing the performance of quantum algorithms for CVP and analyzing their impact on282

the security of M-ISIS-based schemes.283

5. Extending to Other Lattice Problems: Exploring how this reduction technique284

might apply to other lattice problems, such as the Shortest Vector Problem (SVP)285

or the Bounded Distance Decoding (BDD) problem, could yield further insights into286

the hardness relationships between different lattice problems in perfect lattices.287

7 Conclusion288

This work presents a novel reduction from the average-case hardness of the Module Inho-289

mogeneous Short Integer Solution (M-ISIS) problem over perfect lattices to the worst-case290

hardness of the Closest Vector Problem (CVP). By leveraging the structural properties291

of perfect lattices, particularly the void around the origin, we construct a reduction that292

preserves the hardness of M-ISIS.293
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The reduction provides a strong theoretical foundation for the security of M-ISIS-294

based cryptographic schemes over perfect lattices. It highlights the potential of perfect295

lattices as a basis for secure and efficient lattice-based cryptography.296

Moreover, this work opens up several exciting directions for future research, including297

improving the reduction, conducting concrete security analyses, designing new crypto-298

graphic applications, and studying the quantum resistance of M-ISIS over perfect lattices.299

The use of perfect lattices in this reduction also raises intriguing questions about the role300

of lattice structure in the hardness of computational problems, potentially leading to new301

insights in both cryptography and computational complexity theory.302
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8 Appendix: SageMath Code for M-ISIS to CVP330

Reduction331

1 from sage.all import *332

2 from sage.modules.free_module_integer import IntegerLattice333

3 from sage.all import hermite_constant334

4335

5 # Step 1: Define the M-ISIS instance parameters336

6 A = Matrix(ZZ, [[8, 2, 3, 1], [1, 3, 4, 2], [5, 3, 1, 4], [7, 1, 1,337

3]])338

7 z = vector(ZZ, [2, 1, 2, 1]) # Secret vector z339

8 q = 257340

9 n = A.ncols ()341

10342

11 # Step 2: Calculate the SIS bound beta343

12 beta = sqrt(n) + sqrt(n)/2344

13 print("\nSecret vector z:", z)345

14346

15 # Step 3: Calculate target vector t347

16 t = (A * z) % q348

17 print("\nTarget vector t (A * z % q):\n", t)349

18 print("\nMatrix A:", A)350

19 print("\nTarget vector t:", t)351

20 print("\nModulus q:", q)352

21 print("\nSIS Bound Beta:", beta)353

22354

23 # Step 4: Function to find a vector u such that A*u \equiv t (mod q)355

24 def find_u(A, t, q):356

25 n = A.ncols ()357

26 for u1 in range(q):358

27 for u2 in range(q):359

28 for u3 in range(q):360

29 for u4 in range(q):361

30 u = vector(ZZ, [u1, u2, u3, u4])362

31 if (A * u) % q == t:363

32 return u364

33 return None365

34366

35 # Step 5: Find vector u such that A*u \equiv t (mod q)367

36 u = find_u(A, t, q)368

37 print("\nVector u such that A*u \equiv t (mod q):")369

38 print(u)370

39371

40 # If no suitable u is found , stop372

41 if u is None:373

42 print("No suitable vector u found.")374

43 exit()375

44376

45 # Step 6: Define the lattice \Lambda_A377

46 def lattice_from_matrix(A, q):378

47 n = A.ncols ()379

48 return IntegerLattice(Matrix(ZZ , [[x - (x % q) for x in row] for380

row in A.rows()]).stack(q * identity_matrix(n)))381

49382

50 lattice = lattice_from_matrix(A, q)383

51 print("\nLattice \Lambda_A:")384

52 print(lattice)385
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53386

54 # Step 7: Set the target vector for the CVP instance387

55 v_target = vector(ZZ, -u)388

56 print("\nTarget vector for CVP (v_target):")389

57 print(v_target)390

58391

59 # Step 8: Define the CVP distance bound392

60 gamma_n = hermite_constant(n) # Calculate Hermite ’s constant393

61 print("\nHermite Constant for dimension ", n, ":", gamma_n)394

62 beta_CVP = sqrt(gamma_n) + (sqrt(n) / 2)395

63 print("\nCVP distance bound (beta_CVP):")396

64 print(beta_CVP.n())397

65398

66 # Step 9: Solve the CVP instance using the closest_vector method from399

the IntegerLattice class400

67 v = lattice.closest_vector(v_target)401

68 print("\nSolution vector v for CVP(0):", v)402

69403

70 # Step 10: Check if the solution vector v is within the CVP distance404

bound405

71 v_norm = v.norm()406

72 print("\nNorm of solution vector v:", v_norm.n())407

73 print("\nIs the norm of v within the CVP distance bound beta_CVP?")408

74 print(v_norm.n() <= beta_CVP)409

75410

76 # Step 11: Map back to M-ISIS411

77 z = v + u412

78 print("\nMapped solution vector z for M-ISIS:", z)413

79414

80 # Step 12: Verify the solution415

81 def verify_solution(A, z, t, q):416

82 return (A * z) % q == t417

83418

84 is_valid = verify_solution(A, z, t, q)419

85 print("\nIs the solution valid for M-ISIS?")420

86 print(is_valid)421

87422

88 # Step 13: Check the norm bound423

89 z_norm = z.norm()424

90 print("\nNorm of solution vector z:", z_norm.n())425

91 print("\nIs the norm of z within the bound beta?")426

92 print(z_norm.n() <= beta + sqrt(n)/2)427

Listing 1: SageMath Code for M-ISIS to CVP Reduction
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