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Abstract

An oblivious pseudorandom function (OPRF) is a two-party protocol in which a
party holds an input and the other party holds the PRF key, such that the party
having the input only learns the PRF output and the party having the key would
not learn the input. Now, in a threshold oblivious pseudorandom function (TOPRF)
protocol, a PRF key K is initially shared among T servers. A client can obtain a
PRF value by interacting with t(≤ T ) servers but is unable to compute the same with
up to (t − 1) servers. In this paper, we present a practically efficient homomorphic
encryption (HE)-based post-quantum secure TOPRF protocol. Our proposed approach,
which is based on a novel use of threshold HE, is agnostic of the underlying PRF
and outperforms existing fully homomorphic encryption (FHE)-based approaches for
TOPRF computation by several orders of magnitude in terms of running time. The
FHE-based approaches require bootstrapping, a computationally extensive operation,
and the primary bottleneck for evaluating large-depth circuits. Whereas, our proposed
approach is based on a multi-party computation (MPC) protocol that uses a threshold
additive HE scheme based on Regev’s cryptosystem (J’ACM 2009) alternative to FHE-
based approaches. Concretely, we show a novel replacement of bootstrapping required
in traditional FHE schemes by a threshold additive HE-based interactive protocol that
performs masked decryption followed by table look-ups, jointly performed by a group of
servers holding secret shares of the HE decryption key.

Finally, We present a practical validation of our approach by realizing an AES-based
TOPRF with an evaluation time of less than 1 second on consumer-grade server(s).

1 Introduction

Oblivious PRF. Oblivious Pseudorandom Functions (OPRF) [FIPR05, NR04] are interactive
schemes between a server with a description of a PRF alongwith its key, and a user holding an
input message. At the end of the interaction, the user learns the output of the PRF evaluated
on the user’s input message, whereas the server learns nothing about the user’s input. OPRFs
have numerous applications including private set intersection [AES03, HFH99, FIPR05,
HL08, DCT10], password protocols [FK00, JKK14, JKKX17], searchable encryption [FIPR05,
CJJ+13, JJK+13], file de-duplication [BKR13], pseudonymization [CL17], and more, and
have served as a basis for other primitives such as Private Information Retrieval and Oblivious
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Transfer. The general constructions of OPRFs proposed in the literature are either based
on Oblivious Transfer (OT) or secure MPC. In this work, we proposed a novel approach to
constructing a threshold OPRF using any symmetric key ciphers as PRF and evaluating the
PRF circuit homomorphically using an HE scheme.

Threshold Oblivious PRF. A Threshold Oblivious Pseudorandom Function (TOPRF) [JKKX17,
AMMM18] protocol requires the secret PRF key k to be distributed among T servers and
for PRF evaluation on the client’s input the client has to interact with at least t(≤ T )
number of servers to get the PRF output. Furthermore, a collusion of at most (t − 1)
servers learns no information about the PRF input. TOPRF has many potential appli-
cations such as password-based threshold authentication protocol [AMMM18], password-
protected secret sharing [JKK14, JKKX17], distributed password-authenticated symmetric
encryption [DHL20, DHL22], threshold private set intersection [LZQ23] etc. TOPRF was
introduced by Jarecki et al.[JKKX17], in which authors propose a simple TOPRF protocol
called 2HashTDH and prove its security under the Gap Threshold One-More Diffie-Hellman
(Gap-TOMDH) assumption in the random oracle model. They also show that Gap-TOMDH
is hard in the generic group model. Several follow-up works [AMMM18, HAP18, DHL20,
DHL22, LZQ23], have been proposed in this regard but all of these works are based on
quantum unsafe assumptions such as variants of Diffie-Hellman. In this work, we present the
first practically efficient quantum-safe TOPRF protocol based on LWE assumption [Reg09].
The construction of our proposed TOPRF protocol uses threshold additive HE for distributed
evaluation of the underlying pseudorandom function.

Homomorphic Encryption (HE). Cloud computing technologies [Hay08, WVLY+10]
enable offloading complex computations on large datasets to third-party servers, but this raises
security concerns, especially for sensitive data like medical records. Ensuring compliance
and privacy necessitates securing data at rest, in transit, and during computation. While
traditional encryption addresses data security at rest and in transit but fails to protect data
during computation.

Homomorphic Encryption (HE) resolves this problem by enabling computation on en-
crypted data. An HE scheme allows a third party (e.g., cloud, service provider) to perform
certain computable functions on encrypted data while preserving the functionality and
format of the encrypted data. An additive HE scheme allows addition operation on the
encrypted data. For sample messages m1 and m2, one can obtain Enc(m1 + m2) by us-
ing Enc(m1) and Enc(m2) without knowing m1 and m2 explicitly, where Enc(·) denotes
the encryption function. Goldwasser-Micali (GM) [GM19] proposed the first probabilistic
public key encryption (PKE) scheme which is additively homomorphic but only for binary
numbers. After a few years, Benaloh [Ben94] proposed another additively homomorphic
encryption (AHE) scheme by extending the GM cryptosystem to encrypt the message as
a block instead of bit by bit. Then Paillier [Pai99] introduced a novel probabilistic AHE
scheme based on the composite residuosity problem [Jag12], which is similar to quadratic
and higher residuosity problems [ZMI88] used in GM and Benaloh cryptosystems. A de-
tailed survey on several AHE schemes can be found in [AAUC18]. But all these AHE
schemes are not resistant to quantum attacks until in 2009 Oded Regev [Reg09] introduced
a lattice-based HE scheme that is additively homomorphic but can be extended to sup-
port a fully homomorphic capability with bootstrapping, a novel technique proposed by
Gentry [Gen09]. After this breakthrough result by Gentry, a significant body of research
works [SS10, CNT12, DM15a, CGGI20, CGBH+18, FSK+21] were proposed to focus on
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Table 1: Comparison between our basic OPRF structure with our final optimized TOPRF protocol.

Structure Flavor Comp. time Comm. bandwidth
Näıve FHE-based OPRF Non-distributed 470 secs 0.62 MB
Our optimized TOPRF Threshold (2-party) 0.96 sec 5.12 MB

building practically efficient fully homomorphic encryption (FHE) systems.

Multi-key FHE. Another actively studied cryptographic primitive for secure computation
is multi-key FHE (MKFHE) which enables computations to be performed by multiple parties
simultaneously. Multi-party computation (MPC) provides promising solutions for secure
computation with efficient techniques and performances. The first practical MPC primitives
have been proposed in [GBOW88, Yao86], and since then it has been widely studied in the
cryptography community. In this approach, two or more parties participate in an interactive
protocol to compute a function on their private inputs, where only the function’s output
is revealed to the parties. In recent years, MKFHE has been intensively used to achieve
a practical round-optimal secure MPC [BJMS18, MW16] protocols. An MKFHE scheme
allows multiple users to participate in a commonly outsourced computation over a cloud
server. López-Alt et al. [LATV12] first proposed a generalized notion of MKFHE scheme,
capable of performing arithmetic operations on ciphertexts encrypted under different keys.
Chen et al. [CCS19] extended this work to achieve a low-latency MKFHE scheme over Torus-
FHE (TFHE) [CGGI20], which is based on Learning with error (LWE) assumption [Reg09]
and its ring variant (RLWE) [LPR10]. A recent work by Klemsa et al. [KÖA23] proposed
an efficient MKFHE scheme with low noise growth and linear complexity achieving a faster
bootstrapping mechanism.

Threshold (Multi-key) FHE. While FHE resolves the crucial problem of computation
on encrypted data, the decryption key should be stored securely to get any real benefit
out of it. In traditional threshold cryptographic approaches [Sha79, DF90, DSDFY94] the
decryption key is shared among multiple servers (say T ) to avoid a “single point of failure”
and a threshold number of them (say t ≤ T ) can collaborate to recompute the decryption
key. However, this defies the purpose as a single compromise at the decryption server,
during a key reconstruction, would reveal the key entirely. An ideal solution must have
the decryption key distributed at all time. Generally, this is achieved by a Threshold FHE
scheme [AJLA+12, MW16, BGG+18, CCK23], where the decryption is performed jointly
by any threshold number of parties without reconstructing the key at any one place. In
particular, in a t-out-of-T threshold FHE scheme, parties compute partial decryption with
their key shares and send them over to the decryptor, who, once obtains t such partial
decryptions in total, combines them to get the message.

In an MKFHE scheme, two or more parties (say T ) want to jointly compute a function in
an outsourced fashion. Each of the involved parties encrypts their input with their keys and
outsources the computation over a remote server. During decryption, all T parties compute
partial decryption of the resultant ciphertext and broadcast among themselves. After
combining T partial decryptions, each party can compute the output of the computation.
Hence, the decryption procedure in a multi-key setting inherently follows a threshold
construction with a T -out-of-T threshold structure.
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1.1 Our Contribution

Now, we briefly discuss our main theoretical contributions and the additional construc-
tions required to build an efficient threshold oblivious PRF (TOPRF). Our TOPRF can be
constructed using any symmetric-key cipher, but we use AES to demonstrate our TOPRF
construction.

AES Block Cipher. AES [DR99] is a NIST standardized widely used symmetric-key
block cipher that operates on fixed-size blocks of data, i.e., it takes fixed-sized input (e.g.,
128 bits) and key (e.g., 128, 192, or 256 bits) and outputs a fixed-sized ciphertext. AES
employs a substitution-permutation network (SPN) structure, consisting of multiple rounds
of substitution and permutation operations. In each round, AES applies four main operations:
byte substitution using a nonlinear substitution box (S-box), shifting rows, mixing columns
using matrix operations, and adding a round key derived from the encryption key. The
number of rounds varies depending on the key size: 10 rounds for a 128-bit key, 12 rounds
for a 192-bit key, and 14 rounds for a 256-bit key.

Homomorphic Evaluation of AES. Our work uses the Bristol format (designed by
the authors of SCALE-MAMBA [HHNZ19]) of AES circuits, which are represented with
Boolean gates consisting of XORs, ANDs, and NOTs. The Bristol formats are Boolean
representations of circuits which are considered to be FHE [BGG+18, Gen09, BGV14] and
MPC [WRK17, BELO16] friendly. In MPC protocols, the Garbled circuits [KS08] offer
better efficiency compared to secret-sharing-based implementations [MW16, LATV12] due
to the free XOR and constant round operations provided by Garbled circuits. Whereas, our
primary focus is on the HE-based evaluation of AES circuit on the encrypted inputs. We
start our OPRF construction with a two-party protocol in which one party (client) encrypts
its input using an FHE scheme and the other party (server) homomorphically evaluates the
PRF circuit using its key and encrypted client’s input. In this case, we use TFHE [CGGI20],
a widely used FHE scheme for Boolean circuits, that allows evaluating an arbitrary binary
gate on encrypted data followed by a low-latency bootstrapping operation. Hence, the TFHE
scheme provides better computational efficiency for Boolean circuits (C : {0, 1}⋆ → {0, 1})
compared to other FHE schemes like BGV [BGV14], BFV [Bra12] and CKKS [CKKS17].

Now, our initial OPRF construction is achieved as follows, the client encrypts AES mes-
sage (aesmsg) and the server encrypts its AES key (aeskey) with TFHE public key (PK)
and the server having sufficient computational resources evaluates the AES circuit homo-
morphically. After the homomorphic evaluation of AES on the encrypted data, it sends
back the AES output in an encrypted form to the client; who then can decrypt with TFHE
secret key (SK) and retrieve the output of AES evaluation. Using TFHE the homomorphic
evaluation of AES-128 (i.e., 128-bit aeskey and aesmsg) takes approximately 470 seconds or,
around 8 minutes in a standard computing platform. Such a huge evaluation time occurred
due to the large computation overhead of the bootstrapping operation, required after every
Boolean gate (except NOT gate) evaluation to reduce the noise in the resultant ciphertext,
helping to retain correctness in further computation. Each bootstrapping operation takes
around 13 milliseconds and the Bristol format of AES-128 has roughly 32, 000 Boolean
gates, thus the homomorphic evaluation incurs a huge execution time of 470 seconds. This
situation becomes even much worse (taking more than an hour) in the case of multi-key
TFHE, in which bootstrapping takes around 0.27 seconds considering only 2 parties. With
this motivation, we propose a novel approach to evaluate any Boolean circuit in which
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Table 2: LUT for Boolean ⊗ for the masked bit {ri0, ri1}

LUT
ri0,ri1
⊗

Encpk

(
(0 ⊕ ri0) ⊗ (0 ⊕ ri1)

)
Encpk

(
(0 ⊕ ri0) ⊗ (1 ⊕ ri1)

)
Encpk

(
(1 ⊕ ri0) ⊗ (0 ⊕ ri1)

)
Encpk

(
(1 ⊕ ri0) ⊗ (1 ⊕ ri1)

)

no bootstrapping is required at any point in the evaluation process using a threshold HE
scheme and achieves an evaluation time of AES-128 in less than 1 second. Note that, in
our construction, we perform no bootstrapping, and therefore we require only an additively
homomorphic encryption (HE) scheme. In particular, we showcase an efficient construction
that uses an additive HE with an MPC protocol to achieve fully homomorphic capability
that can homomorphically evaluate any Boolean circuit without performing bootstrapping.

Our TOPRF using Threshold Additive HE. Here, we present a brief discussion on
our proposed TOPRF construction using threshold additive HE. Despite evaluating the
AES on a single high-end server, we use T number of public servers, relatively lower-end
computational resources (ref. Section 3.2 for a detailed discussion). A trusted dealer
samples a public key and secret key pair (pk, sk) for an additive HE scheme. In particular,
we use homomorphic encryption from Regev’s Cryptosystem [Reg09] which is additively
homomorphic and based on LWE assumption (ref. Appendix A for a formal definition of
LWE). Now, the secret key sk is distributed among the T servers (S1, . . . , ST ) such that the
ℓth server gets the secret share skℓ, ∀ℓ ∈ {1, . . . , T} and the public key pk is provided to the
client. Apart from the secret shares, the trusted dealer also samples L number of random-bit
pairs

(
{r00, r01}, . . . {rL−1

0 , rL−1
1 }

)
∈ {0, 1}2L, where L be the total number of Boolean gates

(XORs and ANDs) in the AES-based PRF circuit. For each {ri0, ri1}i∈{0,...,L} pair the trusted

dealer constructs a look-up table (LUT) based on the Boolean gate at the ith iteration of
the PRF circuit. Table 2 shows a LUT structure for “⊗” (which can be either Boolean XOR
or AND), the Boolean operation at the ith stage while evaluating the PRF circuit. Here, ⊕
denotes XOR operation on unencrypted/clear data, and Encpk(·) denotes LWE encryption
under the public key pk. Now, the trusted dealer sends the random bits in encrypted form,
i.e.,

(
{cr00, cr01}, . . . , {crL−1

0 , crL−1
1 }

)
, where crij = Encpk(r

i
j), ∀j ∈ {0, 1} to one of the T

servers, say S1 and L LUTs to the other (T − 1) servers, i.e., (S2, . . . , ST ).

Now, at the very beginning of our PRF evaluation, the client encrypts its input aesmsg using
pk and sends the ciphertexts to S1; the server also encrypts the PRF key aeskey using pk.
As mentioned earlier, we use the Bristol representation of the PRF circuit, which consists
of only AND, XOR, and NOT gates. The PRF circuit is now homomorphically evaluated
by the T servers in the following way – Let us assume at the ith iteration the following
operation is to be performed, cti = HomAND(cti0, ct

i
1), which denotes homomorphic AND

gate over encrypted data/ciphertexts cti0, ct
i
1. But in an FHE scheme based on TFHE, the

homomorphic AND requires bootstrapping, which is costly and incurs significant overhead
in circuit evaluation. To avoid bootstrapping operations, the server S1 masks the input
ciphertexts (cti0, ct

i
1) with the encryption of random bits, i.e., with (cri0, cr

i
1) by performing

homomorphic XOR operation as, ĉt
i

j = HomXORwb(ct
i
j , cr

i
j), ∀j ∈ {0, 1}, here HomXORwb(·)

represents homomorphic XOR operation without bootstrapping. Note that, in TFHE at
most one Boolean gate can be evaluated without performing a bootstrapping operation (for
more detailed analysis ref. Appendix A.2), because a bootstrapping operation [GHS12] is
nothing but homomorphic decryption followed by adding a fresh noise into the evaluated
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ciphertext. Next, S1 computes the partial decryption of ĉt
i

j = (b̂ij , â
i
j), ∀j ∈ {0, 1} with its

secret share sk1 as γ̂ij = b̂ij − ⟨âij , sk1⟩+ ei,jsm, here ⟨·, ·⟩ denotes vector-dot product and ei,jsm
be a smudging noise [BGG+18, CSS+22, BS23], required to statistically hide the encryption
noise. These partial decryptions

(
γ̂ij , â

i
j

)
, ∀j ∈ {0, 1} are then sent to other (T − 1) servers

for performing threshold decryption. After performing the threshold decryption operation,

the servers (S2, . . . , ST ) retrieve the underlying plaintexts of ĉt
i

j , i.e., m̂i
j = mi

j ⊕ rij , where

mi
j be the plaintext of ctij , ∀j ∈ {0, 1}. One of these (T − 1) servers then queries the ith

LUT as ct⋆i = LUT
ri0,r

i
1

∧ (m̂i
0, m̂

i
1), here ∧ denotes AND operation. ct⋆i is then sent back to

S1 as response and S1 sets cti = ct⋆i , which finally completes the evaluation of the target
operation, i.e., HomAND(·) at the ith iteration. In Figure 2 we present a pictorial overview
of the execution phase of our TOPRF protocol for a single Boolean operation.

Observe that to compute HomAND(cti0, ct
i
1) no bootstrapping is performed; instead, we

incur only two rounds of communication alongwith a few lightweight computations at both
the server’s end. During communication ciphertexts are transmitted, which have a size of
approximately 2 KB; hence to transmit 3 ciphertexts (2 from S1 and 1 to S1) we incur a
total of around 6 KB of data for one homomorphic Boolean computation. Considering 1
GB/sec LAN connectivity between the public servers, it only requires 6 µs of time which is
significantly lower compared to one bootstrapping cost of 13 ms, considering the single-key
version of FHE. While the communication cost may appear negligible, it will result in
significant overhead when considering the entire AES-128 circuit, comprising approximately
32, 000 Boolean gates. Therefore, to enhance the efficiency of our TOPRF construction, we
provide several optimization techniques which include reducing communication overhead by
approximately 99% between the public servers. In the subsequent sections, we gradually
discuss our different optimization tools to construct the final TOPRF architecture that can
be evaluated in less than 1 sec using AES as the baseline PRF. Table 1 compares the basic
FHE-based OPRF framework with our optimized TOPRF protocol (considering T = 2 parties),
demonstrating a substantial reduction in PRF evaluation time with minimal communication
overhead.

1.2 Related Works

In this section, we discuss some more related works on OPRF. Naor and Reingold [NR04] first
showed an interactive and oblivious evaluation of a PRF, where a client with input x obtains
PRFK(x) for a function PRFK(·) that is contributed by a server. Freedman et al. [FIPR05]
later denoted such two-party protocol as an oblivious pseudorandom function OPRF and
demonstrated how OPRFs were useful for obliviously searching a database. Several years
later, Hazay and Lindell [HL10] made a noteworthy discovery that shows that OPRF and
private set intersection (PSI) are closely related, elucidating how their inherent obliviousness
property facilitates the design of protocols aimed at safeguarding confidential data such
as passwords, search queries, identities, digital footprints, etc. Over the preceding decade,
OPRFs have emerged as a pivotal component in various applications including oblivious
keyword search [FIPR05, KKRT16], PSI [KS08, JL09, JL10], password-protected secret
sharing (PPSS/TPASS) [JKK14, BJSL11, JKKX17, BFH+20, DHL20], private information
retrieval (PIR) [FIPR05], password-authenticated key exchange (PAKE) [JKK14, JKX18],
single sign-on (SSO) with privacy [BFH+20], cloud key management [JKR19], de-duplication
systems [CDCGS19], secure pattern matching [FHV18] and “untraceable” contact trac-
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ing [KRS+19]. We refer to the work [CHL22] for a thorough discussion on several OPRF
constructions proposed in the literature. Everspaugh et al. [ECS+15] introduces a partially
oblivious PRF (POPRF) in the context of the password hardening system. It extends OPRF
functionality to include a public input/tag tag for the PRF evaluation. A client learns the
PRFK(tag, x) output, where tag is known by both server and client, and the private input x
remains hidden. But this POPRF construction relies on bilinear pairings which has inefficient
performance. After that Tyagi et al.[TCR+22] introduce an efficient POPRF construction that
combines aspects of the 2HashDH OPRF of Jarecki et al.[JKK14] with the Dodis-Yampolskiy
(DY) verifiable random function [DY05]. Jarecki et al.[JKR18] propose an efficient threshold
POPRF construction based on Diffie-Hellman (DH) that can accommodate very efficient
elliptic curve groups and present a range of applications for building more secure and reliable
key management systems. All of the above-mentioned OPRF constructions are based on
quantum unsafe assumptions and the most efficient quantum-safe OPRF construction was
proposed by Albrecht et al.[ADDG23], where the authors constructed a POPRF from lattice
assumptions and low-depth (weak) PRF [BIP+18]. However, our present work provides an
efficient threshold PRF (TOPRF) protocol, which can evaluate any arbitrary depth PRF
circuit obliviously in a distributed fashion while relying on LWE, quantum-safe assumption.

2 Preliminaries & Background

Here, we introduce some notations used throughout this paper and present some preliminary
background on the cryptographic primitives used in this work.

2.1 Notations

We use lower-case bold letter “a” to denote a vector and upper-case bold letter “A” to denote

a matrix. We write x
$← χ to represent that an element x is sampled uniformly randomly

from a set/distribution χ and with a ← b we denote the value of b is assigned to a. For
a, b ∈ Z such that a, b ≥ 0, we denote by [a] and [a, b] the set of integers lying between 1 and
a (both inclusive), and the set of integers lying between a and b (both inclusive). We use ⟨·, ·⟩
to denote vector-dot product operation. We refer to λ ∈ N as the security parameter and
denote by poly(λ) and negl(λ) any generic (unspecified) polynomial function and negligible
function in λ, respectively.1 We use (t, T ) as a shorthand notation for t-out-of-T structure.

2.2 Threshold Pseudorandom Function (TOPRF)

An (X ,R)-threshold oblivious pseudorandom function TOPRF [AMMM18] is a tuple of
four PPT algorithms (TOPRF.Setup, TOPRF.Encode, TOPRF.Eval, TOPRF.Combine) that
satisfies the consistency property below.

• ({K}, pp) ← TOPRF.Setup(1κ, n, t). It generates n secret key shares K1,K2, . . . ,Kn

and public parameters pp. Share Ki is given to ith party.

1Note that, a function f : N → N is said to be negligible in λ if for every positive polynomial p,
f(λ) < 1/p(λ) when λ is sufficiently large.
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• c ← TOPRF.Encode(x, ρ). It generates an encoding c of x ∈ X using randomness
ρ ∈ R.

• zi ← TOPRF.Eval(Ki, c). It generates shares of TOPRF value from an encoding. Party
i computes the ith share zi from c by running TOPRF.Eval(·) with Ki and c.

• h/⊥ ← TOPRF.Combine(x, {(i, zi)}i∈S , ρ). It combines the shares received from parties
in the set S using randomness ρ to generate a value h. If the algorithm fails, its output
is denoted by ⊥.

Consistency: For all κ ∈ N, any n, t ∈ N such that t ≤ n, all ({Ki}i∈[n], pp) generated
by TOPRF.Setup(1κ, n, t) any value x ∈ X , any randomness ρ, ρ′ ∈ R, and any two sets
S,S ′ ⊆ [n] of size at least t, if c ← TOPRF.Encode(x, ρ), c′ ← TOPRF.Encode(x, ρ′),
zi ← TOPRF.Eval(Ki, c) for i ∈ S, and z′j ← TOPRF.Eval(Kj , c

′) for j ∈ S ′, then
TOPRF.Combine(x, {(i, zi)}i∈S , ρ) = TOPRF.Combine(x, {(j, z′j)}j∈S′ , ρ′) ̸= ⊥.

Security Properties: A TOPRF protocol satisfies two properties, unpredictability and
obliviousness. Unpredictability ensures that it must be difficult to predict the TOPRF output
on a random value, and the obliviousness property ensures that the random value itself
is hard to guess even if the TOPRF output is available. For a more detailed and formal
description of a TOPRF security properties we refer to PASTA by Agrawal et al. [AMMM18].

2.3 Additive Homomorphic Encryption (AHE)

In this work, we use an Additive Homomorphic Encryption (AHE) scheme by extending
Regev’s cryptosystem [Reg09], which is defined as follows– an AHE scheme is a tuple of five
PPT (Probabilistic Polynomial Time) algorithms (AHE.Setup,AHE.KeyGen,AHE.Enc,AHE.Dec,
AHE.Eval).

• paramsa ← AHE.Setup(1λ): Given a security parameter λ, it sets lattice dimension n,
a modulus q, key space K, and noise distribution E and returns a public parameter
paramsa = {n, q,K, E}.

• (sk, pk)← AHE.KeyGen(paramsa): It takes the public parameter paramsa as input and

sample the secret key sk
$← Kn. Generate a set of public keys pk = {pk1, . . . , pkz},

where each pki = ⟨ai, sk⟩+ ei, with ai
$← U(Zn

q ) (uniform distribution over Zn
q ) and

ei
$← E be the encryption noise, ∀i ∈ [z].

• ct ← AHE.Enc(m, pk): Given a message bit m ∈ {0, 1} and the public key set pk,
returns a ciphertext ct = (b,a), where, b =

∑
j∈H pkj + ⌊ q2⌋ ·m (mod q) ∈ Zn+1

q , and
a =

∑
j∈H aj , where H be a random subset of pk.

• m⋆ ← AHE.Dec(ct⋆, sk): Given an evaluated ciphertext ct⋆ and the secret key sk,
returns a message bit m⋆ = ⌊( 2

q )[⟨ct⋆, sk⟩]q⌋ (mod 2) ∈ {0, 1}.

• ct⋆ ← AHE.Add(ct1, ct2, pk): Given two ciphertexts ct1 = AHE.Enc(m1, pk), and
ct2 = AHE.Enc(m2, pk), the public key pk, evaluate ct⋆ = (ct1 + ct2) mod q, such
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that

⟨ct⋆, sk⟩ =⟨ct1, sk⟩+ ⟨ct2, sk⟩ mod q

=⌊q
2
⌋ · (m1 +m2) + e⋆ mod q

where, e⋆ = (e1 + e2), e1, e2 are the encryption noise in ct1, ct2 respectively. Now, ac-
cording to the Regev’s encryption if e⋆ < 1

2⌊
q
2⌋, (m1 +m2) mod 2← AHE.Dec(ct⋆, sk).

Therefore, homomorphic addition in Regev’s cryptosystem actually returns addition
modulo 2, in other words, Boolean XOR of m1,m2.

2.4 Fully Homomorphic Encryption (FHE)

A Fully Homomorphic Encryption (FHE) scheme is a tuple of five PPT (Probabilistic
Polynomial Time) algorithms (FHE.Setup,FHE.KeyGen,FHE.Enc,FHE.Dec,FHE.Eval). These
PPT algorithms are similar to that of an AHE scheme; except it supports an additional
operation called “bootstrapping” [GHS12] after FHE.Eval that allows evaluation of circuits
to arbitrary depth.

• paramsf ← FHE.Setup(1λ): Given a security parameter λ, this function returns a public
parameter paramsf .

• (SK,PK) ← FHE.KeyGen(paramsf ): It takes the public parameter paramsf as input
and generates a secret key SK and the corresponding public key PK.

• CT ← FHE.Enc(m,PK): Given a message bit m ∈ {0, 1} and the public key PK,
returns a ciphertext CT ∈ {0, 1}⋆.

• m← FHE.Dec(CT⋆,SK): Given an evaluated ciphertext CT⋆ and the secret key SK,
returns a message bit m ∈ {0, 1}.

• CT⋆ ← FHE.Eval({CTi}i∈ℓ,PK, C): Given ℓ ciphertexts {CTi}i∈ℓ, the public key
PK and a circuit C : {0, 1}ℓ → {0, 1}⋆. Evaluate the input circuit C over the input
ciphertexts and return an evaluated ciphertext CT⋆.

IND-CPA security: For any (PK,SK)← FHE.KeyGen(1λ), for any messages m0,m1 ∈M,
and for any probabilistic polynomial-time (PPT) adversaryA, letting CT0 ← FHE.Enc(m0,PK)
and CT1 ← FHE.Enc(m1,PK),

|Pr[A(PK,m0,m1,CT0) = 1]− Pr[A(PK,m0,m1,CT1)] = 1|
≤ negl(λ).

Correctness: The homomorphism of an FHE scheme ensures correctness. For any (Boolean)
function f : {0, 1}ℓ → {0, 1}⋆ ∈ F and any sequence of ℓ messages m1, . . . ,mℓ, letting
(PK,SK) ← FHE.KeyGen(1λ), and CTi ← FHE.Enc(mi,PK) for each i ∈ [ℓ], we have the
following,

Pr[FHE.Dec(FHE.Eval(CT1, . . .CTℓ,PK, f)) ̸= f(m1, . . . ,mℓ)]

≤ negl(λ)
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Compactness: There exists a polynomial poly(λ) such that, for any (Boolean) function
f : {0, 1}ℓ → {0, 1}⋆ ∈ F and any sequence of ℓ messages m1, . . . ,mℓ, letting (PK,SK)←
FHE.KeyGen(1λ), and CTi ← FHE.Enc(mi,PK) for each i ∈ [ℓ], we have

|ct⋆ ← FHE.Eval(CT1, . . .CTℓ,PK, f))| ≤ poly(λ),

where poly(λ) is independent of size of f and the number ℓ of inputs.

Although we discuss the IND-CPA security, compactness, and correctness properties for an
FHE scheme, we can argue the same for an AHE scheme as defined in Section 2.3. Most of
the FHE schemes are based on some lattice-based hard problems and among those Learning
with Errors (LWE) [Reg09] and its ring variant Ring-LWE (RLWE) [LPR10] are widely used
to construct efficient FHE schemes. The encryption procedure in an FHE generally uses LWE
or RLWE assumptions, while the bootstrapping procedure requires an additional RGSW
assumption. All these different types of lattice-based hardness assumptions are formally
defined and discussed in Appendix A.1.

2.5 Our Threshold HE Scheme

In this work, we construct our TOPRF using a threshold HE scheme. As mentioned in the
introduction that our TOPRF construction only requires a threshold AHE scheme rather than
an FHE. Therefore, in this section, we formally define an LWE-based threshold AHE scheme
that follows the Regev cryptosystem [Reg09]. However, we argue that the thresholdization
procedure can trivially be extended to an FHE scheme because both the AHE and FHE have
a similar encryption and decryption procedure; only the homomorphic evaluation is different
due to the bootstrapping, which does not influence the threshold decryption operation. We
define our threshold AHE (ThAHE) scheme below, where the key-generation, encryption,
decryption, and evaluation operations are similar to the AHE scheme defined earlier.

• params← ThAHE.Setup(1λ): Given a security parameter λ, it sets lattice dimension
n = n(λ), a modulus q = q(λ), key space K = {0, 1}, and noise distribution Gα,
a Gaussian distribution with standard deviation α. Returns a public parameter
params = {n, q,K,Gα}.

• (sk, pk)← ThAHE.KeyGen(params): It takes the public parameter params as input and

sample the secret key sk
$← Kn. Generate a set of public keys pk = {pk1, . . . , pkz},

where each pki = ⟨ai, sk⟩+ ei, with ai
$← U(Zn

q ) (uniform distribution over Zn
q ) and

ei
$← Gα be the encryption noise, ∀i ∈ [z].

• ct ← ThAHE.Enc(m, pk): Given a message bit m ∈ {0, 1} and the public key set pk,
returns a ciphertext ct = (b,a), where, b =

∑
j∈H pkj + ⌊ q2⌋ ·m (mod q) ∈ Zn+1

q , and
a =

∑
j∈H aj , H be a random subset of pk.

• ct⋆ ← ThAHE.Add(ct1, ct2, pk): Given two ciphertexts ct1 = ThAHE.Enc(m1, pk), and
ct2 = ThAHE.Enc(m2, pk), the public key pk, evaluate ct⋆ = (ct1 + ct2) mod q, such
that

⟨ct⋆, sk⟩ =⟨ct1, sk⟩+ ⟨ct2, sk⟩ mod q

=⌊q
2
⌋ · (m1 +m2) + e⋆ mod q

10



Here, e⋆ = (e1 + e2), e1, e2 are the encryption noise in ct1, ct2 respectively.

• m⋆ ← ThAHE.Dec(ct⋆, sk): Given an evaluated ciphertext ct⋆ and the secret key sk,
returns a message bit m⋆ = ⌊( 2

q )[⟨ct⋆, sk⟩]q⌋ (mod 2) ∈ {0, 1}.

• γj ← ThAHE.PartDec(skj , ct) : It takes a secret key share skj for the jth party
and a ciphertext ct = (b,a) as input and returns a partially decrypted ciphertext
γj = ⟨a, skj⟩+ ejsm. Here a Gaussian noise ejsm is added with the partial decryption
γj to statistically hide the LWE secret key sk and LWE noise e. In the literature,
this ejsm is known as “smudging noise” and generally, ejsm is sampled from a Gaussian
distribution Gσ with a standard deviation σ.

Now, σ has to be atleast polynomially larger [BS23, CSS+22] than α, to statistically
hide the LWE noise e.

• ϕ ← ThAHE.Combine({γj}j∈[T ], ct) : It takes t(≤ T ) number of partial decryptions
{γj}i∈[t] from T parties and the ciphertext ct = (b,a) as input and compute a phase
as

ϕ = b−
t∑

j=1

γj = b−
t∑

j=1

(
⟨a, skj⟩+ ejsm

)
,

= m+ e−
t∑

j=1

ejsm.

• m ← ThAHE.Decode(ϕ) : On input the phase ϕ this function performs a rounding
operation to remove the noises and returns the message m, i.e., if ϕ > 0 returns 1
otherwise returns 0.

3 Our Proposal: TOPRF using Threshold AHE

In this section, we provide a detailed description of our proposed TOPRF construction using
the threshold decryption procedure of an AHE scheme. We extend our threshold decryption
algorithm from the work by Chowdhury et al. [CSS+22], that uses LISSS [DT06] to distribute
the secret key sk among T servers following a t-out-of-T threshold access structure1. We
extended the LISSS secret sharing scheme into our ThAHE scheme to distribute the secret
key sk among T servers; and every jth server gets the jth share of sk, ∀j ∈ [T ].

3.1 Basic Construction of OPRF using FHE

First, we describe how an Oblivious PRF (OPRF) can be constructed with an FHE scheme
using a näıve approach and gradually motivate our threshold OPRF construction by showcas-
ing a technique (one of our primary contributions) in which our TOPRF construction only
requires an AHE scheme rather than an FHE by leveraging the thresholdization mechanism
of an AHE over multiple servers.

Homomorphic PRF evaluation using FHE. We use AES-128 as our PRF and evaluate
on encrypted inputs using an FHE scheme over a cloud server. This approach provides a

1Any t ≤ T number of parties can collaborate to perform the final decryption.
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basic OPRF construction using FHE. We note that in our present construction, we use a
Boolean representation of AES circuit (ref. Appendix A.3), but we want to point out that,
our OPRF can be implemented using any PRF circuit represented in Boolean format.

Now, evaluating AES over encrypted inputs is a challenging task, especially due to the large
computation overhead of FHE bootstrapping. We use TFHE [CGGI20] scheme to evaluate
the AES-128 circuit represented in the Bristol format [bri], which uses only the following
Boolean gates: XORs, ANDs and NOTs. A trivial solution is that a trusted key-dealer samples
an FHE public key PK and a secret key SK, and provides PK to the client and the computing
server and SK only to the client. Then the client having AES input message aesmsg, encrypts
aesmsg with PK and outsources the encrypted data to the server for homomorphic evaluation.
Now, the server having the AES key aeskey, encrypts it with PK and performs each Boolean
gate of the AES circuit homomorphically using FHE computation using functions from the
TFHE library1. After evaluation of all the gates, the encrypted AES output is sent back
to the client; who then can decrypt using SK to remove the encryption layer of FHE and
retrieves the AES output.

Performance analysis. The Bristol format of AES-128 consists of 25, 124 XOR, 6, 800 AND
and 1, 692 NOT gates, and among these gates, XOR and AND gates require a bootstrapping
operation (as, NOT gates do not incur any noise growth). Each gate-bootstrapping takes
approximately 13 ms in the TFHE library on a standard computing platform. Consequently,
AES-128 evaluation takes around 470 secs, which is quite impractical in real-world scenarios.
Now, we gradually discuss our proposed approach to reduce the homomorphic evaluation
time of AES using threshold AHE (ThAHE) scheme.

3.2 Threshold Construction of TOPRF using ThAHE

Evaluating any Boolean circuit homomorphically in an encrypted domain requires boot-
strapping that allows circuit evaluation up to arbitrary depth. However, this bootstrapping
operation is the primary bottleneck of any homomorphic evaluation due to its large computa-
tional cost. One of the primary goals of this work is to reduce the number of bootstrapping
operations during homomorphic evaluation of Boolean circuits. In the TFHE scheme, every
gate evaluation (except NOT gate) is followed by a bootstrapping operation. A bootstrapping
operation is homomorphic decryption followed by adding a fresh noise into the ciphertext,
which means, at most one Boolean gate can be evaluated without performing a bootstrap-
ping operation (for more detailed analysis ref. Appendix A.2). We use this observation to
construct our efficient TOPRF protocol. Before describing our proposed TOPRF construction
using a ThAHE scheme, we present our modified definition of TOPRF (basic definition is
presented in Section 2) to prove the security and consistency of our TOPRF protocol.

Our Threshold Oblivious Pseudorandom Function (TOPRF′) Our modified definition of
TOPRF follows the same definition of the original TOPRF [AMMM18] which is mentioned in
Section 2 except the following two algorithms TOPRF′.Eval and TOPRF′.Combine.

• z′enc ← TOPRF′.Eval({Ki}i∈S , c). The evaluation of our modified TOPRF′ is not a
function rather it is a protocol that is performed jointly by n parties. After execution
of the protocol, each party gets z′enc, the encrypted output of the PRF evaluation.

1https://github.com/tfhe/tfhe.git
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Table 3: LUTs for Boolean AND (∧) and XOR (⊕) for the masked bit {ri0, ri1}

LUT
ri0,r

i
1

∧
ct((0⊕ri0),(0⊕ri1))

= ThAHE.Enc
(
(0⊕ ri0) ∧ (0⊕ ri1), pk

)
ct((0⊕ri0),(1⊕ri1))

= ThAHE.Enc
(
(0⊕ ri0) ∧ (1⊕ ri1), pk

)
ct((1⊕ri0),(0⊕ri1))

= ThAHE.Enc
(
(1⊕ ri0) ∧ (0⊕ ri1), pk

)
ct((1⊕ri0),(1⊕ri1))

= ThAHE.Enc
(
(1⊕ ri0) ∧ (1⊕ ri1), pk

)
LUT

ri0,r
i
1

⊕
ct((0⊕ri0),(0⊕ri1))

= ThAHE.Enc
(
(0⊕ ri0)⊕ (0⊕ ri1), pk

)
ct((0⊕ri0),(1⊕ri1))

= ThAHE.Enc
(
(0⊕ ri0)⊕ (1⊕ ri1), pk

)
ct((1⊕ri0),(0⊕ri1))

= ThAHE.Enc
(
(1⊕ ri0)⊕ (0⊕ ri1), pk

)
ct((1⊕ri0),(1⊕ri1))

= ThAHE.Enc
(
(1⊕ ri0)⊕ (1⊕ ri1), pk

)

• h/⊥ ← TOPRF′.Combine(z′enc, ρ, {Ki}i∈S). Our TOPRF combination is just a thresh-
old decryption operation that is performed by each party in the set S using randomness
ρ with their corresponding secret key shares Ki to generate the final decrypted value
h. If the algorithm fails, its output is denoted by ⊥.

Consistency and security properties. The consistency of our modified TOPRF′ is similar to
the original definition with an added dependency on the correctness of threshold decryption
operation. Whereas, security is now dependent on the hardness of the encryption scheme
used alongwith the secret sharing of PRF output over multiple parties as done in the former
case. The intermediate results of PRF evaluation are available to all the participating parties
but in an encrypted format; thus not accessible to any of the parties, only the final output is
known after performing the combination operation.

Constructing TOPRF using ThAHE. Following our modified definition we now discuss
the proposed TOPRF construction. We leverage the criteria of evaluating one binary gate
without bootstrapping into our efficient TOPRF construction. In our TOPRF construction
a party holds the PRF input aesmsg, whereas the server’s PRF key aeskey is distributed
among T servers, say (S1, . . . , ST ). Now, our TOPRF protocol has the following phases–

Pre-processing phase. At the very beginning of our proposed TOPRF protocol a trusted
dealer samples a secret key and public key pair (sk, pk) ← ThAHE.KeyGen(paramsa) for
an ThAHE scheme, and distributes the secret key sk into T shares (sk1, . . . , skT ) using
LISSS [DT06] while following a t-out-of-T threshold access structure and provides them to
T servers such that each server Si gets ski, ∀i ∈ [T ] and any t-sized subset of {S1, . . . , ST }
can perform threshold decryption. The public key pk is then provided to the client.

The trusted dealer also samples L pairs of random bits {(r00, r01), . . . , (rL−1
0 , rL−1

1 )} $← {0, 1}L,
where L be the total number of XOR and AND gates in AES-128 Boolean circuit. It
then encrypts these random bits as crij ← ThAHE.Enc(rij , pk), ∀i ∈ [L], j ∈ {0, 1}. For

each (ri0, r
i
1) pair, the trusted dealer constructs a look-up table LUT

ri0,r
i
1

⊗ based on the
operation ⊗ at the ith iteration of AES circuit evaluation. Table 3 shows LUTs for Boolean
AND (denoted as ∧) and XOR (denoted as ⊕) gate. Finally, returns the encrypted set
{(cr00, cr01), . . . , (crL−1

0 , crL−1
1 )} to one of the servers, say S1 and the L number of LUTs are

provided to the other servers (S2, . . . , ST ). In Figure 1 we present a pictorial description
of our entire pre-processing/offline phase, performed once at the beginning of our TOPRF
protocol.

Remark on key generation step. The key generation step of a threshold HE scheme is generally
achieved in two different ways. One approach uses a “top-down” technique [BGG+18, JRS17]
in which a trusted key dealer generates a public key-secret key pair, and then distributes
the secret key shares among the parties. An alternative approach alleviates the need for a
trusted key dealer by allowing the parties to generate their secret key-public key pairs. Then,
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Figure 1: Pre-processing/offline phase of our proposed TOPRF construction

it uses a “bottom-up” technique [STH+23, KJY+20] to generate the common public key. In
contrast, our approach adopts a top-down strategy for key generation. Nonetheless, we can
accommodate the bottom-up method for distributed key generation in our threshold AHE
scheme, leveraging the technique proposed by Sugizaki et al. [STH+23]. This adaptation
incurs extra costs in key generation and homomorphic computation time, thereby notably
impacting efficiency.

Execution phase. After the pre-processing phase, the client gets the public key pk, which
is then used by the client to encrypt its 128-bit input aesmsg ∈ {0, 1}128 and generate a set
of input ciphertexts as ctk = AES.Enc(aesmsg[k], pk), ∀k ∈ {0, . . . , 127}. Now, the client
outsources these encrypted set {ct0, . . . , ct127} to one of the servers, say S1 which holds the
128-bit PRF key aeskey ∈ {0, 1}128. S1 also encrypts the key with pk and generates the set
{ct′0, . . . , ct′127}, where ct′k = AES.Enc(aeskey[k], pk), ∀k ∈ {0, . . . , 127}.
Assume, during the homomorphic evaluation of the AES-128 circuit, at the ith iteration
an AND gate needs to be evaluated on two input ciphertexts cti0 and cti1, i.e., cti ←
HomAND

(
cti0, ct

i
1

)
, where HomAND(·) denotes homomorphic AND operation on encrypted

data and returns an encrypted output and cti be the resultant ciphertexts at the ith

iteration. Generally, any homomorphic gate evaluation over encrypted inputs is followed by
a bootstrapping operation to retain the noise level under a pre-specified threshold of correct
decryption in the resultant ciphertext. But as mentioned earlier, our TOPRF construction
requires no bootstrapping; consequently, we only rely on a threshold AHE scheme. To
evaluate cti ← HomAND

(
cti0, ct

i
1

)
using a threshold AHE scheme, S1 first mask the input
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Figure 2: Execution phase of our proposed TOPRF construction

ciphertexts cti0 and cti1 with the encrypted random-bits cri0 and cri1 respectively, as follows

ĉt
i

0 ← ThAHE.Add(cti0, cr
i
0, pk),

ĉt
i

1 ← ThAHE.Add(cti1, cr
i
1, pk).

Note that, one addition operation does not require a bootstrapping to retain the correctness
in the resultant ciphertext (discussed in Appendix A.2). S1 then computes the partial
decryption γ̂ij,1 using its secret share sk1, as

γ̂ij,1 ← ThAHE.PartDec
(
ĉt

i

j , sk1

)
,

here ĉt
i

j = (b̂ij , â
i
j), ∀j ∈ {0, 1}. Now, these partial decryptions

(
γ̂i0,1, γ̂

i
1,1

)
of masked

ciphertexts ĉt
i

0, ĉt
i

1 are forwarded to (S2, . . . , ST ) for performing the threshold decryption.

After receiving the partial decryptions
(
γ̂i0,1, γ̂

i
1,1

)
, the servers (S2, . . . , ST ) compute their par-

tial decryptions with their corresponding secret shares, i.e., γ̂ij,k ← ThAHE.PartDec (γ̂1,1, skk),

∀k ∈ {2, . . . , T}. Here, γ̂ij,k refers the partial decryption computed by server Sk using the its
secret share skk. While all the partial decryptions are computed by all the servers, the final
combination is performed by taking all such partial decryptions

(
γ̂ij,1, . . . , γ̂

i
j,t

)
to compute

the final decrypted plaintext, as

m̂i
j ← ThAHE.Combine

(
{γ̂ij,k}k∈[t]

)
, ∀j ∈ {0, 1}.

Observe that, these decrypted results m̂i
0, m̂

i
1 are masked with the random bits ri0, r

i
1

respectively, i.e., m̂i
j = mi

j ⊕ rij , where mi
j is the underlying plaintext of ctij , ∀j ∈ {0, 1}.

Therefore, m̂i
0, m̂

i
1 are information theoretically secure under the random bits ri0, r

i
1.
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Figure 3: Time comparison between plain decryption and threshold decryption for our threshold
AHE scheme

Now, these masked plaintexts are queried on the LUT at ith stage under the random bits

ri0, r
i
1, i.e., LUT

ri0,r
i
1

∧
(
m̂i

0, m̂
i
1

)
. Recall that, we assume to evaluate an AND (∧) gate at the

ith stage. The LUT
ri0,r

i
1

∧
(
m̂i

0, m̂
i
1

)
then returns ct((m̂i

0⊕ri0),(m̂
i
1⊕ri1))

, which is an encryption

of
(
m̂i

0 ⊕ ri0) ∧ (m̂i
1 ⊕ ri1)

)
. Then the resultant ciphertext ct((m̂i

0⊕ri0),(m̂
i
1⊕ri1))

after LUT

operation is sent back to the server S1 as a result of HomAND
(
cti0, ct

i
1

)
; and finally S1 sets

cti ← ct((m̂i
0⊕ri0),(m̂

i
1⊕ri1))

.

Similarly, for an ctl ← ct0HomXOR(ctl0, ct
l
1), i.e., for a homomorphic XOR operation at

some lth iteration, the servers perform all the operations in the execution phase except the
LUT query step, in which after performing the threshold decryption the servers make a query

on the LUT for the XOR (⊕) operation, i.e., LUT
rl0,r

l
1

⊕
(
m̂l

0, m̂
l
1

)
and retrieve encryption

of
(
m̂l

0 ⊕ rl0)⊕ (m̂l
1 ⊕ rl1)

)
. After that, this resultant ciphertext ct((m̂l

0⊕rl0),(m̂
l
1⊕rl1))

of LUT

operation is sent back to S1 and it sets ctl ← ct((m̂l
0⊕rl0),(m̂

l
1⊕rl1))

. Figure 2 demonstrates
our proposed TOPRF protocol in a step-by-step fashion for the reader’s convenience.

3.3 Performance analysis

We note here that, for evaluating one Boolean gate either XOR or AND, our proposed
methodology based on a threshold AHE scheme requires only one round of communication
during threshold decryption performed by (S2, . . . , ST ) and two independent arithmetic
operations (without bootstrapping) by server S1. It turned out that the cost of single
bootstrapping is significantly more computationally expensive than the above combination
of threshold decryptions and arithmetic operations. Our threshold decryption operation
takes approximately 0.03 ms (ignoring communication latency, which is discussed in the
subsequent sections) of time while the cost of homomorphic operation without bootstrapping
is negligible (detailed analysis is presented in our experimental results in Section 4). Figure 3
shows that the time required for our threshold decryption operation is only slightly higher
than that of plain decryption using an AHE scheme. In other words, our proposed threshold
decryption procedure incurs only minimal overhead over the plain decryption algorithm.
Using our proposed threshold AHE-based approach, we achieve around 0.96 secs of evaluation
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time1 instead of 470 secs, considering Therefore, we achieve more than 470× improvement
in computational cost for evaluating our proposed TOPRF protocol.

3.4 Reducing communication during our TOPRF evaluation

Until now, we have discussed optimization techniques for the homomorphic execution time of
our TOPRF using ThAHE scheme. Although we have achieved significant improvement in PRF
evaluation time, it has an additional communication overhead, because during PRF evaluation,
masked ciphertexts are communicated for threshold decryption (although performed in one
round). For every Boolean gate evaluation, partial decryptions of 2 masked ciphertexts
are communicated between t(≤ T ) servers. This requires less than T communications of 2
ciphertexts. Now, in our LWE-based AHE scheme, the size of each ciphertext is approximately
2 KB. Hence, for 31924 many Boolean gates (considering only XOR and AND gates) for an
AES-128 circuit, a total of 2×31924× t×2 KB = 127, 696t KB ≈ 217t KB, or 128t MB data
is communicated. Again in the response phase, one ciphertext is sent from (S2, . . . , ST ) to S1

after querying the LUT. This requires a total of 31924× 2 KB ≈ 216 KB, or 64 MB data is
transferred. Hence, the overall communication bandwidth for evaluating an entire AES-128
circuit is 128t+ 64 MB, or 64(2t+ 1) MB. Assuming a 1 GB/s LAN connectivity between
the public servers, we achieve 0.0625(2t+ 1) secs communication delay. For a smaller t ≤ 4,
the communication latency is comparatively lower with respect to our TOPRF evaluation
time of 0.96 secs. Therefore, in this section, we provide several optimization techniques
to further reduce the total communication delay between the public servers to support a
sufficiently large t value.

Reducing communication bandwidth from S1 to others. Now, we describe a technique
to reduce the ciphertext size transferred from S1 to the rest of the servers, i.e., (S2, . . . , ST ).
As already mentioned, the ciphertext generated from our LWE-based encryption has a size
of approximately 2 KB, this is because the random vector a inside a ciphertext ct = (b,a).
This random vector a is a n dimensional vector with each element of size log2 q bits, and
the b component is only log2 q bits. Therefore, the size of one ciphertext is approximately
equal to the size of a. Here, n = 512 is the dimension of the LWE secret, and q = 232 is the
ciphertext modulus. This parameter set is chosen according to the TFHE library where the
Albrecht, Player, and Scott’s Lattice Estimator [APS15] provides the estimated complexity
of attacking using these parameters is roughly 2128 operations. Therefore, the size of a is
n log2 q = 512× 32 bits or, 2 KB.

Hence, to reduce the size of a ciphertext, we need to reduce the size of the random vector
a. Assume, at the ith stage cti0 and cti1 are the input ciphertexts of some homomorphic

operation. These ciphertexts are masked with random bits ri0 and ri1 as follows, ĉt
i

0 =

ThAHE.Add
(
cti0, cr

i
0, pk

)
and ĉt

i

1 = ThAHE.Add
(
cti1, cr

i
1

)
, where crij , is the encryption of

the random bit rij , ∀j ∈ {0, 1}. Now, for ĉt
i

j = (b̂ij , â
i
j), we have b̂ij = ⟨âij , sk⟩ + m̂i

j + êij ,

∀j ∈ {0, 1}. As discussed in Section 3.2, the noise êij = 2 · (eij + erij), here eij and erij are

the noises inside ctij and crij , respectively ∀j ∈ {0, 1}. The basis of our first reduction in
communication bandwidth relies on the gap between minimum (αmin) and maximum (αmax)

1Our homomorphic addition without bootstrapping takes approximately 0.15 µs, and a LUT look-up time
is considered to be negligible.
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standard deviations of Gaussian noise distributions used in our ThAHE scheme1 from which
the noises in the ciphertexts are sampled. αmin represents the minimum standard deviation
required for security against quantum attacks and αmax represents the maximum standard
deviation required for decryption correctness for an LWE ciphertext (ref. Table 6 for the
parameter values). In our proposed scheme, we sample the noises in input ciphertexts from
the Gaussian distribution with standard deviation αmin. From the property of Gaussian
distribution with mean 0, we can approximately compute (with 99.994% probability) the
values of the sampled noises with the following bound, |e| ≤ 4 · αmin. Following this, we can
infer that |eij |, |erij | ≤ 4 · αmin and |êij | ≤ 16 · αmin. Now, from correctness of decryption

we must have |êij | ≤ 4 · αmax. We now use these results to optimize the communication
delay from S1 to (S2, . . . , ST ). As most of the communication bandwidth is consumed by

the random vector âij inside an LWE ciphertext ĉt
i

j . Therefore, to reduce the size of a,

we discard some bits from âij without affecting the decryption correctness performed by
(S2, . . . , ST ). This raises the following question,

how many least significant bits can we remove from each component of âij so that ĉt
i

j decrypts

to m̂i
j?

Let us assume we discard least significant k-bits from each of the component of âij , i.e., âij,t,

∀t ∈ {0, . . . , n− 1} of âij = (âij,0, . . . , â
i
j,n−1). Now, we denote the least significant k-bits of

âij,t as âi,ℓj,t and the rest of the most significant bits are denoted as âi,mj,t . Therefore, each

component of the random vector âij can be represented as âij,t = âi,mj,t · 2k + âi,ℓj,t. Now, we

only communicate (b̂ij , â
i,m
j ), where âi,mj = (âi,mj,0 , . . . , â

i,m
j,n−1), ∀j ∈ {0, 1} as the masked

ciphertexts from S1. Now, the threshold decryption operation over ĉt
i

j is performed as
follows,

Φ̂i
j = b̂ij − ⟨(â

i,m
j · 2k), sk⟩,

= b̂ij − ⟨(âij − âi,ℓj ), sk⟩,

= b̂ij − ⟨âij , sk⟩+ ⟨âi,ℓj , sk⟩,

= m̂i
j + êij + ⟨âi,ℓj , sk⟩ = m̂i

j + êi,′j .

For correctness of decryption the new noise êi,′j = êij − ⟨â
i,ℓ
j , sk⟩ must satisfy the following

condition |êi,′j | ≤ 4 · αmax. Hence, |êij + ⟨âi,ℓj , sk⟩| ≤ 4 · αmax. We have mentioned already

that |êij | ≤ 16 · αmin. Now, we need to compute the maximum (absolute) value of ⟨âi,ℓj , sk⟩,
which turned out to be n × 2k−1 because every component of âi,ℓj is a k-bit integer and
sk ∈ {0, 1}n. Therefore, we now have the following,

|êij + ⟨âi,ℓj , sk⟩| ≤ 4 · αmax,

16 · αmin + n · 2k−1 ≤ 4 · αmax,

2k−1 ≤ 4

n
(αmax − 4 · αmin),

k ≤ log2(
4

n
(αmax − 4 · αmin)) + 1.

1The Gaussian noise distributions consider their means as 0
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Hence, at most k = log2( 4
n (αmax − 4 · αmin)) + 1 least significant bits can be discarded from

every component of the random vector âij without affecting the decryption correctness.

In this work, we are using a 32-bit modulus for our ThAHE scheme, i.e., the modulus q = 232

and the noises |êi,′j | ≤ 4 ·αmax · 232 and |êij | ≤ 16 ·αmin · 232. Substituting these values in the
above equation results in k ≤ 20. Therefore, at most 20 least significant bits can be discarded
from all the components in âij , ∀j ∈ {0, 1}. Each component âij,t, ∀t ∈ {0, . . . , n − 1} of

âij = (âij,0, . . . , â
i
j,n−1) is represented as a 32-bit integer in our ThAHE scheme. After applying

our optimization each component of âij becomes a 12-bit integer, thus achieving around
62.5% reduction in communication bandwidth during communication from S1 to the rest of
the servers (S2, . . . , ST ).

Alternative method of communication reduction using PRG. We now present a
separate solution for reducing the LWE ciphertext size. We adapt this technique from Chen
et al. [CDKS21], in which a pseudo-random number generator G : {0, 1}λ → Zn

q , where
λ = 128 be our security parameter. Since the second component of a LWE ciphertext a is
purely random over Zn

q , we can modify our encryption algorithm such that it samples a seed
θ and takes it as the input of a pseudo-random number generator G to generate a← G(θ).
As a result, a ciphertext can be represented as (b, θ), and this variant remains semantically
secure in the random oracle model [CDKS21]. Therefore, the communication cost per LWE
ciphertext is now only λ+ log2 q bits.

Now, recall from our TOPRF construction in Section 3.2, that we need to mask the input
ciphertexts ctij = (bij ,a

i
j) with encryption of random bits crij = (brij ,ar

i
j), and compute

the resultant ciphertext ĉt
i

j ← ThAHE.Add
(
ctij , cr

i
j

)
, ∀j ∈ {0, 1}. Note that, we only

have the seeds corresponding to (ai
j ,ar

i
j), i.e., (θij , θ

i′
j ) for the input ciphertexts ctij , cr

i
j as

they are freshly generated by the client/trusted dealer. After performing the masking the

randomness in the resultant ciphertext ĉt
i

j = (b̂ij , â
i
j) is âij = ai

j + arij . Hence, to get the

seed θ̂ij corresponding to âij , we require a “additive” seed homomorphic PRG [BLMR13]

that takes (θij , θ
i′
j ) as input and returns θ̂ij . But, in the literature, we only have almost seed

homomorphic PRGs from LWR assumption [BLMR13], in which the resultant seed θ̂ij incurs
a noise in the PRG output, i.e.,

GaddLWR

(
θij , θ

i′
j

)
= GaddLWR

(
θij
)

+ GaddLWR

(
θi′j

)
+ eLWR,

where, GaddLWR : Zp
m → Zq

n, be the almost seed homomorphic PRG with q < p and m < n
and eLWR ∈ {0, 1, 2}n. In particular, the noise eLWR is inherent to these PRGs; this is
discussed in detail by Peter Scholl in [Sch18]. However, with certain techniques leveraging
the concept of noise gap between the required security and correctness, we can remove this
error during threshold decryption. Despite this complex method, we can simply transfer
the seeds corresponding to the input ciphertexts, i.e., θij , θ

i′
j , from which the randomness in

the masked ciphertexts can be computed as âij ← G(θij) + G(θi′j ). Consequently, our masked

ciphertexts are now of the form ĉt
i

j = (b̂ij , θ
i
j , θ

i′
j ), ∀j ∈ {0, 1}. With this approach, the size

of the masked ciphertexts is now 2λ+ log2 q instead of (n+ 1) log2 q bits and consequently,
we achieve around 98.24% reduction in the overall communication bandwidth from S1 to the
other servers.

Reducing communication bandwidth from others to S1. We now extend the above-
mentioned ciphertext compression technique to decrease the communication bandwidth for
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Table 4: Modified LUT for Boolean AND (∧) for the masked bit {ri0, ri1}

LUT
ri0,ri1
∧

ct
((0⊕ri0),(0⊕ri1))

= (bi00, θi00) ct
((0⊕ri0),(1⊕ri1))

= (bi01, θi01)

ct
((1⊕ri0),(0⊕ri1))

= (bi10, θi10) ct
((1⊕ri0),(1⊕ri1))

= (bi11, θi11)

Table 5: LUT for Boolean AND for the masked bit {ri0 = 1, ri1 = 0}

LUT 1,0
∧ ThAHE.Enc ((0⊕ 1) ∧ (0⊕ 0), pk) = ThAHE.Enc(0, pk) ThAHE.Enc ((0⊕ 1) ∧ (1⊕ 0), pk) = ThAHE.Enc(1, pk)

ThAHE.Enc ((1⊕ 1) ∧ (0⊕ 0), pk) = ThAHE.Enc(0, pk) ThAHE.Enc ((1⊕ 1) ∧ (1⊕ 0), pk) = ThAHE.Enc(0, pk)

the response ciphertext to S1. After performing threshold decryption, the masked plaintext
bits are used to query on an LUT corresponding to a Boolean operation. Each of these
LUTs consists of four ciphertexts for four possible values of the masking bits (ri0, r

i
1), and

these LUTs are constructed by the trusted dealer. Hence, during LUT generation, the seeds
corresponding to the ciphertexts are stored instead of using the random vectors. For example,
the modified LUT for Boolean AND (∧) is shown in Table 4, where in place of random vectors
the seeds are stored as part of the ciphertexts, such that ai

uv = G(θiuv). corresponding to
ct((u⊕ri0),(v⊕ri1))

, ∀u, v ∈ {0, 1}2. Therefore, as a response to S1 the rest of the servers send

the compressed ciphertext ct((u⊕ri0),(v⊕ri1))
= (biuv, θ

i
uv), which has a size of λ+ log2 q bits;

thus achieves approximately 99.02% reduction in the communication delay during response
phase from (S2, . . . , ST ) to S1.

Analysis on communication bandwidth using our proposed optimizations. Here,
we analyze the performance gain using our ciphertext compression techniques. As discussed
earlier, the total communication bandwidth required for our initial construction of TOPRF
for a (t, T ) threshold decryption is 64(2t+ 1) MB or, 128(2t+ 1) MB based on single-key or
2-key variant of ThAHE scheme. Now, with 31924 many Boolean gates for an AES-based
PRF circuit, we compute our optimized communication bandwidth as follows,

- for communicating ciphertexts from S1 to (S2, . . . , ST ) we achieve approximately
98.24% reduction in ciphertexts sizes, hence the communication cost is now 128t× 1.76

100
MB or, 2.25t MB, instead of 128t MB, required to transfer the masked ciphertexts in
our initial construction.

- for the response phase 64 MB data needs to be sent from (S2, . . . , ST ) to S1, but
applying our 99.02% reduction technique, our communication cost in the response
phase is reduced to 64× 0.98

100 , or 0.627 MB.

Therefore, the total communication bandwidth required for homomorphically evaluating
an AES-based PRF circuit is approximately 2.25t + 0.63 MB. Assuming a 1 GB/s LAN
connectivity between the public servers, the time required for total communication is
now 2.25t + 0.63 ms, or ≈ 2.25t ms for large values of t. Observe that, the optimized
communication bandwidth grows linearly in t and is negligible (for reasonable values of t)
in comparison to the TOPRF evaluation time of 0.96 secs. Therefore, we can enlarge the
threshold value t up to 400 servers to have a comparable delay compared to our TOPRF
evaluation time. In Figure 4 we present a comparison between the total bandwidth required
for optimized and un-optimized versions of TOPRF for multiple values of t.
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Figure 4: Comparison between optimized and un-optimized communication bandwidth for different
values of (t, T )

3.5 Correctness analysis of our TOPRF evaluation

Here, we prove the correctness of a PRF circuit evaluation using our proposed TOPRF
construction. Recall from Section 3.2, at the beginning of our TOPRF protocol, a trusted key
dealer distributes the decryption key sk among T servers and generates encryptions of some
random bits and LUTs, that are used to evaluate a Boolean PRF circuit homomorphically
and securely. Now, in the execution phase of one of the T serves say, S1 masks the input
ciphertexts of a Boolean gate by performing homomorphic addition with the encrypted
random bits. We sample the initial noise during encryption from the lower-bounded noise
distribution, thus one addition (or, XOR) operation in an AHE (or, FHE) scheme requires no
noise reduction technique such as bootstrapping because the noise in the resultant ciphertext
remains within the required threshold (discussed in Appendix A.2). Thus after the threshold
decryption performed by (S2, . . . , ST ), the servers get the required plaintext bits. Using this
they query an LUT corresponding to the Boolean gate that needs to be evaluated. Now,
our correctness of the entire TOPRF evaluation relies on the query phase of LUT operation,
i.e., the LUT must return the desired encryption corresponding to the output of the target
Boolean gate that needs to be evaluated.

We prove the correctness of the LUT query phase using an example, suppose, for random

bits (ri0, r
i
1) at the ith, the LUT for Boolean AND is LUT

ri0,r
i
1

∧ . Let us assume the input
bits at the ith be mi

0 = 0 and mi
1 = 1 and the random masking bits be ri0 = 1 and ri1 = 0.

After homomorphic addition the masked plaintexts are m̂i
0 = mi

0 ⊕ ri0 = 0 ⊕ 1 = 1 and

m̂i
1 = mi

1 ⊕ ri1 = 1 ⊕ 0 = 1. The LUT
ri0,r

i
1

∧ for ri0 = 1 and ri1 = 0 is shown in Table 5.
After the threshold decryption (S2, . . . , ST ) retrieves m̂i

0 = 1 and m̂i
1 = 1 and query with

LUT 1,0
∧

(
m̂i

0, m̂
i
1

)
= LUT 1,0

∧ (1, 1). This returns the ciphertext at position (1, 1) in the LUT
as shown in Table 5, which outputs an encryption of 0 which is indeed the correct evaluation
of mi

0 ∧mi
1 = 0 ∧ 1 = 0.

Similarly, we can prove the correctness for Boolean XOR operation with different values of
random masking bits and input plaintexts.

21



Table 6: Parameters used in experimental setting

Parameter Value

n (LWE dimension) 512

αmin

(Minimum standard deviation of LWE noise)

√
2
π
× 2−15

αmax

(Maximum standard deviation of LWE noise)

√
2
π
× 2−6

σ
(Standard deviation of smudging noise)

0.0312

3.6 Security analysis of our TOPRF protocol

Our TOPRF construction relies on a set of T cloud servers. Among T servers, one has the
encrypted PRF key K and encrypted masking bits. The decryption key sk is distributed
amongst the rest of the (T − 1) server. Now, our security analysis ensures that our TOPRF
protocol is secure under maximal corruption up to (T − 1) servers and satisfies the “un-
predictability” and “obliviousness” properties. Let Sc be a set of servers corrupted by a
semi-honest PPT adversary A and for maximal corruption |Sc| = (T − 1).

Theorem 1. Our TOPRF protocol satisfies unpredictability/pseudo-randomness property
under the maximal corruption of (T − 1) servers by a semi-honest PPT adversary A.

Proof. Suppose A corrupt up to (T − 1) servers, i.e., |Sc| = T . In such case, A has access to
the masked plaintext bits after completion of the threshold decryption protocol. But these
plaintexts are information-theoretically secure due to the homomorphic masking operation by
one of the T servers at the beginning of the protocol. Thus, the original plaintexts are hidden
in the view of A. However, during the PRF circuit evaluation, due to the homomorphic
property of the underlying AHE scheme, the intermediate inputs/results remain encrypted,
and A is unable to perform decryption with (T−1) secret key shares according to the property
of threshold LISSS [DT06] scheme. Therefore, the intermediate results are inaccessible to A,
and consequently, the output of PRF evaluation remains indistinguishable from random.

Theorem 2. Our TOPRF protocol satisfies obliviousness property under the maximal
corruption of (T − 1) servers by a semi-honest PPT adversary A.

Proof. Our TOPRF protocol satisfies the obliviousness property under a similar argument as
claimed in the proof of unpredictability, i.e., although A corrupt up to (T − 1) servers, A is
unable to retrieve the client’s PRF input x or the server’s PRF key K, because they are
encrypted under an AHE scheme at the beginning of the protocol and during PRF evaluation
the intermediate results remain encrypted due to homomorphic property of the encryption
scheme. Thus neither the PRF input nor the PRF key is accessible to A. This proves the
obliviousness property of our TOPRF protocol.

Although we provide an informal description of our security analysis, a formal proof of
security of our proposed TOPRF protocol is discussed in Appendix A.4.
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Algorithm 1 Software implementation of ThAHE with (t, T )-threshold decryption

Input: msg1 ∈ {0, 1}, msg2 ∈ {0, 1}, t ∈ N, T ∈ N, St ⊆ S s.t |St| = t and |S = T |
Output: outp← msg1 ⊕msg2
1: (LweSk, LwePk)←LweKeyGen(LweParams)
2: cipher1 ← AsymEncrypt(msg1, LwePk)
3: cipher2 ← AsymEncrypt(msg2, LwePk)
4: result cipher← HomAdd(cipher1, cipher2)
5: ShareSecret(t, T,LweSk) ▷ Now all parties get their key shares. Each party i ∈ S

calculates outp on its own.
6: outp← thresholdDecrypt(result cipher,St, t, T, i)
7: return outp

4 Implementation and Experimental Results

In this section, we describe the implementation of (t, T )-threshold decryption of our ThAHE
scheme on an x86-based computing platform.
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Figure 5: Secret sharing, threshold decryption, and plain decryption time. Note that the y-axis is
in logarithmic scale.

4.1 Implementation Details

Our ThAHE scheme is implemented by following the Regev cryptosystem [Reg09], where the
secret key LweSK and public key LwePK is generated based on LWE hardness assumption,
thus taking the same parameter set from TFHE [CGGI20] library and our smudging noise
parameter σ is chosen from [CSS+22], which is a TFHE-based threshold FHE scheme
achieving polynomial modulus-to-noise ratio. According to Albrecht, Player, and Scott’s
Lattice Estimator [APS15] with the estimated complexity of attacking using these parameters
is approximately 2128 operations. We then modified the decryption algorithms to support
threshold decryption and for the key generation, we used a set of parameters as mentioned
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Table 7: Comparison with some existing OPRF constructions.

Scheme PRF Assumption Quantum-safe Obliviousness Threshold
TCRSTW21 [TCR+22] DY variant OM-Gap-sDH X ✓ X
MPRSY20 [MPR+20] DY q-DHI X X Distributed
ECSJR15 [ECS+15] HashDH OMBD-DH X ✓ ✓
JKKX17 [JKKX17] 2HashDH Gap-OMDH X X ✓

BFHLY19 [BFH+20], DHL22 [DHL20] 2HashDH Gap-OMBDH X ✓ Distributed
JKR18 [JKR18] Any Gap-OMDH X ✓ ✓

ADDG23 [ADDG23] Low-depth [BIP+18] LWE ✓ ✓ X
Ours Any LWE ✓ ✓ ✓

in Table 6. After that, the threshold secret sharing is performed by a trusted cloud
server with sufficient computational resources. Subsequently, homomorphic evaluations
are performed on encrypted data stored on the cloud server. In Algorithm 1 we briefly
provide the implementation steps of our ThAHE scheme. Now, all these algorithms are
implemented on a computing platform with an Intel(R) Xeon(R) CPU E5-2690 v4 CPU
(2.60GHz clock-frequency), 28 physical cores, and 64GB RAM.

Remark on parameter choices. Considering the recent quantum attack on LWE [Che24]
our present understanding is that the TFHE scheme is not immediately impacted due to a
smaller modulus(q) to noise(e) ratio relative to n; however, the exact implications are yet
to be analyzed in detail. Hence, for our threshold AHE scheme, our parameter set chooses
q = 232, n = 512, e = 217 as in the original TFHE scheme. These parameters yield a ratio
q
e = 215 ≈ n1.67, considerably smaller than the attack requirement of n4.5 as mentioned in
by Yilei Chen [Che24].

4.2 Experimental Evaluation

Here, we discuss the experimental evaluation performance of our proposed ThAHE scheme.

Threshold Decryption vs. Plain Decryption. Now, we present our performance result
using two 128-bit messages msg1 and msg2. Now, the user/client encrypts msg1 and msg2
with its public key LwePk using our defined AsymEncrypt function to produce cipher1 and
cipher1. Now, we use our HomAddd function to perform homomorphic addition operation
without a bootstrapping and produce resultant ciphertext result cipher. We then perform
(t, T )-threshold decryption on result cipher according to the LISSS [CSS+22] secret sharing
scheme. Some of the concrete sets of parameters used in our experiments are taken from the
TFHE library as listed in Table 6.

Figure 5 shows the secret sharing time, partial decryption time, and final decryption time on
a standard computing platform in terms of milliseconds. Figure 5 also shows that the time
required for threshold decryption is only slightly higher than that of plain decryption using
our ThAHE scheme. In other words, our proposed threshold decryption procedure incurs
only minimal overhead over the plain decryption algorithm specified in the original Regev’s
scheme [Reg09]

Comparison with some previous works on TOPRF. Here, we discuss comparisons be-
tween our TOPRF protocol with some of the previous works on oblivious PRFs. Table 7 briefly
presents these comparisons. Some of the previous OPRF constructions [TCR+22, MPR+20]
uses Dodis-Yampolskiy (DY) PRF [DY05] and they rely on One-More Gap Strong Diffie-
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Hellman Inversion (OM-Gap-sDH) or q-Diffie-Hellman Inversion (q-DHI) assumption. Few
other works [ECS+15, JKKX17, BFH+20, DHL20] use Hashed Diffie-Hellman (HashDH) PRF
under the idealized assumption that the hash function produces uniformly random elements
from a group. These works rely on One-More Bilinear Decisional Diffie-Hellman (OMBD-
DH) or, Gap One-More Diffie-Hellman (OMDH) assumption in the random-oracle model.
Among these works, very few of them [ECS+15, JKR18] support both the obliviousness and
thresholdization property, while relying on quantum-unsafe assumptions such as variants of
Diffie-Hellman. Whereas, in this work, we propose the first TOPRF protocol based on the
quantum-safe LWE assumption.

5 Conclusion

In this work, we propose a novel threshold oblivious PRF (TOPRF) construction using a
distributed cloud architecture that uses a threshold decryption paradigm using an LWE-based
Regev’s encryption scheme to perform an efficient homomorphic evaluation of symmetric
cryptosystems using only an additive HE scheme. In particular, we use a Boolean repre-
sentation of the AES-128 circuit, evaluated on an efficient additive encryption scheme for
Boolean circuits. Furthermore, we propose several optimization techniques to reduce the
online computation time and communication bandwidth between the cloud servers. These
optimizations help to evaluate an AES-128 circuit in less than 1 second in the encrypted
domain and achieve an efficient TOPRF construction using symmetric cryptosystems. The
distributed cloud architecture emerges as a new research domain for optimizing FHE schemes
and making them usable in practical applications.
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[CHL22] Śılvia Casacuberta, Julia Hesse, and Anja Lehmann. Sok: oblivious pseudo-
random functions. In 2022 IEEE 7th European Symposium on Security and
Privacy (EuroS&P), pages 625–646. IEEE, 2022.

[CJJ+13] David Cash, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin
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A Some more Preliminary Definitions

Here, we describe some additional definitions used in the paper.

A.1 LWE, RLWE & RGSW

The FHE scheme presented in [CGGI20] is based on the Learning with Error (LWE) problem
and its ring variant (RLWE). In this section, we will briefly discuss these two problems.
Instead of working over integer modulo q i.e., Z/qZ or over the ring Z[X]/

(
XZ + 1

)
modulo

q in the ring variant, the TFHE scheme works over the real Torus T = R mod 1 and over
T = T[X]/

(
XZ + 1

)
, the the set of cyclotomic polynomials over T for a power-of-two integer

Z.

LWE. A LWE sample is a pair (b, a) ∈ Tn+1, where a is sampled from a uniform distribution
over Tn and b = ⟨a, sk⟩+ e. Here, sk is the LWE secret key, sampled from an uniform key
distribution K = {0, 1}n and the LWE noise e sampled from a Gaussian distribution Gα with
standard deviation α > 0.

RLWE. Similarly, a RLWE sample is a pair of polynomials (b, a) ∈ T 2, where a is sampled
uniformly from T and b = a · z + e (mod 1). Here, “·” denotes polynomial multiplication
and z is the RLWE secret which is an integer polynomial of degree Z sampled from a key
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distribution ψ on R = Z[X]/
(
XZ + 1

)
, the set of cyclotomic polynomials over Z. Now,

the error polynomial e is sampled from a Gaussian distribution with standard deviation
β > 0. We will set ψ as the uniform distribution on the set of polynomials of R with binary
coefficients in {0, 1}.

Now, we will define two problems for both LWE and RLWE:

• Decision problem: For a fixed LWE secret s (resp. RLWE secret z), distinguish the
uniform distribution over Tn+1 (resp. T 2) from the LWE (resp. RLWE) samples.

• Search problem: Given arbitrary many samples from LWE (resp. RLWE) distribution,
find the secret s (resp. z).

RGSW. We can define the RGSW samples as the Torus variant of RGSW [DM15b] samples
in the same way in LWE and RLWE. For a fixed RLWE secret z ∈ R, we define a RGSW
samples as C = Z + µ ·G2, where each line of the matrix Z ∈ T d×2 is a RLWE encryption of
0, G2 is the gadget matrix and the message µ ∈ R is an integer polynomial. RGSW samples
are homomorphic with respect to addition and internal multiplication.

A.2 Evaluating One Boolean gate without Bootstrapping

In this section, we discuss why in the TFHE scheme a homomorphic Boolean gate evaluation
requires no bootstrapping. That means, that although TFHE supports gate-bootstrapping,
we can evaluate at most one Boolean gate without performing a bootstrapping. Here, we
will elaborate on this reason using XOR gate in from TFHE as an example. Let us assume,
ct1 = (b1,a1) and ct2 = (b2,a2) are two LWE ciphertexts encrypting m1,m2 ∈ {0, 1}
respectively. According to the TFHE library, the plaintexts m1 and m2 are scaled in the
range [− 1

8 ,
1
8 ]. Assume, ∆ be the scaling function that maps ∆(0) = − 1

8 and ∆(1) = 1
8 .

Hence, we have

b1 = ⟨a1, sk⟩+ ∆(m1) + e1, b2 = ⟨a2, sk⟩+ ∆(m2) + e2

where, sk ∈ {0, 1}n be the secret key and e1, e2 ∈ Gα are the encryption noise sampled from
a Gaussian distribution with standard deviation α. For decryption correctness the noises
should satisfy ∥e1∥∞, ∥e1∥∞ < 1

16 . We now demonstrate the homomorphic XOR operation
between ct1 and ct2,

HomXOR(ct1, ct2) =

(
1

4
,0

)
+ 2 · (ct1 + ct2).

Let, ct⋆ = (b⋆,a⋆) be the output of HomXOR(ct1, ct2). Hence, we have

a⋆ = 2 · (a1 + a2),

b⋆ =
1

4
+ ⟨a⋆, sk⟩+ 2 · (∆(m1) + ∆(m2)) + 2 · (e1 + e2).

Let us analyze what will happen if we perform decryption of ct⋆ without performing the
bootstrapping over ct⋆. To decrypt ct⋆, first compute a phase ϕ = b⋆ − ⟨a⋆, sk⟩ (mod 1),
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now if ϕ > 0 return 1, otherwise return 0. Consider the following analysis of the decryption
operation with m1 = 0,m2 = 0, i.e., ∆(m1) = − 1

8 ,∆(m2) = − 1
8 and the encryption noises

with the same sign, i.e., either 0 ≤ e1, e2 < 1
16 , or − 1

16 < e1, e2 ≤ 0,

ϕ =
1

4
+ 2 · (∆(m1) + ∆(m2)) + 2 · (e1 + e2),

=
1

4
+ 2 ·

(
−1

8
− 1

8

)
+ 2 · (e1 + e2),

= −1

4
+ 2 · (e1 + e2),

= −1

4
+ δ

[
0 ≤ δ < 1

4
, for 0 ≤ e1, e2 <

1

16

]
,

= δ′
[
−1

4
< δ′ < 0 for both m1 = 0,m2 = 0

]
.

Now, with another extreme scenario when both the noises are negative,

= −1

4
+ 2 · (e1 + e2),

= −1

4
+ δ

[
0 ≥ δ > −1

4
, for − 1

16
< e1, e2 ≤ 0

]
,

= δ′
[
−1

2
< δ′ < −1

4
for both m1 = 0,m2 = 0

]

In both of these cases, − 1
2 < ϕ < 0, i.e., ϕ ( mod 1) = ϕ < 0, hence the decryption of XOR

upon m1 = 0 and m2 = 0 is 0, which is a correct decryption. Now, consider when both the
plaintexts are m1 = m2 = 1, thus ∆(m1) = ∆(m2) = 1

8 ,

ϕ =
1

4
+ 2 · (∆(m1) + ∆(m2)) + 2 · (e1 + e2),

=
1

4
+ 2 ·

(
1

8
+

1

8

)
+ 2 · (e1 + e2),

=
1

4
+

1

2
+ 2 · (e1 + e2),

=
1

4
+

1

2
+ δ

[
0 ≤ δ < 1

4
, for 0 ≤ e1, e2 <

1

16

]
,

= δ′
[

3

4
< δ′ < 1 for both m1 = 1,m2 = 1

]
.

Now, with the other extreme case when both the noises are negative,
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=
1

4
+

1

2
+ 2 · (e1 + e2),

=
1

4
+

1

2
+ δ

[
0 ≥ δ > −1

4
, for − 1

16
< e1, e2 ≤ 0

]
,

= δ′
[

1

2
< δ′ <

3

4
for both m1 = 1,m2 = 1

]
.

In both of these cases, 1
2 < ϕ < 1, i.e., ϕ ( mod 1) = ϕ− 1 < 0 hence the decryption of XOR

upon m1 = 1 and m2 = 1 is 0, which is a correct decryption. We now consider the case when
both the plaintexts are of opposite sign, without loss of generality consider m1 = 0,m2 = 1,
and ∆(m1) = − 1

8 and ∆(m2) = 1
8 ,

ϕ =
1

4
+ 2 · (∆(m1) + ∆(m2)) + 2 · (e1 + e2),

=
1

4
+ 2 ·

(
−1

8
+

1

8

)
+ 2 · (e1 + e2),

=
1

4
+ 2 · (e1 + e2),

=
1

4
+ δ

[
0 ≤ δ < 1

4
, for 0 ≤ e1, e2 <

1

16

]
,

= δ′
[

1

4
< δ′ <

1

2
for both m1 = 0,m2 = 1

]
.

Again considering the other extreme choices when both the noises are negative,

=
1

4
+ 2 · (e1 + e2),

=
1

4
+ δ

[
0 ≥ δ > −1

4
, for − 1

16
< e1, e2 ≤ 0

]
,

= δ′
[
0 < δ′ <

1

4

]
.

In both of these cases, 0 < ϕ < 1
2 , i.e., ϕ ( mod 1) = ϕ > 0; hence the decryption of XOR upon

m1 = 0 and m2 = 1 is 1, which is a correct decryption. So far, we have demonstrated that
the extreme choices of encryption noises i.e., when they are of the same sign we can achieve
correct decryption without the bootstrapping operation and it is trivial to show similar cases
when noises are of the opposite sign; that is the value of ϕ in each of the above cases will
remain in the required range. A similar approach as mentioned above can also be achieved for
homomorphic AND operation on ct1 and ct2, i.e., HomAND(ct1, ct2) =

(
− 1

8 ,0
)

+(ct1+ct2).

A.3 Bristol Representation of AES

In this section, we will have a closer look into the Bristol representation of AES-128 specifically,
presented in Listing 1. A Bristol Format file starts with a line that defines the number of
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Boolean gates and the number of wires in the Boolean circuit. The second line symbolizes
the first two numbers as the number of input wires to the function with its corresponding
number of output wires. From the third line onwards, each line represents a binary gate
and its input/output specifications. The first two values represent the number of input and
output respectively. The next two values are input wire numbers, which are fed as the inputs
of the binary gate; after evaluation, the result is written in the next wire number, which is
the output wire. For example, consider the AES-128 circuit presented in Listing 1.

For example, in the 1st line, ‘33616’ and ‘33872’ denote the number of gates and the wires
respectively. In 2nd line, the first two values i.e., ‘128’ and ‘128’ refer to the size of the two
inputs, and the third value ‘128’ is the size of the output. Now, in 3rd line the last entry
represents XOR operation taking the third and the fourth values i.e., ‘226’ and ‘229’ as input
wires, and the result after homomorphic XOR operation is written in the output wire number
‘33736’. The first two values ‘2’ and ‘1’ denote the number of inputs and the number of
outputs. The Bristol Formats are known to be TFHE-friendly as it is represented using only
binary gates.

Listing 1: Bristol Format of AES-128

33616 33872
128 128 128

2 1 226 229 33736 XOR
2 1 178 50 33663 XOR

...
2 1 32888 33064 33031 AND
1 1 32898 33141 INV

...
2 1 268 269 257 XOR
2 1 256 257 33749 XOR

A.4 Security Analysis of TOPRF Protocol

Here, we present a detailed analysis of security by proving both the unpredictability and
obliviousness properties of our proposed TOPRF protocol. We define several hybrids describing
the different views of a semi-honest PPT adversary and show indistinguishability between
the hybrids to prove the security of the underlying TOPRF protocol. In the hybrids, with
the term “simulated” key shares, we refer to shares of the zero-vector 0⃗.

Proof of unpredictability/pseudo-randomness. Now, we prove the unpredictability
property of our TOPRF using some hybrids defined as follows,

Hybrid0–

1. On input the security parameter λ, the adversary A outputs an access structure
A ∈ {S1, . . . , ST }.

2. Run ThAHE.KeyGen(params) and returns (pk, sk1, . . . , skT ). Now, A is given pk.
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3. A outputs a set Sc ⊂ {S1, . . . , ST } such that Sc /∈ A. The adversary is given {skj}j∈Sc .

4. A also has access to {cti}i∈Q ← {ThAHE.Enc(zi, pk)}i∈Q, where Q is a set containing
the client’s (PRF) input, the server’s (PRF) key, and the random masking bits, i.e.,
|Q| = 2(N + L), N be the size of the underlying PRF input/key and L be the number
of random-bit pairs required for masking. Therefore, the adversary has encryptions of
the PRF input, PRF key, and the random masking bits.

5. A is handed over γij ← ThAHE.PartDec(cti, skj), ∀i ∈ [Q], j ∈ Sc.

6. A also gets the masked plaintext bits {m̂i
0, m̂

i
1}i∈[L] after the threshold decryption

operation performed as a part of our TOPRF protocol.

7. Finally, A is provided with the original PRF output out ∈ {0, 1}N , after performing
the final threshold decryption.

Briefly saying the Hybrid0 represents the view of A that includes the real secret key shares
and encryptions of the original PRF input and key.

Hybrid1– This hybrid is the same as Hybrid0 except for the following steps,

3. A outputs a set Sc ⊂ {S1, . . . , ST } such that Sc /∈ A. The adversary is given the
simulated secret shares {sk′

j}j∈Sc
.

5. The adversaryA is now given the simulated partial decryptions γi′j ← ThAHE.PartDec(cti, sk
′
j),

∀i ∈ [Q], j ∈ Sc.

The Hybrid1 represents the view of A that comprises the simulated secret key shares, i.e.,
shares of 0⃗ and ciphertexts corresponding to the original PRF input and key.

Hybrid2– This hybrid is the same as Hybrid1 except for the following steps,

4. A is now provided with {ct′i}i∈Q ← {ThAHE.Enc(0, pk)}i∈QK , where QK denotes the
PRF key, and |QK | = N . Therefore, encryption of the PRF key is now replaced with
random encryptions of 0.

The Hybrid2 represents the view of A that includes the simulated secret key shares, i.e.,
shares of 0⃗ and random ciphertexts (encryptions of 0) in place of the encryptions of original
PRF key.

Hybrid3– This hybrid is the same as Hybrid2 except for the following steps,

7. A is now provided with random PRF output out′ ∈ {0, 1}N , sampled uniformly from
the output space of the PRF.

Indistinguishability argument. The only difference in the view of the adversary A from
Hybrid0 to Hybrid1 is that the partial decryptions γi′j are generated by simulated shares
using a maximal invalid share set Sc of the secret key shares rather than by the real par-
tial decryptions γij with access to the real secret key shares. By the properties of LISSS
scheme [DT06], these two hybrids, i.e., Hybrid0 and Hybrid1 are statistically indistinguish-
able. Now, considering the hybrids Hybrid1 and Hybrid2, the only change in the view of
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A is that the ciphertexts corresponding the PRF key are random encryptions of 0 rather
than the original PRF/server’s key. According to the IND-CPA security [JRS17, BGG+18]
of our underlying homomorphic encryption scheme, the view of A in Hybrid1 and Hybrid2

are computationally indistinguishable. Finally, the indistinguishability between the hybrids
Hybrid2 and Hybrid3 relies on the pseudorandomness property of the underlying PRF (in
our case, AES), i.e., the output of the PRF evaluation is computationally indistinguishable
from random. Therefore, we claim that for a semi-honest PPT adversary A these four hybrids
are indistinguishable. Hence, in the view of A the output of our TOPRF is indistinguishable
from random, this proves the unpredictability property of our TOPRF protocol.

Proof of obliviousness. We prove the obliviousness property of our TOPRF in a similar
way using some hybrids defined as follows,

Hybrid0–

1. On input the security parameter λ, the adversary A outputs an access structure
A ∈ {S1, . . . , ST }.

2. Run ThAHE.KeyGen(params) and returns (pk, sk1, . . . , skT ). A is given pk.

3. A outputs a set Sc ⊂ {S1, . . . , ST } such that Sc /∈ A. The adversary is given {skj}j∈Sc
.

4. A also has access to {cti}i∈Q ← {ThAHE.Enc(zi, pk)}i∈Q, where Q is a set containing
the client’s (PRF) input, the server’s (PRF) key, and the random masking bits, i.e.,
|Q| = 2(N + L), N is the underlying PRF input/key size and L is the number of
random-bit pairs required for masking. Therefore, the adversary has encryptions of
the PRF input, PRF key, and the random masking bits.

5. A is now handed over γij ← ThAHE.PartDec(cti, skj), ∀i ∈ [Q], j ∈ Sc.

6. A also gets the masked plaintext bits {m̂i
0, m̂

i
1}i∈[L] after the threshold decryption

operation performed in our TOPRF protocol.

7. Finally, A is provided with the original PRF output out ∈ {0, 1}N , after performing
the final threshold decryption.

The Hybrid0 is similar to the previous case, which represents the view of A that includes
the real secret key shares and encryptions of the original PRF input and key.

Hybrid1– This hybrid is the same as Hybrid0 except for the following steps,

3. A outputs a set Sc ⊂ {S1, . . . , ST } such that Sc /∈ A. A is given the simulated secret
shares {sk′

j}j∈Sc .

5. A is now provided with the simulated partial decryptions γi′j ← ThAHE.PartDec(cti, sk
′
j),

∀i ∈ [Q], j ∈ Sc.

The Hybrid1 represents the view of A that includes the simulated secret key shares, i.e.,
shares of 0⃗ and ciphertexts corresponding to the original PRF input and key.

Hybrid2– This hybrid is the same as Hybrid1 except for the following steps,
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4. A is provided with {ct′i}i∈Q ← {ThAHE.Enc(0, pk)}i∈Qx , where Qx denotes the PRF
input, and |Qx| = N . Therefore, the encryptions of the PRF input are now replaced
with random encryptions of 0.

The Hybrid2 represents the view of A that includes the simulated secret key shares and
random ciphertexts (encryptions of 0) in place of the PRF input.

Indistinguishability argument. The only change in the view of A from Hybrid0 to Hybrid1

is that the partial decryptions γi′j are generated with simulated secret shares using a maximal

invalid share set Sc rather than by the real partial decryptions γij with access to the real secret
key shares. Similarly, we can argue that according to the properties of LISSS scheme [DT06],
Hybrid0 and Hybrid1 are statistically indistinguishable. Now, considering Hybrid1 and
Hybrid2, the only change in the view of the adversary A is that the ciphertexts corresponding
to the PRF input are random encryptions of 0 rather than the original PRF/client’s input.
According to the IND-CPA security [JRS17, BGG+18] of our underlying HE scheme, the
view of A in Hybrid1 and Hybrid2 are computationally indistinguishable. Therefore, for a
semi-honest PPT A it is hard to guess the PRF input from the encrypted data, this shows
the obliviousness property of our TOPRF protocol.
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