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Abstract

For primes p with p + 1 being smooth, the G-FFT from Li and Xing
[LX23] is an algebraic FFT, which at first glance seems equivalent to
the circle FFT from [HLP24]: It also uses the circle curve over Fp (in
other words the projective line) as underlying domain, and interpolates
by low-degree functions with poles over the same set of points. However,
their approach to control the degree of the FFT basis is fundamentally
different. The G-FFT makes use of punctured Riemann-Roch spaces, and
the construction works with the group doubling map only, no projection
onto the x-axis involved.

In this note we give an elementary description of the G-FFT without
using abstract algebra. We describe a variant which uses a simpler, and in
our opinion more natural function space, and which treats the exceptional
point of the domain (the group identity) differently. In comparison to the
circle FFT, the G-FFT (both the original as well as our variant) has
the following downsides. Interpolation and domain evaluation costs the
double number of multiplications (the twiddle is not an “odd” function),
and the function space is not invariant under the group action, causing
additional overhead when applied in STARKs.
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1 Intro

Algebraic FFTs [Can89, vzGG96, LCH14, BSCKL21, LX23, HLP24] are gen-
eralizations of the Fast Fourier Transform to finite fields Fq which do not have
a smooth multiplicative group F∗

q . (Here and in the sequel, q is a prime, or
a power of a prime.) Instead, they work over suitable algebraic varieties over
Fq (e.g. the line, or more generally a curve) with a sufficiently smooth sub-
group G of automorphisms, which induces the necessary group structure on its
non-degenerated orbits, the FFT domains. Similar to the multiplicative Fourier
transform [CT65] based on the even-odd decomposition, algebraic FFTs are
built from the following two main ingredients (for simplicity we restrict to the
two-adic case):

1. A chain of 2-to-1 reduction mappings,

S0
π1−→ S1

π2−→ . . .
πn−→ Sn,

which gradually halve the size of the FFT domain D = S0, |D| = 2n,
until a singleton (or, small enough). These mappings stem from the group
structure of D, and in most cases, they are group homomorphisms of
algebraic degree 2.

2. For every k = 0, . . . , n − 1, a carefully selected twiddle function1, i.e. a
function

tk : Sk −→ Fq,

which distinguishes preimages under πk+1. Typically, the algebraic degree
of the twiddle is taken as small as possible. (In all the transforms we are
aware of, they are either linear or linear fractional functions.)

The reduction chain, together with the twiddle functions, bootstrap a tensor-
like basis of low-degree functions over the variety (often, polynomials), the FFT
basis, and a divide-and-conquer algorithm for efficient interpolation with respect
to that basis. (When run reversed, for domain evaluation2.)

The main challenge in the construction is an appropriate choice of reduction
mappings and twiddle functions. Foremost, the function spaces Fn spanned by
the FFT bases of different two-adic sizes (for n up to the maximum supported
order) need to build a bedrock for efficient arithmetics. Ideally, as in the case of
the multiplicative FFT, the product of functions from Fn should be contained
in Fn+1, i.e.

Fn · Fn ⊆ Fn+1,

1The naming is due to the final algorithm written down as a butterfly network. Then, the
so-called twiddle factors of a butterfly are the values of tk at the corresponding points of the
domain.

2We stress the fact that we use the deprecated notions, FFT for interpolation and inverse
FFT for evaluation.
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but in general an efficient embedding from Fn · Fn into Fn+1 is sufficient.
The property is related to bounding the degree of the functions which, in terms
of algebraic geometry, amounts to controlling their poles. Second, the specific
choice of the twiddle function has impact on the concrete efficiency of the but-
terfly network. Again, ideally one would have the same computational cost as
for the multiplicative FFT, which is

n · 2n ·
(
1

2
·M+ A

)
for a domain of size 2n, where M denotes multiplications and A additions.

In this writeup we compare the Galois FFT (in short, G-FFT) from Li and
Xing [LX23] with the recent circle FFT from [HLP24], both tailored to the case
that q+1 is smooth. We highlight the G-FFT construction in term of the above
described principle, and in doing this we keep the exposition as elementary as
possible. That is, we do not use the theory of algebraic function fields, the
reader is only assumed to be familiar with the concept of the projective closure
of a curve.

This note is structured as follows. Section 2 surveys the circle curve, its
univariate representation as projective line, and related function spaces. Then,
in Section 3, we elaborate our variants of the G-FFT. These variants use a
“tighter” function space than the original G-FFT, and treat the exceptional
point of a subgroup domain (corresponding to the group identity) differently.
The comparison with the circle FFT is then discussed in Section 4. Finally,
in Appendix A we describe the original G-FFT from [LX23], and draw the
connection between their notation and ours.

Throughout this writeup we restrict to the two-adic setting, in which the
domain sizes are a power of two. The mixed radix case, as considered in full
generality in [LX23], is beyond our scope.

2 Preliminaries

In this section we state elementary properties of the circle curve and its uni-
variate description as projective line. For details we refer to [HLP24, Section
3]. As therein, we occasionally make use of algebraic geometry terms to address
readers which are familiar with it. However, this is merely for connecting the
dots between concrete and general. We demand no background in geometry
beyond the concept of a projective space.

Throughout the note, we assume that Fq (where q is a prime, or a prime
power) is a finite field with q+1 being divisible by 2n a sufficiently large power
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of two, for some3n ≥ 2, and F denotes a finite extension field of Fq. The circle
curve

C : x2 + y2 = 1

over Fq, is a cyclic group of order q + 1, with the group law inherited from the
rotation group SO(2,Fq), i.e.

(x, y) · (x′, y′) = (x · x′ − y · y′, x · y′ + y · x′). (1)

Its neutral element is e = (1, 0), the group squaring map is

π(x, y) = (x, y) · (x, y) = (2 · x2 − 1, 2 · xy),

and group inversion is given by the map J(x, y) = (x,−y). For any integer m,
0 ≤ m ≤ n we shall denote by Gm the unique cyclic subgroup of order 2m.
The definition includes the trivial subgroup G0 consisting of the neutral group
element. The circle curve over Fq is affine, meaning it has no additional points
in its projective closure. However, the picture changes when considering the
curve over the algebraic closure, or any even degree extension of Fq. In this case
the circle curve has two points at infinity,

∞ = (1 : i : 0), ∞̄ = (1 : −i : 0),

which are fixed points under the action of the rotation group. (Here ±i are the
square roots of −1.)

The circle curve over Fq is algebraically isomorphic to the projective line
P 1(Fq) = Fq∪{∞}, and the isomorphism is given via chordal projection through
the neutral group element4,

t =
y

x− 1
,

and

(x, y) =

(
t2 − 1

t2 + 1
,

2 · t
t2 + 1

)
.

The isomorphism extends to any extension field of Fq, and whenever present,
the points at infinity ∞ and ∞̄ are mapped to t = ±i on the projective line.
We advise the reader to internalize this one-to-one correspondence, as we will
frequently jump between bivariate and univariate representation, thinking of
the projective line and the circle as one and the same geometric object.

For example, the circle group law in univariate coordinates is

t⊙ t′ =
t · t′ − 1

t+ t′
, (2)

3The condition n ≥ 2 guarantees that q − 1 = 2 · t for some odd number t, and hence −1
does not have a square root in Fq .

4Note that we use a different convention as in [HLP24], with the neutral group element
(1, 0) instead of (−1, 0) being mapped to t = ∞ of the projective line.
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with ∞ ∈ P 1(F ) as the neutral element satisfying t⊙∞ = t for all t ∈ F . (We
overload notation here by using the same notation for the point at infinity of
the projective line. As the environmental space is clear from the context, this
should not cause confusion.) By means of the group operation, P 1(Fp) acts on
itself via the translation map Tτ (t) = τ ⊙ t, the group squaring map is

π(t) = t⊙ t =
t2 − 1

2 · t
, (3)

and (−1, 0) the unique circle element of order 2 corresponds to τ = 0 on the
line, with translation map T0(t) = −1/t.

The circle FFT from [HLP24] is expressed in bivariate coordinates, and its
function spaces Fm, m ≥ 1, are closely related to the spaces

LM (F ) =

{
p ∈ F [x, y]/(x2 + y2 + 1) : deg p ≤ M

2

}
, (4)

for any extension field F of Fq, where M = 2m, and deg p means the smallest
total degree amongst all representatives modulo the circle relation x2+y2−1 = 0.
In terms of algebraic geometry, this is the space of all F -rational functions in
the Riemann-Roch space of the divisor

M

2
· ∞+

M

2
· ∞̄.

Even though restricted to F , not necessarily the algebraic closure of Fq, we
simply refer to LM (F ) as Riemann-Roch space. In univariate coordinates, the
space corresponds to

LM (F ) =

{
p(t)

(1 + t2)M/2
: p(t) ∈ F [t]≤M

}
, (5)

consisting of all rational functions of degree at most M , and having poles only
at t = ±i. As for points and group operations, we override notation here and
identify the two representations of the Riemann-Roch space.

On the other hand, we mainly express the G-FFT in univariate coordinates.
Its function spaces Fm, m ≥ 1, are related to the punctured Riemann-Roch
spaces

LM (F )′ = LM (F ) ∩ V(G0)
5 =

{
p(t)

(1 + t2)M/2
: p(t) ∈ F [t]<M

}
, (6)

corresponding to all functions in LM (F ) which evaluate to zero at t = ∞, the
neutral group element constituting the trivial subgroup G0. (Note the strict
degree bound in (6).) The dimension of L ′

M (F ) is dimL ′
M (F ) = M , one less

than the entire Riemann-Roch space LM (F ).6

5Here and in the sequel, V(S) =
⋂

P∈S{p ∈ F [x, y]/(x2 + y2 − 1) : p(P ) = 0}, for any set
S ⊆ C(Fq).

6We deviate here from the notation in [HLP24], where LM (F )′ is the circle FFT space.
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3 The G-FFT

We keep with the notation of the previous section, and assume that q be a prime
(or more generally, a prime power) so that 2n divides q+1, for some n ≥ 2. For
any 0 ≤ m ≤ n, Gm is the unique cyclic subgroup of the circle C(Fq), having
order M = 2m, and Pm denotes a generator of Gm. In particular, P0 is the
neutral group element, and P1 the unique point of order two.

Compared to the circle FFT, the Galois FFT is closer to the regular multi-
plicative FFT. It works over arbitrary cosets Dm of Gm, m ≤ n, and it uses the
chain of domains obtained throughout from the group doubling map π,

Dm
π−→ Dm−1

π−→ Dm−2
π−→ . . . (7)

where in each step the domain sizes are halved. However, in stark contrast to
other FFTs, the Galois FFT takes a twiddle function which has a pole outside
the set of fixed points of the group action, and thus is not contained in the
Riemann-Roch space: The linear fractional function

t0(t) =
1

t
=

x− 1

y

has a pole at t = 0 corresponding to P1 the unique element of order two. We
will see that this pole however does not harm, if one works with the punctured
Riemann-Roch spaces

L ′
M (F ) = LM (F ) ∩ V(G0).

The vanishing constraint at the neutral element P0 assures that the pull-back
f ◦ π of functions from the punctured Riemann-Roch space have a zero at P1,
cancelling out the pole of the twiddle.

For the sake of simplicity we first describe the coset FFT, in Section 3.1,
where the interpolation domain is a non-trivial coset of Gm and thus does not
contain the exceptional point P0, the neutral group element. The remaining
case, which we call the group position FFT, is then discussed in Section 3.2.
We note that the algorithms in Section 3.1 and 3.2 are minor modifications
of the one in [LX23]. Our variant takes the punctured Riemann-Roch space
L ′

M (F ) as the function space Fm, whereas Li and Xing choose the space of
double dimension, and then size it down by additional vanishing constraints.
We postpone a description of their original algorithm to Appendix A.

3.1 Coset case

Let Dm be a non-trivial coset of the cyclic subgroup Gm, m ≥ 1, and F any
extension field of Fq. Given a set of values f ∈ FDm the coset FFT computes
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the coefficients of f̂ ∈ L ′
M (F ) with respect to a specific basis Bm of L ′

M (F ),

defined below, so that f̂(P ) = f(P ) for every P ∈ Dm. The variant described
in this section takes the chain

Dm
π−→ Dm−1

π−→ . . .
π−→ D1, (8)

down to the two-point domain D1, each of which are again non-trivial cosets
of the subgroups Gm, Gm−1, . . . , G1, respectively. (The reason why we do
not continue down to a singleton domain is that the definition of LM fits our
purpose only for even degree bounds M = 2m, m ≥ 1. )

Given the function f ∈ FDm to be interpolated, the FFT is as follows. In
the first step, k = 1, the function f ∈ FDm is decomposed into f0, f1 ∈ FDm−1

over the “projected” domain, via

f(t) = f0(π(t)) +
1

t
· f1(π(t)), (9)

where

f1(π(t)) =
t

1 + t2
·
(
f(t)− f

(
−1

t

))
, (10)

f0(π(t)) = f(t)− 1

t
· f1(π(t)) =

t

1 + t2
·
(
t · f(t) + 1

t
· f
(
−1

t

))
. (11)

Note that the right-hand sides of Equation (10) and (11) are well-defined and
invariant with respect to T0(t) = − 1

t , i.e. the group translation with respect to
the generator P1 of G1. In fact, denoting the right-hand side of Equation (10)
by F1(t), we obtain that

F1

(
−1

t

)
= − t

1 + t2
·
(
f

(
−1

t

)
− f(t)

)
= F1(t)

and likewise the right-hand side F0(t) of Equation (11) satisfies

F0

(
−1

t

)
= − t

1 + t2
·
(
−1

t
· f
(
−1

t

)
− t · f(t)

)
= F0(t).

By invariance with respect to G1, both F0 and F1 are of the claimed form f0 ◦π
and f1 ◦ π with f0, f1 ∈ FDm−1 , respectively.

In the further steps, k = 2, . . . ,m−1, corresponding to the domainsDm−1, . . .,
D2, one proceeds with each of the functions fi1,...,ik−1

∈ FDm−k+1 from the pre-
vious step, (i1, . . . , ik−1) ∈ {0, 1}k−1, in the same manner as with f in the first
step, decomposing them into fi1,...,ik−1,0 and fi1,...,ik−1,1 ∈ FDm−k by means of
Equation (9), (10) and (11).

In the last step k = m, corresponding to the two-point coset D1, each of
the functions fi1,...,im−1

∈ FD1 , (i1, . . . , im−1) ∈ {0, 1}m−1, is interpolated by
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(c1 + c0 · t)/(1 + t2) ∈ L ′
2(F ) using the explicit formulas7

c1 = f(t) + f

(
−1

t

)
, (12)

c0 = t · f(t)− 1

t
· f
(
−1

t

)
. (13)

The obtained coefficients ci1,...,im ∈ F , (i1, . . . , im) ∈ {0, 1}m, two for each of
the fi1,...,im−1

, are the output of the algorithm.

The coefficients output by the algorithm are in fact the coordinates with
respect to the basis as described in the following main theorem.

Theorem 1 (Coset FFT). Given f ∈ FDm a function over a non-trivial
coset Dm of the subgroup Gm, where 1 ≤ m ≤ n, the above described algo-
rithm determines the coefficients ci1,...,im ∈ F , (i1, . . . , im) ∈ {0, 1}m, of f̂ =∑

i∈{0,1}m ci ·bm,i with respect to the family Bm of functions from Fm = L ′
M (F )

defined by

Bm = {bm,i} =

{
vGm ·

m−1∏
k=0

(t0 ◦ πk)ik+1 : i = (i1, . . . , im) ∈ {0, 1}m
}
, (14)

where t0(t) = 1/t, vG1
(t) = t

1+t2 and vGm
= vG1

◦ πm−1. In particular, the
functions from Bm form a basis of Fm.

Remark 2. Together with the constant function, Bm ∪ {1} is a basis of the
non-punctured Riemann-Roch space LM (F ). Up to non-zero scaling factors,
this is the same basis as in [LX23, Lemma 4.4], see Appendix A.

Proof of Theorem 1. We prove the theorem by induction on m. In the case
m = 1, Equation (12) and Equation (13) yield the coefficients c1 and c0 of

b0,i0(t) =
vG1(t)

ti0
=

{
t

1+t2 i1 = 0,
1

1+t2 i0 = 1,

which form a basis of the punctured space L ′
2(F ) = L2(F ) ∩ V(G0).

Next, suppose that the statement of the theorem is true for some m, 1 ≤
m ≤ n − 1, and let f ∈ FDm+1 . Then for each of the functions f0, f1 ∈ FDm

defined by decomposition

f(t) = f0(π(t)) +
1

t
· f1(π(t))

the algorithm outputs the coefficients (c0,i1,...,im) and (c1,i1,...,im) with respect
to Bm, and this family is a basis of L ′

M (F ), for M = 2m. Combining them into

7Notice that these formulas are normalized and sign-switched variants of (10) and (11).
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a single vector (ci0,i1,...,im) of size 2m+1 yields the coefficients of f with respect
to the family of functions defined by

bm+1,i(t) =
1

ti0
· bm,i1,...,im(π(t)),

where i = (i0, . . . , im) ∈ {0, 1}m+1. Since each bm,i1,...,im is from LM and
vanishes over G0, their pull-backs bm,i1,...,im ◦π belong to L2M and they vanish
over G1. In particular, multiplication by the twiddle t0(t) = 1/t, which has
a single simple pole at P1, does change neither the membership to L2M , nor
the value zero at P0. This shows that the functions from Bm+1 belong to
L ′

2·M (F ) = L2·M (F )∩V(G0), and their linear combination using the coefficient
vector (ci0,...,im+1

) interpolate the given function f ∈ FDm+1 . Since f was
arbitrary, the span of Bm+1 is 2m+1-dimensional, which equals the dimension
of the punctured space L ′

2·M (F ). In other words, Bm+1 is a basis of L ′
2·M (F ),

proving the statement of the theorem for m+ 1.

Remark 3. The coset FFT can be implemented as a butterfly network, which
modifies the values over Dm pairwise and in-place by means of Equation (10)
and (11), and in the last step via Equation (12) and (13). Counting subtractions
as additions, each butterfly costs two additions over F and two multiplications
by precomputed elements of Fq, yielding an overall cost of

m · 2m · (M+ A)

for the entire algorithm, where M are multiplications of elements from F by
scalars of Fq, and A additions in F .

The inverse FFT for domain evaluation reverses each of the decomposition
steps of the FFT. Given the coefficient vector (ci1,...,im−1,im), each of the func-
tions fi1,...,im−1

= ci1,...,im−1,0 · b1,0 + ci1,...,im−1,1 · b1,1 is evaluated over D1 via
the inverse butterfly of Equation (12) and Equation (13),

f(t) =
1

1 + t2
· c1 +

t

1 + t2
· c0, (15)

f

(
−1

t

)
=

t2

1 + t2
· c1 −

t

1 + t2
· c0 = c1 − f(t). (16)

In the other steps, one takes

f(t) = f0(π(t)) +
1

t
· f1(π(t)), (17)

f

(
−1

t

)
= f0(π(t))− t · f1(π(t)), (18)

to combine the values of fi1,...,iim−k
,0, fi1,...,im−k,1 ∈ FDm−k into the values of

fi1,...,im−k,im−k+1
over Dm−k+1. Both butterflies again cost two additions in F

and two multiplications by elements from Fq. We summarize the result by the
following theorem.
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Theorem 4 (Evaluation over cosets). Given the coefficients ci ∈ F , i =
(i1, . . . , im) ∈ {0, 1}m, with respect to Bm = {bm,i} as in Theorem 1, the above
sketched algorithm computes the values of

f(t) =
∑

i∈{0,1}m

ci · bm,i(t)

over the non-trivial coset Dm, within m · 2m additions in F and m · 2m multi-
plications of elements in F with (precomputed) elements from Fq.

3.2 Group position

For the exceptional case that the coset Dm is in group position, i.e. Dm =
Gm, the FFT from Section 3.1 can be easily modified to solve the generalized
interpolation problem over the domain.

Definition 5. Given values f ∈ FGm , the generalized interpolation problem
asks for a function f̂ from the punctured Riemann-Roch space Fm = L ′

M (F )

such that f̂(t) = f(t) for every t ∈ Gm\G0, and t · f̂(t) = f(t) at the exceptional
point t = ∞.

The function f ∈ FDm is decomposed into f0, f1 ∈ FDm−1 in the usual
way, using Equation (10) and (11) for t ∈ Dm \ G1, yielding their values over
Dm−1 \G0. To determine f0 and f1 at the exceptional point, one takes

f1(∞) = −f (0)

2
, (19)

f0(∞) =
f(∞)

2
. (20)

The rationale behind these formulas is taken from the observation that their
low-degree extensions satisfy

t′ · f̂1(t′)
∣∣∣
t′=∞

=
t2 − 1

2 · t
· t

1 + t2
·
(
f̂(t)− f̂

(
−1

t

))∣∣∣∣
t=∞

,

t′ · f̂0(t′)
∣∣∣
t′=∞

=
t2 − 1

2 · t
· t

1 + t2
·
(
t · f̂(t) + 1

t
· f̂
(
−1

t

))∣∣∣∣
t=∞

,

where in both formulas t′ = π(t). This procedure is applied to all the other
steps k = 2, . . . ,m−1 which correspond to domain sizes larger than two. In the
final step, k = m, determining the coefficients of f := fi1,...,fm−1 ∈ FG1 with
respect to B1 = {b1,0, b1,1} is trivial: Taking

c1 = f(0), (21)

c0 = f(∞), (22)

gives f̂(t) = c0 · b1,0(t) + c1 · b1,1(t) which solves the generalized interpolation
problem over G1.
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Theorem 6 (Group position FFT). Given f ∈ FGm , the above sketched mod-

ified FFT computes the coefficients of f̂ ∈ Fm with respect to the basis Bm as
in Theorem 1, so that f̂(t) = f(t) for t ∈ Gm \G0, and t · f̂(t) = f(t) at t = ∞.

Proof. The proof is similar to that of Theorem 1. For m = 1, the function
f̂(t) = c0 · b1,0(t) + c1 · b1,1(t) with c1, c0 as in Equation (21) and (22) obviously
satisfies the generalized interpolation problem over G1 = {0,∞}, since

f̂(t) = c0 ·
t

1 + t2
+ c1 ·

1

1 + t2

∣∣∣
t=0

= c1,

and

t · f̂(t) = c0 ·
t2

1 + t2
+ c1 ·

t

1 + t2

∣∣∣
t=∞

= c0.

For the induction step, if f̂0, f̂1 ∈ L ′
M (F ) satisfy the generalized inter-

polation problem for f0, f1 ∈ FGm as defined by Equation (10) and (11) for
t ∈ Gm+1 \G1, and Equation (19) and (20) at the exceptional point, then

f̂(t) = f̂0(π(t)) +
1

t
· f̂1(π(t))

satisfies the generalized interpolation problem for f ∈ FGm+1 : For the regular
points t ∈ Dm+1 \ G1 we have f̂(t) = f(t) for the usual reasons, and over G1

we get

f̂(t) = f̂0(π(t)) +
1

t
· f̂1(π(t))

∣∣∣
t=0

= f̂0(t
′)− 2 · t′ · f̂1(t′)

∣∣∣
t′=∞

= f(0),

since t · t′ = t · t2−1
2·t

∣∣∣
t=0

= −1/2 and f̂0(∞) = 0, whereas

t · f̂(t) = t · f̂0(π(t)) + f̂1(π(t))
∣∣∣
t=∞

= 2 · t′ · f̂0(t′) + f̂1(t
′)
∣∣∣
t=∞

= f(∞),

since t/t′ = t · 2·t
t2−1

∣∣∣
t=∞

= 2 and f̂1(∞) = 0.

Likewise, the inverse FFT can be modified to compute the generalized eval-
uation of a function f̂ ∈ L ′

M (F ) over the group position domain Gm.

Definition 7. The generalized evaluation of a function f̂ ∈ Fm over Gm out-
puts the value of f̂(t) for every t ∈ Gm \G0 and the value of t · f̂(t) at t = ∞.

In the first step k = 1, generalized evaluation of each fi1,...,im−1
over D1

is directly read off the coefficients ci1,...,im−1,0 and ci1,...,im−1,1 using Equation
(21) and Equation (22), and in the other steps 2 ≤ k ≤ m, corresponding to

11



the larger domains G2, . . . , Gm, the values of f̂i1,...,im−k,0 and f̂i1,...,im−k,1 are

combined into those of f̂i1,...,im−k,im−k+1
in the usual manner at the regular

points t ∈ Gk \G1, and by Equation (19) and Equation (20) at the exceptional
point.

Theorem 8 (Evaluation over subgroups). Given coefficients ci ∈ F , i ∈ {0, 1}m,

the above sketched inverse FFT computes the generalized evaluation of f̂ =∑
i ci · bm,i ∈ Fm over Gm.

In terms of group operations, the cost of both the group position FFT and
its inverse is essentially that of the coset FFT.

3.3 Explicit form of the basis

For an explicit form of the basis Bm of the FFT space Fm = L ′
M (F ), an

alternative representation based on vanishing functions is more useful than the
one from Theorem 1. For 1 ≤ k < n, let vGk

= vG1
◦πk−1 and vG′

k
= vG′

1
◦πk−1,

where

vG1
= y =

2 · t
t2 + 1

, vG′
1
= x =

t2 − 1

t2 + 1
.

(Note that, compared to the previous sections we use a scaled variant of vG1

here. This is for more elegant expressions.) It follows from their definition
that vGk

and vG′
k
have simple zeros over Gk and its complementing coset G′

k,

respectively, and poles at t = ±i of order 2k each. (No other poles and zeros
present.) Thus they belong to L2k(Fq). Their explicit representation

vGk
(t) =

uk(t)

(t2 + 1)2k−1 , vG′
k
(t) =

vk(t)

(t2 + 1)2k−1 ,

with polynomials uk(t), vk(t) ∈ Fq[t], where deg uk = 2k − 1 and deg vk = 2k,
can be obtained recursively via the same law

uk+1(t) = (2 · t)2
k

· uk

(
t2 − 1

2 · t

)
, vk+1(t) = (2 · t)2

k

· vk
(
t2 − 1

2 · t

)
,

starting with u1(t) = 2 · t and v1(t) = t2 − 1, respectively. Alternatively, they
can be derived from the circle polynomials vGk

and vG′
k
, which are recursively

given by

vG′
k+1

(x) = vG′
k
(2 · x2 − 1),

vGk+1
= 2 · vGk

· vG′
k
,

starting with vG′
1
= x and vG1

= y.

12



Lemma 1. For 1 ≤ k < n, it holds that vGk
· vG′

k
= 2 · vGk+1

. In particular

vGm
= 2m−1 · vG1

· vG′
1
· . . . · vG′

m−1
, for 1 ≤ m ≤ n.

Proof. The first assertion follows from vGk
= vG1

◦ πk−1 and vG′
k
= vG′

1
◦ πk−1,

and that

vG2
= vG1

◦ π = 4 · t · t2 − 1

(t2 − 1)2 + 4 · t2
= 2 · 2 · t · (t

2 − 1)

(t2 + 1)2
= 2 · vG1

· vG′
1
.

The second assertion is obtained by repeated application of the first.

Proposition 1. In terms of the vanishing functions vGk
and vG′

k
we have

bm,i = 2m−2 · vG1

ti1
·
m−1∏
k=1

(
ik+1 · vGk

+ (1− ik+1) · vG′
k

)
. (23)

Therefore, by means of the univariate vanishing polynomials uk and vk, we
obtain the representation bm,i = pm,i(t)/(1 + t2)2

m−1

, with polynomials

pm,i = 2m−2 · t1−i1 ·
m−1∏
k=1

(ik+1 · uk + (1− ik+1) · vk) , (24)

These polynomials form a basis of Fq[t]
<M .

Proof. Using Lemma 1, and t0 ◦ πk =
vGk

vG′
k

for 1 ≤ k ≤ m− 1, we obtain

bm,i =
1

2
· 2m−1 · vG1

ti1
· vG′

1
· . . . · vG′

m−1
·
m−1∏
k=1

(
vGk

vG′
k

)ik+1

.

(The leading factor 1/2 is for the different convention of vGm in Theorem 1.)
Thus the bit ik+1 effectively selects between vG′

k
and vGk

, for k = 1, . . . ,m− 1,
yielding

bm,i = 2m−1 · vG1

ti1
·
m−1∏
k=1

(
ik+1 · vGk

+ (1− ik+1) · vG′
k

)
,

from which the univariate representation follows.

In bivariate coordinates, the first four vanishing polynomials are

vG′
1
= x, vG1

= y,

vG′
2
= 2 x2 − 1, vG2 = y · x,

vG′
3
= 8 x4 − 8 x2 + 1, vG3

= y · (2 x3 − x),

vG′
4
= 128 x8 − 256 x6 + 160 x4 − 32 x2 + 1, vG4

= y · (16 x7 − 24 x5 + 10 x3 − x),

13



whereas in univariate coordinates we obtain the numerator polynomials

v1 = t2 − 1, u1 = 2 t,

v2 = t4 − 6 t2 + 1, u2 = 2 t · (t2 − 1),

v3 = t8 − 28 t6 + 70 t4 − 28 t2 + 1, u3 = 2 t · (t6 − 7 t4 + 6 t2 − 1),

and

v4 = t16 − 120 t14 + 1820 t12 − 8008 t10 + 12870 t8 − 8008 t6 + 1820 t4 − 120 t2 + 1,

u4 = 2 t · (t14 − 35 t12 + 273 t10 − 715 t8 + 715 t6 − 273 t4 + 35 t2 − 1).

4 Comparison with the circle FFT

The circle FFT from [HLP24] uses a fundamentally different strategy for bound-
ing the degree of the function spaces Fm. Instead of working with the group
squaring map π alone, the first step of the FFT is with respect to the quotient
map

ϕJ : C(Fq) −→ C(Fq)/J

of the group inversion automorphism J(x, y) = (x,−y), which is a linear (and
not quadratic) algebraic map. The subsequent steps are then performed with
respect to the group squaring map π, which uniquely translates to a map on
the quotient C(Fq)/J , since J and π commute, i.e. J ◦ π = π ◦ J . This leads to
the reduction chain

Dm
ϕJ−→ Dm/J

π−→ Dm−1/J
π−→ . . .

π−→ Dm/J,

whereas the quotient sets may be also regarded as subset of the x-axis, and ϕJ

as projection onto it. Considering the domain Dm being the standard position
cosets of Gm (i.e. Dm = G′

m with G′
m being the unique coset of Gm such that

G′
m∩Gm = Gm+1) all maps are 2-to-1, halving the domains in each of the steps.

In the first step, the twiddle function y is taken, and in the other steps x. The
resulting function space Fm is the subspace of LM (F ) spanned by the basis

bm,i = yi1 ·
m−1∏
k=1

(x ◦ πk−1)ik+1 = yi1 ·
m−1∏
k=1

v
ik+1

G′
k

,

where i = (i1, . . . , im) ∈ {0, 1}m. The complete Riemann-Roch space LM (F )
decomposes as

LM (F ) = Fm(F ) + ⟨vDm
⟩,

and this decompositions is orthogonal in a certain sense [HLP24, Section 4.3].

Overall, the circle FFT has the following advantages over the G-FFT:

14



1. Concrete performance. The twiddle functions of the circle FFT are alter-
nating under the action of the kernel group (which acts transitively on the
fibers of the projections), and thus yield a butterfly network which con-
sumes only the half number of multiplications (by pre-computed twiddle
values) than additions, yielding the usual computational cost

FFT(2m) = m · 2m−1 ·M+m · 2m · A,

as for a regular multiplicative FFT. The G-FFT instead (both the variants
from Section 3.1 and 3.2, as well as the original described in Appendix A)
costs the double amount of multiplications

FFT(2m) = m · 2m ·M+m · 2m · A,

cf. Remark 3 of Theorem 1, and Theorem 4. This double multiplication
cost is due to the fact that the twiddle function t0 does not alternate under
action of the kernel group8G1, i.e. t0(−1/t) ̸= −t0(t).

2. Rotation invariance. Contrary to the punctured Riemann-Roch space
L ′

M (F ), the circle FFT space Fm is invariant under rotations by elements
from Gm [HLP24, Section 4.3], which makes it more suitable for the prov-
ing algebraic intermediate representations (AIR) [BSBHR18, BSGKS20,
Sta23], or more generally Plonk-ish arithmetization [GWC19].
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A Appendix

We describe the original G-FFT from Li and Xing, restricted to the two-adic
case, and domains of size smaller than q + 1.

As before, q is a prime (or a prime power) so that q + 1 = 2n · t for some
integer n ≥ 0 and odd t ≥ 1. Given domain size M = 2m, where we assume
that m ≤ n− 1 in our description, the authors construct a function basis of the
Riemann-Roch space from the Gk-invariant functions

9

xk =
∑
τ∈Gk

τ(t), yk =
∏

τ∈Gk

τ

(
1

1 + t2

)
, (25)

where 0 ≤ k ≤ m, which (up to scaling factors) is the basis from Theorem 1.
This can be seen from their definition of the basis functions as

xm−1 · ym−1

xi0
0 · · ·xim−1

m−1

,

9The group action of Gk on the space of rational functions is given by τ(f)(t) := f(τ−1⊙t)
for τ ∈ Gk.
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and the following two lemmas.

Lemma 2. For any 0 ≤ k ≤ n the Gk-invariant function xk is equal to

xk = 2k · πk(t), (26)

where π is the group squaring map. The function has simple poles over Gk, and
whenever k < n it has simple zeros over the complementing coset G′

k = σ⊙Gk,
where σ is of order 2k+1.

Proof. We proof Equation (26) by induction. Taking π0 as the identity map,
Equation (26) is trivially true for k = 0. Assume that it holds for some 0 ≤ k <
n. Taking the decomposition Gk+1 = Gk ∪ σ ⊙ Gk, where σ is an element of
order 2k+1, we obtain

xk+1 =
∑

τ∈Gk+1

τ(t) =
∑
τ∈Gk

τ(t) +
∑
τ∈Gk

τ(σ(t))

= 2k ·
(
πk(t) + πk(σ(t))

)
.

Note that πk is a group endomorphism which maps σ to P1 = 0, the generator
of the two-point subgroup G1. Hence for every point t on the projective line
πk(σ(t)) = πk(σ−1 ⊙ t) = 0 ⊙ πk(t) = −1/πk(t), which by degree holds as a
formal identity. Therefore,

xk+1 = 2k ·
(
πk(t)− 1

πk(t)

)
= 2k+1 · π

k(t)2 − 1

2 · πk(t)

= 2k+1 · π(πk(t)) = 2k+1 · πk+1(t),

which proves the claim for k + 1. The assertion on the poles and zeros of xk

follows from Equation (26).

Lemma 3. For any 0 ≤ k ≤ n the Gk-invariant function yk is equal to

yk =
1

42k−1
· 1

πk(t)2 + 1
(27)

where π is the group squaring map. The function has zeros over Gk, each of
order 2, and poles at t = ±i, each of order |Gk|.

Proof. Since the action of Gk leaves ±i fixed, and lets ∞ visit every point from
Gk, the product yk has poles at t = ±i, each of order |Gk|, and zeros over
Gk, each of order 2. No other poles and zeros present. The same is true for
1/(πk(t)2+1) which shows that yk = ck ·1/(πk(t)2+1) for some constant ck ̸= 0.
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For the concrete value of ck we use a similar trick as in the proof of Lemma
2. For k ≤ n− 1 we write

yk+1 =
∏

τ∈Gk

1

1 + τ(t)2
·
∏

τ∈Gk

1

1 + τ(σ(t))2

= c2k · 1

πk(t)2 + 1
· 1

πk(σ(t))2 + 1
,

where σ is an element of order 2k+1, and therefore πk(σ(t)) = −1/πk(t). Thus

yk+1 = c2k · πk(t)2

(πk(t)2 + 1)2
,

but also

yk+1 = ck+1 ·
1

πk+1(t)2 + 1
= ck+1 ·

4 · πk(t)2

(πk(t)2 + 1)
2 ,

where we have used that πk+1(t) =
(
πk(t)2 − 1

)
/(2 · πk(t)). This yields the

recursive law

c2k · 1
4
= ck+1,

for any 0 ≤ k ≤ n− 1, where the starting value is c0 = 1. Writing ck = 4ek we
get ek+1 = 2 · ek − 1, where e0 = 0, which has the solution ek = −(2k − 1). The
assertion on the poles and zeros of yk follows from Equation (27).

Corollary 1. For m ≤ n − 1, and up to non-zero scaling factors from Fq, the
set of functions

B̃m =

{
xm−1 · ym−1

xi0
0 · · ·xim−1

m−1

: (i0, . . . , im−1) ∈ {0, 1}m
}

(28)

equals the basis Bm from Theorem 1.

Proof. Lemma 2 implies that 1/xk is a (non-zero) scalar multiple of t0 ◦ πk,
since they have the same set of poles and zeros. For the same reason, Lemma 2
and 3 imply that the product xm−1 · ym−1 is a non-zero scalar multiple of the
vanishing function vGm . In other words, up to a non-zero scaling factor, the
functions from Equation (28) equal bm,i0,...,im−1

as defined in Theorem 1.

Let us turn to the FFT. For domain size M = 2m, where m ≤ n− 1, Li an
Xing use the function space

Fm = L2·M (F )′ ∩ V(G′
m) = L2·M (F ) ∩ V(G0) ∩ V(G′

m) (29)

consisting of all functions from L2·M (F )′ which also vanish over G′
m the unique

coset of Gm so that Gm ∪G′
m = Gm+1. (By our assumption m ≤ n− 1 such a
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coset exists.) Contrary to L ′
M (F ) the space Fm is also well-defined in the case

m = 0, where

F0 = L2(F ) ∩ V(G0) ∩ V(G′
0) = L2(F ) ∩ V(G1), (30)

spanned by the vanishing function vG1
(t) = t/(1 + t2). For m ≥ 1 it has the

univariate representation

Fm =

{
vG′

m
(t) · p(t)

(1 + t2)M/2
: p(t) ∈ F [t]<M

}
, (31)

where vG′
m
(t) is the vanishing function of G′

m. In other words,

Fm =
um(t)

(1 + t2)M
· F [t]<M ,

where um(t) = vG′
m
(t) · (1 + t2)M/2 is the univariate vanishing polynomial of

G′
m. Up to a non-zero scaling factor, this is the polynomial um,0 from [LX23,

Lemma 4.2].

Both the coset FFT from Section 3.1 and the group position FFT from
Section 3.2 apply to the function spaces Fm from (29) with as good as no
changes, assuming that the FFT domain Dm is disjoint to the vanishing set
G′

m. The only difference is that the double-sized Riemann-Roch spaces allow a
reduction chain down to a singleton domain. Given domain Dm, a coset of Gm

the subgroup of size M = 2m, the reduction chain is

Dm
π−→ Dm−1

π−→ . . .
π−→ D1

π−→ D0, (32)

using the same decomposition also in the last step, leading again to Equation
(10) and (11) whenever t /∈ G1, and Equation (19) and (20) in the case t ∈ G1.
With {vG1

} as the basis for F0, the resulting basis of Fm is

B′
m+1 =

{
vGm+1 ·

m−1∏
k=0

(t0 ◦ πk)ik+1 : i = (i1, . . . , im) ∈ {0, 1}m
}
,

where t0(t) = 1/t. This is the sub-basis of Bm+1 from Theorem 1 when taking
the last index entry zero,

B′
m+1 = {bm+1,i1,...,im,0 : (i1, . . . , im) ∈ {0, 1}m} .

We leave the details to the reader, and only state the main result [LX23, The-
orem 4.6].

Theorem 9 (G-FFT, two-adic case). Let Dm be a coset of Gm the subgroup of
size M = 2m, where 0 ≤ m ≤ n− 1, and such that Dm ̸= G′

m, the unique coset
of Gm with Gm ∪ G′

m = Gm+1. Given a function f over Dm with values in
an extension field F of Fq, the above algorithm outputs the coefficients ci1,...,im
of the unique low-degree extension f̂(t) =

∑
ci1,...,im · bm+1,i1,...,im,0(t) from

Fm as defined in (29), which solves the (generalized, in case that Dm = Gm)
interpolation problem for f over Gm.
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Remark 10. There are still some minor differences of our description of the
G-FFT to that in [LX23]. Therein, the authors use group position domains
Dm = Gm only in the edge case M = q + 1, which we do not handle for
the sake of interpreting Fm as a vanishing subspace of L2·M (F ). Whenever
M < q + 1 they take coset domains but miss to exclude the choice Dm = G′

m,
over which the function space Fm throughout evaluates to zero. Besides, their
group position FFT only serves usual domain evaluation, not in the generalized
sense as in Section 3.2.
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