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Abstract

We discuss zero-knowledge in the context of FRI-based STARKs us-
ing techniques desirable in practice: Randomization by polynomials over
the basefield, and decomposing the overall quotient into polynomials of
smaller degree.
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1 Introduction

Adding zero-knowledge to a STARK1is a subject that seems somewhat neglected
in the field of applied cryptography. Most papers focus solely on the soundness

1We keep with the “bad practice” prevalent amongst practitioners, and consider a STARK
any Reed-Solomon (or more generally, Goppa) encoded argument system that uses the FRI
low-degree test.
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of the underlying interactive oracle proof (IOP), and leave its modification for
zero-knowledge to the reader, referring to [BSCR+19] as one of the few examples
which treats the issue in full depth. The reason for this might be the common
design principle as a polynomial IOP, and it is not too difficult to randomize
the polynomials so that their queried values perfectly hide the witness. Maybe
because of this apparent plainness one tends to oversimplify the issue. Examples
for gaps in the treatment2of zero-knowledge are Plonky2 [plo], Risc-Zero [Ris],
Triton [tri], not to forget the summary on FRI low-degree test [Hab22].

In this note we discuss the subtleties of turning FRI-based STARKs into
zero-knowledge. We explain the [BSCR+19] construction and clarify the impor-
tance of its masking step, and we discuss two techniques desirable in practice
and which we did not find formally treated in literature: Randomizing the
witness polynomials over the base field (while the verifier challenges are from
an extension field), and decomposing the overall quotient into polynomials of
smaller degree. We focus on the FFT-like decomposition of the quotient,

q(x) = q0(x
d) + x2 · q1(xd) + . . .+ xd−1 · qd−1(x

d),

which seems prevalent in practice, but we also sketch how to treat other types
of decompositions.

The note is structured as follows. In Section 2 we describe the [BSCR+19]
construction in the context of a simple toy protocol which uses FRI as a “poly-
nomial commitment scheme”. This toy protocol is already designed in respect
to small field STARKs, and randomizes the witnesses with basefield polynomi-
als. Then, in Section 3, we describe how to add zero-knowledge to a STARK of
an algebraic intermediate representation (AIR) with transitional constraints, for
the FFT decomposition as described above. (The other two types are quickly
sketched in Section 4.) Our restrictive choice of IOP is for demonstration pur-
poses; its generalization to more versatile protocols which use permutation or
lookup arguments is straight-forward. In Section 5, we finally conclude with few
remarks on the computational costs for the most greedy choice of randomization
parameters.

We assume that the reader is familiar with the formal notions of zero-
knowledge, and thus we skip their explicit definitions. However, even without
explicit definitions we do not lack rigor. As we throughout assume an honest
verifier (which is good enough for our purposes) the desired transcript simula-
tor can be easily inferred from the proven properties of the involved probability
distributions.

2In the meantime, the gaps in these repositories have been patched.
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2 The BSCR construction

The [BSCR+19] construction turns any Reed-Solomon encoded interactive or-
acle proof which makes use of the FRI low-degree test into a (straight-line
simulable and perfect) zero-knowledge proof, by introducing only a few ran-
domization steps. As ususal, witness polynomials are randomized outside the
trace domain, but unlike in IOPs with homomorphic properties one needs to
take into account further oracle queries beyond the main protocol, in this case
FRI proof of proximity.

For simplicity we discuss the [BSCR+19] construction in the context of the
following toy protocol, summarized in Protocol 1 below: Let Fq be a finite field,
H ⊂ Fq a multiplicative subgroup of smooth order |H| = 2n, and F a finite
extension field of Fq, of degree

e = [F : Fq].

Given witness polynomials3w1(X), . . . , wM (X) ∈ Fq[X]<|H| the prover random-
izes them outside the witness domainH by polynomial multiples of the vanishing
polynomial,

ŵi(X) = wi(X) + ri(X) · vH(X),

for each i = 1, . . . ,M , where ri(X)←$ Fq[X]<h is of some appropriate degree of
freedom h, where typically h≪ |H|, to be determined below. Then the verifier
samples nDEEP ≥ 1 random queries from the extension field F , and asks for
the values of the randomized polynomials over the query set. The prover claims
them and both prover and the verifier engage in a FRI low-degree test with
nFRI ≥ 1 query rounds on the evaluation claim quotients. To take into account
the typically small increase of degree, we use a variant of the low-degree test
to handle the strict degree bound |H|+ h without jumping to the next smooth
bound, Protocol 2.

In order to ensure zero-knowledge the following measures are undertaken:
First of all, the evaluation domain D for the Reed-Solomon code RS[Fq, D, |H|+
h], a coset of a smooth multiplicative subgroup of sufficiently large order, is
chosen disjoint from H,

D ∩H = ∅.

(This is default in many FRI implementations, even when zero-knowledge is
not targeted.) Second, the degree of freedom in the randomization takes into
account that a single extension field evaluation reveals the information of e base
field elements,

e · nDEEP + nFRI ≤ h. (1)

3Here, and in the sequel, Fq [X]<n is short for the set of polynomials over Fq of degree less
than n.
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(This intuitive rule-of-thumb is proven sufficient by Lemma 1.) Third, a random
mask polynomial

R(X)←$ F [X]<|H|+h−1

is inserted into batching step of FRI, in order to prevent potential data leak-
age during the FRI folding cascade. (The decoupling property of this step is
summarized by Lemma 2.)

We restrict to the case that h ≤ |H|, which covers our use cases.

Protocol 1 (Toy IOP using FRI). Let H and D be cosets of multiplicative
subgroups of Fq as above, F be a degree-e extension of Fq, and take h ≤ |H|
satisfying (1). The oracles are the values of the respective polynomials over D.

1. Given polynomials w1(X), . . . , wM (X) ∈ Fq[X]<|H|, the prover samples
ri(X)←$ Fq[X]<h, i = 1, . . . ,M , and sends the oracles for

ŵi(X) = wi(X) + vH(X) · ri(X), (2)

i = 1, . . . ,M , to the verifier.

2. The verifier samples nDEEP ≥ 1 queries z1, . . . znDEEP ←$ F \ (D ∪H) and
sends them to prover, which responds with the values

v⃗i,DEEP = ŵi(z)|z∈QDEEP ∈ FQDEEP

for every i = 1, . . . ,M , where QDEEP = {z1, . . . , znDEEP}.

Then, both prover run Protocol 2 with nFRI query rounds on the DEEP quotients
of ŵ1(X), . . . , ŵM (X) with respect to the claims v⃗i,DEEP.

In our variant of FRI, we reduce proximity to RS[F,D, |H|+ h] to that of a
decomposition being close to RS[F,D, |H|] which has again a two-adic rate.

Protocol 2 (FRI batch evaluation proof with zk [BSCR+19]). Under the same
assumptions of Protocol 1, given oracles ŵ1(X), . . . , ŵM (X) ∈ Fq[X]<|H|+h and
evaluation claims v⃗i,DEEP = wi(z)|z∈QDEEP over a set QDEEP = {γ1, . . . , γ|QDEEP|} ⊂
F of size |QDEEP| ≤ nDEEP.

1. The prover samples a mask polynomial R(X)←$ F [X]<|H|+h−1 and sends
its oracle to the verifier, which responds with a batching randomness λ←$

F .

2. The prover provides both h0(X) ∈ F [X]<h−1, h1(X) ∈ F [X]<|H| subject
to

h(X) = h0(X) +Xh−1 · h1(X)

= R(X) +

M∑
i=1

λ|QDEEP|·(i−1) ·
|QDEEP|∑

j=1

λj · ŵi(X)− vi(γj)

X − γj
,

(3)
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and both prover and verifier run FRI on h0(X), h1(X) for RS[F,D, |H|]
with nFRI query rounds. (This variant of FRI treats two polynomials in
the first folding step.)

Let us discuss why the mask polynomial R(X) is crucial for zero-knowledge.
Otherwise it may happen that during the folding cascade of FRI, the entropy
of the randomizer polynomials vH(X) · ri(X) is drastically reduced, so that the
witness data in the folded oracles is not sufficiently secured. For simplicity we
assume that h = |H|. The argument however generalizes to arbitrary choices
of h. Since vH(X) is an even function, the decomposition of the randomizer
polynomial is

vH(X) · ri(X) = vH2(X2) ·
(
ri,0(X

2) +X · ri,1(X2)
)

= vH2(X2) · ri,0(X2) +X · vH2(X2) · ri,1(X2),

with ri(X) = ri,0(X
2) +X · ri,1(X2) being the decomposition of ri(X). Thus

during a FRI folding step, the space vH(X) · F [X]<|H| is folded into vH2(X) ·
F [X]<|H|/2 of the half dimension. Applying the same argument to the other
folding steps, we see that the foldings of the randomizer polynomials are within
the chain of subspaces

vH(X) · F [X]<|H| −→ vH2(X) · F [X]<|H|/2 −→ . . . −→ vH2r (X) · F [X]<|H|/2r ,

halving in each step, whereas the foldings of the witness polynomials wi(X) are
within

F [X]<|H| −→ F [X]<|H|/2 −→ . . . −→ F [X]<|H|/2r .

By the size of the folded domain, |D2r | = |D|/2r > 2 · |H|/2r, we are not able
to open the folded oracle in the last step, without revealing the folding of the
witness polynomials itself. (This argument is independent of r the number of
folding steps.)

Remark 1. In Plonk-like proof systems with non-succinct selector polynomials,
one typically uses a randomization strategy which does not increase the degree
beyond |H|. The witness domain is restricted to a (non-group) subset H ′ of H,
and the remaining space H \H ′, which is not touched by any of the constraints,
is used to place random values. In this context, the entropy loss by folding
also holds whenever H \ H ′ is contained in a coset of a non-trivial subgroup
U of H. To see this, decompose ŵ(X) ∈ Fq[X]<|H| into ŵ(X) = wH\U (X) +
vH\U (X) · ŵU (X), where wH\U (X) depends on the witness polynomial only,
and vH\U (X) · ŵU (X) contains all the randomness. The vanishing polynomial

of H \ U is still even, and the space vH\U (X) · F [X]<|U | halves in each of the
folding steps, unless it is a singleton, in which case it remains a singleton space:
If U = {a}, then vH\{a}(X) ·F is folded into the span vH2\{a2}(X) ·F . However,
if the randomization domain is not contained in a coset of a non-trivial subgroup,
it might be that the mask polynomial is not needed for zero-knowledge.
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We prove the zero-knowledge property of Protocol 1 by the following two
lemmas, Lemma 1 and Lemma 2.

Lemma 1. Fix the query sets QDEEP and QFRI of size |QDEEP| ≤ nDEEP and
|QFRI| ≤ nFRI. Then the joint distribution of v⃗i = ŵi(z)|z∈QDEEP∪QFRI , where
i = 1, . . . ,M , is independent from the witness polynomials w1(X), . . . , wM (X).

Proof. The only subtlety here is that the randomizer polynomials vH(X) ·ri(X)
are over the base field Fq but the DEEP queries are from the extension field F .

Let e be the degree of the extension, and take the Galois group closure of
the query set, Q̄ =

⋃
ϕ∈Gal(F/Fq)

ϕk(QDEEP) ∪QFRI. Since Q̄ is invariant under

Gal(F/Fq), so is its vanishing polynomial v(X) =
∏

z∈Q̄(X − z), showing that
v(X) is actually from Fq[X]. Since |Gal(F/Fq)| = e, we have

deg v(X) = |Q̄| ≤ e · nDEEP + nFRI.

The evaluation mapping E : Fq[X] −→ F Q̄, which sends a polynomial p(X)
over Fq to p(γ)|γ∈Q̄, is linear and has the kernel

ker(E) = (v(X)) = v(X) · Fq[X].

The range of E is isomorphic to Fq[X]/(v(X)), and thus is a |Q̄|-dimensional

Fq-linear subspace of F Q̄.

Let us now investigate the image of vH(X) · Fq[X]<h under E. Since Q̄ is
disjoint to H, the vanishing polynomials vH(X) and v(X) are coprime, and

ker(E) ∩ vH(X) · Fq[X]<h = vH(X) · v(X) · Fq[X]<h−|Q̄|,

where Fq[X]<h−|Q̄| is the empty set in the edge case h = |Q̄|. Again, the
dimension of E

(
vH(X) · Fq[X]<h

)
is equal to |Q̄|, and we conclude the equality

of the spaces

E(vH(X) · Fq[X]<h) = E(Fq[X]<|H|+h) = E(Fq[X]).

From this and the linearity of E, it follows that by drawing ri(X) indepen-
dently and uniformly from Fq[X]<h the values of ŵi(X) = wi(X)+vH(X)·ri(X)
over Q̄, i = 1, . . . ,M , are uniformly distributed over E(Fq[X])M , independent

of the concrete choice of witness polynomials wi(X). Restricting F Q̄ to FQ

yields the claim of the lemma.

Remark 2. The proof of the lemma shows that the distribution of the queried
values is uniform over the range of the evaluation map E : Fq[X] −→ FQ over
the set Q = QDEEP ∪ QFRI, and it can be efficiently simulated for example
by sampling uniformly from Fq[X]<|H|+h and applying E. In the terminology
of [BSCR+19] the lemma shows that Protocol 1 is perfect honest-verifier zero-
knowledge against query bound nFRI, meaning that it is zero-knowledge even
under further (at most) nFRI queries beyond the protocol execution.
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Lemma 2 (Decoupling Lemma). Fix QDEEP and QFRI as in Lemma 3, and λ ∈
F . Given the values ŵi(z)|z∈QDEEP∪QFRI , i = 1, . . . ,M , the joint distribution of
R(z)|z∈QFRI

and the batch polynomial h(X) is independent of ŵ1(X), . . . , ŵM (X).

Remark 3. With h(X) being independent of the concrete form of the polyno-
mials ŵ1(X), . . . , ŵM (X) the distribution of the component polynomials h0(X)
and h1(X), and the entire further transcript of FRI is also independent.

Proof. Given the values v⃗i = ŵi(z)|z∈QDEEP∪QFRI , i = 1, . . . ,M , and r⃗ =
R(z)|z∈QFRI , we claim that the batch polynomial h(X) is uniformly distributed
over the affine subspace

Lv⃗1,...,v⃗M ,r⃗ =
{
h(X) ∈ F [X]<|H|+h−1 : h(X) satisfies (3) at all z ∈ QFRI

}
.

Take any subset Q′ ⊂ D disjoint to Q = QFRI and so that |Q∪Q′| = |H|+h−1.
Since we draw R(X) uniformly from F [X]<|H|+h−1, the distribution of r⃗′ =
R(z)|z∈Q′ conditional to r⃗ = R(z)|z∈Q is uniform over FQ′

, and so are the values
of h(X) over Q′, independent of the polynomials ŵ1(X), . . . , ŵM (X). Since the
evaluation map E : Lv⃗1,...,v⃗M ,r⃗ −→ FQ′

, h(X) 7→ h(z)|z∈Q′ is bijective, we
obtain uniform distribution of h(X) over Lv⃗1,...,v⃗M ,r⃗.

The claim of the lemma now follows from that the distribution of r⃗ =
R(z)|z∈QFRI

is independent of the concrete choice of ŵ1(X), . . . , ŵM (X).

Theorem 4. The IOP from Protocol 1 is perfect honest-verifier zero-knowledge.

Proof. Although the statement of the theorem is essentially covered by the
preceding discussion, let us explicitly describe the simulator. It first samples the
query points z1, . . . , znDEEP

←$ F \ (D ∪H), x1, . . . , xnFRI
←$ D uniformly from

the respective sets, and draws ŵi(X)←$ Fq[X]<|H|+h uniformly at random, so
that their values over Q = QDEEP ∪QFRI (comprised of the previously sampled
points) are distributed as in an honest prover-verifier interaction (cf. Lemma
1 and Remark 2). With their oracles in place, the simulator runs Protocol 2,
except that it uses x1, . . . , xnFRI from above for the query phase. By Lemma 2
together with Remark 3, the distribution of the transcript is identical to that
of an honest prover-verifier interaction.

3 Within a STARK, using FFT decomposition

Consider a trace composed of M > 0 witness columns wi, i = 1, . . . ,M , where
wi : H −→ Fq and H is, again, the trace domain i.e., a smooth multiplica-
tive subgroup with generator g. We can view this trace as sequence of rows
(w1(x), · · · , wM (x)) for x ∈ H.
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An algebraic intermediate representation (AIR) [BSGKS20, BSBHR18] is a
collection of algebraic constraints of the form

Pi (si(x), w1(x), · · · , wM (x), w1(g · x), · · · , wM (g · x)) = 0,

for all x ∈ H. Here, si(x) is the selector polynomial of the enforcement domain
Hi of Pi, i.e. a coset of a subgroup of H, and

P1, · · · , PC ∈ Fq[X,X1, · · ·XM , Y1, · · ·YM ],

where the degree in the selector variable is degX Pi ≤ 1. The degree of the AIR
is the maximum total degree of its constraints,

d = max
i

degPi.

Note that we use a simplified notation of an AIR, working with constraints
between neighbouring rows only. For notational convenience we will rather
work with the reduced degree d := d− 1.

In terms of the low-degree extensions w1(X), . . . , wM (X) ∈ Fq[X]<|H| of the
trace columns (we overload notation here), satisfiability of the AIR constraints
over H is then equivalent to that, with noticable probability any random linear
combination of the constraints is divisible by the vanishing polynomial ZH(X) =
X |H| − 1 of H. This yields the overall identity

C∑
i=1

λi · Pi (si(X), w1(X), · · · , wM (X), w1(g ·X), · · · , wM (g ·X))

= q(X) · ZH(X),

for some low-degree polynomial q(X) ∈ F [X], where λ is drawn from the ex-
tension field F .

In our interactive oracle proof, Protocol 3, the prover decomposes the overall
quotient into polynomials q1(X), . . . , qd(X) of smaller degree, using the FFT-
type decomposition

q(X) = q1(X
d) +X · q2(Xd) + . . .+Xd−1 · qd(Xd),

where d is the reduced degree of the AIR, as above. The verifier gets oracle
access to q1(X), . . . , qd(X), and the overall identity is then tested at a one (or
more) random points zi, i = 1, . . . , nDEEP, from the extension field F . The
evaluation claims for the polynomials are then proven by showing the single-
point quotients at zi and g ·zi are low-degree, using FRI over a sufficiently large
evaluation domain D.

To obtain zero-knowledge, the prover randomizes the witness polynomials
outside the trace domain H,

ŵi(X) := wi(X) + vH(X) · ri(X) ∈ Fq[X]<|H|+h, (4)
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with ri(X)←$ Fq[X]<h, i = 1, . . . ,M , where the degree of freedom h is chosen
so that

2 · d · (e · nDEEP + nFRI) + nFRI ≤ h ≤ |H|. (5)

Here, e is the degree of the extension F , nDEEP ≥ 1 the number of DEEP
queries (excluding their translates by g), and nFRI ≥ 1 is the number of FRI
query rounds. The evaluation domain D ⊂ Fq for the low-degree test is a coset

of a smooth multiplicative subgroup, large enough so that the rate ρ̂ = k̂/|D|
of the Reed-Solomon code RS[F,D, k̂] with

k̂ = |H|+
⌈
d+ 1

d
· h

⌉
(6)

is as small as desired. Again, the evaluation domain is disjoint from the trace
domain, D ∩H = ∅.

Protocol 3 (IOP for AIR using DEEP-ALI). Let Fq, H, D, and F as above and
let ŵ1(X), · · · ŵM (X) ∈ Fq[X]<|H|+h be the randomized witness polynomials,
satisfying the AIR constraints specified by si and Pi, i = 1, . . . , C over H. The
verifier is given oracle access to [ŵi], i.e. the values ŵi(X) over D, for each
i = 1, . . . ,M .

1. The verifier challenges the prover with a random value λ←$ F , for which
the prover computes q(X) ∈ F [X]<d·|H|+(d+1)·h such that

C∑
i=1

λi−1 · Pi (si(X), ŵ1(X), · · · , ŵM (X), ŵ1(g ·X), · · · , ŵM (g ·X))

= ZH(X) · q(X). (7)

It splits it into the unique polynomials qj(X) ∈ F [X]<k̂, j = 1, . . . , d, with

k̂ as above, and subject to

q(X) =

d∑
j=1

X(j−1) · qj(Xd). (8)

It provides the verifier oracle access to their values over D.

2. The verifier sends the prover random DEEP queries zj ←$ F \
(
D̄ ∪H

)
,

j = 1, . . . , nDEEP, where D̄ := {y ∈ F : yd ∈ D}, on which the prover
responds with evaluation claims

(vi,j,1, vi,j,2) = (ŵi(zj), ŵi(g · zj)) ,

i = 1, . . . ,M and vi = qi(z
d
j ), i = 1, . . . , d, for each j.
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Both prover and verifier then run batch FRI on the DEEP quotients correspond-
ing to the evaluation claims, Protocol 2, with h replaced by ⌈(d+ 1)/d · h⌉, and
using nFRI query rounds. The verifier accepts if Protocol 2 passes and if the eval-
uation claims satisfy the overall identity (7) at each X = zj, j = 1, . . . , nDEEP.

Let us explain the intuition behind the degree bound in Equation (5). First,
each query on a polynomial ŵi(z) reveals either e, or a single field element
(depending on whether it is from F , or from Fq, cf. Lemma 1). Since the value
of the quotient q(X) at a point z is uniquely determined from the values ŵi(z)
and ŵi(g · z) via the overall constraint (7), it would be sufficient to randomize
the witness polynomials against

2 · (e · nDEEP + nFRI)

queries, assuming that the prover would work with the non-split q(X). To take
into account the additional information revealed by the component polynomials
q1(X), . . . , qd(X), recall that

(q1(z
d), . . . , qd(z

d)) = FFT(q(X)|z·U ), (9)

where U is the subgroup of the d-th roots of unity. Hence each query of the
component polynomials amounts to |U | = d times as many queries of q(X),
which explains the factor d in (5). (The additional nFRI is due to the fact that
the FRI queries on ŵi(X) and q1(X), . . . , qd(X) do not overlap.) This line of
argument goes through whenever the extension field F contains all d-th roots
of unity. In general one has to be more careful for maintaining this bound, as
we will see in the proof of the following lemma.

Lemma 3. Fix λ ∈ F and query sets QDEEP and QFRI of size |QDEEP| ≤
nDEEP and |QFRI| ≤ nFRI such that Equation (5) holds. Then the joint distri-
bution of

(ŵ1(z), ŵ1(g · z), . . . , ŵM (z), ŵM (g · z), q1(zd), . . . , qd(zd))|z∈QDEEP
,

(ŵ1(z), . . . , ŵM (z), q1(z), . . . , qd(z))|z∈QFRI
,

is independent of the witness polynomials (w1(X), . . . , wM (X)).

Proof. The proof is similar to that of Lemma 1, but with a more careful choice
of evaluation set, due to the fact that U the set of d-th roots of unity might
not be contained in F . Let vD(X) = X |D| − a, with a ∈ F∗

q , be the vanishing
polynomial of the domain D.

Let K be an extension of F in which vD(Xd) = Xd·|D| − a splits. (Such
an extension contains all (d · |D|)-th roots of unity, and the domain D has
a preimage under the d-th power map which is mapped onto D in a d-to-1
manner.) Consider the polynomial

p(X) =
∏

w∈Q1

(Xd − wd) ·
∏

x∈Q2

(Xd − x) ·
∏

x∈Q3

(X − x),
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where Q1 =
⋃

ϕ∈Gal(F/Fq)
ϕ (QDEEP ∪ g ·QDEEP), Q2 = QFRI ∪ gd · QFRI, and

Q3 = QFRI. By construction the polynomial belongs to Fq[X], since it is a
polynomial from F [X] which is invariant under Gal(F/Fq), and it splits over K,
having Q̄ ⊆ K as set of roots. The radical of p(X), i.e. the vanishing polynomial
v(X) of Q̄, is again a polynomial from Fq[X], and its degree is

deg v(X) = |Q̄| ≤ 2 · d · (e · nDEEP + nFRI) + nFRI ≤ h.

By the assumption on the DEEP queries and D, none of the roots from Q̄ are
contained in H.

The rest of the proof is as in Lemma 1. The kernel of the evaluation map
E : Fq[X] −→ KQ̄ is the ideal generated by v(X) of degree |Q̄|, and hence

its image is a Fq-linear subspace of KQ̄ with dimE(Fq[X]) = |Q̄|. Likewise,
since vH(X) and v(X) are coprime, the kernel within the randomizer space
vH(X) · Fq[X]<h is

vH(X) · Fq[X]<h ∩ kerE = vH(X) · v(X) · Fq[X]<h−|Q̄|,

including the edge case h − |Q̄| = 0, in which the intersection is empty. This
shows that the image of vH(X) · Fq[X]<h under E is of dimension |Q̄|, yielding
the equality of the spaces

E
(
vH(X) · Fq[X]<h

)
= E

(
Fq[X]<|H|+h

)
= E (Fq[X]) .

From the latter equality, and the linearity of E, we conclude that the distribution
of M -fold evaluation map EM , which evaluates each ŵ1(X), . . . , ŵM (X) over
Q̄, is uniform over E(Fq[X])M and independent of the witness polynomials
w1(X), . . . , wM (X).

Since the values of q1(X), . . . , qd(X) at the requested queries are uniquely
determined from those of ŵ1(X), . . . , ŵM (X) over Q̄ via the overall constraint
and (9), their distribution is also independent from the witness polynomials.
Finally, restricting Q̄ to the query points of the protocol yields the claim of the
lemma.

Remark 5. Again, the proof of the Lemma shows that the distribution of the
queried values is efficiently simulated by means of the evaluation map over Q̄ in
the splitting fieldK of vD(Xd) over F . Since F contains all |D|-th roots of unity,
the extension degree [K : F ] ≤ d, and K can be constructed with overwhelming
success in probabilistic polynomial time, with respect to the size of the AIR and
the security parameter4, and the same holds for the set Q̄. In other words, the
protocol “on top of batch FRI” as a polynomial IOP is (perfect) zero-knowledge
against query bound nFRI.

4For example, determine the extension degree n = [K : F ] as the smallest n, 1 ≤ n ≤ d, so
that d · |D| divides |F |n − 1, sample a monic random polynomial of degree n, and check it on
irreducibility using Rabin’s test. By the Moreau necklace counting function, the probability
of a random polynomial being irreducible is > 1− 1/|F |1/2.
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Theorem 6. The IOP from Protocol 3 is perfect honest-verifier zero-knowledge.

Proof. The simulator samples the verifier challenges λ ←$ F , zDEEP ←$ F \(
D̄ ∪H

)
, where D̄ := {y ∈ F : yd ∈ D}, and x1, . . . , xnFRI

←$ D.

Then, it constructs the splitting field of Xd·|D| − 1 over F and the evalu-
ation set Q̄ as in the proof of the Lemma 3. (See Remark 5 for the compu-
tational complexity of this step.), samples polynomials ŵi(X) ←$ Fq[X]<|H|+h

at random, and computes their values over Q̄. From these values it determines
the values of the decomposition polynomials at the protocol queries, using the
overall constraint (7) and (9), and interpolates them by arbitrary polynomi-
als q1(X), . . . , qd(X) from F [X]<|H|+h. The resulting distribution is that of an
honest prover-verifier interaction as stated in Lemma 3.

The remaining transcript of Protocol 2 on the DEEP evaluation claims for
ŵ1(X), . . . , ŵM (X) and q1(X), . . . qd(X) is produced as in the proof of The-
orem 4: The simulator runs the commit phase of the protocol, but uses the
x1, . . . , xnFRI sampled beforehand in the query phase of FRI. Again, by Lemma
2 and Remark 3, the resulting transcript has the same distribution as that of
an honest prover-verifier interaction.

We finally remark that our restrictive variant of AIR is chosen for simplicity
only. The generalization of Lemma 3 and Theorem 6 to higher offset constraints,
and Plonk-like protocols with additional permutation and lookup arguments, is
straight-forward.

4 Other types of decompositions

We sketch how to tackle the cases of the other two commonly used in practice
decompositions, namely, the “canonical” decomposition based on monomials,
and the Lagrange decomposition.

4.1 Canonical decomposition

Let q(X) ∈ F [X]<d·|H|+(d+1)·h be the quotient polynomial as it appears in
Equation 7 in Protocol 3 with h, the degree of freedom of the witness randomizer,
to be specified later. By the canonical decomposition, we mean

q(X) =

d∑
i=1

X k̂·(i−1) · qi(X), (10)

12



where each qi(X) ∈ F [X]<k̂ with k̂ = |H|+⌈(d+ 1)/d · h⌉. Contrary to the FFT
decomposition, the decomposition in (10) can be randomized, using a technique
from [GWC19]: In order to maintain the identity

q(X) =

d∑
i=1

X k̂·(i−1) · q̂i(X), (11)

on draws ti(X) ←$ F [X]<hq , i = 1, . . . , d − 1, independently and according to
the uniform distribution, and sets

q̂1(X) = q1(X) +X k̂ · t1(X),

q̂2(X) = q2(X) +X k̂ · t2(X)− t1(X),

...

q̂d−1(X) = qd−1(X) +X k̂ · td−1(X)− td−2(X),

and eventually

q̂d(X) = qd(X)− td−1(X).

The degree of freedom hq is chosen such that

nDEEP + nFRI ≤ hq. (12)

With the above modification, Protocol 3 goes through unchanged except for
Equation (5) which becomes

2 · (e · nDEEP + nFRI) ≤ h ≤ |H|, (13)

and the common degree bound for the batch opening proof, which is adapted
accordingly.

Lemma 4. Fix λ ∈ F and query sets QDEEP and QFRI of size |QDEEP| ≤
nDEEP and |QFRI| ≤ nFRI such that Equations (12) and (13) hold. Then the
joint distribution of

(ŵ1(z), ŵ1(g · z), . . . , ŵM (z), ŵM (g · z), q̂1(z), . . . , q̂d(z))|z∈QDEEP
,

(ŵ1(z), . . . , ŵM (z), q̂1(z), . . . , q̂d(z))|z∈QFRI
,

is independent of the witness polynomials (w1(X), . . . , wM (X)).

Proof sketch. Using the same approach as in the proof of Lemma 1 we have that
the evaluations of the randomized witness polynomials at the queried points is
independent of the witness polynomials. Now, since the randomizer polynomials
ti(X), i = 1, . . . , d− 1, are independently and uniformly drawn from F [X]<hq ,
the queried values of q̂i(X), i = 1, . . . , d − 1, are uniformly distributed, inde-
pendent of the witness polynomials. Since the values of the last component
polynomial q̂d(X) are fully determined from the values of the randomized wit-
ness polynomials in addition to those of q̂i(X), i = 1, . . . , d − 1, we get the
claim.

13



Theorem 7. The IOP from Protocol 3, with quotient decomposition 11 instead
of 8, is perfect honest-verifier zero-knowledge.

Proof. The simulator samples the verifier challenges λ←$ F , z1, . . . , znDEEP
←$

F \ (D ∪H), and x1, . . . , xnFRI ←$ D. It then samples ŵi(X) ←$ Fq[X]<|H|+h

and q̂i(X)←$ F [X]<k̂+hq , i = 1, . . . , d− 1, uniformly at random, and computes
their values over Q = QDEEP ∪QFRI. Given these values, it takes any q̂d(X) ∈
F [X]<|H|+hq satisfying the overall constraint (7) and the decomposition identity
(11) at the points from Q. Inspecting the proof of Lemma 4, we see that the
distribution of the transcript is identical to that of an honest prover-verifier
interaction.

The remaining transcript for the batch opening proof Protocol 2 is simulated
as previously.

4.2 Lagrange decomposition

The Lagrange decomposition of a polynomial q(X) ∈ F [X]<d·|H| over H̄ =⋃d
i=1 Hi a union of disjoint cosets of H, is the unique decomposition

q(X) =

d∑
i=1

LHi(X) · qi(X), (14)

where
LHi

(X) = ci ·
∏
j ̸=i

vHj
(X) (15)

is the selector polynomial of the coset Hi (normalized so that LHi
(x) = 1 over

Hi), and qi(X) ∈ F [X]<|H|. This type of decomposition is particularly efficient:
Each qi(X) is directly obtained from the values of q(X) over Hi via an FFT of
witness domain size |H|, without any precomputation on the values as for the
FFT decomposition, or an FFT of larger size, as often used by the canonical
decomposition from the previous section.

In the zero-knowledge setting, the quotient q(X) ∈ F [X]<d·|H|+(d+1)·h can
be still decomposed as in (14), allowing the last component polynomial

qd(X) ∈ F [X]<|H|+(d+1)·h.

Demanding qi(X) ∈ F [X]<|H| for i = 1, . . . , d − 1, the decomposition is still
unique, and can be randomized as follows: For i = 1, . . . , d−1, the prover takes

q̂i(X) = qi(X) + vHi
(X) · ti(X) ∈ F [X]<|H|+hq , (16)
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with ti(X)←$ F [X]<hq and hq as specified below, and

q̂d(X) = qd(X)− vHd
(X) ·

d−1∑
k=1

c−1
d · ci · ti(X), (17)

with the normalizing coefficients ci and cd from (15). This choice still satisfies

q(X) =

d∑
i=1

LHi
(X) · q̂i(X). (18)

The degrees of freedom h and hd are as for the canonical decomposition,
with

nDEEP + nFRI ≤ hq, (19)

and
2 · (e · nDEEP + nFRI) ≤ h ≤ |H|. (20)

The statement of Lemma 4 again holds, with its proof carried over verbatim.

Lemma 5. Fix λ ∈ F and query sets QDEEP and QFRI of size |QDEEP| ≤
nDEEP and |QFRI| ≤ nFRI such that Equations (19) and (20) hold. Then the
joint distribution of

(ŵ1(z), ŵ1(g · z), . . . , ŵM (z), ŵM (g · z), q̂1(z), . . . , q̂d(z))|z∈QDEEP
,

(ŵ1(z), . . . , ŵM (z), q̂1(z), . . . , q̂d(z))|z∈QFRI
,

is independent of the witness polynomials (w1(X), . . . , wM (X)).

The distribution in the lemma can be efficiently simulated, yielding zero-
knowledge in the honest-verifier setting.

Theorem 8. The IOP from Protocol 3, with quotient decomposition 18 instead
of 8, is perfect honest-verifier zero-knowledge.

Proof. Almost verbatim to that of Theorem 7, with only a slight change of
degree bounds: The simulator samples ŵi(X) ←$ Fq[X]<|H|+h and q̂i(X) ←$

F [X]<|H|+hq , i = 1, . . . , d − 1, and takes any q̂d(X) ∈ F [X] of degree less
than |H| + max{(d + 1) · h, hq} satisfying the overall constraint (7) and the
decomposition identity (11) at the points of the query set Q.

5 Practical considerations

Let us quickly review the computational overhead when adding zero-knowledge
with the most greedy parameters, where the randomization degrees are taken
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as small as possible. We again restrict to the FFT decomposition from Section
3; the decompositions from Section 4 are treated similarly.

Let h taken as the smallest possible value in (5). We assume that h≪ |H|,
which is met under moderate FRI parameters and not too short traces.

The size of the evaluation domain D can be kept, at the cost of only a
single additional commitment in the batching step of FRI. (Recall that using

RS[F,D, k̂] with k̂ = |H|+ ⌈(d+ 1)/d · h⌉ in the batching step of FRI does not
have significant impact on the overall sampling parameter nFRI.) Therefore, in
the wide trace regime, the hashing costs remain essentially the same.

If the non-zk parameters are optimized for constraint evaluation, which
means that d · |H| = |D|, the overall FFT costs per witness column increases
from (B + 1) · FFT(|H|) to

FFT(|H|) + B

2
· FFT(2 · |H|) + Eval|H|+h((d+ 1) · h) +O(h),

where B = |D|/|H| ≥ 2 is the blowup factor, Eval|H|+h((d+ 1) · h) denotes the
cost for evaluating a polynomial from Fq[X]<|H|+h over a set of size (d+ 1) · h,
and O(h) covers the cost of adding ri(X) · (X |H| − 1) to the Fourier transform
wi(X) of the witness column. Under the simplifying assumption that the target
set of Eval|H|+h((d + 1) · h) is a coset, the evaluation cost amounts to |H| +
h multiplications and additions for the reduction modulo the coset vanishing
polynomial, plus an FFT of size h · (d+1). We approximate the former cost by
two layers of an FFT(|H|), yielding

FFT(|H|) + B

2
· FFT(2 · |H|) + 2

log |H|
· FFT(|H|) +O(h · log h)

=

(
B + 1 +

B + 2

log |H|

)
· FFT(|H|) +O(h · log h),

where we have used that FFT(2 · |H|) =
(
1 + 1

log |H|

)
· 2 · FFT(|H|). Hence

the overall increase of the arithmetic cost per witness column is expected to be
roughly

Czk/Cnon-zk ≈
(
1 +

4

3 · log |H|

)
,

neglecting the O(h·log h) term. In configurations where d·|H| < |D|, Eval(|H|+
h, h) can be dropped and we obtain the estimate

Czk/Cnon-zk ≈
(
1 +

1

log |H|

)
,

neglecting an O(h) term. In wide trace AIRs, these two ratios are expected to
be an upper bound for the overhead.
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