
Adaptively Secure 5 Round Threshold Signatures from
MLWE{MSIS and DL with Rewinding

Shuichi Katsumata1,2, Michael Reichle3, Kaoru Takemure∗1,2

1PQShield
{shuichi.katsumata, kaoru.takemure}@pqshield.com

2AIST
3ETH Zürich

michael.reichle@inf.ethz.ch

June 26, 2024

Abstract

T -out-of-N threshold signatures have recently seen a renewed interest, with various types now avail-
able, each offering different tradeoffs. However, one property that has remained elusive is adaptive
security. When we target thresholdizing existing efficient signatures schemes based on the Fiat-Shamir
paradigm such as Schnorr, the elusive nature becomes clear. This class of signature schemes typically
rely on the forking lemma to prove unforgeability. That is, an adversary is rewound and run twice within
the security game. Such a proof is at odds with adaptive security, as the reduction must be ready to
answer 2pT ´ 1q secret key shares in total, implying that it can reconstruct the full secret key. Indeed,
prior works either assumed strong idealized models such as the algebraic group model (AGM) or modified
the underlying signature scheme so as not to rely on rewinding based proofs.

In this work, we propose a new proof technique to construct adaptively secure threshold signatures
for existing rewinding-based Fiat-Shamir signatures. As a result, we obtain the following:

1. The first adaptively secure 5 round lattice-based threshold signature under the MLWE and MSIS
assumptions in the ROM. The resulting signature is a standard signature of Raccoon, a lattice-based
signature scheme by del Pino et al., submitted to the additional NIST call for proposals.

2. The first adaptively secure 5 round threshold signature under the DL assumption in the ROM. The
resulting signature is a standard Schnorr signature. To the best of our knowledge, this is the first
adaptively secure threshold signature based on DL even assuming stronger models like AGM.

Our work is inspired by the recent statically secure lattice-based 3 round threshold signature by del
Pino et al. (Eurocrypt 2024) based on Raccoon. While they relied on so-called one-time additive masks
to solve lattice specific issues, we notice that these masks can also be a useful tool to achieve adaptive
security. At a very high level, we use these masks throughout the signing protocol to carefully control the
information the adversary can learn from the signing transcripts. Intuitively, this allows the reduction to
return a total of 2pT ´ 1q randomly sampled secret key shares to the adversary consistently and without
being detected, resolving the above paradoxical situation. Lastly, by allowing the parties to maintain a
simple state, we can compress our 5 round schemes into 4 rounds.

∗Most of this work was done while this author was a PhD student at The University of Electro-Communications, Japan.

1

Contents
1 Introduction 4

1.1 Our Contribution . 5
1.2 Technical Overview . 7
1.3 Related Works . 11

2 Preliminary 13
2.1 Notations . 13
2.2 Threshold Signatures . 13
2.3 Linear Secret Sharing . 15
2.4 Lattices, Gaussians, and Rounding . 16
2.5 Hardness Assumptions . 16

3 Construction of Our 3-Round Threshold Raccoon 17
3.1 Parameters and Preparations . 18
3.2 Construction . 18
3.3 Correctness . 19

4 Selective Security of Our 3-Round Threshold Raccoon 21
4.1 Proof Overview . 21

5 Construction of Our 5-Round Threshold Raccoon 25
5.1 Parameters and Preparations . 25
5.2 Construction . 25
5.3 Correctness . 26
5.4 Our 4-Round Raccoon Threshold Signature . 27

6 Adaptive Security of Our 5 Round Threshold Raccoon 27
6.1 Intuition . 29
6.2 Proof Overview . 31

7 Construction of Our 5-Round Threshold Schnorr 35
7.1 Preparations . 36
7.2 Construction . 36
7.3 Security and Correctness . 36
7.4 Our 4-Round Schnorr Threshold Signature . 40

A Omitted Preliminaries 47
A.1 Security Notions for Threshold Signature . 47
A.2 Rounding and Norms Modulo q . 48
A.3 Hardness of Lattice-Related Problems . 49
A.4 Hardness of DL-Related Problems . 50
A.5 Forking Lemmas . 50

B Details of Our 4-Round Threshold Raccoon 51
B.1 Construction . 51
B.2 Security . 51

C Details of Our 4-Round Threshold Schnorr 53
C.1 Construction . 53
C.2 Security . 53

2

D Candidate Parameters for Our Threshold Raccoon 53

E Formal Security Proofs 55
E.1 Formal Security Proof of TRaccoonsel3-rnd . 55
E.2 Formal Security Proof of TRaccoonadp5-rnd . 73

3

1 Introduction
A T -out-of-N threshold signature [Des90, DF90] allows to distribute a secret key to N parties such that a set
of at least T parties can jointly generate a signature with respect to the verification key. In particular, even
if an adversary corrupts up to T ´ 1 parties, it should not be possible to forge a signature. This ability to
distribute trust has seen a renewed interest in the blockchain ecosystem where secure and reliable storage of
secret keys are critical. With the increase in real-world interest, governmental bodies such as the US agency
NIST has announced a standardization effort for multi-party threshold schemes [PB23].

In this work, we focus on thresholdizing existing signature schemes based on the Fiat-Shamir paradigm [FS87],
e.g., ECDSA, Schnorr [Sch91], Dilithium [DKL`18], Raccoon [dPEK`23], a wide class of efficient signature
schemes that has been a popular target to thresholdize in the literature.
Static vs Adaptive Security. Threshold signatures being a multi-party protocol, we have two choices
when defining unforgeability: static and adaptive security. Static security artificially restricts the adversary
to commit to all the T ´ 1 parties it corrupts at the beginning of the security game. In contrast, adaptive
security allows the adversary to arbitrarily corrupt up to T ´ 1 parties as the security game progresses.
Specifically, it may dynamically choose which party to corrupt even after observing the verification key,
partial signatures, and the corrupted secret key shares of the other parties.

Adaptive security captures much more closely the threat model in reality, and as such, the recent call for
threshold schemes by NIST [PB23, BD22] has put a strong preference on schemes satisfying it. Indeed, there
are simple schemes that are statically secure but trivially non-adaptively secure [CFGN96], highlighting a
fundamental difference in these two security models.
Difficulty of Adaptive Security (in the ROM). While adaptive security is the sought after security
requirement, most prior works on threshold signatures have only been proven statically secure. However,
this is not a simple lack of interest to prove adaptive security but rather a demonstration of the limit of our
current proof technique. Signature schemes based on the Fiat-Shamir paradigm [FS87] typically rely on the
forking lemma [FS87, BN06] to prove security in the random oracle model (ROM). At a high level, a proof
using the forking lemma proceeds as follows: The reduction embeds a hard problem into the verification
key and simulates the security game to the adversary. Once the adversary outputs a forgery, it rewinds the
adversary and runs it again from some specific point in the security game by programming the random oracle
differently. If the adversary outputs a forgery in the second run, the reduction is able to extract the solution
to the hard problem using the two forgeries.

Now, consider what happens when we try to use this for adaptive security. The reduction needs to
simulate T ´ 1 secret key shares of the corrupted parties in the first and second run. Since the set of
corrupted parties may change after rewinding, the reduction may need to simulate up to 2pT ´ 1q secret key
shares. However, if a simulator knew T (or more) of the secret key shares, it can generate forgeries without
the adversary’s help, thus breaking the hard problem on its own. This seemingly contradicts the hardness
of the problem, indicating that such a security proof does not work. Here, such an issue does not appear in
the static setting since the set of corrupted parties remain unchanged in the two runs.
State-of-the-Art. To overcome this apparent issue, Crites, Komlo, and Maller [CKM23] considered a
relaxed form of adaptive security where the adversary is limited to making either T ´ 1 static or pT ´ 1q{2
adaptive corruptions; the latter implies that the reduction only needs to simulate at most T ´ 1 secret key
shares in total. In this relaxed model, they proved security of their threshold Schnorr signature (Sparkle)
under an interactive algebraic one-more DL (AOM-DL) assumption. More recently, Bacho et al. [BLT`24]
proposed an adaptive threshold signature (Twinkle) under the DDH assumption. Their novel insight was to
base Twinkle on a specific class of signature schemes based on identification protocols that avoided rewinding
to prove unforgeability, drawing inspiration from [Che05, KLP17]. A caveat though is that Twinkle no longer
produces Schnorr signatures like Sparkle and requires a signature size that is twice as large.

It is also worth noting that another way to overcome the issue is to assume a stronger idealized model like
the algebraic group model (AGM) [FKL18]. Indeed, Crites et al. [CKM23] showed that Sparkle is adaptively
secure in the ROM and AGM under the AOM-DL assumption. However, this avenue of research seems quite
grim for post-quantum threshold signatures like those based on lattices, since no such model is known to

4

exist nor believed to hold in general.
This brings us to our main question of this work:

Can we construct an adaptively secure threshold signature scheme for existing rewinding-based
Fiat-Shamir signatures? Moreover, can we base security under the same assumption?

We believe the latter question is also an important point if we were to deploy threshold signatures based on
existing signature schemes. For example, an ideal situation would be to prove threshold Schnorr signature
under the DL assumption in the ROM, similarly to the non-thresholdized Schnorr signature.

1.1 Our Contribution
We answer the above question affirmatively and propose a new proof technique to construct adaptively secure
threshold signatures. As a result, we obtain the following:

1. The first adaptively secure 5 round lattice-based threshold signature under the MLWE and MSIS as-
sumptions in the ROM. The resulting signature is a standard signature of Raccoon [dPEK`23], a
lattice-based signature scheme by del Pino et al., submitted to the additional NIST call for propos-
als [NIS22]. We can easily make this 4 round by assuming a (non-repeating) unique session identifier
sid being broadcast to the signing parties.

2. The first adaptively secure 5 round threshold signature under the DL assumption in the ROM. The
resulting signature is a standard Schnorr signature. Making the same assumption as above, we can
turn it into a 4 round protocol. We note this is the first adaptively secure threshold signature based
on the DL assumption.

As a byproduct of our new proof technique, we also obtain the following lattice-based threshold signature:

3. A selectively secure 3 round lattice-based threshold signature under the MLWE and MSIS assumptions
in the ROM. The resulting signature is a standard signature of Raccoon. This improves the very recent
work by del Pino et al. [dPKM`24] in two metrics: it removes the need for a stateful signing algorithm
and improves the communication cost. The signature size remains identical to [dPKM`24].

Importantly, all of our threshold signature is proven secure under the same assumptions and security
model (i.e., ROM) as those of the underlying non-thresholdized signature. In addition, none of them require
secure state erasures, a requirement often difficult to enforce in practice. We can also preprocess the first
round of both of our 5 round threshold signatures, making the online phase four rounds [BD22, Section
5.3.5]. A comparison of prior related threshold signatures is given in Tables 1 and 2.

Table 1: Comparison of T -out-of-N lattice-based threshold signatures.

Schemes Adaptive? Assumptions Rounds Model Corruptions Stateless
session id?

[dPKM`24] ✗ MLWE + MSIS: 3 ROM ă T ✗
[EKT24] ✗ AOM-MLWE 2 ROM ă T ✓

TRaccoonsel3-rnd ✗ MLWE + MSIS 3 ROM ă T ✓

TRaccoonadp4-rnd ✓ MLWE + MSIS 4 ROM ă T ✗

TRaccoonadp5-rnd ✓ MLWE + MSIS 5 ROM ă T ✓

We omit schemes based on (linearly/fully) homomorphic encryption e.g.,[BGG`18, ASY22,
GKS23]. MLWE and MSIS stand for the module LWE and SIS, respectively. AOM-MLWE stands
for the algebraic one-more MLWE. The (✓) in the column “Stateless session id?” indicates that
the parties can be stateless. Else (✗), the parties need to store the session id’s so as not to reuse
them.

: To be precise, they rely on the hint MLWE and self target MSIS problems, both of which are know to
reduce from the MLWE and MSIS problem. The same can be said for our schemes.

5

Table 2: Comparison of T -out-of-N classical Schnorr-like threshold signatures.

Schemes Adaptive? Assumptions Rounds Model Corruptions Stateless
session id?

[KG20, BCK`22] (Frost) ✗ AOM-DL 2 ROM ă T ✓
[Lin22] ✗ DL 3 ROM ă T ✓
[TZ23] ✗ DL 2 ROM ă T ✓
[CKM23] (Sparkle) ✗ DL 3 ROM ă T ✓
[CKM23] (Sparkle) ✓ AOM-DL 3 ROM ă T {2 ✓
[CKM23] (Sparkle) ✓ AOM-DL 3 ROM + AGM ă T ✓
[BLT`24] (Twinkle) ✓ DDH 3 ROM ă T ✗

TSchnorradp4-rnd pSnapq ✓ DL 4 ROM ă T ✗

TSchnorradp5-rnd pCrackleq ✓ DL 5 ROM ă T ✓

We compare pairing-free Schnorr-like threshold signatures. pă T {2q-corruption indicates that adaptive security holds
if only at most T {2 parties are corrupted. AOM-DL stands for the algebraic one-more DL. The (✓) in the column
“Stateless session id?” indicates that the parties can be stateless. Else (✗), the parties need to store the session id’s
so as not to reuse them.

Before getting into the technical details, we clarify a downside of Crackle and Snap compared with other
threshold Schnorr signatures. In order to prove adaptive security, we do not allow the parties to publish a
partial verification key of the form gai P G, where ai P Zp is the secret key share. This specific partial veri-
fication key is typically used to achieve non-interactive identifiable abort; a property allowing the parties to
non-interactively trace a malicious party in case the threshold signing protocol outputs an invalid signature.
We note that static security of Crackle and Snap remains intact even if we publish gai . For lattice-based
threshold signatures, none of the schemes in Table 1 consider partial verification keys or non-interactive
identifiable abort. See Section 1.3 for more details.

Technique in a Birds Eye’s View. At a technical level, our work is inspired by the recent lattice-based
3 round threshold signature by del Pino et al. [dPKM`24] based on Raccoon. Their work can be seen as a
lattice-based counterpart of the 3 round threshold Schnorr signature Sparkle by Crites et al. [CKM23] but
with a unique twist. Due to lattice specific reasons, a natural adaptation of Sparkle to the lattice setting
turns out to be insecure as the partial signature leaks too much information on the signing key shares. To
overcome this issue, del Pino et al. relied on non-interactively shared one-time additive masks. At a high
level, this allows each parties to output a masked partial signature, where the masks cancel out only when
all T partial signatures are combined.

Our main technical contribution is noticing that this one-time additive mask not only solves lattice
specific issues but is also a useful technique for achieving adaptive security. Recall that one of the reasons
why rewinding proofs were at odds with adaptive security was that a reduction being able to simulate T ´ 1
secret key shares in both of the runs can seemingly reconstruct the full secret key on its own. Specifically,
there is no room left to embed a hard problem.

An idea to resolve this paradoxical situation is for the reduction to simply output random secret key
shares in both runs. Looking through the lens of the adversary, this modification seems undetectable since
within each individual run, the T ´1 secret keys are indeed uniformly random when the secret key is being T -
out-of-N secret shared. However, such a naive approach does not work as it stands. Throughout the game,
an adversary can concurrently interact with the parties and observe the transcripts of any given signing
session. Then, once corrupted a party, the adversary can check whether the secret key share is consistent
with what it observed; if the secret key share was randomly simulated, this will certainly be detected.

This brings us to our main idea. We use one-time additive masks throughout the protocol to carefully
control the information the adversary can learn from the transcripts. When a corruption occurs, we will
generate randomness for the one-time additive masks so that it becomes consistent with the random secret
key share and the transcript the adversary observed. While the proof strategy is intuitive, constructing a

6

protocol that fits this intuition and proving it is far easier said than done. We refer the readers to the
next section for a more technical overview. Lastly, while our technique is quite general, we choose not to
phrase our scheme abstractly using linear function families (cf.,[HKL19, HKLN20]) as optimized lattice-based
constructions like Raccoon do not neatly fit in this abstraction.

1.2 Technical Overview
We first recall the statically secure 3 round lattice-based threshold signature by del Pino et al. [dPKM`24].
We then show a simple improvement of their protocol, leading to our stateless 3 round threshold signature
TRaccoonsel3-rnd. This scheme is only statically secure but our proof technique forms the basis of the more
complex adaptively secure 5 round threshold signature TRaccoonadp5-rnd, which we then explain. While our
overview focuses on the lattice setting, it will be clear that it trivially adapts to the classical Schnorr setting.

Lastly, while we try our best to keep the overview self-contained, we encourage the readers to look
at [dPKM`24, Section 2] for an in depth overview on the original threshold signature by del Pino et al.

3 Round Threshold Raccoon by [dPKM`24]. We recall below a simplified variant of their scheme based
on Lyubashevsky’s lattice-based signature scheme [Lyu09, Lyu12]. The NIST submission Raccoon [dPEK`23]
is a variant of Lyubashevsky’s (and also Dilithium [DKL`18]), that is more susceptible to thresholdization.
For the sake of simplicity, we ignore this lattice specific detail in the overview.

The verification key vk is an MLWE instance pA,b “ rA | Is ¨ sq P Rkˆℓ
q ˆ Rk

q , where s P Rℓ`k
q is a secret

short vector.1 The secret key s is distributed to each party using Shamir’s secret sharing [Sha79]. Namely,
each party i P rN s is given si such that for any SS Ď rN s and |SS| “ T , we have s “

ř

jPSS LSS,jsi where
pLSS,jqjPSS are the Lagrange coefficients. The novelty of [dPKM`24] is that, each party i is further distributed
a random PRF seed ⃗seedi “ pseedi,j , seedj,iqjPrNs, where parties i and j share seeds pseedi,j , seedj,iq. Lastly,
each party i is also assumed to have their own set of keys pvkS,i, skS,iq for a standard signature scheme. In
summary, the secret key share for party i is ski “ psi, ⃗seedi, skS,iq.

To sign on a message M with a signer set SS, it proceeds as follows, where assume sid is a session identifier
that has never been used.

Round 1. Signer i samples a commitment wi “ rA|Is¨ri P Rk
q for a short vector ri P Rℓ`k

q and creates a hash
commitment cmti “ Hcompi,wiq. It also computes a so-called row mask mi “

ř

jPSS PRFpseedi,j , sidq P

Rℓ`k
q and outputs pcmti,miq.

Round 2. Signer i obtains ctnt “ pcmtj ,mjqjPSS, signs it σS,i
$

Ð SignpskS,i, sid}ctntq, and outputs the
opening wi and the signature σS,j .

Round 3. Signer i checks that for all j P SS, the hash commitment cmtj are opened correctly by signer j,
i.e., cmtj “ Hcompj,wjq, and the signature σS,j verifies with respect to sid}ctnt it signed in Round 2. If
the check passes, it computes the aggregate commitment w “

ř

jPSS wj . It then computes the challenge
c “ Hcpvk,M,wq, the so-called column mask m˚

i “
ř

jPSS PRFpseedj,i, sidq P Rℓ`k
q , and outputs the

masked response rzi “ c ¨ LSS,i ¨ si ` ri ´ m˚
i P Rℓ`k

q .

Aggregate. Given the transcript ppcmtj ,mjq, pwj , σS,jq,rzjqjPSS, it outputs the aggregate signature sig “

pc, zq, where z “
ř

jPSSprzj ´ mjq and pw, cq are computed as above.

A signature sig is deemed valid if c “ Hcpvk,M,Az ´ c ¨ bq and z is short. Correctness is established by
the equality

ř

iPSS mi “
ř

iPSS m
˚
i , i.e., the sum of row masks and column masks are identical. Concretely,

we have z “ c ¨
ř

jPSSpLSS,i ¨ si ` riq “ c ¨ s`
ř

jPSS ri. Since w “
ř

jPSS wj “ rA|Is ¨ p
ř

jPSS rjq, the signature

1In the main body, we write b as As ` e “ rA | Is ¨

„

s
e

ȷ

. This reflects the standard optimization [BG14] performed by

Dilithium and Raccoon where we ignore the noise e and only view the upper s as the secret key. Since this makes the protocol
more complex, we opt using the simplest version in the overview.

7

sig is indeed a valid Lyubashevsky’s signature.

Intuition of Security Proof. As opposed to classical cryptography, in lattice-based cryptography secrets
are “short”. Specifically, if parties instead output an unmasked partial response rzi “ c ¨LSS,i ¨ si ` ri P Rℓ`k

q ,
there is a concrete attack on the scheme as the Lagrange coefficient LSS,i can arbitrarily amplify the size of
the secret key share si (see [dPKM`24, Section 2] for the details). This is where the mask plays a critical
role. Due to the pseudorandomness of the PRF, the masks are distributed uniformly random conditioned on
the sum of row masks and column masks being identical. Informally, this implies that the partial response
only leaks information of the final aggregate signature z “ c ¨ s `

ř

jPSS ri. Turning this around, the partial
response can be simulated only by using the full secret key s. From a reductionist’s point of view, this allows
us to invoke honest-verifier zero-knowledge (HVZK) with respect to the verification key vk to simulate the
signature sig “ pc, zq, followed by programming the random oracle so that Hcpvk,M,Az ´ c ¨ bq “ c.

While the intuition is clear, the concrete proof contains subtleties. First of all, the above argument hinges
on the pseudorandomness of the PRF, and in particular, if the same input sid is used to derive the masks,
the scheme becomes insecure. This is where del Pino et al. [dPKM`24] assumes the parties to maintain
state of all the sid it signed. Furthermore, when we stated that the partial response only leaks information
of the final aggregate signature z “ c ¨ s `

ř

jPSS ri, we implicitly used the fact that all the parties agree on
the same challenge c in Round 3. As an example of how things can go wrong, assume a malicious party 3
invokes honest parties 1 and 2 on the same sid and provides them pcmt1, cmt2, cmt3q and pcmt1, cmt2, cmt1

3q,
respectively, in Round 2, where cmt3 and cmt1

3 open to different commitments. Then, since the aggregate
commitment differs, parties 1 and 2 will derive different challenges in Round 3. However, since the masks
are only defined via sid, they will cancel out when combining the partial responses, and in particular, the
adversary learns c1 ¨ LS,1 ¨ s1 ` c2 ¨ LS,2 ¨ s2 `

ř

jPr2s rj for c1 ‰ c2. Again, this leads to concrete attacks.2

Thus, to thwart such an attack, del Pino et al. [dPKM`24] requires the parties to sign their entire view
sid}ctnt in Round 2. This effectively enforces that if all parties with sid finished Round 3, then they must
have used the same unique challenge c. Piecing these arguments together, we can formally invoke HVZK to
complete the above proof intuition.

A Simple Tweak and a New Proof. Looking at the prior construction (and security proof) closely, it
can be checked that there is no need to compute the masks in different rounds. In particular, the row and
column masks can be generated together in Round 3. We also remove the signature in Round 2 and consider
the following simplified 3-round threshold signature TRaccoonsel3-rnd.

Round 1. Signer i samples a commitment wi “ rA|Is ¨ ri P Rk
q for a short vector ri P Rℓ`k

q and outputs a
hash commitment cmti “ Hcompi,wiq.

Round 2. Signer i obtains ctntw “ pcmtjqjPSS and outputs the opening wi.

Round 3. Signer i checks that for all j P SS, the hash commitment cmtj are opened correctly by signer j,
i.e., cmtj “ Hcompj,wjq. If the check passes, it computes the aggregate commitment w “

ř

jPSS wj

and sets ctntz “ pcmtj ,wjqjPSS. It then computes the challenge c “ Hcpvk,M,wq, a zero-share mask
∆i “

ř

jPSS pPRFpseedi,j , ctntzq ´ PRFpseedj,i, ctntzqq P Rℓ`k
q , and outputs the masked response rzi “

c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ`k
q .3

Aggregate. Given the transcript pcmtj ,wj ,rzjqjPSS, it outputs the aggregate signature sig “ pc, zq, where
z “

ř

jPSS rzj and pw, cq are computed as above.

2For those knowledgeable in classical threshold signatures like Sparkle and Twinkle, we note that such an attack cannot be
used to break unforgeability. This is because unlike in the lattice setting, we can invoke HVZK with respect to the partial
verification key, i.e., the partial response can be simulated individually. In the lattice setting, the unmasked partial response
leaks too much information on the secret key share and thus HVZK must be applied to the full secret key.

3In the actual construction, we include the signer set SS and message M in ctntz, as otherwise, it opens the door to ROS
attacks [BLL`21]. We gloss over this detail in the overview for simplicity as it can be handled using standard methods.

8

The verification algorithm is defined identically as before, where correctness follows immediately by the
equality

ř

jPSS ∆j “ 0. Notice that this modification allows to remove the state since an honest party i is
now guaranteed to always invoke the PRF on a distinct input; this is an immediate implication of including
wi in the input ctntz.

The most important part though, is whether the scheme remains secure even if we remove the standard
signature in Round 2. As a sanity check, let us observe that the aforementioned attack will not work.
Consider an adversary invoking parties 1 and 2 on different Round 2 hash commitments pcmt1, cmt2, cmt3q

and pcmt1, cmt2, cmt1
3q, respectively. In our modified scheme, since both parties now compute a mask using

different PRF inputs in Round 3, the masks no longer cancel out. Specifically, the adversary learns nothing
by combining the the partial response as it will compute to

ř

jPr2spcj ¨LS,j ¨ sj ` rj `∆jq for
ř

jPr2s ∆j ‰ 0.
Let us now formalize this below.

The key argument in the security proof of del Pino et al. [dPKM`24] was enforcing all parties with sid
in Round 2, eventually finishing Round 3, to satisfy two properties: (i) the masks they use in Round 3
must be computed from the same PRF input and (ii) they must all be using the same unique challenge c.
The first property guaranteed the equality

ř

iPSS mi “
ř

iPSS m
˚
i and this held by virtue since the masks

were computed only using sid. The second property guaranteed that the partial responses leak no more
information than the final signature z “ c ¨ s `

ř

jPSS ri. This was enforced by using standard signatures.
Translating their key argument to our scheme, we have to enforce the same two properties as above but

now with respect to all parties with ctntw in Round 2, eventually finishing Round 3. We show that these
two properties combined allows us to invoke HVZK before Round 3 as desired. To prove the properties, we
use the fact that ctntw “ pcmtjqjPSS is a set of binding hash commitments, i.e., cmtj can only be uniquely
opened to a commitment wj . Using this, we can guarantee that there is only a unique ctntz in Round 3 that
can lead from ctntw in Round 2, enforcing the first property. Moreover, using the same argument, there can
only be one aggregate commitment w “

ř

jPSS wj in Round 3, enforcing the second property. It is worth
noting that a similar argument appears in Bacho et al. [BLT`24], where they notice a slight gap in the
security proof of Sparkle [CKM23]. They use a technical argument called equivalence classes to enforce the
second property. Our proof is inherently more involved than theirs as we must also enforce the first property,
stemming from the fact that we have to invoke HVZK on the full verification key vk (see also Footnote 2).
Piecing the arguments together, we conclude static security of TRaccoonsel3-rnd.

Why Adaptive Security Fails. As briefly explained in the previous section, to resolve the paradoxical
situation, a natural proof strategy for adaptive security is for the reduction to simply output a random secret
key share si

$
Ð Rℓ`k

q . However, it is clear that such a proof strategy fails for TRaccoonsel3-rnd. Once party i

is corrupted, the adversary obtains ski “ psi, ⃗seediq. Using ⃗seedi, it can unmask the masked response rzi
and further recover the commitment randomness ri “ rzi ´ c ¨ LSS,i ¨ si ´ ∆i. From this, it can check if the
commitment wi equals rA|Is ¨ ri. If si was sampled uniformly, this equality will clearly not hold, rendering
the simulation to be distinguishable from the real security game.

This example illustrates another difficulty of adaptive security. We have seen that if the adversary obtains
ski, it can recover the randomness ri used to generate the commitment wi. Let us consider the following
situation: the adversary invokes all the parties up to Round 2 and obtains pwjqjPSS. Assume the adversary
corrupts half of the parties Q Ă SS in the first run. The reduction then rewinds the adversary, and assume
it corrupts the other half of the parties SSzQ in the second run. For this to work, the reduction must be
ready to answer all the commitment randomness prjqjPSS. However, once again, this leaves the reduction no
space to embed its hard problem! Indeed, if the reduction tries to invoke HVZK, there is no place to embed
the simulated commitment w.

More Masking Solves the Problem. Our key insight to solve the above problem is to add another layer
of masking to the commitments wi, and moreover, to generate the mask using a random oracle Hmask as
opposed to using a PRF. The following is our 4-round threshold signature TRaccoonadp4-rnd, where we again
assume each party has their own set of keys for a standard signature scheme and assume an unused sid is
provided to the parties.

Round 1. Signer i samples a commitment wi “ rA|Is ¨ ri P Rk
q for a short vector ri P Rℓ`k

q and computes a

9

zero-share mask r∆i “
ř

jPSS pHmaskpseedi,j , sidq ´ Hmaskpseedj,i, sidqq P Rk
q . It then computes a masked

commitment rwi “ wi ` r∆i and outputs a hash commitment cmti “ Hcompi, rwiq.

Round 2. Signer i obtains ctntw “ pcmtjqjPSS and outputs a signature σS,i
$

Ð SignpskS,i, sid}ctntwq.

Round 3. Signer checks that for all j P SS the signature σS,j verifies with respect to sid}ctntw it signed in
Round 2. If so, it outputs the opening rwi.

Round 4. Signer i checks that for all j P SS, the hash commitment cmtj are opened correctly by signer j,
i.e., cmtj “ Hcompj, rwjq. If the check passes, it computes the aggregate commitment w “

ř

jPSS rwj and
sets ctntz “ sid}pcmtj , rwjqjPSS. It then computes the challenge c “ Hcpvk,M,wq, a zero-share mask
∆i “

ř

jPSS pHmaskpseedi,j , ctntzq ´ Hmaskpseedj,i, ctntzqq P Rℓ`k
q , and outputs the masked response

rzi “ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ`k
q .

The aggregation algorithm is defined identically as in TRaccoonsel3-rnd. Correctness holds by observing that
the aggregate commitment w adds up to the same value as before using the fact

ř

jPSS
r∆j “ 0.

While it is not immediately clear why this scheme can be proven adaptively secure, it will be informative
to see why the previously explained distinguishing attack no longer works. First, observe that before the
adversary corrupts any party, the individual commitments rwj and partial responses rzj are distributed
uniformly random thanks to the two masks r∆j and ∆j , conditioned on the resulting signature sig “ pc, zq

being valid. That is, c “ Hcpvk,M,wq and w “ Az ´ c ¨ b where w “
ř

jPSS rwj and z “
ř

jPSS rzj . Now,
assume party i is corrupted. Then, the reduction first samples a random secret key share si

$
Ð Rℓ`k

q and
a random commitment randomness ri. It then computes a fake commitment wi “ rA|Is ¨ ri and a fake
response zi “ c ¨ LSS,i ¨ si ` ri. It further programs the random oracle Hmask so that the two masks p r∆i,∆iq

compute to prwj ´ wj ,rzj ´ zjq. This is where we require to generate the masks using a random oracle as
opposed to using a PRF. Lastly, the reduction outputs ski “ psi, ⃗seedi, skS,iq to the adversary. Due to the
way we program the masks, ski is consistent with prwi,rziq observed by the adversary. It is worth noting that
no secure state erasure is necessary since we can simulate all the randomness to the adversary.

The above reduction strategy tells us, at least intuitively, that the entire transcript only leaks the informa-
tion on the full signature sig “ pc, zq. Turning this intuition into a formal proof consists the main technical
contribution of our work. In particular, the above reduction only concerns how to randomly answer the
adversary’s corruption query, and tells us nothing about how to embed a hard problem in the reduction. As
in the static setting, the goal will be to simulate sig by invoking HVZK with respect to the verification key
vk through a careful chain of technical arguments.

At a very high level, our proof consists of three steps. We first enforce all parties with sid in Round2,
eventually arriving at Round 3, to agree on the same ctntw (call this property (i)). This allows us to argue
that every masked commitment rwi except for the last one is uniform random. To prove property (i), we
use a similar argument to del Pino et al. [dPKM`24], relying on the masks generated with sid and standard
signatures σS,i. We next enforce all parties with ctntw in Round 3, eventually finishing Round 4, to satisfy
two additional properties: (ii) the masks ∆j they use in Round 4 must be computed from the same Hmask

input and (iii) they must all be using the same unique challenge c. This allows us to argue that every masked
response rzi except for the last one is uniform random and that the aggregated response z can be expressed
using the fully secret key s, as opposed to using the secret key shares. To prove properties (ii) and (iii), we
use a similar argument to our TRaccoonsel3-rnd. The final step consists of carefully gluing these properties (i),
(ii), and (iii) together to show that we can consistently embed pw, c, zq simulated by HVZK.

We emphasize that the above is a major simplification of our proof. The simplification arises when we
loosely used the term “every masked commitment rwi (and masked response rzi) except the last one is uniform
random”. Since the adversary is adaptive, the last masked commitment and response are not known in
advance to the reduction. To make matters worse, we have to consider situations where the last commitment
is rwi while the last response is rzj for a different party i ‰ j. This highly non-trivializes the final step
of consistently embedding pw, c, zq into the security game. We provide a more detailed proof overview
in Section 6.2.

10

Removing States with One More Round. Our 4-round threshold signature TRaccoonadp4-rnd required to
maintain state so that the same sid is never reused. We remove this restriction and construct a stateless
scheme by adding one more round, resulting in our 5-round threshold signature TRaccoonadp5-rnd. The idea
is very simple: In the first round, each party i broadcasts a random string stri. The parties then set
sid “ pstrjqjPSS and proceeds as in TRaccoonadp4-rnd. The main observation is that since sid contains a uniform
random string stri sampled by party i, it is guaranteed to be distinct from prior sid’s. Since the first round
can be performed without knowing the signer set SS or the message M, it can be preprocessed, making the
online phase of TRaccoonadp5-rnd 4-round.

1.3 Related Works
We provide a brief overview of related works in the area of threshold signatures.

Threshold Signatures

We give an overview of threshold signatures from the literature. The below schemes are roughly classified
by the underlying security assumptions. In particular, we will focus on adaptively secure schemes later.

Post-Quantum. Boneh et al. [BGG`18] and Agrawal, Stehlé, and Yadav [ASY22] proposed the one-round
lattice-based threshold signature. Both rely on threshold fully homomorphic encryption (FHE). Gur, Katz,
and Silde [GKS23] constructed a two-round threshold signature by using threshold linear homomorphic
encryption and homomorphic trapdoor commitment [GVW15, DOTT21]. In a subsequent advancement,
del Pino et al. [dPKM`24] proposed a three-round lattice-based threshold signature without using such
heavy cryptographic tools. Recently, Espitau et al. [ENP24] proposed a lattice-based hash-and-sign robust
threshold signature scheme with robust distributed key generation by constructing a verifiable (short) secret
sharing scheme without relying on FHE. Bendlin et al. [BKP13] constructed a threshold signature scheme
based on the GPV signature [GPV08] by relaying on generic multi-party computation (MPC). Khaburzaniya
et al [KCLM22] proposed a threshold signature scheme based on hash-based signatures by using STARKs.
Some works [CS20, DM20] proposed isogeny-based threshold signatures, which only achieve sequential ag-
gregation.

DL-Based. Stinson and Strobl [SS01], and Gennaro et al. [GJKR07] constructed threshold Schnorr sig-
natures with a signing protocol of at least 4 round. Both works rely on distributed key generation (DKG)
to generate randomness within the signing protocol which impacts the number of rounds. Komlo and Gold-
berg [KG20] proposed FROST, a two round threshold signature scheme. Later, FROST was proven secure
under the one-more DL (OMDL) assumption by Bellare et al. [BCK`22]. Tessaro and Zhu [TZ23] con-
structed a variant of FROST based on the DL assumption. Lindell [Lin22] proposed a three-round threshold
Schnorr signature and proved its security in the UC model. Recent works [CKM23, BLT`24] constructed
adaptively secure three round threshold signature schemes.

Others. Boldyreva [Bol03] constructed a pairing-based threshold signature based on BLS signatures [BLS01].
Later, it was proven to achieve a slightly stronger notion of security by [BTZ22]. The adaptive security for
pairing-based threshold signatures are studied in [LJY14, BL22, DR23]. Several works proposed selectively
secure RSA-based threshold signatures [DDFY94, Rab98, FMY98, Sho00, ADN06, GHKR08, TZ23] and
threshold ECDSA signatures [GGN16, LN18, GG18, DKLs19, DJN`20, GG20, CGG`20, CCL`20, GKSŚ20].

Threshold Signatures with Adaptive Security

Adaptive security is a stronger notion of security for threshold signatures compared to selective security.
Recall that selective security means that the adversary fixes the set of corrupted users before it can query
signing oracles in the security game. In the adaptive setting, the signer can corrupt up to T ´1 signers at an
arbitrary point throughout the security game. The challenger then has to reveal the state of the corrupted

11

signer. This signer state includes the randomness used throughout the signing sessions which makes proving
security challenging. To show adaptive security, it is possible to guess the set of corrupted signers CS for
N -out-of-N threshold signatures with a polynomial loss. However, guessing CS leads to an exponentially
large loss in security for T -out-of-N threshold signatures. While adaptively secure RSA-based [ADN06] and
ECDSA [CGG`20] threshold signatures were proposed, both adopt the N -out-of-N setting.

Some adaptively secure T -out-of-N threshold signatures were proposed so far. The lattice-based threshold
signature proposed in [ASY22] achieves adaptive security. More precisely, in the random oracle model,
[ASY22] achieves only partial adaptive security, i.e., the adversary has to fix the set of corrupted users at
once (but can do so adaptively). Without the random oracle model, [ASY22] achieves full adaptive security
at the cost of additional preprocessing.

Libert, Joye, and Yung [LJY14] constructed an adaptively secure pairing-based threshold signature. Re-
cently, Bacho and Loss [BL22] showed that threshold BLS is adaptively secure under the OMDL assumption
in the AGM. Subsequently, Das and Ren [DR23] showed that threshold BLS is adaptively secure under the
DDH and co-CDH assumptions in asymmetric pairing group.

Canetti et al. [CGJ`99] proposed an adaptively secure threshold signature scheme based on the digital
signature standard (DSS) by assuming secure erasures. To prove the security, they used a technique for
proving adaptive security called single-inconsistent-player (SIP). While this technique ensures that the simu-
lation works well unless an inconsistent user is corrupted, it requires all N users to participate in the signing
protocol. This requirement is often acceptable when considering robustness, which will be described be-
low. Lysyanskaya and Peikert [LP01] constructed an erasure-free threshold Cramer-Shoup signature scheme,
whose security is proved using the SIP technique. Abe and Fehr [AF04] proposed erasure-free threshold DSS
and Schnorr signature schemes and proved their security in the relaxed UC framework cased the SIP UC
model.

Crites, Komlo, and Maller [CKM23] proposed the three round adaptively secure threshold Schnorr signa-
ture scheme Sparkle based on the algebraic OMDL assumption in the AGM. Without the AGM, it is only half
adaptively secure (i.e., the number of corrupt signers is limited to T {2). Bacho et al. [BLT`24] constructed
the adaptively secure scheme Twinkle based on the DDH assumption. Their result relies on adapting the
underlying signature scheme to not rely on rewinding (and their scheme is not a classical Schnorr signature).

Robustness and Identifiable Abort

The robustness property ensures that a valid signature can be obtained from the signing protocol, even if
a malicious signer participates. In [RRJ`22, BHK`23, Sho23, GS23], selective secure and robust threshold
Schnorr threshold signature schemes are proposed. Another useful property is identifiable abort. Identifiable
aborts enable the detection of malicious parties when the singing protocol aborts. Canetti et al. [CGG`20]
constructed threshold ECDSA with identifiable abort.

The lattice-based schemes [BGG`18, ASY22] satisfy the robustness and identifiable abort properties by
relying on homomorphic signatures. The adaptively secure Schnorr-like threshold signatures Sparkle and
Twinkle do not achieve robustness but satisfy the identifiable abort property. The latter is possible because
Sparkle and Twinkle publish a partial verification keys that allows to verify individual protocol messages. As
discussed, publishing a partial verification key seems at odds with rewinding-based adaptive security proofs.
Consequently, our constructions do not satisfy this property.

Distributed Key Generation

If we can ensure the existence of a trusted dealer, we can easily distribute secret key shares. On the other
hand, instead of relying on a trusted dealer, we can use multi-party computation to generate key shares. Many
works have studied DL-based distributed key generation (DKG) protocols [Ped92, CGJ`99, JL00, GJKR07,
KMS20, DYX`22, KGS23]. In particular, adaptive security is considered in [CGJ`99, JL00, KMS20]. In
[GKS23], a lattice-based DKG protocol to set up key shares with respect to a LWE-type verification key was
proposed.

12

2 Preliminary
We provide a some backgrounds. Standard definitions and primitives are provided in Appendix A.

2.1 Notations
We use lower (resp. upper) case bold fonts v (resp. M) for vectors (resp. matrices). We always view vectors
in the column form. We use vi (resp. mi) to indicate the i-th entry (resp. column) of v (resp. M). For
pv,Mq P Rℓ

q ˆRkˆℓ
q , vJ dM denotes the column-wise multiplication: rv1 ¨M1 | ¨ ¨ ¨ | vℓ ¨Mℓs. We denote by

US the uniform distribution over some set S. We write x „ D if a random variable x follows the distribution
D.

2.2 Threshold Signatures
We define R round threshold signatures. Let N be the number of total signers and T be a reconstruction
threshold s.t. T ď N . Also, let SS be a signer set such that SS Ď rN s with size T . Each signer i P rN s

maintains a state sti to retain short-lived session specific information.

Setupp1λ, N, T q Ñ tspar: The setup algorithm takes as input a security parameter 1λ, the number N of total
signers, and a reconstruction threshold T ď N and outputs a public parameter tspar. We assume tspar
includes N and T .

KeyGenptsparq Ñ pvk, pskiqiPrNsq: The key generation algorithm takes as input a public parameter tspar and
outputs a verification key vk, and secret key shares pskiqiPrNs. It implicitly sets up an empty state
sti :“ H for all N signers. We assume vk includes tspar.

Sign “ pSign1, ¨ ¨ ¨ ,SignR,Aggq: The signing algorithms for the signing protocol of R round threshold signa-
tures consist the following pR ` 1q algorithms.

Signrpvk,SS,M, i, ppmr´1,jqjPSS, ski, stiq Ñ ppmr,i, stiq: The signing algorithm for the rth round for r P

rRs takes as input a verification key vk, a signer set SS, a message M, an index i of a signer, a
tuple of protocol messages of the pr´1qth round ppmr´1,jqjPSS, a secret key share ski, and a state
sti of the signer i and outputs a protocol message pmr,i for the second round and an updated
state sti. Note that pm0,j is K for all j P SS. If the round r can be executed before deciding SS
and/or M, Signr does not take as input them.

Aggpvk,SS,M, ppmr,iqrPrRs,iPSSq Ñ sig: The aggregation algorithm takes as input a verification key vk,
a signer set SS, a message M, and a tuple of protocol messages ppmr,iqrPrRs,iPSS and outputs a
signature sig.

Verifypvk,M, sigq Ñ 1 or 0: The verification algorithm takes as input a verification key vk, a message M, and
a signature sig, and outputs 1 if sig is valid and 0 otherwise.

Below, we define the correctness of a R round threshold signature scheme.

Definition 2.1 (Correctness). We say that a R round threshold signature scheme TS satisfies correctness
if, for all λ P N, N,T P polypλq s.t. T ď N , message M, and SS Ď rN s s.t. |SS| “ T , the following
respectively hold:

Pr
“

Gamets-corTS p1λ, N, T,M,SSq “ 1
‰

ě 1 ´ neglpλq,

where Gamets-corTS3
are shown in Fig. 1.

13

Gamets-corTS p1λ, N, T,M,SSq

1 : for i P SS do sti :“ H

2 : tspar $
Ð Setupp1λ, N, T q

3 : pvk, pskiqiPrNsq
$

Ð KeyGenptsparq

4 : for i P SS do pm0,i :“ K

5 : for r P rRs do

6 : for i P SS do

7 : ppmr,i, stiq
$

Ð Signrpvk, SS,M, i, ppmr´1,jqjPSS, ski, stiq

8 : sig $
Ð Aggpvk, SS,M, ppmr,iqrPrRs,iPSSq

9 : return Verifypvk,M, sigq

Figure 1: Correctness game for a R round threshold signature scheme.

2.2.1 Selective Security

In the selective setting, an adversary A determines the set CS of users to be corrupted at the beginning of
the security game (after obtaining the parameters tspar). After this, it is not allowed to corrupt more honest
user during the game. The challenger executes the key generation after CS is determined. It then provides
A with the verification key and secret key shares of corrupted users as input. It also provides access to
signing oracles for each round. In the end, A outputs a signature-message pair psig˚,M˚q that constitutes
the forgery. The adversary A wins the game if psig˚,M˚q is deemed non-trivial. We refer to Appendix A.1.1
for a formal definition based on [CKM23]. Note that we use a stronger security model, i.e., we classify more
forgeries as non-trivial. We discuss this in more detail below.

2.2.2 Adaptive Security

We define the adaptive security of threshold signature schemes. In the adaptive setting, an adversary is
allowed to corrupt a signer at any time via a corruption oracle OCorrupt. The oracle OCorrupt receives an index
i of a honest signer and returns the secret key share ski and the state sti of the ith signer.

Our definition of adaptive security is based on the game-based definition for a three round scheme provided
by [CKM23]. While the corruption rate τ is considered in the definition in [CKM23], in which an adversary
allowed to corrupt at most tpt ´ 1q{τ u honest signers, we do not consider this since we only consider full
adaptive security, i.e., τ “ 1.

Also, we only consider a forgery psig˚,M˚q as trivial if at least T ´ |CS| honest users complete the signing
protocol on M˚. Thus, even if A queried M˚ in the last round for less than T ´ |CS| honest users, we consider
a signature on M˚ a valid forgery.

Now we define the adaptive security for a R round threshold signature scheme.

Definition 2.2 (TS-UF-1 Adaptive Security). For a R round threshold signature scheme TS, the advan-
tage of an adversary A (with oracle access to a random oracle H) against the adaptive security of TS is
defined as

Advts-adp-ufTS,A p1λ, N, T q “ PrrGamets-adp-ufTS,A p1λ, N, T q “ 1s,

where Gamets-adp-uf is described in Fig. 2, respectively. We say that TS is adaptive secure in the random
oracle model if, for all λ P N, N,T P polypλq s.t. T ď N and PPT adversary A, Advts-adp-ufTS,Ap1λ, N, T q ď

neglpλq holds.

Remark 2.3 (Non-trivial forgeries). We consider a stronger notion of security than previous game-based
definitions of adaptive security of threshold signatures [CKM23, BLT`24]. In previous definitions, a forgery

14

Gamets-adp-ufTS,A p1λ, N, T q

1 : QMr¨s “ H // No message was signed yet

2 : tspar $
Ð Setupp1λ, N, T q

3 : HS :“ rN s,CS :“ H

4 : for i P HS do sti :“ H

5 : pvk, pskiqiPrNsq
$

Ð KeyGenptsparq

6 : psig˚,M˚
q

$
Ð ApOSignr

qrPrRs,OCorrupt,Hpvkq

7 : req J
∣∣QMrM˚

s Y CS
∣∣ ď T ´ 1K

8 : return Verifypvk,M˚, sig˚
q

OCorruptpiq

1 : req Ji P HSK ^ J|CS| ď T ´ 1K
2 : HS :“ HSztiu

3 : CS :“ CS Y tiu

4 : return pski, stiq

OSignr pSS,M, i, ppmr´1,jqjPSSq

// r P rRs, pm0,j “ K for all j P SS.

1 : req JSS Ď rN sK ^ Ji P HS X SSK

2 : ppmr,i, stiq
$

Ð Signrpvk,SS,M, i, ppmr´1,jqjPSS, ski, stiq

3 : if Jr “ RK then QMrMs Ð QMrMs Y tiu

4 : return pmr,i

Figure 2: Adaptive security game for a R round threshold signature scheme, where H denotes the random
oracle. In the above, the oracles return K to A when Signr outputs K for r P rRs (i.e., fail to output a
protocol message or a partial signature).

psig˚,M˚q is considered trivial if any signing oracle was queried for message M˚ at least once. If we loosely
follow the classification of security definitions for threshold signatures given in [BCK`22], our definition
corresponds to the notion TS-UF-1, but adapted to the adaptive setting with R rounds. For reference, the
definition considered in [dPKM`24, BLT`24] corresponds to the weaker notion TS-UF-0 and we provide a
definition in Appendix A.1.2

Finally, we note that it is straightforward to adapt our proofs to the strongest notion TS-UF-4 [BCK`22].
We discuss this briefly in the security proof (cf. Footnote 6). Nevertheless, we consider TS-UF-1 to for
simplicity 4. In the following, we refer with threshold signature security to TS-UF-1 (cf. Definition 2.2)
unless specified otherwise.

Remark 2.4 (Security model with a stateful session identifier). Our security models above are stateless. We
also consider a security model with session identifier sid. In such a security model, the adversary additionally
provides sid when querying a signing oracle. If sid has already been used for honest user i in the queried
round, the challenger returns K. As a consequence, all users are required to store the all used sid to avoid
reuse of some sid, i.e., the signers are stateful. Our 4 round threshold signature schemes TRaccoonadp4-rnd and
TSchnorradp4-rnd are proven adaptively secure in this security model with a stateful sid (see Sections 5.4 and 7.4,
for the details). This stateful model is considered to show security of some threshold signature schemes, e.g.,
the adaptively secure group-based threshold signature scheme Twinkle [BLT`24] and the selectively secure
lattice-based threshold signature scheme [dPKM`24].

2.3 Linear Secret Sharing
We recall the linear Shamir secret sharing scheme [Sha79]. Let N ă q be an integer such that for distinct
i, j P rN s, pi ´ jq is invertible over Zq. Let S Ď rN s be a set of cardinality at least T . Then, given i P S, we
define the Lagrange coefficient LS,i as

LS,i :“
ź

jPSztiu

´j

i ´ j
.

4The definition of TS-UF-4 in [BCK`22] relies on the notion of a leader request lr which is more tricky to define for R round
schemes. The notion TS-UF-1 is simpler and allows us to avoid definitional subtleties in our involved proofs.

15

Let s P Rq be a secret to be shared, P P RqrXs a degree T ´ 1polynomial such that P p0q “ s. Given
any set of evaluation points E “ tpi, yiquiPS such that yi “ P piq for all i P S, we note that

s “
ÿ

iPS

LS,i ¨ yi.

The notations naturally extend to secrets that are in vector form. With a slight abuse of notation, we say
P⃗ P Rℓ

qrXs is of degree T ´ 1 if each entry of P⃗ is a degree T ´ 1 polynomial. Moreover, P⃗ pxq denotes the
evaluation of each entry of P⃗ on the point x.

2.4 Lattices, Gaussians, and Rounding
For integers n, q P N we define the ring R as ZrXs{pXn ` 1q and Rq as R{qR. For a positive real σ, let
ρσpzq “ exp

´

´
∥z∥2

2σ2

¯

. The discrete Gaussian distribution over Zn and standard deviation σ is defined by

its probability distribution function: DS,σpzq “
ρσpzq

ř

z1PZn ρσpz1q
. We may simply note Dσ. Lastly, we provide

a useful bound on the norm of discrete Gaussians. Is due to [dPKM`24, Lemma 3.4], which is a standard
tail-cut bound (see for example [MR04, Lyu12]) combined with the Minkowski’s inequality.

Lemma 2.5. For s $
Ð Dk

σ and v P R, we have

Pr
”

∥v ¨ s∥2 ě e1{4∥v∥1σ ¨
?
nk

ı

ď 2´ nk
10 .

Similarly to [dPEK`23, dPKM`24], we rely on rounding for efficiency purpose. Below, we provide a
minimal preparation and omit the formal treatment to Appendix A.2. For a positive integer q and ν such
that q ą 2ν , we define qν “ tq{2νu. We then define the rounding function as follows:

t¨sν : Zq ÞÑ Zqν s.t. txsν “ tx̄{2νs ` qνZ,

where x̄ P r0, 1, ¨ ¨ ¨ , q ´ 1s denotes the canonical unsigned representation (or the so-called lift) of x P Zq.
The function t¨sν naturally extends to vectors coefficient-wise.

2.5 Hardness Assumptions
2.5.1 Lattice-based Assumptions

We rely on two lattice-based assumptions: the hint MLWE (Hint-MLWE) and self-target MSIS (SelfTargetMSIS)
assumptions. Both assumptions are reduced from the standard MLWE and MSIS assumptions, and in par-
ticular, are merely useful intermediate assumptions to aid the security proof (see Appendix A.3 for the
formal statements). They have been used by the three-round selective threshold Raccoon by del Pino et
al. [dPKM`24].

The Hint-MLWE problem, introduced in [KLSS23], is defined similarly to MLWE, except that the adversary
also obtains some noisy leakage of the MLWE secrets. This is useful when invoking honest-verifier zero-
knowledge, which unlike in the group setting, is not perfectly indistinguishable from the real transcript. The
Hint-MLWE problem is known to be as hard as MLWE for the parameter settings we are interested in.

Definition 2.6 (Hint-MLWE). Let ℓ, k, q,Q be integers, D,G be probability distributions over Rq, and
C be a set over Rq. The advantage of an adversary A against the Hint Module Learning with Errors
Hint-MLWEq,ℓ,k,Q,D,G,C problem is defined as:

AdvHint-MLWE
A pλq “

ˇ

ˇ

ˇ
Pr

”

1 Ð A
´

A,A ¨ s ` e, pci, zi, z
1
iqiPrQs

¯ı

´ Pr
”

1 Ð A
´

A,b, pci, zi, z
1
iqiPrQs

¯ı
ˇ

ˇ

ˇ

where pA,b, s, eq Ð Rkˆℓ
q ˆRk

q ˆDℓ ˆDk, ci Ð C for i P rQs. Moreover, pzi, z
1
iq “ pci ¨ s` ri, ci ¨ e` e1

iq

where pri, e
1
iq Ð Gℓ ˆ Gk for i P rQs. The Hint-MLWEq,ℓ,k,Q,D,G,C assumption states that any efficient

adversary A has negligible advantage. We may write Hint-MLWEq,ℓ,k,Q,σD,σG ,C as a shorthand when D and
G are the discrete Gaussian distributions of standard deviation σD and σG, respectively.

16

The self-target MSIS (SelfTargetMSIS) problem [DKL`18, KLS18] is a variant of the standard MSIS prob-
lem, where the problem is defined relative to some hash function modeled as a random oracle. Using the
forking lemma [FS87, BN06], it is easily shown to be equivalent to the MSIS problem (see Appendix A.3).
This has also been used by the signature scheme Dilithium [DKL`18], recently selected by NIST for stan-
dardisation.

Definition 2.7 (SelfTargetMSIS). Let ℓ, k, q be integers and Bstmsis ą 0 be a real number. Let C be a subset
of Rq and let H : Rk

q ˆ t0, 1u2λ Ñ C be a cryptographic hash function modeled as a random oracle. The
advantage of an adversary A against the Self Target MSIS problem, noted SelfTargetMSISq,ℓ,k,C,Bstmsis

, is
defined as:

Adv
SelfTargetMSIS
A pλq “ Pr

”

A $
Ð Rkˆℓ

q , pM, zq
$

Ð AHpAq : pM, zq P t0, 1u
2λ

ˆ Rℓ`k
q

^

ˆ

z “

„

c
z1

ȷ˙

^ p}z}2 ď Bstmsisq ^ H
`“

A | I
‰

¨ z, M
˘

“ c
‰

.

The SelfTargetMSISq,ℓ,k,C,Bstmsis
assumption states that any efficient adversary A has no more than negligible

advantage.

The following is an immediate application of the regularity lemma [LPR13]. [dPKM`24] provides a
formal case for rep “ 1 but generalizes easily to any rep.

Lemma 2.8. For any σ ą

b

logp2n¨maxtℓ,kuq`λ
π and

?
rep ¨ σ ą 2n ¨ q

1
k`ℓ ` 2

nℓ and ν ă logpqq ´ 2, the following
holds with all but probability 2´λ:

Pr
A

$
ÐRkˆℓ

q

rH8

`

Dbd-MLWE
q,ℓ,k,σ,rep,νpAq

˘

ě n ´ 1s ě 1 ´ 2´n`1.

2.5.2 Group-Based Assumption

We use the variant of the discrete logarithm (DL) assumption: the self-target DL (SelfTargetDL) assumption.
The SelfTargetDL problem is an interactive discrete logarithm assumption introduced in [KMP16], which
we renamed for consistency with the SelfTargetMSIS problem. Originally, the hardness of the SelfTargetDL
problem was analyzed in the generic group model [KMP16]. Bellare and Dai later proved that this assumption
is reduced from the standard DL assumption in [BD21] (see Appendix A.4).

Let GenG be an algorithm that on input 1λ, outputs a tuple pG, p,Gq, where G is a generator of cyclic
group G of prime order p.

Definition 2.9. Let pG, p,Gq Ð GenGp1λq. Let H : G2ˆt0, 1u2λ Ñ Zp be a cryptographic function modeled as
a random oracle. The advantage of an adversary A against the Self Target DL problem, noted SelfTargetDL,
is defined as:

AdvSelfTargetDL
A pλq “ Pr

„

x $
Ð Zp

X :“ x ¨ G,
pM, zq

$
Ð AHpXq :

pM, zq P t0, 1u2λ ˆ Zp

^ HpX, z ¨ G ´ c ¨ X,Mq “ c

ȷ

.

The SelfTargetDL assumption states that any efficient adversary A has no more than negligible advantage.

3 Construction of Our 3-Round Threshold Raccoon

In this section, we present our 3-round threshold signature scheme TRaccoonsel3-rnd, a thresholdized version of
the NIST submission Raccoon by del Pino et al. [dPEK`23]. We show in Section 4 that TRaccoonsel3-rnd is
selectively secure under the Hint-MLWE and MSIS assumptions. Our protocol is only a slight adaptation of
the 3-round threshold Raccoon by del Pino et al. [dPKM`24], and notably, the hardness assumptions and
the concrete parameters we rely on are exactly the same as theirs. The main novelty is the new security
analysis due to the modification in the scheme.

17

3.1 Parameters and Preparations
For reference, we provide the parameters of TRaccoonsel3-rnd in Table 3. Our protocol relies on the same
parameters as those by del Pino et al. [dPKM`24, Section 7.1]. For completeness, we provide a candidate
parameter selection in Appendix D.

Parameter Explanation
Rq Polynomial ring Rq “ ZrXs{pq,Xn ` 1q

pk, ℓq Dimension of public matrix A P Rkˆℓ
q

pDt, σtq Gaussian distribution with width σt used for the verification key t
pDw, σwq Gaussian distribution with width σw used for the commitment w

νt Amount of bit dropping performed on verification key
νw Amount of bit dropping performed on (aggregated) commitment

pqνt , qνwq Rounded moduli satisfying pqνt , qνwq :“ ptq{2νtu, tq{2νw uq “ ptq{2νts , tq{2νw sq

pC Ă Rq,W q Challenge set tc P Rq | ∥c∥8 “ 1 ^ ∥c∥1 “ W u s.t. |C| ě 2λ

B Two-norm bound on the signature

Table 3: Overview of parameters used in TRaccoonsel3-rnd, TRaccoon
adp
4-rnd, and TRaccoonadp5-rnd.

We also prepare a helper algorithm called zero share pZeroShareq to simplify the presentation of the
protocol. While the underlying property of ZeroShare has been implicitly used in prior threshold signatures
based on Raccoon [dPKM`24, EKT24]5, we make this explicit. We believe this abstraction fosters a more
intuitive understanding of our protocol, particularly for our adaptively secure 5-round variant. Concretely,
each user is given a tuple of random strings of the form ⃗seedi “ pseedi,j , seedj,iqjPrNs at the setup. For any set
SS Ď rN s, we denote ⃗seedirSSs as the tuple pseedi,j , seedj,iqjPSS. The helper algorithm ZeroShare is defined
with respect to a random oracle Hmask with range Rℓ

q. For any ⃗seedirSSs and string x P t0, 1u˚, it is defined
as follows:

ZeroSharep ⃗seedirSSs, xq :“
ÿ

jPSSztiu

`

Hmaskpseedj,i, xq ´ Hmaskpseedi,j , xq
˘

.

Looking ahead, we use ∆i :“ ZeroSharep ⃗seedirSSs, xq to mask the response zi P Rℓ
q. We will extensively use

the following easy to check fact:
ÿ

iPSS

ZeroSharep ⃗seedirSSs, xq “
ÿ

iPSS

∆i “ 0. (1)

Moreover, observe that from an adversary without knowledge of p ⃗seedirSSsqiPSS, each ∆i is distributed
uniformly over Rℓ

q conditioned on their sum being 0. In the remainder of the document, we may call ∆i as
a mask or zero share interchangeably.

3.2 Construction
The construction of our 3-round threshold signature TRaccoonsel3-rnd is provide in Fig. 3. Our scheme uses
three hash functions modeled as a random oracle in the security proof. Hcom : t0, 1u˚ Ñ t0, 1u2λ is used to
generate the hash commitment. Hc : t0, 1u˚ Ñ C is used to generate the random challenge polynomial for
which the users reply with a response. Hmask : t0, 1u˚ Ñ Rℓ

q is used to generate the random vectors to mask
the individual response. We give a brief overview of the protocol below.

The setup algorithm outputs system parameters tspar “ pA, N, T q for some random A $
Ð Rkˆℓ

q . The
verification key is tspar and a (rounded) MLWE instance t “ tAs ` esνt

P Rk
qνt

. The secret keys are of the

5To be precise, the way del Pino et al. [dPKM`24] implements the ZeroShare algorithm is slightly different from our
abstraction. However, this is a superficial difference and our formalization allows for a slightly better communication cost as
we remove broadcasting one element in Rℓ

q .

18

form ski “ psi, ⃗seediq, where si is a share of s and ⃗seedi are seeds for ZeroShare. Importantly, the verification
key and the verification algorithm are identical to Raccoon [dPEK`23]. The signing protocol proceeds in 3
rounds as follows:

Round 1. Signer i samples a commitment wi :“ Ari ` e1
i, where pri, e

1
iq

$
Ð Dℓ

w ˆ Dk
w, and outputs a hash

commitment cmti :“ Hcompi,wiq.

Round 2. Signer i obtains the hash commitments pcmtjqjPSS and opens cmti by sending wi.

Round 3. Signer i checks that for all j P SS, the hash commitments cmtj are opened correctly by signer j,
i.e., cmtj “ Hcompj,wjq. If the check passes, it computes the aggregate commitment w :“

Y

ř

jPSS wj

U

νw

,

else it aborts. Then, it sets ctntz :“ SS||M||pcmtj ,wjqjPSS, computes the challenge c :“ Hcpvk,M,wq

and outputs the masked response rzi :“ c¨LSS,i¨si`ri`∆i, where ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

and LSS,i is the Lagrange coefficient.

The aggregate algorithm computes the response z :“
ř

jPSS rzj , y :“ tAz ´ 2νt ¨ c ¨ tsνw
, hint h :“ w ´ y,

and outputs sig “ pc, z,hq, where w and c are computed as above. Importantly, the final signature is a
valid Raccoon signature. While it looks quite complicating on first glance, the hint h and multiplying of
c ¨ t by 2νw are simply there to compensate for the error induced by the rounding in the verification key t
and the aggregate commitment w. Specifically, these are simply used for optimization purpose, inherited by
Raccoon [dPEK`23], and will not appear for instance in the threshold Schnorr signatures (see Section 7).

Lastly, let us summarize the main differences between the 3-round selective threshold signature by del
Pino et al. [dPKM`24].

• They compute “half” of the zero share (i.e.,
ř

jPSSztiu Hmaskpseedj,i, xq) in the first round and the other
half in the third round. By altering the input to the algorithm ZeroShare, we are able to push everything
into the third round. This allows us to reduce the first round communication cost by Rℓ

q per user.

• They require a unique session identifier sid to be broadcast at the beginning of first round to derive the
zero share, and importantly, parties must maintain state so as not to reuse sid. Our protocol replaces
sid with pwjqjPSS defined in the third round. Using the fact that a signer i never samples the same wi,
the scheme can be made stateless.

• They require a standard signature scheme or a MAC to sign the second round message. This is used
to argue consistency of the users’ view in the security proof; indeed, without it the scheme becomes
insecure. We are able to remove this by relying on the above modification of the zero shares and
arguing through a new security proof.

We emphasize that the first two tricks have been used in a recent two-round (stateless) selective threshold
signature by [EKT24]. What is new to this work is our security proof, which is non-trivialized by the fact
that we have one extra round; [EKT24] relies on a new algebraic one-more MLWE assumption and can be
viewed as a lattice-variant of the two-round threshold Schnorr protocol Frost [KG20].

3.3 Correctness
The following establishes the correctness of our protocol.

Lemma 3.1 (Correctness). The 3-round threshold signature TRaccoonsel3-rnd in Fig. 3 is correct if νw ě 4
and:

B “ e1{4 ¨ pW σt `
?
T σwq

a

npk ` ℓq ` pW ¨ 2νt ` 2νw`1q ¨
?
nk.

Proof. The proof is almost identical to those provided in del Pino et al. [dPKM`24, Lemma 7.1] as we use
the same parameters. The only difference between their protocol and ours is how the shares are generated.

19

Setupp1λ, N, T q

1 : A $
Ð Rkˆℓ

q

2 : tspar :“ pA, N, T q

3 : return tspar

KeyGenptsparq

1 : ps, eq
$

Ð Dℓ
t ˆ Dk

t

2 : t :“ tAs ` esνt
P Rk

qνt

3 : for i P rN s do

4 : for j P rN s do

5 : randi,j
$

Ð t0, 1u
λ

6 : seedi,j :“ i}j}randi,j

7 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

8 : P⃗ $
Ð Rℓ

qrXs with degpP⃗ q “ T ´ 1, P⃗ p0q “ s

9 : psiqiPrNs :“ pP⃗ piqqiPrNs

10 : vk :“ ptspar, tq

11 : pskiqiPrNs :“
`

si, ⃗seedi
˘

iPrNs

12 : return pvk, pskiqiPrNsq

Aggpvk,SS,M, ppmb,jqpb,jqPr5sˆSSq

1 : parse pwj ,rzjqjPSS Ð ppm2,j , pm3,jqjPSS

2 : w :“

[

ÿ

jPSS

wj

W

νw

3 : z :“
ÿ

jPSS

rzj P Rℓ
q

4 : c :“ Hcpvk,M,wq

5 : y :“ tAz ´ 2νt ¨ c ¨ tsνw P Rk
qνw

6 : h :“ w ´ y P Rk
qνw

7 : return sig :“ pc, z,hq

Verifypvk,M, sigq

1 : parse pc, z,hq Ð sig

2 : c1 :“ Hcpvk,M, tAz ´ 2νt ¨ c ¨ tsνw ` hq

3 : if Jc “ c1K ^ J∥pz, 2νw ¨ hq∥2 ď BK then

4 : return 1

5 : return 0

Sign1pvk, i, ski, stiq

1 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

2 : wi :“ Ari ` e1
i P Rk

q

3 : cmti :“ Hcompi,wiq

4 : sti Ð sti Y tpcmti,wi, riqu

5 : return ppm1,i :“ cmti, stiq

Sign2pvk,SS,M, i, ppm1,jqjPSS, ski, stiq

1 : req JSS Ď rN sK ^ Ji P SSK
2 : req Jppm1,i, ¨, ¨q P stiK

3 : pick pcmti,wi, riq from sti

with pm1,i “ cmti

4 : sti Ð stiztpcmti,wi, riqu

5 : sti Ð sti Y tpSS,M, pcmtjqjPSS,wi, riqu

6 : return p pm2,i :“ wi , stiq

Sign3pvk,SS,M, i, ppm2,jqjPSS, ski, stiq

1 : req JpSS,M, ¨, pm2,i, ¨q P stiK

2 : parse
`

si, ⃗seedi
˘

Ð ski

3 : parse pwjqjPSSztiu Ð ppm2,jqjPSSztiu

4 : pick pSS,M, pcmtjqjPSS,wi, riq from sti

with pm2,i “ wi

5 : req J@j P SS, cmtj “ Hcompj,wjqK
6 : ctntz :“ SS||M||pcmtj ,wjqjPSS

7 : w :“

[

ÿ

jPSS

wj

W

νw

P Rk
qνw

8 : c :“ Hcpvk,M,wq // c P C

9 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

10 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

11 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

12 : return ppm3,i :“ zi, stiq

Figure 3: Our 3-round selective secure threshold signature TRaccoonsel3-rnd. The differences between the
3-round selective threshold signature by del Pino et al. [dPKM`24] is highlighted in blue.

20

By using Eq. (1) and using the correctness of the Shamir secret sharing scheme, the response can be written
as follows:

z :“
ÿ

jPSS

rzj “
ÿ

jPSS

c ¨ LSS,i ¨ si ` ri ` ∆i “ c ¨ s `
ÿ

jPSS

ri

Since this is exactly the same as those computed in [dPKM`24], correctness is satisfied under the same
parameters as theirs.

4 Selective Security of Our 3-Round Threshold Raccoon

In this section we provide the proof of our 3-round threshold signature TRaccoonsel3-rnd in Fig. 3. Due to the
proof being quite long and involved, we first provide a proof overview in Section 4.1. The formal security proof
appears in Appendix E.1. Below, we provide the main theorem statement of this section establishing the
security of TRaccoonsel3-rnd. The parameters for which the following theorem hold is provided in Appendix D.

Theorem 4.1. The 3-round threshold signature TRaccoonsel3-rnd in Fig. 3 is selectively secure under the
Hint-MLWE and SelfTargetMSIS assumptions.

Formally, for any N and T with T ď N and an adversary A against the selective security game making at
most QHc

, QHcom , QHmask
, and QS queries to the random oracles Hc, Hcom, Hmask, and the signing oracle, respec-

tively, there exists adversaries B and B1 against the Hint-MLWEq,ℓ,k,QS,σt,σw,C and SelfTargetMSISq,ℓ`1,k,Hc,C,Bstmsis

problems, respectively, such that

Advts-sel-ufTRaccoonsel3-rnd,A
p1λ, N, T q ď QHc

¨ Adv
SelfTargetMSIS
B1 p1λq ` AdvHint-MLWE

B p1λq `
QS ¨ pQHcom ` QHc

` 2QSq

2n´1

`
QHmask

2λ
`

pQHcom ` QSq2 ` QHcom

22λ
` neglpλq,

where TimepBq « TimepAq and TimepB1q « TimepAq. From Lemma A.10, we can replace B1 by an adversary
B2 against the MSISq,ℓ`1,k,2B problem with TimepB2q « 2 ¨ TimepB1q such that

Adv
SelfTargetMSIS
B1 pλq ď

b

QHc
¨ AdvMSIS

B2 pλq `
QHc

|C|
.

4.1 Proof Overview
Let us provide the proof overview. Our strategy is to use a hybrid argument to transition to a game,
where the challenger simulates the signing oracles without the secret key shares psiqiPHS. We then embed
an SelfTargetMSIS problem into the verification key and extract a solution from the forgery. We denote by
A the adversary, and by sHS (resp. sCS) the subset of honest users sHS “ SS X HS (resp. corrupt users
sCS “ SS X CS) queried to the signing oracle. We describe the hybrids below.

Game1 to Game3: postpone sampling wi. In Game1 to Game3, the challenger delays sampling wi until
the 2nd round. Instead of committing to wi in OSign1 , the challenger samples a random cmti

$
Ð t0, 1u2λ.

In OSign2 , it samples wi “ Ari ` e1
i as before and programs Hcom such that cmti “ Hcompwi, iq. Also, the

challenger aborts in case there is a collision in Hcom and prepares some tables for bookkeeping in OSign2 . In
more detail:

Game1: This game is identical to the real game.

Game2 : In this game, the challenger outputs a fresh cmti
$

Ð t0, 1u2λ in OSign1 and delays sampling wi until
OSign2 , where Hcom is programmed such that cmti “ Hcompwi, iq. Since wi has high min-entropy, this
change is unnoticeable.

21

Game3: In this game, the challenger aborts if there is a collision in Hcom. Note that the output of Hcom is of
bit-size 2λ, so we can conclude that the abort probability is negligible by a birthday bound argument.

Game4: In this game, the challenger introduces tables UnOpenedHS and SumComRnd in OSign2 , indexed by
ctntw :“ SS}M}pcmtjqjPSS. Note that ctntw represents the signer’s view in OSign2 . None of these
tables are accessed, so the view of A remains identical, but we describe their meaning below. If
UnOpenedHSrctntws ‰ K, then some honest user started round 2 with ctntw and UnOpenedHSrctntws “

ĄsHSw stores the set of honest users ĄsHSw that have not passed round 2 with ctntw. The table
SumComRndrctntws stores the sum of the commitment wi’s randomness ri of honest users i P sHSzĄsHSw,
i.e., honest users that have opened their commitment cmti via OSign2 with respect to ctntw.

Before proceeding, let us remark that the adversary cannot invoke OSign2 (resp. OSign3) twice with the
same value ctntw for a honest user i P sHS except with negligible probability. This is because user i samples
cmti with high min-entropy in OSign1 at random and cmti is part of ctntw. In some sense, this notion of
uniqueness of ctntw is a core reason we can omit the requirement of a unique session identifier (which was
required in [dPKM`24]). This is captured in the following remark.

Remark 4.2. The adversary cannot invoke OSign2 (resp. OSign3) twice with the same value ctntw.

Game5 to Game9: sample rzi at random. In Game5 to Game9, the challenger transitions to a game
where rzi

$
Ð Rℓ

q is sampled at random. Roughly, this is possible because rzi “ zi ` ∆i is masked by
∆i “ ZeroSharep ⃗seedirSSs, ctntzq. Note that not all responses rzi are random in the view of A: the last mask
∆i is fully determined by p∆jqjPSSztiu since all masks sum up to 0 (cf. Eq. (1)). Thus, when i is the last
user to sign with respect to ctntw, then the response rzi is setup consistently in OSign3 , i.e., it respects the
constraint ∆i “ ´

ř

jPSSztiu ∆j .
Note that while in the protocol, the value ctntz serves as input to ZeroShare, the value ctntw uniquely

defines ctntz implicitly due to the binding of the hash commitments. This allows us to interchange ctntw
and ctntz within the security proof when analyzing the distribution of ∆i.

Also, observe that if the views of honest users ctntw were distinct in round 2, then the value ctntz is
distinct in round 3, so all ∆i are distributed at random. This observation is the core reason we can simulate
later: if the view ctntw is identical amongst honest users in round 2, then we can invoke HVZK with respect
to the verification key t and program Hc accordingly. If the view is distinct in round 2, then the reduction
cannot simulate, but since all responses in round 3 are random, this is not required. Our proof structure
handles this by only sampling rzi consistently if i is the last user in round 3 with respect to ctntw. Below,
we show that the last masked response is distributed as follows:

rzi :“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws ´
ÿ

jPsHSztiu

rzj ´
ÿ

jPsCS

∆j , (2)

where rzj is the masked response of user i with ctntw. Recall that SumComRndrctntws “
ř

jPsHS rj stores the
sum of the honest commitment wj ’s randomness.

Game5: In this game, the challenger introduces tables UnSignedHS,Maskz and MaskedResp indexed by ctntw.
None of the tables impact the view of A but we detail their meaning. If UnSignedHSrctntws ‰ K, then it
stores the set of honest users ĄsHSz that have not passed round 3 with ctntw. The tables Maskzrctntw, is
and MaskedResprctntw, is store the mask ∆i and the masked response rzi of user i in OSign3 with ctntw.

Game6: In this game, we expand the definition of ZeroShare in OSign3 . The challenger samples partial
masks mi,j “ Hmaskpseedi,j , ctntzq and mj,i “ Hmaskpseedj,i, ctntzq for j P SSztiu, then sets ∆i “
ř

jPSSztiupmj,i ´ mi,jq. This change is purely conceptual.

Game7: In this game, the challenger samples the partial masks mi,j and mj,i at random for j P ĄsHSzztiu
(and programs Hmask accordingly). Both games are identically distributed in the view of A because

22

seeds seedi,j and seedj,i are hidden from from A and the partial masks have not yet been evaluated for
users in j P ĄsHSz. In the detailed proof, we argue this formally via Remark 4.2.

Game8: In this game, the challenger samples the mask ∆i
$

Ð Rℓ
q in OSign3 , except if ĄsHSz “ tiu, i.e., user i

is the last signer with respect to ctntw. If i is the last signer, it sets

∆i “ ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j . (3)

Both games are identically distributed because: (1) If i is not the last signer for ctntw, then ĄsHSzztiu
contains at least another honest signer j, so mi,j and mj,i are sampled at random from the previous
game. in particular, ∆i “

ř

jPSSztiupmj,i ´mi,jq is distributed uniform random over Rℓ
q. (2) If i is the

last signer for ctntw, then all partial masks are fully determined. Since we have that
ř

jPSS ∆j “ 0
(cf. Eq. (1)), we can reorder the expression to obtain Eq. (3) via the identity Maskzrctntw, js “ ∆j .
Lastly, note that the masked response for each signer i is still defined as in the real game:

rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i. (4)

Game9: In this game, the challenger aborts if in OSign3 the value of challenge c is not unique amongst
invocations with ctntw. The view of A remains identical conditioned on no abort. Note that the hash
commitments pcmtjqjPSS in ctntw fix the commitments wi due to binding. Since c “ Hcpvk,M,wq,
where w :“

Y

ř

jPSS wj

U

νw

, the value of c is fixed by ctntw and the abort probability is negligible.

Game10 : In this game, the challenger instead samples rzi
$

Ð Rℓ
q in OSign3 , except if ĄsHSz “ tiu. If ĄsHSz “ tiu,

then it sets rzi according to Eq. (2). We can show that Game10 and Game9 are identically distributed by
looking at an intermediate game Game9,˚, where instead of sampling ∆i

$
Ð Rℓ

q, we sample ∆˚
i

$
Ð Rℓ

q

and set ∆i :“ ∆˚
i ´ pc ¨ LSS,i ¨ si ` riq. This intermediate game is identically distributed to Game9

as both ∆i and ∆˚
i are uniform random. Also, observe that in Game9,˚, we have that rzi “ ∆˚

i

if ĄsHSz ‰ tiu due to Eq. (4), and rzi as in Eq. (2) otherwise. To see the latter, first substitute
Maskzrctntw, js “ ∆j “ rzj ´ pc ¨ LSS,j ¨ sj ` rjq for all j P sHSztiu in Eq. (3), then substitute the
resulting identity for ∆i in the identity of rzi in Eq. (4). Finally, using the equality s “

ř

jPSS LSS,j ¨ sj
yields Eq. (2). We point out that for the last step, it is crucial that the value c is identical for all users
in round 3 with ctntw. This is guaranteed by the abort condition added in the previous game.

Game11 to Game14: Invoke HVZK. In games Game11 to Game14, we invoke HVZK to simulate the
commitment wi for the last signer i in round 2 with respect to the verification key t. This later allows to
compute the response rzh of the last signer h in round 3 without secret key s. At the end of Game14, the
challenger no longer requires the secret key s to simulate the signing oracles.

Game11: In this game, the challenger chooses a random challenge c $
Ð C before sampling the commitment

wi for the last signer i in round 2 with ctntw. Before outputting wi, the challenger retrieves the other
commitments wj for j P SSztiu from cmtj by searching through all the random oracle queries made to
Hcom. If wj are found, it programs Hc such that Hcpvk,M,wq “ c, where w “

Y

ř

jPSS wj

U

νw

. Further,

the challenger aborts if some wj was not found in round 2, but OSign3 is invoked for all honest users
with ctntw.

Note that since wi has high min-entropy, Hc was never queried with pvk,M,wq before it is programmed,
so the view of A is identically distributed. Let us analyze the probability of an abort. Since the
challenger checks in OSign3 whether each wj is committed in cmtj , the adversary must have found a
preimage for cmtj between the last call to OSign2 with ctntw and the first call to OSign3 with ctntw.
This happens with negligible probability.

23

Game12: In this game, the challenger invokes HVZK with respect to the verification key t to simulate
the commitment wi of the last honest signer i in round 2, and computes the response rzh of the last
honest user h in round 3 in a different manner. Note that the last signers in round OSign2 and OSign3

are not required to be the same, i.e., it can be that h ‰ i. In more detail, in OSign2 if ĄsHSw “ tiu,
after sampling the challenge c, the challenger simulates the commitment-response pair pwi, z˚q, where
z˚ “ c ¨ s ` ri. Also, ri is not added to SumComRndrctntws. Instead, the challenger computes the last
honest response, i.e., if ĄsHSz “ thu in OSign3 , via the simulated response z˚

rzh :“ z˚ ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws ´
ÿ

jPsHSzthu

rzj ´
ÿ

jPsCS

∆j ,

where the simulated response is chosen as above.
The above identity for rzh is obtained by rewriting Eq. (2) using z˚ “ c ¨ s ` ri. Note that it is crucial
that the challenge c—precomputed when the last user i opens its commitment in round 2 to define
z˚—must be identical to the challenge c in round 3 for the last user h. This is guaranteed by the abort
condition in the previous game.

Game13: In this game, the challenger replaces t in the verification key with t :“
Y

pt
U

νt

P Rk
qνt

, where t̂ $
Ð Rk

q .

Also, when setting up the secret key shares, it samples si for j P CS at random, and omits the honest
secret key share in vki “ pK, ⃗seediq for j P HS.
Observe that the challenger in Game11 uses the secret key s only when computing the simulated response
z˚ “ c ¨s`ri in OSign2 for a challenge c randomly chosen by the challenger. Under Hint-MLWE, Game12
and Game13 are indistinguishable. Note that simulated responses z˚ correspond to the provided hints
in Hint-MLWE.

Reduction from SelfTargetMSIS. In Game13, the challenger no longer requires the secret key s to run
the game. When considering the same unforgeability notion as [dPKM`24] (cf. Appendix A.1.2), the rest
of the proof is identical to theirs. For this notion, the reduction is guaranteed that the forgery’s message
M˚ is never queried to any signing oracle. This allows the reduction to simulate Hc in such a way that
it is consistent with the SelfTargetMSIS oracle H for the forgery’s challenge c˚, and consequently we can
recompute a SelfTargetMSIS solution. We refer to the proof by del Pino et al. [dPKM`24, Lemma 7.4] for
more details.

However, if we target the stronger notion of security (c.f. Section 2.2.1), there remains a subtlety.
Observe that Hc is also programmed by the challenger with a random value c in Game13 when simulating a
commitment. This happens before the last round and there is no more guarantee that for A’s forgery, the
associated hash value c˚ is consistent with H. The proof fails.

Instead, we prepare a last intermediate game, where the challenger guesses the hash query associated to
the forgery’s output. Since there are Hc queries in total, this guess is correct with probability 1{QHc

. Further,
before simulating a commitment wi and programming Hc with a random challenge c, the challenger checks
if the corresponding Hc query is identical to the guessed query. If that is the case, the challenger uses the
provided oracle H to sample the challenge c instead. As a result, the simulated response SimResprctntw, is
is not of the correct form. But because the adversary never queries the third round for the last honest user,
the value SimResprctntw, is is never used and the view of A remains unchanged 6.

With this modification, it is straightforward to adapt the proof by del Pino et al. [dPKM`24, Lemma 7.4]
as our scheme has the same verification algorithm as theirs and the final step merely consists of extracting
a solution from the forgery. From Lemma A.10, such an adversary can be used to construct an adversary
against the more standard MSIS problem via the forking lemma [FS87, BN06].

Lastly, we remark that we incur a loss of 1{QHc
in the advantage of solving the SelfTargetMSIS problem

when considering the stronger notion of security. However, this does not affect the concrete parameters of
6Observe that for this argument, it is sufficient that forgeries are considered trivial iff ctntw including the message M˚ was

queried for all honest users in sHS in the last round within a single signing session.

24

del Pino et al. [dPKM`24] as they consider the working factor to deduce the bit-security. That is, they set
the parameters so that the probability of success of an adversary (i.e., advantage of solving SelfTargetMSIS)
divided by the running time, which is larger than QHc

, is less than 2´λ for λ-bits security.

5 Construction of Our 5-Round Threshold Raccoon

In this section, we present our 5-round threshold signature scheme TRaccoonadp5-rnd. We prove that TRaccoonadp5-rnd
is adaptive secure under the Hint-MLWE and MSIS assumptions.

5.1 Parameters and Preparations
The used parameters are identical to TRaccoonsel3-rnd (cf. Section 3) and the threshold protocol by del Pino
et al. [dPKM`24]. We refer the readers to Table 3 for the parameters. Moreover, the correctness and secu-
rity proof relies on the same parameter selection as well, which are provided in Appendix D for completeness.

As in TRaccoonsel3-rnd, we rely on masking via the helper algorithm ZeroShare. We slightly adapt the
definition to our needs. For any set SS Ď rN s, we denote ⃗seedirSSs as the tuple pseedi,j , seedj,iqjPSS. As
before, these seeds are given to the users during key generation. The helper algorithm ZeroShare defined with
respect to a random oracle Hmask. Here, we require that Hmask has variable range. Then, for any ⃗seedirSSs

and string x P t0, 1u˚, ProgramZeroShare is defined as follows:

ZeroSharep ⃗seedirSSs, xq :“
ÿ

jPSSztiu

`

Hmaskpseedj,i, xq ´ Hmaskpseedi,j , xq
˘

,

where Hmask outputs vectors over Rk
q and Rℓ

q when the first bit of x is 0 and 1, respectively. Looking ahead,
we use ZeroShare to mask the commitment wi P Rk

q and response zi P Rℓ
q. Note that Eq. (1) still holds (i.e.,

ř

iPSS ZeroSharep ⃗seedirSSs, xq “ 0) with this minor modification.
In addition, we also require an EUF-CMA secure signature scheme S “ pKeyGenS,SignS,VerifySq. Looking

ahead, we use S in the security proof to ensure that the view of all honest users is consistent in the round
where the commitment cmti is revealed.

5.2 Construction
The construction of our 5-round threshold signature TRaccoonadp5-rnd is provided in Figs. 4 and 5 in detail. Our
scheme uses three hash functions modeled as a random oracle in the security proof. Hcom : t0, 1u˚ Ñ t0, 1u2λ

is used to generate the hash commitment. Hc : t0, 1u˚ Ñ C is used to generate the random challenge
polynomial for which the users reply with a response. Hmask : t0, 1u˚ Ñ Rk

q Y Rℓ
q is used to generate the

random vectors to mask the individual commitment or response via ZeroShare. We give a brief overview
below.

The setup algorithm outputs system parameters tspar “ pA, N, T q for some random A $
Ð Rkˆℓ

q . The
public key is identical to a Raccoon public vk “ ptspar, tq with Raccoon secret key s, and the secret keys are
of the form ski “ psi, pvkS,jqjPrNs, skS,i, ⃗seediq, where si is a share of s, pvkS,jqjPrNs are S verification keys with
secret keys pskS,jqjPrNs, and ⃗seedi are seeds for ZeroShare. Verification is identical to Raccoon verification.
The signing protocol proceeds in 5 rounds as follows:

Round 1. Signer i outputs a random string stri
$

Ð t0, 1u2λ.

Round 2. Signer i samples a commitment wi :“ Ari ` e1
i, where pri, e

1
iq

$
Ð Dℓ

w ˆ Dk
w. Then, it sets

ctntw :“ 0}SS}pstrjqjPSS and computes a mask r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q . Signer i

uses r∆i to compute a masked commitment rwi “ wi ` r∆i. It outputs a hash commitment cmti :“
Hcompi, rwiq.

25

Round 3. Signer i sets MS :“ SS}M}pstrj , cmtjqjPSS and outputs a signature σS,i
$

Ð SignSpskS,i,MSq on MS.

Round 4. Signer i checks that for j P SS, all the signatures σS,j are valid with respect to verification key
vkS,j of signer j and message MS. This check guarantees that the view of all honest signers is consistent
at this point. If the check succeeds, signer i opens cmti by outputting rwi, else it aborts the signing
session.

Round 5. Signer i checks that for all j P SS, the hash commitments cmtj are opened correctly by signer j,
i.e., cmtj “ Hcompj, rwjq. If the check passes, it computes the sum w :“

Y

ř

jPSS rwj

U

νw

, else it aborts.

Then, it sets ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS, computes the challenge c :“ Hcpvk,M,wq and
outputs the masked response rzi :“ c ¨LSS,i ¨ si ` ri `∆i, where ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ

q.

An aggregated signature is computed via z :“
ř

jPSS rzj , y :“ tAz ´ 2νt ¨ c ¨ tsνw
and h :“ w ´ y, where as

above w “

Y

ř

jPSS rwi

U

νw

and c “ Hcpvk,M,wq. The Raccoon signature pc, z,hq is output.

Let us highlight the main differences to our 3-round selective threshold signature TRaccoonsel3-rnd from
Section 3. These changes are made to prove adaptive security. We provide some intuition for our choices.

Masking the commitments. In TRaccoonsel3-rnd, the signer sends the commitments wi in clear. In security
proof, one wi per session is simulated via HVZK. In that case, the reduction does not know its randomness
ri and e1

i. But in the adaptive setting, the adversary A is allowed to corrupt honest users after wi is output.
Then, we have to provide the randomness pri, e

1
iq to A, so the reduction fails in the adaptive setting.

In TRaccoonadp5-rnd, the signer masks the commitment wi with a fresh mask r∆i “ ZeroSharep ⃗seedirSSs,

ctntwq and sends rwi “ wi ` r∆i instead of wi, where ctntw “ 0}SS}pstrjqjPSS. Here, strj are random strings
exchanged in the additional initial round. Note that the entropy of stri ensures that each mask r∆i is random
in each signing session 7. With our modification, the values prwjqjPSS output in round 4 only reveal the sum
w “

Y

ř

jPSS wi

U

νw

. This allows the reduction to simulate a single commitment w˚ via HVZK and sample

the other commitments wj “ A ¨ rj ` e1
j honestly with known prj , e

1
jq for honest users. When some user i

is corrupted, we can choose a honest commitment wj and program Hmask in such a way that rwi “ wj ` r∆i.
Since at most T ´ 1 honest users are corrupted, we never have to reveal the randomness of the simulated
w˚. Formalizing this vague argument is a core technical challenge in the security proof.

Authenticating the views. In TRaccoonsel3-rnd, the security proof crucially relies on the fact that ctntw in round
2 fixes the value of ctntz used in round 3. The security proof of TRaccoonadp5-rnd also requires this to hold, but
here, ctntw does not contain the commitments pcmtjqjPSS. Thus, ctntw itself does not determine ctntz yet.
Instead, we ensure that for each ctntw, there is a unique ctntz in round 5 via signature-based authentication
of the views in round 4.

5.3 Correctness
We establish correctness of our protocol.

Lemma 5.1 (Correctness). The 5-round threshold signature TRaccoonadp5-rnd in Figs. 4 and 5 is correct if
νw ě 4 and:

B “ e1{4 ¨ pW σt `
?
T σwq

a

npk ` ℓq ` pW ¨ 2νt ` 2νw`1q ¨
?
nk.

Proof. The only difference between TRaccoonsel3-rnd and TRaccoonadp5-rnd is that the commitment w is computed
in a different manner and the additional signature verification step. By using Eq. (1), the commitment w
can be rewritten as

w “

Y

ř

jPSS rwi

U

νw

“

Y

ř

jPSS wi ` r∆i

U

νw

“

Y

ř

jPSS wi

U

νw

.

7More concretely, it is guaranteed that ZeroShare is never invoked more than once with the same input ctntw for each honest
user. This allows the reduction to program Hmask freely in the security proof.

26

Setupp1λ, N, T q

1 : A $
Ð Rkˆℓ

q

2 : tspar :“ pA, N, T q

3 : return tspar

Verifypvk,M, sigq

1 : parse pc, z,hq Ð sig

2 : c1 :“ Hcpvk,M, tAz ´ 2νt ¨ c ¨ tsνw ` hq

3 : if Jc “ c1K ^ J∥pz, 2νw ¨ hq∥2 ď BK then

4 : return 1

5 : return 0

KeyGenptsparq

1 : ps, eq
$

Ð Dℓ
t ˆ Dk

t

2 : t :“ tAs ` esνt
P Rk

qνt

3 : for i P rN s do

4 : pvkS,i, skS,iq
$

Ð KeyGenSp1λq

5 : for j P rN s do

6 : randi,j
$

Ð t0, 1u
λ

7 : seedi,j :“ i}j}randi,j

8 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

9 : P⃗ $
Ð Rℓ

qrXs with degpP⃗ q “ T ´ 1, P⃗ p0q “ s

10 : psiqiPrNs :“ pP⃗ piqqiPrNs

11 : vk :“ ptspar, tq

12 : pskiqiPrNs :“
`

si, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

iPrNs

13 : return pvk, pskiqiPrNsq

Figure 4: Setup, KeyGen, and Verify for our five round threshold signature TRaccoonadp5-rnd. The differences to
TRaccoonsel3-rnd are highlighted in blue (except changes with respect to the signer states).

This is exactly how w is computed in TRaccoonadp3-rnd. Also, by correctness of the signature scheme S, the
signatures σS,i on MS verify correctly in Sign4 when computed as in Sign3. We remark that TRaccoonadp5-rnd uses
the parameters of TRaccoonsel3-rnd and while the value of ctntz differs in Sign5 compared to TRaccoonsel3-rnd, it still
holds that

ř

iPSS ∆i “ 0 due to Eq. (1). Combining the above arguments with correctness of TRaccoonsel3-rnd
established in Lemma 3.1, the statement follows.

5.4 Our 4-Round Raccoon Threshold Signature
We can easily transform the stateless 5 round scheme in Figs. 4 and 5 into the stateful 4 round threshold
signature TRaccoonadp4-rnd by using the session identifier sid that is never reused. Our 5 round scheme needs to
share the string stri in the first round, that is used to generate the mask r∆ for the commitment. Importantly,
the same stri is never reused except with negligible probability. The idea of the transform is simply to use
non-reusable session identifier sid, instead of sharing stri. Specifically, the first round is no longer executed,
and users take sid as input instead of pstrjqjPSS and proceed as in 5 round scheme by replacing pstrjqjPSS

with sid. Note that users need to maintain state so that the same sid is never reused. This transformation
preserves security since sid provides the same non-reuseability as pstrjqjPSS. We provide more details in
Appendix B.

6 Adaptive Security of Our 5 Round Threshold Raccoon

In this section, we provide the proof of our 5-round threshold signature TRaccoonadp5-rnd in Figs. 4 and 5. The
proof is involved and technical, so we first provide a proof overview in Section 6.2. The formal security
proof is provided in Appendix E.2. Below, we state the main theorem establishing adaptive security of
TRaccoonadp5-rnd. The parameters for which the following theorem hold is provided in Appendix D.

Theorem 6.1. The 5-round threshold signature TRaccoonadp5-rnd in Figs. 4 and 5 is adaptive secure under the
Hint-MLWE and MSIS assumptions.

27

Sign1pvk, i, ski, stiq

1 : stri
$

Ð t0, 1u
2λ

2 : sti Ð sti Y tstriu

3 : return ppm1,i :“ stri, stiq

Sign2pvk,SS, i, ppm1,jqjPSS, ski, stiq

1 : req JSS Ď rN sK ^ Ji P SSK
2 : req Jpm1,i P stiK

3 : pick stri from sti with pm1,i “ stri

4 : parse pstrjqjPSSztiu Ð ppm1,jqjPSSztiu

5 : parse
`

si, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

Ð ski

6 : ctntw :“ 0}SS}pstrjqjPSS

7 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

8 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

9 : wi :“ Ari ` e1
i P Rk

q

10 : rwi :“ wi ` r∆i P Rk
q

11 : cmti :“ Hcompi, rwiq

12 : sti Ð stiztstriu

13 : sti Ð sti Y tpSS, pstrjqjPSS, cmti, rwi, riqu

14 : return ppm2,i :“ cmti, stiq

Sign3pvk,SS,M, i, ppm2,jqjPSS, ski, stiq

1 : req JpSS, ¨, pm2,i, ¨, ¨q P stiK

2 : pick pSS, pstrjqjPSS, cmti, rwi, riq from sti

3 : parse pcmtjqjPSSztiu Ð ppm2,jqjPSSztiu

with pm2,i “ cmti

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : sti Ð stiztpSS, pstrjqjPSS, cmti, rwi, riqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

8 : return ppm3,i :“ σS,i, stiq

Sign4pvk,SS,M, i, ppm3,jqjPSS, ski, stiq

1 : req JpSS,M, ¨, pm3,i, ¨, ¨q P stiK

2 : pick pSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

8 : return ppm3,i :“ rwi, stiq

Sign5pvk,SS,M, i, ppm4,jqjPSS, ski, stiq

1 : req JpSS,M, ¨, pm4,i, ¨q P stiK
2 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

3 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

4 : req J@j P SS, cmtj “ Hcompj, rwjqK
5 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

6 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

7 : c :“ Hcpvk,M,wq // c P C

8 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

9 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

10 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwi, riqu

11 : return ppm5,i :“ rzi, stiq

Aggpvk,SS,M, ppmb,jqpb,jqPr5sˆSSq

1 : parse prwj ,rzjqjPSS Ð ppm4,j , pm5,jqjPSS

2 : w :“

[

ÿ

jPSS

rwj

W

νw

3 : z :“
ÿ

jPSS

rzj P Rℓ
q

4 : c :“ Hcpvk,M,wq

5 : y :“ tAz ´ 2νt ¨ c ¨ tsνw P Rk
qνw

6 : h :“ w ´ y P Rk
qνw

7 : return sig :“ pc, z,hq

Figure 5: The Signing protocol of our five round threshold signature TRaccoonadp5-rnd. In the above, LSS,i

denotes the Lagrange coefficient of user i in the set SS Ď rN s (see Section 2.3 for the definition). pick X
from Y denotes the process of picking an element X from the set Y. The differences to TRaccoonsel3-rnd are
highlighted in blue (except changes with respect to the signer states).

28

Formally, for any N and T with T ď N and an adversary A against the adaptive security game
making at most QHc , QHcom , QHmask

, and QS queries to the random oracles Hc, Hcom, and Hmask and the
signing oracle, respectively, there exists adversaries B, B1, and BS against the Hint-MLWEq,ℓ,k,QS,σt,σw,C,
SelfTargetMSISq,ℓ`1,k,Hc,C,Bstmsis

problems, and the unforgeability of signatures, respectively, such that

Advts-adp-uf
TRaccoonadp5-rnd,A

p1λ, N, T q ď QHc
¨ Adv

SelfTargetMSIS
B1 p1λq ` AdvHint-MLWE

B p1λq ` N ¨ Adveuf-cma
S,BS

pλq

`
QS ¨ pQHcom ` QHc

` 2QSq

2n´1
`

QHmask

2λ
`

Q2
S ` pQHcom ` QSq2 ` QHcom

22λ
` neglpλq,

where TimepBq,TimepB1q,TimepBSq « TimepAq. From Lemma A.10, we can replace B1 by an adversary B2

against the MSISq,ℓ`1,k,2B problem with TimepB2q « 2 ¨ TimepB1q such that

Adv
SelfTargetMSIS
B1 pλq ď

b

QHc ¨ AdvMSIS
B2 pλq `

QHc

|C|
.

6.1 Intuition
The security proof is involved. Before we provide details, let us discuss our simulation strategy on a high
level. Roughly, our goal is to construct a simulator for the unforgeability game such that:

(1) The simulator simulates the signing oracles without knowing the secret key s.

(2) When signer i is corrupted, the simulator provides a partial secret key si and signer’s state sti to the
adversary A that is consistent with the public key and all previous signing oracle queries.

Given such a simulator, it is possible to reduce security to MSIS via rewinding by embedding an MSIS
challenge into the public key t 8.

For (1), we proceed similarly to the proof of TRaccoonsel3-rnd (cf. Section 3). That is, the simulator invokes
HVZK on the full public key t to simulate a commitment w˚ with valid response z˚ for some challenge c˚.
Then, w˚ is embedded in some honest signer’s masked commitment rwi, the challenge c˚ is embedded in Hc,
and z˚ is embedded into some honest signer’s response. Note that because adaptive corruptions are allowed,
the embedding of w˚ and z˚ is left implicit which is possible due to masking.

For (2), we use the fact that the masks r∆i (resp. ∆i) are distributed uniform if at most T ´ 1 mask
values are known. This allows the simulator to sample the signer’s secret share si and state sti when the
corruption is made. Only then the random oracle Hmask is programmed by the simulator for consistency with
previous signing queries.

We elaborate below. Note that the overview is heavily simplified for the sake of readability.

Notation. For this exposition, we by denote Vrxs a variable x that is statically hidden and we simply
write x if x is already statistically determined. For instance, at the beginning of the unforgeability game, we
denote by Vrsis the variable that represents the partial secret shares of user i, and s the (determined) full
secret key. Let us also note that for any subset S :“ tVrsisuiPrNs of partial shares of s with |S| ď T ´ 1, the
shares Vrsis P S follow a uniform distribution over Rℓ

q.

Preparation. Before we dive into our techniques, let us make some observations. First of all, let us assume
that the public key t fixes the secret key s statistically. Notice that the partial secret keys Vrsis must always
satisfy the following constraint for any signer set SS of size T :

s “
ÿ

iPSS

LSS,iVrsis. (5)

8An attentive reader might observe that this is not immediate if the reduction relies on oracle queries that influence the
winning condition as, e.g., in one-more assumptions. Our simulator has no such dependencies.

29

In the above, notice that each of the partial secret keys Vrsis are information-theoretically hidden from the
adversary at the beginning of the game. However, the adversary knows that the observed secret shares si
(due to later corruption queries) must satisfy Eq. (5). As recalled above, since the adversary A observes at
most T ´ 1 values si throughout the game, these are distributed uniformly at random over Rℓ

q in the view
of A.

Moreover, the adversary A learns partial signing transcripts transi :“ pcmti, σS,i, rwi,rziq of some honest
user i P HS in a signer set SS throughout the game. The simulator needs to ensure that transi follows the
distribution of the real game. Observe that the adversary A knows that the following equations hold:

rwi “ Vrwis ` Vr r∆is, (6)
Vrwis “ AVrris ` Vre1

is, (7)
rzi “ c ¨ LSS,i ¨ Vrsis ` Vrris ` Vr∆is, (8)

0 “
ÿ

jPSS

Vr r∆js “
ÿ

jPSS

Vr∆js. (9)

Notice that the partial secret Vrsis, commitment Vrwis, its randomness pVrris,Vre1
isq, the mask Vr r∆is for

the commitment and the mask Vr∆is for the response are information-theoretically hidden at this point,
except for the fact that they satisfy Eqs. (5) to (9).

Before we discuss the simulator, let us briefly discuss the core challenge. The simulator needs to provide
responses rzi that follow Eq. (8) without fixing the values of Vrsis and Vrris. (Else, we cannot embed a
hard problem into the public key t later.) But on corruption queries, the adversary expects (amongst other
values) ri and si which are consistent with the above equations. Roughly, this is possible because each
signing query introduces a fresh variables Vr r∆is,Vr∆is. By reprogramming the random oracle Hmask, the
simulator can recompute a well-distributed state sti and secret key ski. Importantly, this is done only when
a user is corrupted.

Simulating the Signing Oracle. Let us sketch how the simulator answers the signing oracles. In round
1, 2 and 3, the simulator computes appropriate stri, cmti and σS,i, respectively, that follow the correct dis-
tribution. That is:

Round 1: The simulator outputs a string stri sampled at random as in the real game.

Round 2: The simulator outputs a commitment cmti sampled at random. (Later, in round 4, the oracle
Hcom is programmed such that cmti commits to rwi which is sampled only in round 4.)

Round 3: In round 3, the simulator computes a signature on its public view as in the real game.

Let us briefly comment on the consequence of the first three rounds. The entropy of stri ensures that the
masks Vr r∆s and Vr∆s are computed by evaluating Hmask on fresh inputs, and thus the masks are distributed
uniformly and independently at random conditioned on Eq. (9). The hash commitment cmti ensures that
the simulator knows the malicious commitments rwi chosen by the adversary A before the simulator chooses
its own commitments (by observing A’s Hcom queries). The signature σS,i ensures that the (public) view of
each honest signer is consistent with the view of other signers within a signing session (through the check of
signature validity in round 4).

Before we continue, notice that in round 4, the simulator knows adversary A’s masked commitments rwi

and since the public view of all honest signers is identical, so in particular pcmtjqjPSS, these values rwi are
identical for each honest user. In round 4 and round 5, the simulator needs to ensure that Eqs. (5) to (9)
are satisfied. As mentioned above, Vr r∆s and Vr∆s are distributed randomly conditioned on Eq. (9). Thus,
by reordering Eqs. (6) and (8), we know that rwi and rzi are distributed at random conditioned on:

ÿ

jPSS

rwj “ w, (10)

30

ÿ

jPSS

rzj “ c ¨ s ` r, (11)

where r :“
ř

jPSS Vrrjs and w :“
ř

jPSS Vrwis are determined after all honest users finished round 4. Note
that above, we used correctness of Shamir’s secret sharing and the fact that c is identical for all honest users.

Let us briefly remark that Eqs. (10) and (11) are heavily simplified. Notably, the simulator does not
know the randomness ri of malicious users or whether a malicious hash commitment cmti even commits to a
valid commitment rwi. In the proof overview (cf. Section 6.2), we provide exact equations that the simulator
can evaluate to sample the last rwi and rzi accordingly. For now, let us ignore this technicality.

Let us finally describe how the simulator proceeds in round 4 and 5. Note that the simulator does not
know the partial secret key s. Let H be the number of honest signers sHS in the signer set SS. Roughly:

Round 4: For all but the last honest signer, the simulator outputs rwi sampled at random. For the last
honest signer, the simulator samples rwi according to Eq. (10). That is, the simulator honestly samples
H ´ 1 commitments wi “ Ari ` e1

i, and simulates one commitment w˚ with challenge c and response
z˚ via HVZK on the public key t. In particular, the response is (implicitly) of the form z˚ “ c ¨ s` r˚,
where w˚ “ Ar˚ ` e˚

i , but the randomness of w˚ is unknown to the simulator. Note that with these
choices, Eq. (7) is satisfied—but the commitments wi are not yet attributed to a honest user. Also,
note that this fixes the determined values

r “ r˚ `
ÿ

jPrH´1s

rj `
ÿ

jPsCS

rj ,

w “ w˚ `
ÿ

jPrH´1s

wj `
ÿ

jPsCS

wj ,

where (as mentioned above) we assume for simplicity that wj and rj of dishonest users j P sCS of the
signing session are known. Then, the simulator then embeds c into Hc at the right location 9. Finally,
the simulator and outputs rwi :“ w ´

ř

jPSSztiu rwj .

Round 5: For all but the last honest signer, the simulator outputs rzi sampled at random. For the last honest
signer, the simulator samples rzi according to Eq. (11). That is, the signer outputs rzi “ z˚`

ř

jPSSztiu ri.

Note that the simulator does not program Hmask in the signing oracle. Also, we stress that the commit-
ments wi are not yet attributed to a honest user.

Simulating the Corruption Oracle. When a signer i is corrupted, the simulator first picks a random
partial share si. As discussed above, this is sufficient for Eq. (5). Then, the simulator needs to compute a
state sti such that all signing sessions are consistent with si and sti. For each session, the simulator picks
one of the (not yet chosen) commitments wi sampled with randomness pri, e

1
iq in round 4. As mentioned

above, wi satisfies Eq. (7). But since after corruption of signer i, the adversary can compute r∆ and wi and
rwi is fixed, Eq. (6) is not yet satisfied. For this, the simulator crucially programs Hmask. That is, by Eq. (6),
we have r∆i “ rwi ´wi, and the simulator programs Hmask such that r∆i “ ZeroSharep ⃗seedirSSs, ctntwq holds.
Here, it is important to note that at most T ´ 1 users are corrupted. Thus, the simulator never has to reveal
the randomness of the simulated commitment w˚ and more subtly, r∆i is distributed uniform, which allows
to reprogram Hmask accordingly. Finally, it remains to ensure that Eq. (8) holds. Again, this is possible by
programming Hmask accordingly, that is such that ∆i “ rzi ´ c ¨ LSS,i ¨ si ´ ri.

6.2 Proof Overview
Let us provide the proof overview. As in the proof of TRaccoonsel3-rnd, our strategy is to use a hybrid argument
to transition to a game, where the challenger simulates the signing oracles without the secret key s. We then

9This is possible because w is determined at this point. We omit details.

31

embed an SelfTargetMSIS problem into the verification key and extract a solution from the forgery. The
core difference to the security proof of TRaccoonsel3-rnd is that the challenger provides a corruption oracle to
the adversary A. This means we have to setup the signer states sti in accordance with the adversaries view
when user i is corrupted. As before, we denote by sHS (resp. sCS) the subset of honest users sHS “ SSXHS
(resp. corrupt users sCS “ SS X CS) queried to the signing or corruption oracle. We describe the hybrids
below. Since the proof is involved, the arguments and hybrids are simplified for the sake of readability. We
encourage the reader to first look at the proof overview for TRaccoonsel3-rnd in Section 4.1 since the techniques
are related—but simpler in the selective setting.

Game1 to Game5: In Game1 to Game5, the challenger delays sampling rwi until the 4th round or when a
user is corrupted. That is, the challenger outputs a random cmti

$
Ð t0, 1u2λ in OSign2 . In OSign4 , it samples

wi “ Ari ` e1
i and sets rwi “ wi ` r∆i. Then, it programs Hcom such that cmti “ Hcompwi, iq and outputs

rwi. This is also done if i is corrupted for all signer states before round 4. Further, the challenger aborts in
case there is a collision in Hcom and ensures that all sampled stri are unique.

Game1: This game is identical to the real game.

Game2: In this game, the challenger aborts in OSign1 if stri was previously sampled. The abort probability
is negligible because stri has high min-entropy.

Game3: In this game, the challenger outputs a fresh cmti
$

Ð t0, 1u2λ in OSign2 . The preimage for cmti is
computed either in OSign4 or OCorrupt as described above. Since wi has high min-entropy, this change
is not noticable.

Game4: In this game, the challenger aborts if there is a collision in Hcom. We can show with as birthday
bound argument that this happens with negligible probability.

Game5: In this game, the challenger aborts if it the adversary invokes OSign4 but it did not sign MS in OSign3
for all honest users. Under EUF-CMA security of S, this happens with negligible probability.

Before we proceed, let us discuss the implication of Game5. Roughly, MS corresponds to the view of
each honest user in round 4 before the commitments are opened. The consistency check ensures that OSign5
is not invoked unless all honest users share an identical view in round 4 with respect to ctntw before their
commitments are opened. This is essential for simulation later.

As in the selective proof of TRaccoonsel3-rnd, the adversary cannot invoke each signing oracle twice with the
same value ctntw for a honest user i P sHS except with negligible probability. Here, this is because user i
samples stri with high min-entropy in OSign1 at random and stri is part of ctntw. This is captured in the
following remark.

Remark 6.2. The adversary cannot invoke OSignr twice with the same value ctntw for r P r5s.

Game6 to Game11: In Game6 to Game11, the challenger transitions to a game where rwj
$

Ð Rk
q is sampled

at random, except the last revealed commitment rwi is sampled consistently. Note that the adversary A can
request the opening rwi of hash commitment cmti either via a call to OSign4 by following the protocol or
via a corruption query 10. Again, consistently means that rwi respects the constraint r∆i “ ´

ř

jPSSztiu
r∆j .

Below, we show that the last masked commitment rwi is distributed as follows:

rwi “ SumComrctntws ´
ÿ

jPsCS

r∆j ´
ÿ

jPsHSztiu

rwj , (12)

where rwj is the masked commitment of user i with ctntw and SumComrctntws “
ř

jPsHS wj stores the
sum of the honest commitments pwjqjPsHS. Further, since all rwj but the last are random, the challenger

10The challenger identifies that user i is the last user to open cmti via ĄsHSw “ tiu in OSign4
or OCorrupt, where ĄsHSw is

introduced in Game6.

32

can delay sampling the honest commitments pwjqjPsHS until the last signer opens its commitment cmti.
Also, observe that the protocol messages prwjqjPsHS of round 4 reveal only the sum of the commitments wj

but not their attribution to users, i.e., which user sampled which commitment wj . Thus, when the last
cmti is opened to rwi, the challenger generates |sHS|-many honest commitments at once, stores them in
UnUsedComrctntws “ trwjujPSS and their sum in SumComrctntws. The challenger then carefully attributes
commitments from the set UnUsedComrctntws in round 5 or when a user between round 4 and 5 is corrupted.
In the latter case, the reduction also programs the oracle Hmask so that the users state is consistent with
the choice. Finally, the challenger also sets up a table SumComRndrctntws “

ř

jPsHS rj that the sum of the
honest commitments wj ’s randomness for later.

Game6 : In this game, we introduce some tables InitializeOpen,UnOpenedHS,Maskw and MaskedCom indexed
by ctntw. None of the tables impact the view of A but we detail their meaning. If InitializeOpenrctntws ‰

K, then UnOpenedHSrctntws “ ĄsHSw stores the set of honest users ĄsHSw that have not passed round
4 with ctntw, i.e., the hash commitment cmti is not yet opened. The tables Maskwrctntw, is and
MaskedComrctntw, is store the mask r∆i and masked commitment rwi of user i in OSign4 with ctntw,
respectively.

Game7: In this game, we expand the definition of ZeroShare in OSign4 and OCorrupt. The challenger samples
partial masks rmi,j “ Hmaskpseedi,j , ctntwq and rmj,i “ Hmaskpseedj,i, ctntwq for j P SSztiu, then sets
∆i “

ř

jPSSztiup rmj,i ´ rmi,jq. This change is purely conceptual.

Game8: In this game, the challenger samples the partial masks rmi,j and rmj,i at random for j P ĄsHSwztiu
(and programs Hmask accordingly). Both games are identically distributed in the view of A because
seeds seedi,j and seedj,i are hidden from A and the partial masks have not yet been evaluated for users
in j P ĄsHSw. In the formal proof, this is argued via Remark 6.2

Game9: In this game, the challenger samples the mask r∆i
$

Ð Rk
q in OSign4 and OCorrupt, except if ĄsHSw “ tiu,

i.e., user i is the last to open its cmti with respect to ctntw. If i is the last signer to open cmti, it sets

r∆i “ ´
ÿ

jPsHSztiu

Maskwrctntw, js ´
ÿ

jPsCS

r∆j . (13)

Note that when user i is corrupted, it also obtains ⃗seedi. Since we sample the masks r∆i without
consulting the oracle Hmask in this game, the challenger needs to ensure that Hmask respects the identity

r∆i “
ÿ

jPSSztiu

pHmaskpseedj,i, ctntwq ´ Hmaskpseedi,j , ctntwqq

when user i is corrupted. It does so via an additional helper algorithm ProgramZeroShare that sets
up Hmask in accordance with r∆i stored in Maskwrctntw, is. We refer to the formal proof for more
information on ProgramZeroShare.

Both games are identically distributed because: (1) If i is not the last signer for ctntw in OSign4 or
OCorrupt, then ĄsHSwztiu contains at least another honest signer j, so rmi,j and rmj,i are sampled at
random from the previous game. In particular, r∆i “

ř

jPSSztiup rmj,i ´ rmi,jq is distributed uniform
random over Rk

q . (2) If i is the last signer for ctntw, then all partial masks are fully determined and it
holds that

ř

jPSS
r∆j “ 0. The latter yields Eq. (13) via the identity Maskzrctntw, js “ ∆j . Note that

the masked commitment for each signer i is still defined as in the real game:

rwi :“ wi ` r∆i. (14)

Game10 : In this game, the challenger samples the masked commitment rwi
$

Ð Rk
q at random when cmti is

opened, except if ĄsHSw “ tiu, then it sets rwi according to Eq. (16) consistently. Also, it manages tables

33

SumComrctntws “
ř

jPsHS wj and SumComRndrctntws “
ř

jPsHS rj that store the sum of commitments
wj and wj ’s randomenes rj , respectively. Also, the table Maskwrctntw, is :“ rwj ´ wi is initialized via
MaskedComrctntw, is “ rwj only when a user is corrupted. This is required to setup Hmask consistently
when a user is corrupted, but not in OSign4 anymore.
We can show that Game10 and Game9 are identically distributed by looking at an intermediate game
Game9,˚, where instead of sampling r∆i

$
Ð Rk

q , we sample r∆˚
i

$
Ð Rk

q and set r∆i :“ r∆˚
i ´ wi. This

intermediate game is identically distributed to Game9 as both r∆i and r∆˚
i are uniform random. Also,

observe that in Game9,˚, we have that rwi “ r∆˚
i if ĄsHSw ‰ tiu due to Eq. (14), and rwi as in Eq. (16)

otherwise. To see the latter, first substitute Maskwrctntw, js “ rwj ´wi for all j P sHSztiu in Eq. (13),
then substitute the resulting identity for r∆i in the identity of rwi in Eq. (14).

Game11 : In this game, the challenger samples the honest commitments wj in round 4 when the last cmti is
opened to rwi. That is, if ĄsHSw ‰ tiu in OSign4 , the challenger outputs random masked commitments
rwi

$
Ð Rk

q as before but does not sample wi yet. Only when the last commitment cmti is opened (either
via a corruption or OSign4 query), the challenger generates |sHS|-many honest commitments at once
and stores them in UnUsedComrctntws “ twjujPr|sHS|s. Also, tables SumComrctntws “

ř

jPr|sHS|s wj

and SumComRndrctntws “
ř

jPr|sHS|s rj are initialized, where rj is wj ’s randomness. In round 5 or
when a user i is corrupted between round 4 and 5, then the challenger chooses one of the commitments
wi from the set UnUsedComrctntws and removes it from the set. In the latter case, the reduction also
sets Maskwrctntw, is “ rwi ´ wi and programs the oracle Hmask via ProgramZeroShare for consistency.
We can show that Game10 and Game11 are identically distributed. For this, observe that the protocol
messages prwjqjPsHS of round 4 reveal only the sum of the commitments wj but not their attribu-
tion to users, i.e., which user sampled which commitment wj . For now, this attribution is leaked
implicitly in round 5 (since the challenger uses ri in the computation of the masked response rzi) or
explicitly when a user is corrupted. In those cases, since the challenger chooses a fresh commitment
via UnUsedComrctntws, the view of adversary A remains consistent. We refer to the formal proof for
details.
This key step allows us to later simulate one of the commitments and attribute non-simulated honest
commitments wj to users on-the-fly in corruption queries.

Game12 to Game17: In Game12 to Game17, the challenger transitions to a game where rzi
$

Ð Rℓ
q is sampled

at random, except that the last response rzi with ctntw is setup consistently, i.e., it respects the constraint
∆i “ ´

ř

jPSSztiu ∆j . Again, adversary A can obtain this response either via OSign5 or OCorrupt. While in the
protocol, the value ctntz serves as input to ZeroShare, we can show that the value ctntw uniquely determines
ctntz in round 5. This allows us to interchange ctntw and ctntz within the security proof when analyzing the
distribution of ∆i. We can show that the last masked response is distributed as follows:

rzi :“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws ´
ÿ

jPsHSztiu

rzj ´
ÿ

jPsCS

∆j , (15)

where rzj is the masked response of user i with ctntw. Recall that SumComRndrctntws “
ř

jPr|sHS|s rj stores
the sum of the honest commitment wj ’s randomness.

The transition to Game17 is similar to the transition from Game5 to Game10 in the proof of TRaccoonsel3-rnd.
A crucial difference is that ctntw does not contain the commitments pcmtjqjPSS here. The authentication
of the signer views in round 4 via the signatures σS,i on MS binds ctntw to a unique set of commitments
pcmtjqjPSS. This allows us to argue that ctntz—and thus the challenge c—in round 5 is identical for all
honest users. The identity in Eq. (15) follows as in the selective proof of TRaccoonsel3-rnd, but due to the
corruption oracle, we also need to ensure that Hmask is consistent with the masks r∆i. This can be ensured
via ProgramZeroShare as above. We refer to the formal proof for more details.

Finally, note that since ri is not required anymore in OSign5 , the challenger can exclusively attribute
commitments from UnUsedComrctntws to users during corruption.

34

Game18 to Game20: In games Game18 to Game20, we invoke HVZK with respect to the verification key t to
simulate one of the honest commitments in UnUsedComrctntws when the last commitment cmti with ctntw
is opened. This later allows to compute the response rzh of the last signer h in round 5 without secret key s.
At the end of Game20, the challenger no longer requires the secret key s to simulate the signing oracles.

Game18: In this game, the challenger chooses a random challenge c $
Ð C before sampling the honest

commitments twjujP|sHS| for UnUsedComrctntws if ĄsHSw “ tiu in OSign4 or OCorrupt. Before outputting
rwi or the state sti, the challenger retrieves the corrupt commitments wj for j P CS from cmtj by
searching through all the random oracle queries made to Hcom. If all wj are found, it programs Hc such
that Hcpvk,M,wq “ c, where w “

Y

SumComrctntws `
ř

jPCS wj

U

νw

. Further, the challenger aborts if

some wj was not found in round 4 or OCorrupt with ĄsHSw “ tiu, but OSign5 is invoked with ctntw.
Since |sHS| ě 1 and wj has high min-entropy, Hc was never queried with pvk,M,wq before it is
programmed, so the view of A is identically distributed. Since the challenger checks in OSign5 whether
each rwj is committed in cmtj , the adversary must have found a preimage for all cmtj . This happens
with negligible probability. To argue the above, we use that due to signature-based authentication, we
know that ctntw fixes pcmtjqjPSS implicitly and for j P sHS, the hash commitments cmtj are honest.

Game19: In this game, the challenger invokes HVZK with respect to the verification key t to simulate one of
the commitments pwjqjP|sHS| when setting up UnUsedComrctntws, and computes the consistent response
rzh for ctntw in a different manner. In more detail, if ĄsHSw “ tiu in OCorrupt or OSign4 , after sampling the
challenge c, the challenger simulates the commitment-response pair pw˚, z˚q, where z˚ “ c ¨s`r˚. The
commitment w˚ is added to SumComrctntws but not stored in UnUsedComrctntws to avoid attributing
it to a user in OCorrupt. Also, r˚ is not added to SumComRndrctntws. Instead, the challenger computes
the last consistent response rzh, i.e., if ĄsHSz “ tiu in OSign5 or OCorrupt, via the simulated response z˚

as follows:

rzh :“ z˚ ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws ´
ÿ

jPsHSzthu

rzj ´
ÿ

jPsCS

∆j .

The above identity for rzh is obtained by rewriting Eq. (15) using z˚ “ c ¨ s` r˚. Note that it is crucial
that the challenge c—precomputed when the last user i opens its commitment to define z˚—must be
identical to the challenge c in Eq. (15). This is guaranteed by the abort condition in the previous game.
Also, note that since at least one user i P sHS remains uncorrupted, so we never have to attribute the
simulated commitment to a user.

Game20: In this game, the challenger replaces t in the verification key with t :“
Y

pt
U

νt

P Rk
qνt

, where t̂ $
Ð Rk

q .

Also, when a user i is corrupted, it samples si at random.
Observe that the challenger in Game19 uses the secret key s only when computing the simulated response
z˚ “ c ¨ s ` ri. Under Hint-MLWE, Game19 and Game20 are indistinguishable. Note that simulated
responses z˚ correspond to the provided hints in Hint-MLWE.

Reduction from SelfTargetMSIS. In Game20, the challenger can simulate the signing oracles without
knowing s. At this point, we are finally read to construct an adversary against SelfTargetMSIS. This step is
identical to the last step in selective proof of TRaccoonsel3-rnd and we omit details.

7 Construction of Our 5-Round Threshold Schnorr
In this section, we present our 5-round threshold signature scheme TSchnorradp5-rnd, a thresholdized version of
the classical Schnorr signature. We show in Section 7.3 that TSchnorradp5-rnd is adaptively secure under the
DL assumption. Our protocol is an adaption of our 5-round threshold signature TRaccoonadp5-rnd to the group
setting.

35

7.1 Preparations
Let GenG be an algorithm that on input 1λ, outputs a tuple pG, p,Gq, where G is a generator of group G of
prime order p.

In our scheme, each user is given a tuple of random strings of the form ⃗seedi “ pseedi,j , seedj,iqjPrNs. For
any set SS Ď rN s, we denote ⃗seedirSSs as the tuple pseedi,j , seedj,iqjPSS. As in our other schemes, we further
prepare a deterministic helper algorithm named ZeroShare defined with respect to a random oracle Hmask

with variable range. For any ⃗seedirSSs and string x P t0, 1u˚, it is defined as follows:

ZeroSharep ⃗seedirSSs, xq :“
ÿ

jPSSztiu

`

Hmaskpseedj,i, xq ´ Hmaskpseedi,j , xq
˘

,

where Hmask outputs vectors over G and Zp when the first bit of x is 0 and 1, respectively. Looking ahead,
we use ZeroShare to mask the commitment R P G and response z P Zp. We will extensively use the following
easy to check fact:

ÿ

iPSS

ZeroSharep ⃗seedirSSs, xq “ 0.

We also require an EUF-CMA secure signature scheme S “ pKeyGenS,SignS,VerifySq.

7.2 Construction
The construction of our 5-round threshold signature TSchnorradp5-rnd is provided in Figs. 6 and 7. Our scheme
uses three hash functions modeled as a random oracle in the security proof. Hcom : t0, 1u˚ Ñ t0, 1u2λ is used
to generate the hash commitment. Hc : t0, 1u˚ Ñ Zp is used to generate the random challenge for which the
users reply with a response. Hmask : t0, 1u˚ Ñ G Y Zp is used to generate the random vectors to mask the
individual commitment or response.

Essentially, we obtain TSchnorradp5-rnd from TRaccoonadp5-rnd by replacing the Raccoon-related elements with
their Schnorr-counterparts. We give a brief summary of the modifications:

• We replace the matrix A in tspar with pG, p,Gq
$

Ð GenGp1λq, and the verification key with ptspar, Xq,
where X “ x ¨ G and x $

Ð Zp is a Schnorr public and secret key, respectively. The secret key x is
shared into partial secrets pxiqiPrNs via Shamir’s secret sharing as before.

• We replace verification—previously identical to Raccoon verification—with the classical Schnorr veri-
fication.

• In Sign2, we replace the Raccoon commitments wi “ Ari`e1
i with commitments Schnorr commitments

Ri “ ri ¨G, where ri
$

Ð Zp. The commitments are masked via rRi “ Ri ` r∆i as before and the masked
commitments rRi are committed in cmti as before.

• In Sign5, we still sum up the the masked commitments rRi to obtain an aggregated commitment
R “

ř

jPSS
rRj . Also, the masked response is computed as before via rzi :“ c ¨LSS,i ¨xi ` ri `∆i, except

that rzi P Zp.

7.3 Security and Correctness
Correctness follows immediately using the correctness of ZeroShare as in TRaccoonadp5-rnd. Also, we have the
following.

Theorem 7.1. The 5-round threshold signature TSchnorradp5-rnd in Figs. 6 and 7 is adaptive secure under the
DL assumption.

Formally, for any N and T with T ď N and an adversary A against the adaptive security game making at
most QHc , QHcom , QHmask

, and QS queries to the random oracles Hc, Hcom, and Hmask and the signing oracle,

36

Setupp1λ, N, T q

1 : pG, p,Gq Ð GenGp1λq

2 : tspar :“ ppG, p,Gq, N, T q

3 : return tspar

Verifypvk,M, sigq

1 : parse pc, zq Ð sig

2 : c1 :“ Hcpvk,M, z ¨ G ´ c ¨ Xq

3 : if Jc “ c1K then

4 : return 1

5 : return 0

KeyGenptsparq

1 : x $
Ð Zp;X :“ x ¨ G

2 : for i P rN s do

3 : pvkS,i, skS,iq
$

Ð KeyGenSp1λq

4 : for j P rN s do

5 : randi,j
$

Ð t0, 1u
λ

6 : seedi,j :“ i}j}randi,j

7 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

8 : P $
Ð ZprY s with degpP q “ T ´ 1, P p0q “ x

9 : pxiqiPrNs :“ pP piqqiPrNs

10 : vk :“ ptspar, Xq

11 : pskiqiPrNs :“
`

xi, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

iPrNs

12 : return pvk, pskiqiPrNsq

Figure 6: Setup, KeyGen, and Verify for our five round threshold signature TSchnorradp5-rnd. The differences to
TRaccoonadp5-rnd are marked in blue.

respectively, there exists adversaries B and BS against the SelfTargetDL problem and the unforgeability of
signatures, respectively, such that

Advts-adp-uf
TSchnorradp5-rnd,A

p1λ, N, T, 1q ď QHc
¨ AdvSelfTargetDL

B p1λq ` N ¨ Adveuf-cma
S,BS

pλq

`
QS ¨ pQHcom ` QHc

` 2QSq

p
`

QHmask

2λ
`

Q2
S ` pQHcom ` QSq2 ` QHcom

22λ
,

where TimepBq « TimepAq and TimepBSq « TimepAq. From Lemma A.12, we can replace B by an adversary
B1 against the DL problem with TimepB1q « 2 ¨ TimepBq such that

AdvSelfTargetDL
B pλq ď

b

QHc
¨ AdvDL

B1 pλq `
QHc

p
.

Proof. Let us prove the statement. Note that this proof is not self-contained and we encourage the reader to
first read the security proof of TRaccoonadp5-rnd (cf. Section 6). As noted above, the structure of our protocol
TSchnorradp5-rnd is almost identical to TRaccoonadp5-rnd except for the underlying signature. This is reflected in
the proof structure. Since until Game18 the proof is almost oblivious to the underlying algebraic structure,
these games are almost identical. The only required property for the transitions from Game1 to Game17 is
that the commitments Ri have high min-entropy (which holds). The last step, i.e., Game18 to Game20 and
extraction, is more tailored to the underlying signature. We sketch security 11 and highlight the differences
below.

Our strategy remains to use a hybrid argument to transition to a game, where the challenger simulates
the signing oracles without the secret key x. We then embed an SelfTargetDL problem into the verification
key X and extract a solution from the forgery. As before, we denote by sHS (resp. sCS) the subset of honest
users sHS “ SS X HS (resp. corrupt users sCS “ SS X CS) queried to the signing or corruption oracle. We
sketch the hybrids below.

11It is straightforward but tedious to formalize the proof following the security proof of TRaccoonadp5-rnd (cf. Section 6).

37

Sign1pvk, i, ski, stiq

1 : stri
$

Ð t0, 1u
2λ

2 : sti Ð sti Y tstriu

3 : return ppm1,i :“ stri, stiq

Sign2pvk,SS, i, ppm1,jqjPSS, ski, stiq

1 : req JSS Ď rN sK ^ Ji P SSK
2 : req Jpm1,i P stiK

3 : pick stri from sti with pm1,i “ stri

4 : parse pstrjqjPSSztiu Ð ppm1,jqjPSSztiu

5 : parse ski Ð pxi, pvkS,iqiPrNs, skS,i, ⃗seediq

6 : ctntw :“ 0}SS}pstrjqjPSS

7 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P G

8 : ri
$

Ð Zp;Ri :“ ri ¨ G

9 : rRi :“ Ri ` r∆i P G

10 : cmti :“ Hcompi, rRiq

11 : sti Ð stiztstriu

12 : sti Ð sti Y tpSS, pstrjqjPSS, cmti, rRi, riqu

13 : return ppm2,i :“ cmti, stiq

Sign3pvk,SS,M, i, ppm2,jqjPSS, ski, stiq

1 : req JpSS, ¨, pm2,i, ¨, ¨q P stiK

2 : pick pSS, pstrjqjPSS, cmti, rRi, riq from sti

parse pcmtjqjPSSztiu Ð ppm2,jqjPSSztiu

3 : with pm2,i “ cmti

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : sti Ð stiztpSS, pstrjqjPSS, cmti, rRi, riqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,i, rRi, riqu

8 : return ppm3,i :“ σS,i, stiq

Sign4pvk,SS,M, i, ppm3,jqjPSS, ski, stiq

1 : req JpSS,M, ¨, pm3,i, ¨, ¨q P stiK

2 : pick pSS,M, pstrj , cmtjqjPSS, σS,i, rRi, riq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK

6 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,i, rRi, riqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rRi, riqu

8 : return ppm3,i :“
rRi, stiq

Sign5pvk,SS,M, i, ppm4,jqjPSS, ski, stiq

1 : req JpSS,M, ¨, pm4,i, ¨q P stiK

2 : parse p rRjqjPSSztiu Ð ppm4,jqjPSSztiu

3 : pick pSS,M, pstrj , cmtjqjPSS, rRi, riq from sti

with pm4,i “ rRi

4 : req J@j P SS, cmtj “ Hcompj, rRjqK

5 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}p rRjqjPSS

6 : R :“
ÿ

jPSS

rRj P G

7 : c :“ Hcpvk,M, Rq // c P Zp

8 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Zp

9 : rzi :“ c ¨ LSS,i ¨ xi ` ri ` ∆i P Zp

10 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rRi, riqu

11 : return ppm5,i :“ rzi, stiq

Aggpvk,SS,M, ppmb,jqpb,jqPr5sˆSSq

1 : parse p rRj , rzjqjPSS Ð ppm4,j , pm5,jqjPSS

2 : R :“
ÿ

jPSS

rRj

3 : z :“
ÿ

jPSS

rzj

4 : c :“ Hcpvk,M, Rq

5 : return sig :“ pc, zq

Figure 7: The Signing protocol of our five round threshold signature TSchnorradp5-rnd. In the above, LSS,i

denotes the Lagrange coefficient of user i in the set SS Ď rN s (see Section 2.3 for the definition). pick X
from Y denotes the process of picking an element X from the set Y. The differences to TRaccoonadp5-rnd are
marked in blue.

38

Game1 to Game5: In Game1 to Game4, the challenger delays sampling the commitment Ri until the 4th
round or when a user is corrupted. That is, the challenger outputs a random cmti

$
Ð t0, 1u2λ in OSign2 . In

OSign4 , it samples Ri “ ri ¨ G and sets rRi “ Ri ` r∆i. Then, it programs Hcom such that cmti “ Hcomp rRi, iq

and outputs rRi. This is also done if i is corrupted for all signer states before round 4. Further, the challenger
aborts in case there is a collision in Hcom and ensures that all sampled stri are unique.

In Game5, the challenger aborts if MS was not signed by some honest user. As before, the implication
of this is as follows. Roughly, MS corresponds to the view of each honest user in round 4 before the
commitments are opened. The consistency check ensures that OSign5 is not invoked unless all honest users
share an identical view in round 4 with respect to ctntw before their commitments are opened. Again, this
is essential for simulation later all the above steps can be argued as in TRaccoonadp5-rnd. Similarly, we have the
following.

Remark 7.2. The adversary cannot invoke OSignr twice with the same value ctntw for r P r5s.

Game6 to Game11: In Game6 to Game11, the challenger transitions to a game where rRj
$

Ð G is sampled at
random, except the last revealed commitment rRi is sampled consistently. Again, consistently means that rRi

respects the constraint r∆i “ ´
ř

jPSSztiu
r∆j , and we can show as before that the last masked commitment

rRi is distributed as follows:

rRi “ SumComrctntws ´
ÿ

jPsCS

r∆j ´
ÿ

jPsHSztiu

rRj , (16)

where rRj is the masked commitment of user i with ctntw and SumComrctntws “
ř

jPsHS Rj stores the
sum of the honest commitments pRjqjPsHS. Further, since all rRj but the last are random, the challenger
can delay sampling the honest commitments pRjqjPsHS until the last signer opens its commitment cmti.
Also, observe that the protocol messages p rRjqjPsHS of round 4 reveal only the sum of the commitments
Rj but not their attribution to users, i.e., which user sampled which commitment Rj . Thus, when the
last cmti is opened to rRi, the challenger generates |sHS|-many honest commitments at once, stores them
in UnUsedComrctntws “ tRjujPSS and their sum in SumComrctntws. The challenger then attributes these
commitments as before from the set UnUsedComrctntws in round 5 or when a user between round 4 and
5 is corrupted. In the latter case, the reduction also programs the oracle Hmask so that the users state is
consistent with the choice. Finally, the challenger also sets up a table SumComRndrctntws “

ř

jPsHS rj that
the sum of the honest commitments Rj ’s randomness for later. We can argue as in the security proof of
TRaccoonadp5-rnd, as the game transitions information theoretic and independent of the underlying algebraic
structure.

Game12 to Game17: In Game12 to Game17, the challenger transitions to a game where rzi
$

Ð Zp is sampled
at random, except that the last response rzi with ctntw is setup consistently, i.e., it respects the constraint
∆i “ ´

ř

jPSSztiu ∆j . Again, adversary A can obtain this response either via OSign5 or OCorrupt. Note that
we can interchange ctntw and ctntz within the security proof freely when analyzing the distribution of ∆i

as before, and it follows that the last masked response is distributed as follows:

rzi :“ c ¨ x ´ c
ÿ

jPsCS

LSS,j ¨ xj ` SumComRndrctntws ´
ÿ

jPsHSztiu

rzj ´
ÿ

jPsCS

∆j , (17)

where rzj is the masked response of user i with ctntw. Again, this follows the game transitions information
theoretic and independent of the underlying algebraic structure.

Finally, note that since ri is not required anymore in OSign5 , the challenger can exclusively attribute
commitments from UnUsedComrctntws to users during corruption.

39

Game18 to Game20: Invoke HVZK In games Game18 to Game20, we invoke HVZK with respect to the
verification key x to simulate one of the honest commitments in UnUsedComrctntws when the last commitment
cmti with ctntw is opened. This later allows to compute the response rzh of the last signer h in round 5
without secret key x. At the end of Game20, the challenger no longer requires the secret key x to simulate the
signing oracles. Note that here, we need to argue using the algebraic structure underlying Schnorr signatures.
We elaborate.

Game18: In this game, the challenger chooses a random challenge c $
Ð Zp before sampling the honest

commitments tRjujP|sHS| for UnUsedComrctntws if i is the last signer to open its hash commitment cmti

to rRi in OSign4 or OCorrupt. Before outputting rRi or the state sti, the challenger retrieves the corrupt
commitments Rj for j P CS from cmtj by searching through all the random oracle queries made to Hcom.
If all Rj are found, it programs Hc such that Hcpvk,M, Rq “ c, where R “ SumComrctntws `

ř

jPCS Rj .
Further, the challenger aborts if some Rj was not found for ctntw, but OSign5 is invoked with ctntw.

Since |sHS| ě 1 and Rj has high min-entropy, Hc was never queried with pvk,M, Rq before it is
programmed, so the view of A is identically distributed. Since the challenger checks in OSign5 whether
each rRj is committed in cmtj , the adversary must have found a preimage for all cmtj . This happens
with negligible probability. To argue the above, we use that due to signature-based authentication, we
know that ctntw fixes pcmtjqjPSS implicitly and for j P sHS, the hash commitments cmtj are honest.

Game19: In this game, the challenger invokes HVZK with respect to the verification key x to simulate one of
the commitments pRjqjP|sHS| when setting up UnUsedComrctntws, and computes the consistent response
rzh for ctntw in a different manner. In more detail, if ĄsHSw “ tiu in OCorrupt or OSign4 , after sampling the
challenge c, the challenger simulates the commitment-response pair pR˚, z˚q, where z˚ “ c ¨x`r˚. The
commitment R˚ is added to SumComrctntws but not stored in UnUsedComrctntws to avoid attributing
it to a user in OCorrupt. Also, r˚ is not added to SumComRndrctntws. Instead, the challenger computes
the last consistent response rzh, i.e., if ĄsHSz “ tiu in OSign5 or OCorrupt, via the simulated response z˚

as follows:

rzh :“ z˚ ´ c
ÿ

jPsCS

LSS,j ¨ xj ` SumComRndrctntws ´
ÿ

jPsHSzthu

rzj ´
ÿ

jPsCS

∆j .

The above identity for rzh is obtained by rewriting Eq. (17) using z˚ “ c ¨ x ` r˚.

Game20: This is the first game that requires the algebraic structure of G. In this game, the challenger
replaces X $

Ð G in the verification key with a random group element. When simulating the pair
pR˚, z˚q with challenge c, the challenger samples z˚

$
Ð Zp and R :“ z˚ ¨G´ c ¨X. Also, when a user i

is corrupted, it samples xi at random.

Observe that the challenger in Game19 uses the secret key x only when computing the simulated
response z˚ “ c ¨ x ` ri. It is straightforward to check that both games are identically distributed.

Reduction from SelfTargetDL. In Game20, the challenger can simulate the signing oracles without knowing
s. At this point, we are finally read to construct an adversary against SelfTargetDL. Again, we can adapt
the last step of the proof for TRaccoonadp5-rnd given in Section 6 to obtain the result.

7.4 Our 4-Round Schnorr Threshold Signature
As TRaccoonadp4-rnd, we can construct the stateful 4 round threshold signature scheme TSchnorradp4-rnd from
TSchnorradp5-rnd by using the session identifier sid that is never reused. For the detail of this transformation,
see Section 5.4. The construct and the security theorem are provided in Appendix C.

Acknowledgement. This work has been supported in part by JST CREST Grant Number JPMJCR22M1,
JST-AIP Acceleration Research JPMJCR22U5, JSPS KAKENHI Grant Numbers JP22KJ1366.

40

References
[ADN06] Jesús F. Almansa, Ivan Damgård, and Jesper Buus Nielsen. Simplified threshold RSA with

adaptive and proactive security. In Serge Vaudenay, editor, EUROCRYPT 2006, volume 4004
of LNCS, pages 593–611. Springer, Heidelberg, May / June 2006.

[AF04] Masayuki Abe and Serge Fehr. Adaptively secure feldman VSS and applications to universally-
composable threshold cryptography. In Matthew Franklin, editor, CRYPTO 2004, volume 3152
of LNCS, pages 317–334. Springer, Heidelberg, August 2004.

[ASY22] Shweta Agrawal, Damien Stehlé, and Anshu Yadav. Round-optimal lattice-based threshold
signatures, revisited. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
ICALP 2022, volume 229 of LIPIcs, pages 8:1–8:20. Schloss Dagstuhl, July 2022.

[BCK`22] Mihir Bellare, Elizabeth C. Crites, Chelsea Komlo, Mary Maller, Stefano Tessaro, and Chenzhi
Zhu. Better than advertised security for non-interactive threshold signatures. In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part IV, volume 13510 of LNCS, pages
517–550. Springer, Heidelberg, August 2022.

[BD21] Mihir Bellare and Wei Dai. Chain reductions for multi-signatures and the HBMS scheme. In
Mehdi Tibouchi and Huaxiong Wang, editors, ASIACRYPT 2021, Part IV, volume 13093 of
LNCS, pages 650–678. Springer, Heidelberg, December 2021.

[BD22] LTAN Brandão and Michael Davidson. Notes on threshold eddsa/schnorr signatures. National
Institute of Standards and Technology, 2022. https://doi.org/10.6028/NIST.IR.8214B.ipd.

[BG14] Shi Bai and Steven D. Galbraith. An improved compression technique for signatures based
on learning with errors. In Josh Benaloh, editor, CT-RSA 2014, volume 8366 of LNCS, pages
28–47. Springer, Heidelberg, February 2014.

[BGG`18] Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Sam Kim, Peter M. R. Ras-
mussen, and Amit Sahai. Threshold cryptosystems from threshold fully homomorphic encryp-
tion. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part I, volume
10991 of LNCS, pages 565–596. Springer, Heidelberg, August 2018.

[BHK`23] Fabrice Benhamouda, Shai Halevi, Hugo Krawczyk, Tal Rabin, and Yiping Ma. SPRINT:
high-throughput robust distributed schnorr signatures. IACR Cryptol. ePrint Arch., page 427,
2023.

[BKP13] Rikke Bendlin, Sara Krehbiel, and Chris Peikert. How to share a lattice trapdoor: Threshold
protocols for signatures and (H)IBE. In Michael J. Jacobson Jr., Michael E. Locasto, Payman
Mohassel, and Reihaneh Safavi-Naini, editors, ACNS 13, volume 7954 of LNCS, pages 218–236.
Springer, Heidelberg, June 2013.

[BL22] Renas Bacho and Julian Loss. On the adaptive security of the threshold BLS signature scheme.
In Heng Yin, Angelos Stavrou, Cas Cremers, and Elaine Shi, editors, ACM CCS 2022, pages
193–207. ACM Press, November 2022.

[BLL`21] Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova.
On the (in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EU-
ROCRYPT 2021, Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October
2021.

[BLS01] Dan Boneh, Ben Lynn, and Hovav Shacham. Short signatures from the Weil pairing. In Colin
Boyd, editor, ASIACRYPT 2001, volume 2248 of LNCS, pages 514–532. Springer, Heidelberg,
December 2001.

41

https://doi.org/10.6028/NIST.IR.8214B.ipd

[BLT`24] Renas Bacho, Julian Loss, Stefano Tessaro, Benedikt Wagner, and Chenzhi Zhu. Twinkle:
Threshold signatures from ddh with full adaptive security. To Appear in EUROCRYPT 2024.
Available at https: // eprint. iacr. org/ 2023/ 1482 , 2024.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and a general
forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capitani di Vimercati, editors,
ACM CCS 2006, pages 390–399. ACM Press, October / November 2006.

[Bol03] Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the
gap-Diffie-Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567
of LNCS, pages 31–46. Springer, Heidelberg, January 2003.

[BTZ22] Mihir Bellare, Stefano Tessaro, and Chenzhi Zhu. Stronger security for non-interactive threshold
signatures: BLS and FROST. Cryptology ePrint Archive, Report 2022/833, 2022. https:
//eprint.iacr.org/2022/833.

[CCL`20] Guilhem Castagnos, Dario Catalano, Fabien Laguillaumie, Federico Savasta, and Ida Tucker.
Bandwidth-efficient threshold EC-DSA. In Aggelos Kiayias, Markulf Kohlweiss, Petros Wallden,
and Vassilis Zikas, editors, PKC 2020, Part II, volume 12111 of LNCS, pages 266–296. Springer,
Heidelberg, May 2020.

[CFGN96] Ran Canetti, Uriel Feige, Oded Goldreich, and Moni Naor. Adaptively secure multi-party
computation. In 28th ACM STOC, pages 639–648. ACM Press, May 1996.

[CGG`20] Ran Canetti, Rosario Gennaro, Steven Goldfeder, Nikolaos Makriyannis, and Udi Peled. UC
non-interactive, proactive, threshold ECDSA with identifiable aborts. In Jay Ligatti, Xinming
Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1769–1787. ACM
Press, November 2020.

[CGJ`99] Ran Canetti, Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Adaptive
security for threshold cryptosystems. In Michael J. Wiener, editor, CRYPTO’99, volume 1666
of LNCS, pages 98–115. Springer, Heidelberg, August 1999.

[Che05] Benoît Chevallier-Mames. An efficient CDH-based signature scheme with a tight security reduc-
tion. In Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 511–526. Springer,
Heidelberg, August 2005.

[CKM23] Elizabeth C. Crites, Chelsea Komlo, and Mary Maller. Fully adaptive Schnorr threshold signa-
tures. In Helena Handschuh and Anna Lysyanskaya, editors, CRYPTO 2023, Part I, volume
14081 of LNCS, pages 678–709. Springer, Heidelberg, August 2023.

[CS20] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret keys to produce an
actively secure distributed signing protocol. In Jintai Ding and Jean-Pierre Tillich, editors,
Post-Quantum Cryptography - 11th International Conference, PQCrypto 2020, pages 169–186.
Springer, Heidelberg, 2020.

[DDFY94] Alfredo De Santis, Yvo Desmedt, Yair Frankel, and Moti Yung. How to share a function securely.
In 26th ACM STOC, pages 522–533. ACM Press, May 1994.

[Des90] Yvo Desmedt. Abuses in cryptography and how to fight them. In Shafi Goldwasser, editor,
CRYPTO’88, volume 403 of LNCS, pages 375–389. Springer, Heidelberg, August 1990.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryptosystems. In Gilles Brassard, editor,
CRYPTO’89, volume 435 of LNCS, pages 307–315. Springer, Heidelberg, August 1990.

42

https://eprint.iacr.org/2023/1482
https://eprint.iacr.org/2022/833
https://eprint.iacr.org/2022/833

[DJN`20] Ivan Damgård, Thomas Pelle Jakobsen, Jesper Buus Nielsen, Jakob Illeborg Pagter, and
Michael Bæksvang Østergaard. Fast threshold ECDSA with honest majority. In Clemente Galdi
and Vladimir Kolesnikov, editors, SCN 20, volume 12238 of LNCS, pages 382–400. Springer,
Heidelberg, September 2020.

[DKL`18] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor Seiler,
and Damien Stehlé. CRYSTALS-Dilithium: A lattice-based digital signature scheme. IACR
TCHES, 2018(1):238–268, 2018. https://tches.iacr.org/index.php/TCHES/article/view/
839.

[DKLs19] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA
assumptions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy, pages
1051–1066. IEEE Computer Society Press, May 2019.

[DM20] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions. In Aggelos
Kiayias, Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020, Part II,
volume 12111 of LNCS, pages 187–212. Springer, Heidelberg, May 2020.

[DOTT21] Ivan Damgård, Claudio Orlandi, Akira Takahashi, and Mehdi Tibouchi. Two-round n-out-of-n
and multi-signatures and trapdoor commitment from lattices. In Juan Garay, editor, PKC 2021,
Part I, volume 12710 of LNCS, pages 99–130. Springer, Heidelberg, May 2021.

[dPEK`23] Rafaël del Pino, Thomas Espitau, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem,
Thomas Prest, Mélissa Rossi, and Markku-Juhani Saarinen. Raccoon. Technical report, Na-
tional Institute of Standards and Technology, 2023. Available at https://csrc.nist.gov/
Projects/pqc-dig-sig/round-1-additional-signatures.

[dPKM`24] Rafael del Pino, Shuichi Katsumata, Mary Maller, Fabrice Mouhartem, Thomas Prest, and
Markku-Juhani O. Saarinen. Threshold raccoon: Practical threshold signatures from standard
lattice assumptions, 2024. To Appear in EUROCRYPT 2024. Available at https://eprint.
iacr.org/2024/184.

[DR23] Sourav Das and Ling Ren. Adaptively secure BLS threshold signatures from DDH and co-cdh.
IACR Cryptol. ePrint Arch., page 1553, 2023.

[DYX`22] Sourav Das, Thomas Yurek, Zhuolun Xiang, Andrew K. Miller, Lefteris Kokoris-Kogias, and
Ling Ren. Practical asynchronous distributed key generation. In 2022 IEEE Symposium on
Security and Privacy, pages 2518–2534. IEEE Computer Society Press, May 2022.

[EKT24] Thomas Espitau, Shuichi Katsumata, and Kaoru Takemure. Two-round threshold signature
from algebraic one-more learning with errors, 2024. To Appear in CRYPTO 2024. Available at
https://eprint.iacr.org/2024/496.

[ENP24] Thomas Espitau, Guilhem Niot, , and Thomas Prest. Flood and submerse: Verifiable short
secret sharing and application to robust threshold signatures on lattices, 2024. To Appear in
CRYPTO 2024.

[FKL18] Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications.
In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992
of LNCS, pages 33–62. Springer, Heidelberg, August 2018.

[FMY98] Yair Frankel, Philip D. MacKenzie, and Moti Yung. Robust efficient distributed RSA-key
generation. In Brian A. Coan and Yehuda Afek, editors, 17th ACM PODC, page 320. ACM,
June / July 1998.

43

https://tches.iacr.org/index.php/TCHES/article/view/839
https://tches.iacr.org/index.php/TCHES/article/view/839
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/Projects/pqc-dig-sig/round-1-additional-signatures
https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/184
https://eprint.iacr.org/2024/496

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and
signature problems. In Andrew M. Odlyzko, editor, CRYPTO’86, volume 263 of LNCS, pages
186–194. Springer, Heidelberg, August 1987.

[GG18] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ECDSA with fast trustless
setup. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, editors, ACM
CCS 2018, pages 1179–1194. ACM Press, October 2018.

[GG20] Rosario Gennaro and Steven Goldfeder. One round threshold ECDSA with identifiable abort.
Cryptology ePrint Archive, Report 2020/540, 2020. https://eprint.iacr.org/2020/540.

[GGN16] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. Threshold-optimal DSA/ECDSA
signatures and an application to bitcoin wallet security. In Mark Manulis, Ahmad-Reza Sadeghi,
and Steve Schneider, editors, ACNS 16, volume 9696 of LNCS, pages 156–174. Springer, Hei-
delberg, June 2016.

[GHKR08] Rosario Gennaro, Shai Halevi, Hugo Krawczyk, and Tal Rabin. Threshold RSA for dynamic
and ad-hoc groups. In Nigel P. Smart, editor, EUROCRYPT 2008, volume 4965 of LNCS, pages
88–107. Springer, Heidelberg, April 2008.

[GJKR07] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. Secure distributed key
generation for discrete-log based cryptosystems. Journal of Cryptology, 20(1):51–83, January
2007.

[GKS23] Kamil Doruk Gur, Jonathan Katz, and Tjerand Silde. Two-round threshold lattice signatures
from threshold homomorphic encryption, 2023. To Appear in PQCrypto 2024. Available at
https://eprint.iacr.org/2023/1318.

[GKSŚ20] Adam Gągol, Jędrzej Kula, Damian Straszak, and Michał Świętek. Threshold ECDSA for
decentralized asset custody. Cryptology ePrint Archive, Report 2020/498, 2020. https://
eprint.iacr.org/2020/498.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices and new
cryptographic constructions. In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM
STOC, pages 197–206. ACM Press, May 2008.

[GS23] Jens Groth and Victor Shoup. Fast batched asynchronous distributed key generation. IACR
Cryptol. ePrint Arch., page 1175, 2023.

[GVW15] Sergey Gorbunov, Vinod Vaikuntanathan, and Daniel Wichs. Leveled fully homomorphic sig-
natures from standard lattices. In Rocco A. Servedio and Ronitt Rubinfeld, editors, 47th ACM
STOC, pages 469–477. ACM Press, June 2015.

[HKL19] Eduard Hauck, Eike Kiltz, and Julian Loss. A modular treatment of blind signatures from iden-
tification schemes. In Yuval Ishai and Vincent Rijmen, editors, EUROCRYPT 2019, Part III,
volume 11478 of LNCS, pages 345–375. Springer, Heidelberg, May 2019.

[HKLN20] Eduard Hauck, Eike Kiltz, Julian Loss, and Ngoc Khanh Nguyen. Lattice-based blind signa-
tures, revisited. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part II,
volume 12171 of LNCS, pages 500–529. Springer, Heidelberg, August 2020.

[JL00] Stanislaw Jarecki and Anna Lysyanskaya. Adaptively secure threshold cryptography: Introduc-
ing concurrency, removing erasures. In Bart Preneel, editor, EUROCRYPT 2000, volume 1807
of LNCS, pages 221–242. Springer, Heidelberg, May 2000.

44

https://eprint.iacr.org/2020/540
https://eprint.iacr.org/2023/1318
https://eprint.iacr.org/2020/498
https://eprint.iacr.org/2020/498

[KCLM22] Irakliy Khaburzaniya, Konstantinos Chalkias, Kevin Lewi, and Harjasleen Malvai. Aggregating
and thresholdizing hash-based signatures using STARKs. In Yuji Suga, Kouichi Sakurai, Xuhua
Ding, and Kazue Sako, editors, ASIACCS 22, pages 393–407. ACM Press, May / June 2022.

[KG20] Chelsea Komlo and Ian Goldberg. FROST: Flexible round-optimized Schnorr threshold sig-
natures. In Orr Dunkelman, Michael J. Jacobson Jr., and Colin O’Flynn, editors, SAC 2020,
volume 12804 of LNCS, pages 34–65. Springer, Heidelberg, October 2020.

[KGS23] Chelsea Komlo, Ian Goldberg, and Douglas Stebila. A formal treatment of distributed key
generation, and new constructions. Cryptology ePrint Archive, Report 2023/292, 2023. https:
//eprint.iacr.org/2023/292.

[KLP17] Eike Kiltz, Julian Loss, and Jiaxin Pan. Tightly-secure signatures from five-move identification
protocols. In Tsuyoshi Takagi and Thomas Peyrin, editors, ASIACRYPT 2017, Part III, volume
10626 of LNCS, pages 68–94. Springer, Heidelberg, December 2017.

[KLS18] Eike Kiltz, Vadim Lyubashevsky, and Christian Schaffner. A concrete treatment of Fiat-Shamir
signatures in the quantum random-oracle model. In Jesper Buus Nielsen and Vincent Rijmen,
editors, EUROCRYPT 2018, Part III, volume 10822 of LNCS, pages 552–586. Springer, Hei-
delberg, April / May 2018.

[KLSS23] Duhyeong Kim, Dongwon Lee, Jinyeong Seo, and Yongsoo Song. Toward practical lattice-
based proof of knowledge from hint-mlwe. In Helena Handschuh and Anna Lysyanskaya, edi-
tors, Advances in Cryptology – CRYPTO 2023, pages 549–580, Cham, 2023. Springer Nature
Switzerland.

[KMP16] Eike Kiltz, Daniel Masny, and Jiaxin Pan. Optimal security proofs for signatures from identi-
fication schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II,
volume 9815 of LNCS, pages 33–61. Springer, Heidelberg, August 2016.

[KMS20] Eleftherios Kokoris-Kogias, Dahlia Malkhi, and Alexander Spiegelman. Asynchronous dis-
tributed key generation for computationally-secure randomness, consensus, and threshold sig-
natures. In Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna, editors, ACM CCS
2020, pages 1751–1767. ACM Press, November 2020.

[Lin22] Yehuda Lindell. Simple three-round multiparty schnorr signing with full simulatability. Cryp-
tology ePrint Archive, Report 2022/374, 2022. https://eprint.iacr.org/2022/374.

[LJY14] Benoît Libert, Marc Joye, and Moti Yung. Born and raised distributively: fully distributed non-
interactive adaptively-secure threshold signatures with short shares. In Magnús M. Halldórsson
and Shlomi Dolev, editors, 33rd ACM PODC, pages 303–312. ACM, July 2014.

[LN18] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key
generation and applications to cryptocurrency custody. In David Lie, Mohammad Mannan,
Michael Backes, and XiaoFeng Wang, editors, ACM CCS 2018, pages 1837–1854. ACM Press,
October 2018.

[LP01] Anna Lysyanskaya and Chris Peikert. Adaptive security in the threshold setting: From cryp-
tosystems to signature schemes. In Colin Boyd, editor, ASIACRYPT 2001, volume 2248 of
LNCS, pages 331–350. Springer, Heidelberg, December 2001.

[LPR13] Vadim Lyubashevsky, Chris Peikert, and Oded Regev. A toolkit for ring-LWE cryptography. In
Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS,
pages 35–54. Springer, Heidelberg, May 2013.

[LS15] Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices.
Designs, Codes and Cryptography, 75(3):565–599, 2015.

45

https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2023/292
https://eprint.iacr.org/2022/374

[Lyu09] Vadim Lyubashevsky. Fiat-Shamir with aborts: Applications to lattice and factoring-based
signatures. In Mitsuru Matsui, editor, ASIACRYPT 2009, volume 5912 of LNCS, pages 598–
616. Springer, Heidelberg, December 2009.

[Lyu12] Vadim Lyubashevsky. Lattice signatures without trapdoors. In David Pointcheval and Thomas
Johansson, editors, EUROCRYPT 2012, volume 7237 of LNCS, pages 738–755. Springer, Hei-
delberg, April 2012.

[MR04] Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on Gaussian
measures. In 45th FOCS, pages 372–381. IEEE Computer Society Press, October 2004.

[NIS22] NIST. Call for additional digital signature schemes for the post-quantum cryptogra-
phy standardization process. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/
documents/call-for-proposals-dig-sig-sept-2022.pdf, 2022.

[PB23] René Peralta and Luís T.A.N. Brandão. Nist first call for multi-party threshold schemes.
National Institute of Standards and Technology, 2023. https://doi.org/10.6028/NIST.IR.
8214C.ipd.

[Ped92] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret shar-
ing. In Joan Feigenbaum, editor, CRYPTO’91, volume 576 of LNCS, pages 129–140. Springer,
Heidelberg, August 1992.

[PS00] David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind
signatures. Journal of Cryptology, 13(3):361–396, June 2000.

[Rab98] Tal Rabin. A simplified approach to threshold and proactive RSA. In Hugo Krawczyk, editor,
CRYPTO’98, volume 1462 of LNCS, pages 89–104. Springer, Heidelberg, August 1998.

[RRJ`22] Tim Ruffing, Viktoria Ronge, Elliott Jin, Jonas Schneider-Bensch, and Dominique Schröder.
ROAST: Robust asynchronous schnorr threshold signatures. In Heng Yin, Angelos Stavrou, Cas
Cremers, and Elaine Shi, editors, ACM CCS 2022, pages 2551–2564. ACM Press, November
2022.

[Sch91] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of Cryptology,
4(3):161–174, January 1991.

[Sha79] Adi Shamir. How to share a secret. Communications of the Association for Computing Ma-
chinery, 22(11):612–613, November 1979.

[Sho00] Victor Shoup. Practical threshold signatures. In Bart Preneel, editor, EUROCRYPT 2000,
volume 1807 of LNCS, pages 207–220. Springer, Heidelberg, May 2000.

[Sho23] Victor Shoup. The many faces of schnorr. IACR Cryptol. ePrint Arch., page 1019, 2023.

[SS01] Douglas R. Stinson and Reto Strobl. Provably secure distributed Schnorr signatures and a pt, nq

threshold scheme for implicit certificates. In Vijay Varadharajan and Yi Mu, editors, ACISP
01, volume 2119 of LNCS, pages 417–434. Springer, Heidelberg, July 2001.

[TZ23] Stefano Tessaro and Chenzhi Zhu. Threshold and multi-signature schemes from linear hash
functions. In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part V, volume
14008 of LNCS, pages 628–658. Springer, Heidelberg, April 2023.

46

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf
https://doi.org/10.6028/NIST.IR.8214C.ipd
https://doi.org/10.6028/NIST.IR.8214C.ipd

A Omitted Preliminaries

A.1 Security Notions for Threshold Signature
A.1.1 Selective Security

In this section, we formally define the selective security of threshold signature schemes. Our definition is
based on the game-based one for a three round scheme provided by [CKM23].

In the selective setting, an adversary A determines the set CS of users to be corrupted at the beginning
of the security game (after obtaining the parameters tspar). After this, it is not allowed to corrupt more
honest user during the game. The challenger executes the key generation after CS is determined. It then
provides A with the verification key and secret key shares of corrupted users as input. It also provides access
to signing oracles for each round. In the end, A outputs a signature-message pair psig˚,M˚q that constitutes
the forgery. The adversary A wins the game if psig˚,M˚q is deemed non-trivial. Note that we use a stronger
security model, i.e., we classify more forgeries as non-trivial (cf. Remark 2.3).

Gamets-sel-ufTS,A p1λ, N, T q

1 : QMr¨s “ H // No message was signed yet

2 : tspar $
Ð Setupp1λ, N, T q

3 : pCS, stAq
$

Ð AH
ptsparq

4 : req JCS Ď rN sK ^ J|CS| ď T ´ 1K
5 : HS :“ rN szCS

6 : for i P HS do sti :“ H

7 : pvk, pskiqiPrNsq
$

Ð KeyGenptsparq

8 : psig˚,M˚
q

$
Ð ApOSignr

qrPrRs,Hpvk, pskiqiPCS, stAq

9 : req J
∣∣QMrM˚

s Y CS
∣∣ ď T ´ 1K

10 : return Verifypvk,M˚, sig˚
q

OSignr pSS,M, i, ppmr´1,jqjPSSq

// r P rRs, pm0,j “ K for all j P SS.

1 : req JSS Ď rN sK ^ Ji P HS X SSK

2 : ppmr,i, stiq
$

Ð Signrpvk, SS,M, i, ppmr´1,jqjPSS, ski, stiq

3 : if Jr “ RK then QMrMs Ð QMrMs Y tiu

4 : return pmr,i

Figure 8: Selective security game for a R round threshold signature scheme, where H denotes the random
oracle. In the above, the oracles return K to A when Signr outputs K for r P rRs (i.e., fail to output a
protocol message or a partial signature).

Now we define selective security for a R round threshold signature scheme.

Definition A.1 (TS-UF-1 Selective Security). For a R round threshold signature scheme TS, the ad-
vantage of an adversary A (with oracle access to a random oracle H) against the selective security of TS is
defined as

Advts-sel-ufTS,A p1λ, N, T q “ PrrGamets-sel-ufTS,A p1λ, N, T q “ 1s,

where Gamets-sel-uf is described in Fig. 8, respectively. We say that TS is adaptive secure in the random oracle
model if, for all λ P N, N,T P polypλq s.t. T ď N and PPT adversary A, Advts-sel-ufTS,Ap1λ, N, T q ď neglpλq

holds.

A.1.2 TS-UF-0 Security

For completeness, we define the TS-UF-0 security notion of selective and adaptive security considered by
[CKM23]. For selective security, replace line 3 in OSignr and line 9 in Fig. 8 by QM Ð QM Y tMu and

req JM˚ R QMK , respectively. Note that QM is an initially empty set. For adaptive security, replace line 3

in OSignr and line 7 in Fig. 2 by QM Ð QM Y tMu and req JM˚ R QMK , respectively. We omit details.

47

A.2 Rounding and Norms Modulo q

This section is taken almost verbatim from [dPKM`24]. In all of the following we fix positive integers q and
n. We aim at giving a systematic treatment of the adaptation of the notions of norms and rounding maps
to the ring of integers modulo q, Zq and more generally in the free module Zn

q of vectors mod q.

A.2.1 Length over Modular Integers.

In this work we use the so-called canonical unsigned representation of integers modulo q. Given an integer
x P Z, this representation is the unique non-negative element 0 ď t ď q ´ 1 such that x “ t mod q. We will
generically note this element px mod qq. Conversely, given a class x` qZ P Zq, we define the corresponding
lift x̄ to the unique integer in x ` qZ X r0, . . . q ´ 1s.

For any norm } ¨ } over Qn, we define the length of a (vector) class x ` qZn to be minzPx`qZn }z}, and
overload the notation as }x ` qZn}, }x mod q} or even }x} if the context is clear enough to avoid any
ambiguity. As for the integers, we prefer to write simply |x| when n “ 1 to refer to the absolute value.
[dPKM`24] show that with the choices in this definition, } ¨ } is indeed a F-norm over free modules over Zq.
only non trivial point to show is the triangular inequality.

Lemma A.2. For any q, n P Nzt0u, and x,y P Zn
q , we have

|∥x∥ ´ ∥y∥| ď ∥x ` y∥ ď ∥x∥ ` ∥y∥.

A.2.2 Modular Most-Significant Bit Decomposition.

Let ν P Nzt0u. Any integer x P Z can be uniquely decomposed as:

x “ 2ν ¨ x
J

` x
K
, px

J
, x

K
q P Z ˆ r´2ν´1, 2ν´1 ´ 1s, (18)

which consists essentially in separating the lower-order bits from the higher-order ones. We define the
function

t¨sν : Z Ñ Z s.t. txsν “ tx{2νs “ x
J
,

where t¨s : R ÞÑ Z denotes the rounding operator. More precisely the “rounding half-up” method txs “ tx` 1
2 u

where half-way values are rounded up: e.g. t2.5s “ 3 and t´2.5s “ ´2. With a slight overload of notation,
when q ą 2ν , we extend t¨sν to take inputs in Zq, in which case, we assume the output is an element in Zqν

where qν “ tq{2νu. Formally, we define:

t¨sν : Zq ÞÑ Zqν “ Ztq{2ν u s.t. txsν “ tx̄{2νs ` qνZ “ px̄q
J

` qνZ,

The function t¨sν naturally extends to vectors coefficient-wise. The following is a special case of [dPKM`24].
This bound on modular rounding operations are useful when arguing the small offset caused by performing
modular rounding for efficiency.

Lemma A.3. Let ν, q be positive integers such that q ą 2ν , ν ě 4, and set qν “ tq{2νu. Moreover, assume
q and ν satisfy qν “ tq{2νs, that is, q can be decomposed as q “ 2ν ¨ qν ` q

K
for q

K
P r0, 2ν´1 ´ 1s. Then, for

any x P Zq, we have ∣∣∣x ´ 2ν ¨ txsν

∣∣∣ ď 2ν ´ 1. (19)

Moreover, for any x, δ P Zn
q , we have
›

›

›
2ν

´

tx ` δsν ´ txsν

¯
›

›

›
ď

›

›

›
2νtδsν

›

›

›
` }1} ¨ 2ν .

Throughout this work, we will not be as precise as above for better readability. For instance, we might
informally use x instead of the lift x̄ or write |2ν ¨ x| instead of |2ν ¨ x̄ mod q| when the context is clear and
the distinction is unimportant.

48

A.3 Hardness of Lattice-Related Problems
Here we provide all the omitted details on the lattice-related hardness problems. The following is the standard
notions of the MLWE and MSIS problem.

Definition A.4 (MLWE). Let ℓ, k, q be integers and D be a probability distribution over Rq. The advantage
of an adversary A against the Module Learning with Errors MLWEq,ℓ,k,D problem is defined as:

AdvMLWE
A p1λq “ |Pr r1 Ð ApA,As ` eqs ´ Pr r1 Ð ApA,bqs|

where pA,b, s, eq Ð Rkˆℓ
q ˆRk

q ˆDℓˆDk. The MLWEq,ℓ,k,D assumption states that any efficient adversary A
has negligible advantage. We may write MLWEq,ℓ,k,σ as a shorthand for MLWEq,ℓ,k,D when D is the Gaussian
distribution of standard deviation σ. Lastly, we also define a variant called uniform MLWE pUMLWEq where
the secret key is sampled from the uniform distribution Rℓ

q.

Definition A.5 (MSIS). Let ℓ, k, q be integers and β ą 0 a real number. The advantage of an adversary A
against the Module Short Integer Solution MSISq,ℓ,k,β problem, is defined as:

AdvMSIS
A p1λq “ Pr

”

A $
Ð Rkˆℓ

q , s $
Ð ApAq : p0 ă }s}2 ď βq ^

“

A | I
‰

s “ 0 mod q
ı

.

The MSISq,ℓ,k,β assumption states that any efficient adversary A has negligible advantage.

Lastly, we define a useful distribution associated to the rounded MLWE instance.

Definition A.6. For any A P Rkˆℓ
q , positive integers rep and ν, let Dbd-MLWE

q,ℓ,k,σ,rep,νpAq be the distribution
defined as

␣

tA ¨ s ` esν | ps, eq “ p
ř

iPrreps si,
ř

iPrreps eiq,@i P rreps, psi, eiq
$

Ð Dℓ
σ ˆ Dk

σ

(

. That is, it samples
rep MLWEq,ℓ,k,σ instances, aggregates them, and drops ν trailing bits.

The following results establish the worst-case to average-case reductions for the MLWE and MSIS prob-
lems.

Lemma A.7 (Hardness of MLWE [LS15]). Let kpλq, ℓpλq, qpλq, npλq, σpλq such that q ď polypnℓq,
k ď polypℓq, and σ ě

?
ℓ ¨ ωp

?
log nq. If D is a discrete Gaussian distribution with standard deviation σ,

then the MLWEq,ℓ,k,D problem is as hard as the worst-case lattice Generalized-Independent-Vector-Problem
(GIVP) in dimension N “ nℓ with approximation factor

?
8 ¨ Nℓ ¨ ωp

?
log ℓq ¨ q{σ.

Lemma A.8 (Hardness of MSIS [LS15]). For any kpλq, ℓpλq, qpλq, npλq, βpλq such that q ą β
?
nℓ ¨

ωplogpnℓqq, k ď polypℓq, and log q ď polypnℓq. The MSISq,ℓ,k,β problem is as hard as the worst-case
lattice Generalized-Independent-Vector-Problem (GIVP) in dimension N “ nℓ with approximation factor
β

?
N ¨ ωp

?
logNq.

We also recall the following MLWE to Hint-MLWE reduction. Below, s1pcq denotes the spectral norm of
c P Rq and c˚ denotes the Hermitian adjoint of c. Kim et al. [KLSS23] showed that the reduction is tight.

Lemma A.9 (Hardness of Hint-MLWE [KLSS23]). For any integers ℓ, k, q, n,Q, set C Ă Rq, and positive
reals Bhint, σ, σD, σG such that Prrs1p

ř

iPrQs ci ¨ pciq
˚q ă Bhint : ci Ð Cs ě 1 ´ neglpλq, σ “ ωp

?
log nq, and

1
σ2 “ 2 ¨

´

1
σ2
D

`
Bhint

σ2
G

¯

, the Hint-MLWEq,ℓ,k,Q,σD,σG ,C problem is as hard as the MLWEq,ℓ,k,σ problem.

Lastly, we recall the following MSIS to SelfTargetMSIS reduction. The reduction is a simple invocation
of the forking lemma [PS00, BN06], running the adversary against the SelfTargetMSIS problem twice via
rewinding. del Pino et al. [dPKM`24] provides a concrete bound on the reduction.

Lemma A.10 (Hardness of SelfTargetMSIS [dPKM`24]). Let ℓ, k, q be integers and Bstmsis ą 0 be a real
number. Let C be a subset of Rq and let H : Rk

q ˆ t0, 1u2λ Ñ C be a cryptographic hash function modeled as
a random oracle. For any adversary A against the SelfTargetMSISq,ℓ,k,H,C,Bstmsis

problem making at most QH

queries to H, there exists an adversary B against the MSISq,ℓ,k,Bmsis problem with Bmsis “ 2Bstmsis such that

Adv
SelfTargetMSIS
A pλq ď

b

QH ¨ AdvMSIS
B pλq `

QH

|C|
,

where TimepBq « 2 ¨ TimepAq.

49

A.4 Hardness of DL-Related Problems
Here we provide all the omitted details on the DL-related hardness problems. Let GenG be an algorithm
that on input 1λ, outputs a tuple pG, p,Gq, where G is a generator of cyclic group G of prime order p.

First, we recall the standard notions of the DL problem.

Definition A.11. Let pG, p,Gq Ð GenGp1λq. The advantage of an adversary A against the DL problem, is
defined as:

AdvDL
A pλq “ Pr

”

x $
Ð Zp, X :“ x ¨ G, x1 $

Ð AHpXq : X “ x1 ¨ G
ı

.

The DL assumption states that any efficient adversary A has no more than negligible advantage.

Now, we recall the following two DL to SelfTargetDL reductions. In [BD21], Bellare and Dai provided the
non-tight reduction and the tight reduction in the algebraic group model (AGM). Note that SelfTargetDL is
called IDL. In particular, the non-tight reduction rewinds the adversary against SelfTargetDL problem once,
and the success probability of the reduction is derived by using the forking lemma.

Lemma A.12 (Hardness of SelfTargetDL [BD21]). Let pG, p,Gq Ð GenGp1λq. Let H : G2 ˆt0, 1u2λ Ñ Zp

be a cryptographic function modeled as a random oracle. For any adversary A against the SelfTargetDL
problem making at most QH queries to H, there exists an adversary B against the DL problem such that

AdvSelfTargetDL
A pλq ď

b

QH ¨ AdvDL
B pλq `

QH

p

where TimepBq « 2 ¨ TimepAq.
Moreover, for any algebraic adversary A against the SelfTargetDL problem making at most QH queries

to H, there exists an adversary B against the DL problem such that

AdvSelfTargetDL
A pλq ď AdvDL

B pλq `
QH

p

where TimepBq « TimepAq.

A.5 Forking Lemmas
The forking lemma was originally introduced by Pointcheval and Stern [PS00] in the context of signature
schemes. The lemma was later reformulated by Bellare and Neven [BN06] which extracts the purely proba-
bilistic nature of the forking lemma. Below, we review the Bellare-Neven general forking lemma.

Lemma A.13 (General Forking Lemma). Fix an integer q ě 1 and a set H of size h ě 2. Let A be a
randomized algorithm on input par, h⃗ :“:“ ph1, ¨ ¨ ¨ , hqq that returns J P r0, ¨ ¨ ¨ , qs and an arbitrary string σ.
Let IG be a randomized algorithm called the input generator. The accepting probability of A, denoted acc, is
defined below:

acc “ Pr
”

par $
Ð IG, h⃗ $

Ð Hq, pJ, σq
$

Ð Appar, h⃗q : J ě 1
ı

.

The forking algorithm ForkA associated to A is a randomized algorithm that takes input par and proceeds as
in Fig. 9. Let

frk “ Pr
”

par $
Ð IG; pb, pσ1, σ2qq

$
Ð ForkApparq : b “ 1

ı

.

Then,

frk ě acc ¨

ˆ

acc

q
´

1

h

˙

.

50

Algorithm ForkApparq

1 : coin $
Ð t0, 1u

ℓA // ℓA-bit randomness used by A

2 : h⃗ :“ ph1, ¨ ¨ ¨ , hqq
$

Ð Hq

3 : pJ, σq :“ Appar, h⃗; ρq

4 : if I “ 0 then

5 : return p0, pK,Kqq

6 : ph1
I , ¨ ¨ ¨ , h1

qq
$

Ð Hq´I`1

7 : h⃗1 :“ ph1, ¨ ¨ ¨ , hI´1, h
1
I , ¨ ¨ ¨ , h1

qq

8 : pJ 1, σ1
q :“ Appar, h⃗1; ρq

9 : if J “ J 1
^ hJ ‰ h1

J then

10 : return p1, pσ, σ1
qq

11 : else

12 : return p0, pK,Kqq

Figure 9: Description of the forking algorithm ForkA.

B Details of Our 4-Round Threshold Raccoon

B.1 Construction
Here, we provide the construction of our 4-round threshold signature TRaccoonadp4-rnd in Fig. 10. We only
show the procedure of the singing protocol since the setup, key generation, and verification algorithms are
the same as those of 5 round scheme TRaccoonadp5-rnd in Fig. 4. Parameters, the helper algorithm ZeroShare,
the signature scheme, and hash functions are identical to those in TRaccoonadp5-rnd. For the detail of them, see
Section 5.1.

B.2 Security
Below, we provide the main theorem establishing adaptive security of TRaccoonadp4-rnd.

Theorem B.1. The 4-round threshold signature TRaccoonadp4-rnd in Figs. 4 and 10 is adaptive secure under
the Hint-MLWE and MSIS assumptions.

Formally, for any N and T with T ď N and an adversary A against the adaptive security game
making at most QHc , QHcom , QHmask

, and QS queries to the random oracles Hc, Hcom, and Hmask and the
signing oracle, respectively, there exists adversaries B, B1, and BS against the Hint-MLWEq,ℓ,k,QS,σt,σw,C,
SelfTargetMSISq,ℓ`1,k,Hc,C,Bstmsis

problems, and the unforgeability of signatures, respectively, such that

Advts-adp-uf
TRaccoonadp4-rnd,A

p1λ, N, T, 1q ď QHc
¨ Adv

SelfTargetMSIS
B1 p1λq ` AdvHint-MLWE

B p1λq ` N ¨ Adveuf-cma
S,BS

pλq

`
QS ¨ pQHcom ` QHc

` 2QSq

2n´1
`

QHmask

2λ
`

pQHcom ` QSq2 ` QHcom

22λ
` neglpλq

where TimepBq,TimepB1q,TimepBSq « TimepAq. From Lemma A.10, we can replace B1 by an adversary B2

against the MSISq,ℓ`1,k,2B problem with TimepB2q « 2 ¨ TimepB1q such that

Adv
SelfTargetMSIS
B1 pλq ď

b

QHc ¨ AdvMSIS
B2 pλq `

QHc

|C|
.

51

Sign1pvk, sid ,SS, i, ski, stiq

1 : req JSS Ď rN sK ^ Ji P SSK

2 : parse
`

si, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

Ð ski

3 : ctntw :“ 0}SS}sid

4 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

5 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

6 : wi :“ Ari ` e1
i P Rk

q

7 : rwi :“ wi ` r∆i P Rk
q

8 : cmti :“ Hcompi, rwiq

9 : sti Ð sti Y tpsid, SS, cmti, rwi, riqu

10 : return ppm1,i :“ cmti, stiq

Sign2pvk, sid ,SS,M, i, ppm1,jqjPSS, ski, stiq

1 : req Jpsid, SS, pm1,i, ¨, ¨q P stiK

2 : pick psid, SS, cmti, rwi, riq from sti

3 : parse pcmtjqjPSSztiu Ð ppm1,jqjPSSztiu

with pm1,i “ cmti

4 : MS :“ SS}M}sid}pcmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : sti Ð stiztpsid, SS, cmti, rwi, riqu

7 : sti Ð sti Y tpsid, SS,M, pcmtjqjPSS, σS,i, rwi, riqu

8 : return ppm2,i :“ σS,i, stiq

Sign3pvk, sid ,SS,M, i, ppm2,jqjPSS, ski, stiq

1 : req Jpsid,SS,M, ¨, pm2,i, ¨, ¨q P stiK

2 : pick psid, SS,M, pcmtjqjPSS, σS,i, rwi, riq from sti

with pm2,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm2,jqjPSSztiu

4 : MS :“ SS}M}sid}pcmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : sti Ð stiztpsid, SS,M, pcmtjqjPSS, σS,i, rwi, riqu

7 : sti Ð sti Y tpsid, SS,M, pcmtjqjPSS, rwi, riqu

8 : return ppm3,i :“ rwi, stiq

Sign4pvk, sid ,SS,M, i, ppm3,jqjPSS, ski, stiq

1 : req Jpsid, SS,M, ¨, pm3,i, ¨q P stiK
2 : parse prwjqjPSSztiu Ð ppm3,jqjPSSztiu

3 : pick psid,SS,M, pcmtjqjPSS, rwi, riq from sti

with pm3,i “ rwi

4 : req J@j P SS, cmtj “ Hcompj, rwjqK
5 : ctntz :“ 1}SS}M}sid}pcmtjqjPSS}prwjqjPSS

6 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

7 : c :“ Hcpvk,M,wq // c P C

8 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

9 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

10 : sti Ð stiztpsid,SS,M, pstrj , cmtjqjPSS, rwi, riqu

11 : return ppm4,i :“ rzi, stiq

Aggpvk,SS,M, ppmb,jqpb,jqPr4sˆSSq

1 : parse prwj ,rzjqjPSS Ð ppm3,j , pm4,jqjPSS

2 : w :“

[

ÿ

jPSS

rwj

W

νw

3 : z :“
ÿ

jPSS

rzj P Rℓ
q

4 : c :“ Hcpvk,M,wq

5 : y :“ tAz ´ 2νt ¨ c ¨ tsνw P Rk
qνw

6 : h :“ w ´ y P Rk
qνw

7 : return sig :“ pc, z,hq

Figure 10: The signing protocol of our four round threshold signature TRaccoonadp4-rnd. In the above, LSS,i

denotes the Lagrange coefficient of user i in the set SS Ď rN s (see Section 2.3 for the definition), and sid is
a session identifier that is never been reused. pick X from Y denotes the process of picking an element X
from the set Y. The setup Setup, key generation KeyGen, verification TSV f algorithm are identical to those
of TRaccoonadp5-rnd in Fig. 4.

52

We omit the formal proof and only provide the rough proof sketch since the proof of this theorem is
almost identical to the proof of Theorem 6.1. The main difference is that the modification in Game2 in the
proof of Theorem 6.1 is not required. Recall that this modification is to ensure that the same ctntw is never
reused in the singing oracle by showing that the same string stri is never generated twice. On the other
hand, in TRaccoonadp4-rnd, this statement is immediately guaranteed by non-reuseability of the session identifier
sid. In the remaining parts of proof, we can argue similarly to the proof of Theorem 6.1, using the fact that
sid is never reused instead of the fact that pstrjqjPSS is not reused. Eventually, we can bound the advantage
of the adversary A as in the above theorem. Notice that the loss Q2

S{22λ, that arises from the modification
in Game2, is disappeared compared to Theorem 6.1.

C Details of Our 4-Round Threshold Schnorr

C.1 Construction
Here, we provide the construction of our 4-round threshold signature TSchnorradp4-rnd in Fig. 11. We only show
the procedure of the singing protocol since the setup, key generation, and verification algorithms are the
same as those of 5 round scheme TSchnorradp5-rnd in Fig. 6. Parameters, the helper algorithm ZeroShare, the
signature scheme, and hash functions are identical to those in TSchnorradp5-rnd. For the detail of them, see
Section 7.

C.2 Security
Below, we provide the main theorem establishing adaptive security of TSchnorradp4-rnd.

Theorem C.1. The 5-round threshold signature TSchnorradp4-rnd in Figs. 6 and 11 is adaptive secure under the
SelfTargetDL assumption.

Formally, for any N and T with T ď N and an adversary A against the adaptive security game making
at most QHc

, QHcom , QHmask
, and QS queries to the random oracles Hc, Hcom, and Hmask and the signing oracle,

respectively, there exists adversaries B and BS against the DL problem and the unforgeability of signatures,
respectively, such that

Advts-adp-uf
TSchnorradp4-rnd,A

p1λ, N, T, 1q ď QHc ¨ AdvSelfTargetDL
B p1λq ` N ¨ Adveuf-cma

S,BS
pλq

`
QS ¨ pQHcom ` QHc ` 2QSq

p
`

QHmask

2λ
`

pQHcom ` QSq2 ` QHcom

22λ
,

where TimepBq « TimepAq and TimepBSq « TimepAq. From Lemma A.12, we can replace B by an adversary
B1 against the DL problem with TimepB1q « 2 ¨ TimepBq such that

AdvSelfTargetDL
B pλq ď

b

QHc ¨ AdvDL
B1 pλq `

QHc

p
.

This theorem also immediately is obtained from Theorem 7.1. The idea of the proof is identical to that
of TRaccoonadp4-rnd. For the details of the idea, see Appendix B.

D Candidate Parameters for Our Threshold Raccoon

We propose three threshold signatures from Raccoon: TRaccoonsel3-rnd, TRaccoonadp4-rnd, and TRaccoonadp5-rnd.
These schemes can all be proven correct and secure under the same set of parameters. More importantly,
these are exactly the same as those used by the statically secure 3 round threshold Raccoon by del Pino et
al. [dPKM`24].

For completeness, we provide a set of candidate asymptotic parameters for which all three of our schemes
are secure under. This is taken from [dPKM`24, Section 7.1].

53

Sign1pvk, sid,SS, i, ski, stiq

1 : req JSS Ď rN sK ^ Ji P SSK

2 : parse ski Ð pxi, pvkS,iqiPrNs, skS,i, ⃗seediq

3 : ctntw :“ 0}SS}sid

4 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P G

5 : ri
$

Ð Zp;Ri :“ ri ¨ G

6 : rRi :“ Ri ` r∆i P G

7 : cmti :“ Hcompi, rRiq

8 : sti Ð stiztstriu

9 : sti Ð sti Y tpsid,SS, cmti, rRi, riqu

10 : return ppm1,i :“ cmti, stiq

Sign2pvk, sid,SS,M, i, ppm1,jqjPSS, ski, stiq

1 : req Jpsid,SS, pm1,i, ¨, ¨q P stiK

2 : pick psid, SS, cmti, rRi, riq from sti

3 : parse pcmtjqjPSSztiu Ð ppm2,jqjPSSztiu

with pm2,i “ cmti

4 : MS :“ SS}M}sid}pcmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : sti Ð stiztpsid, SS, cmti, rRi, riqu

7 : sti Ð sti Y tpsid, SS,M, pcmtjqjPSS, σS,i, rRi, riqu

8 : return ppm2,i :“ σS,i, stiq

Sign3pvk, sid,SS,M, i, ppm2,jqjPSS, ski, stiq

1 : req Jpsid, SS,M, ¨, pm2,i, ¨, ¨q P stiK

2 : pick psid,SS,M, pstrj , cmtjqjPSS, σS,i, rRi, riq from sti

with pm2,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm2,jqjPSSztiu

4 : MS :“ SS}M}sid}pcmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK

6 : sti Ð stiztpsid,SS,M, pcmtjqjPSS, σS,i, rRi, riqu

7 : sti Ð sti Y tpsid,SS,M, pcmtjqjPSS, rRi, riqu

8 : return ppm3,i :“
rRi, stiq

Sign4pvk, sid,SS,M, i, ppm3,jqjPSS, ski, stiq

1 : req Jpsid, SS,M, ¨, pm3,i, ¨q P stiK

2 : parse p rRjqjPSSztiu Ð ppm3,jqjPSSztiu

3 : pick psid, SS,M, pcmtjqjPSS, rRi, riq from sti

with pm3,i “ rRi

4 : req J@j P SS, cmtj “ Hcompj, rRjqK

5 : ctntz :“ 1}SS}M}sid}pcmtjqjPSS}p rRjqjPSS

6 : R :“
ÿ

jPSS

rRj P G

7 : c :“ Hcpvk,M, Rq // c P Zp

8 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Zp

9 : rzi :“ c ¨ LSS,i ¨ xi ` ri ` ∆i P Zp

10 : sti Ð stiztpsid, SS,M, pcmtjqjPSS, rRi, riqu

11 : return ppm5,i :“ rzi, stiq

Aggpvk,SS,M, ppmb,jqpb,jqPr4sˆSSq

1 : parse p rRj , rzjqjPSS Ð ppm3,j , pm4,jqjPSS

2 : R :“
ÿ

jPSS

rRj

3 : z :“
ÿ

jPSS

zj

4 : c :“ Hcpvk,M, Rq

5 : return sig :“ pc, zq

Figure 11: The Signing protocol of our four round threshold signature TSchnorradp4-rnd. In the above, LSS,i

denotes the Lagrange coefficient of user i in the set SS Ď rN s (see Section 2.3 for the definition), and sid is
a session identifier that is never been reused. pick X from Y denotes the process of picking an element X
from the set Y. The setup Setup, key generation KeyGen, verification Verify algorithm are identical to those
of TSchnorradp5-rnd in Fig. 6.

54

• n, ℓ, k “ polypλq such that n ě λ.

• W “ ωp1q for |C| ě 2λ for Lemma A.10 (hardness of MSIS).

• Bhint “ QS ¨ W ¨

´

1 ` n 1?
QS

pλ ` 1 ` 2 logpnqq

¯

, 1
σ2 “ 2 ¨

´

1
σ2
t

`
Bhint

σ2
w

¯

, and σ ě
?
ℓ ¨ ωp

?
log nq for

Lemmata A.7 and A.9 and [dPKM`24, Lemma B.2] (reduction from Hint-MLWE to MLWE and hardness
of MLWE).

• pσt, σwq “

´

2
?
ℓ ¨ log n, 2

?
Bhint ¨ ℓ ¨ log n

¯

.

• νt, νw “ Oplog λq, where νw ě 4 for correctness (see Lemmata 3.1 and 5.1).

• B “ e1{4 ¨pW σt`
?
T σwq

a

npk ` ℓq`pW ¨2νt `2νw`1q¨
?
nk for correctness (see Lemmata 3.1 and 5.1).

• Bstmsis “ B `
?
W ` pW ¨ 2νt ` 2νw`1q ¨

?
nk for Lemmata E.7 and E.18.

• q is the smallest prime larger than 2Bstmsis ¨
?
nk ¨ logpnkq2 such that pq, νt, νwq satisfy the condition

in Table 3 (hardness of MSIS).

For concreter parameter sets aiming t128, 192, 256u-bits security, we refer the readers to [dPKM`24,
Section 8].

E Formal Security Proofs
In this section, we provide the full proofs that were deferred from the main body.

E.1 Formal Security Proof of TRaccoonsel3-rnd

We now provide a formal proof of Theorem 4.1.

Proof. Let A be an adversary against the selective security game. We consider a sequence of games where the
first hybrid is the original game and the last is a game that can be reduced to the MSIS problem. Throughout
the game, we divide the signer set SS into honest users sHS :“ SS X HS and corrupt users sCS :“ SS X CS.
We relate the advantage of A for each adjacent games, where ϵi denotes the advantage of A in Gamei.

Game1: This is the real unforgeability game. Formally, this is depicted in Fig. 12. By definition, we have

ϵ1 :“ Advts-sel-ufTRaccoonsel3-rnd,A
p1λ, N, T, 1q.

Game2: In this game, the challenger postpones generating wi until OSign2 . This is depicted in Fig. 13.
Specifically, the challenger outputs a random hash commitment cmti

$
Ð t0, 1u2λ in OSign1 and removes

the commitment-related values prwi, riq from the state sti. In OSign2 , it computes pwi, ri, e
1
iq as in

OSign1 of Game1 and programs Hcom via ProgramHashCom such that we have Hcompi,wiq “ cmti. Also,
it reintroduces pwi, riq into the state sti at the end of OSign2 . Note that it aborts if QHcomri, rwis ‰ K

holds in ProgramHashCom.

Conditioned on the game does not abort, the view of two games are identically distributed to A, since
cmti and wi are generated in the same manner and cmti is opened in OSign2 in both games. Since the
commitment wi is honestly generated, the probability that QHcomri,wis ‰ K is at most pQHcom`QSq{2n´1

with overwhelming probability due to Lemma 2.8. Since A makes at most QS signing queries, we have

|ϵ2 ´ ϵ1| ď
QSpQHcom ` QSq

2n´1
` neglpλq.

55

Game1 :“ Gamets-sel-ufTRaccoonsel3-rnd,A
p1λ, N, T q

1 : QMr¨s :“ H,QHc r¨s :“ K,QHcom r¨s :“ K,QHmask r¨s :“ K

2 : A $
Ð Rkˆℓ

q

3 : pCS, stAq
$

Ð AHc,Hβ ,HmaskpA, N, T q

4 : req JCS Ď rN sK ^ J|CS| ď T ´ 1K
5 : HS :“ rN szCS

6 : for i P HS do sti :“ H

7 : ps, eq
$

Ð Dℓ
t ˆ Dk

t

8 : t :“ tAs ` esνt
P Rk

qνt

9 : for i P rN s do

10 : for j P rN s do

11 : randi,j
$

Ð t0, 1u
λ

12 : seedi,j :“ i}j}randi,j

13 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

14 : P⃗ $
Ð Rℓ

qrXs with degpP⃗ q “ T ´ 1, P⃗ p0q “ s

15 : psiqiPrNs :“ pP⃗ piqqiPrNs

16 : vk :“ ptspar, tq

17 : pskiqiPrNs :“
`

si, ⃗seedi
˘

iPrNs

18 : oracles :“ pOSign1 ,OSign2 ,OSign3 ,Hc,Hcom,Hmaskq

19 : psig˚,M˚
q

$
Ð Aoracles

pvk, pskiqiPCS, stAq

20 : req J
∣∣QMrM˚

s Y CS
∣∣ ď T ´ 1K

21 : return Verifyptspar, vk,M˚, sig˚
q

OSign1piq

1 : req Ji P HSK

2 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

3 : wi :“ Ari ` e1
i

4 : cmti :“ Hcompi,wiq

5 : sti Ð sti Y tpcmti,wi, riqu

6 : return pm1,i :“ cmti

OSign2pSS,M, i, ppm1,jqjPSSq

1 : req JSS Ď rN sK ^ Ji P SSK
2 : req Jppm1,i, ¨, ¨q P stiK ^ Ji P SSK

3 : pick pcmti,wi, riq from sti with pm1,i “ cmti

4 : parse pcmtjqjPSS Ð ppm1,jqjPSS

5 : sti Ð stiztpcmti,wi, riqu

6 : sti Ð sti Y tpSS,M, pcmtjqjPSS,wi, riqu

7 : return pm2,i :“ wi

Hcpvk,M,wq

1 : if JQHc rvk,M,ws “ KK then

2 : c $
Ð C

3 : QHc rvk,M,ws Ð c

4 : return QHc rvk,M,ws

Hcompi,wiq

1 : if JQHcom ri,wis “ KK then

2 : cmt $
Ð t0, 1u

2λ

3 : QHcom ri,wis Ð cmt

4 : return QHcom ri,wis

Hmaskpseed, ctntzq

1 : if JQHmask rseed, ctntzs “ KK then

2 : m $
Ð Rℓ

q

3 : QHmask rseed, ctntzs Ð m

4 : return QHmask rseed, ctntzs

OSign3pSS,M, i, ppm2,jqjPSSq

1 : req JpSS,M, ¨, pm2,i, ¨q P stiK

2 : parse pwjqjPSS Ð ppm2,jqjPSS

3 : pick pSS,M, pcmtjqjPSS,wi, riq from sti

with pm2,i “ wi

4 : req J@j P SS, cmtj “ HcompSS,M, j,wjqK
5 : ctntz :“ SS||M||pcmtj ,wjqjPSS

6 : w :“

[

ÿ

jPSS

wj

W

νw

7 : c :“ Hcpvk,M,wq

8 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

9 : zi :“ c ¨ LSS,i ¨ si ` ri ` ∆i

10 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

11 : QMrMs Ð QMrMs Y tiu

12 : return pm3,i :“ zi

Figure 12: The first game, identical to the real selective security game.

56

Game2:

OSign1pSS,M, iq

1 : req Ji P HSK

2 : cmti
$

Ð t0, 1u
2λ

3 : sti Ð sti Y tpcmtiqu

4 : return pm1,i :“ cmti

OSign2pSS, i,M, ppm1,jqjPSSq

1 : req JSS Ď rN sK ^ Ji P SSK
2 : req Jppm1,iq P stiK ^ Ji P SSK

3 : parse pcmtjqjPSS Ð ppm1,jqjPSS

4 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

5 : wi :“ Ari ` e1
i

6 : ProgramHashCompi, cmti,wiq

7 : sti Ð stiztpcmtiqu

8 : sti Ð sti Y tpSS,M, pcmtjqjPSS,wi, riqu

9 : return pm2,i :“ wi

ProgramHashCompi, cmti,wiq:

1 : abort if JQHcompi,wiq ‰ KK
2 : QHcompi,wiq Ð cmti

Game3:

OSign1pSS,M, iq

1 : req Ji P HSK

2 : cmti
$

Ð t0, 1u
2λ

3 : abort if Jcmti P CmtK
4 : Cmt :“ Cmt Y tcmtiu

5 : sti Ð sti Y tpcmtiqu

6 : return pm1,i :“ cmti

Hcompi,wiq

1 : if JQHcom ri,wis “ KK then

2 : cmt $
Ð t0, 1u

2λ

3 : abort if Jcmt P CmtK
4 : Cmt :“ Cmt Y tcmtu

5 : QHcom ri,wis Ð cmt

6 : return QHcom ri,wis

Figure 13: The second and third games. The differences are highlighted in blue. We assume Game3 initializes
an empty set Cmt :“ H at the beginning of the game. Algorithm ProgramHashCom is a helper algorithm for
programming the random oracle Hcom to open the hash commitments cmti consistently. This is assumed to
have a joint state with the challenger and random oracle Hcom used by the unforgeability game.

57

Game3: In this game, the challenger aborts if there is a collision in Hcom. This is depicted in Fig. 13.
Specifically, the challenger initially prepares an empty set Cmt :“ H. In OSign1 and Hcom, it checks
whether the sampled commitment cmt is already in Cmt, i.e., was sampled at an earlier point in the
game. If so, it aborts the game. Otherwise, it adds cmt to Cmt and continues as before. Since cmt is
sampled uniformly at random from t0, 1u2λ, we have

|ϵ3 ´ ϵ2| ď
pQHcom ` QSq2

22λ
.

Before we proceed, let us show a useful lemma.

Lemma E.1. All invocations of OSign3 with ctntw share the identical value ctntz.

Proof. Let us inspect the first call to OSign3 with ctntw “ SS}M}pcmtjqjPSS. Here, the challenger sets
ctntz “ SS||M||pcmtj ,wjqjPSS. Due to the modification made in Game3, there is no collision in Hcom.
Also, rwj is uniquely determined by ctntw in OSign3 since the challenger checks in OSign3 that there is
a partial commitment wj such that QHcompj,wjq “ cmtj . Thus, ctntz is uniquely determined by ctntw.
This completes the proof.

Game4: In this game, the challenger introduces several additional tables: UnOpenedHS and SumComRnd.
These tables are indexed by ctntw “ SS}M}pcmtjqjPSS and indicate the following.

• UnOpenedHSrctntws stores the set of honest uses that have not executed the second round with
ctntw yet.

• UnSignedHSrctntws stores the set of honest uses that have not executed the third round with ctntw
yet.

This is depicted in Fig. 14.

Specifically, in OSign2 , the challenger checks if UnOpenedHSrctntws is bot. If so, it sets UnOpenedHSrctntws Ð

sHS. At the end of this oracle, it updates UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu. Also, in
OSign2 , it also sets SumComRndrctntws Ð SumComRndrctntws ` ri after generating wi.

Since these are conceptual modification, we have

ϵ4 “ ϵ3.

Game5 In this game, the challenger introduces several additional tables: UnSignedHS, Maskz, and MaskedResp.
These tables are indexed by ctntw “ SS}M}pcmtjqjPSS and and indicate the following.

• SumComRndrctntws stores the sum of the commitment randomness rj for honest users that have
already executed the second round with ctntw.

• Maskzrctntws stores the mask ∆i.

• MaskedResprctntws stores the masked response rzi.

This is depicted in Fig. 14.

Specifically, in OSign3 , the challenger checks if UnSignedHSrctntws is bot. If so, it sets UnSignedHSrctntws Ð

sHS. At the end of this oracle, it updates UnSignedHSrctntws Ð UnSignedHSrctntwsztiu. Also, in OSign3 ,
it stores ∆i and rzi in Maskzrctntws and MaskedResprctntws, respectively.

Since these are conceptual modification, we have

ϵ5 “ ϵ4.

58

Game4:

OSign2pSS, i,M, ppm1,jqjPSSq

1 : req JSS Ď rN sK ^ Ji P SSK
2 : req Jppm1,iq P stiK ^ Ji P SSK

3 : parse pcmtjqjPSS Ð ppm1,jqjPSS

4 : ctntw :“ SS}M}pcmtjqjPSS

5 : if JUnOpenedHSrctntws “ KK then

6 : UnOpenedHSrctntws Ð sHS

7 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

8 : wi :“ Ari ` e1
i

9 : SumComRndrctntws Ð SumComRndrctntws ` ri

10 : ProgramHashCompi, cmti,wiq

11 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

12 : sti Ð stiztpcmtiqu

13 : sti Ð sti Y tpSS,M, pcmtjqjPSS,wi, riqu

14 : return pm2,i :“ wi

Game5:

OSign3pSS,M, i, ppm2,jqjPSSq

1 : req Jp¨, ¨, ¨, pm2,i, ¨q P stiK

2 : parse pwjqjPSS Ð ppm2,jqjPSS

3 : pick pSS,M, pcmtjqjPSS,wi, riq from sti

with pm2,i “ wi

4 : req J@j P SS, cmtj “ HcompSS,M, j,wjqK
5 : ctntz :“ SS}M}pcmtj ,wjqjPSS

6 : w :“

[

ÿ

jPSS

wj

W

νw

7 : c :“ Hcpvk,M,wq

8 : ctntw :“ SS}M}pcmtjqjPSS

9 : if JUnSignedHSrctntws “ KK then

10 : UnSignedHSrctntws Ð sHS

11 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

12 : zi :“ c ¨ LSS,i ¨ si ` ri ` ∆i

13 : Maskzrctntw, is Ð ∆i

14 : MaskedResprctntw, is Ð rzi

15 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

16 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

17 : QMrMs Ð QMrMs Y tiu

18 : return pm3,i :“ zi

Figure 14: The fourth game and fifth games. The differences are highlighted in blue. We assume that, at
the beginning of the game, both games initialize two empty lists UnOpenedHSr¨s,SumComRndr¨s :“ K, and
Game5 additionally initialize three empty lists UnSignedHSr¨s,Maskzr¨s,MaskedRespr¨s :“ K.

59

Game6:

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 10 in Game3

11 : for j P sCS do

12 : mi,j :“ Hmaskpseedi,j , ctntzq

13 : mj,i :“ Hmaskpseedj,i, ctntzq

14 : for j P sHSztiu do

15 : mi,j :“ Hmaskpseedi,j , ctntzq

16 : mj,i :“ Hmaskpseedj,i, ctntzq

17 : ∆i :“
ÿ

jPSSztiu

pmj,i ´ mi,jq P Rℓ
q

18 : zi :“ c ¨ LSS,i ¨ si ` ri ` ∆i

19 : Maskzrctntw, is Ð ∆i

20 : MaskedResprctntw, is Ð rzi

21 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

22 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

23 : QMrMs Ð QMrMs Y tiu

24 : return pm3,i :“ zi

Game7:

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 10 in Game3

11 : for j P sCS do

12 : mi,j :“ Hmaskpseedi,j , ctntzq

13 : mj,i :“ Hmaskpseedj,i, ctntzq

14 : ĄsHSz Ð UnSignedHSrctntws

15 : for j P sHSzĄsHSz do

16 : mi,j Ð QHmask rseedi,j , ctntzs

17 : mj,i Ð QHmask rseedj,i, ctntzs

18 : for j P ĄsHSwztiu do

19 : mi,j
$

Ð Rℓ
q,QHmask rseedi,j , ctntzs Ð mi,j

20 : mj,i
$

Ð Rℓ
q,QHmask rseedj,i, ctntzs Ð mj,i

21 : zi :“ c ¨ LSS,i ¨ si ` ri ` ∆i

22 : Maskzrctntw, is Ð ∆i

23 : MaskedResprctntw, is Ð rzi

24 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

25 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

26 : QMrMs Ð QMrMs Y tiu

27 : return pm3,i :“ zi

Hmaskpseed, ctntzq

1 : if Ji}j}rand Ð seed correctly parsesK then

2 : abort if Jpi, jq P HS2K ^ Jrand “ randi,jK
3 : if JQHmask rseed, ctntzs “ KK then

4 : m $
Ð Rℓ

q

5 : QHmask rseed, ctntzs Ð m

6 : return QHmask rseed, ctntzs

Figure 15: The sixth game and seventh games. The differences are highlighted in blue.

60

Game6: In this game, we expand the definition of ZeroShare for every invocation of ZeroSharep ⃗seedirSSs, ctntzq.
This is depicted in Fig. 15. Both games are identical and we have

ϵ6 “ ϵ5.

Game7: In this game, an abort condition is added in the random oracle Hmask and the challenger modifies how
it generates masks ∆i in OSign3 . This is depicted in Fig. 15. Specifically, at the beginning of Hmask, the
challenger aborts the game if i}j}rand Ð seed correctly parses and i, j P HS and seed “ seedi,j holds.
In OSign3 , it first computes mi,j and mj,i for j P sCS as before. It sets ĄsHSz Ð UnSignedHSrctntws

which represents the honest signers, which have not executed round 3 with ctntw. Then, for j P

sHSzĄsHSz (i.e., honest users after round 3), it retrieves mi,j and mj,i from QHmask
rseedi,j , ctntzs and

QHmask
rseedj,i, ctntws, respectively. For j P ĄsHSzztiu, it picks mi,j and mj,i uniformly at random

from Rℓ
q and stores them in QHmask

rseedi,j , ctntzs and QHmask
rseedj,i, ctntzs, respectively. Finally, it sets

∆i :“
ř

jPSSztiupmj,i ´ mi,jq as before.

Let us analyze the advantage of A in this game. First, we upper bound the probability that the
challenger aborts in Hmask. Let Qi,j be the number of the random oracle queries with i, j P HS.
Note that

ř

i,jPHS Qi,j ď QHmask
. In each such random oracle query to Hmask, the probability that

rand “ randi,j is 1{2λ since randi,j is chosen uniformly at random from t0, 1uλ and randi,j is information-
theoretically hidden from A until either user i or j is corrupted. Thus, the abort probability for fixed
pairs pi, jq is at most Qi,j{2λ. A union bound across all honest user pairs pi, jq P HS2 allows us to
upper bound the abort probability with QHmask

2λ
.

Further, we have to show that if j P sHSzĄsHSz, then QHmask
rseedi,j , ctntws and QHmask

rseedj,i, ctntws

are already initialized with the Hmask outputs. Since all signers in sHSzĄsHSz have already executed
OSign3 with ctntw, these values were initialized in the corresponding OSign3 invocation with ctntw due to
Lemma E.1. Also, we have to show that if j P ĄsHSzztiu, then QHmask

rseedi,j , ctntws “ QHmask
rseedj,i, ctntws “

K (i.e., the outputs are not yet defined and are thus distributed uniformly at this point). From
Lemma E.1, these are not defined in OSign3 invocation with other ctnt1

wp‰ ctntwq. Thus, OSign3 for j

with ctntw is not invoked when j P ĄsHSzztiu. Also, due to the abort condition, the adversary A never
queries Hmask on honest seeds directly. Combining these facts concludes the proof. Therefore, we have,

|ϵ7 ´ ϵ6| ď
QHmask

2λ
.

Game8: In this game, the challenger samples the masks ∆i without Hmask. The last mask is set consistently
and the others are sampled at random. This is depicted in Fig. 16. In more detail, when the challenger
computes ∆i in OSign3 , then it checks if ĄsHSz ‰ tiu, where ĄsHSz Ð UnSignedHSrctntws is the set of
honest users that are not executed the third round with ctntw. If so, it samples ∆i

$
Ð Rℓ

q at random.
Otherwise, user i is the last user, so the challenger computes ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq for
j P sCS and sets ∆i :“ ´

ř

jPsHSztiu Maskzrctntw, js ´
ř

jPsCS ∆j . As before, all masks ∆i are stored in
the table Maskz. Note that now, the challenger no longer programs Hmask related to the correct seed
seedi,j for i, j P HS.

We show that Game7 and Game8 are identically distributed. As in Game8, the (potential) observable
differences between both games are how the challenger programs Hmask for i, j P HS in OSign3 and the
distribution of the masks ∆i. Since seedi,j for i, j P HS is never queried to Hmask due to the abort
condition added in Game7, the distribution of the output of Hmask in Game8 remains identical even
though Hmaskpseedi,j , ¨q for i, j P sHS is no longer programmed. Then, we only need to show that the
masks ∆i are identically distributed in both games. We initially fix some arbitrary ctntw and later
apply a hybrid argument to conclude.

61

Game8:

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 10 in Game3

11 : for j P sCS do

12 : mi,j :“ Hmaskpseedi,j , ctntzq

13 : mj,i :“ Hmaskpseedj,i, ctntzq

14 : ĄsHSz Ð UnSignedHSrctntws

15 : if JĄsHSz ‰ tiuK then

16 : ∆i
$

Ð Rℓ
q

17 : else

18 : for j P sCS

19 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

20 : ∆i :“ ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

21 : zi :“ c ¨ LSS,i ¨ si ` ri ` ∆i

22 : Maskzrctntw, is Ð ∆i

23 : MaskedResprctntw, is Ð rzi

24 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

25 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

26 : QMrMs Ð QMrMs Y tiu

27 : return pm3,i :“ zi

Game9:

OSign3pSS,M, i, ppm2,jqjPSSq

1 : req JpSS,M, ¨, pm2,i, ¨q P stiK
2 : parse pwjqjPSS Ð ppm2,jqjPSS

3 : pick pSS,M, pcmtjqjPSS,wi, riq from sti

with pm2,i “ wi

4 : req J@j P SS, cmtj “ HcompSS,M, j,wjqK
5 : ctntz :“ SS}M}pcmtj ,wjqjPSS

6 : w :“

[

ÿ

jPSS

wj

W

νw

7 : c :“ Hcpvk,M,wq

8 : ctntw :“ SS}M}pcmtjqjPSS

9 : if JUnSignedHSrctntws “ KK then

10 : UnSignedHSrctntws Ð sHS

11 : Challrctntws Ð c

12 : req JChallrctntws “ cK
// Identical to Lines 11 to 27 in Game8

Figure 16: The eighth and ninth games. The differences are highlighted in blue. We assume Game9 initializes
a empty list Challr¨s :“ K at the beginning of the game.

62

Lemma E.2. Let ctntw “ SS}M}pcmtjqjPSS be fixed. If UnSignedHSrctntws ‰ K, in both games, we
have for i P sHS that

1. Maskzrctntw, is “ K if user i has not executed the third round with ctntw, else
2. Maskzrctntw, is „ URℓ

q
is distributed at random, if there remains another honest signer j P

ĄsHSzztiu before third round with ctntw, and
3. Maskzrctntw, is “ ´

ř

jPsHSztiu Maskzrctntw, js ´
ř

jPsCS ∆j, if i was the last user between second

and third with ctntw (i.e., if ĄsHSz “ tiu).

Proof. The first statement holds in both games by construction. The second and third statement hold
for Game8 by construction. Let us inspect the distribution of Maskzrctntw, is in Game7. Observe that
all values stored in Maskzrctntw, is are computed as depicted in Fig. 15. Recall that, due to Lemma E.1,
mi,j and mj,i for ctntz is defined only when OSign3 for user i or j is invoked with ctntw that uniquely
determines ctntz. If there exists some j P ĄsHSzztiu, then mi,j and mj,i are sampled at random over Rℓ

q.
Thus, ∆i “

ř

jPSSztiupmj,i ´mi,jq is distributed at random over Rk
q . If on the other hand ĄsHSz “ tiu,

then all individual masks pmi,j ,mj,iqjPsHS are retrieved from QHmask
and thus, ∆i is fully determined.

Because we have that
ř

jPSS ∆j “ 0, where ∆j “
ř

κPSSztjupmκ,j ´ mj,κq, we have that

∆i “ ´
ÿ

jPSSztiu

∆j

where ∆j “ ZeroSharep ⃗seedjrSSs, ctntzq for j P sCS. Finally, observe that every time a user j P sHS

is removed from ĄsHSz, the value ∆j is stored in Maskwrctntw, js. Recall that there is only one ctntz
corresponding to ctntw. Thus, if ĄsHSz “ tiu, we have that

ÿ

jPSSztiu

∆j “
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j .

Combining the both equations concludes.

When we apply a hybrid argument over all ctntw in order of occurrence to the above lemma, we have

ϵ8 “ ϵ7.

Game9: In this game, the challenger checks whether all honest users uses the same challenge c in OSign3
with ctntw. This is depicted in Fig. 16. Specifically, in OSign3 , the challenger additionally stores
c “ Hcpvk,M,wq in Challrctntws if UnSignedHSrctntws “ K, i.e., user i is the first user in the third
round. Also, it checks if Challrctntws “ c. If so, it continues the game as before. Otherwise, it aborts
the game.

Let us show that Game8 and Game9 are identically distributed. To show this, we show the following
lemma.

Lemma E.3. Let ctntw be arbitrary. In OSign3 with ctntw, all honest users in sHS use the same
c “ Hcpvk,M,wq.

Proof. Since M is included in ctntw and vk is fixed, we need to show that w computed in OSign3
with ctntw is identical for all honest users in sHS. Recall that ctntz “ SS}M}pcmtj ,wjqjPSS and w is
computed by

Y

ř

jPSS wj

U

νw

. Thus, w is uniquely determined by ctntz. Due to Lemma E.1, the same

ctntz is used in OSign3 with ctntw for all uses in sHS. Therefore, all users in sHS compute the same w
in OSign3 with ctntw. This computes the proof.

63

Game10:

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 12 in Game9

13 : for j P sCS do

14 : mi,j :“ Hmaskpseedi,j , ctntzq

15 : mj,i :“ Hmaskpseedj,i, ctntzq

16 : ĄsHSz Ð UnSignedHSrctntws

17 : if JĄsHSz ‰ tiuK then

18 : rzi
$

Ð Rℓ
q

19 : else

20 : for j P sCS

21 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

22 : rzi :“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

23 : MaskedResprctntw, is Ð rzi

24 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

25 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

26 : QMrMs Ð QMrMs Y tiu

27 : return pm3,i :“ zi

Game11:

OSign2pSS, i,M, ppm1,jqjPSSq

// Identical to Lines 1 to 6 in Game4

7 : ĄsHSw Ð UnOpenedHSrctntws

8 : if JĄsHSw ‰ tiuK then

9 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

10 : wi :“ Ari ` e1
i

11 : else

12 : c $
Ð C

13 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

14 : wi :“ Ari ` e1
i

15 : ProgramHashChallpctntw, c,wiq

16 : SumComRndrctntws Ð SumComRndrctntws ` ri

17 : ProgramHashCompi, cmti,wiq

18 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

19 : sti Ð stiztpcmtiqu

20 : sti Ð sti Y tpSS,M, pcmtjqjPSS,wi, riqu

21 : return pm2,i :“ wi

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 8 in Game9

9 : if JUnSignedHSrctntws “ KK then

10 : UnSignedHSrctntws Ð sHS

11 : Challrctntws Ð c

12 : req JChallrctntws ‰ cK
13 : abort if JBadCtntrctntws “ JK

// Identical to Lines 13 to 27 in Game10

Figure 17: The tenth and eleventh games. The differences are highlighted in blue. We assume Game11
initializes a empty list BadCtntr¨s :“ K at the beginning of the game. The algorithm ProgramHashChall is
defined in Fig. 18.

64

ProgramHashChallpctntw, c,wiq:

1 : parse SS}M}pcmtjqjPSS Ð ctntw

2 : if J@j P SSztiu, D!wj ,QHcompj,wjq “ cmtjK

3 : w :“

[

ÿ

jPSS

wj

W

νw

P Rk
qνw

4 : abort if JQHc rvk,M,ws ‰ KK
5 : QHc rvk,M,ws Ð c

6 : else

7 : BadCtntrctntws :“ J

Figure 18: A helper algorithm ProgramHashChall for programming the random oracle Hc for input w derived
from ctntw (and optionally wi) to a given output c. The algorithm ProgramHashChall is assumed to have a
joint state with the challenger and random oracle Hc used by the unforgeability game.

By the above lemma, the game never aborts due to the added abort conditions. Thus, we have

ϵ9 “ ϵ8.

Game10 In this game, the challenger samples rzi directly either at random or consistently for the last user
in OSign3 . This is depicted in Fig. 17. We describe the changes in more detail. In OSign3 , instead
of sampling ∆i, it samples rzi

$
Ð Rℓ

q at random if ĄsHSz ‰ tiu and otherwise, it sets rzi “ c ¨ s ´

c
ř

jPsCS LSS,j ¨ sj ` SumComRndrctntws ´
ř

jPsHSztiu MaskedResprctntw, js ´
ř

jPsCS ∆j . The value rzi is
stored in MaskedResprctntw, is but Maskzrctntw, is remains K. Note that Maskzrctntw, is is no longer
used through the game.

Let us show that Game9 and Game10 are identically distributed. To show this, we only need to show
that rzi in OSign3 in both games are identically distributed. Let us first show a useful lemma.

Lemma E.4. Let ctntw be arbitrary. If ĄsHSz “ tiu holds in OSign3 , then OSign2 with ctntw for
all honest users in sHS are completed. Moreover, in Game10, we have in line 22 in OSign3 that
SumComRndrctntws “

ř

jPsHS rj where rj is a commitment randomness generated in OSign2 for user j
with ctntw.

Proof. We first show the first statement. When ĄsHSz “ tiu holds in OSign3 for user i where UnSignedHSrctntws “

ĄsHSz, OSign3 with ctntw for all honest users in sHSztiu are finished. Also, for user j P sHS, OSign3 with
ctntw is executed only when OSign2 with ctntw is completed. Thus, if ĄsHSz “ tiu holds in OSign3 , then
all honest users in sHS finished OSign2 with ctntw.

We can obtain the second statement from the first statement and the fact that a commitment ran-
domness rj for user j is added to SumComRndrctntws at the end of OSign2 with ctntw for user j. This
completes the proof.

Next, let us consider an intermediate game of Game9,˚, where instead of sampling ∆i
$

Ð Rℓ
q at random

in OSign3 , we sample ∆˚
i

$
Ð Rℓ

q and set ∆i :“ ∆˚
i ´ pc ¨ LSS,i ¨ si ` riq. This game is identically

distributed to Game9. Then, we have in OSign3 that

rzi “ c ¨ LSS,i ¨ si ` ri ` ∆i

65

“ ∆˚
i „ URℓ

q

which is distributed as in Game10. Similarly, if ĄsHSz “ tiu we have that

rzi “ c ¨ LSS,i ¨ si ` ri ` r∆i

“ c ¨ LSS,i ¨ si ` ri ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

“ c ¨ LSS,i ¨ si ` ri ´
ÿ

jPsHSztiu

p∆˚
j ´ pc ¨ LSS,j ¨ sj ` rjqq ´

ÿ

jPsCS

∆j

“
ÿ

jPsHS

pc ¨ LSS,j ¨ sj ` rjq ´
ÿ

jPsHSztiu

rzi ´
ÿ

jPsCS

∆j

“ c ¨ s ´ c
ÿ

jPCS

LSS,j ¨ sj `
ÿ

jPsHS

rj ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

where the third equation follows from Lemma E.3, and the last equation follows from the correctness
of the Shamir secret sharing. Due to Lemma E.4, we have that rzi is identically distributed in Game8,˚
and Game9.
Combining all arguments, we conclude that

ϵ10 “ ϵ9.

Game11: In this game, the challenger precomputes the challenge c for OSign3 when the last signer passes round
2. This is depicted in Fig. 17. In more detail, in OSign2 , if ĄsHSw “ tiu, then it samples a challenge c $

Ð C
and programs Hc via a helper function ProgramHashChallpctntw, c, rwiq (cf. Fig. 18). Note that how it
generates wi is not changed. In ProgramHashChall, the challenger parses SS}M}pcmtjqjPSS Ð ctntw,
and checks if for each cmtj for j P SSztiu, there is a (unique) value wj such that Hcompj,wjq “ cmtj .
If so, it sets w “

Y

ř

jPSS wj

U

νw

and sets QHcrvk,M,ws Ð c (but aborts if this value was previously

set), and finally sets Challrctntws Ð pM, c,wq. Otherwise, it sets BadCtntrctntws Ð J. In OSign3 , it
aborts the game if BadCtntrctntws “ J.
Since how to generate w and sample c is not changed, both games are identically distributed conditioned
on the game not aborting. Below, we bound the abort probability in Game10. The challenger aborts
the if (1) QHc

rvk,M,ws is already defined in ProgramHashChall or (2) BadCtntrctntws “ J in OSign3 .
We first bound the probability of event (1). Observe that ProgramHashChallpctntw, c, rwiq is invoked
with w “

Y

ř

jPSS wj

U

νw

P Rk
qνw

after wi for the last user in OSign2 with ctntw is sampled and before

returning it to A. Since wi is generated honestly, w has min-entropy n ´ 1 with overwhelming prob-
ability due to Lemma 2.8. Thus, the probability that QHcrvk,M,ws ‰ K is at most pQHc ` QSq{2n´1

with overwhelming probability. Since ProgramHashChallpctntw, c,wiq is invoked when the last user
with ctntw passes round 2, the probability of event (1) is at most QS ¨ pQHcom ` QSq{2n´1.
It remains to bound the probability of event (2). Recall that ProgramHashChall is invoked when OSign2
with ctntw for the last user is invoked. If BadCtntrctntws “ J holds in OSign3 , then OSign2 with ctntw
for all honest users in sHS are completed. Then, cmtj for all honest users in sHS is correctly defined via
ProgramHashCom in OSign2 . Thus, we have BadCtntrctntws “ J in OSign3 only if there is at least one
cmtj for j P sCS does not have a Hcom preimage of the form pj,wjq when ProgramHashChallpctntw, c, rwiq

is invoked (where cmtj is determined by ctntw), but the A provides a valid preimage of cmtj in OSign3 .
Since the image cmt of Hcom is sampled uniformly at random from t0, 1u2λ each Hcom query, the
probability that A finds a valid preimage for cmtj is at most 1{22λ per query. Thus, the probability of
event (2) is at most QHcom{22λ. In conclusion, we have

|ϵ11 ´ ϵ10| ď
QS ¨ pQHc

` QSq

2n´1
`

QHcom

22λ
` neglpλq.

66

Game12:

OSign2pSS, i,M, ppm1,jqjPSSq

// Identical to Lines 1 to 6 in Game4

7 : ĄsHSw Ð UnOpenedHSrctntws

8 : if JĄsHSw ‰ tiuK then

9 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

10 : wi :“ Ari ` e1
i

11 : SumComRndrctntws Ð SumComRndrctntws ` ri

12 : else

13 : c $
Ð C

14 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

15 : z :“ c ¨ s ` r; z1 :“ c ¨ e ` e1

16 : wi “ A ¨ z ´ c ¨ t ` z1

17 : SimResprctntws Ð z

18 : ProgramHashChallpctntw, c,wiq

19 : ProgramHashCompi, cmti,wiq

20 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

21 : sti Ð stiztpcmtiqu

22 : sti Ð sti Y tpSS,M, pcmtjqjPSS,wi, riqu

23 : return pm2,i :“ wi

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 13 in Game11

14 : for j P sCS do

15 : mi,j :“ Hmaskpseedi,j , ctntzq

16 : mj,i :“ Hmaskpseedj,i, ctntzq

17 : ĄsHSz Ð UnSignedHSrctntws

18 : if JĄsHSz ‰ tiuK then

19 : rzi
$

Ð Rℓ
q

20 : else

21 : abort if JChallrctntws ‰ pM, c,wqK
22 : for j P sCS

23 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

24 : rzi :“ SimResprctntws ´ c
ÿ

jPsCS

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

25 : MaskedResprctntw, is Ð rzi

26 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

27 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

28 : QMrMs Ð QMrMs Y tiu

29 : return pm3,i :“ zi

Figure 19: The twelfth game. The differences are highlighted in blue. We assume that this game initializes
a empty list SimRespr¨s :“ K at the beginning of the game.

67

Game12: In this game, the challenger simulates the commitment for the last user in the second round. This
is depicted in Fig. 19. Specifically, in OSign2 , if ĄsHSw ‰ tiu, where UnOpenedHSrctntws “ ĄsHSw,
the challenger generates wi honestly and add the commitment randomness ri to SumComRndrctntws.
Otherwise, it samples c as before, and then samples pr, e1q

$
Ð Dℓ

w ˆDk
w, sets z :“ c ¨ s`r, z1 :“ c ¨e`e1

and simulates w “ A ¨ z ´ c ¨ t̂ ` z1. The response z is stored in SimResprctntws Ð z. In OSign3 , it
generates rzi using SimResprctntws instead of s. Note that in Game11, SumComRndrctntws contains the
sum of the commitment randomness rj of all honest user in sHS, i.e., SumComRndrctntws “

ř

jPsHS rj .
On the other hands, in Game12, SumComRndrctntws contains the sum pf rj for all honest users except
for the last user in the second round, i.e., SumComRndrctntws “

ř

jPsHSztiu rj .

Below, we show the distribution of the view of A remains identical. In Game11, we have

rzi “ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj `
ÿ

jPsHS

rj ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

“ c ¨ s ` ri ´ c
ÿ

jPsCS

LSS,j ¨ sj `
ÿ

jPsHSztiu

rj ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

Due to the abort conditions in Game11 and the first statement in Lemma E.4, c in the computation of
zi for the last user in OSign3 with ctntw of Game11 is the same to c that is defined via ProgramHashChall
when OSign2 with ctntw for the last user in the second round is invoked. Thus, c in SimResprctntws “

c ¨ s` ri used to compute zi for the last user in Game12 is identical to that in the computation of zi in
Game11. Also, in Game12, SumComRndrctntws in OSign3 for the last user in the third round is equal to
ř

jPsHSztiu rj due to the first statement in Lemma E.4. Combining the above facts, we conclude that
zi is identically distributed in both games. It remains to argue that wi generated in OSign2 with ctntw
for the last user in the second round is identically distributed. This follows since in Game12, we have

wi “ A ¨ z ´ c ¨ t̂ ` z1

“ A ¨ pc ¨ s ` riq ´ c ¨ t̂ ` pc ¨ e ` e1
iq

“ cpA ¨ s ` eq ` A ¨ ri ` e1
i ´ c ¨ t̂

“ A ¨ ri ` e1
i

where pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w. Hence, we have

ϵ12 “ ϵ11.

Game13: In this game, the challenger samples t̂ $
Ð Rk

q at random. Also, it samples si only for corrupted
users. This is depicted in Fig. 20. Concretely, the challenger samples t̂ uniformly at random over Rk

q

instead of via ps, eq. Also, it samples si uniformly at random from Rℓ
q for i P CS.

Due to Lemma E.6, which will be proven below, we can construct an Hint-MLWE adversary B solving
the Hint-MLWEq,ℓ,k,QS,σt,σw,C problem such that

|ϵ13 ´ ϵ12| ď AdvHint-MLWE
B p1λq

with TimepBq « TimepAq.

Remark E.5. If we consider the weaker notion of security where the forgery’s message M˚ cannot be
queried to any signing oracle as in [dPKM`24], then we can show that there exists a SelfTargetMSIS
adversary B2 solving the SelfTargetMSISq,ℓ`1,k,Hc,C,B problem that internally runs an adversary A
against Game13 such that ϵ13 ď Adv

SelfTargetMSIS
B1 p1λq, where TimepB1q « TimepAq.

68

Game13:

1 : QMr¨s :“ H,Com :“ H

2 : QHc r¨s,QHcom r¨s,QHmask r¨s,UnOpenedHSr¨s, SumComRndr¨s :“ K

3 : UnSignedHSr¨s,Maskzr¨s,MaskedRespr¨s,Challr¨s,BadCtntr¨s, SimRespr¨s :“ K

4 : A $
Ð Rkˆℓ

q

5 : pCS, stAq
$

Ð AHc,Hβ ,HmaskpA, N, T q

6 : req JCS Ď rN sK ^ J|CS| ď T ´ 1K
7 : HS :“ rN szCS

8 : for i P HS do sti :“ H

9 : ps, eq
$

Ð Dℓ
t ˆ Dk

t

10 : t̂ $
Ð Rk

q

11 : t :“
Y

pt
U

νt
P Rk

qνt

12 : for i P rN s do

13 : for j P rN s do

14 : randi,j
$

Ð t0, 1u
λ

15 : seedi,j :“ i}j}randi,j

16 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

17 : for i P CS do

18 : si
$

Ð Rℓ
q

19 : vk :“ ptspar, tq

20 : pskiqiPCS :“
`

si, ⃗seedi
˘

iPrNs

21 : pskiqiPHS :“
`

K, ⃗seedi
˘

iPrNs

22 : oracles :“ pOSign1 ,OSign2 ,OSign3 ,Hc,Hcom,Hmaskq

23 : psig˚,M˚
q

$
Ð Aoracles

pvk, pskiqiPCS, stAq

24 : req J
∣∣QMrM˚

s Y CS
∣∣ ď T ´ 1K

25 : return Verifyptspar, vk,M˚, sig˚
q

Figure 20: The thirteenth game. The differences are highlighted in blue.

69

Proof. This proof is identical to the proof by del Pino et al. [dPKM`24, Lemma 7.4] as our scheme
has the same verification algorithm as theirs and the final step merely consists of extracting a solution
from the forgery. In their proof, it is crucial that M˚ is never queried for every honest user in OSign2
because in that case, the output of Hc is programmed with a random challenge. Then, even if M˚

is never queried in OSign3 , this Hc query does not help the adversary B1 in finding a SelfTargetMSIS
solution.

Game14:

// Identical to Lines 1 to 22 in Game13

23 : psig˚,M˚
q

$
Ð Aoracles

pvk, pskiqiPCS, stAq

24 : parse pc˚, z˚,h˚
q Ð sig˚

25 : let q˚
Hc

be the value of ctrHc when
QHc rvk,M, tAz ´ 2νt ¨ c ¨ tsνw ` hs was set

26 : abort if Jq˚
Hc

‰ qHcK
27 : req J

∣∣QMrM˚
s Y CS

∣∣ ď T ´ 1K
28 : return Verifyptspar, vk,M˚, sig˚

q

ProgramHashChallpctntw, c,wiq:

1 : parse SS}M}pcmtjqjPSS Ð ctntw

2 : if J@j P SSztiu, D!wj ,QHcompj,wjq “ cmtjK

3 : w :“

[

ÿ

jPSS

wj

W

νw

P Rk
qνw

4 : abort if JQHc rvk,M,ws ‰ KK
5 : ctrHc Ð ctrHc ` 1

6 : if JctrHc “ qHcK
// Sample c

1 after w is defined

7 : c1 $
Ð C

8 : QHc rvk,M,ws Ð c1

9 : BadGuessrctntws Ð J

10 : else

11 : QHc rvk,M,ws Ð c

12 : else

13 : BadCtntrctntws :“ J

Hcpvk,M,wq

1 : if JQHc rvk,M,ws “ KK then

2 : c $
Ð C

3 : ctrHc Ð ctrHc ` 1

4 : QHc rvk,M,ws Ð c

5 : return QHc rvk,M,ws

OSign3pSS,M, i, ppm2,jqjPSSq

// Identical to Lines 1 to 13 in Game11

14 : for j P sCS do

15 : mi,j :“ Hmaskpseedi,j , ctntzq

16 : mj,i :“ Hmaskpseedj,i, ctntzq

17 : ĄsHSz Ð UnSignedHSrctntws

18 : if JĄsHSz ‰ tiuK then

19 : rzi
$

Ð Rℓ
q

20 : else

21 : abort if JChallrctntws ‰ pM, c,wqK
22 : abort if JBadGuessrctntws “ JK
23 : for j P sCS

24 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

25 : rzi :“ SimResprctntws ´ c
ÿ

jPsCS

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

26 : MaskedResprctntw, is Ð rzi

27 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

28 : sti Ð stiztpSS,M, pcmtjqjPSS,wi, riqu

29 : QMrMs Ð QMrMs Y tiu

30 : return pm3,i :“ zi

Figure 21: The fourteenth game. The differences are highlighted in blue. We assume that this game initializes
an empty list BadGuessr¨s :“ K, a counter ctrHc

Ð 0, and samples a guess qHc

$
Ð rQHc

s at the beginning of
the game.

Game14: In this game, the challenger guesses the Hc query associated to the adversary’s forgery. For this

70

query, the challenger never programs Hc via ProgramHashChall 12. It also aborts if OSign3 is invoked
for every honest user but it did not program Hc in OSign2 due to the aforementioned change. This is
depicted in Fig. 21. In more detail, the challenger initially sets up a counter ctrHc

Ð 0 and samples
qHc

$
Ð rQHcs. Each time a table entry in QHc is changed, the challenger increases the counter ctrHc .

This happens either in a fresh Hc query or when ProgramHashChall is invoked in OSign2 and Hc is
programmed. In the latter case, the challenger checks if ctrHc

“ qHc
and sets BadGuessrctntws “ J if

so. It also aborts in OSign3 if ĄsHSz “ tiu and BadGuessrctntws “ J. After A’s forgery psig˚,M˚q is
output, the challenger retrieves the value q˚

Hc
of ctrHc

when the query Hc associated to the forgery was
made 13. This happens either in ProgramHashChall or Hc.
Let us analyze the advantage of A in Game14. Observe that the value SimResprctntws is only used
if ĄsHSz “ tiu in OSign3 . If BadGuessrctntws “ K, then Hc was programmed via ProgramHashChall in
OSign2 , so the challenge in SimResprctntws “ c ¨ s ` r is identical to the challenge in OSign3 . Thus, the
view of A is identically distributed conditioned on no abort in Game13 and Game14. If A is successful,
then the challenger does not abort in OSign3 if qHc “ q˚

Hc
because the message M˚ is not queried to

OSign3 for the last honest user. Note that the value qHc is hidden from A. Thus, we have that

ϵ14 ě PrrqHc “ q˚
Hc

s ¨ ϵ13

ě 1{QHc ¨ ϵ13.

Due to Lemma E.7, which will be proven below, there exists an SelfTargetMSIS adversary B1 solving the
SelfTargetMSISq,ℓ`1,k,Hc,C,B problem that internally runs an adversary A against Game14 such that

ϵ14 ď Adv
SelfTargetMSIS
B1 p1λq.

Moreover, we have TimepB1q « TimepAq. Collecting all bounds, we have

Advts-sel-ufTRaccoonsel3-rnd,A
ď QHc

¨ Adv
SelfTargetMSIS
B1 p1λq ` AdvHint-MLWE

B p1λq `
QS ¨ pQHcom ` QHc

` 2QSq

2n´1

`
QHmask

2λ
`

pQHcom ` QSq2 ` QHcom

22λ
` neglpλq,

where TimepBq « TimepAq and TimepB1q « TimepAq.
To complete the proof, it remains to show Lemmata E.6 and E.7.

Lemma E.6. There exists an adversary B against the Hint-MLWEq,ℓ,k,QS,σt,σw,C problem such that

|ϵ13 ´ ϵ12| ď AdvHint-MLWE
B p1λq

where TimepBq « TimepAq.

Proof. Let A be an adversary that distinguishes Game13 and Game12. To show this lemma, we construct an
adversary B against the Hint-MLWEq,ℓ,k,QS,σt,σw,C problem that internally runs A. B is given the Hint-MLWE
problem instance pA,b, pci, zi, z

1
iqiPrQSsq as input.

B behaves as the challenger in Game13 except for the initial phase and OSign2 . In the initial phase, it uses
A given as input, instead of choosing a fresh A sampled from Rk

q , and embeds tbsνt
into t. Also, when it

generates the jth commitment for the last user in the second round in OSign2 , it uses pcj , zj , z
1
jq, instead of

sampling c $
Ð C, pri, e

1
iq

$
Ð Dℓ

w ˆ Dk
w, and setting z :“ c ¨ s ` ri and z1 :“ c ¨ e ` e1

i. Otherwise, it behaves as
the challenger in Game13.

We show that B perfectly simulates the challenger in Game12 (resp. Game13) when b is a valid MLWE
sample (resp. b is uniformly sampled from Rk

q). When b is a valid MLWE sample, t is identically distributed

12More precisely, the challenger always samples the output of Hc after the input is defined for the guessed query.
13The adversary’s forgery psig˚,M˚q is associated to some Hc query since we assume that QHc also counts the challengers Hc

queries without loss of generality.

71

to t in Game12. Also, the secret shares si of each corrupted user i P CS is uniformly distributed over Rℓ
q.

Moreover, since the leakage pzi, z
1
iq satisfies

zi “ c ¨ s ` ri, and z1
i “ c ¨ e ` e1

i (20)

where ps, eq
$

Ð Dℓ
t ˆ Dk

t and b “ As ` e, B perfectly simulates the singing oracle in Game12.
When b is uniformly sampled from Rk

q , the distribution of t is identical to that in Game13. Moreover,
B perfectly simulates the singing oracle in Game13 due to Eq. (20), where ps, eq

$
Ð Dℓ

t ˆ Dk
t . Note that the

leakage no longer depends on t. Combining all arguments, B perfectly simulates Game12 and Game13 when
b is a valid MLWE sample and generated by b $

Ð Rk
q , respectively. Therefore, we have

|ϵ13 ´ ϵ12| ď AdvHint-MLWE
B p1λq.

Finally, it is clear TimepBq « TimepAq from the construction of B. This completes the proof.

Lemma E.7. There exists a SelfTargetMSIS adversary B1 solving the SelfTargetMSISq,ℓ`1,k,Hc,C,B problem
that internally runs an adversary A against Game14 such that

ϵ14 ď Adv
SelfTargetMSIS
B1 p1λq

where TimepBq « TimepAq.

Proof. Due to the added abort condition in Game14, the challenge c associated to the adversary’s forgery
is sampled at random after w is fixed (either in Hc or in ProgramHashChall). We can thus construct an
adversary B1 that answers A’s queries to Hc via the oracle H provided by the SelfTargetMSIS reduction.
Using the above observation, we can show the statement as in del Pino et al. [dPKM`24, Lemma 7.4]. We
detail the modifications below.

First, B1 is given M P Rkˆpℓ`1q
q by the SelfTargetMSIS challenger. Also, it is provided an oracle H. Then,

B1 sets ´t̂ as the first column and A to be the remaining ℓ columns of M. These values define the parameters
tspar :“ pA, N, T q which B1 forwards to A. After A outputs CS, adversary B1 simulates the challenger in
Game14 as before using verification key vk :“ ptspar, tq, where t :“

X

t̂
T

νt
P Rk

qνt
with two modifications:

1. For every Hc query pvk,M,wq made by A, B1 outputs c :“ Hpvk,M, 2νw ¨ w mod qq, where recall that
m is the unique lift of values m in Zk

qw to t0, 1, ¨ ¨ ¨ , qw ´ 1uk.

2. If ctrHc
“ qHc

in ProgramHashChall, then B1 uses c1 :“ Hpvk,M, 2νt ¨ w mod qq instead of a randomly
sampled challenge.

We can argue as in [dPKM`24] that the view of A remains identical14. At the end of the game, A outputs
a forgery pc˚, z˚,h˚q such that qHc “ q˚

Hc
, where q˚

Hc
is the value of ctrHc when the Hc query corresponding

to c˚ was made. Due to the way B1 simulates the oracle, we have that

c˚ “ H
´

vk,M, 2νw ¨

´

tA ¨ z˚ ´ 2νt ¨ c˚ ¨ t̄sνw
` h mod q

¯¯

Here, it is important to note that this holds because B1 simulates the forgery’s Hc query via H by design.
The rest of the proof is identical to the proof by del Pino et al. [dPKM`24, Lemma 7.4] as our scheme has
the same verification algorithm as theirs and the final step merely consists of extracting a solution from the
forgery.

This completes the proof.
14Roughly, this is because the mapping w to 2νt ¨ w mod q is injective.

72

E.2 Formal Security Proof of TRaccoonadp5-rnd

We provide the full proof of Theorem 6.1.

Proof. Let A be an adversary against the adaptive security game. We consider a sequence of games where
the first hybrid is the original game and the last is a game that can be reduced to the MSIS problem. We
relate the advantage of A for each adjacent games, where ϵi denotes the advantage of A in Gamei.

Game1: This is the real unforgeability game. Formally, this is depicted in Fig. 22. By definition, we have

ϵ1 “ Advts-adp-uf
TRaccoonadp5-rnd,A

p1λ, N, T q.

Game2: In this game, the challenger adds an abort condition in OSign1 . This is depicted in Fig. 23. Specifi-
cally, the challenger initializes a set Strings to H at the beginning of the game. In OSign1 , it aborts if
stri is included in Strings. Otherwise, it adds stri to Strings and continues.
Now we bound the probability that the challenger aborts the game. This is equalt to the probability
that the same string str is generated twice. Since stri is chosen uniformly at random from t0, 1u2λ and
at most QS strings are generated in total, a standard birthday bound argument yields

|ϵ2 ´ ϵ1| ď
Q2

S

22λ
.

Game3: This game is given in Figure 24. Roughly, the challenger postpones generating rwi until OSign4 . For
this, it outputs a random hash commitment cmti

$
Ð t0, 1u2λ in OSign2 and removes the commitment-

related values prwi, riq from the state sti. The challenger behaves as in the previous game in OSign3
except that the state sti is parsed without prwi, riq. In OSign4 , the challenger computes pwi, ri, e

1
iq and

r∆i as previously in OSign2 , and programs Hcom via ProgramHashCom (cf. Figure 25) such that we have
Hcompi, rwiq “ cmti, where rwi “ wi ` r∆i. Also, the values prwi, riq are reintroduced into the state sti
at the end of OSign4 . Note that the challenger aborts in case QHcomri, rwis ‰ K in ProgramHashCom.
Since the states sti between rounds 2 and 4 are now inconsistent with the real game, the challenger
also sanitizes the states in OCorrupt. In more detail, it iterates over all states of signer i between round
2 and round 4, computes pwi, ri, e

1
iq and p r∆i, rwiq as above, then programs Hcom via ProgramHashCom,

and finally reintroduces prwi, riq into the state sti.
Because cmti is first opened in OSign4 in both Game3 and Game4, the view of the adversary A remains
identical except if the challenger aborts, i.e., if QHcomri, rwis ‰ K, where rwi “ wi ` r∆i. Since the
commitment wi is generated independently of r∆i, the masked commitment rwi has at least the same
min-entropy as wi. Thus, the probability that QHcomri, rwis ‰ K in either OSign4 or OCorrupt is at most
pQHcom ` QSq{2n´1 with overwhelming probability due to Lemma 2.8. Note for each invocation of
ProgramHashCom in OCorrupt, there is a corresponding signing query with a state between round 2 and
round 4. Since A makes at most QS signing queries, we have

|ϵ3 ´ ϵ2| ď
QSpQHcom ` QSq

2n´1
` neglpλq.

Game4: In this game, the challenger aborts in case there is a collision in Hcom. This is depicted in Fig. 26.
Specifically, the challenger initially prepares an empty set Cmt :“ H. In OSign2 and Hcom, it checks
whether the sampled commitment cmt is already in Cmt, i.e., was sampled at an earlier point in the
game. If so, it aborts the game. Otherwise, it adds cmt to Cmt and continues as before. Since cmt is
sampled uniformly at random from t0, 1u2λ, we have

|ϵ4 ´ ϵ3| ď
pQHcom ` QSq2

22λ
.

73

Game1 :“ Gamets-adp-uf
TRaccoonadp5-rnd,A

p1λ, N, T q

1 : QMr¨s :“ H,QHc r¨s :“ K,QHcom r¨s :“ K

2 : QHmask r¨s :“ K,QH
zmask

r¨s :“ K

3 : A $
Ð Rkˆℓ

q

4 : HS :“ rN s

5 : for i P HS do sti :“ H

6 : ps, eq
$

Ð Dℓ
t ˆ Dk

t

7 : t̂ :“ As ` e; t :“
X

t̂
T

νt
P Rk

qνt

8 : for i P rN s do

9 : pvkS,i, vkS,iq
$

Ð KeyGenSp1λq

10 : for j P rN s do

11 : randi,j
$

Ð t0, 1u
λ

12 : seedi,j :“ i}j}randi,j

13 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

14 : P⃗ $
Ð Rℓ

qrXs with degpP⃗ q “ T ´ 1, P⃗ p0q “ s

15 : psiqiPrNs :“ pP⃗ piqqiPrNs

16 : vk :“ ptspar, tq

17 : pskiqiPrNs :“
`

si, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

iPrNs

18 : oracles :“ ppOSigniqiPr5s,OCorrupt,Hc,Hcom,Hmaskq

19 : psig˚,M˚
q

$
Ð Aoracles

pvkq

20 : req J
∣∣QMrM˚

s Y CS
∣∣ ď T ´ 1K

21 : return Verifyptspar, vk,M˚, sig˚
q

OSign1piq

1 : req Ji P HSK

2 : stri
$

Ð t0, 1u
2λ

3 : sti Ð sti Y tstriu

4 : return pm1,i :“ stri

OSign2pSS, i, ppm1,jqjPSSq

1 : req JSS Ď rN sK ^ Ji P HSK
2 : pick stri from sti with pm1,i “ stri

3 : parse pstrjqjPSSztiu Ð ppm1,jqjPSSztiu

4 : ctntw :“ 0}SS}pstrjqjPSS

5 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

6 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

7 : wi :“ Ari ` e1
i P Rk

q

8 : rwi :“ wi ` r∆i P Rk
q

9 : cmti :“ Hcompi, rwiq

10 : sti Ð stiztstriu

11 : sti Ð sti Y tpSS, pstrjqjPSS, cmti, rwi, riqu

12 : return pm2,i :“ cmti

OSign3pSS,M, i, ppm2,jqjPSSq

1 : req Ji P HSK ^ JpSS, ¨, pm2,i, ¨, ¨q P stiK

2 : pick pSS, pstrjqjPSS, cmti, rwi, riq from sti

with pm2,i “ cmti

3 : parse pcmtjqjPSSztiu Ð ppm2,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : sti Ð stiztpSS, pstrjqjPSS, cmti, rwi, riqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

8 : return pm3,i :“ σS,i

OSign4pSS,M, i, ppm3,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm3,i, ¨, ¨q P stiK

2 : pick pSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

8 : return pm4,i :“ rwi

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,i, ¨q P stiK

2 : parse
`

si, ⃗seedi
˘

Ð ski

3 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

4 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

5 : req J@j P SS, cmtj “ Hcompj, rwjqK
6 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

7 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

8 : c :“ Hcpvk,M,wq // c P C

9 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

10 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

11 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwi, riqu

12 : QMrMs Ð QMrMs Y tiu

13 : return pm5,i :“ zi

OCorruptpiq

1 : req Ji P HSK ^ J|CS| ď T ´ 1K
2 : HS Ð HSztiu

3 : CS Ð CS Y tiu

4 : return pski, stiq

Figure 22: The first game, identical to the real adaptive security game.

74

Game2:

OSign1piq

1 : req Ji P HSK

2 : stri
$

Ð t0, 1u
2λ

3 : abort if Jstri P StringsK
4 : Strings Ð Strings Y tstriu

5 : sti Ð sti Y tstriu

6 : return pm1,i :“ stri

Figure 23: The second game. The differences are highlighted in blue. We assume that this game initializes
a empty set Strings :“ H at the beginning of the game.

Game5: In this game, the challenger adds an additional abort condition in OSign4 . This is depicted in
Figure 27. In more detail, the challenger initially sets up an empty table SignedΣr¨s “ H. In OSign3 , it
adds MS to SignedΣris after generating the signature σS,i on MS. In OSign4 , it aborts if there is a honest
signer j P sHSztiu such that MS was not signed by j previously in OSign3 , i.e., if MS R SignedΣrjs.
Otherwise, it continues as before.
Since the challenger checks in OSign4 whether the signature σS,j verifies with respect to MS for j P SSztiu,
the challenger aborts in Game5 (but not in Game4) iff the adversary A invokes OSign4 with a valid
signature σS,j on MS, where MS was not signed by signer j in OSign3 yet. It is straigthforward to
construct an adversary BS such that |ϵ5 ´ ϵ4| ď N ¨ Adveuf-cma

S,BS
pλq. Adversary BS simulates the view of

A in Game4 as follows. First, it guesses a signer j˚ P rN s for which the adversary forges a signature. It
obtains vkS,˚ from the EUF-CMA game and proceeds as in Game4, except that it sets vkS,j˚

:“ vkS,˚.
In OSign3 , signatures for user i are generated via the signature oracle provided by the EUF-CMA game.
If A invokes OSign4 with a valid signature σS,j˚

on MS R SignedΣrj˚s and j˚ is not yet corrupted, then
BS forwards σS,j˚

and MS to the EUF-CMA game. Note that if MS R SignedΣrj˚s, then the message
MS was never queried in the EUF-CMA game by design. In case user j˚ becomes corrupted, BS aborts.
Note that the value of j˚ is never revealed to A unless BS aborts. Thus, conditioned on the challenger
aborting in Game5 but not in Game4 (i.e., OSign4 is invoked for j P sHS with a valid signature σS,j on
an unsigned message MS) and j “ j˚, the above adversary BS succeeds in the EUF-CMA game. Thus,
we have

|ϵ5 ´ ϵ4| ď N ¨ Adveuf-cma
S,BS

pλq

where TimepBSq « TimepAq.
Before describing the next hybrid, we introduce some helpful lemmatas.

Lemma E.8. We have the following:

1. The oracles OSign3 ,OSign4 and OSign5 are invoked with ctntw (resp. MS) at most once for each
honest signer i P HS.

2. If OSign4 is invoked with ctntw (resp. MS), then OSign3 was invoked with ctntw (resp. MS) for all
signers j P sHS.

3. If OSign5 is invoked with ctntw (resp. MS) on user i, then OSign4 was invoked with ctntw (resp.
MS) for all users j P sHS.

Here, we mean by invoked with ctntw (resp. MS) that the values SS and pstrjqjPSS (resp. SS,M and
pstrj , cmtjqjPSS) defined within the call to the oracle are identical to the values in ctntw (resp. MSq.

75

Game3:

OCorruptpiq

1 : req Ji P HSK ^ J|CS| ď T ´ 1K
// state of user i between round 2 and 3

2 : for pSS, pstrjqjPSS, cmtiq P sti do

3 : ctntw :“ 0}SS}pstrjqjPSS

4 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

5 : wi :“ Ari ` e1
i P Rk

q

6 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

7 : rwi :“ wi ` r∆i P Rk
q

8 : ProgramHashCompi, cmti, rwiq

9 : sti Ð stiz tpSS, pstrjqjPSS, cmtiqu

10 : sti Ð sti Y tpSS,M, pstrjqjPSS, cmti, rwi, riqu

// state of user i between round 3 and 4

11 : for pSS,M, pstrj , cmtjqjPSS, σS,iq P sti do

12 : ctntw :“ 0}SS}pstrjqjPSS

13 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

14 : wi :“ Ari ` e1
i P Rk

q

15 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

16 : rwi :“ wi ` r∆i P Rk
q

17 : ProgramHashCompi, cmti, rwiq

18 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

19 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

20 : HS Ð HSztiu

21 : CS Ð CS Y tiu

22 : return pski, stiq

OSign2pSS, i, ppm1,jqjPSSq

1 : req JSS Ď rN sK ^ Ji P HSK
2 : pick stri from sti with pm1,i “ stri

3 : parse pstrjqjPSSztiu Ð ppm1,jqjPSSztiu

4 : cmti
$

Ð t0, 1u
2λ

5 : sti Ð stiztstriu

6 : sti Ð sti Y tpSS, pstrjqjPSS, cmtiqu

7 : return pm2,i :“ cmti

OSign3pSS,M, i, ppm2,jqjPSSq

1 : req Ji P HSK ^ JpSS, ¨, pm2,iq P stiK

2 : pick pSS, pstrjqjPSS, cmtiq from sti

with pm2,i “ cmti

3 : parse pcmtjqjPSSztiu Ð ppm2,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : sti Ð stiztpSS, pstrjqjPSS, cmtiqu

7 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,iqu

8 : return pm3,i :“ σS,i

OSign4pSS,M, i, ppm3,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm3,iq P stiK

2 : pick pSS,M, pstrj , cmtjqjPSS, σS,iq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : ctntw :“ 0}SS}pstrjqjPSS

7 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

8 : wi :“ Ari ` e1
i P Rk

q

9 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

10 : rwi “ wi ` r∆i

11 : ProgramHashCompi, cmti, rwiq

12 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

13 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

14 : return pm4,i :“ rwi

Figure 24: The third game. The differences are highlighted in blue. The algorithm ProgramHashCom is
defined in Fig. 25

76

ProgramHashCompi, cmti, rwiq:

1 : abort if JQHcompi, rwiq ‰ KK
2 : QHcompi, rwiq Ð cmti

Figure 25: A helper algorithm for programming the random oracle Hcom to open the hash commitments cmti
consistently. Algorithm ProgramHashCom is assumed to have a joint state with the challenger and random
oracle Hcom used by the unforgeability game.

Game4:

Hcompi, rwq

1 : if JQHcom ri, rws “ KK then

2 : cmt $
Ð t0, 1u

2λ

3 : abort if Jcmt P CmtK
4 : Cmt Ð Cmt Y tcmtu

5 : QHcom ri, rws Ð cmt

6 : return QHcom ri, rws

OSign2pSS, i, ppm1,jqjPSSq

1 : req JSS Ď rN sK ^ Ji P HSK
2 : pick stri from sti with pm1,i “ stri

3 : parse pstrjqjPSSztiu Ð ppm1,jqjPSSztiu

4 : cmti
$

Ð t0, 1u
2λ

5 : abort if Jcmti P CmtK
6 : Cmt Ð Cmt Y tcmtiu

7 : sti Ð stiztstriu

8 : sti Ð sti Y tpSS, pstrjqjPSS, cmtiqu

9 : return pm2,i :“ cmti

Figure 26: The fourth game. The differences are highlighted in blue. We assume this game initializes a
empty set Cmt :“ H at the beginning of the game.

77

Game5:

OSign3pSS,M, i, ppm2,jqjPSSq

1 : req Ji P HSK ^ JpSS, ¨, pm2,iq P stiK

2 : pick pSS, pstrjqjPSS, cmtiq from sti

with pm2,i “ cmti

3 : parse pcmtjqjPSSztiu Ð ppm2,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : σS,i
$

Ð SignSpskS,i,MSq

6 : SignedΣris Ð SignedΣris Y tMSu

7 : sti Ð stiztpSS, pstrjqjPSS, cmtiqu

8 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,iqu

9 : return pm3,i :“ σS,i

OSign4pSS,M, i, ppm3,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm3,iq P stiK

2 : pick pSS,M, pstrj , cmtjqjPSS, σS,iq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : abort if JDj P sHSztiu,MS R SignedΣrjsK
7 : ctntw :“ 0}SS}pstrjqjPSS

8 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

9 : wi :“ Ari ` e1
i P Rk

q

10 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

11 : rwi “ wi ` r∆i

12 : ProgramHashCompi, cmti, rwiq

13 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

14 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

15 : return pm4,i :“ rwi

Figure 27: The fifth game. The differences are highlighted in blue. We assume this game initializes a empty
list SignedΣr¨s :“ K at the beginning of the game.

78

Proof. Let ctntw “ 0}SS}pstrjqjPSS and MS “ SS}M}pstrj , cmtjqjPSS.

Let us show the first statement. Note that each call to the signing oracle of round r for signer i with
ctntw (resp. MS) consumes one pr´ 1q round state in sti with stri. Since stri is generated at most once
in OSign1 due to the abort condition introduced in Game2, there can be at most one signing oracle call
with ctntw (resp. MS) per round.

Let us show the second statement. If OSign4 is invoked on signer i with MS, then OSign3 was invoked
with MS for signer i P sHS (else the challenger cannot retrieve a matching state from sti). Also, we
know that MS P SignedΣrjs for j P sHSztiu. Since MS is added to SignedΣrjs in OSign3 , it must hold
that OSign3 was invoked with MS for signer j P sHSztiu. Since ctntw is fully determined by MS, we can
conclude that ctntw must be identical in OSign4 and OSign3 , too.

Let us show the last statemet. If OSign5 is invoked with MS, then we know that cmtj “ Hcompj, rwjq

for j P SS. Also, since MS is defined by the values retrieved from sti, we know that OSign3 and OSign4
was called with MS for user i. Thus, we have that MS P SignedΣrjs for j P sHS and consequently,
cmtj was sampled by the challenger in OSign2 without preimage. At that point, cmtj is also added to
Cmt. If OSign4 was called for user j with MS, the preimage pj, rwjq for cmtj is initialized. Else, the
adversary A must have found a preimage for cmtj without invoking OSign4 for user j with MS. But
because cmtj P Cmt, the challenger aborts due to the condition added in Hcom in Game4.

Game6: In this game, the challenger introduces several additional tables: InitializeOpen,UnOpenedHS,Maskw
and MaskedCom. These tables are indexed by ctntw and indicate the following.

• InitializeOpenrctntws “ SS indicates that some honest user executed round 4 with ctntw. If on
the other hand InitializeOpenrctntws “ K, then no user started round 4 with ctntw. (We could
also set InitializeOpenrctntws “ J instead, but we use SS for convenience to check in OCorrupt if
i P InitializeOpenrctntws.)

• UnOpenedHSrctntws “ ĄsHSw stores the set of honest users ĄsHSw that have not executed round 4
with ctntw yet.

• Maskwrctntw, is “ r∆i stores the mask r∆i “ ZeroSharep ⃗seedirSSs, ctntwq.

• MaskedComrctntw, is “ rwi stores the masked commitment rwi “ wi ` r∆i.

The game is depicted in Figure 28. Let us detail how the tables are managed concretely. In OSign4 ,
the challenger checks if InitializeOpenrctntws “ K after ctntw :“ 0}SS}pstrjqjPSS is set. If so, it sets
InitializeOpenrctntws Ð SS and UnOpenedHSrctntws Ð sHS. Additionally, after setting up r∆i and
rwi, it stores the values in Maskwrctntws Ð r∆i and MaskedComrctntws Ð rwi, and finally updates
UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu. In OCorrupt, the challenger iterates over all ctntw such
that i P InitializeOpenrctntws and Maskwrctntw, is “ K. Note that in that case, there is a honest
signer that finished round 4 with ctntw but user i is between round 3 and round 4 with ctntw due to
Lemma E.8. For each such ctntw, the challenger samples r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq honestly,
stores r∆i in Maskwrctntw, is and removes i from UnOpenedHSrctntws. Later, when iterating over all
states of users between round 3 and round 4, the user checks if InitializeOpenrctntws “ K. If so, it sets
r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq and Maskwrctntw, is Ð r∆i. After this check, when setting up rwi

within the loop, the user sets r∆i Ð Maskwrctntw, is and then rwi Ð wi ` r∆i (instead of using r∆i

sampled via ZeroShare). Finally, rwi is stored in MaskedComrctntw, is.

Note that the view of adversary A is identical in Game5 and Game6, except in OCorrupt, the challenger
samples r∆i via ZeroShare in Game5 but sets r∆i Ð Maskwrctntw, is in Game6 when iterating over states
between round 3 and round 4. Since r∆i is used to compute rwi :“ wi ` r∆i, we need to show that
Maskwrctntw, is “ ZeroSharep ⃗seedirSSs, ctntwq for all states pSS,M, pstrj , cmtjqjPSS, σS,iq (i.e., states
between round 3 and round 4) with ctntw “ 0}SS}pstrjqjPSS. But here, Maskwrctntw, is is set to the

79

Game6:

OCorruptpiq

// Identical to Lines 1 to 10 in Game3

11 : for ctntw s.t. Ji P InitializeOpenrctntwsK^

JMaskwrctntw, is “ KK do

// Dhonest signer finished Round 4 with ctntw

// Sign3 for user i is completed

12 : parse 0}SS}pstrjqjPSS Ð ctntw // i P SS

13 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

14 : Maskwrctntw, is Ð r∆i

15 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// state of user i between round 3 and 4

16 : for pSS,M, pstrj , cmtjqjPSS, σS,iq P sti do

17 : ctntw :“ 0}SS}pstrjqjPSS

18 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

19 : wi :“ Ari ` e1
i P Rk

q

20 : if JInitializeOpenrctntws “ KK

21 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

22 : Maskwrctntw, is Ð r∆i

23 : r∆i Ð Maskwrctntw, is

24 : rwi :“ wi ` r∆i P Rk
q

25 : MaskedComrctntw, is Ð rwi

26 : ProgramHashCompi, cmti, rwiq

27 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

28 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

29 : HS Ð HSztiu

30 : CS Ð CS Y tiu

31 : return pski, stiq

OSign4pSS,M, i, ppm3,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm3,iq P stiK

2 : pick pSS,M, pstrj , cmtjqjPSS, σS,iq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : abort if JDj P sHSztiu,MS R SignedΣrjsK
7 : ctntw :“ 0}SS}pstrjqjPSS

8 : if JInitializeOpenrctntws “ KK then

9 : InitializeOpenrctntws Ð SS

10 : UnOpenedHSrctntws Ð sHS

11 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

12 : wi :“ Ari ` e1
i P Rk

q

13 : r∆i :“ ZeroSharep ⃗seedirSSs, ctntwq P Rk
q

14 : rwi “ wi ` r∆i

15 : Maskwrctntw, is Ð r∆i

16 : MaskedComrctntw, is Ð rwi

17 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

18 : ProgramHashCompi, cmti, rwiq

19 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

20 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

21 : return pm4,i :“ rwi

Figure 28: The sixth game. The differences are highlighted in blue. We assume that this game initializes
four empty lists InitializeOpenr¨s,UnOpenedHSr¨s,Maskwr¨s,MaskedComr¨s :“ K at the beginning of the game.

80

correct value either in line 14 (if i P InitializeOpenrctntws) or line 22 (if InitializeOpenrctntws “ K).
Hence, we have

ϵ6 “ ϵ5.

Game7:

OCorruptpiq and OSign4pSS,M, i, ppm3,jqjPSSq

// Replace any invocation of ZeroSharep ⃗seedirSSs, ctntwq with the following:

1 : for j P sCS do

2 : rmi,j :“ Hmaskpseedi,j , ctntwq

3 : rmj,i :“ Hmaskpseedj,i, ctntwq

4 : for j P sHSztiu do

5 : rmi,j :“ Hmaskpseedi,j , ctntwq

6 : rmj,i :“ Hmaskpseedj,i, ctntwq

7 : r∆i :“
ÿ

jPSSztiu

p rmj,i ´ rmi,jq P Rk
q

Figure 29: The seventh game. We simple explicitly write down the description of ZeroSharep ⃗seedirSSs, ctntwq

for convenience.

Game7: In this game, we expand the definition of ZeroShare for every invocation of ZeroSharep ⃗seedirSSs, ctntwq.
This is depicted in Fig. 29. Since both games are identical, we have

ϵ7 “ ϵ6.

Game8: In this game, an abort condition is added in the random oracle Hmask and the challenger modifies
how it generates masks r∆i in OCorrupt and OSign4 . This is depicted in Fig. 30. Specifically, at the
beginning of Hmask, the challenger aborts the game if i}j}rand Ð seed correctly parses and i, j P HS and
seed “ seedi,j holds. Further, whenever a mask r∆i is computed in OCorrupt and OSign4 , the challenger
first computes rmi,j and rmj,i for j P sCS as before, and then checks if i P InitializeOpenrctntws. If so, it
sets ĄsHSw Ð UnOpenedHSrctntws. Else, it sets ĄsHSw Ð sHS. Note that in both cases, ĄsHSw represents
the honest signers which have not executed round 4 with ctntw. Then, for j P sHSzĄsHSw (i.e., honest
users after round 4), it retrieves rmi,j and rmj,i from QHmask

rseedi,j , ctntws and QHmask
rseedj,i, ctntws ,

respectively. For j P ĄsHSwztiu, it picks mi,j and mj,i uniformly at random from Rℓ
q and stores them in

QHmask
rseedi,j , ctntzs and QHmask

rseedj,i, ctntzs, respectively. Finally, it sets r∆i :“
ř

jPSSztiup rmj,i ´ rmi,jq

as before.
Let us analyze the advantage of A in Game8. First, we upper bound the probability that the challenger
aborts in Hmask. Let Qi,j be the number of the random oracle queries with i, j P HS. Note that
ř

i,jPHS Qi,j ď QHmask
. In each such random oracle query to Hmask, the probability that rand “ randi,j

is 1{2λ since randi,j is chosen uniformly at random from t0, 1uλ and randi,j is information-theoretically
hidden from A until either user i or j is corrupted. Thus, the abort probability for fixed pairs pi, jq is
at most Qi,j{2λ. A union bound across all honest user pairs pi, jq P HS2 allows us to upper bound the
abort probability with QHmask

2λ
.

Further, we have to show that if j P sHSzĄsHSw, then QHmask
rseedi,j , ctntws and QHmask

rseedj,i, ctntws are
already initialized with the Hmask outputs. Since all signers in sHSzĄsHSw have already executed OSign4

81

Game8:

Hmaskpseed, ctntzq

1 : if Ji}j}rand Ð seed correctly parsesK then

2 : abort if Jpi, jq P HS2K ^ Jrand “ randi,jK
3 : if JQHmask rseed, ctntzs “ KK then

4 : if Jfirst entry of ctntz is 0K then

5 : m $
Ð Rk

q

6 : else

7 : m $
Ð Rℓ

q

8 : QHmask rseed, ctntzs Ð m

9 : return QHmask rseed, ctntzs

OCorruptpiq and OSign4pSS,M, i, ppm3,jqjPSSq

// Replace the modification made in Game7 with the following:

1 : for j P sCS do

2 : rmi,j :“ Hmaskpseedi,j , ctntwq

3 : rmj,i :“ Hmaskpseedj,i, ctntwq

4 : if Ji P InitializeOpenrctntwsK then

5 : ĄsHSw Ð UnOpenedHSrctntws

6 : else

7 : // No honest user invoked ZeroShare for ctntw yet

ĄsHSw Ð sHS

8 : for j P sHSzĄsHSw do

9 : rmi,j Ð QHmask rseedi,j , ctntws

10 : rmj,i Ð QHmask rseedj,i, ctntws

11 : for j P ĄsHSwztiu do

12 : rmi,j
$

Ð Rk
q ,QHmask rseedi,j , ctntws Ð rmi,j

13 : rmj,i
$

Ð Rk
q ,QHmask rseedj,i, ctntws Ð rmj,i

14 : r∆i :“
ÿ

jPSSztiu

p rmj,i ´ rmi,jq P Rk
q

Figure 30: The eighth game. The differences are highlighted in blue.

with ctntw, these values were initialized in the corresponding OSign4 invocation. Also, we have to show
that if j P ĄsHSwztiu, then QHmask

rseedi,j , ctntws “ QHmask
rseedj,i, ctntws “ K (i.e., the outputs are not

yet defined and are thus distributed uniformly at this point). Note that due to the abort condition,
the adversary A never queries Hmask on honest seeds directly. Also, OSign4 was never invoked for j with
ctntw (and either, this is the first invocation of OSign4 for i with ctntw, or user i is corrupted and OSign4
was never invoked for user i). Combining these facts concludes the proof. In total, we have

|ϵ8 ´ ϵ7| ď
QHmask

2λ
.

Game9: In this game, the challenger samples all but the last mask r∆i at random (without computing
the individual masks p rmi,j , rmj,iqjPsHS), and samples the last mask r∆i consistently if all other masks
p r∆jqjPsHSztiu are already defined. Also, when a user is corrupted, it programs the oracle Hmask in
accordance. The game is detailed in Fig. 31. In more detail, whenever the challenger computes
r∆i and i P InitializeOpenrctntws in OSign4 and OCorrupt, then the user checks if ĄsHSw ‰ tiu, where
ĄsHSw Ð UnOpenedHSrctntws is the set of honest users that are still before round 4 with ctntw. If
so, it samples r∆i

$
Ð Rk

q at random. Otherwise, it computes r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq for
j P sCS and sets r∆i :“ ´

ř

jPsHSztiu Maskwrctntw, js ´
ř

jPsCS
r∆j . In OCorrupt, when passing over states

between round 3 and round 4, the user also samples r∆i at random (if InitializeOpenrctntws “ K). As
before, all masks r∆i are stored in the table Maskw. Note that now, the user never invokes Hmask to
compute r∆j for j P HS. Instead, at the end of OCorrupt, the user programs the oracle Hmask consistently
for corrupted user i via ProgramZeroShare given in Fig. 32. That is, for ctntw “ 0}SS}pstrjqjPSS

82

Game9:

OCorruptpiq

// Identical to Lines 1 to 10 in Game3

11 : for ctntw s.t. Ji P InitializeOpenrctntwsK^

JMaskwrctntw, is “ KK do

// Dhonest signer finished Round 4 with ctntw

// Sign3 for user i is completed

12 : parse 0}SS}pstrjqjPSS Ð ctntw // i P SS

13 : ĄsHSw Ð UnOpenedHSrctntws // i P ĄsHSw

14 : if JĄsHSw ‰ tiuK

15 : r∆i
$

Ð Rk
q

16 : elseif JĄsHSw “ tiuK // Last honest signer for ctntw

17 : for j P sCS

18 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

19 : r∆i :“ ´
ÿ

jPsHSztiu

Maskwrctntw, js ´
ÿ

jPsCS

r∆j

20 : Maskwrctntw, is Ð r∆i

21 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// state of user i between round 3 and 4

22 : for pSS,M, pstrj , cmtjqjPSS, σS,iq P sti do

23 : ctntw :“ 0}SS}pstrjqjPSS

24 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

25 : wi :“ Ari ` e1
i P Rk

q

26 : if JInitializeOpenrctntws “ KK

27 : r∆i
$

Ð Rk
q

28 : Maskwrctntw, is Ð r∆i

29 : ∆i Ð Maskwrctntw, is

30 : rwi :“ wi ` r∆i P Rk
q

31 : MaskedComrctntw, is Ð rwi

32 : ProgramHashCompi, cmti, rwiq

33 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

34 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, σS,i, rwi, riqu

35 : for ctntw s.t. JMaskwrctntw, is ‰ KK do

36 : ProgramZeroSharepctntw, i,Maskwrctntw, is, sCS, sHSq

37 : HS Ð HSztiu

38 : CS Ð CS Y tiu

39 : return pski, stiq

OSign4pSS,M, i, ppm3,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm3,iq P stiK
2 : pick pSS,M, pstrj , cmtjqjPSS, σS,iq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : abort if JDj P sHSztiu,MS R SignedΣrjsK
7 : ctntw :“ 0}SS}pstrjqjPSS

8 : if JInitializeOpenrctntws “ KK then

9 : InitializeOpenrctntws Ð SS

10 : UnOpenedHSrctntws Ð sHS

11 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

12 : wi :“ Ari ` e1
i P Rk

q

13 : ĄsHSw Ð UnOpenedHSrctntws

14 : if JĄsHSw ‰ tiuK then

15 : r∆i
$

Ð Rk
q

16 : else // Last honest signer for ctntw

17 : for j P sCS

18 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

19 : r∆i :“ ´
ÿ

jPsHSztiu

Maskwrctntw, js ´
ÿ

jPsCS

r∆j P Rk
q

20 : rwi “ wi ` r∆i

21 : Maskwrctntw, is Ð r∆i

22 : MaskedComrctntw, is Ð rwi

23 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

24 : ProgramHashCompi, cmti, rwiq

25 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

26 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

27 : return pm4,i :“ rwi

Figure 31: The ninth game. The differences are highlighted in blue. The algorithm ProgramZeroShare is
defined in Fig. 32.

83

ProgramZeroSharepctntz, i,∆
˚, sCS, sHSq:

1 : req J∆˚
‰ KK ^ J|sHS| ą 1K

2 : if J∆˚
P Rk

q K then

3 : t :“ k // Zero share ∆
˚

“ Maskwrctntw, is for commitment wi

4 : else

5 : t :“ ℓ // Zero share ∆
˚

“ Maskzrctntz, is for commitment zi

6 : for j P sCS

7 : mi,j Ð Hmaskpseedi,j , ctntzq

8 : mj,i Ð Hmaskpseedj,i, ctntzq

// Choose an arbitrary honest user other than i

9 : pick a from sHSztiu

10 : for j P sHSzti, au do

11 : mi,j
$

Ð Rt
q, QHmask rseedi,j , ctntzs Ð mi,j

12 : mj,i
$

Ð Rt
q, QHmask rseedj,i, ctntzs Ð mj,i

13 : mi,a
$

Ð Rt
q, QHmask rseedi,a, ctntzs Ð mi,a

// Set final individual mask to be consistent with zero share ∆
˚

14 : QHmask rseeda,i, ctntws

Ð ∆˚
´

ÿ

jPSSzti,au

p rmj,i ´ rmi,jq ` rmi,a

Figure 32: A helper algorithm for programming the random oracle Hmask to open the zero shares ∆i P Rℓ
q

and r∆i P Rk
q consistently. Algorithm ProgramZeroShare is assumed to have a joint state with the challenger

and random oracle Hmask used by the unforgeability game.

84

such that Maskwrctntw, is ‰ K, it invokes ProgramZeroShare with input pctntw, i, r∆˚, sCS, sHSq, where
r∆˚ :“ Maskwrctntw, is, which programs Hmask as follows. Initially, two sanity checks are performed:
(1) except i, there is at least another uncorrupted user a P sHSztiu and (2) r∆˚ ‰ K. Then, for each
j P sCS, the challenger sets mi,j Ð Hmaskpseedi,j , ctntwq and mj,i Ð Hmaskpseedj,i, ctntwq. For each
j P sHSzti, au, the signer samples mi,j and mj,i at random and programs Hmask accordingly. For user
a, it samples only QHmask

rseedi,a, ctntws Ð mi,a
$

Ð Rk
q at random, and the final individual mask ma,i

is set consistently, i.e., QHmask
rseeda,i, ctntws Ð ∆˚ ´

ř

jPSSzti,aup rmj,i ´ rmi,jq ` rmi,a.

We show that Game9 and Game8 are identically distributed. Observe that the (potential) observ-
able differences between both games are the distribution of the masks r∆i and the output of Hmask.
We first show that the masks r∆i are identically distributed in both games. Then, we show that
ProgramZeroShare programs Hmask as desired. We initially fix some arbitrary ctntw and later apply a
hybrid argument to conclude.

Lemma E.9. Let ctntw be fixed. If InitializeOpenrctntws ‰ K, then in both games, we have for i P sHS
that

1. Maskwrctntw, is “ K if signer i is not being corrupted and has not passed round 4 with ctntw, else

2. Maskwrctntw, is „ URk
q

is distributed at random, if there remains another honest signer j P

ĄsHSwztiu before round 4 with ctntw and

3. Maskwrctntw, is “ ´
ř

jPsHSztiu Maskwrctntw, js ´
ř

jPsCS
r∆j, if i was the last user between round

3 and round 4 with ctntw (i.e., if ĄsHSw “ tiu).

Proof. The first statement holds in both games by construction. The second and third statmeent
hold for Game9 by construction. Let us inspect the distribution of Maskwrctntw, is in Game8 for
Maskwrctntw, is ‰ K. Observe that all values stored in Maskwrctntw, is are computed as depicted in
Fig. 30. If there exists some j P ĄsHSwztiu, then rmi,j and rmj,i are sampled at random over Rk

q . Thus,
r∆i “

ř

jPSSztiup rmj,i ´ rmi,jq is distributed at random over Rk
q . If on the other hand ĄsHSw “ tiu,

then all individual masks p rmi,j , rmj,iqjPsHS are retrieved from QHmask
and thus, r∆i is fully determined.

Because we have that
ř

jPSS
r∆j “ 0, where r∆j “

ř

κPSSztjup rmκ,j ´ rmj,κq, we have that

r∆i “ ´
ÿ

jPSSztiu

r∆j .

Finally, observe that every time a signer j P sHS is removed from ĄsHSw, the value r∆j is stored in
Maskwrctntw, js. Thus, if ĄsHSw “ tiu, we have that

ÿ

jPSSztiu

r∆j “
ÿ

jPsHSztiu

Maskwrctntw, js ´
ÿ

jPsCS

r∆j .

Combining the both equations concludes.

Lemma E.10. Let ctntw be fixed. If InitializeOpenrctntws “ K and Maskwrctntw, is ‰ K, then
Maskwrctntw, is is distributed uniformly over Rk

q in both games.

Proof. This is immediate for Game9. In Game8, the values r∆i stored in Maskwrctntw, is are computed
as depicted in Fig. 30. Here, the challenger sets ĄsHSw Ð sHS when computing r∆i. Thus, all values
p rmi,j , rmj,iqjPsHS are sampled at random. Since sHS ‰ H, the statement follows.

Next, we show that ProgramZeroShare programs the oracle Hmask as desired in Game9.

85

Lemma E.11. Let ctntw be fixed. For every query of the form pseed, ctntwq to Hmask of A, the value
QHmask

rseed, ctntws is identically distributed in both games.

Proof. For i P CS, we need to show that the individual masks mj,i “ Hmaskpseedj,i, ctntwq and mi,j “

Hmaskpseedi,j , ctntwq output by Hmask are distributed at random in Game9 (as in Game8), where j P SS.
(If both j and i are corrupt, then let us assume without loss of generality that i was corrupted first.)
Note that if pi, jq P HS2, then the challenger aborts in Hmask in both games (if the seed matches).
Further, since r∆i is computed via Hmask in Game8, we need to show that in Game9, we also have
r∆i “

ř

jPSSztiup rmj,i ´ rmi,jq in OCorrupt and OSign4 .

Note that when r∆i is sampled in Game9, then it is stored in Maskwrctntw, is. Thus, ProgramZeroShare

is invoked with input pctntw, i, r∆i, sCS, sHSq when i is corrupted. By construction, we have that rma,i “

r∆i´
ř

jPSSzti,aup rmj,i´ rmi,jq` rmi,a. Reordering the equation confirms that r∆i “
ř

jPSSztiup rmj,i´ rmi,jq.
It remains to show that each individual mask is distributed uniformly at random. By construction,
this is immediate for all masks except rma,i. If i is not the last honest signer for ctntw, then r∆i

was sampled at random and thus rma,i is also distributed at random. Otherwise, we have r∆i “

´
ř

jPsHSztiu Maskwrctntw, js´
ř

jPsCS
r∆j . Since there is an honest user a˚ P sHS that is never corrupted,

we know that r∆a˚
“ Maskwrctntw, a˚s is distributed uniformly and independently at random and thus,

rma,i is uniform.

When we combine Lemmata E.9 to E.11 with a hybrid argument over all ctntw in order of occurence,
we have

ϵ9 “ ϵ8.

Game10: In this game, the challenger manages additional tables UsedCom,SumCom and SumComRnd. Also,
it samples rwi in OSign4 differenlty. These tables are indexed by ctntw and indicate the following.

• UsedComrctntw, is “ pwi, ri, e
1
iq stores the commitment wi with its randomness pri, e

1
iq that is

used by honest signer i in OSign4 with ctntw.

• SumComrctntws “ w stores the (partial) sum w “
ř

jPsHSzĄsHSw
wj of all commitments wj that

honest users used in OSign4 .

• SumComRndrctntws “ r stores the (partial) sum r “
ř

jPsHSzĄsHSw
rj of the commitment random-

ness rj that honest users used in OSign4 .

This is depicted in Fig. 33. In OSign4 , after sampling the values pwi, ri, e
1
iq, the challenger stores wi in

UsedComrctntw, is and updates SumComrctntws Ð SumComrctntws ` wi and SumComRndrctntws Ð

SumComRndrctntws ` ri. Also, instead of sampling r∆i
$

Ð Rk
q at random if ĄsHSw ‰ tiu, the challenger

samples rwi
$

Ð Rk
q directly. Similarly, if ĄsHSw “ tiu, the challenger sets rwi :“ SumComrctntws ´

ř

jPsCS
r∆j ´

ř

jPsHSztiu MaskedComrctntw, js. Note that in Game10, Maskwrctntw, is remains undefined
at this point. This step is delayed until user i is corrupted. In OCorrupt, when passing over ctntw
such that i P InitializeOpenrctntws, the challenger checks whether MaskedComrctntw, is ‰ K. In that
case, it retrieves pwi, ri, e

1
iq Ð UsedComrctntw, is, sets Maskwrctntw, is Ð MaskedComrctntw, is ´ wi,

SumComrctntws Ð SumComrctntws´wi and SumComRndrctntws Ð SumComRndrctntws´ri. Also, the
masks for the last user are sampled via r∆i “ SumComrctntws´

ř

jPsCS
r∆j´

ř

jPsHSztiu MaskedComrctntw, js

in OCorrupt.

Let us show that both games are identically distributed. First, we show that SumCom and SumComRnd
indeed store the intended partial sums.

86

Game10:

OCorruptpiq

// Identical to Lines 1 to 10 in Game3

11 : for ctntw s.t. Ji P InitializeOpenrctntwsK^

JMaskwrctntw, is “ KK do

// Dhonest signer finished Round 4 with ctntw

// Sign3 for user i is completed

12 : parse 0}SS}pstrjqjPSS Ð ctntw // i P SS

13 : if JMaskedComrctntw, is ‰ KK then

// user i finished Round 4 with ctntw

14 : pwi, ri, e
1
iq Ð UsedComrctntw, is

15 : Maskwrctntw, is Ð MaskedComrctntws ´ wi

16 : SumComrctntws Ð SumComrctntws ´ wi

17 : SumComRndrctntws Ð SumComRndrctntws ´ ri

18 : else // user i is between Round 3 and Round 4 with ctntw

19 : ĄsHSw Ð UnOpenedHSrctntws // i P ĄsHSw

20 : if JĄsHSw ‰ tiuK

21 : r∆i
$

Ð Rk
q

22 : elseif JĄsHSw “ tiuK // Last honest signer for ctntw

23 : for j P sCS

24 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

25 : r∆i :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

26 : Maskwrctntw, is Ð r∆i

27 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// Identical to Lines 21 to 38 in Game9

OSign4pSS,M, i, ppm3,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm3,iq P stiK
2 : pick pSS,M, pstrj , cmtjqjPSS, σS,iq from sti

with pm3,i “ σS,i

3 : parse pσS,jqjPSSztiu Ð ppm3,jqjPSSztiu

4 : MS :“ SS}M}pstrj , cmtjqjPSS

5 : req J@j P SSztiu,VerifySpvkS,j , σS,j ,MSq “ JK
6 : abort if JDj P sHSztiu,MS R SignedΣrjsK
7 : ctntw :“ 0}SS}pstrjqjPSS

8 : if JInitializeOpenrctntws “ KK then

9 : InitializeOpenrctntws Ð SS

10 : UnOpenedHSrctntws Ð sHS

11 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

12 : wi :“ Ari ` e1
i P Rk

q

13 : UsedComrctntw, is Ð pwi, ri, e
1
iq

14 : SumComrctntws Ð SumComrctntws ` wi

15 : SumComRndrctntws Ð SumComRndrctntws ` ri

16 : ĄsHSw Ð UnOpenedHSrctntws

17 : if JĄsHSw ‰ tiuK then

18 : rwi
$

Ð Rk
q

19 : else // Last honest signer for ctntw

20 : for j P sCS

21 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

22 : rwi :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

23 : MaskedComrctntw, is Ð rwi

24 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

25 : ProgramHashCompi, cmti, rwiq

26 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

27 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

28 : return pm4,i :“ rwi

Figure 33: The tenth game. The differences are highlighted in blue. We assume that this game initializes
three empty lists UsedComr¨s,SumComr¨s,SumComRndr¨s :“ K at the beginning of the game.

87

Lemma E.12. Let ctntw be arbitrary. Let sHS1
“ sHS (resp. sHS1

“ sHSztiu). In Game10, we
have in line 22 in OSign4 (resp. line 25 in OCorrupt) that SumComrctntws “

ř

jPsHS1zĄsHSw
wj and

SumComRndrctntws “
ř

jPsHS1zĄsHSw
rj, where pwj , rj , e

1
jq “ UsedComrctntw, is.

Proof. Note that sHS1
zĄsHSw is the set of honest users that passed round 4 with ctntw (excluding user i if

it is in the process of being corrupted). Recall that in OSign4 , the challenger adds wi and ri to SumCom
and SumComRnd, respectively, and initializes MaskedComrctntw, is “ rwi. Thus, each OSign4 call keeps
the invariant. If user i P sHSzĄsHSw is being corrupted, then we have MaskedComrctntw, is ‰ K and
Maskwrctntw, is “ K. Consequently, the values wi and ri are removed from SumCom and SumComRnd
in line 16 and line 17, respectively, if previously added. The statement follows.

Next, let us consider an intermedite game of Game9,˚, where instead of sampling r∆i
$

Ð Rk
q at random

in OSign4 , we sample r∆˚
i

$
Ð Rk

q and set r∆i :“ r∆˚
i ´ wi. Clearly, this game is identically distributed

to Game9. Then, we have that

rwi “ wi ` r∆i

“ r∆˚
i „ URk

q

which is distributed as in Game10. Consequently, we have if ĄsHSw “ tiu that

rwi “ wi ` r∆i

“ wi ´
ÿ

jPsHSztiu

Maskwrctntw, js ´
ÿ

jPsCS

r∆j

“ wi ´
ÿ

jPsHSztiu

p r∆˚
j ´ wjq ´

ÿ

jPsCS

r∆j

“
ÿ

jPsHS

wi ´
ÿ

jPsHSztiu

r∆˚
j ´

ÿ

jPsCS

r∆j

“
ÿ

jPsHS

wi ´
ÿ

jPsHSztiu

MaskedComrctntw, js ´
ÿ

jPsCS

r∆j .

Similarly, we have in OCorrupt if ĄsHSw “ tiu that

r∆i “ ´
ÿ

jPsHSztiu

Maskwrctntw, js ´
ÿ

jPsCS

r∆j

“ ´
ÿ

jPsHSztiu

r∆˚
j ´ wj

“
ÿ

jPsHSztiu

wi ´
ÿ

jPsHSztiu

r∆˚
j ´

ÿ

jPsCS

r∆j

“
ÿ

jPsHSztiu

wi ´
ÿ

jPsHSztiu

MaskedComrctntw, js ´
ÿ

jPsCS

r∆j .

Due to Lemma E.12, we have that rwi and r∆i are identically distributed in Game9,˚ and Game10.
Finally, note that while Maskwrctntw, is is initialized in OSign4 in Game9,˚ but not in Game10, whenever
Maskwrctntw, is is used by the challenger, the value is identically distributed. We conclude that

ϵ10 “ ϵ9.

88

Game11 – part 1:

OCorruptpiq

// Identical to Lines 1 to 10 in Game3

11 : for ctntw s.t. Ji P InitializeOpenrctntwsK^

JMaskwrctntw, is “ KK do

// Dhonest signer finished Round 4 with ctntw

// Sign3 for user i is completed

12 : parse 0}SS}pstrjqjPSS Ð ctntw // i P SS

13 : if JMaskedComrctntw, is ‰ KK then

14 : // user i finished Round 4 with ctntw

15 : if JUnOpenedHSrctntws “ HK then

16 : if JUsedComrctntws “ KK then

// user i is between Round 4 and 5

17 : UsedComrctntw, is Ð UnUsedComrctntws.popp1q

18 : pwi, ri, e
1
iq Ð UsedComrctntw, is

19 : SumComRndrctntws Ð SumComRndrctntws ´ ri

20 : else // There is still a honest user in Round 3 with ctntw

21 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

22 : wi :“ Ari ` e1
i P Rk

q

23 : UsedComrctntw, is Ð pwi, ri, e
1
iq

24 : Maskwrctntw, is Ð MaskedComrctntws ´ UsedComrctntw, is

25 : else // user i is between Round 3 and Round 4 with ctntw

26 : ĄsHSw Ð UnOpenedHSrctntws // i P ĄsHSw

27 : if JĄsHSw ‰ tiuK

28 : r∆i
$

Ð Rk
q

29 : elseif JĄsHSw “ tiuK // Last honest signer for ctntw

30 : for j P r|sHS| ´ 1s do

31 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

32 : w :“ Ar ` e1
P Rk

q

33 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

34 : SumComrctntws Ð SumComrctntws ` w

35 : SumComRndrctntws Ð SumComRndrctntws ` r

36 : for j P sCS

37 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

38 : r∆i :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

39 : Maskwrctntw, is Ð r∆i

40 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// Continuation of OCorrupt

// state of user i between round 3 and 4

41 : for pSS,M, pstrj , cmtjqjPSS, σS,iq P sti do

42 : ctntw :“ 0}SS}pstrjqjPSS

43 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

44 : wi :“ Ari ` e1
i P Rk

q

45 : if JInitializeOpenrctntws “ KK

46 : r∆i
$

Ð Rk
q

47 : Maskwrctntw, is Ð r∆i

48 : ∆i Ð Maskwrctntw, is

49 : rwi :“ wi ` r∆i P Rk
q

50 : MaskedComrctntw, is Ð rwi

51 : ProgramHashCompi, cmti, rwiq

52 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

53 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

// state of user i between round 4 and 5

54 : for pSS,M, pstrj , cmtjqjPSS, rwiq P sti do

55 : ctntw :“ 0}SS}pstrjqjPSS

56 : pwi, ri, e
1
iq Ð UsedComrctntw, is

57 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu do

58 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

59 : for ctntw s.t. JMaskwrctntw, is ‰ KK do

60 : ProgramZeroSharepctntw, i,Maskwrctntw, is, sCS, sHSq

61 : HS Ð HSztiu

62 : CS Ð CS Y tiu

63 : return pski, stiq

Figure 34: The first part of the eleventh game. The differences are highlighted in blue.

89

Game11 – part 2:

OSign4pSS,M, i, ppm3,jqjPSSq

// Identical to Lines 1 to 10 in Game10

11 : ĄsHSw Ð UnOpenedHSrctntws

12 : if JĄsHSw ‰ tiuK then

13 : rwi
$

Ð Rk
q

14 : else // Last honest signer for ctntw

15 : for j P r|sHS|s do

16 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

17 : w :“ Ar ` e1
P Rk

q

18 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

19 : SumComrctntws Ð SumComrctntws ` w

20 : SumComRndrctntws Ð SumComRndrctntws ` r

21 : for j P sCS

22 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

23 : rwi :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

24 : MaskedComrctntw, is Ð rwi

25 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

26 : ProgramHashCompi, cmti, rwiq

27 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

28 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwiqu

29 : return pm4,i :“ rwi

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,iq P stiK
2 : ctntw :“ 0}SS}pstrjqjPSS

3 : pwi, ri, e
1
iq Ð UnUsedComrctntws.popp1q

4 : UsedComrctntws Ð pwi, ri, e
1
iq

5 : parse
`

si, ⃗seedi
˘

Ð ski

6 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

7 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

8 : req J@j P SS, cmtj “ Hcompj, rwjqK
9 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

10 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

11 : c :“ Hcpvk,M,wq // c P C

12 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

13 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

14 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

15 : QMrMs Ð QMrMs Y tiu

16 : return pm5,i :“ zi

Figure 35: The second part of the eleventh game. The differences are highlighted in blue.

90

Game11: In this game, the challenger delays sampling the commitments until the last signer finishes OSign4
with ctntw. These commitments are stored in a table UnUsedCom and assigned in OSign5 (or OCorrupt)
to signers in UsedCom. This is depicted in Figs. 34 and 35. Let us detail the changes. In OSign4 ,
the challenger samples all commitments at once if user i is the last honest signer in round 4, i.e.,
if ĄsHSw “ tiu. That is, it generates |sHS| commitments pwjqjP|sHS| and stores them in the table
UnUsedComrctntws. At that point, it also computes and stores the sums in SumCom and SumComRnd.
Notably, the commitments are not attributed to specific users in OSign4 and the randomness ri is
removed from the state until OSign5 . In OSign5 , the user first removes an unused commitment from
pwi, ri, e

1
iq Ð UnUsedComrctntws.popp1q, stores pwi, ri, e

1
iq in UsedComrctntw, is and proceeds as be-

fore with this commitment. In OCorrupt, if MaskedComrctntws ‰ K when passing over ctntw such that
i P InitializeOpenrctntws and Maskwrctntw, is “ K, the challenger checks if UnOpenedHSrctntws “ H.
Note that this is the case if all honest users passed round 4 with ctntw. In that case, the user
retrieves pwi, ri, e

1
iq Ð UsedComrctntws if UsedComrctntws ‰ K, else it chooses an unused commit-

ment pwi, ri, e
1
iq Ð UnUsedComrctntws.popp1q. Then, it removes wi and ri from SumComrctntws and

SumComRndrctntws, respectively. If otherwise UnOpenedHSrctntws ‰ H, then a fresh commitment
wi is sampled and stored with its randomness in UsedComrctntw, is Ð pwi, ri, e

1
iq. Again, if i is the

last user before round 4, it generates |sHS| ´ 1 differents commitments and stores them in the table
UnUsedComrctntws. At that point, it also computes and stores the sums in SumCom and SumComRnd.
At the end of OCorrupt, the challenger passes over states of users between round 4 and 5 and reintroduces
ri into the states via UsedCom.
Let us show that both games are identically distributed. Let ctntw be fixed. Observe that the output
rwi in OSign4 is identically distributed in both games for all but the last honest signer. Let us inspect
the distribution of rwi when OSign4 is called for the last user i with ctntw, i.e., ĄsHSw “ tiu. Since rwi

is computed via SumComrctntws, we need to show that in Game11, the table SumComrctntws stores
the sum of the commitments wj that are used by honest users j P sHS in OSign4 . Note that while
in Game11, these commitments wj are not attributed internally to any user in OSign4 yet, the sum
stored in SumComrctntws is identically distributed by construction. The commitments are stored in
UnUsedComrctntws. Similarly, if ĄsHSw “ tiu in OCorrupt, then UnUsedComrctntws and SumComrctntws

are initialized before r∆i is computed. We can reason as above that r∆i is distributed identically in
OCorrupt in Game11 in that case, and UnUsedComrctntws is initialized with the commitments that sum
up to SumComrctntws, i.e., SumComrctntws “

ř

pwj ,rj ,e1
jqPUnUsedComrctntws wj . The above allows is to

conclude that
ĄsHSw “ H ùñ UnUsedComrctntws ‰ K. (21)

Observe that the signer state sti and the distribution of OSign5 is identically distributed in both
games, if UsedComrctntw, is is identically distributed when accessed by the simulator. Note that
UsedComrctntw, is is handled identically in both games if user i never signed with ctntw via OSign4
yet: it is not set for i P sHS and freshly sampled in OCorrupt when user i is corrupted. Let us inspect
the remaining cases:

1. User i is corrupted between round 4 and round 5 with ctntw, and there remains another honest
users before round 4 with ctntw, i.e., ĄsHSw ‰ H. In both games, we have that MaskedComrctntw, is ‰

K. In Game11, UsedComrctntw, is is initialized in line 23 and in Game10, it is initialized in OSign4 .
The commitment wi is sampled in the same manner in both games. In Game11, its randomness
does not influence the value of SumComrctntws. In Game10, it is first added to SumComrctntws in
OSign4 , but removed in OCorrupt in line 17 before SumComrctntws is accessed to compute r∆i or rwi.

2. User i is corrupted between round 4 and round 5 with ctntw, and ĄsHSw “ H. In Game10, the
value UsedComrctntw, is Ð pwi, ri, e

1
iq is set in OSign4 and its randomness is included in the sum

SumComrctntws when it is accessed to compute r∆i or rwi. In Game11, the value wj is chosen from
UnUsedComrctntws (cf. line 17), i.e., its randomness is also included in the sum SumComrctntws

when it is accessed to compute r∆i or rwi.

91

3. User i is in (or after) round 5 with ctntw. Then, in Game10, the value of UsedComrctntws is
distributed as in the previous case (since it remains unchanged). In Game11, the value is chosen
from UnUsedComrctntws, i.e., is distributed as in the previous case, too.

Note that in Game11, whenever a value is chosen from UnUsedComrctntws, then it is removed from
UnUsedComrctntws and thus, its randomness is counted at most once in SumComrctntws as in Game11.
Also, observe that OCorrupt and OSign5 removes at most one commitment from UnUsedComrctntws. This
occurs in line 17 (resp. line 3) if user i has a state between round 4 and 5 with ctntw in OCorrupt (resp.
if OSign5 is invoked for user i with ctntw). Recall that due to Lemma E.8, OSign5 is called at most once
per ctntw and OSign5 is invoked only if all honest users passed round 4 with ctntw, i.e., ĄsHSw “ H,
and thus, UnUsedComrctntws ‰ K due to Eq. (21). Also, note that if UsedComrctntws is set in OSign5 ,
then no commitment is removed from UnUsedComrctntws in OCorrupt. The above observations allow us
to conlude that each time a commitment is chosen from UnUsedComrctntws, the set is non-empty. In
summary, we have that UsedComrctntw, is is identically distributed in Game10 and Game11.

Finally, a hybrid argument over all ctntw shows that

ϵ11 “ ϵ10

Game12: In this game, the challenger introduces several additional tables InitializeSign,UnSignedHS,Maskz
and MaskedResp. All tables are indexed by ctntw and the first four tables are the functional equivalents
to InitializeOpen, UnOpenedHS, Maskw, MaskedCom, respectively, but for the masks ∆i in OSign5 instead
of r∆i. Explicitly, each table represents the following.

• InitializeSignrctntws “ SS indicates that some honest user executed round 5 with ctntw. If on the
other hand InitializeSignrctntws “ K, then no user started round 5 with ctntw.

• UnSignedHSrctntws “ ĄsHSz stores the set of honest users ĄsHSz that have not executed round 5
with ctntw yet.

• Maskzrctntw, is “ ∆i stores the mask ∆i.

• MaskedResprctntw, is “ rzi stores the masked response rzi.

The game is depicted in Figure 36. Let us detail how the tables are managed concretely. In OSign5 ,
the challenger sets ctntw :“ 0}SS}pstrjqjPSS and checks if InitializeSignrctntws “ K. If so, it sets
InitializeSignrctntws Ð SS and UnSignedHSrctntws Ð sHS. Additionally, after setting up ∆i and
rzi, it stores the values in Maskzrctntw, is Ð ∆i and MaskedComrctntws Ð rzi, and finally updates
UnSignedHSrctntws Ð UnSignedHSrctntwsztiu. In OCorrupt, the challenger iterates over all ctntw such
that i P InitializeOpenrctntws and Maskzrctntw, is “ K. Note that in that case, there is a honest
signer that finished round 5 with ctntw but user i is between round 4 and round 5 with ctntw due to
Lemma E.8. For each such ctntw, the challenger samples ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq honestly,
stores ∆i in Maskzrctntw, is and removes i from UnSignedHSrctntws.

This change is purely conceputal to ease the introduction of future hybrids. Hence, we have

ϵ12 “ ϵ11.

Before we proceed, let us show a useful lemma.

Lemma E.13. All invocations of OSign5 with ctntw share the identical value ctntz.

Proof. Let us inspect the first call to OSign5 with ctntw “ 0}SS}pstrjqjPSS. Here, the challenger sets
ctntz “ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS. Let us set MS “ SS}M}pstrj , cmtjqjPSS. Due to Lemma E.8,
if OSign5 is invoked with MS, we know that OSign4 was invoked for all users j P sHS with MS. Notably,
MS determines ctntw and thus, the values ctntw and MS are identical across each of the aforementioned

92

Game12

OCorruptpiq

// Identical to Lines 1 to 53 in Game11

54 : for ctntw s.t. Ji P InitializeSignrctntwsK^

JMaskzrctntw, is “ KK
// Dhonest user finished Round 5 with ctntw

// all honest users completed Sign4

55 : ctntz Ð SignContentrctntws

56 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

57 : Maskzrctntw, is Ð ∆i

// state of user i between round 4 and 5

58 : for pSS,M, pstrj , cmtjqjPSS, rwiq P sti do

59 : ctntw :“ 0}SS}pstrjqjPSS

60 : pwi, ri, e
1
iq Ð UsedComrctntw, is

61 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu do

62 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

63 : for ctntw s.t. JMaskwrctntw, is ‰ KK do

64 : ProgramZeroSharepctntw, i,Maskwrctntw, is, sCS, sHSq

65 : HS Ð HSztiu

66 : CS Ð CS Y tiu

67 : return pski, stiq

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,iq P stiK
2 : ctntw :“ 0}SS}pstrjqjPSS

3 : pwi, ri, e
1
iq Ð UnUsedComrctntws.popp1q

4 : UsedComrctntws Ð pwi, ri, e
1
iq

5 : parse
`

si, ⃗seedi
˘

Ð ski

6 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

7 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

8 : req J@j P SS, cmtj “ Hcompj, rwjqK
9 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

10 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

11 : c :“ Hcpvk,M,wq // c P C

12 : if JInitializeSignrctntws “ KK then

13 : InitializeSignrctntws Ð SS

14 : UnSignedHSrctntws Ð sHS

15 : SignContentrctntws Ð ctntz

16 : ∆i :“ ZeroSharep ⃗seedirSSs, ctntzq P Rℓ
q

17 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

18 : Maskzrctntw, is Ð ∆i

19 : MaskedResprctntw, is Ð rzi

20 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

21 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

22 : QMrMs Ð QMrMs Y tiu

23 : return pm5,i :“ zi

Figure 36: The twelfth game. The differences are highlighted in blue. We assume that this game initializes
four empty lists InitializeSignr¨s,UnSignedHSr¨s,Maskzr¨s,MaskedRespr¨s :“ K at the beginning of the game.

93

OSign4 invocations. Also, due to Lemma E.8, there are no further calls to OSign4 with ctntw. In summary,
all states stj of users j P sHS between round 4 and 5 with ctntw share the same value MS. Thus, if
OSign5 is invoked with ctntw, then MS is identical. Since for each cmtj for j P SS, there is exactly one
Hcom preimage pj, rwjq, the value ctntz is determined by MS. The statement follows.

Game13:

OCorruptpiq and OSign5pSS,M, i, ppm4,jqjPSSq

// Replace any invocation of ZeroSharep ⃗seedirSSs, ctntzq with the following:

1 : for j P sCS do

2 : mi,j :“ Hmaskpseedi,j , ctntzq

3 : mj,i :“ Hmaskpseedj,i, ctntzq

4 : for j P sHSztiu do

5 : mi,j :“ Hmaskpseedi,j , ctntzq

6 : mj,i :“ Hmaskpseedj,i, ctntzq

7 : ∆i :“
ÿ

jPSSztiu

pmj,i ´ mi,jq P Rℓ
q

Figure 37: The thirteenth game.

Game13: In this game, we expand the definition of ZeroShare for every invocation of ZeroSharep ⃗seedirSSs, ctntzq.
This is depicted in Fig. 37. Both games are identical and we have

ϵ13 “ ϵ12.

Game14: In this game, the challenger modifies how masks ∆i are sampled. This is depcicted in Fig. 38. That
is, whenever a mask ∆i is computed in OCorrupt and OSign5 , the challenger first computes mi,j and mj,i

for j P sCS as before. It sets ĄsHSz Ð UnSignedHSrctntws which represents the honest signers which have
not executed round 5 with ctntw. Then, for j P sHSzĄsHSz (i.e., honest users after round 5), it retrieves
mi,j and mj,i from QHmask

rseedi,j , ctntzs and QHmask
rseedj,i, ctntws , respectively. For j P ĄsHSzztiu,

it picks mi,j and mj,i uniformly at random from Rℓ
q and stores them in QHmask

rseedi,j , ctntzs and
QHmask

rseedj,i, ctntzs, respectively. Finally, it sets ∆i :“
ř

jPSSztiupmj,i ´ mi,jq as before.

Let us show that both games are identically distributed. We have to show that if j P sHSzĄsHSz,
then QHmask

rseedi,j , ctntzs and QHmask
rseedj,i, ctntzs are already initialized. We know that all signers

j P sHSzĄsHSz have already executed OSign5 with ctntw due to Lemma E.13. Thus, the oracles were
initialized correctly in the corresponding OSign5 invocation for j P sHSzĄsHSz. Also, we have to show
that if j P ĄsHSzztiu, then both QHmask

rseedi,j , ctntzs “ K and QHmask
rseedj,i, ctntzs “ K are not yet

defined. This follow readily from the following two facts: (1) due to the abort condition in Hmask,
the adversary A never queries Hmask on honest seeds directly, and (2) OSign5 was never invoked for
j P ĄsHSzztiu with ctntw. In total, we have

ϵ14 “ ϵ13.

94

Game14:

OCorruptpiq and OSign5pSS,M, i, ppm4,jqjPSSq

// Replace the modification made in Game13 with the following:

1 : for j P sCS do

2 : mi,j :“ Hmaskpseedi,j , ctntzq

3 : mj,i :“ Hmaskpseedj,i, ctntzq

4 : ĄsHSz Ð UnSignedHSrctntws

5 : for j P sHSzĄsHSz do

6 : mi,j Ð QHmask rseedi,j , ctntzs

7 : mj,i Ð QHmask rseedj,i, ctntzs

8 : for j P ĄsHSwztiu do

9 : mi,j
$

Ð Rℓ
q,QHmask rseedi,j , ctntzs Ð mi,j

10 : mj,i
$

Ð Rℓ
q,QHmask rseedj,i, ctntzs Ð mj,i

11 : ∆i :“
ÿ

jPSSztiu

pmj,i ´ mi,jq P Rℓ
q

Figure 38: The fourteenth game. The differences are highlighted in blue.

Game15 : In this game, the challenger samples the masks ∆i without Hmask. The last mask is set con-
sistently and the others are sampled at random. Also, when a user is corrupted, it programs the
oracle Hmask in accordance. This is depicted in Fig. 39. In more detail, whenever the challenger
computes ∆i and i P InitializeOpenrctntws in OSign5 and OCorrupt, then the user checks if ĄsHSz ‰ tiu,
where ĄsHSz Ð UnSignedHSrctntws is the set of honest users that are still before round 5 with ctntw.
If so, it samples ∆i

$
Ð Rℓ

q at random. Otherwise, i is the last user, so the challenger computes
∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq for j P sCS and sets ∆i :“ ´

ř

jPsHSztiu Maskzrctntw, js ´
ř

jPsCS ∆j .
As before, all masks ∆i are stored in the table Maskz. Note that now, the user never invokes Hmask to
compute ∆j for j P HS. Instead, at the end of OCorrupt, the user programs the oracle Hmask consistently
for corrupted user i via ProgramZeroShare given in Fig. 32 as in Game9.

We show that Game15 and Game14 are identically distributed. As in Game9, the (potential) observable
differences between both games are the distribution of the masks ∆i and the output of Hmask. The
statement follows almost in Lemmata E.9 and E.11.

First, observe that in both games, we have that Maskzrctntw, is ‰ K in Game16 iff Maskzrctntw, is ‰ K in
Game15. We can argue as in the proof of Lemma E.11 that thanks to ProgramZeroShare, the distribuion
of Hmask is identical in the view of A if Maskzrctntzs is distributed identically in Game14 and Game15.
(Note that apart from the dimension of the mask,ProgramZeroShare behaves identically in both cases,
and that Lemma E.13 ensures that ctntz is correctly set.) So it remains to show that Maskzrctntw, is
is distributed identically in both games if Maskwrctntw, is ‰ K. Observe that all values stored in
Maskwrctntw, is are computed as depicted in Fig. 38 in Game14. If there exists some j P ĄsHSzztiu, then
mi,j and mj,i are sampled at random over Rℓ

q. Thus, ∆i “
ř

jPSSztiupmj,i ´ mi,jq is distributed at

random over Rℓ
q. Otherwise, we have that ĄsHSw “ tiu and all individual masks pmi,j ,mj,iqjPsHS are

retrieved from QHmask
. In that case, ∆i is fully determined. A simple calculation (cf. Lemma E.9 for

details) shows that indeed, ∆i is identically distributed in this case, too. In conclusion, we have that

95

Game15

OCorruptpiq

// Identical to Lines 1 to 53 in Game11

54 : for ctntw s.t. Ji P InitializeSignrctntwsK^

JMaskzrctntw, is “ KK
// Dhonest user finished Round 5 with ctntw

// all honest users completed Sign4

55 : ĄsHSz Ð UnSignedHSrctntws // UnSignedHSrctntws ‰ K

56 : if JĄsHSz ‰ tiuK then

57 : ∆i
$

Ð Rℓ
q

58 : else // user i is the last user for ctntz “ SignContentrctntws

59 : ctntz Ð SignContentrctntws

60 : for j P sCS

61 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

62 : ∆i :“ ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

63 : Maskzrctntw, is Ð ∆i

// state of user i between round 4 and 5

64 : for pSS,M, pstrj , cmtjqjPSS, rwiq P sti do

65 : ctntw :“ 0}SS}pstrjqjPSS

66 : pwi, ri, e
1
iq Ð UsedComrctntw, is

67 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu do

68 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

69 : for ctntw s.t. JMaskwrctntw, is ‰ KK do

70 : ProgramZeroSharepctntw, i,Maskwrctntw, is, sCS, sHSq

71 : for ctntw s.t. JMaskzrctntw, is ‰ KK do

72 : ctntz Ð SignContentrctntws

73 : ProgramZeroSharepctntz, i,Maskzrctntw, is, sCS, sHSq

74 : HS Ð HSztiu

75 : CS Ð CS Y tiu

76 : return pski, stiq

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,iq P stiK
2 : ctntw :“ 0}SS}pstrjqjPSS

3 : pwi, ri, e
1
iq Ð UnUsedComrctntws.popp1q

4 : UsedComrctntws Ð pwi, ri, e
1
iq

5 : parse
`

si, ⃗seedi
˘

Ð ski

6 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

7 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

8 : req J@j P SS, cmtj “ Hcompj, rwjqK
9 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

10 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

11 : c :“ Hcpvk,M,wq // c P C

12 : if JInitializeSignrctntws “ KK then

13 : InitializeSignrctntws Ð SS

14 : UnSignedHSrctntws Ð sHS

15 : SignContentrctntws Ð ctntz

16 : ĄsHSz Ð UnSignedHSrctntws

17 : if JĄsHSz ‰ tiuK then

18 : ∆i
$

Ð Rℓ
q

19 : else

20 : for j P sCS

21 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

22 : ∆i :“ ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

23 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

24 : Maskzrctntw, is Ð ∆i

25 : MaskedResprctntw, is Ð rzi

26 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

27 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

28 : QMrMs Ð QMrMs Y tiu

29 : return pm5,i :“ zi

Figure 39: The fifteenth game. The differences are highlighted in blue.

96

ϵ15 “ ϵ14.

Game16 : In this game, the challenger checks whether all honest users uses the same challenge c in OSign5
with ctntw. This is depicted in Fig. 40. Specifically, in OSign5 , the challenger additionally stores
c “ Hcpvk,M,wq in Challrctntws if InitializeSignrctntws “ K, i.e., user i is the first user in the fifth
round. Also, it checks if Challrctntws “ c. If so, it continues the game as before. Otherwise, it aborts
the game.

Let us show that Game15 and Game16 are identically distributed. To show this, we show the following
lemma.

Lemma E.14. Let ctntw be arbitrary. In OSign5 with ctntw, all honest users in sHS use the same
c “ Hcpvk,M,wq.

Proof. From Lemma E.13, the same ctntz is used in OSign5 with ctntw for all uses in sHS. Recall that

ctntz “ 1}SS}M}pstrj , cmtjqjPSS}prwjqjPSS and w is computed by
Y

ř

jPSS rwj

U

νw

. Thus, w is uniquely

determined by ctntz. Also, since ctntz contains M and vk is fixed through the game, M and vk are also
uniquely determined by ctntz. Therefore, all users in sHS compute the same c “ Hcpvk,M,wq in OSign5
with ctntw.

By the above lemma, the game never aborts due to the added abort conditions. Thus, we have

ϵ16 “ ϵ15.

Game17 : In this game, the challenger samples rzi directly either at random or consistently for the last user in
OSign5 . Also, the challenger delays attributing commmitments from UnUsedCom until a user is corrupted
via OCorrupt. This is depicted in Figs. 41 and 42. We describe the changes in more detail. In OSign5 ,
the challenger does not setup UsedComrctntws via UnUsedComrctntws yet. Also, instead of sampling
∆i, it samples rzi

$
Ð Rℓ

q at random if ĄsHSz ‰ tiu and otherwise, it sets rzi “ c ¨ s ´ c
ř

jPsCS LSS,j ¨

sj ` SumComRndrctntws ´
ř

jPsHSztiu MaskedResprctntw, js ´
ř

jPsCS ∆j . The value rzi is stored in
MaskedResprctntw, is but Maskzrctntw, is remains K. In OCorrupt, when passing over ctntw such that i P

InitializeOpenrctntws and Maskwrctntw, is “ K, the challenger checks if MaskedComrctntw, is ‰ K and
UnOpenedHSrctntws “ H. If so, it chooses some commitment pwi, ri, e

1
iq Ð UnUsedComrctntws.popp1q,

stores it in UsedComrctntw, is, and removes wi and ri from SumCom and SumComRnd, respectively.
Note that UsedComrctntw, is “ K at that point since it no longer is set in OSign5 . Further, when
passing over ctntw such that i P InitializeSignrctntws and Maskzrctntw, is “ K, the challegner retrieves
pwi, ri, e

1
iq Ð UsedComrctntw, is and c Ð Challrctntws. Note that Challrctntws is already defined since

there is at least one user who finished OSign5 with ctntw. If MaskedResprctntw, is ‰ K, then it sets
Maskzrctntws Ð MaskedResprctntws´c¨si´ri. If else MaskedResprctntw, is “ K, the challenger samples
∆i at random if ĄsHSz ‰ tiu as before, but if ĄsHSz “ tiu, it samples ∆i “ c ¨ s´ c

ř

jPsCSYtiu LSS,j ¨ sj `

SumComRndrctntws ´ ri ´
ř

jPsHSztiu MaskedResprctntw, js ´
ř

jPsCS ∆j .

Let us show that both games are identically distributed. Let us first show a useful lemma.

Lemma E.15. Let ctntw be arbitrary. In Game17, we have in line 22 in OSign5 (resp. line 65 in
OCorrupt) that SumComRndrctntws “

ř

pw,r,e1qPUnUsedComrctntws r.

Proof. When UnUsedComrctntws is initialized, this holds by construction. Further, whenever a com-
mitment is removed from UnUsedComrctntws, the invariant is retained.

97

Game16

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,iq P stiK
2 : ctntw :“ 0}SS}pstrjqjPSS

3 : pwi, ri, e
1
iq Ð UnUsedComrctntws.popp1q

4 : UsedComrctntws Ð pwi, ri, e
1
iq

5 : parse
`

si, ⃗seedi
˘

Ð ski

6 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

7 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

8 : req J@j P SS, cmtj “ Hcompj, rwjqK
9 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

10 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

11 : c :“ Hcpvk,M,wq // c P C

12 : if JInitializeSignrctntws “ KK then

13 : InitializeSignrctntws Ð SS

14 : UnSignedHSrctntws Ð sHS

15 : SignContentrctntws Ð ctntz

16 : ĄsHSz Ð UnSignedHSrctntws

17 : Challrctntws Ð c

18 : req JChallrctntws “ cK

19 : if JĄsHSz ‰ tiuK then

20 : ∆i
$

Ð Rℓ
q

21 : else

22 : for j P sCS

23 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

24 : ∆i :“ ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

25 : rzi :“ c ¨ LSS,i ¨ si ` ri ` ∆i P Rℓ
q

26 : Maskzrctntw, is Ð ∆i

27 : MaskedResprctntw, is Ð rzi

28 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

29 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

30 : QMrMs Ð QMrMs Y tiu

31 : return pm5,i :“ zi

Figure 40: The sixteenth game. The differences are highlighted in blue. We assume that this game initializes
a empty lists Challr¨s :“ K at the beginning of the game.

98

Game17 – part 1:

OCorruptpiq

// Identical to Lines 1 to 10 in Game3

11 : for ctntw s.t. Ji P InitializeOpenrctntwsK^

JMaskwrctntw, is “ KK do

// Dhonest signer finished Round 4 with ctntw

// Sign3 for user i is completed

12 : parse 0}SS}pstrjqjPSS Ð ctntw // i P SS

13 : if JMaskedComrctntw, is ‰ KK then

// user i finished Round 4 with ctntw

14 : if JUnOpenedHSrctntws “ HK then

15 : UsedComrctntw, is Ð UnUsedComrctntws.popp1q

16 : pwi, ri, e
1
iq Ð UsedComrctntw, is

17 : SumComRndrctntws Ð SumComRndrctntws ´ ri

18 : else // There is still a honest user in Round 3 with ctntw

19 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w

20 : wi :“ Ari ` e1
i P Rk

q

21 : UsedComrctntw, is Ð pwi, ri, e
1
iq

22 : Maskwrctntw, is Ð MaskedComrctntws ´ UsedComrctntw, is

23 : else // user i is between Round 3 and Round 4 with ctntw

24 : ĄsHSw Ð UnOpenedHSrctntws // i P ĄsHSw

25 : if JĄsHSw ‰ tiuK

26 : r∆i
$

Ð Rk
q

27 : elseif JĄsHSw “ tiuK // Last honest signer for ctntw

28 : for j P r|sHS| ´ 1s do

29 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

30 : w :“ Ar ` e1
P Rk

q

31 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

32 : SumComrctntws Ð SumComrctntws ` w

33 : SumComRndrctntws Ð SumComRndrctntws ` r

34 : for j P sCS

35 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

36 : r∆i :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

37 : Maskwrctntw, is Ð r∆i

38 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// Continuation of OCorrupt

// Identical to Lines 41 to 53 in Game11

52 : for ctntw s.t. Ji P InitializeSignrctntwsK^

JMaskzrctntw, is “ KK
// Dhonest user finished Round 5 with ctntw

// all honest users completed Sign4

// UsedComrctntw, is ‰ K due to line 15 of OCorrupt

53 : pwi, ri, e
1
iq Ð UsedComrctntw, is

54 : c Ð Challrctntws

55 : if JMaskedResprctntw, is ‰ KK // user i completed Sign5

56 : Maskzrctntw, is Ð MaskedResprctntw, is ´ c ¨ si ´ ri

57 : else // user i is between round 4 and round 5

58 : ĄsHSz Ð UnSignedHSrctntws // UnSignedHSrctntws ‰ K

59 : if JĄsHSz ‰ tiuK then

60 : ∆i
$

Ð Rℓ
q

61 : else // user i is the last user for ctntz “ SignContentrctntws

62 : ctntz Ð SignContentrctntws

63 : for j P sCS

64 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

65 : ∆i :“ c ¨ s ´ c
ÿ

jPsCSYtiu

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

66 : Maskzrctntw, is Ð ∆i

// state of user i between round 4 and 5

67 : for pSS,M, pstrj , cmtjqjPSS, rwiq P sti do

68 : ctntw :“ 0}SS}pstrjqjPSS

69 : pwi, ri, e
1
iq Ð UsedComrctntw, is

70 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu do

71 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

72 : for ctntw s.t. JMaskwrctntw, is ‰ KK do

73 : ProgramZeroSharepctntw, i,Maskwrctntw, is, sCS, sHSq

74 : for ctntw s.t. JMaskzrctntw, is ‰ KK do

75 : ctntz Ð SignContentrctntws

76 : ProgramZeroSharepctntz, i,Maskzrctntw, is, sCS, sHSq

77 : HS Ð HSztiu

78 : CS Ð CS Y tiu

79 : return pski, stiq

Figure 41: The first part of the seventeenth. The differences are highlighted in blue.

99

Game17 – part 2:

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,iq P stiK
2 : ctntw :“ 0}SS}pstrjqjPSS

3 : parse
`

si, ⃗seedi
˘

Ð ski

4 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

5 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

6 : req J@j P SS, cmtj “ Hcompj, rwjqK
7 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

8 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

9 : c :“ Hcpvk,M,wq // c P C

10 : if JInitializeSignrctntws “ KK then

11 : InitializeSignrctntws Ð SS

12 : UnSignedHSrctntws Ð sHS

13 : SignContentrctntws Ð ctntz

14 : Challrctntws Ð c

15 : req JChallrctntws “ cK

16 : ĄsHSz Ð UnSignedHSrctntws

17 : if JĄsHSz ‰ tiuK then

18 : rzi
$

Ð Rℓ
q

19 : else

20 : for j P sCS

21 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

22 : rzi :“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

23 : MaskedResprctntw, is Ð rzi

24 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

25 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

26 : QMrMs Ð QMrMs Y tiu

27 : return pm5,i :“ zi

Figure 42: The second part of the seventeenth game. The differences are highlighted in blue.

100

Next, let us consider an intermedite game of Game16,˚, where instead of sampling ∆i
$

Ð Rℓ
q at random

in OSign5 , we sample ∆˚
i

$
Ð Rℓ

q and set ∆i :“ ∆˚
i ´ pc ¨ LSS,i ¨ si ` riq. This game is identically

distributed to Game16. Then, we have in OSign5 that

rzi “ c ¨ LSS,i ¨ si ` ri ` ∆i

“ ∆˚
i „ URℓ

q

which is distributed as in Game17. Similarly, if ĄsHSz “ tiu we have that

rzi “ c ¨ LSS,i ¨ si ` ri ` r∆i

“ c ¨ LSS,i ¨ si ` ri ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

“ c ¨ LSS,i ¨ si ` ri ´
ÿ

jPsHSztiu

p∆˚
j ´ pc ¨ LSS,j ¨ sj ` rjqq ´

ÿ

jPsCS

∆j

“
ÿ

jPsHS

pc ¨ LSS,j ¨ sj ` rjq ´
ÿ

jPsHSztiu

rzi ´
ÿ

jPsCS

∆j

“ c ¨ s ´ c
ÿ

jPCS

LSS,j ¨ sj `
ÿ

jPsHS

rj ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

where the third equation follows from Lemma E.14, and the last equation follows from the correctness
of the Shamir secret sharing. Similarly, we have in OCorrupt if ĄsHSw “ tiu that

∆i “ ´
ÿ

jPsHSztiu

Maskzrctntw, js ´
ÿ

jPsCS

∆j

“ ´
ÿ

jPsHSztiu

p∆˚
j ´ pc ¨ LSS,j ¨ sj ` rjqq ´

ÿ

jPsCS

∆j

“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ´
ÿ

jPsHSztiu

prz ` rjq ´
ÿ

jPsCS

∆j

“ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj `
ÿ

jPsHSztiu

rj ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

Note that
ř

pw,r,e1qPUnUsedComrctntws r is equal to the sum of commitment randomness in the above
equations by design. Due to Lemma E.15, we have that rzi and ∆i are identically distributed in
Game16,˚ and Game17. Since UsedComrctntw, is and Maskzrctntw, is are no longer initialized
in OSign5 in Game17, it remains to show that their value is identically distributed when accessed in
Game16,˚ and Game17. In Game17, if a user after round 5 for ctntw is corrupted, the challenger chooses
a commitment from UnUsedComrctntws, stores it in UsedComrctntw, is and adapts SumComrctntws

and SumComRndrctntws accordingy. In Game16,˚, the commitment UsedComrctntw, is is also cho-
sen from UnUsedComrctntws in OSign5 (and never accessed before OCorrupt), whereas SumComrctntws

and SumComRndrctntws is adapted in OCorrupt. Thus, UsedComrctntw, is is identically distributed
when accessed. In Game16,˚, the value Maskzrctntw, is “ ∆˚

i ´ pc ¨ LSS,i ¨ si ` riq is initialized in
OSign5 . In Game17, the challenger sets this value via UsedComrctntw, is when passing over ctntw with
i P InitializeSignrctntws and Maskzrctntw, is “ K. That is, if OSign5 was executed for user i with ctntw,
i.e., if MaskedResprctntw, is ‰ K, it sets Maskzrctntw, is Ð MaskedResprctntw, is´c ¨LSS,i ¨si ´ri. Here,
ri is retrieved from UsedComrctntw, is (which is identically distributed due to the argument above) and
c is retrieved from Challrctntws. Because ctntz determines c uniquely and because there is a unique
ctntz for each ctntw in OSign5 (cf. Lemma E.13), we know that c is identical to the challenge of the

101

OSign5 invocation when MaskedResprctntw, is was set. Thus, Maskzrctntw, is is identically distributed
in both games at that point. Note that beforehand, the Maskzrctntw, is is not accessed in both games.
In total, whenever Maskzrctntw, is or UsedComrctntw, is is accessed by the challenger, the values are
identically distributed in Game17 and Game16,˚. We conclude that

ϵ17 “ ϵ16.

Game18: In this game, the challenger precomputes the challenge c for OSign5 when the last signer passes round
4. This is depcicted in Fig. 43. In more detail, in OSign4 , the challenger stores SimContentrctntws Ð

MS if InitializeOpenrctntws “ K. Further, if ĄsHSw “ tiu, then it samples a challenge c $
Ð C and

programs Hc via a helper function ProgramHashChallpctntw, c, rwiq (cf. Fig. 44). In ProgramHashChall,
the challenger retrieves MS Ð SimContentrctntws, where MS “ SS}M}pstrj , cmtjqjPSS, and checks if
for each cmtj for j P SSztiu, there is a (unique) value rwj such that Hcompj, rwjq “ cmtj . If so, it sets
w “

Y

ř

jPSS rwj

U

νw

and sets QHc
rvk,M,ws Ð c (but aborts if this value was previously set). Otherwise,

it sets BadCtntrctntws Ð J. Similarly, in OCorrupt, if ĄsHSw “ tiu, then the challenger samples a challenge
c $

Ð C and programs Hc via ProgramHashChallpctntw, c, rwiq. Note that here, rwi is setup at that point,
instead of when passing over states between round 3 and round 4. Finally, in OSign5 , it aborts the
game if BadCtntrctntws “ J. Moreover, instead of setting Challrctntws if InitializeSignrctntws “ K, the
challenger always checks if Challrctntws “ pM, c,wq and aborts if not.
Observe that both games are identically distributed conditioned on the game not aborting. In OCorrupt

in Game17, the table UsedComrctntws is initialized with a freshly sampled commitment pwi, ri, e
1
iq

when passing over the states of user i between round 3 and round 4. In OCorrupt in Game18, the value
is identically sampled and stored in UsedComrctntw, is in line 25. Later, when passing over states
between round 3 and round 4, the value is retrieved from UsedComrctntws. None of the other changes
in Game18 impact the view of A (since c $

Ð C remains uniform in Game18), and thus both games are
identically distributed conditioned on the game not aborting. It remains to bound the abort probability
in Game18. The challenger aborts the if (1) QHc

rvk,M,ws is already defined in ProgramHashChall or
(2) BadCtntrctntws “ J in OSign5 .
We first bound the probability of event (1). Observe that ProgramHashChallpctntw, c, rwiq is invoked
with w “

Y

ř

jPSS rwj

U

νw

P Rk
qνw

after rwi is sampled for the last user in OSign4 with ctntw and

before returning it to A. The commitment rwi is either set in OCorrupt to rwi “ wi ` r∆i or to
rwi :“ SumComrctntws´

ř

jPsCS
r∆j´

ř

jPsHSztiu MaskedComrctntw, js in OSign4 . In both cases, rwi is com-
puted via at least one freshly sampled commitment (either wi or within SumComrctntws). Thus, due to
Lemma 2.8, w has min-entropy n´1 with overwhelming probability. Since ProgramHashChallpctntw, c, rwiq

is invoked when the last user with ctntw passes round 4 or is corrupted, the probability of event (1) is
at most QS ¨ pQHc

` QSq{2n´1.
Next, we bound the probability of event (2). Since cmtj for each honest user has at most one preimage
pj, rwjq due to previous modifications, we have BadCtntrctntws “ J only if A some cmtj does not have
a Hcom preimage of the form pj, rwjq when ProgramHashChallpctntw, c, rwiq is invoked (where cmtj is
determined by ctntw), but the A provides a valid preimage of cmtj in OSign5 . Since the image cmt
of Hcom is sampled uniformly at random from t0, 1u2λ each Hcom query, the probability that A finds
a valid preimage for cmtj is at most 1{22λ per query. Thus, the probability of event (2) is at most
QHcom{22λ. In conclusion, we have

|ϵ18 ´ ϵ17| ď
QS ¨ pQHc

` QSq

2n´1
`

QHcom

22λ
` neglpλq.

Game19: In this game, the challenger simulates one of the sampled commitments. This is depicted in Figs. 45
and 46. In OSign4 , if ĄsHSw “ tiu, it samples c as before, and then samples pr, e1q

$
Ð Dℓ

w ˆ Dk
w, sets

102

Game18:

OCorruptpiq

// Identical to Lines 1 to 23 in Game17

// Recall that user i is between Round 3 and 4 with ctntw

24 : ĄsHSw Ð UnOpenedHSrctntws // i P ĄsHSw

// Prepare commitment for line 46

25 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w; wi :“ Ari ` e1

i P Rk
q

26 : UsedComrctntw, is Ð pwi, ri, e
1
iq

27 : if JĄsHSw ‰ tiuK

28 : r∆i
$

Ð Rk
q

29 : elseif JĄsHSw “ tiuK // Last honest signer for ctntw

30 : c $
Ð C

31 : for j P r|sHS| ´ 1s do

32 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

33 : w :“ Ar ` e1
P Rk

q

34 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

35 : SumComrctntws Ð SumComrctntws ` w

36 : SumComRndrctntws Ð SumComRndrctntws ` r

37 : for j P sCS

38 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

39 : r∆i :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

40 : rwi Ð wi ` r∆i

41 : ProgramHashChallpctntw, c, rwiq

42 : Maskwrctntw, is Ð r∆i

43 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// state of user i between round 3 and 4

44 : for pSS,M, pstrj , cmtjqjPSS, σS,iq P sti do

45 : ctntw :“ 0}SS}pstrjqjPSS

46 : pwi, ri, e
1
iq Ð UsedComrctntw, is

47 : if JInitializeOpenrctntws “ KK

48 : r∆i
$

Ð Rk
q

49 : Maskwrctntw, is Ð r∆i

50 : ∆i Ð Maskwrctntw, is

51 : rwi :“ wi ` r∆i P Rk
q

52 : MaskedComrctntw, is Ð rwi

53 : ProgramHashCompi, cmti, rwiq

54 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

55 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

// Identical to lines 52 to 79 in Game17

OSign4pSS,M, i, ppm3,jqjPSSq

// Identical to Lines 1 to 7 in Game10

8 : if JInitializeOpenrctntws “ KK then

9 : InitializeOpenrctntws Ð SS

10 : UnOpenedHSrctntws Ð sHS

11 : SimContentrctntws Ð MS

12 : ĄsHSw Ð UnOpenedHSrctntws

13 : if JĄsHSw ‰ tiuK then

14 : rwi
$

Ð Rk
q

15 : else // Last honest signer for ctntw

16 : c $
Ð C

17 : for j P r|sHS|s do

18 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

19 : w :“ Ar ` e1
P Rk

q

20 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

21 : SumComrctntws Ð SumComrctntws ` w

22 : SumComRndrctntws Ð SumComRndrctntws ` r

23 : for j P sCS

24 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

25 : rwi :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

26 : ProgramHashChallpctntw, c, rwiq

27 : MaskedComrctntw, is Ð rwi

28 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

29 : ProgramHashCompi, cmti, rwiq

30 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

31 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwiqu

32 : return pm4,i :“ rwi

OSign5pSS,M, i, ppm4,jqjPSSq

// Identical to Lines 1 to 9 in Game16

10 : if JInitializeSignrctntws “ KK then

11 : InitializeSignrctntws Ð SS

12 : UnSignedHSrctntws Ð sHS

13 : SignContentrctntws Ð ctntz

14 : Challrctntws Ð c

15 : req JChallrctntws “ cK
16 : abort if JBadCtntrctntws “ JK
17 : // Identical to Lines 16 to 27 in Game16

Figure 43: The eighteenth game. The differences are highlighted in blue. We assume that this game
initializes two empty lists SimContentr¨s,BadCtntr¨s :“ K at the beginning of the game. The algorithm
ProgramHashChall is defined in Fig. 44.

103

ProgramHashChallpctntw, c, rwiq:

1 : MS Ð SimContentrctntws

2 : parse SS}M}pstrj , cmtjqjPSS Ð MS

3 : if J@j P SSztiu, D!rwj ,QHcompj, rwjq “ cmtjK

4 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

5 : abort if JQHc rvk,M,ws ‰ KK
6 : QHc rvk,M,ws Ð c

7 : else

8 : BadCtntrctntws :“ J

Figure 44: A helper algorithm for programming the random oracle Hc for input w derived from ctntw (and
optionally rwi) to a given output c. Algorithm ProgramHashChall is assumed to have a joint state with the
challenger and random oracle Hc used by the unforgeability game.

z :“ c ¨ s ` r, z1 :“ c ¨ e ` e1 and simulates w “ A ¨ z ´ c ¨ t̂ ` z1. The response z is stored in
SimResprctntws Ð z and SumComrctntws Ð w is initialized with w. Note that r is not added to
SumComRndrctntws. Then, the challenger proceeds as before, except only |sHS| ´ 1 commitments are
generated instead of |sHS| many. In OCorrupt, the first commitment is also simulated (as described
above) if ĄsHSw “ tiu, and only |sHS| ´ 2 further commitments are generated (instead of |sHS| ´ 1).
Finally, the challenger generates ∆i (resp. rzi) in OCorrupt (resp. OSign5) using SimResprctntws. Note
that in Game18, it SumComRndrctntws “

ř

jP|sHS| rj contains the sum of the randomness rj of all honest
commitments (stored in UnUsedComrctntws). In Game19, the table SumComRndrctntws “

ř

jP|sHS´1| rj
contains the sum the randomness rj of the generated commitments except the randomness r of the
simulated commitment. (Note that it is updated as in Game18, so the invariant is kept.) In Game18,
we have

rzi “ c ¨ s ´ c
ÿ

jPsCS

LSS,j ¨ sj ` SumComRndrctntws ´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j .

Due to the abort conditions in Game18 and Lemma E.8, c in the computation of zi for the last user in
OSign5 with ctntw of Game18 is the same to c that is defined via ProgramHashChall when OSign4 with
ctntw or OCorrupt. Thus, c in SimResprctntws “ c ¨ s` ri used to compute zi for the last user in Game19
is identical to that in the computation of zi in Game18. Combining the above facts, we conclude that
rzi is identically distributed in both games. A similar argument yields that r∆i is identically distributed
in both games. We remark also that UsedComrctntw, is—initialized via UnUsedComrctntws.popp1q—is
identically distributed in both games because at least one user j P sHS remains uncorrupted, so popp1q

is invoked at most |sHS| ´ 1 (resp. |sHS| ´ 2) times on UnUsedComrctntws if UnUsedComrctntws is
setup in OSign4 (resp. OCorrupt). It remains to argue that SumComrctntws is identically distributed.
This follows since in Game19, the simulated commitment

w “ A ¨ z ´ c ¨ t̂ ` z1

“ A ¨ pc ¨ s ` rq ´ c ¨ t̂ ` pc ¨ e ` e1q

“ cpA ¨ s ` eq ` A ¨ r ` e1 ´ c ¨ t̂

“ A ¨ r ` e1

104

Game19 – part 1:

OCorruptpiq

// Identical to Lines 1 to 23 in Game17

// Recall that user i is between Round 3 and 4 with ctntw

24 : ĄsHSw Ð UnOpenedHSrctntws // i P ĄsHSw

// Prepare commitment for line 46

25 : pri, e
1
iq

$
Ð Dℓ

w ˆ Dk
w; wi :“ Ari ` e1

i P Rk
q

26 : UsedComrctntw, is Ð pwi, ri, e
1
iq

27 : if JĄsHSw ‰ tiuK

28 : r∆i
$

Ð Rk
q

29 : elseif JĄsHSw “ tiuK // Last honest signer for ctntw

30 : c $
Ð C

31 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

32 : z :“ c ¨ s ` r; z1 :“ c ¨ e ` e1

33 : w “ A ¨ z ´ c ¨ t ` z1

34 : SimResprctntws Ð z

35 : SumComrctntws Ð w

36 : for j P r|sHS| ´ 2s do

37 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

38 : w :“ Ar ` e1
P Rk

q

39 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

40 : SumComrctntws Ð SumComrctntws ` w

41 : SumComRndrctntws Ð SumComRndrctntws ` r

42 : for j P sCS

43 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

44 : r∆i :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

45 : rwi Ð wi ` r∆i

46 : ProgramHashChallpctntw, c, rwiq

47 : Maskwrctntw, is Ð r∆i

48 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

// Continuation of OCorrupt

// Identical to Lines 44 to 55 in Game18

61 : for ctntw s.t. Ji P InitializeSignrctntwsK^

JMaskzrctntw, is “ KK
// Dhonest user finished Round 5 with ctntw

// all honest users completed Sign4

// UsedComrctntw, is ‰ K due to Line 15 of OCorrupt

62 : pwi, ri, e
1
iq Ð UsedComrctntw, is

63 : c Ð Challrctntws

64 : if JMaskedResprctntw, is ‰ KK // user i completed Sign5

65 : Maskzrctntw, is Ð MaskedResprctntw, is ´ c ¨ si ´ ri

66 : else // user i is between round 4 and round 5

67 : ĄsHSz Ð UnSignedHSrctntws // UnSignedHSrctntws ‰ K

68 : if JĄsHSz ‰ tiuK then

69 : ∆i
$

Ð Rℓ
q

70 : else // user i is the last user for ctntz “ SignContentrctntws

71 : ctntz Ð SignContentrctntws

72 : for j P sCS

73 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

74 : ∆i :“ SimResprctntws ´ c
ÿ

jPsCSYtiu

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

75 : Maskzrctntw, is Ð ∆i

// state of user i between round 4 and 5

76 : for pSS,M, pstrj , cmtjqjPSS, σS,iq P sti do

77 : ctntw :“ 0}SS}pstrjqjPSS

78 : pwi, ri, e
1
iq Ð UsedComrctntw, is

79 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu do

80 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwi, riqu

81 : for ctntw s.t. JMaskwrctntw, is ‰ KK do

82 : ProgramZeroSharepctntw, i,Maskwrctntw, is, sCS, sHSq

83 : for ctntw s.t. JMaskzrctntw, is ‰ KK do

84 : ctntz Ð SignContentrctntws

85 : ProgramZeroSharepctntz, i,Maskzrctntw, is, sCS, sHSq

86 : HS Ð HSztiu

87 : CS Ð CS Y tiu

88 : return pski, stiq

Figure 45: The first part of the nineteenth game. The differences are highlighted in blue. We assume that
this game initializes a empty list SimRespr¨s :“ K at the beginning of the game.

105

Game19 – part 2:

OSign4pSS,M, i, ppm3,jqjPSSq

// Identical to Lines 1 to 11 in Game18

12 : ĄsHSw Ð UnOpenedHSrctntws

13 : if JĄsHSw ‰ tiuK then

14 : rwi
$

Ð Rk
q

15 : else // Last honest signer for ctntw

16 : c $
Ð C

17 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

18 : z :“ c ¨ s ` r; z1 :“ c ¨ e ` e1

19 : w “ A ¨ z ´ c ¨ t ` z1

20 : SimResprctntws Ð z

21 : SumComrctntws Ð w

22 : for j P r|sHS| ´ 1s do

23 : pr, e1
q

$
Ð Dℓ

w ˆ Dk
w

24 : w :“ Ar ` e1
P Rk

q

25 : UnUsedComrctntws Ð UnUsedComrctntws Y pw, r, e1
q

26 : SumComrctntws Ð SumComrctntws ` w

27 : SumComRndrctntws Ð SumComRndrctntws ` r

28 : for j P sCS

29 : r∆j :“ ZeroSharep ⃗seedjrSSs, ctntwq

30 : rwi :“ SumComrctntws ´
ÿ

jPsCS

r∆j

´
ÿ

jPsHSztiu

MaskedComrctntw, js

31 : ProgramHashChallpctntw, c, rwiq

32 : MaskedComrctntw, is Ð rwi

33 : UnOpenedHSrctntws Ð UnOpenedHSrctntwsztiu

34 : ProgramHashCompi, cmti, rwiq

35 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, σS,iqu

36 : sti Ð sti Y tpSS,M, pstrj , cmtjqjPSS, rwiqu

37 : return pm4,i :“ rwi

OSign5pSS,M, i, ppm4,jqjPSSq

1 : req Ji P HSK ^ JpSS,M, ¨, pm4,iq P stiK
2 : ctntw :“ 0}SS}pstrjqjPSS

3 : parse
`

si, ⃗seedi
˘

Ð ski

4 : parse prwjqjPSSztiu Ð ppm4,jqjPSSztiu

5 : pick pSS,M, pstrj , cmtjqjPSS, rwi, riq from sti

with pm4,i “ rwi

6 : req J@j P SS, cmtj “ Hcompj, rwjqK
7 : ctntz :“ 1}SS||M||pstrj , cmtjqjPSS}prwjqjPSS

8 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

9 : c :“ Hcpvk,M,wq // c P C

10 : if JInitializeSignrctntws “ KK then

11 : InitializeSignrctntws Ð SS

12 : UnSignedHSrctntws Ð sHS

13 : SignContentrctntws Ð ctntz

14 : Challrctntws Ð c

15 : req JChallrctntws “ cK
16 : abort if JBadCtntrctntws “ JK

17 : ĄsHSz Ð UnSignedHSrctntws

18 : if JĄsHSz ‰ tiuK then

19 : rzi
$

Ð Rℓ
q

20 : else

21 : for j P sCS

22 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

23 : rzi :“ SimResprctntws ´ c
ÿ

jPsCS

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

24 : MaskedResprctntw, is Ð rzi

25 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

26 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

27 : QMrMs Ð QMrMs Y tiu

28 : return pm5,i :“ zi

Figure 46: The second part of the nineteenth game. The differences are highlighted in blue.

106

is distributed like a honest commitment. Hence, we have

ϵ19 “ ϵ18.

Game20:

1 : QMr¨s :“ H, Strings,ComSet :“ H,QHc r¨s,QHcom r¨s,QHmask r¨s,QH
zmask

r¨s,ProgramHashComr¨s, SignedΣr¨s :“ K

2 : InitializeOpenr¨s,UnOpenedHSr¨s,Maskwr¨s,MaskedComr¨s,UsedComr¨s, SumComr¨s, SumComRndr¨s :“ K

3 : InitializeSignr¨s,UnSignedHSr¨s,Maskzr¨s,MaskedRespr¨s,Challr¨s, SimContentr¨s,BadCtntr¨s,SimRespr¨s :“ K

4 : A $
Ð Rkˆℓ

q

5 : HS :“ rN s

6 : for i P HS do sti :“ H

7 : ps, eq
$

Ð Dℓ
t ˆ Dk

t

8 : t̂ $
Ð Rk

q

9 : t :“
Y

pt
U

νt
P Rk

qνt

10 : for i P rN s do

11 : pvkS,i, vkS,iq
$

Ð KeyGenSp1λq

12 : for j P rN s do

13 : randi,j
$

Ð t0, 1u
λ

14 : seedi,j :“ i}j}randi,j

15 : p ⃗seediqiPrNs :“
´

pseedi,j , seedj,iqjPrNs

¯

iPrNs

16 : P⃗ $
Ð Rℓ

qrXs with degpP⃗ q “ T ´ 1, P⃗ p0q “ s

17 : vk :“ ptspar, tq

18 : pskiqiPrNs :“
`

K, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

iPrNs

19 : oracles :“ ppOSigniqiPr5s,OCorrupt,Hc,Hcom,Hmaskq

20 : psig˚,M˚
q

$
Ð Aoracles

pvkq

21 : req J
∣∣QMrM˚

s Y CS
∣∣ ď T ´ 1K

22 : return Verifyptspar, vk,M˚, sig˚
q

OCorruptpiq

1 : req JSS Ď rN sK ^ Ji P HSK
2 : si Ð Rℓ

q

3 : ski Ð
`

si, pvkS,iqiPrNs, skS,i, ⃗seedi
˘

iPrNs

4 : // Identical to Lines 1 to 88 in Game19

Figure 47: The twentieth game. The differences are highlighted in blue.

Game20: In this game the challenger samples t̂ $
Ð Rk

q at random. Also, it samples si only if user i becomes
corrupted. This is depicted in Fig. 47. Concretely, the challegner samples t̂ uniformly at random over
Rk

q instead of via ps, eq. Also, it postpones generating the secret share si until user i is corrupted via
OCorrupt. In OCorrupt, it first picks si uniformly at random from Rℓ

q and appends it to the secret key ski.

107

Due to Lemma E.17, which will be proven below, we can construct an Hint-MLWE adversary B solving
the Hint-MLWEq,ℓ,k,QS,σt,σw,C problem such that

|ϵ20 ´ ϵ19| ď AdvHint-MLWE
B p1λq

with TimepBq « TimepAq.

Remark E.16. If we consider the weaker notion of security where the forgery’s message M˚ cannot be
queried to any signing oracle as in [dPKM`24], then we can show that there exists a SelfTargetMSIS
adversary B2 solving the SelfTargetMSISq,ℓ`1,k,Hc,C,B problem that internally runs an adversary A
against Game20 such that ϵ20 ď Adv

SelfTargetMSIS
B2 p1λq, where TimepB2q « TimepAq.

Proof. This follows as in Remark E.5.

Game21: In this game, the challenger guesses the Hc query associated to the adversary’s forgery. For this
query, the challenger never programs Hc via ProgramHashChall 15. It also aborts if OSign5 for the
last user is invoked or the last user is corrupted but it did not program Hc in OSign4 or OCorrupt

due to the aforementioned change. This is depicted in Fig. 48. In more detail, the challenger ini-
tially sets up a counter ctrHc Ð 0 and samples qHc

$
Ð rQHcs. Each time a table entry in QHc is

changed, the challenger increases the counter ctrHc
. This happens either in a fresh Hc query, or when

ProgramHashChall is invoked in OSign4 or OCorrupt and Hc is programmed. In the latter case, the chal-
lenger checks if ctrHc

“ qHc
and sets BadGuessrctntws “ J if so. It aborts in OSign5 and OCorrupt if

ĄsHSz “ tiu and BadGuessrctntws “ J. After A’s forgery psig˚,M˚q is output, the challenger retrieves
the value q˚

Hc
of ctrHc

when the query Hc associated to the forgery was made 16. This happens either
in ProgramHashChall or Hc.

Let us analyze the advantage of A in Game21. First, observe that the view of A is identically distributed
conditioned on no abort since SimResprctntws for ctntw such that BadGuessrctntws “ J, that is no
longer consistent due to the modified ProgramHashChall, is not used throughout the game. If A is
successful and qHc “ q˚

Hc
, then the challenger does not abort in OSign5 and OCorrupt because the last

user involved in the singing queries on M˚ is not corrupt and does not execute OSign5 . Note that the
value qHc

is hidden from A. Thus, we have that

ϵ21 ě PrrqHc
“ q˚

Hc
s ¨ ϵ20

ě 1{QHc
¨ ϵ20.

Due to Lemma E.18, which will be proven below, there exists an SelfTargetMSIS adversary B1 solving the
SelfTargetMSISq,ℓ`1,k,Hc,C,B problem that internally runs an adversary A against Game21 such that

ϵ21 ď Adv
SelfTargetMSIS
B1 p1λq.

Moreover, we have TimepB1q « TimepAq. Collecting all bounds, we have

Advts-adp-uf
TRaccoonadp4-rnd,A

p1λ, N, T q ď QHc ¨ Adv
SelfTargetMSIS
B1 p1λq ` AdvHint-MLWE

B p1λq ` N ¨ Adveuf-cma
S,BS

pλq

`
QS ¨ pQHcom ` QHc

` 2QSq

2n´1
`

QHmask

2λ
`

Q2
S ` pQHcom ` QSq2 ` QHcom

22λ
` neglpλq

where TimepBq,TimepBSq « TimepAq, TimepB1q « TimepAq.
To complete the proof, it remains to show Lemmata E.17 and E.18.

15More precisely, the challenger always samples the output of Hc after the input is defined for the guessed query.
16The adversary’s forgery psig˚,M˚q is associated to some Hc query since we assume that QHc also counts the challengers Hc

queries in verification without loss of generality.

108

Game21:

// Identical to Lines 1 to 19 in Game20

20 : psig˚,M˚
q

$
Ð Aoracles

pvkq

21 : parse pc˚, z˚,h˚
q Ð sig˚

22 : let q˚
Hc

be the value of ctrHc when
QHc rvk,M, tAz ´ 2νt ¨ c ¨ tsνw ` hs was set

23 : abort if Jq˚
Hc

‰ qHcK
24 : req J

∣∣QMrM˚
s ´ CS

∣∣ ď T ´ 1K
25 : return Verifyptspar, vk,M˚, sig˚

q

ProgramHashChallpctntw, c, rwiq:

1 : MS Ð SimContentrctntws

2 : parse SS}M}pstrj , cmtjqjPSS Ð MS

3 : if J@j P SSztiu, D!rwj ,QHcompj, rwjq “ cmtjK

4 : w :“

[

ÿ

jPSS

rwj

W

νw

P Rk
qνw

5 : abort if JQHc rvk,M,ws ‰ KK
6 : ctrHc Ð ctrHc ` 1

7 : if JctrHc “ qHcK
// Sample c

1 after w is defined

8 : c1 $
Ð C

9 : QHc rvk,M,ws Ð c1

10 : BadGuessrctntws Ð J

11 : else

12 : QHc rvk,M,ws Ð c

13 : else

14 : BadCtntrctntws :“ J

Hcpvk,M,wq

1 : if JQHc rvk,M,ws “ KK then

2 : c $
Ð C

3 : ctrHc Ð ctrHc ` 1

4 : QHc rvk,M,ws Ð c

5 : return QHc rvk,M,ws

OCorruptpiq

// Identical to Lines 1 to 65 in Game19

66 : else // user i is between round 4 and round 5

67 : ĄsHSz Ð UnSignedHSrctntws // UnSignedHSrctntws ‰ K

68 : if JĄsHSz ‰ tiuK then

69 : ∆i
$

Ð Rℓ
q

70 : else // user i is the last user for ctntz “ SignContentrctntws

71 : abort if JBadGuessrctntws “ JK
72 : ctntz Ð SignContentrctntws

73 : for j P sCS

74 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

75 : ∆i :“ SimResprctntws ´ c
ÿ

jPsCSYtiu

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

76 : Maskzrctntw, is Ð ∆i

// Identical to Lines 76 to 88 in Game19

OSign5pSS,M, i, ppm4,jqjPSSq

// Identical to Lines 1 to 16 in Game19

17 : ĄsHSz Ð UnSignedHSrctntws

18 : if JĄsHSz ‰ tiuK then

19 : rzi
$

Ð Rℓ
q

20 : else

21 : abort if JBadGuessrctntws “ JK
22 : for j P sCS

23 : ∆j :“ ZeroSharep ⃗seedjrSSs, ctntzq

24 : rzi :“ SimResprctntws ´ c
ÿ

jPsCS

LSS,j ¨ sj

` SumComRndrctntws

´
ÿ

jPsHSztiu

MaskedResprctntw, js ´
ÿ

jPsCS

∆j

25 : MaskedResprctntw, is Ð rzi

26 : UnSignedHSrctntws Ð UnSignedHSrctntwsztiu

27 : sti Ð stiztpSS,M, pstrj , cmtjqjPSS, rwiqu

28 : QMrMs Ð QMrMs Y tiu

29 : return pm5,i :“ zi

Figure 48: The twenty-first game. The differences are highlighted in blue. We assume that this game
initializes an empty list BadGuessr¨s :“ K, a counter ctrHc

Ð 0, and samples a guess qHc

$
Ð rQHc

s at the
beginning of the game.

109

Lemma E.17. There exists an adversary B against the Hint-MLWEq,ℓ,k,QS,σt,σw,C problem such that

|ϵ20 ´ ϵ19| ď AdvHint-MLWE
B p1λq

where TimepBq « TimepAq.

Proof. Let A be an adversary that distinguishes Game19 and Game20. To show this lemma, we construct an
adversary B against the Hint-MLWEq,ℓ,k,QS,σt,σw,C problem that internally runs A. B is given the Hint-MLWE
problem instance pA,b, pci, zi, z

1
iqiPrQSsq as input.

B behaves as the challegner in Game20 except for the initial phase, OSign4 , and OCorrupt. In the initial
phase, it uses A given as input, instead of choosing a fresh A sampled from Rk

q , and embeds tbsνt
into t. Note

that it no longer generates secret shares psiqiPrNs. Also, when it generates the ith simulated commitment in
OSign4 or OCorrupt, it uses pci, zi, z

1
iq, instead of sampling c $

Ð C, pr, e1q
$

Ð Dℓ
w ˆ Dk

w, and setting z :“ c ¨ s ` r
and z1 :“ c ¨ e ` e1. Otherwise, it behaves as the challenger in Game20.

We show that B perfectly simulates the challenger in Game19 (resp. Game20) when b is a valid MLWE
sample (resp. b is uniformly sampled from Rk

q). When b is a valid MLWE sample, t is identically distributed
to t in Game19. Since A can corrupt at most T ´ 1 honest users, the secret shares si of each corrupted user
i P CS is uniformly distributed over Rℓ

q. Also, since the leakage pzi, z
1
iq satisfies

zi “ c ¨ s ` r, and z1
i “ c ¨ e ` e1 (22)

where ps, eq
$

Ð Dℓ
t ˆDk

t and b “ As`e, B perfectly simulates the singing and corruption oracles in Game19.
When b is uniformly sampled from Rk

q , the distribution of t is identical to that in Game20. Moreover, B
perfectly simulates the singing and corruption oracles in Game20 due to Eq. (22), where ps, eq

$
Ð Dℓ

t ˆ Dk
t .

Note that the leakage no longer depends on t. Combining all arguments, B perfectly simulates Game19 and
Game20 when b is a valid MLWE sample and generated by b $

Ð Rk
q , respectively. Therefore, we have

|ϵ20 ´ ϵ19| ď AdvHint-MLWE
B p1λq.

Finally, it is clear TimepBq « TimepAq from the construction of B. This completes the proof.

Lemma E.18. There exists a SelfTargetMSIS adversary B1 solving the SelfTargetMSISq,ℓ`1,k,Hc,C,B problem
that internally runs an adversary A against Game21 such that

ϵ21 ď Adv
SelfTargetMSIS
B1 p1λq

where TimepB1q « TimepAq.

Proof. This follows as in Lemma E.7.

This completes the proof.

110

	Introduction
	Our Contribution
	Technical Overview
	Related Works

	Preliminary
	Notations
	Threshold Signatures
	Linear Secret Sharing
	Lattices, Gaussians, and Rounding
	Hardness Assumptions

	Construction of Our 3-Round Threshold Raccoon
	Parameters and Preparations
	Construction
	Correctness

	Selective Security of Our 3-Round Threshold Raccoon
	Proof Overview

	Construction of Our 5-Round Threshold Raccoon
	Parameters and Preparations
	Construction
	Correctness
	Our 4-Round Raccoon Threshold Signature

	Adaptive Security of Our 5 Round Threshold Raccoon
	Intuition
	Proof Overview

	Construction of Our 5-Round Threshold Schnorr
	Preparations
	Construction
	Security and Correctness
	Our 4-Round Schnorr Threshold Signature

	Omitted Preliminaries
	Security Notions for Threshold Signature
	Rounding and Norms Modulo q
	Hardness of Lattice-Related Problems
	Hardness of DL-Related Problems
	Forking Lemmas

	Details of Our 4-Round Threshold Raccoon
	Construction
	Security

	Details of Our 4-Round Threshold Schnorr
	Construction
	Security

	Candidate Parameters for Our Threshold Raccoon
	Formal Security Proofs
	Formal Security Proof of TRaccoon3-rndsel
	Formal Security Proof of TRaccoon5-rndadp

