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Abstract

SNARKs based on the sum-check protocol often invoke the “zero-check PIOP”. This reduces the
vanishing of many constraints to a single sum-check instance applied to an n-variate polynomial of the
form g(x) = eq(r, x) · p(x), where p is a product of multilinear polynomials, r is a random vector, and eq
is the multilinear extension of the equality function. In recent SNARK designs, p(x) is defined over a
“small” base field, while r is drawn from a large extension field F for security.

Recent papers (Bagad, Domb, and Thaler 2024; Gruen 2024) have optimized the sum-check protocol
prover for this setting. However, these works still require the prover to “pre-compute” all evaluations of
eq(r, x) as x ranges over {0, 1}n, and this computation involves about n multiplications over the extension
field F.

In this note, we describe a modification to the zero-check PIOP in the case of binary tower fields that
reduces this “pre-computation” cost by a factor of close to log |F|, which is 128 in important applications.
We show that our modification is sound, and that it strictly generalizes a (possibly folklore) technique of
constraint-packing over field extensions.

1 Introduction

The sum-check protocol computes ∑
x∈{0,1}log n

g(x) (1)

for some low-degree n-variate polynomial g. Here, g is an n-variate polynomial defined over some finite field
F, and the sum is also defined over F.

From the verifier’s perspective, the sum-check protocol acts as a reduction from the task of summing up g’s
evaluations over the 2n inputs in {0, 1}n to the (hopefully easier) task of evaluating g at a single point in Fn.

A prior work of Bagad, Domb, and Thaler [BDT24] considered how to optimize the sum-check prover when

g(x) =

ℓ∏
i=1

pi(x) (2)

where each pi(x) is a multilinear polynomial such that pi(x) ∈ B, where F is an extension field of B.
Throughout this note, we refer to F as the “big field” or “extension field” and B as the “small field” or “base
field”.

However, in most applications of the sum-check protocol to SNARK design, g does not quite satisfy this
property. Often, there is an extra factor in g, defined as follows. Let eq(y, x) denote the 2n-variate multilinear
polynomial defined as:

eq(y, x) =
n−1∏
i=0

(xiyi + (1− xi)(1− yi)) .
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Notice that eq is the multilinear extension of the equality function, meaning that if both x and y are in
{0, 1}n then

eq(x, y) =

{
1 if x = y

0 otherwise.

When y ∈ {0, 1}n is fixed, we denote eq(y, x) by χy(x), and call χy the y’th multilinear Lagrange basis
polynomial. Then:

χy(x) =

 ∏
j∈{0,...,n−1} : yj=0

(1− xj)

 ·
 ∏

j∈{0,...,n−1} : yj=1

xj

 (3)

In most applications of the sum-check protocol to SNARK design, we actually have that the protocol is
applied to a polynomial g of the form:

g(x) = eq(r, x) ·
ℓ∏

i=1

pi(x) (4)

for some multilinear polynomials pi, where pi(x) ∈ B for all x ∈ {0, 1}logn, and where r ∈ Fn is chosen at
random from the larger field F by the verifier.

Roughly speaking, Bagad, Domb, and Thaler [BDT24], as well as Gruen [Gru24] show that when g satisfies
Equation (2), then the sum-check protocol prover only needs to perform additions and multiplications over B for
the first few rounds of the protocol. This leads to speedups compared to earlier prover implementations [CTY11,
CMT12, Tha13], because in those earlier prover implementations, after round one the prover has to perform
many multiplications over the “big field” F.

The results of [BDT24] do apply when g has the form of Equation (4), but the resulting prover is not as fast
as one might hope. This is because the prover has to perform many big-field operations over F throughout
the whole protocol (though fewer than if one directly applied older prover implementations). The main source
of extension-field multiplications is the prover’s need to compute the values

A = {eq(r, x) : x ∈ {0, 1}n}.

This requires about n F-multiplications using standard memoization-based procedures [VSBW13] (see Section 7
and [Tha22, Lemma 3.8] for details).

In this note, we drastically reduce this cost for the prover when F has characteristic two and is constructed
as a tower extension of B (see Section 2 for details of tower extension fields). This is exactly the setting
that arises in applications of the Binius [DP23] and FRI-Binius [DP24] commitment schemes and associated
polynomial IOPs.

Specifically, let F be a degree-2k extension of B. That is, F is constructed by first taking a degree-two
extension of B, and then a degree-2 extension of that, and so on for k iterations.

Our technique is simple. We show that in key applications of the sum-check protocol, it is not necessary to
choose r0, . . . , rk−1 at random. Rather, they can be chosen deterministically to equal very special elements
z0, . . . , zk−1 of the tower basis for F. For each zi, multiplication of any element of the extension field F by
the field element zi is extremely fast (roughly equivalent to the cost of a single addition in F). This reduces
the number of F-multiplications required to compute the values in A from n to roughly n/2k.

2 Overview of Wiedemann’s binary tower field construction

For simplicity, let us focus on B = GF(2) and F = GF(2128).

We can associate the 2128 elements of F with 7-variate multilinear polynomials with coefficients over B. Note
that any such multilinear polynomial has 27 = 128 coefficients, and hence the total number of such multilinear
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polynomials is 2128, allowing for a natural one-to-one correspondence between elements of GF(2128) and
seven-variate multilinear polynomials. Let us write z0, . . . , z6 for the seven variables of any such multilinear
polynomial.

On an actual computer, we can uniquely represent any element of GF(2128) (viewed as a multilinear polynomial
q(z0, . . . , z6)) by simply listing its 128 coefficients. But the coefficients in what basis? People would typically
use the standard monomial basis. So, the polynomial (i.e., GF(2128) element)∑

S⊆{0,...,6}

cS ·
∏
i∈S

zi

would be represented via a list of the the cS values.

Adding two GF(2128) elements represented in this basis simply amounts to computing bitwise XOR. Mul-
tiplication is more interesting. Given two 7-variate multilinear polynomials (i.e., GF(2128) field elements)
q1(z0, . . . , z6) and q2(z0, . . . , z6), their product as polynomials is not multilinear, as it has degree up to
two in each variable. Let q3(z0, . . . , z6) denote this product polynomial. According to Wiedemann’s tower
construction [Wie88] of GF(2128) [Wie88], the multiplication rule for GF(2128) declares q3 to be equivalent to
the multilinear polynomial obtained by replacing, for i = 0, . . . , 6, any instance of z2i with

zi · zi−1 + 1, (5)

where here we understand that z−1 is equal to 1.

So, for example, if q3(z0, . . . , z6) = z20 , then this is the same as the multilinear polynomial (a.k.a., GF(2128)
field element) z0 · z−1 + 1 = z0 + 1.

As a more involved example, if q3(z0, . . . , z6) = z22 · z21 , then via (5) this is equivalent to

(z2 · z1 + 1) · (z1 · z0 + 1) = z2z
2
1z0 + z2z1 + z1z0 + 1,

which, via another application of (5), is in turn equivalent to

z2(z1z0 + 1)z0 + z2z1 + z1z0 + 1 = z2z1z
2
0 + z2z0 + z2z1 + z1z0 + 1.

Via yet another application of (5), this is, at last, equivalent to

z2z1(z0 + 1) + z2z0 + z2z1 + z1z0 + 1.

Since the field has characteristic two, this simplifies to

z2z1z0 + z2z0 + z1z0 + 1.

This is a multilinear polynomial in the standard monomial basis and hence represents a field element in
GF(2128).

We refer to z0, . . . , z6 as the seven “special” field elements of GF(2128). As shown by Fan and Paar [FP97],
multiplying any field element in GF(2128) by one of the seven special field elements can be done extremely
quickly. In Section 8, we work out this algorithm in detail, including “unrolling” Fan and Paar’s recursive
multiplication procedure into an iterative form that may be implemented more efficiently in hardware.
Ultimately, multiplying any GF(2128) element by a special field element zi requires computing a bitwise-XOR
over at most 128 bits (the same cost as a GF(2128) addition).

Therefore, in this work, for each i ∈ {0, . . . , 6}, we consider multiplication by the special GF(2128)-element zi
or (1− zi) to be “free”.
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3 Constraint Checking

Say you want to confirm that g(x) = 0 for all x ∈ {0, 1}n, where g is defined over B = GF(2). Letting
F = GF(2128) the standard way to do this is the standard zero-check PIOP [BFL91, BTVW14, CFQ19, Set20]:
V picks a random r in Fn, and applies sum-check to confirm

0 =
∑

x∈{0,1}n

eq(r, x) · g(x). (6)

It’s not hard to show that if g(x) ̸= 0 for any x ∈ {0, 1}logn, then with probability at least 1− log(n)/|F|,
Equation (6) will fail to hold. In other words, if the verifier is convinced via sum-check that Equation (6)
holds, then it is safe for the verifier to conclude that g(x) = 0 for all x ∈ {0, 1}n.

Instead, let’s exploit the following derivation.

Let h be the unique multilinear polynomial that agrees with g at all x ∈ {0, 1}n. Then clearly

g(x) = 0 for all x ∈ {0, 1}n ⇐⇒ h(x) = 0 for all x ∈ {0, 1}n. (7)

It is easy to see the following polynomial identity:

h(w) =
∑

x∈{0,1}n

eq(w, x) · g(x). (8)

Indeed, the right-hand side is multilinear in w and agrees with g(w) whenever w is in {0, 1}n. Hence, by
Schwartz–Zippel, the right-hand side must be the same polynomial as g.

Claim 1. Let z0, . . . , z6 denote the seven “special” elements of GF(2128). Equation (7) holds if and only if

h(z0, . . . , z6, y) = 0 for all y ∈ {0, 1}n−7. (9)

Proof. If Equation (7) holds, then since h is multilinear, it follows that h is identically zero, and hence
Equation (9) holds.

Conversely, assume Equation (9) holds. Fix some y ∈ {0, 1}n−7. Then, as we explain in Equation (11) below,
since h is multilinear, h(z0, . . . , z6, y) is a linear combination of 128 evaluations of h, namely all those of the
form h(y′, y) with y′ ∈ {0, 1}7. Specifically, for any w ∈ F7,

h(w, y) =
∑

y′∈{0,1}7

χy′(w) · h(y′, y), (10)

where recall that χy′ denotes the multilinear Lagrange basis polynomial corresponding to y′ (see Equation (3)).
Indeed, the right-hand side of Equation (10) is multilinear in w and y and agrees with h whenever w and y
are both in {0, 1}n. Hence the right-hand side must equal h.

It follows from Equation (10) that

h(z0, . . . , z6, y) =
∑

y′∈{0,1}7

χy′(z0, . . . , z6) · h(y′, y). (11)

Now, since h is defined over B, h(y′, y) ∈ B for each y′, y ∈ {0, 1}7×{0, 1}n−7. We now look at the right-hand
side of Equation (11) as a multilinear polynomial in the variables z0, . . . , z6. Since

{χy′(z0, . . . , z6) : y
′ ∈ {0, 1}7}

form a multilinear basis over B, and because the left-hand side is zero, it follows that the coefficients of
χy′(z0, . . . , z6) in the right-hand side of Equation (11), which are h(y′, y) for all y ∈ {0, 1}7, must all be zero.
This finishes the claim.
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By Claim 1 and the discussion proceeding it, checking that g(x) = 0 for all x ∈ {0, 1}n is equivalent to
checking that h(z0, . . . , z6, y) = 0 for all y ∈ {0, 1}n−7. By Schwartz–Zippel, up to soundness error (n−7)/|F|,
it is enough for the verifier to choose a random value r ∈ Fn−7 and confirm that h(z0, . . . , z6, r) = 0. By
Equation (8), this is equivalent to confirming that

0 =
∑

x∈{0,1}n

eq((z0, . . . , z6, r), x) · g(x). (12)

This is exactly the standard “zero-check PIOP” except that the first 7 entries of (z0, . . . , z6, r) are determin-
istically fixed to the special field elements z0, . . . , z6, rather than chosen at random from GF(2128). Since
multiplying any GF(2128)-element by zi or (1−zi) can be done extremely quickly [FP97],1 it is easy to see that
the standard memoization procedure [VSBW13, Tha13] for computing {eq((z0, . . . , z6, r), x) : x ∈ {0, 1}n}
can be done with about 2n−7 GF(2128)-multiplications, in contrast to the standard zero-check PIOP that
requires 2n such multiplications. This is a speedup factor of about 27 = 128. Note that in order to get this
speedup factor, we need to process z0, . . . , z6 last, not first, in the memoization procedure. We discuss this
detail in Section 7.

4 An optimization when g has degree one in some variables

Suppose that g has degree one in its first ℓ variables. Then Equation (8) can be simplified to

h(w0, . . . , wℓ−1, w
′) =

∑
x∈{0,1}n−ℓ

eq(w′, x) · g(w0, . . . , wℓ−1, x). (13)

Indeed, the right-hand side Equation (13) is multilinear in (w0, . . . , wℓ−1, w
′) and agrees with h whenever

(w0, . . . , wℓ−1, w
′) ∈ {0, 1}n, so the right-hand side must equal h as a formal polynomial. Note that the sum

on the right-hand side is only over 2n−ℓ terms rather than 2n terms. This is a factor of 2ℓ fewer terms being
summed than in Equations (8) and (12).

Accordingly, to check that h(z0, . . . , zℓ−1, r) = 0 for any r ∈ Fn−ℓ, it suffices to apply the sum-check protocol
to compute ∑

x∈{0,1}n−ℓ

eq(r, x) · g(z0, . . . , zℓ−1, x),

rather than to ∑
x∈{0,1}n

eq((z0, . . . , zℓ, r)), x) · g(z0, . . . , zℓ−1, x),

as per the unoptimized protocol captured in Equation (12).

5 Showing this protocol generalizes “simple constraint packing”

Simple constraint packing. Suppose that the verifier has evaluation access to six n-variate polynomials
p1, q1, s1, p2, q2, and s2, all defined over B, and the prover claims that for all x ∈ {0, 1}n, it holds that

p1(x) · q1(x)− s1(x) = 0 (14)

and
p2(x) · q2(x)− s2(x) = 0. (15)

These are 2 · 2n rank-one constraints in total, with the first 2n due to Equation (14) and the second 2n

constraints due to Equation (15). We can reduce the number of constraints by half, to 2n, by replacing the

1As discussed earlier, we consider these multiplications to be “free”.
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separate requirements that p1(x) · q1(x)− s1(x) = 0 and p2(x) · q2(x)− s2(x) = 0 with the single constraint
(over the extension B(z0) ⊂ F) that

z0 · (p1(x) · q1(x)− s1(x)) + (1− z0) · (p2(x) · q2(x)− s2(x)) = 0. (16)

Indeed, because z0 and (1− z0) are linearly independent over B, Equations (14) and (15) hold if and only if
Equation (16) holds.

Applying the standard sum-check-based zero-check PIOP to Equation (16) amounts to applying sum-check
to confirm that

0 =
∑

x∈{0,1}n

eq(r, x) · (z0 · (p1(x) · q1(x)− s1(x)) + (1− z0) · (p2(x) · q2(x)− s2(x))) . (17)

We call the above application of the sum-check protocol, in order to check that Equations (14) and (15) both
hold, the simple constraint-packing approach.

Relating simple constraint packing to our protocol. As we now explain, the simple constraint-packing
approach is identical to what one obtains from our constraint-checking protocol of Section 3 when using the
optimization of Section 4 with ℓ = 1. Define an (n+ 1)-variate polynomial g as follows

g(x0, x) = x0 · (p1(x)q1(x)− s1(x)) + (1− x0) · (p2(x)q2(x)− s2(x)) (18)

Then Equations (14) and (15) both hold if and only if

g(x0, x) = 0 for all (x0, x) ∈ {0, 1}1+n (19)

Notice that g has degree one in x0. Applying the optimization of Section 4 (with ℓ = 1) to our constraint-
checking procedure from Section 3 leads to the following protocol. The verifier picks a random r ∈ Fn, and
invokes the sum-check protocol to confirm that

0 =
∑

x∈{0,1}n

eq(r, x) · g(z0, x).

By the definition of g(x) (see Equation (18)) and the optimization of Section 4, this application of the
sum-check protocol is equivalent to the simple constraint-packing approach captured via Equation (17).
Hence, our constraint-checking procedure from Section 3, optimized appropriately per Section 4, is a strict
generalization of simple constraint-packing.

6 Some intuition for what’s going on

Sum-check works with multilinear polynomials. Tower field elements are multilinear polynomials.
Typically, extension field elements are regarded as univariate polynomials, modulo an irreducible polynomial
over the base field. But GF(2128) elements under the tower construction are naturally viewed as (seven-variate)
multilinear polynomials, which are exactly the polynomials that arise in key applications of the sum-check
protocol. Hence, GF(2128) elements slot right into any multilinear polynomials being sum-checked, with the
first seven variables of the polynomial whose evaluations are being summed regarded as the seven variables
specifying a GF(2128) element.

For example, suppose the sum-check protocol is applied to an n-variate polynomial g that has degree 1
in its first 7 variables. Then fixing those seven variables to the “special” GF(2128)-elements z0, . . . , z6,
one can treat any sum over all 128 possible products of those first seven variables, each multiplied by a
base-field element, as specifying a single GF(2128) element. This lets one cut out the first seven rounds of the
standard sum-check-based zero-check PIOP applied to g. In other words, g gets replaced with the polynomial
q(x) = g(z0, . . . , z6, x) over seven fewer variables than g itself. Whereas g’s evaluations are in the base field
GF(2), q’s are in the extension field F = GF(2128).

If g is not of degree 1 in its first seven variables, we can still do something similar, because the sum-check-based
zero-check PIOP considers the multilinear polynomial h that agrees with g over the Boolean hypercube, so
everything in the previous paragraph can be said about h rather than g itself.
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Performance, soundness, and tensor structure in the tower basis. The key observation of this
note is that there are seven special field elements z0, . . . , z6 such that one can deterministically fix the first
seven variables of r to be z0, . . . , z6 before having the prover compute eq(r, x) as x ranges over {0, 1}n. The
soundness of this procedure relies on the fact that there are bases for GF(2128) as a vector space over the
base field GF(2) that consist of tensor products of these seven special field elements z0, . . . , z6. These bases
are called tower bases. This “tensor product structure” in bases for GF(2128) seems unique to tower field
constructions.

More precisely, for soundness in this note, it’s essential that the following 128 elements of GF(2128) are linearly
independent over GF(2) (and hence form a basis):

(z0 − 1)(z1 − 1) . . . (z6 − 1),

z0(z1 − 1) . . . (z6 − 1),

...

z0z1 . . . z6.

The tensor product structure in tower bases is also implicitly exploited in the fact that multiplication by
z0, . . . , z6 is extremely fast. Indeed, the fast algorithm to multiply by zi heavily exploits the fact that GF(22

i

)

is a degree-two extension of GF(22
i−1

) for i = 1, . . . , 7 (see Section 8 for the full description of the algorithm
to multiply by zi). This is exactly how tower fields are constructed, via a sequence of degree-two extensions.

7 Memoization for evaluating the eq polynomial at many points

In this section, we describe in detail how to fully utilize the benefits of constraint packing (see Section 3). The
optimization is applicable to the prover’s “pre-computation” phase, before the first round of the sum-check
protocol applied to g (see Equation (4)), where the prover wishes to compute

eq(w, y) =
n−1∏
i=0

(wi · yi + (1− wi)(1− yi)) for all y ∈ {0, 1}n,

and store these evaluations. Following this pre-computation, the sum-check prover can be implemented in
the manner described in [BDT24].

In our setting, we have w = (z0, . . . , z6, r), where r ← Fn−7 is a vector of random field elements, and z0, . . . , z6
are the special field elements for the tower field B ⊂ F.

First, we recall a simple algorithm for general w ∈ Fn which costs roughly 2n field multiplications in F:

Algorithm 1 Computation of eq(w, y) for all y ∈ {0, 1}n. In the comment on Line 7, bin(k) denotes the
n-bit binary representation of integer k ∈ {0, . . . , 2n − 1}.
1: Initialize an all-one vector v = (1, 1, . . . , 1) ∈ {0, 1}n
2: for i = 0, . . . , n− 1 do
3: for j = 2i − 1, . . . , 0 do
4: Set v[2j + 1] := v[j] · wi and v[2j] := v[j]− v[2j + 1]
5: end for
6: end for
7: return v ▷ we have v[k] = eq(w, bin(k)) for all k = 0, . . . , 2n − 1.

For example, here is the algorithm in action for w = (w0, w1, w2), where we denote wi := 1− wi:
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Index 7 6 5 4 3 2 1 0
Init: 1 1 1 1 1 1 1 1
Round 1: w0 w0 1 1 1 1 1 1
Round 2: w1w0 w1w0 w1w0 w1w0 1 1 1 1
Round 3: w2w1w0 w2w1w0 w2w1w0 w2w1w0 w2w1w0 w2w1w0 w2w1w0 w2w1w0

From this example, it is clear that the number of multiplications is not the same for each entry of w. Indeed,
we do 2 multiplications (in F) with w0, 4 multiplications with w1, and so on, up to 2n−1 multiplications with
wn−1. When w = (z0, . . . , z6, r) as in our setting, we want to make sure that most of the multiplications
involve a “special” field element zi, since such multiplications are cheap. Hence, we should evaluate w in the
opposite order, going from rn−8, . . . , r0 to z6, . . . , z0. In other words, we should use the following algorithm:

Algorithm 2 Computation of eq(w, y) for all y ∈ {0, 1}n, where w = (z0, . . . , z6, r)

1: Initialize an all-one vector v = (1, 1, . . . , 1) ∈ {0, 1}n
2: for i = n− 1, . . . , 0 do
3: for j = 2n−1−i − 1, . . . , 0 do
4: Set v[2i+1j + 2i] := v[2i+1j] · wi and v[2i+1j] := v[2i+1j]− v[2i+1j + 2i]
5: end for
6: end for
7: return v ▷ we have v[k] = eq(w, bin(k)) for all k = 0, . . . , 2n − 1

Once again, here’s the modified algorithm in action for w = (z0, z1, r):

Index 7 6 5 4 3 2 1 0
Init: 1 1 1 1 1 1 1 1
Round 1: r 1 1 1 r 1 1 1
Round 2: r z1 1 rz1 1 rz1 1 rz1 1
Round 3: r z1z0 r z1z0 r z1z0 rz1z0 rz1z0 rz1z0 rz1z0 rz1z0

This will result in roughly 2n−7 total multiplications in F, and 2n−k−1 multiplications with zk for all
k = 6, . . . , 0. Since the latter computations with z6, . . . , z0 are basically free, this way of evaluating
{eq(w, y) : y ∈ {0, 1}n} saves a factor of close to 27 = 128 in the time required to compute all of these
evaluations.

8 Multiplication by special elements in binary tower fields

In this section, we give an explicit description for the multiplication of any field element a ∈ GF(22
k

), defined
by the tower field construction (Section 2), by each of the special elements z0, . . . , zk−1. We first present the
recursive algorithm as in [FP97], and then “unroll” this algorithm to give explicit formulas for updating each
of the 2k bits of a’s representation in the tower basis.

Recall that the tower construction identifies any a ∈ GF(22
k

) with a k-variate multilinear polynomial. Hence,
we can index the bits of a by subsets S ⊆ [[k − 1]] := {0, 1, . . . , k − 1}. In other words, we have

a =
∑

S⊆[[k−1]]

a[S] · zS , where zS :=
∏
i∈S

zi.

For any i ∈ [[k − 1]], we define

ai :=
∑

T⊆[[k−1]]\{i}

a[T ∪ {i}] · zT , and ai :=
∑

T⊆[[k−1]]\{i}

a[T ] · zT .
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This partitions the bits of a depending on whether the corresponding index S contains i. We have that

a = ai · zi + ai,

and that ai, and ai both consist of 2k−1 bits.

The recursive algorithm for multiplying a by zi [FP97] is as follows:

1. For i = 0, we have

a · z0 = (a0 · z0 + a0) · z0 = a0 · z20 + a0 · z0 = a0 · (z0 + 1) + a0 · z0
= (a0 + a0) · z0 + a0.

In other words, we simply compute a := (a0, a0) 7→ (a0 + a0, a0), which costs one addition in the field

GF(22
k−1

), i.e., computing the bitwise XOR of two vectors of length 2k−1.

2. For i > 0, we have

a · zi = (ai · zi + ai) · zi = ai · z2i + ai · zi = ai · (zi · zi−1 + 1) + ai · zi
= (ai · zi−1 + ai) · zi + ai.

In other words, multiplication by zi can be expressed as the map

a = (ai, ai) 7→ (ai · zi−1 + ai, ai). (20)

We now recursively compute ai · zi−1 and substitute the result into Equation (20) to obtain a · zi.
Importantly, since ai can be seen as a multilinear polynomial in z0, . . . , zi−1, zi+1, . . . , zk−1, the recursive

multiplication ai · zi−1 can be seen as an operation in GF(22
k−1

) (up to “shifting” zi+1, . . . , zk−1 to
zi, . . . , zk−2), and hence only half as expensive as a · zi.

We may calculate the total cost of the above procedure as follows. Let Nk,i be the total lengths of the vectors
that need to be bitwise XORed together to compute a · zi with the method above. Then

Nk,0 = 2k−1 and Nk,i = Nk−1,i−1 + 2k−1.

A simple inductive analysis then shows

Nk,i = 2k−1 + 2k−2 + · · ·+ 2k−i−1 = 2k − 2k−i−1 for all 0 ≤ i < k.

Interestingly, this means that multiplying a ∈ GF(22
k

) by zi requires slightly fewer bit additions than the 2k

bit additions that are required to add an arbitrary GF(22
k

) element to a, though multiplication by zi also
rearranges the bits of a.

We now convert this recursive algorithm to an iterative one. Specifically, we want to derive a formula for
how each bit b[S] of b := a · zi can be computed from the bits of a. Intuitively, Equation (20) states that
multiplication of a = (ai, ai) causes ai and ai to “switch places,” but we also add (i.e., bitwise-XOR) ai · zi−1

to ai. This has the following consequences:

• Since Equation (20) states that multiplication by zi causes ai and ai to “switch places,” we need to
add a[S∆{i}] to b[S]. Here ∆ denotes the symmetric difference of sets. Equivalently, the algorithm will
initialize b[S] with a[S∆{i}].

• If i ̸∈ S, this completes the calculation of b[S]. If i ∈ S, we still need to add ai · zi−1 to b[S]. This is
done as follows.

• Since (ai)i−1 and (ai)i−1 “switch places” in ai · zi−1, we need to add a[S∆{i− 1}] to b[S]. If i− 1 ̸∈ S,
this completes the calculation of b[S]. Otherwise, we still need to add ai−1 · zi−2 to b[S].

• This continues down to whether 0 ∈ S. In this case, we make the convention that S∆{−1} = S.

To summarize, we present the iterative algorithm as Algorithm 3 below.
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Algorithm 3 Iterative computation of a · zi for any a ∈ GF(22
k

) and i = 0, . . . , k − 1.
U ∪ V corresponds to the set S considered in our prose description of the iterative algorithm.

1: Initialize b[S] := a[S∆{i}] for all S ⊆ [[k − 1]].
2: for U ⊆ {i+ 1, . . . , k − 1} do
3: for V ⊆ {0, . . . , i} do
4: for j = i, . . . , 0 do
5: if j ̸∈ V then
6: Break innermost for loop. ▷ We are done computing b[U ∪ V ]
7: else
8: Update b[U ∪ V ]← b[U ∪ V ] + a[U ∪ (V∆{j − 1})]. ▷ Define V∆{−1} := V
9: end if

10: end for
11: end for
12: end for
13: return b

9 Packing for lookup arguments and offline memory checking

A standard step in lookup arguments like Lasso [STW23] and other offline memory-checking procedures
like Spice [SAGL18] is to take a sequence of n triples of field elements (ai, bi, ci) and replace each triple
with a single field element. The mapping from triples of field elements to one field element must be (with
overwhelming probability, if the mapping is randomized) injective on the set of n triples. The standard way
to do this is fingerprinting: the verifier picks a random r ∈ F and (ai, bi, ci) is mapped to ai + bi · r + ci · r2.
The probability over the random choice of r that two distinct tuples collide under this mapping is at most
n2/|F|.

If ai, bi, and ci are each in, say, GF(232), and F = GF(2128) as would typically be the case in offline memory-
checking procedures that use the Binius commitment scheme [DP23, DP24], we can instead deterministically
and injectively pack ai, bi, ci into a single field element, via the map (ai, bi, ci) 7→ ai+ z5 · bi+ z6 · ci. This map
is “free” for the prover to compute when working in the tower basis. Compared to the standard fingerprinting
approach, this saves the prover two field multiplications per tuple.
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